WorldWideScience

Sample records for largest survey telescope

  1. Robotic and Survey Telescopes

    Science.gov (United States)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  2. Astronomers Break Ground on Atacama Large Millimeter Array (ALMA) - World's Largest Millimeter Wavelength Telescope

    Science.gov (United States)

    2003-11-01

    Scientists and dignitaries from Europe, North America and Chile are breaking ground today (Thursday, November 6, 2003) on what will be the world's largest, most sensitive radio telescope operating at millimeter wavelengths . ALMA - the "Atacama Large Millimeter Array" - will be a single instrument composed of 64 high-precision antennas located in the II Region of Chile, in the District of San Pedro de Atacama, at the Chajnantor altiplano, 5,000 metres above sea level. ALMA 's primary function will be to observe and image with unprecedented clarity the enigmatic cold regions of the Universe, which are optically dark, yet shine brightly in the millimetre portion of the electromagnetic spectrum. The Atacama Large Millimeter Array (ALMA) is an international astronomy facility. ALMA is an equal partnership between Europe and North America, in cooperation with the Republic of Chile, and is funded in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Europe by the European Southern Observatory (ESO) and Spain. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO. " ALMA will be a giant leap forward for our studies of this relatively little explored spectral window towards the Universe" , said Dr. Catherine Cesarsky , Director General of ESO. "With ESO leading the European part of this ambitious and forward-looking project, the impact of ALMA will be felt in wide circles on our continent. Together with our partners in North America and Chile, we are all looking forward to the truly outstanding opportunities that will be offered by ALMA , also to young scientists and engineers" . " The U.S. National Science Foundation joins today with our North American partner, Canada, and with the European Southern Observatory, Spain, and Chile to prepare

  3. Customized overhead cranes for installation of India's largest 3.6m optical telescope at Devasthal, Nainital, India

    Science.gov (United States)

    Bangia, Tarun; Yadava, Shobhit; Kumar, Brijesh; Ghanti, A. S.; Hardikar, P. M.

    2016-07-01

    India's largest 3.6 m aperture optical telescope facility has been recently established at Devasthal site by Aryabhatta Research Institute of Observation Sciences (ARIES), an autonomous Institute under Department of Science and Technology, Government of India. The telescope is equipped with active optics and it is designed to be used for seeinglimited observations at visible and near-infrared wavelengths. A steel building with rotating cylindrical steel Dome was erected to house 3.6m telescope and its accessories at hilltop of Devasthal site. Customized cranes were essentially required inside the building as there were space constraints around the telescope building for operating big external heavy duty cranes from outside, transportation constraints in route for bringing heavy weight cranes, altitude of observatory, and sharp bends etc. to site. To meet the challenge of telescope installation from inside the telescope building by lifting components through its hatch, two Single Girder cranes and two Under Slung cranes of 10 MT capacity each were specifically designed and developed. All the four overhead cranes were custom built to achieve the goal of handling telescope mirror and its various components during installation and assembly. Overhead cranes were installed in limited available space inside the building and tested as per IS 3177. Cranes were equipped with many features like VVVFD compatibility, provision for tandem operation, digital load display, anti-collision mechanism, electrical interlocks, radio remote, low hook height and compact carriage etc. for telescope integration at site.

  4. Final Status Survey for the Largest Decommissioning Project on Earth

    International Nuclear Information System (INIS)

    Dubiel, R.W.; Miller, J.; Quayle, D.

    2006-01-01

    To assist the United States Department of Energy's (US DOE's) re-industrialization efforts at its gaseous diffusion site in Oak Ridge, Tennessee, known as the East Tennessee Technology Park (ETTP), the US DOE awarded a 6-year Decontamination and Decommissioning (D and D) contract to BNG America (formerly BNFL Inc.) in 1997. The ETTP 3-Building D and D Project included the removal and disposition of the materials and equipment from the K-33, K-31, and K-29 Gaseous Diffusion Plant buildings. The three buildings comprise more than 4.8 million square feet (446,000 square meters) of floor surface area and more than 350 million pounds (148 million kilograms) of hazardous and radioactively contaminated material, making it the largest nuclear D and D project in progress anywhere in the world. The logistical hurdles involved in a project of this scope and magnitude required an extensive amount of Engineering and Health Physics professionals. In order to accomplish the Final Status Survey (FSS) for a project of this scope, the speed and efficiency of automated survey equipment was essential. Surveys of floors, structural steel and ceilings up to 60 feet (18 meters) were required. The FSS had to be expanded to include additional remediation and surveys due to characterization surveys and assumptions regarding the nature and extent of contamination provided by the US DOE. Survey design and technical bases had to consider highly variable constituents; including uranium from depleted to low enrichment, variable levels of Technetium-99 and transuranic nuclides, which were introduced into the cascade during the 1960's when recycled uranium (RU) from Savannah River was re-enriched at the facility. The RU was transported to unexpected locations from leaks in the cascade by complex building ventilation patterns. The primary survey tool used for the post remediation and FSS was the Surface Contamination Monitor (SCM) and the associated Survey Information Management System (SIMS

  5. Chinese large solar telescopes site survey

    Science.gov (United States)

    Liu, Yu

    2017-04-01

    In order to observe the solar surface with unprecedentedly higher resolution, Chinse solar physics society decided to launch their solar site survey project in 2010 as the first step to look for the best candidate sites for the Chinese next-generation large-aperture solar telescopes, i.e., the 5-8 meter Chinese Giant Solar Telescope, and the 1 meter level coronagraph. We have built two long-term monitoring sites in Daocheng, with altitudes of around 4800 meters above the sea level located in the large Shangri-La mountain area, and we have collected systematic site data since 2014. Clear evidence, including the key parameters of seeing factor, sky brightness and water vapor content, has indicated that the large Shangri-La area owns the potential conditions of excellent seeing level and sufficient amount of clear-sky hours suitable for developing large solar telescopes. We will review the site survey progress and present the preliminary statistical results in this talk.

  6. Adaptive Optics Simulation for the World's Largest Telescope on Multicore Architectures with Multiple GPUs

    KAUST Repository

    Ltaief, Hatem

    2016-06-02

    We present a high performance comprehensive implementation of a multi-object adaptive optics (MOAO) simulation on multicore architectures with hardware accelerators in the context of computational astronomy. This implementation will be used as an operational testbed for simulating the de- sign of new instruments for the European Extremely Large Telescope project (E-ELT), the world\\'s biggest eye and one of Europe\\'s highest priorities in ground-based astronomy. The simulation corresponds to a multi-step multi-stage pro- cedure, which is fed, near real-time, by system and turbulence data coming from the telescope environment. Based on the PLASMA library powered by the OmpSs dynamic runtime system, our implementation relies on a task-based programming model to permit an asynchronous out-of-order execution. Using modern multicore architectures associated with the enormous computing power of GPUS, the resulting data-driven compute-intensive simulation of the entire MOAO application, composed of the tomographic reconstructor and the observing sequence, is capable of coping with the aforementioned real-time challenge and stands as a reference implementation for the computational astronomy community.

  7. Optical Design for a Survey X-Ray Telescope

    Science.gov (United States)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2014-01-01

    Optical design trades are underway at the Goddard Space Flight Center to define a telescope for an x-ray survey mission. Top-level science objectives of the mission include the study of x-ray transients, surveying and long-term monitoring of compact objects in nearby galaxies, as well as both deep and wide-field x-ray surveys. In this paper we consider Wolter, Wolter-Schwarzschild, and modified Wolter-Schwarzschild telescope designs as basic building blocks for the tightly nested survey telescope. Design principles and dominating aberrations of individual telescopes and nested telescopes are discussed and we compare the off-axis optical performance at 1.0 KeV and 4.0 KeV across a 1.0-degree full field-of-view.

  8. Wide Field Infrared Survey Telescope [WFIRST]: telescope design and simulated performance

    Science.gov (United States)

    Goullioud, R.; Content, D. A.; Kuan, G. M.; Moore, J. D.; Chang, Z.; Sunada, E. T.; Villalvazo, J.; Hawk, J. P.; Armani, N. V.; Johnson, E. L.; Powell, C. A.

    2012-09-01

    The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics missions by the Astro2010 Decadal Survey, incorporating the Joint Dark Energy Mission payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of the Astro2010 Decadal Survey, the team has been working with the WFIRST Science Definition Team to refine mission and payload concepts. We present the current interim reference mission point design of the payload, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slit-less spectroscopy science channels. We also present the first results of Structural/Thermal/Optical performance modeling of the telescope point design.

  9. Simulation of Telescope Detectivity for Geo Survey and Tracking

    Science.gov (United States)

    Richard, P.

    2014-09-01

    As the number of space debris on Earths Orbit increases steadily, the need to survey, track and catalogue them becomes of key importance. In this context, CNES has been using the TAROT Telescopes (Rapid Telescopes for Transient Objects owned and operated by CNRS) for several years to conduct studies about space surveillance and tracking. Today, two testbeds of services using the TAROT telescopes are running every night: one for GEO situational awareness and the second for debris tracking. Additionally to the CNES research activity on space surveillance and tracking domain, an operational collision avoidance service for LEO and GEO satellites is in place at CNES for several years. This service named CAESAR (Conjunction Analysis and Evaluation: Alerts and Recommendations) is used by CNES as well as by external customers. As the optical debris tracking testbed based on TAROT telescopes is the first step toward an operational provider of GEO measures that could be used by CAESAR, simulations have been done to help choosing the sites and types of telescopes that could be added in the GEO survey and debris tracking telescope network. One of the distinctive characteristics of the optical observation of space debris compared to traditional astronomic observation is the need to observe objects at low elevations. The two mains reasons for this are the need to observe the GEO belt from non-equatorial sites and the need to observe debris at longitudes far from the telescope longitude. This paper presents the results of simulations of the detectivity for GEO debris of various telescopes and sites, based on models of the GEO belt, the atmosphere and the instruments. One of the conclusions is that clever detection of faint streaks and spread sources by image processing is one of the major keys to improve the detection of debris on the GEO belt.

  10. THE GHOSTS SURVEY. I. HUBBLE SPACE TELESCOPE ADVANCED CAMERA FOR SURVEYS DATA

    International Nuclear Information System (INIS)

    Radburn-Smith, D. J.; Dalcanton, J. J.; De Jong, R. S.; Streich, D.; Vlajic, M.; Seth, A. C.; Bailin, J.; Bell, E. F.; Brown, T. M.; Ferguson, H. C.; Goudfrooij, P.; Holfeltz, S.; Bullock, J. S.; Courteau, S.; Sick, J.; Holwerda, B. W.; Purcell, C.; Zucker, D. B.

    2011-01-01

    We present an overview of the GHOSTS survey, the largest study to date of the resolved stellar populations in the outskirts of disk galaxies. The sample consists of 14 disk galaxies within 17 Mpc, whose outer disks and halos are imaged with the Hubble Space Telescope Advanced Camera for Surveys (ACS). In the first paper of this series, we describe the sample, explore the benefits of using resolved stellar populations, and discuss our ACS F606W and F814W photometry. We use artificial star tests to assess completeness and use overlapping regions to estimate photometric uncertainties. The median depth of the survey at 50% completeness is 2.7 mag below the tip of the red giant branch (TRGB). We comprehensively explore and parameterize contamination from unresolved background galaxies and foreground stars using archival fields of high-redshift ACS observations. Left uncorrected, these would account for 10 0.65xF814W-19.0 detections per mag per arcsec 2 . We therefore identify several selection criteria that typically remove 95% of the contaminants. Even with these culls, background galaxies are a significant limitation to the surface brightness detection limit which, for this survey, is typically V ∼ 30 mag arcsec -2 . The resulting photometric catalogs are publicly available and contain some 3.1 million stars across 76 ACS fields, predominantly of low extinction. The uniform magnitudes of TRGB stars in these fields enable galaxy distance estimates with 2%-7% accuracy.

  11. Editorial: The LAMOST survey at the Guo Shou Jing Telescope

    International Nuclear Information System (INIS)

    Bland-Hawthorn, Joss

    2012-01-01

    This special issue is devoted to the LAMOST star/galaxy survey now under way at the Guo Shou Jing Telescope in China. Here I review briefly the LAMOST survey in the context of recent, ongoing and future surveys on the international scene. The primary science goal is to obtain kinematics and abundance information for ten million stars over the Galaxy, far more than all other ground-based surveys combined. This rich trove will provide new insights and understanding about the workings of our Galaxy and its origins.

  12. M Dwarf Exoplanet Survey by the Falcon Telescope Network

    Science.gov (United States)

    Carlson, Randall E.

    2016-10-01

    The Falcon Telescope Network (FTN) consists of twelve automated 20-inch telescopes located around the globe. We control it at the US Air Force Academy in Colorado Springs, Colorado from the Cadet Space Operations Center. We have installed 10 of the 12 sites and anticipate full operational capability by the beginning of 2017. The network's worldwide geographic distribution provides advantages. The primary mission of the FTN is Space Situational Awareness and studying Near Earth Objects. However, we are employing the FTN with its 11' x 11' field-of-view for a five-year, M dwarf exoplanet survey. Specifically, we are searching for Earth-radius exoplanets. We describe the FTN, design considerations going into the FTN's M dwarf exoplanet survey including automated operations, and initial results of the survey.

  13. Sloan Digital Sky Survey photometric telescope automation and observing software

    International Nuclear Information System (INIS)

    Eric H. Neilsen, Jr.; email = neilsen@fnal.gov

    2002-01-01

    The photometric telescope (PT) provides observations necessary for the photometric calibration of the Sloan Digital Sky Survey (SDSS). Because the attention of the observing staff is occupied by the operation of the 2.5 meter telescope which takes the survey data proper, the PT must reliably take data with little supervision. In this paper we describe the PT's observing program, MOP, which automates most tasks necessary for observing. MOP's automated target selection is closely modeled on the actions a human observer might take, and is built upon a user interface that can be (and has been) used for manual operation. This results in an interface that makes it easy for an observer to track the activities of the automating procedures and intervene with minimum disturbance when necessary. MOP selects targets from the same list of standard star and calibration fields presented to the user, and chooses standard star fields covering ranges of airmass, color, and time necessary to monitor atmospheric extinction and produce a photometric solution. The software determines when additional standard star fields are unnecessary, and selects survey calibration fields according to availability and priority. Other automated features of MOP, such as maintaining the focus and keeping a night log, are also built around still functional manual interfaces, allowing the observer to be as active in observing as desired; MOP's automated features may be used as tools for manual observing, ignored entirely, or allowed to run the telescope with minimal supervision when taking routine data

  14. Survey Strategy Optimization for the Atacama Cosmology Telescope

    Science.gov (United States)

    De Bernardis, F.; Stevens, J. R.; Hasselfield, M.; Alonso, D.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Crowley, K. T.; Devlin, M.; Wollack, E. J.

    2016-01-01

    In recent years there have been significant improvements in the sensitivity and the angular resolution of the instruments dedicated to the observation of the Cosmic Microwave Background (CMB). ACTPol is the first polarization receiver for the Atacama Cosmology Telescope (ACT) and is observing the CMB sky with arcmin resolution over approximately 2000 square degrees. Its upgrade, Advanced ACTPol (AdvACT), will observe the CMB in five frequency bands and over a larger area of the sky. We describe the optimization and implementation of the ACTPol and AdvACT surveys. The selection of the observed fields is driven mainly by the science goals, that is, small angular scale CMB measurements, B-mode measurements and cross-correlation studies. For the ACTPol survey we have observed patches of the southern galactic sky with low galactic foreground emissions which were also chosen to maximize the overlap with several galaxy surveys to allow unique cross-correlation studies. A wider field in the northern galactic cap ensured significant additional overlap with the BOSS spectroscopic survey. The exact shapes and footprints of the fields were optimized to achieve uniform coverage and to obtain cross-linked maps by observing the fields with different scan directions. We have maximized the efficiency of the survey by implementing a close to 24-hour observing strategy, switching between daytime and nighttime observing plans and minimizing the telescope idle time. We describe the challenges represented by the survey optimization for the significantly wider area observed by AdvACT, which will observe roughly half of the low-foreground sky. The survey strategies described here may prove useful for planning future ground-based CMB surveys, such as the Simons Observatory and CMB Stage IV surveys.

  15. Software and control system for the VLT Survey Telescope

    International Nuclear Information System (INIS)

    Schipani, P; Marty, L; Dall'Ora, M; D'Orsi, S; Argomedo, J; Arcidiacono, C; Farinato, J; Magrin, D; Ragazzoni, R; Umbriaco, G

    2013-01-01

    The VLT Survey Telescope (VST) has started the regular operations in 2011 after a successful commissioning at Cerro Paranal (Chile), the site which hosts the best facilities for optical astronomy operated by the European Southern Observatory (ESO). After a short description of the instrument, this paper mainly focuses on the telescope control software, which is in charge of the real-time control of the hardware and of the overall coordination of the operations, including pointing and tracking, active optics and presets. We describe the main features of the software implementation in the context of the ESO observatory standards, and the goals reached during the commissioning phase and in the first year of operations.

  16. Whole Earth Telescope discovery of a strongly distorted quadrupole pulsation in the largest amplitude rapidly oscillating Ap star

    Science.gov (United States)

    Holdsworth, Daniel L.; Kurtz, D. W.; Saio, H.; Provencal, J. L.; Letarte, B.; Sefako, R. R.; Petit, V.; Smalley, B.; Thomsen, H.; Fletcher, C. L.

    2018-01-01

    We present a new analysis of the rapidly oscillating Ap (roAp) star, 2MASS J19400781 - 4420093 (J1940; V = 13.1). The star was discovered using SuperWASP broad-band photometry to have a frequency of 176.39 d-1 (2041.55 μHz; P = 8.2 min; Holdsworth et al. 2014a) and is shown here to have a peak-to-peak amplitude of 34 mmag. J1940 has been observed during three seasons at the South African Astronomical Observatory, and has been the target of a Whole Earth Telescope campaign. The observations reveal that J1940 pulsates in a distorted quadrupole mode with unusual pulsational phase variations. A higher signal-to-noise ratio spectrum has been obtained since J1940's first announcement, which allows us to classify the star as A7 Vp Eu(Cr). The observing campaigns presented here reveal no pulsations other than the initially detected frequency. We model the pulsation in J1940 and conclude that the pulsation is distorted by a magnetic field of strength 1.5 kG. A difference in the times of rotational maximum light and pulsation maximum suggests a significant offset between the spots and pulsation axis, as can be seen in roAp stars.

  17. Solar System science with the Large Synoptic Survey Telescope

    Science.gov (United States)

    Jones, Lynne; Brown, Mike; Ivezić, Zeljko; Jurić, Mario; Malhotra, Renu; Trilling, David

    2015-11-01

    The Large Synoptic Survey Telescope (LSST; http://lsst.org) will be a large-aperture, wide-field, ground-based telescope that will survey half the sky every few nights in six optical bands from 320 to 1050 nm. It will explore a wide range of astrophysical questions, ranging from performing a census of the Solar System, to examining the nature of dark energy. It is currently in construction, slated for first light in 2019 and full operations by 2022.The LSST will survey over 20,000 square degrees with a rapid observational cadence, to typical limiting magnitudes of r~24.5 in each visit (9.6 square degree field of view). Automated software will link the individual detections into orbits; these orbits, as well as precisely calibrated astrometry (~50mas) and photometry (~0.01-0.02 mag) in multiple bandpasses will be available as LSST data products. The resulting data set will have tremendous potential for planetary astronomy; multi-color catalogs of hundreds of thousands of NEOs and Jupiter Trojans, millions of asteroids, tens of thousands of TNOs, as well as thousands of other objects such as comets and irregular satellites of the major planets.LSST catalogs will increase the sample size of objects with well-known orbits 10-100 times for small body populations throughout the Solar System, enabling a major increase in the completeness level of the inventory of most dynamical classes of small bodies and generating new insights into planetary formation and evolution. Precision multi-color photometry will allow determination of lightcurves and colors, as well as spin state and shape modeling through sparse lightcurve inversion. LSST is currently investigating survey strategies to optimize science return across a broad range of goals. To aid in this investigation, we are making a series of realistic simulated survey pointing histories available together with a Python software package to model and evaluate survey detections for a user-defined input population. Preliminary

  18. Cosmology with the Large Synoptic Survey Telescope: an overview

    Science.gov (United States)

    Zhan, Hu; Tyson, J. Anthony

    2018-06-01

    The Large Synoptic Survey Telescope (LSST) is a high étendue imaging facility that is being constructed atop Cerro Pachón in northern Chile. It is scheduled to begin science operations in 2022. With an ( effective) aperture, a novel three-mirror design achieving a seeing-limited field of view, and a 3.2 gigapixel camera, the LSST has the deep-wide-fast imaging capability necessary to carry out an survey in six passbands (ugrizy) to a coadded depth of over 10 years using of its observational time. The remaining of the time will be devoted to considerably deeper and faster time-domain observations and smaller surveys. In total, each patch of the sky in the main survey will receive 800 visits allocated across the six passbands with exposure visits. The huge volume of high-quality LSST data will provide a wide range of science opportunities and, in particular, open a new era of precision cosmology with unprecedented statistical power and tight control of systematic errors. In this review, we give a brief account of the LSST cosmology program with an emphasis on dark energy investigations. The LSST will address dark energy physics and cosmology in general by exploiting diverse precision probes including large-scale structure, weak lensing, type Ia supernovae, galaxy clusters, and strong lensing. Combined with the cosmic microwave background data, these probes form interlocking tests on the cosmological model and the nature of dark energy in the presence of various systematics. The LSST data products will be made available to the US and Chilean scientific communities and to international partners with no proprietary period. Close collaborations with contemporaneous imaging and spectroscopy surveys observing at a variety of wavelengths, resolutions, depths, and timescales will be a vital part of the LSST science program, which will not only enhance specific studies but, more importantly, also allow a more complete understanding of the Universe through different windows.

  19. Large Synoptic Survey Telescope: From Science Drivers to Reference Design

    Energy Technology Data Exchange (ETDEWEB)

    Ivezic, Z.; Axelrod, T.; Brandt, W.N.; Burke, D.L.; Claver, C.F.; Connolly, A.; Cook, K.H.; Gee, P.; Gilmore, D.K.; Jacoby, S.H.; Jones, R.L.; Kahn, S.M.; Kantor, J.P.; Krabbendam, V.; Lupton, R.H.; Monet, D.G.; Pinto, P.A.; Saha, A.; Schalk, T.L.; Schneider, D.P.; Strauss, Michael A.; /Washington U., Seattle, Astron. Dept. /LSST Corp. /Penn State U., Astron. Astrophys. /KIPAC, Menlo Park /NOAO, Tucson /LLNL, Livermore /UC, Davis /Princeton U., Astrophys. Sci. Dept. /Naval Observ., Flagstaff /Arizona U., Astron. Dept. - Steward Observ. /UC, Santa Cruz /Harvard U. /Johns Hopkins U. /Illinois U., Urbana

    2011-10-14

    In the history of astronomy, major advances in our understanding of the Universe have come from dramatic improvements in our ability to accurately measure astronomical quantities. Aided by rapid progress in information technology, current sky surveys are changing the way we view and study the Universe. Next-generation surveys will maintain this revolutionary progress. We focus here on the most ambitious survey currently planned in the visible band, the Large Synoptic Survey Telescope (LSST). LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. It will be a large, wide-field ground-based system designed to obtain multiple images covering the sky that is visible from Cerro Pachon in Northern Chile. The current baseline design, with an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg{sup 2} field of view, and a 3,200 Megapixel camera, will allow about 10,000 square degrees of sky to be covered using pairs of 15-second exposures in two photometric bands every three nights on average. The system is designed to yield high image quality, as well as superb astrometric and photometric accuracy. The survey area will include 30,000 deg{sup 2} with {delta} < +34.5{sup o}, and will be imaged multiple times in six bands, ugrizy, covering the wavelength range 320-1050 nm. About 90% of the observing time will be devoted to a deep-wide-fast survey mode which will observe a 20,000 deg{sup 2} region about 1000 times in the six bands during the anticipated 10 years of operation. These data will result in databases including 10 billion galaxies and a similar number of stars, and will serve the majority of science programs. The remaining 10% of the observing time will be allocated to special programs such as Very Deep and Very Fast time domain surveys. We describe how the

  20. Large Synoptic Survey Telescope: From science drivers to reference design

    Directory of Open Access Journals (Sweden)

    Ivezić Ž.

    2008-01-01

    Full Text Available In the history of astronomy, major advances in our understanding of the Universe have come from dramatic improvements in our ability to accurately measure astronomical quantities. Aided by rapid progress in information technology, current sky surveys are changing the way we view and study the Universe. Next- generation surveys will maintain this revolutionary progress. We focus here on the most ambitious survey currently planned in the visible band, the Large Synoptic Survey Telescope (LSST. LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. It will be a large, wide-field ground-based system designed to obtain multiple images covering the sky that is visible from Cerro Pachon in Northern Chile. The current baseline design, with an 8.4 m (6.5 m effective primary mirror, a 9.6 deg2 field of view, and a 3,200 Megapixel camera, will allow about 10,000 square degrees of sky to be covered using pairs of 15-second exposures in two photometric bands every three nights on average. The system is designed to yield high image quality, as well as superb astrometric and photometric accuracy. The survey area will include 30,000 deg2 with δ < +34.5◦ , and will be imaged multiple times in six bands, ugrizy, covering the wavelength range 320-1050 nm. About 90% of the observing time will be devoted to a deep- wide-fast survey mode which will observe a 20,000 deg2 region about 1000 times in the six bands during the anticipated 10 years of operation. These data will result in databases including 10 billion galaxies and a similar number of stars, and will serve the majority of science programs. The remaining 10% of the observing time will be allocated to special programs such as Very Deep and Very Fast time domain surveys. We describe how the LSST

  1. Large Synoptic Survey Telescope: From Science Drivers To Reference Design

    Directory of Open Access Journals (Sweden)

    Ivezić, Ž.

    2008-06-01

    Full Text Available In the history of astronomy, major advances in our understanding of the Universe have come from dramatic improvements in our ability to accurately measure astronomical quantities. Aided by rapid progress in information technology, current sky surveys are changing the way we view and study the Universe. Next-generation surveys will maintain this revolutionary progress. We focus here on the most ambitious survey currently planned in the visible band, the Large Synoptic Survey Telescope (LSST. LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. It will be a large, wide-field ground-based system designed to obtain multiple images covering the sky that is visible from Cerro Pach'{o}n in Northern Chile. The current baseline design, with an 8.4, m (6.5, m effective primary mirror, a 9.6 deg$^2$ field of view, and a 3,200 Megapixel camera, will allow about 10,000 square degrees of sky to be covered using pairs of 15-second exposures in two photometric bands every three nights on average. The system is designed to yield high image quality, as well as superb astrometric and photometric accuracy. The survey area will include 30,000 deg$^2$ with $delta<+34.5^circ$, and will be imaged multiple times in six bands, $ugrizy$, covering the wavelength range 320--1050 nm. About 90\\% of the observing time will be devoted to a deep-wide-fast survey mode which will observe a 20,000 deg$^2$ region about 1000 times in the six bands during the anticipated 10 years of operation. These data will result in databases including 10 billion galaxies and a similar number of stars, and will serve the majority of science programs. The remaining 10\\% of the observing time will be allocated to special programs such as Very Deep and Very Fast time domain surveys. We

  2. A Green Bank Telescope Survey of Large Galactic H II Regions

    Science.gov (United States)

    Anderson, L. D.; Armentrout, W. P.; Luisi, Matteo; Bania, T. M.; Balser, Dana S.; Wenger, Trey V.

    2018-02-01

    As part of our ongoing H II Region Discovery Survey (HRDS), we report the Green Bank Telescope detection of 148 new angularly large Galactic H II regions in radio recombination line (RRL) emission. Our targets are located at a declination of δ > -45^\\circ , which corresponds to 266^\\circ > {\\ell }> -20^\\circ at b=0^\\circ . All sources were selected from the Wide-field Infrared Survey Explorer Catalog of Galactic H II Regions, and have infrared angular diameters ≥slant 260\\prime\\prime . The Galactic distribution of these “large” H II regions is similar to that of the previously known sample of Galactic H II regions. The large H II region RRL line width and peak line intensity distributions are skewed toward lower values, compared with that of previous HRDS surveys. We discover seven sources with extremely narrow RRLs 100 {pc}, making them some of the physically largest known H II regions in the Galaxy. This survey completes the HRDS H II region census in the Northern sky, where we have discovered 887 H II regions and more than doubled the size of the previously known census of Galactic H II regions.

  3. Weak-Lensing Mass Calibration of the Atacama Cosmology Telescope Equatorial Sunyaev-Zeldovich Cluster Sample with the Canada-France-Hawaii Telescope Stripe 82 Survey

    Science.gov (United States)

    Battaglia, N.; Leauthaud, A.; Miyatake, H.; Hasseleld, M.; Gralla, M. B.; Allison, R.; Bond, J. R.; Calabrese, E.; Crichton, D.; Devlin, M. J.; hide

    2016-01-01

    Mass calibration uncertainty is the largest systematic effect for using clustersof galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five, the average weak lensing mass is (4.8 plus or minus 0.8) times 10 (sup 14) solar mass, consistent with the tSZ mass estimate of (4.7 plus or minus 1.0) times 10 (sup 14) solar mass, which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.

  4. Weak-lensing mass calibration of the Atacama Cosmology Telescope equatorial Sunyaev-Zeldovich cluster sample with the Canada-France-Hawaii telescope stripe 82 survey

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, N.; Miyatake, H.; Hasselfield, M.; Calabrese, E.; Ferrara, S.; Hložek, R. [Dept. of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Leauthaud, A. [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Gralla, M.B.; Crichton, D. [Dept. of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Allison, R.; Dunkley, J. [Dept. of Astrophysics, University of Oxford, Oxford OX1 3RH (United Kingdom); Bond, J.R. [Canadian Institute for Theoretical Astrophysics, Toronto, ON M5S 3H8 (Canada); Devlin, M.J. [Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Dünner, R. [Dept. de Astronomía y Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Santiago (Chile); Erben, T. [Argelander-Institut für Astronomie, University of Bonn, 53121 Bonn (Germany); Halpern, M.; Hincks, A.D. [Dept. of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); Hilton, M. [Astrophysics and Cosmology Research Unit, School of Mathematical, Statistics and Computer Science, University of KwaZulu-Natal, Durban, 4041 (South Africa); Hill, J.C. [Dept. of Astronomy, Columbia University, New York, NY 10027 (United States); Huffenberger, K.M., E-mail: nbatta@astro.princeton.edu [Dept. of Physics, Florida State University, Tallahassee, FL 32306 (United States); and others

    2016-08-01

    Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five the average weak lensing mass is (4.8±0.8) ×10{sup 14} M{sub ⊙}, consistent with the tSZ mass estimate of (4.70±1.0) ×10{sup 14} M{sub ⊙} which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.

  5. Weak-lensing mass calibration of the Atacama Cosmology Telescope equatorial Sunyaev-Zeldovich cluster sample with the Canada-France-Hawaii telescope stripe 82 survey

    International Nuclear Information System (INIS)

    Battaglia, N.; Miyatake, H.; Hasselfield, M.; Calabrese, E.; Ferrara, S.; Hložek, R.; Leauthaud, A.; Gralla, M.B.; Crichton, D.; Allison, R.; Dunkley, J.; Bond, J.R.; Devlin, M.J.; Dünner, R.; Erben, T.; Halpern, M.; Hincks, A.D.; Hilton, M.; Hill, J.C.; Huffenberger, K.M.

    2016-01-01

    Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five the average weak lensing mass is (4.8±0.8) ×10 14 M ⊙ , consistent with the tSZ mass estimate of (4.70±1.0) ×10 14 M ⊙ which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.

  6. Design Evolution of the Wide Field Infrared Survey Telescope Using Astrophysics Focused Telescope Assets (WFIRST-AFTA) and Lessons Learned

    Science.gov (United States)

    Peabody, Hume L.; Peters, Carlton V.; Rodriguez-Ruiz, Juan E.; McDonald, Carson S.; Content, David A.; Jackson, Clifton E.

    2015-01-01

    The design of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) continues to evolve as each design cycle is analyzed. In 2012, two Hubble sized (2.4 m diameter) telescopes were donated to NASA from elsewhere in the Federal Government. NASA began investigating potential uses for these telescopes and identified WFIRST as a mission to benefit from these assets. With an updated, deeper, and sharper field of view than previous design iterations with a smaller telescope, the optical designs of the WFIRST instruments were updated and the mechanical and thermal designs evolved around the new optical layout. Beginning with Design Cycle 3, significant analysis efforts yielded a design and model that could be evaluated for Structural-Thermal-Optical-Performance (STOP) purposes for the Wide Field Imager (WFI) and provided the basis for evaluating the high level observatory requirements. Development of the Cycle 3 thermal model provided some valuable analysis lessons learned and established best practices for future design cycles. However, the Cycle 3 design did include some major liens and evolving requirements which were addressed in the Cycle 4 Design. Some of the design changes are driven by requirements changes, while others are optimizations or solutions to liens from previous cycles. Again in Cycle 4, STOP analysis was performed and further insights into the overall design were gained leading to the Cycle 5 design effort currently underway. This paper seeks to capture the thermal design evolution, with focus on major design drivers, key decisions and their rationale, and lessons learned as the design evolved.

  7. Requirements and concept design for large earth survey telescope for SEOS

    Science.gov (United States)

    Mailhot, P.; Bisbee, J.

    1975-01-01

    The efforts of a one year program of Requirements Analysis and Conceptual Design for the Large Earth Survey Telescope for the Synchronous Earth Observatory Satellite is summarized. A 1.4 meter aperture Cassegrain telescope with 0.6 deg field of view is shown to do an excellent job in satisfying the observational requirements for a wide range of earth resources and meteorological applications. The telescope provides imagery or thermal mapping in ten spectral bands at one time in a field sharing grouping of linear detector arrays. Pushbroom scanning is accomplished by spacecraft slew.

  8. Infrared Testing of the Wide-field Infrared Survey Telescope Grism Using Computer Generated Holograms

    Science.gov (United States)

    Dominguez, Margaret Z.; Content, David A.; Gong, Qian; Griesmann, Ulf; Hagopian, John G.; Marx, Catherine T; Whipple, Arthur L.

    2017-01-01

    Infrared Computer Generated Holograms (CGHs) were designed, manufactured and used to measure the performance of the grism (grating prism) prototype which includes testing Diffractive Optical Elements (DOE). The grism in the Wide Field Infrared Survey Telescope (WFIRST) will allow the surveying of a large section of the sky to find bright galaxies.

  9. Radio Frequency Interference Site Survey for Thai Radio Telescopes

    Science.gov (United States)

    Jaroenjittichai, P.; Punyawarin, S.; Singwong, D.; Somboonpon, P.; Prasert, N.; Bandudej, K.; Kempet, P.; Leckngam, A.; Poshyachinda, S.; Soonthornthum, B.; Kramer, B.

    2017-09-01

    Radio astronomical observations have increasingly been threaten by the march of today telecommunication and wireless technology. Performance of radio telescopes lies within the fact that astronomical sources are extremely weak. National Astronomy Research Institute of Thailand (NARIT) has initiated a 5-year project, known as the Radio Astronomy Network and Geodesy for Development (RANGD), which includes the establishment of 40-meter and 13-meter radio telescopes. Possible locations have been narrowed down to three candidates, situated in the Northern part of Thailand, where the atmosphere is sufficiently dry and suitable for 22 and 43 GHz observations. The Radio Frequency Interference (RFI) measurements were carried out with a DC spectrum analyzer and directional antennas at 1.5 meter above ground, from 20 MHz to 6 GHz with full azimuth coverage. The data from a 3-minute pointing were recorded for both horizontal and vertical polarizations, in maxhold and average modes. The results, for which we used to make preliminary site selection, show signals from typical broadcast and telecommunication services and aeronautics applications. The signal intensity varies accordingly to the presence of nearby population and topography of the region.

  10. Exhaustive Strategy for Optical Survey of Geosynchronous Region using TAROT Telescopes

    Science.gov (United States)

    Richard, P.; Yanez, C.; Morand, V.; Verzeni, A.; Boer, M.; Klotz, A.

    CNES and CNRS has been working on Optical Space Surveillance and Tracking for many years using the TAROT telescopes network. The goal of the study presented here is to propose an exhaustive strategy for optical survey of geosynchronous region. First, constraints will be defined on perigee and apogee of the orbits for which we are looking for exhaustiveness and then solutions will be explored making the survey in one or several nights using one or several telescopes. The last part of the study proposes solutions to help maintaining exhaustiveness if some observations failed.

  11. Wide Field Infra-Red Survey Telescope (WFIRST) 2.4-Meter Mission Study

    Science.gov (United States)

    Content, D.; Aaron, K.; Alplanalp, L.; Anderson, K.; Capps, R.; Chang, Z.; Dooley, J.; Egerman, R.; Goullioud, R.; Klein, D.; hide

    2013-01-01

    The most recent study of the Wide Field Infrared Survey Telescope (WFIRST) mission is based on reuse of an existing 2.4m telescope. This study was commissioned by NASA to examine the potential science return and cost effectiveness of WFIRST by using this significantly larger aperture telescope. We review the science program envisioned by the WFIRST 2012-2013 Science Definition Team (SDT), an overview of the mission concept, and the telescope design and status. Comparisons against the previous 1.3m and reduced cost 1.1m WFIRST design concepts are discussed. A significant departure from past point designs is the option for serviceability and the geostationary orbit location which enables servicing and replacement instrument insertion later during mission life. Other papers at this conference provide more in depth discussion of the wide field instrument and the optional exoplanet imaging coronagraph instrument.

  12. Driftscan surveys in the 21 cm line with the Arecibo and Nancay telescopes

    NARCIS (Netherlands)

    Briggs, FH; Sorar, E; KraanKorteweg, RC; vanDriel, W

    Driftscan methods are highly efficient, stable techniques for conducting extragalactic surveys in the 21 cm line of neutral hydrogen. Holding the telescope still while the beam scans the sky at the sidereal rate produces exceptionally stable spectral baselines, increased stability for RFI signals,

  13. A Green Bank Telescope 21cm survey of HI clouds in the Milky Way's nuclear wind

    Science.gov (United States)

    Denbo, Sara; Endsley, Ryan; Lockman, Felix J.; Ford, Alyson

    2015-01-01

    Feedback processes such as large-scale galactic winds are thought to be responsible for distributing enriched gas throughout a galaxy and even into the IGM. Such winds have been found in many galaxies with active star formation near their center, and the Fermi bubbles provide evidence for such a nuclear wind in our own Milky Way. A recent 21 cm HI survey by the Australia Telescope Compact Array discovered a population of compact, isolated clouds surrounding the Galactic Center that may be entrained in the Fermi bubble wind. We present data from a survey of 21cm HI over an extended region around the Galactic Center using the Green Bank Telescope. These observations provide more strict constraints on neutral clouds in the Fermi bubble wind, and a more robust description of the parameters of HI clouds (i.e., mass, column density, and lifetime) near the Galactic Center.

  14. Progress of site survey for large solar telescopes in western China

    Science.gov (United States)

    Liu, Yu; Song, Tengfei; Zhang, Xuefei; Liu, Shunqing; Zhao, Mingyu; Tian, Zhanjun; Miao, Yuhu; Li, Hongbo; Huang, Jing; Su, Baoyu; Lu, Yongyin; Li, Xiaobo; Song, Qiwu

    Excellent sites are necessary for developing and installing ground-based large telescopes. For very-high-resolution solar observations, it had been unclear whether there exist good candidate sites in the west areas in China, including the Tibetan Plateau and the Pamirs Plateau. The project of solar site survey for the next-generation large solar telescopes, i.e., the Chinese Giant Solar Telescope (CGST) and the large coronagraph, has been launched since 2011. Based on the close collaboration among Chinese solar society and the scientists from NSO, HAO and other institutes, we have successfully developed the standard instruments for solar site survey and applied them to more than 50 different sites distributed in Xinjiang, Tibet, Qinghai, Sichuan, Yunnan and Ningxia provinces. We have built two long-term monitoring sites in Tibet and the large Shangri-La to take systematic site data. Clear evidence, including the key parameters of seeing factor, sky brightness and water vapor content, has indicated that a few potential sites in the large Tibetan areas should obtain the excellent astronomical conditions for our purpose to develop CGST and large coronagraph. We introduce the fresh site survey results in this report.

  15. VizieR Online Data Catalog: Isaac Newton Telescope Wide Field Survey (CASU 2002)

    Science.gov (United States)

    Cambridge Astronomical Survey Unit

    2002-04-01

    The INT Wide Field Survey (WFS) is using the Wide Field Camera (~0.3 square degrees) on the 2.5m Isaac Newton Telescope (INT). The project was initiated in August 1998 and is expected to have a duration of up to five years. Multicolour data will be obtained over 200+ square degrees to a typical depth of ~25 mag (u' through z'). The data is publically accessible via the Cambridge Astronomical Survey Unit to UK and NL communities from day one, with access to the rest of the world after one year. This observation log lists all observations older than the one year proprietary period. (1 data file).

  16. A Hubble Space Telescope Survey of the Disk Cluster Population of M31. II. Advanced Camera for Surveys Pointings

    Science.gov (United States)

    Krienke, O. K.; Hodge, P. W.

    2008-01-01

    This paper reports on a survey of star clusters in M31 based on archival images from the Hubble Space Telescope. Paper I reported results from images obtained with the Wide Field Planetary Camera 2 (WFPC2) and this paper reports results from the Advanced Camera for Surveys (ACS). The ACS survey has yielded a total of 339 star clusters, 52 of which—mostly globular clusters—were found to have been cataloged previously. As for the previous survey, the luminosity function of the clusters drops steeply for absolute magnitudes fainter than MV = -3 the implied cluster mass function has a turnover for masses less than a few hundred solar masses. The color-integrated magnitude diagram of clusters shows three significant features: (1) a group of very red, luminous objects: the globular clusters, (2) a wide range in color for the fainter clusters, representing a considerable range in age and reddening, and (3) a maximum density of clusters centered approximately at V = 21, B - V = 0.30, V - I = 0.50, where there are intermediate-age, intermediate-mass clusters with ages close to 500 million years and masses of about 2000 solar masses. We give a brief qualitative interpretation of the distribution of clusters in the CMDs in terms of their formation and destruction rates. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for research in astronomy, Inc., under NASA contract NAS 5-26555.

  17. The Large Synoptic Survey Telescope as a Near-Earth Object discovery machine

    Science.gov (United States)

    Jones, R. Lynne; Slater, Colin T.; Moeyens, Joachim; Allen, Lori; Axelrod, Tim; Cook, Kem; Ivezić, Željko; Jurić, Mario; Myers, Jonathan; Petry, Catherine E.

    2018-03-01

    Using the most recent prototypes, design, and as-built system information, we test and quantify the capability of the Large Synoptic Survey Telescope (LSST) to discover Potentially Hazardous Asteroids (PHAs) and Near-Earth Objects (NEOs). We empirically estimate an expected upper limit to the false detection rate in LSST image differencing, using measurements on DECam data and prototype LSST software and find it to be about 450 deg-2. We show that this rate is already tractable with current prototype of the LSST Moving Object Processing System (MOPS) by processing a 30-day simulation consistent with measured false detection rates. We proceed to evaluate the performance of the LSST baseline survey strategy for PHAs and NEOs using a high-fidelity simulated survey pointing history. We find that LSST alone, using its baseline survey strategy, will detect 66% of the PHA and 61% of the NEO population objects brighter than H = 22 , with the uncertainty in the estimate of ± 5 percentage points. By generating and examining variations on the baseline survey strategy, we show it is possible to further improve the discovery yields. In particular, we find that extending the LSST survey by two additional years and doubling the MOPS search window increases the completeness for PHAs to 86% (including those discovered by contemporaneous surveys) without jeopardizing other LSST science goals (77% for NEOs). This equates to reducing the undiscovered population of PHAs by additional 26% (15% for NEOs), relative to the baseline survey.

  18. Hubble Space Telescope Snapshot Survey for Resolved Companions of Galactic Cepheids

    Science.gov (United States)

    Evans, Nancy Remage; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Tingle, Evan; Karovska, Margarita; Pillitteri, Ignazio

    2016-05-01

    We have conducted an imaging survey with the Hubble Space Telescope Wide Field Camera 3 (WFC3) of 70 Galactic Cepheids, typically within 1 kpc, with the aim of finding resolved physical companions. The WFC3 field typically covers the 0.1 pc area where companions are expected. In this paper, we identify 39 Cepheids having candidate companions, based on their positions in color-magnitude diagrams, and having separations ⩾ 5'' from the Cepheids. We use follow-up observations of 14 of these candidates with XMM-Newton, and of one of them with ROSAT, to separate X-ray-active young stars (probable physical companions) from field stars (chance alignments). Our preliminary estimate, based on the optical and X-ray observations, is that only 3% of the Cepheids in the sample have wide companions. Our survey easily detects resolved main-sequence companions as faint as spectral type K. Thus the fact that the two most probable companions (those of FF Aql and RV Sco) are earlier than type K is not simply a function of the detection limit. We find no physical companions having separations larger than 4000 au in the X-ray survey. Two Cepheids are exceptions in that they do have young companions at significantly larger separations (δ Cep and S Nor), but both belong to a cluster or a loose association, so our working model is that they are not gravitationally bound binary members, but rather cluster/association members. All of these properties provide constraints on both star formation and subsequent dynamical evolution. The low frequency of true physical companions at separations > 5'' is confirmed by examination of the subset of the nearest Cepheids and also the density of the fields. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  19. A blind green bank telescope millimeter-wave survey for redshifted molecular absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kanekar, N.; Gupta, A. [National Centre for Radio Astrophysics, TIFR, Ganeshkhind, Pune 411007 (India); Carilli, C. L. [National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM 87801 (United States); Stocke, J. T. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Willett, K. W., E-mail: nkanekar@ncra.tifr.res.in [School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2014-02-10

    We present the methodology for 'blind' millimeter-wave surveys for redshifted molecular absorption in the CO/HCO{sup +} rotational lines. The frequency range 30-50 GHz appears optimal for such surveys, providing sensitivity to absorbers at z ≳ 0.85. It is critical that the survey is 'blind', i.e., based on a radio-selected sample, including sources without known redshifts. We also report results from the first large survey of this kind, using the Q-band receiver on the Green Bank Telescope (GBT) to search for molecular absorption toward 36 sources, 3 without known redshifts, over the frequency range 39.6-49.5 GHz. The GBT survey has a total redshift path of Δz ≈ 24, mostly at 0.81 < z < 1.91, and a sensitivity sufficient to detect equivalent H{sub 2} column densities ≳ 3 × 10{sup 21} cm{sup –2} in absorption at 5σ significance (using CO-to-H{sub 2} and HCO{sup +}-to-H{sub 2} conversion factors of the Milky Way). The survey yielded no confirmed detections of molecular absorption, yielding the 2σ upper limit n(z = 1.2) < 0.15 on the redshift number density of molecular gas at column densities N(H{sub 2}) ≳ 3 × 10{sup 21} cm{sup –2}.

  20. 3D-HST: A Wide-field Grism Spectroscopic Survey with the Hubble Space Telescope

    Science.gov (United States)

    Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind E.; Kriek, Mariska; Nelson, Erica; Schmidt, Kasper B.; Bezanson, Rachel; da Cunha, Elisabete; Erb, Dawn K.; Fan, Xiaohui; Förster Schreiber, Natascha; Illingworth, Garth D.; Labbé, Ivo; Leja, Joel; Lundgren, Britt; Magee, Dan; Marchesini, Danilo; McCarthy, Patrick; Momcheva, Ivelina; Muzzin, Adam; Quadri, Ryan; Steidel, Charles C.; Tal, Tomer; Wake, David; Whitaker, Katherine E.; Williams, Anna

    2012-06-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of ~7000 galaxies at 1 < z < 3.5, the epoch when ~60% of all star formation took place, the number density of quasars peaked, the first galaxies stopped forming stars, and the structural regularity that we see in galaxies today must have emerged. 3D-HST will cover three quarters (625 arcmin2) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of ~5 per resolution element at H 140 ~ 23.1 and a 5σ emission-line sensitivity of ~5 × 10-17 erg s-1 cm-2 for typical objects, improving by a factor of ~2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 μm at a spatial resolution of ~0farcs13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of σ(z) = 0.0034(1 + z), or σ(v) ≈ 1000 km s-1. We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z ~ 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will provide the definitive imaging and spectroscopic data set for studies of the 1 < z < 3.5 universe until the launch of the James Webb Space

  1. Proposal for Definitive Survey for Fast Radio Bursts at the Allen Telescope Array

    Science.gov (United States)

    Harp, Gerald; Tarter, J. C.; Welch, W. J.; Allen Telescope Array Team

    2014-01-01

    The Allen Telescope Array, a 42-dish radio interferometer in Northern California is now being upgraded with new, more sensitive receivers covering 0.9-18 GHz continuously. Leveraging this frequency coverage and wide field of view, the ATA is a unique and ideal instrument for the discovery and characterization of fast radio bursts (FRBs, discovered at Parkes and Arecibo) and other short-time domain radio phenomena. The field of view (nearly 10 sq. deg. at 1 GHz) allows for a rapid search of 3π steradians with many lookbacks over a period of 2.5 years. The instantaneous wide-frequency range of the upgraded ATA receivers allows sensitive observations at 4 simultaneous frequency ranges (for example, 0.9 - 1.5 GHz, 1.6-2.2 GHz, 2.5-3.1 GHz, and 4.6-5.2 GHz, full Stokes); something not possible at any other major telescope. This enables very accurate dispersion measure and spectral index characterization of ms-timescale bursts (or other time-variable activity) with a localization accuracy ~20" for SNR > 10 (all FRBs discovered to date would meet this criterium). We discuss the new digital processing system required to perform this survey, with a plan to capture ~400 FRB events during the survey period of performance , based on current event-rate estimates of 10^4 events/sky/day.

  2. The world’s largest social science infrastructure and academic survey research program: The World Values Survey in the New Independent States

    Directory of Open Access Journals (Sweden)

    C Haerpfer

    2016-12-01

    Full Text Available The World Values Survey (WVS is an international research program developed to assess the impact of values stability or change over time on the social, political and economic development of countries and societies. It started in 1981 by Ronald Inglehart and his team, since then has involved more than 100 world societies and turned into the largest non-commercial cross-national empirical time-series investigation of human beliefs and values ever executed on a global scale. The article consists of a few sections differing by the focus. The authors begin with the description of survey methodology and organization management that both ensure cross-national and cross-regional comparative character of the study (the survey is implemented using the same questionnaire, a face-to-face mode of interviews, and the same sample type in every country. The next part of the article presents a short overview of the project history and comparative surveys’ time-series (so called “waves” - periods between two and four years long during which collection of data in several dozens of countries using one same questionnaire is taking place; such waves are conducted every five years. Here the authors describe every wave of the WVS mentioning coordination and management activities that were determined by the extension of the project thematically and geographically. After that the authors identify the key features of the WVS in the New Independent States and mention some of the results of the study conducted in NIS countries in 1990-2014, such as high level of uncertainty in the choice of ideological preferences; rapid growth of declared religiosity; observed gap between the declared values and actual facts of social life, etc. The final section of the article summarizes the findings and key publications of the project for its data is widely used to analyse economic and political development, religious beliefs, gender equality, social capital, subjective well

  3. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. VIII. PRELIMINARY PUBLIC CATALOG RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Soto, M.; Bellini, A.; Anderson, J.; Van der Marel, R. P.; Brown, T. M. [Space Telescope Science Institute, San Martin Drive 3700, Baltimore, MD 21218 (United States); Piotto, G.; Granata, V.; Ortolani, S.; Nardiello, D. [Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Bedin, L. R. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Milone, A. P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT, 2611 (Australia); Cool, A. M. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); King, I. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Sarajedini, A. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Cassisi, S. [Osservatorio Astronomico di Teramo, Via Mentore Maggini s.n.c., I-64100 Teramo (Italy); Aparicio, A.; Hidalgo, S., E-mail: mario.soto@uda.cl [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands (Spain)

    2017-01-01

    The Hubble Space Telescope (HST) UV Legacy Survey of Galactic Globular Clusters (GO-13297) has been specifically designed to complement the existing F606W and F814W observations of the Advanced Camera for Surveys (ACS) Globular Cluster Survey (GO-10775) by observing the most accessible 47 of the previous survey’s 65 clusters in three WFC3/UVIS filters F275W, F336W, and F438W. The new survey also adds super-solar metallicity open cluster NGC 6791 to increase the metallicity diversity. The combined survey provides a homogeneous 5-band data set that can be used to pursue a broad range of scientific investigations. In particular, the chosen UV filters allow the identification of multiple stellar populations by targeting the regions of the spectrum that are sensitive to abundance variations in C, N, and O. In order to provide the community with uniform preliminary catalogs, we have devised an automated procedure that performs high-quality photometry on the new UV observations (along with similar observations of seven other programs in the archive). This procedure finds and measures the potential sources on each individual exposure using library point-spread functions and cross-correlates these observations with the original ACS-Survey catalog. The catalog of 57 clusters we publish here will be useful to identify stars in the different stellar populations, in particular for spectroscopic follow-up. Eventually, we will construct a more sophisticated catalog and artificial-star tests based on an optimal reduction of the UV survey data, but the catalogs presented here give the community the chance to make early use of this HST Treasury survey.

  4. The 60 Month All-Sky Burst Alert Telescope Survey of Active Galactic Nucleus and the Anisotropy of Nearby AGNs

    Science.gov (United States)

    Ajello, M.; Alexander, D. M.; Greiner, J.; Madejeski, G. M.; Gehrels, N.; Burlon, D.

    2014-01-01

    Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of approx. 2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent approx. 5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to approx. 10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9(+4.1/-2.9)× 10(exp -5)/cubic Mpc for objects with a de-absorbed luminosity larger than 2 × 10(exp 42) erg / s. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (much < 85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions..

  5. SIGGMA: A SURVEY OF IONIZED GAS IN THE GALAXY, MADE WITH THE ARECIBO TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); McIntyre, T. [University of New Mexico, Albuquerque, NM 87131 (United States); Terzian, Y. [Cornell University, Ithaca, NY 14853 (United States); Minchin, R. [Arecibo Observatory, HC03 Box 53995, Arecibo 00612, PR (United States); Anderson, L. [West Virginia University, Morgantown, WV 26506 (United States); Churchwell, E. [University of Wisconsin-Madison, Madison, WI 53706 (United States); Lebron, M. [University of Puerto Rico, P.O. Box 23323, 00931-3323, San Juan (Puerto Rico); Roshi, D. Anish [National Radio Astronomy Observatory, Green Bank and Charlottesville, VA 22903 (United States)

    2013-10-01

    A Survey of Ionized Gas in the Galaxy, made with the Arecibo telescope (SIGGMA), uses the Arecibo L-band Feed Array (ALFA) to fully sample the Galactic plane (30 Degree-Sign {<=} l {<=} 75 Degree-Sign and -2 Degree-Sign {<=} b {<=} 2 Degree-Sign ; 175 Degree-Sign {<=} l {<=} 207 Degree-Sign and -2 Degree-Sign {<=} b {<=} 1 Degree-Sign ) observable with the telescope in radio recombination lines (RRLs). Processed data sets are being produced in the form of data cubes of 2 Degree-Sign (along l) Multiplication-Sign 4 Degree-Sign (along b) Multiplication-Sign 151 (number of channels), archived and made public. The 151 channels cover a velocity range of 600 km s{sup -1} and the velocity resolution of the survey changes from 4.2 km s{sup -1} to 5.1 km s{sup -1} from the lowest frequency channel to the highest frequency channel. RRL maps with 3.'4 resolution and a line flux density sensitivity of {approx}0.5 mJy will enable us to identify new H II regions, measure their electron temperatures, study the physics of photodissociation regions with carbon RRLs, and investigate the origin of the extended low-density medium. Twelve Hn{alpha} lines fall within the 300 MHz bandpass of ALFA; they are resampled to a common velocity resolution to improve the signal-to-noise ratio (S/N) by a factor of three or more and preserve the line width. SIGGMA will produce the most sensitive fully sampled RRL survey to date. Here, we discuss the observing and data reduction techniques in detail. A test observation toward the H II region complex S255/S257 has detected Hn{alpha} and Cn{alpha} lines with S/N > 10.

  6. Addressing Thermal Model Run Time Concerns of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA)

    Science.gov (United States)

    Peabody, Hume; Guerrero, Sergio; Hawk, John; Rodriguez, Juan; McDonald, Carson; Jackson, Cliff

    2016-01-01

    The Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) utilizes an existing 2.4 m diameter Hubble sized telescope donated from elsewhere in the federal government for near-infrared sky surveys and Exoplanet searches to answer crucial questions about the universe and dark energy. The WFIRST design continues to increase in maturity, detail, and complexity with each design cycle leading to a Mission Concept Review and entrance to the Mission Formulation Phase. Each cycle has required a Structural-Thermal-Optical-Performance (STOP) analysis to ensure the design can meet the stringent pointing and stability requirements. As such, the models have also grown in size and complexity leading to increased model run time. This paper addresses efforts to reduce the run time while still maintaining sufficient accuracy for STOP analyses. A technique was developed to identify slews between observing orientations that were sufficiently different to warrant recalculation of the environmental fluxes to reduce the total number of radiation calculation points. The inclusion of a cryocooler fluid loop in the model also forced smaller time-steps than desired, which greatly increases the overall run time. The analysis of this fluid model required mitigation to drive the run time down by solving portions of the model at different time scales. Lastly, investigations were made into the impact of the removal of small radiation couplings on run time and accuracy. Use of these techniques allowed the models to produce meaningful results within reasonable run times to meet project schedule deadlines.

  7. THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY: STACKED IMAGES AND CATALOGS

    International Nuclear Information System (INIS)

    Gwyn, Stephen D. J.

    2012-01-01

    This paper describes the image stacks and catalogs of the Canada-France-Hawaii Telescope Legacy Survey produced using the MegaPipe data pipeline at the Canadian Astronomy Data Centre. The Legacy Survey is divided into two parts. The Deep Survey consists of four fields each of 1 deg 2 , with magnitude limits (50% completeness for point sources) of u = 27.5, g = 27.9, r = 27.7, i = 27.4, and z = 26.2. It contains 1.6 × 10 6 sources. The Wide Survey consists of 150 deg 2 split over four fields, with magnitude limits of u = 26.0, g = 26.5, r = 25.9, i = 25.7, and z = 24.6. It contains 3 × 10 7 sources. This paper describes the calibration, image stacking, and catalog generation process. The images and catalogs are available on the web through several interfaces: normal image and text file catalog downloads, a 'Google Sky' interface, an image cutout service, and a catalog database query service.

  8. Bayesian galaxy shape measurement for weak lensing surveys - III. Application to the Canada-France-Hawaii Telescope Lensing Survey

    Science.gov (United States)

    Miller, L.; Heymans, C.; Kitching, T. D.; van Waerbeke, L.; Erben, T.; Hildebrandt, H.; Hoekstra, H.; Mellier, Y.; Rowe, B. T. P.; Coupon, J.; Dietrich, J. P.; Fu, L.; Harnois-Déraps, J.; Hudson, M. J.; Kilbinger, M.; Kuijken, K.; Schrabback, T.; Semboloni, E.; Vafaei, S.; Velander, M.

    2013-03-01

    A likelihood-based method for measuring weak gravitational lensing shear in deep galaxy surveys is described and applied to the Canada-France-Hawaii Telescope (CFHT) Lensing Survey (CFHTLenS). CFHTLenS comprises 154 deg2 of multi-colour optical data from the CFHT Legacy Survey, with lensing measurements being made in the i' band to a depth i'AB noise ratio νSN ≳ 10. The method is based on the lensfit algorithm described in earlier papers, but here we describe a full analysis pipeline that takes into account the properties of real surveys. The method creates pixel-based models of the varying point spread function (PSF) in individual image exposures. It fits PSF-convolved two-component (disc plus bulge) models to measure the ellipticity of each galaxy, with Bayesian marginalization over model nuisance parameters of galaxy position, size, brightness and bulge fraction. The method allows optimal joint measurement of multiple, dithered image exposures, taking into account imaging distortion and the alignment of the multiple measurements. We discuss the effects of noise bias on the likelihood distribution of galaxy ellipticity. Two sets of image simulations that mirror the observed properties of CFHTLenS have been created to establish the method's accuracy and to derive an empirical correction for the effects of noise bias.

  9. GESE: A Small UV Space Telescope to Conduct a Large Spectroscopic Survey of Z-1 Galaxies

    Science.gov (United States)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2013-01-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z is approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-meter space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 micrometers at a spectral resolving power, R approximately 500. This observed spectral range corresponds to 0.1-0.2 micrometers as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next- Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  10. The Unique Optical Design of the CTI-II Survey Telescope

    Science.gov (United States)

    Ackermann, Mark R.; McGraw, J. T.; MacFarlane, M.

    2006-12-01

    The CCD/Transit Instrument with Innovative Instrumentation (CTI-II) is being developed for precision ground-based astrometric and photometric astronomical observations. The 1.8m telescope will be stationary, near-zenith pointing and will feature a CCD-mosaic array operated in time-delay and integrate (TDI) mode to image a continuous strip of the sky in five bands. The heart of the telescope is a Nasmyth-like bent-Cassegrain optical system optimized to produce near diffraction-limited images with near zero distortion over a circular1.42 deg field. The optical design includes an f/2.2 parabolic ULE primary with no central hole salvaged from the original CTI telescope and adds the requisite hyperbolic secondary, a folding flat and a highly innovative all-spherical, five lens corrector which includes three plano surfaces. The reflective and refractive portions of the design have been optimized as individual but interdependent systems so that the same reflective system can be used with slightly different refractive correctors. At present, two nearly identical corrector designs are being evaluated, one fabricated from BK-7 glass and the other of fused silica. The five lens corrector consists of an air-spaced triplet separated from follow-on air-spaced doublet. Either design produces 0.25 arcsecond images at 83% encircled energy with a maximum of 0.0005% distortion. The innovative five lens corrector design has been applied to other current and planned Cassegrain, RC and super RC optical systems requiring correctors. The basic five lens approach always results in improved performance compared to the original designs. In some cases, the improvement in image quality is small but includes substantial reductions in distortion. In other cases, the improvement in image quality is substantial. Because the CTI-II corrector is designed for a parabolic primary, it might be especially useful for liquid mirror telescopes. We describe and discuss the CTI-II optical design with respect

  11. Detector Control and Data Acquisition for the Wide-Field Infrared Survey Telescope (WFIRST) with a Custom ASIC

    Science.gov (United States)

    Smith, Brian S.; Loose, Markus; Alkire, Greg; Joshi, Atul; Kelly, Daniel; Siskind, Eric; Rossetti, Dino; Mah, Jonathan; Cheng, Edward; Miko, Laddawan; hide

    2016-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a total of 18 4K x 4K devices. The project has adopted a system-level approach to detector control and data acquisition where 1) control and processing intelligence is pushed into components closer to the detector to maximize signal integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure that the intrinsic detector noise is the limiting factor for system performance. For WFIRST, the detector arrays operate at 90 to 100 K, the detector control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and the main data processing electronics are at the ambient temperature of the spacecraft, notionally approx.300 K. The new ASIC is the main interface between the cryogenic detectors and the warm instrument electronics. Its single-chip design provides basic clocking for most types of hybrid detectors with CMOS ROICs. It includes a flexible but simple-to-program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are connected to the nearby detectors with a short cable that can provide thermal isolation. The interface to the warm electronics is simple and robust through multiple LVDS channels. It also includes features that support parallel operation of multiple ASICs to control detectors that may have more capability or requirements than can be supported by a single chip.

  12. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. III. MEASURES BELOW THE DIFFRACTION LIMIT OF THE WIYN TELESCOPE

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Van Altena, William F.; Howell, Steve B.; Sherry, William H.; Ciardi, David R.

    2011-01-01

    In this paper, we study the ability of CCD- and electron-multiplying-CCD-based speckle imaging to obtain reliable astrometry and photometry of binary stars below the diffraction limit of the WIYN 3.5 m Telescope. We present a total of 120 measures of binary stars, 75 of which are below the diffraction limit. The measures are divided into two groups that have different measurement accuracy and precision. The first group is composed of standard speckle observations, that is, a sequence of speckle images taken in a single filter, while the second group consists of paired observations where the two observations are taken on the same observing run and in different filters. The more recent paired observations were taken simultaneously with the Differential Speckle Survey Instrument, which is a two-channel speckle imaging system. In comparing our results to the ephemeris positions of binaries with known orbits, we find that paired observations provide the opportunity to identify cases of systematic error in separation below the diffraction limit and after removing these from consideration, we obtain a linear measurement uncertainty of 3-4 mas. However, if observations are unpaired or if two observations taken in the same filter are paired, it becomes harder to identify cases of systematic error, presumably because the largest source of this error is residual atmospheric dispersion, which is color dependent. When observations are unpaired, we find that it is unwise to report separations below approximately 20 mas, as these are most susceptible to this effect. Using the final results obtained, we are able to update two older orbits in the literature and present preliminary orbits for three systems that were discovered by Hipparcos.

  13. Origins Space Telescope: 3D infrared surveys of star formation and black hole growth in galaxies over cosmic time

    Science.gov (United States)

    Pope, Alexandra; Armus, Lee; bradford, charles; Origins Space Telescope STDT

    2018-01-01

    In the coming decade, new telescope facilities and surveys aim to provide a 3D map of the unobscured Universe over cosmic time. However, much of galaxy formation and evolution occurs behind dust, and is only observable through infrared observations. Previous extragalactic infrared surveys were fundamentally limited to a 2D mapping of the most extreme populations of galaxies due to spatial resolution and sensitivity. The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies sponsored by NASA to provide input to the 2020 Astronomy and Astrophysics Decadal survey. OST is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum, which will achieve spectral line sensitivities up to 1000 times deeper than previous infrared facilities. With powerful instruments such as the Medium Resolution Survey Spectrometer (MRSS), capable of simultaneous imaging and spectroscopy, the extragalactic infrared sky can finally be surveyed in 3D. In addition to spectroscopic redshifts, the rich suite of lines in the infrared provides unique diagnostics of the ongoing star formation (both obscured and unobscured) and the central supermassive black hole growth. In this poster, we present a simulated extragalactic survey with OST/MRSS which will detect millions of galaxies down to well below the knee of the infrared luminosity function. We demonstrate how this survey can map the coeval star formation and black hole growth in galaxies over cosmic time.

  14. Using model based systems engineering for the development of the Large Synoptic Survey Telescope's operational plan

    Science.gov (United States)

    Selvy, Brian M.; Claver, Charles; Willman, Beth; Petravick, Don; Johnson, Margaret; Reil, Kevin; Marshall, Stuart; Thomas, Sandrine; Lotz, Paul; Schumacher, German; Lim, Kian-Tat; Jenness, Tim; Jacoby, Suzanne; Emmons, Ben; Axelrod, Tim

    2016-08-01

    We† provide an overview of the Model Based Systems Engineering (MBSE) language, tool, and methodology being used in our development of the Operational Plan for Large Synoptic Survey Telescope (LSST) operations. LSST's Systems Engineering (SE) team is using a model-based approach to operational plan development to: 1) capture the topdown stakeholders' needs and functional allocations defining the scope, required tasks, and personnel needed for operations, and 2) capture the bottom-up operations and maintenance activities required to conduct the LSST survey across its distributed operations sites for the full ten year survey duration. To accomplish these complimentary goals and ensure that they result in self-consistent results, we have developed a holistic approach using the Sparx Enterprise Architect modeling tool and Systems Modeling Language (SysML). This approach utilizes SysML Use Cases, Actors, associated relationships, and Activity Diagrams to document and refine all of the major operations and maintenance activities that will be required to successfully operate the observatory and meet stakeholder expectations. We have developed several customized extensions of the SysML language including the creation of a custom stereotyped Use Case element with unique tagged values, as well as unique association connectors and Actor stereotypes. We demonstrate this customized MBSE methodology enables us to define: 1) the rolls each human Actor must take on to successfully carry out the activities associated with the Use Cases; 2) the skills each Actor must possess; 3) the functional allocation of all required stakeholder activities and Use Cases to organizational entities tasked with carrying them out; and 4) the organization structure required to successfully execute the operational survey. Our approach allows for continual refinement utilizing the systems engineering spiral method to expose finer levels of detail as necessary. For example, the bottom-up, Use Case

  15. 3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Brammer, Gabriel B.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Nelson, Erica; Bezanson, Rachel; Leja, Joel; Lundgren, Britt; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Labbé, Ivo; Rix, Hans-Walter; Schmidt, Kasper B.; Da Cunha, Elisabete; Kriek, Mariska; Erb, Dawn K.; Fan, Xiaohui; Förster Schreiber, Natascha; Illingworth, Garth D.; Magee, Dan

    2012-01-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of ∼7000 galaxies at 1 2 ) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of ∼5 per resolution element at H 140 ∼ 23.1 and a 5σ emission-line sensitivity of ∼5 × 10 –17 erg s –1 cm –2 for typical objects, improving by a factor of ∼2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 μm at a spatial resolution of ∼0.''13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of σ(z) = 0.0034(1 + z), or σ(v) ≈ 1000 km s –1 . We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z ∼ 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will provide the definitive imaging and spectroscopic data set for studies of the 1 < z < 3.5 universe until the launch of the James Webb Space Telescope.

  16. EXPECTED LARGE SYNOPTIC SURVEY TELESCOPE (LSST) YIELD OF ECLIPSING BINARY STARS

    International Nuclear Information System (INIS)

    Prsa, Andrej; Pepper, Joshua; Stassun, Keivan G.

    2011-01-01

    In this paper, we estimate the Large Synoptic Survey Telescope (LSST) yield of eclipsing binary stars, which will survey ∼20,000 deg 2 of the southern sky during a period of 10 years in six photometric passbands to r ∼ 24.5. We generate a set of 10,000 eclipsing binary light curves sampled to the LSST time cadence across the whole sky, with added noise as a function of apparent magnitude. This set is passed to the analysis-of-variance period finder to assess the recoverability rate for the periods, and the successfully phased light curves are passed to the artificial-intelligence-based pipeline ebai to assess the recoverability rate in terms of the eclipsing binaries' physical and geometric parameters. We find that, out of ∼24 million eclipsing binaries observed by LSST with a signal-to-noise ratio >10 in mission lifetime, ∼28% or 6.7 million can be fully characterized by the pipeline. Of those, ∼25% or 1.7 million will be double-lined binaries, a true treasure trove for stellar astrophysics.

  17. WILL THE LARGE SYNOPTIC SURVEY TELESCOPE DETECT EXTRA-SOLAR PLANETESIMALS ENTERING THE SOLAR SYSTEM?

    International Nuclear Information System (INIS)

    Moro-Martin, Amaya; Turner, Edwin L.; Loeb, Abraham

    2009-01-01

    Planetesimal formation is a common by-product of the star formation process. Taking the dynamical history of the solar system as a guideline-in which the planetesimal belts were heavily depleted due to gravitational perturbation with the giant planets-and assuming similar processes have taken place in other planetary systems, one would expect the interstellar space to be filled with extra-solar planetesimals. However, not a single one of these objects has been detected so far entering the solar system, even though it would clearly be distinguishable from a solar system comet due to its highly hyperbolic orbit. The Large Synoptic Survey Telescope (LSST) will provide wide coverage maps of the sky to a very high sensitivity, ideal to detect moving objects like comets, both active and inactive. In anticipation of these observations, we estimate how many inactive 'interstellar comets' might be detected during the duration of the survey. The calculation takes into account estimates (from observations and models) of the number density of stars, the amount of solids available to form planetesimals, the frequency of planet and planetesimal formation, the efficiency of planetesimal ejection, and the possible size distribution of these small bodies.

  18. The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

    Science.gov (United States)

    Marriage, T. A.; Juin, J. B.; Lin, Y. T.; Marsden, D.; Nolta, M. R.; Partridge, B.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; hide

    2011-01-01

    We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 mJy to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (> 50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between .5, 20, and 148 GHz with median spectral indices of alp[ha (sub 5-20) = -0.07 +/- 0.06, alpha (sub 20-148) -0.39 +/- 0.04, and alpha (sub 5-148) = -0.20 +/- 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C(sup Sync) = (2.8 +/- 0.3) x 1O (exp-6) micro K(exp 2).

  19. Performance Improvement of Near Earth Space Survey (NESS Wide-Field Telescope (NESS-2 Optics

    Directory of Open Access Journals (Sweden)

    Sung-Yeol Yu

    2010-06-01

    Full Text Available We modified the optical system of 500 mm wide-field telescope of which point spread function showed an irregularity. The telescope has been operated for Near Earth Space Survey (NESS located at Siding Spring Observatory (SSO in Australia, and the optical system was brought back to Korea in January 2008. After performing a numerical simulation with the tested value of surface figure error of the primary mirror using optical design program, we found that the surface figure error of the mirror should be fabricated less than root mean square (RMS λ/10 in order to obtain a stellar full width at half maximum (FWHM below 28 μm. However, we started to figure the mirror for the target value of RMS λ/20, because system surface figure error would be increased by the error induced by the optical axis adjustment, mirror cell installation, and others. The radius of curvature of the primary mirror was 1,946 mm after the correction. Its measured surface figure error was less than RMS λ/20 on the table of polishing machine, and RMS λ/15 after installation in the primary mirror cell. A test observation performed at Daeduk Observatory at Korea Astronomy and Space Science Institute by utilizing the exiting mount, and resulted in 39.8 μm of stellar FWHM. It was larger than the value from numerical simulation, and showed wing-shaped stellar image. It turned out that the measured-curvature of the secondary mirror, 1,820 mm, was not the same as the designed one, 1,795.977 mm. We fabricated the secondary mirror to the designed value, and finally obtained a stellar FWHM of 27 μm after re-installation of the optical system into SSO NESS Observatory in Australia.

  20. SDSS-II SUPERNOVA SURVEY: AN ANALYSIS OF THE LARGEST SAMPLE OF TYPE IA SUPERNOVAE AND CORRELATIONS WITH HOST-GALAXY SPECTRAL PROPERTIES

    International Nuclear Information System (INIS)

    Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao; Fischer, John A.; March, Marisa C.; Fischer, Johanna-Laina; D’Andrea, Chris B.; Smith, Mathew; Kessler, Rick; Scolnic, Daniel M.; Jha, Saurabh W.; Campbell, Heather; Nichol, Robert C.; Olmstead, Matthew D.; Richmond, Michael; Schneider, Donald P.

    2016-01-01

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties from the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.

  1. A survey for variable young stars with small telescopes: First results from HOYS-CAPS

    Science.gov (United States)

    Froebrich, D.; Campbell-White, J.; Scholz, A.; Eislöffel, J.; Zegmott, T.; Billington, S. J.; Donohoe, J.; Makin, S. V.; Hibbert, R.; Newport, R. J.; Pickard, R.; Quinn, N.; Rodda, T.; Piehler, G.; Shelley, M.; Parkinson, S.; Wiersema, K.; Walton, I.

    2018-05-01

    Variability in Young Stellar Objects (YSOs) is one of their primary characteristics. Long-term, multi-filter, high-cadence monitoring of large YSO samples is the key to understand the partly unusual light-curves that many of these objects show. Here we introduce and present the first results of the HOYS-CAPScitizen science project which aims to perform such monitoring for nearby (d < 1 kpc) and young (age < 10 Myr) clusters and star forming regions, visible from the northern hemisphere, with small telescopes. We have identified and characterised 466 variable (413 confirmed young) stars in 8 young, nearby clusters. All sources vary by at least 0.2 mag in V, have been observed at least 15 times in V, R and I in the same night over a period of about 2 yrs and have a Stetson index of larger than 1. This is one of the largest samples of variable YSOs observed over such a time-span and cadence in multiple filters. About two thirds of our sample are classical T-Tauri stars, while the rest are objects with depleted or transition disks. Objects characterised as bursters show by far the highest variability. Dippers and objects whose variability is dominated by occultations from normal interstellar dust or dust with larger grains (or opaque material) have smaller amplitudes. We have established a hierarchical clustering algorithm based on the light-curve properties which allows the identification of the YSOs with the most unusual behaviour, and to group sources with similar properties. We discuss in detail the light-curves of the unusual objects V2492 Cyg, V350 Cep and 2MASS J21383981+5708470.

  2. Near-Earth Object Orbit Linking with the Large Synoptic Survey Telescope

    Science.gov (United States)

    Vereš, Peter; Chesley, Steven R.

    2017-07-01

    We have conducted a detailed simulation of the ability of the Large Synoptic Survey Telescope (LSST) to link near-Earth and main belt asteroid detections into orbits. The key elements of the study were a high-fidelity detection model and the presence of false detections in the form of both statistical noise and difference image artifacts. We employed the Moving Object Processing System (MOPS) to generate tracklets, tracks, and orbits with a realistic detection density for one month of the LSST survey. The main goals of the study were to understand whether (a) the linking of near-Earth objects (NEOs) into orbits can succeed in a realistic survey, (b) the number of false tracks and orbits will be manageable, and (c) the accuracy of linked orbits would be sufficient for automated processing of discoveries and attributions. We found that the overall density of asteroids was more than 5000 per LSST field near opposition on the ecliptic, plus up to 3000 false detections per field in good seeing. We achieved 93.6% NEO linking efficiency for H< 22 on tracks composed of tracklets from at least three distinct nights within a 12 day interval. The derived NEO catalog was comprised of 96% correct linkages. Less than 0.1% of orbits included false detections, and the remainder of false linkages stemmed from main belt confusion, which was an artifact of the short time span of the simulation. The MOPS linking efficiency can be improved by refined attribution of detections to known objects and by improved tuning of the internal kd-tree linking algorithms.

  3. HUBBLE SPACE TELESCOPE SPECTROSCOPY OF BROWN DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

    International Nuclear Information System (INIS)

    Schneider, Adam C.; Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Mace, Gregory N.; Wright, Edward L.; Eisenhardt, Peter R.; Skrutskie, M. F.; Griffith, Roger L.; Marsh, Kenneth A.

    2015-01-01

    We present a sample of brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE) for which we have obtained Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-infrared grism spectroscopy. The sample (22 in total) was observed with the G141 grism covering 1.10–1.70 μm, while 15 were also observed with the G102 grism, which covers 0.90–1.10 μm. The additional wavelength coverage provided by the G102 grism allows us to (1) search for spectroscopic features predicted to emerge at low effective temperatures (e.g.,ammonia bands) and (2) construct a smooth spectral sequence across the T/Y boundary. We find no evidence of absorption due to ammonia in the G102 spectra. Six of these brown dwarfs are new discoveries, three of which are found to have spectral types of T8 or T9. The remaining three, WISE J082507.35+280548.5 (Y0.5), WISE J120604.38+840110.6 (Y0), and WISE J235402.77+024015.0 (Y1), are the 19th, 20th, and 21st spectroscopically confirmed Y dwarfs to date. We also present HST grism spectroscopy and reevaluate the spectral types of five brown dwarfs for which spectral types have been determined previously using other instruments

  4. Optical observations of LIGO source GW 170817 by the Antarctic Survey Telescopes at Dome A, Antarctica

    Science.gov (United States)

    Hu, Lei; Wu, Xuefeng; Andreoni, Igor; Ashley, Michael C. B.; Cooke, Jeff; Cui, Xiangqun; Du, Fujia; Dai, Zigao; Gu, Bozhong; Hu, Yi; Lu, Haiping; Li, Xiaoyan; Li, Zhengyang; Liang, Ensi; Liu, Liangduan; Ma, Bin; Shang, Zhaohui; Sun, Tianrui; Suntzeff, N. B.; Tao, Charling; Udden, Syed A.; Wang, Lifan; Wang, Xiaofeng; Wen, Haikun; Xiao, Di; Su, Jin; Yang, Ji; Yang, Shihai; Yuan, Xiangyan; Zhou, Hongyan; Zhang, Hui; Zhou, Jilin; Zhu, Zonghong

    2017-10-01

    The LIGO detection of gravitational waves (GW) from merging black holes in 2015 marked the beginning of a new era in observational astronomy. The detection of an electromagnetic signal from a GW source is the critical next step to explore in detail the physics involved. The Antarctic Survey Telescopes (AST3), located at Dome A, Antarctica, is uniquely situated for rapid response time-domain astronomy with its continuous night-time coverage during the austral winter. We report optical observations of the GW source (GW 170817) in the nearby galaxy NGC 4993 using AST3. The data show a rapidly fading transient at around 1 day after the GW trigger, with the i-band magnitude declining from 17.23±0.13 magnitude to 17.72±0.09 magnitude in ˜ 0.8 hour. The brightness and time evolution of the optical transient associated with GW 170817 are broadly consistent with the predictions of models involving merging binary neutron stars. We infer from our data that the merging process ejected about ˜ 10^{-2} solar mass of radioactive material at a speed of up to 30% the speed of light.

  5. HUBBLE SPACE TELESCOPE SPECTROSCOPY OF BROWN DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Adam C.; Cushing, Michael C. [Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606 (United States); Kirkpatrick, J. Davy; Gelino, Christopher R. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Mace, Gregory N.; Wright, Edward L. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Eisenhardt, Peter R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Skrutskie, M. F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Griffith, Roger L. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Marsh, Kenneth A., E-mail: Adam.Schneider@Utoledo.edu [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom)

    2015-05-10

    We present a sample of brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE) for which we have obtained Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-infrared grism spectroscopy. The sample (22 in total) was observed with the G141 grism covering 1.10–1.70 μm, while 15 were also observed with the G102 grism, which covers 0.90–1.10 μm. The additional wavelength coverage provided by the G102 grism allows us to (1) search for spectroscopic features predicted to emerge at low effective temperatures (e.g.,ammonia bands) and (2) construct a smooth spectral sequence across the T/Y boundary. We find no evidence of absorption due to ammonia in the G102 spectra. Six of these brown dwarfs are new discoveries, three of which are found to have spectral types of T8 or T9. The remaining three, WISE J082507.35+280548.5 (Y0.5), WISE J120604.38+840110.6 (Y0), and WISE J235402.77+024015.0 (Y1), are the 19th, 20th, and 21st spectroscopically confirmed Y dwarfs to date. We also present HST grism spectroscopy and reevaluate the spectral types of five brown dwarfs for which spectral types have been determined previously using other instruments.

  6. THE GREEN BANK TELESCOPE H II REGION DISCOVERY SURVEY. IV. HELIUM AND CARBON RECOMBINATION LINES

    Energy Technology Data Exchange (ETDEWEB)

    Wenger, Trey V.; Bania, T. M. [Astronomy Department, 725 Commonwealth Avenue, Boston University, Boston, MA 02215 (United States); Balser, Dana S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA, 22903-2475 (United States); Anderson, L. D. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States)

    2013-02-10

    The Green Bank Telescope H II Region Discovery Survey (GBT HRDS) found hundreds of previously unknown Galactic regions of massive star formation by detecting hydrogen radio recombination line (RRL) emission from candidate H II region targets. Since the HRDS nebulae lie at large distances from the Sun, they are located in previously unprobed zones of the Galactic disk. Here, we derive the properties of helium and carbon RRL emission from HRDS nebulae. Our target sample is the subset of the HRDS that has visible helium or carbon RRLs. This criterion gives a total of 84 velocity components (14% of the HRDS) with helium emission and 52 (9%) with carbon emission. For our highest quality sources, the average {sup 4}He{sup +}/H{sup +} abundance ratio by number, (y {sup +}), is 0.068 {+-} 0.023(1{sigma}). This is the same ratio as that measured for the sample of previously known Galactic H II regions. Nebulae without detected helium emission give robust y {sup +} upper limits. There are 5 RRL emission components with y {sup +} less than 0.04 and another 12 with upper limits below this value. These H II regions must have either a very low {sup 4}He abundance or contain a significant amount of neutral helium. The HRDS has 20 nebulae with carbon RRL emission but no helium emission at its sensitivity level. There is no correlation between the carbon RRL parameters and the 8 {mu}m mid-infrared morphology of these nebulae.

  7. THE GREEN BANK TELESCOPE H II REGION DISCOVERY SURVEY. III. KINEMATIC DISTANCES

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L. D. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Bania, T. M. [Institute for Astrophysical Research, Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Balser, Dana S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Rood, Robert T., E-mail: Loren.Anderson@mail.wvu.edu [Astronomy Department, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903-0818 (United States)

    2012-07-20

    Using the H I emission/absorption method, we resolve the kinematic distance ambiguity and derive distances for 149 of 182 (82%) H II regions discovered by the Green Bank Telescope H II Region Discovery Survey (GBT HRDS). The HRDS is an X-band (9 GHz, 3 cm) GBT survey of 448 previously unknown H II regions in radio recombination line and radio continuum emission. Here, we focus on HRDS sources from 67 Degree-Sign {>=} l {>=} 18 Degree-Sign , where kinematic distances are more reliable. The 25 HRDS sources in this zone that have negative recombination line velocities are unambiguously beyond the orbit of the Sun, up to 20 kpc distant. They are the most distant H II regions yet discovered. We find that 61% of HRDS sources are located at the far distance, 31% at the tangent-point distance, and only 7% at the near distance. 'Bubble' H II regions are not preferentially located at the near distance (as was assumed previously) but average 10 kpc from the Sun. The HRDS nebulae, when combined with a large sample of H II regions with previously known distances, show evidence of spiral structure in two circular arc segments of mean Galactocentric radii of 4.25 and 6.0 kpc. We perform a thorough uncertainty analysis to analyze the effect of using different rotation curves, streaming motions, and a change to the solar circular rotation speed. The median distance uncertainty for our sample of H II regions is only 0.5 kpc, or 5%. This is significantly less than the median difference between the near and far kinematic distances, 6 kpc. The basic Galactic structure results are unchanged after considering these sources of uncertainty.

  8. THE GREEN BANK TELESCOPE 350 MHz DRIFT-SCAN SURVEY. I. SURVEY OBSERVATIONS AND THE DISCOVERY OF 13 PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Boyles, J.; Lorimer, D. R.; McLaughlin, M. A.; Cardoso, R. F. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Lynch, R. S.; Kaspi, V. M.; Archibald, A.; Karako-Argaman, C. [Department of Physics, McGill University, 3600 University St., Montreal, Quebec, H3A 2T8 (Canada); Ransom, S. M. [National Radio Astronomy Observatory (NRAO), 520 Edgemont Road, Charlottesville, VA 22901 (United States); Stairs, I. H.; Berndsen, A.; Cherry, A.; McPhee, C. A. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada); Hessels, J. W. T.; Kondratiev, V. I.; Van Leeuwen, J. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Epstein, C. R. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Pennucci, T. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Roberts, M. S. E. [Eureka Scientific, 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Stovall, K., E-mail: jason.boyles@wku.edu [Center for Advanced Radio Astronomy and Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States)

    2013-02-15

    Over the summer of 2007, we obtained 1191 hr of 'drift-scan' pulsar search observations with the Green Bank Telescope at a radio frequency of 350 MHz. Here we describe the survey setup, search procedure, and the discovery and follow-up timing of 13 pulsars. Among the new discoveries, one (PSR J1623-0841) was discovered only through its single pulses, two (PSRs J1327-0755 and J1737-0814) are millisecond pulsars, and another (PSR J2222-0137) is a mildly recycled pulsar. PSR J1327-0755 is a 2.7 ms pulsar at a dispersion measure (DM) of 27.9 pc cm{sup -3} in an 8.7 day orbit with a minimum companion mass of 0.22 M {sub Sun }. PSR J1737-0814 is a 4.2 ms pulsar at a DM of 55.3 pc cm{sup -3} in a 79.3 day orbit with a minimum companion mass of 0.06 M {sub Sun }. PSR J2222-0137 is a 32.8 ms pulsar at a very low DM of 3.27 pc cm{sup -3} in a 2.4 day orbit with a minimum companion mass of 1.11 M {sub Sun }. It is most likely a white-dwarf-neutron-star system or an unusual low-eccentricity double neutron star system. Ten other pulsars discovered in this survey are reported in the companion paper Lynch et al.

  9. Hungaria asteroid region telescopic spectral survey (HARTSS) I: Stony asteroids abundant in the Hungaria background population

    Science.gov (United States)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2017-07-01

    The Hungaria asteroids remain as survivors of late giant planet migration that destabilized a now extinct inner portion of the primordial asteroid belt and left in its wake the current resonance structure of the Main Belt. In this scenario, the Hungaria region represents a ;purgatory; for the closest, preserved samples of the asteroidal material from which the terrestrial planets accreted. Deciphering the surface composition of these unique samples may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) reflectance spectra in order to characterize their taxonomy, surface mineralogy, and potential meteorite analogs. The overall objective of HARTSS is to evaluate the compositional diversity of asteroids located throughout the Hungaria region. This region harbors a collisional family of Xe-type asteroids, which are situated among a background (i.e., non-family) of predominantly S-complex asteroids. In order to assess the compositional diversity of the Hungaria region, we have targeted background objects during Phase I of HARTSS. Collisional family members likely reflect the composition of one original homogeneous parent body, so we have largely avoided them in this phase. We have employed NIR instruments at two ground-based telescope facilities: the NASA Infrared Telescope Facility (IRTF), and the Telescopio Nazionale Galileo (TNG). Our data set includes the NIR spectra of 42 Hungaria asteroids (36 background; 6 family). We find that stony S-complex asteroids dominate the Hungaria background population (29/36 objects; ∼80%). C-complex asteroids are uncommon (2/42; ∼5%) within the Hungaria region. Background S-complex objects exhibit considerable spectral diversity as band parameter measurements of diagnostic absorption features near 1- and 2-μm indicate that several

  10. Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS): Stony Asteroids Abundant in the Background and Family Populations

    Science.gov (United States)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2016-10-01

    The Hungaria region represents a "purgatory" for the closest, preserved samples of the material from which the terrestrial planets accreted. The Hungaria region harbors a collisional family of Xe-type asteroids, which are situated among a background of predominantly S-complex asteroids. Deciphering their surface composition may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We hypothesize that planetesimals in the inner part of the primordial asteroid belt experienced partial- to full-melting and differentiation, the Hungaria region should retain any petrologically-evolved material that formed there.We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) spectra to characterize taxonomy, surface mineralogy, and potential meteorite analogs. We used NIR instruments at two ground-based facilities (NASA IRTF; TNG). Our data set includes spectra of 82 Hungaria asteroids (61 background; 21 family), 65 were observed during HARTSS. We compare S-complex background asteroids to calibrations developed via laboratory analyses of ordinary chondrites, and to our analyses (EPMA, XRD, VIS+NIR spectra) of 11 primitive achondrite (acapulcoite-lodranite clan) meteorites.We find that stony S-complex asteroids dominate the Hungaria background population (~80%). Background objects exhibit considerable spectral diversity, when quantified by spectral band parameter measurements, translates to a variety of surface compositions. Two main meteorite groups are represented within the Hungaria background: unmelted, nebular L chondrites (and/or L chondrites), and partially-melted primitive achondrites. H-chondrite mineralogies appear to be absent from the Hungaria background. Xe-type Hungaria family members exhibit spectral homogeneity, consistent with the hypothesis that the family was derived from the disruption of a parent body analogous to an enstatite

  11. The Hubble Space Telescope Medium Deep Survey Cluster Sample: Methodology and Data

    Science.gov (United States)

    Ostrander, E. J.; Nichol, R. C.; Ratnatunga, K. U.; Griffiths, R. E.

    1998-12-01

    We present a new, objectively selected, sample of galaxy overdensities detected in the Hubble Space Telescope Medium Deep Survey (MDS). These clusters/groups were found using an automated procedure that involved searching for statistically significant galaxy overdensities. The contrast of the clusters against the field galaxy population is increased when morphological data are used to search around bulge-dominated galaxies. In total, we present 92 overdensities above a probability threshold of 99.5%. We show, via extensive Monte Carlo simulations, that at least 60% of these overdensities are likely to be real clusters and groups and not random line-of-sight superpositions of galaxies. For each overdensity in the MDS cluster sample, we provide a richness and the average of the bulge-to-total ratio of galaxies within each system. This MDS cluster sample potentially contains some of the most distant clusters/groups ever detected, with about 25% of the overdensities having estimated redshifts z > ~0.9. We have made this sample publicly available to facilitate spectroscopic confirmation of these clusters and help more detailed studies of cluster and galaxy evolution. We also report the serendipitous discovery of a new cluster close on the sky to the rich optical cluster Cl l0016+16 at z = 0.546. This new overdensity, HST 001831+16208, may be coincident with both an X-ray source and a radio source. HST 001831+16208 is the third cluster/group discovered near to Cl 0016+16 and appears to strengthen the claims of Connolly et al. of superclustering at high redshift.

  12. Using SysML for verification and validation planning on the Large Synoptic Survey Telescope (LSST)

    Science.gov (United States)

    Selvy, Brian M.; Claver, Charles; Angeli, George

    2014-08-01

    This paper provides an overview of the tool, language, and methodology used for Verification and Validation Planning on the Large Synoptic Survey Telescope (LSST) Project. LSST has implemented a Model Based Systems Engineering (MBSE) approach as a means of defining all systems engineering planning and definition activities that have historically been captured in paper documents. Specifically, LSST has adopted the Systems Modeling Language (SysML) standard and is utilizing a software tool called Enterprise Architect, developed by Sparx Systems. Much of the historical use of SysML has focused on the early phases of the project life cycle. Our approach is to extend the advantages of MBSE into later stages of the construction project. This paper details the methodology employed to use the tool to document the verification planning phases, including the extension of the language to accommodate the project's needs. The process includes defining the Verification Plan for each requirement, which in turn consists of a Verification Requirement, Success Criteria, Verification Method(s), Verification Level, and Verification Owner. Each Verification Method for each Requirement is defined as a Verification Activity and mapped into Verification Events, which are collections of activities that can be executed concurrently in an efficient and complementary way. Verification Event dependency and sequences are modeled using Activity Diagrams. The methodology employed also ties in to the Project Management Control System (PMCS), which utilizes Primavera P6 software, mapping each Verification Activity as a step in a planned activity. This approach leads to full traceability from initial Requirement to scheduled, costed, and resource loaded PMCS task-based activities, ensuring all requirements will be verified.

  13. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    Science.gov (United States)

    Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J. Richard; Crighton, Devin; hide

    2014-01-01

    We present a catalogue of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 and/or 218 GHz in the 2008 Southern survey. Flux densities span 14 -1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two subpopulations: 167 radio galaxies powered by central active galactic nuclei (AGN) and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97 per cent of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogues. When combined with flux densities from the Australia Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index, A(sub 148-218), of 3.7 (+0.62 or -0.86), and includes both local galaxies and sources with redshift around 6. Dusty sources with no counterpart in existing catalogues likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.

  14. The great Melbourne telescope

    CERN Document Server

    Gillespie, Richard

    2011-01-01

    Erected at Melbourne Observatory in 1869, the telescope was the second largest in the world, designed to explore the nature of the nebulae in the southern skies. Richard Gillespie, head of the History and Technology department at the Melbourne museum has written an entertaining account of the telescope's extraordinary history and tells the story through an amazing cast of characters whose lives intersected with the telescope.

  15. Variability Properties of Four Million Sources in the TESS Input Catalog Observed with the Kilodegree Extremely Little Telescope Survey

    Science.gov (United States)

    Oelkers, Ryan J.; Rodriguez, Joseph E.; Stassun, Keivan G.; Pepper, Joshua; Somers, Garrett; Kafka, Stella; Stevens, Daniel J.; Beatty, Thomas G.; Siverd, Robert J.; Lund, Michael B.; Kuhn, Rudolf B.; James, David; Gaudi, B. Scott

    2018-01-01

    The Kilodegree Extremely Little Telescope (KELT) has been surveying more than 70% of the celestial sphere for nearly a decade. While the primary science goal of the survey is the discovery of transiting, large-radii planets around bright host stars, the survey has collected more than 106 images, with a typical cadence between 10–30 minutes, for more than four million sources with apparent visual magnitudes in the approximate range 7TESS Input catalog and the AAVSO Variable Star Index to precipitate the follow-up and classification of each source. The catalog is maintained as a living database on the Filtergraph visualization portal at the URL https://filtergraph.com/kelt_vars.

  16. Analysis of the GPS Observations of the Site Survey at Sheshan 25-m Radio Telescope in August 2008

    Science.gov (United States)

    Liu, L.; Cheng, Z. Y.; Li, J. L.

    2010-01-01

    The processing of the GPS observations of the site survey at Sheshan 25-m radio telescope in August 2008 is reported. Because each session in this survey is only about six hours, not allowing the subdaily high frequency variations in the station coordinates to be reasonably smoothed, and because there are serious cycle slips in the observations and a large volume of data would be rejected during the software automatic adjustment of slips, the ordinary solution settings of GAMIT needed to be adjusted by loosening the constraints in the a priori coordinates to 10 m, adopting the "quick" mode in the solution iteration, and combining Cview manual operation with GAMIT automatic fixing of cycle slips. The resulting coordinates of the local control polygon in ITRF2005 are then compared with conventional geodetic results. Due to large rotations and translations in the two sets of coordinates (geocentric versus quasi-topocentric), the seven transformation parameters cannot be solved for directly. With various trial solutions it is shown that with a partial pre-removal of the large parameters, high precision transformation parameters can be obtained with post-fit residuals at the millimeter level. This analysis is necessary to prepare the follow-on site and transformation survey of the VLBI and SLR telescopes at Sheshan

  17. EFFECT OF MEASUREMENT ERRORS ON PREDICTED COSMOLOGICAL CONSTRAINTS FROM SHEAR PEAK STATISTICS WITH LARGE SYNOPTIC SURVEY TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Bard, D.; Chang, C.; Kahn, S. M.; Gilmore, K.; Marshall, S. [KIPAC, Stanford University, 452 Lomita Mall, Stanford, CA 94309 (United States); Kratochvil, J. M.; Huffenberger, K. M. [Department of Physics, University of Miami, Coral Gables, FL 33124 (United States); May, M. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); AlSayyad, Y.; Connolly, A.; Gibson, R. R.; Jones, L.; Krughoff, S. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Ahmad, Z.; Bankert, J.; Grace, E.; Hannel, M.; Lorenz, S. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Haiman, Z.; Jernigan, J. G., E-mail: djbard@slac.stanford.edu [Department of Astronomy and Astrophysics, Columbia University, New York, NY 10027 (United States); and others

    2013-09-01

    We study the effect of galaxy shape measurement errors on predicted cosmological constraints from the statistics of shear peak counts with the Large Synoptic Survey Telescope (LSST). We use the LSST Image Simulator in combination with cosmological N-body simulations to model realistic shear maps for different cosmological models. We include both galaxy shape noise and, for the first time, measurement errors on galaxy shapes. We find that the measurement errors considered have relatively little impact on the constraining power of shear peak counts for LSST.

  18. S-COSMOS: The Spitzer Legacy Survey of the Hubble Space Telescope ACS 2 deg2 COSMOS Field I: Survey Strategy and First Analysis

    Science.gov (United States)

    Sanders, D. B.; Salvato, M.; Aussel, H.; Ilbert, O.; Scoville, N.; Surace, J. A.; Frayer, D. T.; Sheth, K.; Helou, G.; Brooke, T.; Bhattacharya, B.; Yan, L.; Kartaltepe, J. S.; Barnes, J. E.; Blain, A. W.; Calzetti, D.; Capak, P.; Carilli, C.; Carollo, C. M.; Comastri, A.; Daddi, E.; Ellis, R. S.; Elvis, M.; Fall, S. M.; Franceschini, A.; Giavalisco, M.; Hasinger, G.; Impey, C.; Koekemoer, A.; Le Fèvre, O.; Lilly, S.; Liu, M. C.; McCracken, H. J.; Mobasher, B.; Renzini, A.; Rich, M.; Schinnerer, E.; Shopbell, P. L.; Taniguchi, Y.; Thompson, D. J.; Urry, C. M.; Williams, J. P.

    2007-09-01

    The COSMOS Spitzer survey (S-COSMOS) is a Legacy program (Cycles 2+3) designed to carry out a uniform deep survey of the full 2 deg2 COSMOS field in all seven Spitzer bands (3.6, 4.5, 5.6, 8.0, 24.0, 70.0, and 160.0 μm). This paper describes the survey parameters, mapping strategy, data reduction procedures, achieved sensitivities to date, and the complete data set for future reference. We show that the observed infrared backgrounds in the S-COSMOS field are within 10% of the predicted background levels. The fluctuations in the background at 24 μm have been measured and do not show any significant contribution from cirrus, as expected. In addition, we report on the number of asteroid detections in the low Galactic latitude COSMOS field. We use the Cycle 2 S-COSMOS data to determine preliminary number counts, and compare our results with those from previous Spitzer Legacy surveys (e.g., SWIRE, GOODS). The results from this ``first analysis'' confirm that the S-COSMOS survey will have sufficient sensitivity with IRAC to detect ~L* disks and spheroids out to z>~3, and with MIPS to detect ultraluminous starbursts and AGNs out to z~3 at 24 μm and out to z~1.5-2 at 70 and 160 μm. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555 also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by AURA under cooperative agreement with the National Science Foundation; the National Radio Astronomy

  19. Mapping geological at risk areas in the city of São Paulo: issues and results from the largest risk survey in Brazil

    Science.gov (United States)

    Pascarelli, Luciana; Macedo, Eduardo

    2013-04-01

    In the City of São Paulo, the first reports of accidents resulting from landslides are directly related to urban expansion that has been recorded since the 30s. Areas of major environmental fragility, such as slopes and stream-banks, have also ended up being occupied without proper planning. The increased number of deaths due to landslides in the 80s already indicated the need for intervention at these sites by the public authorities. It was important to act to prevent these disasters, not only emergency assistance to victimized families. Therefore, in 1989 the first systematic and official survey on the City's at-risk areas was made. At the time, the at-risk sites had been still unknown, except for the occurrence records and press reports. While some areas were evaluated by experts, others appeared or expanded without any control. The surveys pace could not definitely follow the growth and the density of favelas, and some communities started to trigger the first records of accidents in areas hitherto stable. Considering the universe to be studied and the detail level of the work, it was necessary to use specific methodology to enable evaluation of the entire City in a relatively short period of time. For that purpose,mapping activities were carried out in five phases and involved about 80 professionals in the fields of geology, engineering, architecture, geography, civil defense, and housing, who participated directly or indirectly in all stages of work. Thus, the mapping that has recently been completed by the Municipality of São Paulo and by the Institute for Technological Research of São Paulo State is today the largest geological-risk database in the country. Besides technical information, the survey also shows the types of intervention to be implemented according to the degree of risk and the type of verified occupation, vital data to prioritizing the public-authorities actions. Currently, among the 1,602 favelas and informal settlements in the city, 407

  20. Characterizing the Survey Strategy and Initial Orbit Determination Abilities of the NASA MCAT Telescope for Geosynchronous Orbital Debris Environmental Studies

    Science.gov (United States)

    Frith, James; Barker, Ed; Cowardin, Heather; Buckalew, Brent; Anz-Meado, Phillip; Lederer, Susan

    2017-01-01

    The NASA Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT's known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment. A simulated GEO debris population is created and sampled at various cadences and run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT's ability to determine accurately the orbits of debris at various sample rates. Additionally, estimates of the rate at which MCAT will be able produce a complete GEO survey are presented using collected weather data and the proposed observation data collection cadence. The specific methods and results are presented here.

  1. Managing Astronomy Research Data: Data Practices in the Sloan Digital Sky Survey and Large Synoptic Survey Telescope Projects

    Science.gov (United States)

    Sands, Ashley Elizabeth

    2017-01-01

    Ground-based astronomy sky surveys are massive, decades-long investments in scientific data collection. Stakeholders expect these datasets to retain scientific value well beyond the lifetime of the sky survey. However, the necessary investments in knowledge infrastructures for managing sky survey data are not yet in place to ensure the long-term…

  2. CANDELS : THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY-THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS

    NARCIS (Netherlands)

    Koekemoer, Anton M.; Faber, S. M.; Ferguson, Henry C.; Grogin, Norman A.; Kocevski, Dale D.; Koo, David C.; Lai, Kamson; Lotz, Jennifer M.; Lucas, Ray A.; McGrath, Elizabeth J.; Ogaz, Sara; Rajan, Abhijith; Riess, Adam G.; Rodney, Steve A.; Strolger, Louis; Casertano, Stefano; Castellano, Marco; Dahlen, Tomas; Dickinson, Mark; Dolch, Timothy; Fontana, Adriano; Giavalisco, Mauro; Grazian, Andrea; Guo, Yicheng; Hathi, Nimish P.; Huang, Kuang-Han; van der Wel, Arjen; Yan, Hao-Jing; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; Barden, Marco; Bell, Eric F.; Bournaud, Frederic; Brown, Thomas M.; Caputi, Karina I.; Cassata, Paolo; Challis, Peter J.; Chary, Ranga-Ram; Cheung, Edmond; Cirasuolo, Michele; Conselice, Christopher J.; Cooray, Asantha Roshan; Croton, Darren J.; Daddi, Emanuele; Dave, Romeel; de Mello, Duilia F.; de Ravel, Loic; Dekel, Avishai; Donley, Jennifer L.; Dunlop, James S.; Dutton, Aaron A.; Elbaz, David; Fazio, Giovanni G.; Filippenko, Alexei V.; Finkelstein, Steven L.; Frazer, Chris; Gardner, Jonathan P.; Garnavich, Peter M.; Gawiser, Eric; Gruetzbauch, Ruth; Hartley, Will G.; Haeussler, Boris; Herrington, Jessica; Hopkins, Philip F.; Huang, Jia-Sheng; Jha, Saurabh W.; Johnson, Andrew; Kartaltepe, Jeyhan S.; Khostovan, Ali A.; Kirshner, Robert P.; Lani, Caterina; Lee, Kyoung-Soo; Li, Weidong; Madau, Piero; McCarthy, Patrick J.; McIntosh, Daniel H.; McLure, Ross J.; McPartland, Conor; Mobasher, Bahram; Moreira, Heidi; Mortlock, Alice; Moustakas, Leonidas A.; Mozena, Mark; Nandra, Kirpal; Newman, Jeffrey A.; Nielsen, Jennifer L.; Niemi, Sami; Noeske, Kai G.; Papovich, Casey J.; Pentericci, Laura; Pope, Alexandra; Primack, Joel R.; Ravindranath, Swara; Reddy, Naveen A.; Renzini, Alvio; Rix, Hans-Walter; Robaina, Aday R.; Rosario, David J.; Rosati, Piero; Salimbeni, Sara; Scarlata, Claudia; Siana, Brian; Simard, Luc; Smidt, Joseph; Snyder, Diana; Somerville, Rachel S.; Spinrad, Hyron; Straughn, Amber N.; Telford, Olivia; Teplitz, Harry I.; Trump, Jonathan R.; Vargas, Carlos; Villforth, Carolin; Wagner, Cory R.; Wandro, Pat; Wechsler, Risa H.; Weiner, Benjamin J.; Wiklind, Tommy; Wild, Vivienne; Wilson, Grant; Wuyts, Stijn; Yun, Min S.

    2011-01-01

    This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z approximate to 1.5-8, and to study

  3. Optimal survey strategies and predicted planet yields for the Korean microlensing telescope network

    International Nuclear Information System (INIS)

    Henderson, Calen B.; Gaudi, B. Scott; Skowron, Jan; Penny, Matthew T.; Gould, Andrew P.; Han, Cheongho; Nataf, David

    2014-01-01

    The Korean Microlensing Telescope Network (KMTNet) will consist of three 1.6 m telescopes each with a 4 deg 2 field of view (FoV) and will be dedicated to monitoring the Galactic Bulge to detect exoplanets via gravitational microlensing. KMTNet's combination of aperture size, FoV, cadence, and longitudinal coverage will provide a unique opportunity to probe exoplanet demographics in an unbiased way. Here we present simulations that optimize the observing strategy for and predict the planetary yields of KMTNet. We find preferences for four target fields located in the central Bulge and an exposure time of t exp = 120 s, leading to the detection of ∼2200 microlensing events per year. We estimate the planet detection rates for planets with mass and separation across the ranges 0.1 ≤ M p /M ⊕ ≤ 1000 and 0.4 ≤ a/AU ≤ 16, respectively. Normalizing these rates to the cool-planet mass function of Cassan et al., we predict KMTNet will be approximately uniformly sensitive to planets with mass 5 ≤ M p /M ⊕ ≤ 1000 and will detect ∼20 planets per year per dex in mass across that range. For lower-mass planets with mass 0.1 ≤ M p /M ⊕ < 5, we predict KMTNet will detect ∼10 planets per year. We also compute the yields KMTNet will obtain for free-floating planets (FFPs) and predict KMTNet will detect ∼1 Earth-mass FFP per year, assuming an underlying population of one such planet per star in the Galaxy. Lastly, we investigate the dependence of these detection rates on the number of observatories, the photometric precision limit, and optimistic assumptions regarding seeing, throughput, and flux measurement uncertainties.

  4. GESE: a small UV space telescope to conduct a large spectroscopic survey of z˜1 Galaxies

    Science.gov (United States)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2014-11-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z˜1 (look-back time of ˜8 billion years). GESE is a 1.5-m space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 μm at a spectral resolving power, R˜500. This observed spectral range corresponds to 0.1-0.2 μm as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next-Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  5. Survey for C-Band High Spectral Lines with the Arecibo Telescope

    Science.gov (United States)

    Tan, Wei Siang

    High-mass stars have masses greater than 8 solar masses and are the main source of heavy elements such as iron in the interstellar medium. This type of stars form in giant molecular clouds. Studying the molecular environment in star-forming regions is crucial to understand the physical structure and conditions that lead to the formation of high-mass stars. This thesis presents observations conducted with the 305m Arecibo Telescope in Puerto Rico of twelve high-mass star forming regions. Every source was observed in multiple transitions of molecular species including CH, CH3OH, H2CS, and OH lines, and a radio recombination line. The observations were conducted with the C-Band High receiver of the Arecibo Telescope in the frequency range of 6.0 to 7.4GHz. The goals of the observations were to investigate the detectability of different molecular species (including new possible molecular masers) and obtain high sensitivity observations of the 6.7GHz CH3OH line to detect absorption and use it as a probe of the kinematics of the molecular material with respect to the ionized gas. Among the results of the observations, we report detection of 6.7GHz CH3OH masers toward nine regions, OH masers toward five sources, 6.7GHz CH3OH absorption toward four sources (including tentative detections), and detection of H2CS toward the star forming region G34.26+0.15. We also found a variable and recurrent 6.7GHz CH3OH maser in G45.12+0.13. The 6.7GHz CH 3OH and 6278.65MHz H2CS absorption lines were modeled using the radiative transfer code RADEX to investigate the physical conditions of the molecular clouds responsible for the absorption lines. Our analysis of the absorption lines supports the interpretation that the spectral lines are tracing molecular envelopes of HII regions. In the case of 6.7GHz CH 3OH absorption, our results and data from an extensive literature review indicate that absorption is rare, but that a population of 6.7GHz CH 3OH absorbers may be present at levels

  6. THE DISTRIBUTION OF FAINT SATELLITES AROUND CENTRAL GALAXIES IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C. Y.; Jing, Y. P.; Li, Cheng [Key Laboratory for Research in Galaxies and Cosmology of Chinese Academy of Sciences, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China)

    2012-11-20

    We investigate the radial number density profile and the abundance distribution of faint satellites around central galaxies in the low-redshift universe using the Canada-France-Hawaii Telescope (CFHT) Legacy Survey. We consider three samples of central galaxies with magnitudes of M {sub r} = -21, -22, and -23 selected from the Sloan Digital Sky Survey group catalog of Yang et al. The satellite distribution around these central galaxies is obtained by cross-correlating these galaxies with the photometric catalog of the CFHT Legacy Survey. The projected radial number density of the satellites obeys a power-law form with the best-fit logarithmic slope of -1.05, independent of both the central galaxy luminosity and the satellite luminosity. The projected cross-correlation function between central and satellite galaxies exhibits a non-monotonic trend with satellite luminosity. It is most pronounced for central galaxies with M {sub r} = -21, where the decreasing trend of clustering amplitude with satellite luminosity is reversed when satellites are fainter than central galaxies by more than 2 mag. A comparison with the satellite luminosity functions in the Milky Way (MW) and M31 shows that the MW/M31 system has about twice as many satellites as around a typical central galaxy of similar luminosity. The implications for theoretical models are briefly discussed.

  7. Largest College Endowments, 2011

    Science.gov (United States)

    Chronicle of Higher Education, 2012

    2012-01-01

    Of all endowments valued at more than $250-million, the UCLA Foundation had the highest rate of growth over the previous year, at 49 percent. This article presents a table of the largest college endowments in 2011. The table covers the "rank," "institution," "market value as of June 30, 2011," and "1-year change" of institutions participating in…

  8. A NEW CEPHEID DISTANCE TO THE GIANT SPIRAL M101 BASED ON IMAGE SUBTRACTION OF HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS OBSERVATIONS

    International Nuclear Information System (INIS)

    Shappee, Benjamin J.; Stanek, K. Z.

    2011-01-01

    We accurately determine a new Cepheid distance to M101 (NGC 5457) using archival Hubble Space Telescope (HST)/Advanced Camera for Surveys V and I time series photometry of two fields within the galaxy. We make a slight modification to the ISIS image subtraction package to obtain optimal differential light curves from HST data. We discovered 827 Cepheids with periods between 3 and 80 days, the largest extragalactic sample of Cepheids observed with HST by a factor of two. With this large Cepheid sample, we find that the relative distance of M101 from the Large Magellanic Cloud is Δμ LMC = 10.63 ± 0.04 (random) ± 0.06 (systematic) mag. If we use the geometrically determined maser distance to NGC 4258 as our distance anchor, the distance modulus of M101 is μ 0 = 29.04 ± 0.05 (random) ± 0.18 (systematic) mag or D = 6.4 ± 0.2 (random) ± 0.5 (systematic) Mpc. The uncertainty is dominated by the maser distance estimate (±0.15 mag), which should improve over the next few years. We determine a steep metallicity dependence, γ, for our Cepheid sample through two methods, yielding γ = -0.80 ± 0.21 (random) ± 0.06 (systematic) mag dex -1 and γ = -0.72 +0.22 -0.25 (random) ± 0.06 (systematic) mag dex -1 . We see marginal evidence for variations in the Wesenheit period-luminosity relation slope as a function of deprojected galactocentric radius. We also use the tip of the red giant branch method to independently determine the distance modulus to M101 of μ 0 = 29.05 ± 0.06 (random) ± 0.12 (systematic) mag.

  9. The OmegaCAM 16K x 16K CCD detector system for the ESO VLT Survey Telescope (VST)

    Science.gov (United States)

    Iwert, Olaf; Baade, D.; Balestra, A.; Baruffolo, A.; Bortolussi, A.; Christen, F.; Cumani, C.; Deiries, S.; Downing, M.; Geimer, C.; Hess, G.; Hess, J.; Kuijken, K.; Lizon, J.; Muschielok, B.; Nicklas, H.; Reiss, R.; Reyes, J.; Silber, A.; Thillerup, J.; Valentijn, E.

    2006-06-01

    A 16K x 16K, 1 degree x 1 degree field, detector system was developed by ESO for the OmegaCAM instrument for use on the purpose built ESO VLT Survey Telescope (VST). The focal plane consists of an 8 x 4 mosaic of 2K x 4K 15um pixel e2v CCDs and four 2K x 4K CCDs on the periphery for the opto-mechanical control of the telescope. The VST is a single instrument telescope. This placed stringent reliability requirements on the OmegaCAM detector system such as 10 years lifetime and maximum downtime of 1.5 %. Mounting at Cassegrain focus required a highly autonomous self-contained cooling system that could deliver 65 W of cooling power. Interface space for the detector head was severely limited by the way the instrument encloses the CCD cryostat. The detector system features several novel ideas tailored to meet these requirements and described in this paper: Key design drivers of the detector head were the easily separable but precisely aligned connections to the optical field flattener on the top and the cooling system at the bottom. Material selection, surface treatment, specialized coatings and in-situ plasma cleaning were crucial to prevent contamination of the detectors. Inside the cryostat, cryogenic and electrical connections were disentangled to keep the configuration modular, integration friendly and the detectors in a safe condition during all mounting steps. A compact unit for logging up to 125 Pt100 temperature sensors and associated thermal control loops was developed (ESO's new housekeeping unit PULPO 2), together with several new modular Pt100 packaging and mounting concepts. The electrical grouping of CCDs based on process parameters and test results is explained. Three ESO standardized FIERA CCD controllers in different configurations are used. Their synchronization mechanism for read-out is discussed in connection with the CCD grouping scheme, the shutter, and the integrated guiding and image analysis facility with four independent 2K x 4K CCDs. An

  10. DETECTION OF E-CYANOMETHANIMINE TOWARD SAGITTARIUS B2(N) IN THE GREEN BANK TELESCOPE PRIMOS SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, Daniel P.; Seifert, Nathan A.; Steber, Amanda L.; Muckle, Matt T.; Loomis, Ryan A.; Vasquez, David; Nyiramahirwe, Jolie; Sciortino, Nicole; Johnson, Kennedy; Pate, Brooks H. [Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22904 (United States); Corby, Joanna F. [Department of Astronomy, University of Virginia, McCormick Road, Charlottesville, VA 22904 (United States); Martinez, Oscar Jr.; Crabtree, Kyle N.; McCarthy, Michael C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jewell, Philip R.; Remijan, Anthony J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Hollis, Jan M. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lovas, Frank J., E-mail: bp2k@virginia.edu, E-mail: mccarthy@cfa.harvard.edu, E-mail: aremijan@nrao.edu [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2013-03-01

    The detection of E-cyanomethanimine (E-HNCHCN) toward Sagittarius B2(N) is made by comparing the publicly available Green Bank Telescope (GBT) PRIMOS survey spectra to laboratory rotational spectra from a reaction product screening experiment. The experiment uses broadband molecular rotational spectroscopy to monitor the reaction products produced in an electric discharge source using a gas mixture of NH{sub 3} and CH{sub 3}CN. Several transition frequency coincidences between the reaction product screening spectra and previously unassigned interstellar rotational transitions in the PRIMOS survey have been assigned to E-cyanomethanimine. A total of eight molecular rotational transitions of this molecule between 9 and 50 GHz are observed with the GBT. E-cyanomethanimine, often called the HCN dimer, is an important molecule in prebiotic chemistry because it is a chemical intermediate in proposed synthetic routes of adenine, one of the two purine nucleobases found in DNA and RNA. New analyses of the rotational spectra of both E-cyanomethanimine and Z-cyanomethanimine that incorporate previous millimeter-wave measurements are also reported.

  11. DETECTION OF E-CYANOMETHANIMINE TOWARD SAGITTARIUS B2(N) IN THE GREEN BANK TELESCOPE PRIMOS SURVEY

    International Nuclear Information System (INIS)

    Zaleski, Daniel P.; Seifert, Nathan A.; Steber, Amanda L.; Muckle, Matt T.; Loomis, Ryan A.; Vasquez, David; Nyiramahirwe, Jolie; Sciortino, Nicole; Johnson, Kennedy; Pate, Brooks H.; Corby, Joanna F.; Martinez, Oscar Jr.; Crabtree, Kyle N.; McCarthy, Michael C.; Jewell, Philip R.; Remijan, Anthony J.; Hollis, Jan M.; Lovas, Frank J.

    2013-01-01

    The detection of E-cyanomethanimine (E-HNCHCN) toward Sagittarius B2(N) is made by comparing the publicly available Green Bank Telescope (GBT) PRIMOS survey spectra to laboratory rotational spectra from a reaction product screening experiment. The experiment uses broadband molecular rotational spectroscopy to monitor the reaction products produced in an electric discharge source using a gas mixture of NH 3 and CH 3 CN. Several transition frequency coincidences between the reaction product screening spectra and previously unassigned interstellar rotational transitions in the PRIMOS survey have been assigned to E-cyanomethanimine. A total of eight molecular rotational transitions of this molecule between 9 and 50 GHz are observed with the GBT. E-cyanomethanimine, often called the HCN dimer, is an important molecule in prebiotic chemistry because it is a chemical intermediate in proposed synthetic routes of adenine, one of the two purine nucleobases found in DNA and RNA. New analyses of the rotational spectra of both E-cyanomethanimine and Z-cyanomethanimine that incorporate previous millimeter-wave measurements are also reported.

  12. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. III. A QUINTUPLE STELLAR POPULATION IN NGC 2808

    International Nuclear Information System (INIS)

    Milone, A. P.; Marino, A. F.; Jerjen, H.; Piotto, G.; Renzini, A.; Bedin, L. R.; Anderson, J.; Bellini, A.; Cassisi, S.; Pietrinferni, A.; D’Antona, F.; Ventura, P.

    2015-01-01

    In this study we present the first results from multi-wavelength Hubble Space Telescope (HST) observations of the Galactic globular cluster (GC) NGC 2808 as an extension of the Hubble Space Telescope UV Legacy Survey of Galactic GCs (GO-13297 and previous proprietary and HST archive data). Our analysis allowed us to disclose a multiple-stellar-population phenomenon in NGC 2808 even more complex than previously thought. We have separated at least five different populations along the main sequence and the red giant branch (RGB), which we name A, B, C, D, and E (though an even finer subdivision may be suggested by the data). We identified the RGB bump in four out of the five RGBs. To explore the origin of this complex color–magnitude diagram, we have combined our multi-wavelength HST photometry with synthetic spectra, generated by assuming different chemical compositions. The comparison of observed colors with synthetic spectra suggests that the five stellar populations have different contents of light elements and helium. Specifically, if we assume that NGC 2808 is homogeneous in [Fe/H] (as suggested by spectroscopy for Populations B, C, D, E, but lacking for Population A) and that population A has a primordial helium abundance, we find that populations B, C, D, E are enhanced in helium by ΔY ∼ 0.03, 0.03, 0.08, 0.13, respectively. We obtain similar results by comparing the magnitude of the RGB bumps with models. Planned spectroscopic observations will test whether Population A also has the same metallicity, or whether its photometric differences with Population B can be ascribed to small [Fe/H] and [O/H] differences rather than to helium

  13. A survey of the 5C2 region with the Westerbork synthesis radio telescope at 1415 MHz (the third Westerbork survey), ch. 2

    International Nuclear Information System (INIS)

    Katgert, P.

    1977-01-01

    The 5C2 region, observed originally with the Cambridge One-Mile Telescope at 408 MHz, has been reobserved at l4l5 MHz. The resulting source list contains 238 sources with attenuated flux densities exceeding the catalogue limit of 6.25 m.f.u. Out of a total of 190 5C2 sources (i.e. all 5C2 sources within the 10 dB attenuation contour of the present survey), 128 were detected with flux densities above the catalogue limit. Another 22 5C2 sources were detected with flux densities below the catalogue limit. A discussion is given of the procedures used for determining source parameters. Special attention has been given to the determination of flux density and angular size as well as to the question of completeness of the source list as a function of flux density and angular size

  14. A MID-INFRARED IMAGING SURVEY OF SUBMILLIMETER-SELECTED GALAXIES WITH THE SPITZER SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Hainline, Laura J.; Blain, A. W.; Smail, Ian; Frayer, D. T.; Chapman, S. C.; Ivison, R. J.; Alexander, D. M.

    2009-01-01

    We present Spitzer-IRAC and MIPS mid-IR observations of a sample of 73 radio-detected submillimeter-selected galaxies (SMGs) with spectroscopic redshifts, the largest such sample published to date. From our data, we find that IRAC colors of SMGs are much more uniform as compared with rest-frame UV and optical colors, and z>1.5 SMGs tend to be redder in their mid-IR colors than both field galaxies and lower-z SMGs. However, the IRAC colors of the SMGs overlap those of field galaxies sufficiently that color-magnitude and color-color selection criteria suggested in the literature to identify SMG counterparts produce ambiguous counterparts within an 8'' radius in 20%-35% of cases. We use a rest-frame J-H versus H-K color-color diagram and a S 24 /S 8.0 versus S 8.0 /S 4.5 color-color diagram to determine that 13%-19% of our sample are likely to contain active galactic nuclei which dominate their mid-IR emission. We observe in the rest-frame JHK colors of our sample that the rest-frame near-IR emission of SMGs does not resemble that of the compact nuclear starburst observed in local ultraluminous IR galaxies and is consistent with more widely distributed star formation. We take advantage of the fact that many high-z galaxy populations selected at different wavelengths are detected by Spitzer to carry out a brief comparison of mid-IR properties of SMGs to UV-selected high-z galaxies, 24 μm-selected galaxies, and high-z radio galaxies, and find that SMGs have mid-IR fluxes and colors which are consistent with being more massive and more reddened than UV-selected galaxies, while the IRAC colors of SMGs are most similar to powerful high-z radio galaxies.

  15. PLANETARY NEBULAE DETECTED IN THE SPITZER SPACE TELESCOPE GLIMPSE II LEGACY SURVEY

    International Nuclear Information System (INIS)

    Zhang Yong; Sun Kwok

    2009-01-01

    We report the result of a search for the infrared counterparts of 37 planetary nebulae (PNs) and PN candidates in the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire II (GLIMPSE II) survey. The photometry and images of these PNs at 3.6, 4.5, 5.8, 8.0, and 24 μm, taken through the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS), are presented. Most of these nebulae are very red and compact in the IRAC bands, and are found to be bright and extended in the 24 μm band. The infrared morphology of these objects are compared with Hα images of the Macquarie-AAO-Strasbourg (MASH) and MASH II PNs. The implications for morphological difference in different wavelengths are discussed. The IRAC data allow us to differentiate between PNs and H II regions and be able to reject non-PNs from the optical catalog (e.g., PNG 352.1 - 00.0). Spectral energy distributions are constructed by combing the IRAC and MIPS data with existing near-, mid-, and far-IR photometry measurements. The anomalous colors of some objects allow us to infer the presence of aromatic emission bands. These multi-wavelength data provide useful insights into the nature of different nebular components contributing to the infrared emission of PNs.

  16. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  17. Sixteen Years of the Hubble Space Telescope's Advanced Camera for Surveys: Calibration Update

    Science.gov (United States)

    Grogin, Norman A.; ACS Instrument Team

    2018-06-01

    The Advanced Camera for Surveys (ACS) has been a workhorse HST imager for over sixteen years, subsequent to its Servicing Mission 3B installation in 2002. The once defunct ACS Wide Field Channel (WFC) has now been operating nearly twice as long (>9yrs) since its Servicing Mission 4 (SM4) repair than it had originally operated prior to its 2007 failure. Despite the accumulating radiation damage to the WFC CCDs during their long stay in low Earth orbit, ACS continues to be heavily exploited by the HST community as both a prime and a parallel detector.During past year, there have been two new releases of the CALACS image reduction pipeline that have incorporated several recent advancements in ACS calibration capabilities. We review these updates, along with the enhanced calibration reference files (superbiases, superdarks, etc.) associated with these CALACS releases. We also present results from long-term monitoring of WFC dark current and readout noise, and from new studies of detector performance from both WFC and the ACS Solar Blind Channel (SBC). Highlights include: 1) improved characterization of WFC post-flash LED illumination, including a low-level annual modulation of LED intensity; 2) comprehensive assessment of SBC dark current as a function of detector operating temperature, and of SBC operating temperature versus duration of use; and 3) an update to the WFC bad-pixel table resulting from a minor particulate-contamination event in May 2017.

  18. THE ALLEN TELESCOPE ARRAY Pi GHz SKY SURVEY. I. SURVEY DESCRIPTION AND STATIC CATALOG RESULTS FOR THE BOOeTES FIELD

    International Nuclear Information System (INIS)

    Bower, Geoffrey C.; Croft, Steve; Keating, Garrett; Whysong, David; Backer, Don; Bauermeister, Amber; Blitz, Leo; Bock, Douglas; Cheng, Calvin; Dexter, Matt; Engargiola, Greg; Ackermann, Rob; Atkinson, Shannon; Backus, Peter; Bradford, Tucker; Davis, Mike; Dreher, John; Barott, Billy; Cork, Chris; DeBoer, Dave

    2010-01-01

    The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array. PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky with an emphasis on synoptic observations that measure the static and time-variable properties of the sky. During the 2.5 year campaign, PiGSS will twice observe ∼250,000 radio sources in the 10,000 deg 2 region of the sky with b>30 0 to an rms sensitivity of ∼1 mJy. Additionally, sub-regions of the sky will be observed multiple times to characterize variability on timescales of days to years. We present here observations of a 10 deg 2 region in the Booetes constellation overlapping the NOAO Deep Wide Field Survey field. The PiGSS image was constructed from 75 daily observations distributed over a 4 month period and has an rms flux density between 200 and 250 μJy. This represents a deeper image by a factor of 4-8 than we will achieve over the entire 10,000 deg 2 . We provide flux densities, source sizes, and spectral indices for the 425 sources detected in the image. We identify ∼100 new flat-spectrum radio sources; we project that when completed PiGSS will identify 10 4 flat-spectrum sources. We identify one source that is a possible transient radio source. This survey provides new limits on faint radio transients and variables with characteristic durations of months.

  19. Preparedness for the Evaluation and Management of Mass Casualty Incidents Involving Anticholinesterase Compounds: A Survey of Emergency Department Directors in the 12 Largest Cities in the United States

    Science.gov (United States)

    2010-11-01

    and the resulting survey was piloted among a group of 24 physicians, nurses , and governmental officials. It was submitted to an institu- tional...appropriate antidotes. ch emical attack with nerve agents could be devastat- g. As physicians, nurses , and allied health profession- , it is our professional...state and local medical countermeasure stockpile investments through the Shelf-Life Extension Program. Biosecur Bioterror. 2009; 7(1): 101-107. 86

  20. Hubble space telescope/advanced camera for surveys confirmation of the dark substructure in A520

    International Nuclear Information System (INIS)

    Jee, M. J.; Hoekstra, H.; Mahdavi, A.; Babul, A.

    2014-01-01

    We present a weak-lensing study of the cluster A520 based on Advanced Camera for Surveys (ACS) data. The excellent data quality provides a mean source density of ∼109 arcmin –2 , which improves both resolution and significance of the mass reconstruction compared to a previous study based on Wide Field Planetary Camera 2 (WFPC2) images. We take care in removing instrumental effects such as the charge trailing due to radiation damage of the detector and the position-dependent point-spread function. This new ACS analysis confirms the previous claims that a substantial amount of dark mass is present between two luminous subclusters where we observe very little light. The centroid of the dark peak in the current ACS analysis is offset to the southwest by ∼1' with respect to the centroid from the WFPC2 analysis. Interestingly, this new centroid is in better agreement with the location where the X-ray emission is strongest, and the mass-to-light ratio estimated with this centroid is much higher (813 ± 78 M ☉ /L R☉ ) than the previous value; the aperture mass with the WFPC2 centroid provides a consistent mass. Although we cannot provide a definite explanation for the dark peak, we discuss a revised scenario, wherein dark matter with a more conventional range (σ DM /m DM < 1 cm 2 g –1 ) of self-interacting cross-section can lead to the detection of this dark substructure. If supported by detailed numerical simulations, this hypothesis opens up the possibility that the A520 system can be used to establish a lower limit of the self-interacting cross-section of dark matter.

  1. Weak maser emission of methyl formate toward Sagittarius B2(N) in the green bank telescope PRIMOS survey

    Energy Technology Data Exchange (ETDEWEB)

    Faure, A.; Wiesenfeld, L. [UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble F-38041 (France); Remijan, A. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Szalewicz, K. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2014-03-10

    A non-LTE radiative transfer treatment of cis-methyl formate (HCOOCH{sub 3}) rotational lines is presented for the first time using a set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5-30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH{sub 3}-He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud using the publicly available PRIMOS survey from the Green Bank Telescope. A total of 49 low-lying transitions of methyl formate, with upper levels below 25 K, are identified. These lines are found to probe a presumably cold (∼30 K), moderately dense (∼10{sup 4} cm{sup –3}), and extended region surrounding Sgr B2(N). The derived column density of ∼4 × 10{sup 14} cm{sup –2} is only a factor of ∼10 larger than the column density of the trans conformer in the same source. Provided that the two conformers have the same spatial distribution, this result suggests that strongly non-equilibrium processes must be involved in their synthesis. Finally, our calculations show that all detected emission lines with a frequency below 30 GHz are (collisionally pumped) weak masers amplifying the continuum of Sgr B2(N). This result demonstrates the importance and generality of non-LTE effects in the rotational spectra of complex organic molecules at centimeter wavelengths.

  2. Characterizing the Survey Strategy and Initial Orbit Determination Abilities of the NASA MCAT Telescope for Geosynchronous Orbital Debris Environmental Studies

    Science.gov (United States)

    Frith, J.; Barker, E.; Cowardin, H.; Buckalew, B.; Anz-Meador, P.; Lederer, S.

    The National Aeronautics and Space Administration (NASA) Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT’s known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment, including collected weather data and the proposed observational data collection cadence. To optimize observing cadences and probability of detection, on-going work using a simulated GEO debris population sampled at various cadences are run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT’s ability to determine accurately the orbits of debris at various sample rates. The goal of this work is to discriminate GEO and near-GEO objects from GEO transfer orbit objects that can appear as GEO objects in the environmental models due to the short arc observation and an assumed circular orbit. The specific methods and results are presented here.

  3. THE ALL-SKY GEOS RR Lyr SURVEY WITH THE TAROT TELESCOPES: ANALYSIS OF THE BLAZHKO EFFECT

    International Nuclear Information System (INIS)

    Le Borgne, J.-F.; Klotz, A.; Poretti, E.; Boër, M.; Butterworth, N.; Dvorak, S.; Dumont, M.; Hambsch, F.-J.; Vandenbroere, J.; Hund, F.; Kugel, F.; Vilalta, J. M.

    2012-01-01

    We used the GEOS database to study the Blazhko effect of galactic RRab stars. The database is continuously enriched by maxima supplied by amateur astronomers and by a dedicated survey by means of the two TAROT robotic telescopes. The same value of the Blazhko period is observed at different values of the pulsation periods and different values of the Blazhko periods are observed at the same value of the pulsation period. There are clues suggesting that the Blazhko effect is changing from one cycle to the next. The secular changes in the pulsation and Blazhko periods of Z CVn are anticorrelated. The diagrams of magnitudes against phases of the maxima clearly show that the light curves of Blazhko variables can be explained as modulated signals, both in amplitude and in frequency. The closed curves describing the Blazhko cycles in such diagrams have different shapes, reflecting the phase shifts between the epochs of the brightest maximum and the maximum O – C. Our sample shows that both clockwise and counterclockwise directions are possible for similar shapes. The improved observational knowledge of the Blazhko effect, in addition to some peculiarities of the light curves, has yet to be explained by a satisfactory physical mechanism.

  4. THE ALL-SKY GEOS RR Lyr SURVEY WITH THE TAROT TELESCOPES: ANALYSIS OF THE BLAZHKO EFFECT

    Energy Technology Data Exchange (ETDEWEB)

    Le Borgne, J.-F.; Klotz, A.; Poretti, E. [Universite de Toulouse, UPS-OMP, IRAP, 31400 Toulouse (France); Boeer, M. [ARTEMIS, Universite Nice Sophia-Antipolis, CNRS, Observatoire de la Cote d' Azur, Nice (France); Butterworth, N.; Dvorak, S. [American Association of Variable Star Observers (AAVSO), 49 Bay State Rd., Cambridge, MA 02138 (United States); Dumont, M.; Hambsch, F.-J.; Vandenbroere, J. [Groupe Europeen d' Observations Stellaires (GEOS), 23 Parc de Levesville, 28300 Bailleau l' Eveque (France); Hund, F. [Bundesdeutsche Arbeitsgemeinschaft fuer Veraenderliche Sterne e.V. (BAV), Munsterdamm 90, 12169 Berlin (Germany); Kugel, F. [Observatoire Chante-Perdrix, 04150 Banon (France); Vilalta, J. M. [Agrupacio Astronomica de Sabadell (AAS), Apartat de Correus, 50, 08200 Sabadell, Barcelona (Spain)

    2012-08-15

    We used the GEOS database to study the Blazhko effect of galactic RRab stars. The database is continuously enriched by maxima supplied by amateur astronomers and by a dedicated survey by means of the two TAROT robotic telescopes. The same value of the Blazhko period is observed at different values of the pulsation periods and different values of the Blazhko periods are observed at the same value of the pulsation period. There are clues suggesting that the Blazhko effect is changing from one cycle to the next. The secular changes in the pulsation and Blazhko periods of Z CVn are anticorrelated. The diagrams of magnitudes against phases of the maxima clearly show that the light curves of Blazhko variables can be explained as modulated signals, both in amplitude and in frequency. The closed curves describing the Blazhko cycles in such diagrams have different shapes, reflecting the phase shifts between the epochs of the brightest maximum and the maximum O - C. Our sample shows that both clockwise and counterclockwise directions are possible for similar shapes. The improved observational knowledge of the Blazhko effect, in addition to some peculiarities of the light curves, has yet to be explained by a satisfactory physical mechanism.

  5. THE TYPE Ia SUPERNOVA RATE IN RADIO AND INFRARED GALAXIES FROM THE CANADA-FRANCE-HAWAII TELESCOPE SUPERNOVA LEGACY SURVEY

    International Nuclear Information System (INIS)

    Graham, M. L.; Pritchet, C. J.; Balam, D.; Fabbro, S.; Sullivan, M.; Hook, I. M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.; Basa, S.; Carlberg, R. G.; Perrett, K.; Conley, A.; Fouchez, D.; Rich, J.

    2010-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ∼1-5 times the rate in all early-type galaxies, and that any enhancement is always ∼<2σ. Rates in these subsets are consistent with predictions of the two-component 'A+B' SN Ia rate model. Since infrared properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the 'A+B' model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data.

  6. THE ALLEN TELESCOPE ARRAY Pi GHz SKY SURVEY. III. THE ELAIS-N1, COMA, AND LOCKMAN HOLE FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Croft, Steve; Bower, Geoffrey C.; Whysong, David [Astronomy Department, University of California, Berkeley, B-20 Hearst Field Annex 3411, Berkeley, CA 94720 (United States)

    2013-01-10

    We present results from a total of 459 repeated 3.1 GHz radio continuum observations (of which 379 were used in a search for transient sources) of the ELAIS-N1, Coma, Lockman Hole, and NOAO Deep Wide Field Survey fields as part of the Pi GHz Sky Survey. The observations were taken approximately once per day between 2009 May and 2011 April. Each image covers 11.8 square degrees and has 100'' FWHM resolution. Deep images for each of the four fields have rms noise between 180 and 310 {mu}Jy, and the corresponding catalogs contain {approx}200 sources in each field. Typically 40-50 of these sources are detected in each single-epoch image. This represents one of the shortest cadence, largest area, multi-epoch surveys undertaken at these frequencies. We compare the catalogs generated from the combined images to those from individual epochs, and from monthly averages, as well as to legacy surveys. We undertake a search for transients, with particular emphasis on excluding false positive sources. We find no confirmed transients, defined here as sources that can be shown to have varied by at least a factor of 10. However, we find one source that brightened in a single-epoch image to at least six times the upper limit from the corresponding deep image. We also find a source associated with a z = 0.6 quasar which appears to have brightened by a factor {approx}3 in one of our deep images, when compared to catalogs from legacy surveys. We place new upper limits on the number of transients brighter than 10 mJy: fewer than 0.08 transients deg{sup -2} with characteristic timescales of months to years; fewer than 0.02 deg{sup -2} with timescales of months; and fewer than 0.009 deg{sup -2} with timescales of days. We also plot upper limits as a function of flux density for transients on the same timescales.

  7. WHITE DWARF-RED DWARF SYSTEMS RESOLVED WITH THE HUBBLE SPACE TELESCOPE. II. FULL SNAPSHOT SURVEY RESULTS

    International Nuclear Information System (INIS)

    Farihi, J.; Hoard, D. W.; Wachter, S.

    2010-01-01

    Results are presented for a Hubble Space Telescope Advanced Camera for Surveys high-resolution imaging campaign of 90 white dwarfs with known or suspected low-mass stellar and substellar companions. Of the 72 targets that remain candidate and confirmed white dwarfs with near-infrared excess, 43 are spatially resolved into two or more components, and a total of 12 systems are potentially triples. For 68 systems where a comparison is possible, 50% have significant photometric distance mismatches between their white dwarf and M dwarf components, suggesting that white dwarf parameters derived spectroscopically are often biased due to the cool companion. Interestingly, 9 of the 30 binaries known to have emission lines are found to be visual pairs and hence widely separated, indicating an intrinsically active cool star and not irradiation from the white dwarf. There is a possible, slight deficit of earlier spectral types (bluer colors) among the spatially unresolved companions, exactly the opposite of expectations if significant mass is transferred to the companion during the common envelope phase. Using the best available distance estimates, the low-mass companions to white dwarfs exhibit a bimodal distribution in projected separation. This result supports the hypothesis that during the giant phases of the white dwarf progenitor, any unevolved companions either migrate inward to short periods of hours to days, or outward to periods of hundreds to thousands of years. No intermediate projected separations of a few to several AU are found among these pairs. However, a few double M dwarfs (within triples) are spatially resolved in this range, empirically demonstrating that such separations were readily detectable among the binaries with white dwarfs. A straightforward and testable prediction emerges: all spatially unresolved, low-mass stellar and substellar companions to white dwarfs should be in short-period orbits. This result has implications for substellar companion and

  8. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters - XII. The RGB bumps of multiple stellar populations

    Science.gov (United States)

    Lagioia, E. P.; Milone, A. P.; Marino, A. F.; Cassisi, S.; Aparicio, A. J.; Piotto, G.; Anderson, J.; Barbuy, B.; Bedin, L. R.; Bellini, A.; Brown, T.; D'Antona, F.; Nardiello, D.; Ortolani, S.; Pietrinferni, A.; Renzini, A.; Salaris, M.; Sarajedini, A.; van der Marel, R.; Vesperini, E.

    2018-04-01

    The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters is providing a major breakthrough in our knowledge of globular clusters (GCs) and their stellar populations. Among the main results, we discovered that all the studied GCs host two main discrete groups consisting of first generation (1G) and second generation (2G) stars. We exploit the multiwavelength photometry from this project to investigate, for the first time, the Red Giant Branch Bump (RGBB) of the two generations in a large sample of GCs. We identified, with high statistical significance, the RGBB of 1G and 2G stars in 26 GCs and found that their magnitude separation as a function of the filter wavelength follows comparable trends. The comparison of observations to synthetic spectra reveals that the RGBB luminosity depends on the stellar chemical composition and that the 2G RGBB is consistent with stars enhanced in He and N and depleted in C and O with respect to 1G stars. For metal-poor GCs the 1G and 2G RGBB relative luminosity in optical bands mostly depends on helium content, Y. We used the RGBB observations in F606W and F814W bands to infer the relative helium abundance of 1G and 2G stars in 18 GCs, finding an average helium enhancement ΔY = 0.011 ± 0.002 of 2G stars with respect to 1G stars. This is the first determination of the average difference in helium abundance of multiple populations in a large number of clusters and provides a lower limit to the maximum internal variation of helium in GCs.

  9. THE SPACE DENSITY EVOLUTION OF WET AND DRY MERGERS IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    International Nuclear Information System (INIS)

    Chou, Richard C. Y.; Abraham, Roberto G.; Bridge, Carrie R.

    2011-01-01

    We analyze 1298 merging galaxies with redshifts up to z = 0.7 from the Canada-France-Hawaii Telescope Legacy Survey, taken from the catalog presented in the work of Bridge et al. By analyzing the internal colors of these systems, we show that the so-called wet and dry mergers evolve in different senses, and quantify the space densities of these systems. The local space density of wet mergers is essentially identical to the local space density of dry mergers. The evolution in the total merger rate is modest out to z ∼ 0.7, although the wet and dry populations have different evolutionary trends. At higher redshifts, dry mergers make a smaller contribution to the total merging galaxy population, but this is offset by a roughly equivalent increase in the contribution from wet mergers. By comparing the mass density function of early-type galaxies to the corresponding mass density function for merging systems, we show that not all the major mergers with the highest masses (M stellar >10 11 M sun ) will end up with the most massive early-type galaxies, unless the merging timescale is dramatically longer than that usually assumed. On the other hand, the usually assumed merging timescale of ∼0.5-1 Gyr is quite consistent with the data if we suppose that only less massive early-type galaxies form via mergers. Since low-intermediate-mass ellipticals are 10-100 times more common than their most massive counterparts, the hierarchical explanation for the origin of early-type galaxies may be correct for the vast majority of early types, even if incorrect for the most massive ones.

  10. THE EXTENDED HUBBLE SPACE TELESCOPE SUPERNOVA SURVEY: THE RATE OF CORE COLLAPSE SUPERNOVAE TO z {approx} 1

    Energy Technology Data Exchange (ETDEWEB)

    Dahlen, Tomas; Riess, Adam G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Strolger, Louis-Gregory [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States); Mattila, Seppo; Kankare, Erkki [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Mobasher, Bahram, E-mail: dahlen@stsci.edu [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

    2012-09-20

    We use a sample of 45 core collapse supernovae detected with the Advanced Camera for Surveys on board the Hubble Space Telescope to derive the core collapse supernova rate in the redshift range 0.1 < z < 1.3. In redshift bins centered on (z) = 0.39, (z) = 0.73, and (z) = 1.11, we find rates of 3.00{sup +1.28}{sub -0.94} {sup +1.04}{sub -0.57}, 7.39{sup +1.86}{sub -1.52} {sup +3.20}{sub -1.60}, and 9.57{sup +3.76}{sub -2.80} {sup +4.96}{sub -2.80}, respectively, given in units of yr{sup -1} Mpc{sup -3} 10{sup -4} h {sup 3}{sub 70}. The rates have been corrected for host galaxy extinction, including supernovae missed in highly dust-enshrouded environments in infrared bright galaxies. The first errors are statistical while the second ones are the estimated systematic errors. We perform a detailed discussion of possible sources of systematic errors and note that these start to dominate over statistical errors at z > 0.5, emphasizing the need to better control the systematic effects. For example, a better understanding of the amount of dust extinction in the host galaxies and knowledge of the supernova luminosity function, in particular the fraction of faint M {approx}> -15 supernovae, is needed to better constrain the rates. When comparing our results with the core collapse supernova rate based on the star formation rate, we find a good agreement, consistent with the supernova rate following the star formation rate, as expected.

  11. Liverpool Telescope and Liverpool Telescope 2

    Science.gov (United States)

    Copperwheat, C. M.; Steele, I. A.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Jermak, H.; Marchant, J. M.; Mottram, C. J.; Piascik, A.; Smith, R. J.

    2016-12-01

    The Liverpool Telescope is a fully robotic optical/near-infrared telescope with a 2-metre clear aperture, located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope is owned and operated by Liverpool John Moores University, with financial support from the UK's Science and Technology Facilities Council. The telescope began routine science operations in 2004 and is a common-user facility with time available through a variety of committees via an open, peer reviewed process. Seven simultaneously mounted instruments support a broad science programme, with a focus on transient follow-up and other time domain topics well suited to the characteristics of robotic observing. Development has also begun on a successor facility, with the working title `Liverpool Telescope 2', to capitalise on the new era of time domain astronomy which will be brought about by the next generation of survey facilities such as LSST. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time. In this paper we provide an overview of the current status of both facilities.

  12. The South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  13. The Herschel–ATLAS Data Release 2, Paper I. Submillimeter and Far-infrared Images of the South and North Galactic Poles: The Largest Herschel Survey of the Extragalactic Sky

    Science.gov (United States)

    Smith, Matthew W. L.; Ibar, Edo; Maddox, Steve J.; Valiante, Elisabetta; Dunne, Loretta; Eales, Stephen; Dye, Simon; Furlanetto, Christina; Bourne, Nathan; Cigan, Phil; Ivison, Rob J.; Gomez, Haley; Smith, Daniel J. B.; Viaene, Sébastien

    2017-12-01

    We present the largest submillimeter images that have been made of the extragalactic sky. The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) is a survey of 660 deg2 with the PACS and SPIRE cameras in five photometric bands: 100, 160, 250, 350, and 500 μm. In this paper we present the images from our two largest fields, which account for ∼75% of the survey. The first field is 180.1 deg2 in size, centered on the north Galactic pole (NGP), and the second is 317.6 deg2 in size, centered on the south Galactic pole. The NGP field serendipitously contains the Coma cluster. Over most (∼80%) of the images, the pixel noise, including both instrumental noise and confusion noise, is approximately 3.6, and 3.5 mJy pix‑1 at 100 and 160 μm, and 11.0, 11.1 and 12.3 mJy beam‑1 at 250, 350 and 500 μm, respectively, but reaches lower values in some parts of the images. If a matched filter is applied to optimize point-source detection, our total 1σ map sensitivity is 5.7, 6.0, and 7.3 mJy at 250, 350, and 500 μm, respectively. We describe the results of an investigation of the noise properties of the images. We make the most precise estimate of confusion in SPIRE maps to date, finding values of 3.12 ± 0.07, 4.13 ± 0.02, and 4.45 ± 0.04 mJy beam‑1 at 250, 350, and 500 μm in our un-convolved maps. For PACS we find an estimate of the confusion noise in our fast-parallel observations of 4.23 and 4.62 mJy beam‑1 at 100 and 160 μm. Finally, we give recipes for using these images to carry out photometry, both for unresolved and extended sources.

  14. THE GREEN BANK TELESCOPE 350 MHz DRIFT-SCAN SURVEY II: DATA ANALYSIS AND THE TIMING OF 10 NEW PULSARS, INCLUDING A RELATIVISTIC BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Ryan S.; Kaspi, Victoria M.; Archibald, Anne M.; Karako-Argaman, Chen [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Boyles, Jason; Lorimer, Duncan R.; McLaughlin, Maura A.; Cardoso, Rogerio F. [Department of Physics, West Virginia University, 111 White Hall, Morgantown, WV 26506 (United States); Ransom, Scott M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stairs, Ingrid H.; Berndsen, Aaron; Cherry, Angus; McPhee, Christie A. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Hessels, Jason W. T.; Kondratiev, Vladislav I.; Van Leeuwen, Joeri [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Epstein, Courtney R. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Pennucci, Tim [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Roberts, Mallory S. E. [Eureka Scientific Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602 (United States); Stovall, Kevin, E-mail: rlynch@physics.mcgill.ca [Center for Advanced Radio Astronomy and Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States)

    2013-02-15

    We have completed a 350 MHz Drift-scan Survey using the Robert C. Byrd Green Bank Telescope with the goal of finding new radio pulsars, especially millisecond pulsars that can be timed to high precision. This survey covered {approx}10,300 deg{sup 2} and all of the data have now been fully processed. We have discovered a total of 31 new pulsars, 7 of which are recycled pulsars. A companion paper by Boyles et al. describes the survey strategy, sky coverage, and instrumental setup, and presents timing solutions for the first 13 pulsars. Here we describe the data analysis pipeline, survey sensitivity, and follow-up observations of new pulsars, and present timing solutions for 10 other pulsars. We highlight several sources-two interesting nulling pulsars, an isolated millisecond pulsar with a measurement of proper motion, and a partially recycled pulsar, PSR J0348+0432, which has a white dwarf companion in a relativistic orbit. PSR J0348+0432 will enable unprecedented tests of theories of gravity.

  15. A precursive study of the time-domain survey of the Galactic Anti-center using the Nanshan 1-meter telescope with variable stars detected

    Science.gov (United States)

    Ma, Shu-Guo; Esamdin, Ali; Ma, Lu; Niu, Hu-Biao; Fu, Jian-Ning; Zhang, Yu; Liu, Jin-Zhong; Yang, Tao-Zhi; Song, Fang-Fang; Pu, Guang-Xin

    2018-04-01

    Following the LAMOST Spectroscopic Survey and the Xuyi's Photometric Survey of the Galactic Anti-center, we plan to carry out a time-domain survey of the Galactic Anti-center (TDS-GAC) to study variable stars by using the Nanshan 1-meter telescope. Before the beginning of TDS-GAC, a precursive sky survey (PSS) has been executed. The goal of the PSS is to optimize the observation strategy of TDS-GAC and to detect some strong transient events, as well as to find some short time-scale variable stars of different types. By observing a discontinuous sky area of 15.03 deg2 with the standard Johnson-Cousin-Bessel V filter, 48 variable stars are found and the time series are analyzed. Based on the behaviors of the light curves, 28 eclipsing binary stars, 10 RR Lyraes, 3 periodic pulsating variables of other types have been classified. The rest 7 variables stay unclassified with deficient data. In addition, the observation strategy of TD-GAC is described, and the pipeline of data reduction is tested.

  16. Radio telescope control

    CERN Document Server

    Schraml, J

    1972-01-01

    An on-line computer control process developed for the 100-m radio telescope of the Max-Planck-Institut fur Radioastronomie in Bonn is described. The instrument is the largest fully steerable antenna in the world. Its operation started on May 31st 1972. It is controlled by a Ferranti Argus 500 on-line computer. The first part of the paper deals with the process itself, the radio telescope and its operation, and the demands resulting for the control program. The second part briefly describes the computer and its hardware. The final part introduces the architecture of the executive program in general, which has been tailored to meet the demands of the process and the hardware. The communication between the observer and the system, the format of data on magnetic tape and an on-line reduction of position measurements are considered. (0 refs).

  17. Monster telescope hunts blue planets

    CERN Multimedia

    Leake, J

    2003-01-01

    BRITAIN is to back a project to build the world's biggest telescope - so powerful that it could see life-bearing planets in other solar systems. It will need the largest mirror ever built at about 100 metres in diameter (1/2 page).

  18. The Low-Resolution Spectrograph of the Hobby-Eberly Telescope. II. Observations of Quasar Candidates from the Sloan Digital Sky Survey

    International Nuclear Information System (INIS)

    Schneider, D. P.; Hill, Gary J.; Fan, X.; Ramsey, L. W.; MacQueen, P. J.; Weedman, D. W.; Booth, J. A.; Eracleous, M.; Gunn, J. E.; Lupton, R. H.

    2000-01-01

    This paper describes spectra of quasar candidates acquired during the commissioning phase of the Low-Resolution Spectrograph of the Hobby-Eberly Telescope. The objects were identified as possible quasars from multicolor image data from the Sloan Digital Sky Survey. The 10 sources had typical r' magnitudes of 19-20, except for one extremely red object with r ' ≅23. The data, obtained with exposure times between 10 and 25 minutes, reveal that the spectra of four candidates are essentially featureless and are not quasars, five are quasars with redshifts between 2.92 and 4.15 (including one broad absorption line quasar), and the red source is a very late M star or early L dwarf. (c) (c) 2000. The Astronomical Society of the Pacific

  19. The Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) Quasar Survey: Quasar Properties from Data Release Two and Three

    Science.gov (United States)

    Dong, X. Y.; Wu, Xue-Bing; Ai, Y. L.; Yang, J. Y.; Yang, Q.; Wang, F.; Zhang, Y. X.; Luo, A. L.; Xu, H.; Yuan, H. L.; Zhang, J. N.; Wang, M. X.; Wang, L. L.; Li, Y. B.; Zuo, F.; Hou, W.; Guo, Y. X.; Kong, X.; Chen, X. Y.; Wu, Y.; Yang, H. F.; Yang, M.

    2018-05-01

    This is the second installment for the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) Quasar Survey, which includes quasars observed from 2013 September to 2015 June. There are 9024 confirmed quasars in DR2 and 10911 in DR3. After cross-match with the Sloan Digital Sky Survey (SDSS) quasar catalogs and NED, 12126 quasars are discovered independently. Among them, 2225 quasars were released by SDSS DR12 QSO catalog in 2014 after we finalized the survey candidates. 1801 sources were identified by SDSS DR14 as QSOs. The remaining 8100 quasars are considered as newly founded, and among them, 6887 quasars can be given reliable emission line measurements and the estimated black hole masses. Quasars found in LAMOST are mostly located at low-to-moderate redshifts, with a mean value of 1.5. The highest redshift observed in DR2 and DR3 is 5. We applied emission line measurements to Hα, Hβ, Mg II, and C IV. We deduced the monochromatic continuum luminosities using photometry data, and estimated the virial black hole masses for the newly discovered quasars. Results are compiled into a quasar catalog, which will be available online.

  20. Largest particle detector nearing completion

    CERN Multimedia

    2006-01-01

    "Construction of another part of the Large Hadron Collider (LHC), the worl's largest particle accelerator at CERN in Switzerland, is nearing completion. The Compact Muon Solenoid (CMS) is oner of the LHC project's four large particle detectors. (1/2 page)

  1. The Atacama Cosmology Telescope: Sunyaev-Zel'dovich-Selected Galaxy Clusters AT 148 GHz in the 2008 Survey

    Science.gov (United States)

    Marriage, Tobias A.; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard; Brown, Ben; hide

    2011-01-01

    We report on 23 clusters detected blindly as Sunyaev-Zel'dovich (SZ) decrements in a 148 GHz, 455 deg (exp 2) map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL 10102-4915, with a redshift of 0.75 (photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure, The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6 x 10(exp 14) solar masses referenced to the cluster volume characterized by 500 times the critical density. The Compton gamma-X-ray luminosity mass comparison for the 11 best-detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws,

  2. Brown dwarf photospheres are patchy: A Hubble space telescope near-infrared spectroscopic survey finds frequent low-level variability

    International Nuclear Information System (INIS)

    Buenzli, Esther; Apai, Dániel; Radigan, Jacqueline; Reid, I. Neill; Flateau, Davin

    2014-01-01

    Condensate clouds strongly impact the spectra of brown dwarfs and exoplanets. Recent discoveries of variable L/T transition dwarfs argued for patchy clouds in at least some ultracool atmospheres. This study aims to measure the frequency and level of spectral variability in brown dwarfs and to search for correlations with spectral type. We used Hubble Space Telescope/Wide Field Camera 3 to obtain spectroscopic time series for 22 brown dwarfs of spectral types ranging from L5 to T6 at 1.1-1.7 μm for ≈40 minutes per object. Using Bayesian analysis, we find six brown dwarfs with confident (p > 95%) variability in the relative flux in at least one wavelength region at sub-percent precision, and five brown dwarfs with tentative (p > 68%) variability. We derive a minimum variability fraction f min =27 −7 +11 % over all covered spectral types. The fraction of variables is equal within errors for mid-L, late-L, and mid-T spectral types; for early-T dwarfs we do not find any confident variable but the sample is too small to derive meaningful limits. For some objects, the variability occurs primarily in the flux peak in the J or H band, others are variable throughout the spectrum or only in specific absorption regions. Four sources may have broadband peak-to-peak amplitudes exceeding 1%. Our measurements are not sensitive to very long periods, inclinations near pole-on and rotationally symmetric heterogeneity. The detection statistics are consistent with most brown dwarf photospheres being patchy. While multiple-percent near-infrared variability may be rare and confined to the L/T transition, low-level heterogeneities are a frequent characteristic of brown dwarf atmospheres.

  3. Astronomer's new guide to the galaxy: largest map of cold dust revealed

    Science.gov (United States)

    2009-07-01

    Astronomers have unveiled an unprecedented new atlas of the inner regions of the Milky Way, our home galaxy, peppered with thousands of previously undiscovered dense knots of cold cosmic dust -- the potential birthplaces of new stars. Made using observations from the APEX telescope in Chile, this survey is the largest map of cold dust so far, and will prove an invaluable map for observations made with the forthcoming ALMA telescope, as well as the recently launched ESA Herschel space telescope. ESO PR Photo 24a/09 View of the Galactic Plane from the ATLASGAL survey (annotated and in five sections) ESO PR Photo 24b/09 View of the Galactic Plane from the ATLASGAL survey (annotated) ESO PR Photo 24c/09 View of the Galactic Plane from the ATLASGAL survey (in five sections) ESO PR Photo 24d/09 View of the Galactic Plane from the ATLASGAL survey ESO PR Photo 24e/09 The Galactic Centre and Sagittarius B2 ESO PR Photo 24f/09 The NGC 6357 and NGC 6334 nebulae ESO PR Photo 24g/09 The RCW120 nebula ESO PR Video 24a/09 Annotated pan as seen by the ATLASGAL survey This new guide for astronomers, known as the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) shows the Milky Way in submillimetre-wavelength light (between infrared light and radio waves [1]). Images of the cosmos at these wavelengths are vital for studying the birthplaces of new stars and the structure of the crowded galactic core. "ATLASGAL gives us a new look at the Milky Way. Not only will it help us investigate how massive stars form, but it will also give us an overview of the larger-scale structure of our galaxy", said Frederic Schuller from the Max Planck Institute for Radio Astronomy, leader of the ATLASGAL team. The area of the new submillimetre map is approximately 95 square degrees, covering a very long and narrow strip along the galactic plane two degrees wide (four times the width of the full Moon) and over 40 degrees long. The 16 000 pixel-long map was made with the LABOCA submillimetre

  4. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey

    Energy Technology Data Exchange (ETDEWEB)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; der Linden, A. von; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.

    2017-10-14

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z(median) = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z) M-500c/10(14)M(circle dot)) = A + 1.5ln (kT/7.2 keV) to A = 1.81(-0.14)(+0.24)(stat.)+/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c(200c) = 5.6(-1.8)(+3.7).

  5. Cluster mass calibration at high redshift: HST weak lensing analysis of 13 distant galaxy clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    Science.gov (United States)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; von der Linden, A.; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.

    2018-02-01

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (zmedian = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z)M500c/1014 M⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81^{+0.24}_{-0.14}(stat.) {± } 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  6. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. VII. IMPLICATIONS FROM THE NEARLY UNIVERSAL NATURE OF HORIZONTAL BRANCH DISCONTINUITIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T. M.; Bellini, A.; Anderson, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cassisi, S.; Pietrinferni, A. [INAF-Osservatorio Astronomico di Teramo, Via Mentore Maggini s.n.c., I-64100 Teramo (Italy); D’Antona, F. [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Salaris, M. [Astrophysics Research Institute,Liverpool John Moores University, Liverpool Science Park, IC2 Building, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Milone, A. P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT, 2611 (Australia); Dalessandro, E. [Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Piotto, G.; Ortolani, S.; Nardiello, D. [Dipartimento di Fisica e Astronomia “Galileo Galilei,”Università di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Renzini, A.; Bedin, L. R. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Sweigart, A. V. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sarajedini, A. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Aparicio, A., E-mail: tbrown@stsci.edu, E-mail: jayander@stsci, E-mail: bellini@stsci.edu, E-mail: cassisi@oa-teramo.inaf.it, E-mail: pietrinferni@oa-teramo.inaf.it, E-mail: dantona@oa-roma.inaf.it, E-mail: M.Salaris@ljmu.ac.uk, E-mail: milone@mso.anu.edu.au [Instituto de Astrofísica de Canarias. Calle Vía Láctea s/n. E38200 — La Laguna, Tenerife, Canary Islands (Spain)

    2016-05-01

    The UV-initiative Hubble Space Telescope Treasury survey of Galactic globular clusters provides a new window into the phenomena that shape the morphological features of the horizontal branch (HB). Using this large and homogeneous catalog of UV and blue photometry, we demonstrate that the HB exhibits discontinuities that are remarkably consistent in color (effective temperature). This consistency is apparent even among some of the most massive clusters hosting multiple distinct sub-populations (such as NGC 2808, ω Cen, and NGC 6715), demonstrating that these phenomena are primarily driven by atmospheric physics that is independent of the underlying population properties. However, inconsistencies arise in the metal-rich clusters NGC 6388 and NGC 6441, where the discontinuity within the blue HB (BHB) distribution shifts ∼1000–2000 K hotter. We demonstrate that this shift is likely due to a large helium enhancement in the BHB stars of these clusters, which in turn affects the surface convection and evolution of such stars. Our survey also increases the number of Galactic globular clusters known to host blue-hook stars (also known as late hot flashers) from 6 to 23 clusters. These clusters are biased toward the bright end of the globular cluster luminosity function, confirming that blue-hook stars tend to form in the most massive clusters with significant self-enrichment.

  7. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    Science.gov (United States)

    Adamo, A.; Ryon, J. E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D. O.; Calzetti, D.; Lee, J. C.; Whitmore, B. C.; Elmegreen, B. G.; Ubeda, L.; Smith, L. J.; Bright, S. N.; Runnholm, A.; Andrews, J. E.; Fumagalli, M.; Gouliermis, D. A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T. M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G. C.; Dale, D. A.; de Mink, S. E.; Dobbs, C.; Elmegreen, D. M.; Evans, A. S.; Gallagher, J. S., III; Grebel, E. K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S. D.; Zackrisson, E.

    2017-06-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes ˜ -2 and a truncation of a few times 105 {M}⊙ . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104 {M}⊙ ) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  8. ESO Telescope Designer Raymond Wilson Wins Prestigious Kavli Award for Astrophysics

    Science.gov (United States)

    2010-06-01

    with four individual telescopes with 17.5 cm thick 8.2-metre mirrors. Active optics has contributed towards making the VLT the world's most successful ground-based observatory and will be an integral part of ESO's European Extremely Large Telescope (E-ELT) project. Active optics technology is also part of the twin 10-metre Keck telescopes, the Subaru telescope's 8.2-metre mirror and the two 8.1-metre Gemini telescopes. Co-prize winners Jerry Nelson and Roger Angel respectively pioneered the use of segmentation in telescope primary mirrors - as used on the Keck telescopes, and the development of lightweight mirrors with short focal ratios. A webcast from Oslo, Norway, announcing the prize winners is available at www.kavlifoundation.org and www.kavliprize.no. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  9. Neutrino Telescope

    International Nuclear Information System (INIS)

    Coelin Baldo, Milla

    2009-01-01

    The present volume contains the proceedings of the 13. International Workshop on 'Neutrino Telescope', 17. of the series 'Un altro modo di guardare il cielo', held in Venice at the 'Istituto Veneto di Scienze, Lettere ed Arti' from March 10 to March 13, 2009. This series started in Venice 21 years ago, in 1988, motivated by the growing interest in the exciting field of the neutrino physics and astrophysics, with the aim to bring together experimentalists and theorists and encourage discussion on the most recent results and to chart the direction of future researchers.

  10. Discovery of a z = 7.452 High Equivalent Width Lyα Emitter from the Hubble Space Telescope  Faint Infrared Grism Survey

    Science.gov (United States)

    Larson, Rebecca L.; Finkelstein, Steven L.; Pirzkal, Norbert; Ryan, Russell; Tilvi, Vithal; Malhotra, Sangeeta; Rhoads, James; Finkelstein, Keely; Jung, Intae; Christensen, Lise; Cimatti, Andrea; Ferreras, Ignacio; Grogin, Norman; Koekemoer, Anton M.; Hathi, Nimish; O’Connell, Robert; Östlin, Göran; Pasquali, Anna; Pharo, John; Rothberg, Barry; Windhorst, Rogier A.; The FIGS Team

    2018-05-01

    We present the results of an unbiased search for Lyα emission from continuum-selected 5.6 data set consists of 160 orbits of G102 slitless grism spectroscopy obtained with the Hubble Space Telescope(HST)/WFC3 as part of the Faint Infrared Grism Survey (FIGS; PI: Malhotra), which obtains deep slitless spectra of all sources in four fields, and was designed to minimize contamination in observations of previously identified high-redshift galaxy candidates. The FIGS data can potentially spectroscopically confirm the redshifts of galaxies, and as Lyα emission is resonantly scattered by neutral gas, FIGS can also constrain the ionization state of the intergalactic medium during the epoch of reionization. These data have sufficient depth to detect Lyα emission in this epoch, as Tilvi et al. have published the FIGS detection of previously known Lyα emission at z = 7.51. The FIGS data use five separate roll angles of HST to mitigate the contamination by nearby galaxies. We created a method that accounts for and removes the contamination from surrounding galaxies and also removes any dispersed continuum light from each individual spectrum. We searched for significant (>4σ) emission lines using two different automated detection methods, free of any visual inspection biases. Applying these methods on photometrically selected high-redshift candidates between 5.6 7 (140.3 ± 19.0 Å).

  11. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    Energy Technology Data Exchange (ETDEWEB)

    Schrabback, T.; et al.

    2016-11-11

    We present an HST/ACS weak gravitational lensing analysis of 13 massive high-redshift (z_median=0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on CANDELS data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the mass-concentration relation using simulations. In combination with temperature estimates from Chandra we constrain the normalisation of the mass-temperature scaling relation ln(E(z) M_500c/10^14 M_sun)=A+1.5 ln(kT/7.2keV) to A=1.81^{+0.24}_{-0.14}(stat.) +/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  12. Recent results from the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Van Elewyck, Véronique

    2014-01-01

    The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern Hemisphere. Its main scientific target is the detection of high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the diffuse neutrino flux. Its location allows for surveying a large part of the Galactic Plane, including the Galactic Centre. In addition to the standalone searches for point-like and diffuse high-energy neutrino signals, ANTARES has developed a range of multi-messenger strategies to exploit the close connection between neutrinos and other cosmic messengers such as gamma-rays, charged cosmic rays and gravitational waves. This contribution provides an overview of the recently conducted analyses, including a search for neutrinos from the Fermi bubbles region, searches for optical counterparts with the TAToO program, and searches for neutrinos in correlation with gamma-ray bursts, blazars, and microquasars. Further topics of investigation, covering e.g. the search for neutrinos from dark matter annihilation, searches for exotic particles and the measurement of neutrino oscillations, are also reviewed

  13. Fast Fourier transform telescope

    International Nuclear Information System (INIS)

    Tegmark, Max; Zaldarriaga, Matias

    2009-01-01

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog 2 N rather than N 2 ) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  14. Evidence for the Kinematic Sunyaev-Zel'dovich Effect with the Atacama Cosmology Telescope and Velocity Reconstruction from the Baryon Oscillation Spectroscopic Survey

    Science.gov (United States)

    Schaan, Emmanuel S.; Ferraro, Simone; Vargas-Magana, Mariana; Smith, Kendrick M.; Ho, Shirley; Aiola, Simone; Battaglia, Nicholas; Bond, J. Richard; De Bernardis, Francesco; Calabrese, Erminia; hide

    2016-01-01

    We use microwave temperature maps from two seasons of data from the Atacama Cosmology Telescope at 146 GHz, together with the "Constant Mass" CMASS galaxy sample from the Baryon Oscillation Spectroscopic Survey to measure the kinematic Sunyaev-Zel'dovich (kSZ) effect over the redshift range z1/4 0.4-0.7. We use galaxy positions and the continuity equation to obtain a reconstruction of the line-of-sight velocity field. We stack the microwave temperature at the location of each halo, weighted by the corresponding reconstructed velocity. We vary the size of the aperture photometry filter used, thus probing the free electron profile of these halos from within the virial radius out to three virial radii, on the scales relevant for investigating the missing baryons problem. The resulting best fit kSZ model is preferred over the no-kSZ hypothesis at 3.3 and 2.9 sigma for two independent velocity reconstruction methods, using 25,537 galaxies over 660 square degrees. The data suggest that the baryon profile is shallower than the dark matter in the inner regions of the halos probed here, potentially due to energy injection from active galactic nucleus or supernovae. Thus, by constraining the gas profile on a wide range of scales, this technique will be useful for understanding the role of feedback in galaxy groups and clusters. The effect of foregrounds that are uncorrelated with the galaxy velocities is expected to be well below our signal, and residual thermal Sunyaev-Zel'dovich contamination is controlled by masking the most massive clusters. Finally, we discuss the systematics involved in converting our measurement of the kSZ amplitude into the mean free electron fraction of the halos in our sample.

  15. Evidence for the kinematic Sunyaev-Zel'dovich effect with the Atacama Cosmology Telescope and velocity reconstruction from the Baryon Oscillation Spectroscopic Survey

    Science.gov (United States)

    Schaan, Emmanuel; Ferraro, Simone; Vargas-Magaña, Mariana; Smith, Kendrick M.; Ho, Shirley; Aiola, Simone; Battaglia, Nicholas; Bond, J. Richard; De Bernardis, Francesco; Calabrese, Erminia; Cho, Hsiao-Mei; Devlin, Mark J.; Dunkley, Joanna; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn; Hill, J. Colin; Hincks, Adam D.; Hlozek, Renée; Hubmayr, Johannes; Hughes, John P.; Irwin, Kent D.; Koopman, Brian; Kosowsky, Arthur; Li, Dale; Louis, Thibaut; Lungu, Marius; Madhavacheril, Mathew; Maurin, Loïc; McMahon, Jeffrey John; Moodley, Kavilan; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D.; Page, Lyman A.; Pappas, Christine G.; Partridge, Bruce; Schmitt, Benjamin L.; Sehgal, Neelima; Sherwin, Blake D.; Sievers, Jonathan L.; Spergel, David N.; Staggs, Suzanne T.; van Engelen, Alexander; Wollack, Edward J.; ACTPol Collaboration

    2016-04-01

    We use microwave temperature maps from two seasons of data from the Atacama Cosmology Telescope at 146 GHz, together with the "Constant Mass" CMASS galaxy sample from the Baryon Oscillation Spectroscopic Survey to measure the kinematic Sunyaev-Zel'dovich (kSZ) effect over the redshift range z =0.4 - 0.7 . We use galaxy positions and the continuity equation to obtain a reconstruction of the line-of-sight velocity field. We stack the microwave temperature at the location of each halo, weighted by the corresponding reconstructed velocity. We vary the size of the aperture photometry filter used, thus probing the free electron profile of these halos from within the virial radius out to three virial radii, on the scales relevant for investigating the missing baryons problem. The resulting best fit kSZ model is preferred over the no-kSZ hypothesis at 3.3 and 2.9 σ for two independent velocity reconstruction methods, using 25,537 galaxies over 660 square degrees. The data suggest that the baryon profile is shallower than the dark matter in the inner regions of the halos probed here, potentially due to energy injection from active galactic nucleus or supernovae. Thus, by constraining the gas profile on a wide range of scales, this technique will be useful for understanding the role of feedback in galaxy groups and clusters. The effect of foregrounds that are uncorrelated with the galaxy velocities is expected to be well below our signal, and residual thermal Sunyaev-Zel'dovich contamination is controlled by masking the most massive clusters. Finally, we discuss the systematics involved in converting our measurement of the kSZ amplitude into the mean free electron fraction of the halos in our sample.

  16. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters - XIV. Multiple stellar populations within M 15 and their radial distribution

    Science.gov (United States)

    Nardiello, D.; Milone, A. P.; Piotto, G.; Anderson, J.; Bedin, L. R.; Bellini, A.; Cassisi, S.; Libralato, M.; Marino, A. F.

    2018-06-01

    In the context of the Hubble Space Telescope UV Survey of Galactic globular clusters (GCs), we derived high-precision, multi-band photometry to investigate the multiple stellar populations in the massive and metal-poor GC M 15. By creating for red-giant branch (RGB) stars of the cluster a `chromosome map', which is a pseudo two-colour diagram made with appropriate combination of F275W, F336W, F438W, and F814W magnitudes, we revealed colour spreads around two of the three already known stellar populations. These spreads cannot be produced by photometric errors alone and could hide the existence of (two) additional populations. This discovery increases the complexity of the multiple-population phenomenon in M 15. Our analysis shows that M 15 exhibits a faint sub-giant branch (SGB), which is also detected in colour-magnitude diagrams (CMDs) made with optical magnitudes only. This poorly populated SGB includes about 5 per cent of the total number of SGB stars and evolves into a red RGB in the mF336W versus mF336W - mF814W CMD, suggesting that M 15 belongs to the class of Type II GCs. We measured the relative number of stars in each population at various radial distances from the cluster centre, showing that all of these populations share the same radial distribution within statistic uncertainties. These new findings are discussed in the context of the formation and evolution scenarios of the multiple populations.

  17. K2: A NEW METHOD FOR THE DETECTION OF GALAXY CLUSTERS BASED ON CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY MULTICOLOR IMAGES

    International Nuclear Information System (INIS)

    Thanjavur, Karun; Willis, Jon; Crampton, David

    2009-01-01

    We have developed a new method, K2, optimized for the detection of galaxy clusters in multicolor images. Based on the Red Sequence approach, K2 detects clusters using simultaneous enhancements in both colors and position. The detection significance is robustly determined through extensive Monte Carlo simulations and through comparison with available cluster catalogs based on two different optical methods, and also on X-ray data. K2 also provides quantitative estimates of the candidate clusters' richness and photometric redshifts. Initially, K2 was applied to the two color (gri) 161 deg 2 images of the Canada-France-Hawaii Telescope Legacy Survey Wide (CFHTLS-W) data. Our simulations show that the false detection rate for these data, at our selected threshold, is only ∼1%, and that the cluster catalogs are ∼80% complete up to a redshift of z = 0.6 for Fornax-like and richer clusters and to z ∼ 0.3 for poorer clusters. Based on the g-, r-, and i-band photometric catalogs of the Terapix T05 release, 35 clusters/deg 2 are detected, with 1-2 Fornax-like or richer clusters every 2 deg 2 . Catalogs containing data for 6144 galaxy clusters have been prepared, of which 239 are rich clusters. These clusters, especially the latter, are being searched for gravitational lenses-one of our chief motivations for cluster detection in CFHTLS. The K2 method can be easily extended to use additional color information and thus improve overall cluster detection to higher redshifts. The complete set of K2 cluster catalogs, along with the supplementary catalogs for the member galaxies, are available on request from the authors.

  18. THE SPITZER SPACE TELESCOPE SURVEY OF THE ORION A AND B MOLECULAR CLOUDS. II. THE SPATIAL DISTRIBUTION AND DEMOGRAPHICS OF DUSTY YOUNG STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Megeath, S. T.; Kryukova, E.; Gutermuth, R.; Muzerolle, J.; Hora, J. L.; Myers, P. C.; Fazio, G. G.; Allen, L. E.; Flaherty, K.; Hartmann, L.; Pipher, J. L.; Stauffer, J.; Young, E. T.

    2016-01-01

    We analyze the spatial distribution of dusty young stellar objects (YSOs) identified in the Spitzer Survey of the Orion Molecular clouds, augmenting these data with Chandra X-ray observations to correct for incompleteness in dense clustered regions. We also devise a scheme to correct for spatially varying incompleteness when X-ray data are not available. The local surface densities of the YSOs range from 1 pc −2 to over 10,000 pc −2 , with protostars tending to be in higher density regions. This range of densities is similar to other surveyed molecular clouds with clusters, but broader than clouds without clusters. By identifying clusters and groups as continuous regions with surface densities ≥10 pc −2 , we find that 59% of the YSOs are in the largest cluster, the Orion Nebula Cluster (ONC), while 13% of the YSOs are found in a distributed population. A lower fraction of protostars in the distributed population is evidence that it is somewhat older than the groups and clusters. An examination of the structural properties of the clusters and groups shows that the peak surface densities of the clusters increase approximately linearly with the number of members. Furthermore, all clusters with more than 70 members exhibit asymmetric and/or highly elongated structures. The ONC becomes azimuthally symmetric in the inner 0.1 pc, suggesting that the cluster is only ∼2 Myr in age. We find that the star formation efficiency (SFE) of the Orion B cloud is unusually low, and that the SFEs of individual groups and clusters are an order of magnitude higher than those of the clouds. Finally, we discuss the relationship between the young low mass stars in the Orion clouds and the Orion OB 1 association, and we determine upper limits to the fraction of disks that may be affected by UV radiation from OB stars or dynamical interactions in dense, clustered regions

  19. Origins Space Telescope

    Science.gov (United States)

    Cooray, Asantha; Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, our completed first mission concept and an introduction to the second concept that will be studied at the study center in 2018. This presentation will also summarize key science drivers and the key study milestones between 2018 and 2020.

  20. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN): Molecular clouds toward W 33; possible evidence for a cloud-cloud collision triggering O star formation

    Science.gov (United States)

    Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo

    2018-05-01

    We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R_3-2/1-0} > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.

  1. LSST telescope and site status

    Science.gov (United States)

    Gressler, William J.

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) Project1 received its construction authorization from the National Science Foundation in August 2014. The Telescope and Site (T and S) group has made considerable progress towards completion in subsystems required to support the scope of the LSST science mission. The LSST goal is to conduct a wide, fast, deep survey via a 3-mirror wide field of view optical design, a 3.2-Gpixel camera, and an automated data processing system. The summit facility is currently under construction on Cerro Pachón in Chile, with major vendor subsystem deliveries and integration planned over the next several years. This paper summarizes the status of the activities of the T and S group, tasked with design, analysis, and construction of the summit and base facilities and infrastructure necessary to control the survey, capture the light, and calibrate the data. All major telescope work package procurements have been awarded to vendors and are in varying stages of design and fabrication maturity and completion. The unique M1M3 primary/tertiary mirror polishing effort is completed and the mirror now resides in storage waiting future testing. Significant progress has been achieved on all the major telescope subsystems including the summit facility, telescope mount assembly, dome, hexapod and rotator systems, coating plant, base facility, and the calibration telescope. In parallel, in-house efforts including the software needed to control the observatory such as the scheduler and the active optics control, have also seen substantial advancement. The progress and status of these subsystems and future LSST plans during this construction phase are presented.

  2. Merz telescopes a global heritage worth preserving

    CERN Document Server

    2017-01-01

    This book comprises a fascinating collection of contributions on the Merz telescopes in Italy that collectively offer the first survey on historical large refracting telescopes in the country, drawing on original documents and photographs. It opens with a general introduction on the importance of Merz telescopes in the history of astronomy and analyses of the local and international contexts in which the telescopes were made. After examination of an example of the interaction between the maker and the astronomer in the construction and maintenance of these refractors, the history of the Merz telescopes at the main Italian observatories in the nineteenth century is described in detail. Expert testimony is also provided on how these telescopes were successfully used until the second half of the twentieth century for research purposes, thus proving their excellent optical qualities.

  3. A coded mask telescope for the Spacelab 2 mission

    International Nuclear Information System (INIS)

    Willmore, A.P.; Skinner, G.K.; Eyles, C.J.; Ramsey, B.

    1984-01-01

    A dual coded mask telescope for the Spacelab 2 mission is now in the final stages of preparation at Birmingham University. It is due for launch in late 1984/early 1985 and will be by far the largest and most sophisticated such instrument to be flown in this time-frame. The design and capabilities of the telescope will be described. (orig.)

  4. Toward sustainable harvesting of Africa's largest medicinal plant ...

    African Journals Online (AJOL)

    Global demand for treating prostate disorders with Prunus africana bark extract has made P. africana Africa's largest medicinal plant export. Unsustainable harvesting practices can lead to local extirpations of this multipurpose tree. Survey research targeting P. africana harvesters in a Tanzania forest reserve revealed that ...

  5. Kinematics and physical conditions of H I in nearby radio sources. The last survey of the old Westerbork Synthesis Radio Telescope

    NARCIS (Netherlands)

    Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.; Geréb, K.; Maddox, N.

    2017-01-01

    We present an analysis of the properties of neutral hydrogen (H I) in 248 nearby (0.02 30 mJy and for which optical spectroscopy is available. The observations were carried out with the Westerbork Synthesis Radio Telescope as the last large project before the

  6. The Brazilian smoker: a survey in the largest cities of Brazil Fatores associados ao hábito de fumar do brasileiro: um estudo nas maiores cidades do país

    Directory of Open Access Journals (Sweden)

    Emérita Sátiro Opaleye

    2012-03-01

    Full Text Available OBJECTIVE: To understand the sociodemographic factors associated with daily consumption of cigarettes and pattern of cigarette use among Brazilian smokers. METHOD: A cross-sectional study was performed in 2005 involving the 108 largest Brazilian cities. Data were collected through interviews with subjects aged 12 to 65 years in randomly selected households. Based on a questionnaire adapted to the Brazilian context, a logistic regression model was used to investigate the association between the sociodemographic characteristics of the sample and smoking. RESULTS: Of the 7,921 subjects interviewed, 16.4% reported daily use of cigarettes. The smoking prevalence was similar between genders, although women reported to start smoking at a later age and smoke fewer cigarettes per day. Almost 65% of the smokers were interested in quitting or reducing their smoking habit. The main sociodemographic characteristics associated with smoking were as follows: adult age (30-59 years old, unemployment, low education level, and low socioeconomic level. Alcohol abuse was also shown to be associated with smoking. CONCLUSIONS: Our findings suggest that adverse socioeconomic characteristics are implicated in increased susceptibility to smoking in Brazil. In our sample, a high proportion of smokers reported interest to quit or reduce smoking. These data suggest that sociodemographic factors should be considered in the elaboration of smoking prevention and treatment policies.OBJETIVO: Conhecer fatores sociodemográficos associados ao consumo diário de cigarros, bem como o padrão de uso de cigarros do tabagista brasileiro. MÉTODO: Estudo transversal realizado em 2005 nas 108 maiores cidades brasileiras através de entrevistas a indivíduos de 12 a 65 anos em domicílios sorteados por amostragem representativa. Com base em questionário adaptado para o contexto brasileiro, as características sociodemográficas foram investigadas em modelo de regressão logística para

  7. The SCUBA-2 Cosmology Legacy Survey: 850 μm maps, catalogues and number counts

    NARCIS (Netherlands)

    Geach, J. E.; Dunlop, J. S.; Halpern, M.; Smail, Ian; van der Werf, P.; Alexander, D. M.; Almaini, O.; Aretxaga, I.; Arumugam, V.; Asboth, V.; Banerji, M.; Beanlands, J.; Best, P. N.; Blain, A. W.; Birkinshaw, M.; Chapin, E. L.; Chapman, S. C.; Chen, C.-C.; Chrysostomou, A.; Clarke, C.; Clements, D. L.; Conselice, C.; Coppin, K. E. K.; Cowley, W. I.; Danielson, A. L. R.; Eales, S.; Edge, A. C.; Farrah, D.; Gibb, A.; Harrison, C. M.; Hine, N. K.; Hughes, D.; Ivison, R. J.; Jarvis, M.; Jenness, T.; Jones, S. F.; Karim, A.; Koprowski, M.; Knudsen, K. K.; Lacey, C. G.; Mackenzie, T.; Marsden, G.; McAlpine, K.; McMahon, R.; Meijerink, R.; Michałowski, M. J.; Oliver, S. J.; Page, M. J.; Peacock, J. A.; Rigopoulou, D.; Robson, E. I.; Roseboom, I.; Rotermund, K.; Scott, Douglas; Serjeant, S.; Simpson, C.; Simpson, J. M.; Smith, D. J. B.; Spaans, M.; Stanley, F.; Stevens, J. A.; Swinbank, A. M.; Targett, T.; Thomson, A. P.; Valiante, E.; Wake, D. A.; Webb, T. M. A.; Willott, C.; Zavala, J. A.; Zemcov, M.

    2017-01-01

    We present a catalogue of ˜3000 submillimetre sources detected (≥3.5σ) at 850 μm over ˜5 deg2 surveyed as part of the James Clerk Maxwell Telescope (JCMT) SCUBA-2 Cosmology Legacy Survey (S2CLS). This is the largest survey of its kind at 850 μm, increasing the sample size of 850 μm selected

  8. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. IV. OBSERVATIONS OF KEPLER, CoRoT, AND HIPPARCOS STARS FROM THE GEMINI NORTH TELESCOPE

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Howell, Steve B.; Everett, Mark E.; Ciardi, David R.

    2012-01-01

    We present the results of 71 speckle observations of binary and unresolved stars, most of which were observed with the DSSI speckle camera at the Gemini North Telescope in 2012 July. The main purpose of the run was to obtain diffraction-limited images of high-priority targets for the Kepler and CoRoT missions, but in addition, we observed a number of close binary stars where the resolution limit of Gemini was used to better determine orbital parameters and/or confirm results obtained at or below the diffraction limit of smaller telescopes. Five new binaries and one triple system were discovered, and first orbits are calculated for other two systems. Several systems are discussed in detail.

  9. Loy Yang A - Australia's largest privatisation

    International Nuclear Information System (INIS)

    Yenckin, C.

    1997-01-01

    The recent A$4,746 million privatisation of the 2000MW Loy Yang A power station and the Loy Yang coal mine by the Victorian Government is Australia's largest privatisation and one of 1997's largest project financing deals. (author)

  10. Virtual Telescope Alignment System

    Data.gov (United States)

    National Aeronautics and Space Administration — Next-generation space telescopes require two spacecraft to fly in a coordinated fashion in space forming a virtual telescope. Achieving and maintaining this precise...

  11. A molecular line survey toward the nearby galaxies NGC 1068, NGC 253, and IC 342 at 3 mm with the Nobeyama 45 m radio telescope: Impact of an AGN on 1 kpc scale molecular abundances

    Science.gov (United States)

    Nakajima, Taku; Takano, Shuro; Kohno, Kotaro; Harada, Nanase; Herbst, Eric

    2018-01-01

    It is important to investigate the relationships between the power sources and the chemical compositions of galaxies in order to understand the scenario of galaxy evolution. We carried out an unbiased molecular line survey towards active galactic nucleus (AGN) host galaxy NGC1068, and prototypical starburst galaxies, NGC 253 and IC 342, with the Nobeyama 45 m telescope in the 3 mm band. The advantage of this line survey is that the obtained spectra have the highest angular resolution ever obtained with single-dish telescopes. In particular, the beam size of this telescope is ˜15″-19″, which is able to separate spatially the nuclear molecular emission from that of the starburst ring (d ˜ 30″) in NGC 1068. We successfully detected approximately 23 molecular species in each galaxy, and calculated rotation temperatures and column densities. We estimate the molecular fractional abundances with respect to 13CO and CS molecules and compare them among three galaxies in order to investigate the chemical signatures of an AGN environment. As a result, we found clear trends in the abundances of molecules surrounding the AGN on a 1-kpc scale. HCN, H13CN, CN, 13CN, and HC3N are more abundant, and CH3CCH is deficient in NGC 1068 compared with the starburst galaxies. High abundances of HCN, H13CN, and HC3N suggest that the circumnuclear disk in NGC 1068 is in a high-temperature environment. The reason for the non-detection of CH3CCH is likely to be dissociation by high-energy radiation or less sublimation of a precursor of CH3CCH from grains.

  12. broken magnet highlights largest collider's engineering challenges

    CERN Multimedia

    Inman, Mason

    2007-01-01

    "Even at the world's soon-to-be largest particle accelerator - a device that promises to push the boundaries of physics - scientists need to be mindful of one of the most fundamental laws in the universe: Murphy's Law. (2 pages)

  13. Adaptive Optics Simulation for the World's Largest Telescope on Multicore Architectures with Multiple GPUs

    KAUST Repository

    Ltaief, Hatem; Gratadour, Damien; Charara, Ali; Gendron, Eric

    2016-01-01

    We present a high performance comprehensive implementation of a multi-object adaptive optics (MOAO) simulation on multicore architectures with hardware accelerators in the context of computational astronomy. This implementation will be used

  14. The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 AND 218 GHz from the 2008 Southern Survey

    Science.gov (United States)

    Das, Sudeep; Marriage, Tobias A.; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia A.; Bond, J. Richard; Brown, Ben; hide

    2010-01-01

    We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results dearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the ACDM cosmological model. At l > 3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8(sigma) level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.

  15. The ultraviolet telescope on the Astron satellite

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1987-01-01

    On 23 March 1983 in the USSR, the Astron astrophysical satellite, with the largest ultraviolet telescope (the UVT) in the world (main mirror diameter 80 cm) and a set of X-ray instruments on board was placed in a high-apogee orbit. The design of the ultraviolet telescope and the results of some of the observations carried out with it are described here. The X-ray instruments are discussed in a separate article. The ultraviolet telescope on the Astron astrophysical satellite is a result of the joint efforts of scientists and engineers at the Crimean Astrophysical Observatory (Academy of Sciences of the USSR), the Byurakan Astrophysical Observatory (Academy of Sciences of the Armenian USSR), and several industrial enterprises in our country. The Laboratoire d'Astronomie Spatiale (CNRS, Marseille, France) played a large role in building the spectrometer for the UVT

  16. Britain Approaches ESO about Installation of Major New Telescope at Paranal

    Science.gov (United States)

    2000-02-01

    The Executive Board of the UK Visible and Infrared Survey Telescope (VISTA) project announced today [1] that it is aiming at the installation of a new and powerful astronomical telescope at the ESO Paranal Observatory (Chile). This 4-metre telescope is a specialised wide-angle facility equipped with powerful cameras and efficient detectors that will enable it to obtain deep images of large sky areas in short time. These survey observations will be made in several wavebands in the optical and, in particular, the near-infrared region of the electromagnetic spectrum. VISTA will become the largest and most effective telescope of its type when it enters into operation in 2004. It is a project of a consortium of 18 UK universities [2]. Construction is expected to start in spring 2000. Funding of the project was announced in May 1999, as one of the first allocations from the "Joint Infrastructure Fund (JIF)", an initiative of the UK Government's Department of Trade and Industry, the Wellcome Trust, and the Higher Education Funding Council for England. ESO's Director General, Dr. Catherine Cesarsky , is very pleased with this decision. She received a mandate from the ESO Council in December 1999 to negotiate a contract with the UK Particle Physics and Astronomy Research Council (PPARC) , acting on behalf of the VISTA Executive Board, for the installation of VISTA at Paranal and now looks forward to settle the associated legal and operational details with her British counterparts at good pace. "The installation of VISTA at Paranal will be of great benefit to all European astronomers", she says. "The placement of a survey telescope of this size next to ESO's VLT, the world's largest optical telescope, opens a plethora of exciting opportunities for joint research projects. Deep observations with VISTA, especially in infrared wavebands, will provide a most valuable, first census of large regions of space. This will most certainly lead to the discoveries of many new and

  17. CERN tests largest superconducting solenoid magnet

    CERN Multimedia

    2006-01-01

    "CERN's Compacts Muon Solenoid (CMS) - the world's largest superconducting solenoid magnet - has reached full field in testing. The instrument is part of the proton-proton Large Hadron Collider (LHC) project, located in a giant subterranean chamber at Cessy on the Franco-Swiss border." (1 page)

  18. Parametric Cost Models for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  19. Parametric cost models for space telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtnay

    2017-11-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  20. Simulations of cm-wavelength Sunyaev-Zel'dovich galaxy cluster and point source blind sky surveys and predictions for the RT32/OCRA-f and the Hevelius 100-m radio telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lew, Bartosz; Kus, Andrzej [Toruń Centre for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87-100 Toruń (Poland); Birkinshaw, Mark [HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Wilkinson, Peter, E-mail: blew@astro.uni.torun.pl, E-mail: Mark.Birkinshaw@bristol.ac.uk, E-mail: peter.wilkinson@manchester.ac.uk, E-mail: ajk@astro.uni.torun.pl [Jodrell Bank Centre for Astrophysics, The University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom)

    2015-02-01

    We investigate the effectiveness of blind surveys for radio sources and galaxy cluster thermal Sunyaev-Zel'dovich effects (TSZEs) using the four-pair, beam-switched OCRA-f radiometer on the 32-m radio telescope in Poland. The predictions are based on mock maps that include the cosmic microwave background, TSZEs from hydrodynamical simulations of large scale structure formation, and unresolved radio sources. We validate the mock maps against observational data, and examine the limitations imposed by simplified physics. We estimate the effects of source clustering towards galaxy clusters from NVSS source counts around Planck-selected cluster candidates, and include appropriate correlations in our mock maps. The study allows us to quantify the effects of halo line-of-sight alignments, source confusion, and telescope angular resolution on the detections of TSZEs. We perform a similar analysis for the planned 100-m Hevelius radio telescope (RTH) equipped with a 49-beam radio camera and operating at frequencies up to 22 GHz.We find that RT32/OCRA-f will be suitable for small-field blind radio source surveys, and will detect 33{sup +17}{sub −11} new radio sources brighter than 0.87 mJy at 30 GHz in a 1 deg{sup 2} field at > 5σ CL during a one-year, non-continuous, observing campaign, taking account of Polish weather conditions. It is unlikely that any galaxy cluster will be detected at 3σ CL in such a survey. A 60-deg{sup 2} survey, with field coverage of 2{sup 2} beams per pixel, at 15 GHz with the RTH, would find <1.5 galaxy clusters per year brighter than 60 μJy (at 3σ CL), and would detect about 3.4 × 10{sup 4} point sources brighter than 1 mJy at 5σ CL, with confusion causing flux density errors ∼< 2% (20%) in 68% (95%) of the detected sources.A primary goal of the planned RTH will be a wide-area (π sr) radio source survey at 15 GHz. This survey will detect nearly 3 × 10{sup 5} radio sources at 5σ CL down to 1.3 mJy, and tens of galaxy

  1. A Hubble Space Telescope survey for novae in M87 - III. Are novae good standard candles 15 d after maximum brightness?

    Science.gov (United States)

    Shara, Michael M.; Doyle, Trisha F.; Pagnotta, Ashley; Garland, James T.; Lauer, Tod R.; Zurek, David; Baltz, Edward A.; Goerl, Ariel; Kovetz, Attay; Machac, Tamara; Madrid, Juan P.; Mikołajewska, Joanna; Neill, J. D.; Prialnik, Dina; Welch, D. L.; Yaron, Ofer

    2018-02-01

    Ten weeks of daily imaging of the giant elliptical galaxy M87 with the Hubble Space Telescope (HST) has yielded 41 nova light curves of unprecedented quality for extragalactic cataclysmic variables. We have recently used these light curves to demonstrate that the observational scatter in the so-called maximum-magnitude rate of decline (MMRD) relation for classical novae is so large as to render the nova-MMRD useless as a standard candle. Here, we demonstrate that a modified Buscombe-de Vaucouleurs hypothesis, namely that novae with decline times t2 > 10 d converge to nearly the same absolute magnitude about two weeks after maximum light in a giant elliptical galaxy, is supported by our M87 nova data. For 13 novae with daily sampled light curves, well determined times of maximum light in both the F606W and F814W filters, and decline times t2 > 10 d we find that M87 novae display M606W,15 = -6.37 ± 0.46 and M814W,15 = -6.11 ± 0.43. If very fast novae with decline times t2 < 10 d are excluded, the distances to novae in elliptical galaxies with stellar binary populations similar to those of M87 should be determinable with 1σ accuracies of ± 20 per cent with the above calibrations.

  2. Observing the Sun with Coronado telescopes telescopes

    CERN Document Server

    Pugh, Philip

    2007-01-01

    The Sun provides amateur astronomers with one of the few opportunities for daytime astronomy. In order to see the major features of our nearest star, special telescopes that have a very narrow visible bandwidth are essential. The bandwidth has to be as narrow as 1 A- 10-10 m (1 Angstrom) and centred on the absorption line of neutral hydrogen. This makes many major features of the Suna (TM)s chromosphere visible to the observer. Such narrow-band "Fabry-Perot etalon filters" are high technology, and until the introduction of the Coronado range of solar telescopes, were too expensive for amateur use. The entry-level Coronado telescope, the PST (Personal Solar Telescope) costs under 500. Solar prominences (vast columns of plasma, best seen at the edge of the solar disk), filaments, flares, sunspots, plage and active regions are all visible and can be imaged to produce spectacular solar photographs. Philip Pugh has assembled a team of contributors who show just how much solar work can be done with Coronado telesco...

  3. Ghost telescope and ghost Fourier telescope with thermal light

    International Nuclear Information System (INIS)

    Gong Wenlin; Han Shensheng

    2011-01-01

    As important observation tools, telescopes are very useful in remote observations. We report a proof-of-principle experimental demonstration of ghost telescope scheme and show that, by measuring the intensity correlation of two light fields and only changing the position of the detector in the reference path, ghost telescope and ghost Fourier telescope can be obtained even if a single-pixel detector is fixed in Fresnel region of the object. Differences between conventional telescope and ghost telescope are also discussed.

  4. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    NARCIS (Netherlands)

    Adamo, A.; Ryon, J.E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D.O.; Calzetti, D.; Lee, J.C.; Whitmore, B.C.; Elmegreen, B.G.; Ubeda, L.; Smith, L.J.; Bright, S.N.; Runnholm, A.; Andrews, J.E.; Fumagalli, M.; Gouliermis, D.A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T.M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G.C.; Dale, D.A.; de Mink, S.E.; Dobbs, C.; Elmegreen, D.M.; Evans, A.S.; Gallagher III, J.S.; Grebel, E.K.; Herrero, A.; Hunter, D.A.; Johnson, K.E.; Kennicutt, R.C.; Krumholz, M.R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M.W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S.D.; Zackrisson, E.

    2017-01-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify

  5. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS: THE INTERNAL KINEMATICS OF THE MULTIPLE STELLAR POPULATIONS IN NGC 2808

    International Nuclear Information System (INIS)

    Bellini, A.; Anderson, J.; Marel, R. P. van der; Vesperini, E.; Hong, J.; Piotto, G.; Milone, A. P.; Marino, A. F.; Bedin, L. R.; Renzini, A.; Cassisi, S.; D’Antona, F.

    2015-01-01

    Numerous observational studies have revealed the ubiquitous presence of multiple stellar populations in globular clusters and cast many difficult challenges for the study of the formation and dynamical history of these stellar systems. In this Letter we present the results of a study of the kinematic properties of multiple populations in NGC 2808 based on high-precision Hubble Space Telescope proper-motion measurements. In a recent study, Milone et al. identified five distinct populations (A–E) in NGC 2808. Populations D and E coincide with the helium-enhanced populations in the middle and the blue main sequences (mMS and bMS) previously discovered by Piotto et al.; populations A–C correspond to the redder main sequence that, in Piotto et al., was associated with the primordial stellar population. Our analysis shows that, in the outermost regions probed (between about 1.5 and 2 times the cluster half-light radius), the velocity distribution of populations D and E is radially anisotropic (the deviation from an isotropic distribution is significant at the ∼3.5σ level). Stars of populations D and E have a smaller tangential velocity dispersion than those of populations A–C, while no significant differences are found in the radial velocity dispersion. We present the results of a numerical simulation showing that the observed differences between the kinematics of these stellar populations are consistent with the expected kinematic fingerprint of the diffusion toward the cluster outer regions of stellar populations initially more centrally concentrated

  6. Hunting for Supermassive Black Holes in Nearby Galaxies With the Hobby-Eberly Telescope

    Science.gov (United States)

    van den Bosch, Remco C. E.; Gebhardt, Karl; Gültekin, Kayhan; Yıldırım, Akin; Walsh, Jonelle L.

    2015-05-01

    We have conducted an optical long-slit spectroscopic survey of 1022 galaxies using the 10 m Hobby-Eberly Telescope (HET) at McDonald Observatory. The main goal of the HET Massive Galaxy Survey (HETMGS) is to find nearby galaxies that are suitable for black hole mass measurements. In order to measure accurately the black hole mass, one should kinematically resolve the region where the black hole dominates the gravitational potential. For most galaxies, this region is much less than an arcsecond. Thus, black hole masses are best measured in nearby galaxies with telescopes that obtain high spatial resolution. The HETMGS focuses on those galaxies predicted to have the largest sphere-of-influence, based on published stellar velocity dispersions or the galaxy fundamental plane. To ensure coverage over galaxy types, the survey targets those galaxies across a face-on projection of the fundamental plane. We present the sample selection and resulting data products from the long-slit observations, including central stellar kinematics and emission line ratios. The full data set, including spectra and resolved kinematics, is available online. Additionally, we show that the current crop of black hole masses are highly biased toward dense galaxies and that especially large disks and low dispersion galaxies are under-represented. This survey provides the necessary groundwork for future systematic black hole mass measurement campaigns.

  7. HUNTING FOR SUPERMASSIVE BLACK HOLES IN NEARBY GALAXIES WITH THE HOBBY–EBERLY TELESCOPE

    International Nuclear Information System (INIS)

    Bosch, Remco C. E. van den; Yıldırım, Akin; Gebhardt, Karl; Walsh, Jonelle L.; Gültekin, Kayhan

    2015-01-01

    We have conducted an optical long-slit spectroscopic survey of 1022 galaxies using the 10 m Hobby–Eberly Telescope (HET) at McDonald Observatory. The main goal of the HET Massive Galaxy Survey (HETMGS) is to find nearby galaxies that are suitable for black hole mass measurements. In order to measure accurately the black hole mass, one should kinematically resolve the region where the black hole dominates the gravitational potential. For most galaxies, this region is much less than an arcsecond. Thus, black hole masses are best measured in nearby galaxies with telescopes that obtain high spatial resolution. The HETMGS focuses on those galaxies predicted to have the largest sphere-of-influence, based on published stellar velocity dispersions or the galaxy fundamental plane. To ensure coverage over galaxy types, the survey targets those galaxies across a face-on projection of the fundamental plane. We present the sample selection and resulting data products from the long-slit observations, including central stellar kinematics and emission line ratios. The full data set, including spectra and resolved kinematics, is available online. Additionally, we show that the current crop of black hole masses are highly biased toward dense galaxies and that especially large disks and low dispersion galaxies are under-represented. This survey provides the necessary groundwork for future systematic black hole mass measurement campaigns

  8. The large binocular telescope.

    Science.gov (United States)

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  9. Crash testing the largest experiment on Earth

    OpenAIRE

    Cauchi, Marija

    2015-01-01

    Under Europe lies a 27 km tunnel that is both the coldest and hottest place on Earth. The Large Hadron Collider (LHC) has already found out what gives mass to all the matter in the Universe. It is now trying to go even deeper into what makes up everything we see around us. Dr Marija Cauchi writes about her research that helped protect this atom smasher from itself. Photography by Jean Claude Vancell. http://www.um.edu.mt/think/crash-testing-the-largest-experiment-on-earth/

  10. Goddard Robotic Telescope (GRT)

    Data.gov (United States)

    National Aeronautics and Space Administration — Since it is not possible to predict when a Gamma-Ray Burst (GRB) occurs, the follow-up ground telescopes must be distributed as uniform as possible all over the...

  11. SCIENTIFIC EFFICIENCY OF GROUND-BASED TELESCOPES

    International Nuclear Information System (INIS)

    Abt, Helmut A.

    2012-01-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to 7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  12. Automatic Photoelectric Telescope Service

    International Nuclear Information System (INIS)

    Genet, R.M.; Boyd, L.J.; Kissell, K.E.; Crawford, D.L.; Hall, D.S.; BDM Corp., McLean, VA; Kitt Peak National Observatory, Tucson, AZ; Dyer Observatory, Nashville, TN)

    1987-01-01

    Automatic observatories have the potential of gathering sizable amounts of high-quality astronomical data at low cost. The Automatic Photoelectric Telescope Service (APT Service) has realized this potential and is routinely making photometric observations of a large number of variable stars. However, without observers to provide on-site monitoring, it was necessary to incorporate special quality checks into the operation of the APT Service at its multiple automatic telescope installation on Mount Hopkins. 18 references

  13. The world's largest LNG producer's next market

    International Nuclear Information System (INIS)

    Fuller, R.; Isworo Suharno; Simandjuntak, W.M.P.

    1996-01-01

    The development of the domestic gas market in Indonesia, the world's largest liquefied natural gas producing country, is described as part of the overall impact of the country's oil and gas production. The first large scale use of natural gas in Indonesia was established in 1968 when a fertiliser plant using gas as the feedstock was built. Ultimately, through increased yields, this has enabled Indonesia to be self-sufficient in rice and an exporter of fertiliser. Problems which stand in the way of further developments include: capital, though Pertamina and PGN are perceived as attractive for foreign investment; the lack of a regulatory framework for gas; geographical constraints, among them the fact that the gas deposits are remote from the largest population concentrations; lack of infrastructure. There are nevertheless plans for expansion and the provision of an integrated gas pipeline system. Pertamina, which has responsibility for all oil and gas developments, and PGN, whose primary role has been as a manufacturer and distributor of gas, are now working together in the coordination of all gas activities. (10 figures). (UK)

  14. Largest US oil and gas fields, August 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA's annual survey of oil and gas proved reserves. The series' objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series' approach is to integrate EIA's crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel

  15. Origins Space Telescope: Study Plan

    Science.gov (United States)

    Nayyeri, Hooshang; Cooray, Asantha; Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.

  16. The 3D-HST Survey: Hubble Space Telescope WFC3/G141 Grism Spectra, Redshifts, and Emission Line Measurements for ~ 100,000 Galaxies

    Science.gov (United States)

    Momcheva, Ivelina G.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.; Nelson, Erica J.; Fumagalli, Mattia; Maseda, Michael V.; Leja, Joel; Franx, Marijn; Rix, Hans-Walter; Bezanson, Rachel; Da Cunha, Elisabete; Dickey, Claire; Förster Schreiber, Natascha M.; Illingworth, Garth; Kriek, Mariska; Labbé, Ivo; Ulf Lange, Johannes; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G.; Price, Sedona; Tal, Tomer; Wake, David A.; van der Wel, Arjen; Wuyts, Stijn

    2016-08-01

    We present reduced data and data products from the 3D-HST survey, a 248-orbit HST Treasury program. The survey obtained WFC3 G141 grism spectroscopy in four of the five CANDELS fields: AEGIS, COSMOS, GOODS-S, and UDS, along with WFC3 H 140 imaging, parallel ACS G800L spectroscopy, and parallel I 814 imaging. In a previous paper, we presented photometric catalogs in these four fields and in GOODS-N, the fifth CANDELS field. Here we describe and present the WFC3 G141 spectroscopic data, again augmented with data from GO-1600 in GOODS-N (PI: B. Weiner). We developed software to automatically and optimally extract interlaced two-dimensional (2D) and one-dimensional (1D) spectra for all objects in the Skelton et al. (2014) photometric catalogs. The 2D spectra and the multi-band photometry were fit simultaneously to determine redshifts and emission line strengths, taking the morphology of the galaxies explicitly into account. The resulting catalog has redshifts and line strengths (where available) for 22,548 unique objects down to {{JH}}{IR}≤slant 24 (79,609 unique objects down to {{JH}}{IR}≤slant 26). Of these, 5459 galaxies are at z\\gt 1.5 and 9621 are at 0.7\\lt z\\lt 1.5, where Hα falls in the G141 wavelength coverage. The typical redshift error for {{JH}}{IR}≤slant 24 galaxies is {σ }z≈ 0.003× (1+z), I.e., one native WFC3 pixel. The 3σ limit for emission line fluxes of point sources is 2.1× {10}-17 erg s-1 cm-2. All 2D and 1D spectra, as well as redshifts, line fluxes, and other derived parameters, are publicly available.18

  17. VLTI First Fringes with Two Auxiliary Telescopes at Paranal

    Science.gov (United States)

    2005-03-01

    World's Largest Interferometer with Moving Optical Telescopes on Track Summary The Very Large Telescope Interferometer (VLTI) at Paranal Observatory has just seen another extension of its already impressive capabilities by combining interferometrically the light from two relocatable 1.8-m Auxiliary Telescopes. Following the installation of the first Auxiliary Telescope (AT) in January 2004 (see ESO PR 01/04), the second AT arrived at the VLT platform by the end of 2004. Shortly thereafter, during the night of February 2 to 3, 2005, the two high-tech telescopes teamed up and quickly succeeded in performing interferometric observations. This achievement heralds an era of new scientific discoveries. Both Auxiliary Telescopes will be offered from October 1, 2005 to the community of astronomers for routine observations, together with the MIDI instrument. By the end of 2006, Paranal will be home to four operational ATs that may be placed at 30 different positions and thus be combined in a very large number of ways ("baselines"). This will enable the VLTI to operate with enormous flexibility and, in particular, to obtain extremely detailed (sharp) images of celestial objects - ultimately with a resolution that corresponds to detecting an astronaut on the Moon. PR Photo 07a/05: Paranal Observing Platform with AT1 and AT2 PR Photo 07b/05: AT1 and AT2 with Open Domes PR Photo 07c/05: Evening at Paranal with AT1 and AT2 PR Photo 07d/05: AT1 and AT2 under the Southern Sky PR Photo 07e/05: First Fringes with AT1 and AT2 PR Video Clip 01/05: Two ATs at Paranal (Extract from ESO Newsreel 15) A Most Advanced Device ESO PR Video 01/05 ESO PR Video 01/05 Two Auxiliary Telescopes at Paranal [QuickTime: 160 x 120 pix - 37Mb - 4:30 min] [QuickTime: 320 x 240 pix - 64Mb - 4:30 min] ESO PR Photo 07a/05 ESO PR Photo 07a/05 [Preview - JPEG: 493 x400 pix - 44k] [Normal - JPEG: 985 x 800 pix - 727k] [HiRes - JPEG: 5000 x 4060 pix - 13.8M] Captions: ESO PR Video Clip 01/05 is an extract from

  18. Comparison of wavefront control algorithms and first results on the high-contrast imager for complex aperture telescopes (hicat) testbed

    Science.gov (United States)

    Leboulleux, L.; N'Diaye, M.; Mazoyer, J.; Pueyo, L.; Perrin, M.; Egron, S.; Choquet, E.; Sauvage, J.-F.; Fusco, T.; Soummer, R.

    2017-09-01

    The next generation of space telescopes for direct imaging and spectroscopy of exoplanets includes telescopes with a monolithic mirror, such as the Wide Field Infrared Survey Telescope (WFIRST) [1] and Large Ultra-Violet Optical Infrared (LUVOIR) telescopes with segmented primary mirror, like ATLAST [2, 3] or HDST [4].

  19. Production of the 4.1-m Zerodur mirror blank for the VISTA Telescope

    Science.gov (United States)

    Doehring, Thorsten; Jedamzik, Ralf; Wittmer, Volker; Thomas, Armin

    2004-09-01

    VISTA (Visible and Infrared Survey Telescope for Astronomy) is designed to be the world's largest wide field telescope. After finishing of the construction the telescope will be part of ESO and located in Chile close to the VLT observatory at Cerro Paranal. In November 2001 SCHOTT was selected by the VISTA project office at the Royal Observatory of Edinburgh to deliver the 4.1 m diameter primary mirror blank. The manufacturing of the mirror blank made from the zero expansion material Zerodur was challenging especially due to the f/1 design. Several tons of the glass ceramic material were removed during the grinding operation. A meniscus blank with a diameter of 4100 mm and a thickness of 171.5 mm was generated, having a large central hole of 1200 mm and an aspherical shape of the concave surface. Also the handling and turning operations needed special effort and were performed by a skilled team. This paper presents details and pictures of the corresponding production and inspection sequence at SCHOTT. The geometrical parameters were measured during manufacturing by help of a laser tracker system and the achieved parameters were compared with the initial technical specification. The final quality inspection verified the excellent quality of the mirror blank. The close co-operation between the astronomers and industry resulted in a project management without problems. In April 2003 the VISTA blank was delivered successfully within a ceremony dedicated to the anniversary of "100 years of astronomical mirror blanks from SCHOTT."

  20. Large fully retractable telescope enclosures still closable in strong wind

    Science.gov (United States)

    Bettonvil, Felix C. M.; Hammerschlag, Robert H.; Jägers, Aswin P. L.; Sliepen, Guus

    2008-07-01

    Two prototypes of fully retractable enclosures with diameters of 7 and 9 m have been built for the high-resolution solar telescopes DOT (Dutch Open Telescope) and GREGOR, both located at the Canary Islands. These enclosures protect the instruments for bad weather and are fully open when the telescopes are in operation. The telescopes and enclosures also operate in hard wind. The prototypes are based on tensioned membrane between movable but stiff bows, which fold together to a ring when opened. The height of the ring is small. The prototypes already survived several storms, with often snow and ice, without any damage, including hurricane Delta with wind speeds up to 68 m/s. The enclosures can still be closed and opened with wind speeds of 20 m/s without any problems or restrictions. The DOT successfully demonstrated the open, wind-flushing concept for astronomical telescopes. It is now widely recognized that also large future telescopes benefit from wind-flushing and retractable enclosures. These telescopes require enclosures with diameters of 30 m until roughly 100 m, the largest sizes for the ELTs (Extreme Large Telescopes), which will be built in the near future. We discuss developments and required technology for the realization of these large sizes.

  1. LOBSTER: new space x-ray telescopes

    Science.gov (United States)

    Hudec, R.; Sveda, L.; Pína, L.; Inneman, A.; Semencova, V.; Skulinova, M.

    2017-11-01

    The LOBSTER telescopes are based on the optical arrangement of the lobster eye. The main difference from classical X-ray space telescopes in wide use is the very large field of view while the use of optics results in higher efficiency if compared with detectors without optics. Recent innovative technologies have enabled to design, to develop and to test first prototypes. They will provide deep sensitive survey of the sky in X-rays for the first time which is essential for both long-term monitoring of celestial high-energy sources as well as in understanding transient phenomena. The technology is now ready for applications in space.

  2. DESTINY, The Dark Energy Space Telescope

    Science.gov (United States)

    Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod

    2007-01-01

    We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.

  3. Ambitious Survey Spots Stellar Nurseries

    Science.gov (United States)

    2010-08-01

    -dimensional geometry of the Magellanic system. Chris Evans from the VMC team adds: "The VISTA images will allow us to extend our studies beyond the inner regions of the Tarantula into the multitude of smaller stellar nurseries nearby, which also harbour a rich population of young and massive stars. Armed with the new, exquisite infrared images, we will be able to probe the cocoons in which massive stars are still forming today, while also looking at their interaction with older stars in the wider region." The wide-field image shows a host of different objects. The bright area above the centre is the Tarantula Nebula itself, with the RMC 136 cluster of massive stars in its core. To the left is the NGC 2100 star cluster. To the right is the tiny remnant of the supernova SN1987A (eso1032). Below the centre are a series of star-forming regions including NGC 2080 - nicknamed the "Ghost Head Nebula" - and the NGC 2083 star cluster. The VISTA Magellanic Cloud Survey is one of six huge near-infrared surveys of the southern sky that will take up most of the first five years of operations of VISTA. Notes [1] VISTA ― the Visible and Infrared Survey Telescope for Astronomy ― is the newest telescope at ESO's Paranal Observatory in northern Chile. VISTA is a survey telescope working at near-infrared wavelengths and is the world's largest survey telescope. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. The telescope is housed on the peak adjacent to the one hosting ESO's Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA has a main mirror that is 4.1 m across. In photographic terms it can be thought of as a 67-megapixel digital camera with a 13 000 mm f/3.25 mirror lens. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries

  4. Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2017-01-01

    ANTARES is currently the largest neutrino telescope operating in the NorthernHemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources.Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and arethus well-suited to detect neutrinos

  5. Telescopes and Techniques

    CERN Document Server

    Kitchin, C R

    2013-01-01

    Telescopes and Techniques has proved itself in its first two editions, having become probably one of the most widely used astronomy texts, both for amateur astronomers and astronomy and astrophysics undergraduates. Both earlier editions of the book were widely used for introductory practical astronomy courses in many universities. In this Third Edition the author guides the reader through the mathematics, physics and practical techniques needed to use today's telescopes (from the smaller models to the larger instruments installed in many colleges) and how to find objects in the sky. Most of the physics and engineering involved is described fully and requires little prior knowledge or experience. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the more advanced topics of photometry and spectroscopy are included, but mainly to enable ...

  6. Amateur Telescope Making

    Science.gov (United States)

    Tonkin, Stephen

    Many amateur astronomers make their own instruments, either because of financial considerations or because they are just interested. Amateur Telescope Making offers a variety of designs for telescopes, mounts and drives which are suitable for the home-constructor. The designs range from simple to advanced, but all are within the range of a moderately well-equipped home workshop. The book not only tells the reader what he can construct, but also what it is sensible to construct given what time is available commercially. Thus each chapter begins with reasons for undertaking the project, then looks at theoretical consideration before finishing with practical instructions and advice. An indication is given as to the skills required for the various projects. Appendices list reputable sources of (mail order) materials and components. The telescopes and mounts range from "shoestring" (very cheap) instruments to specialist devices that are unavailable commercially.

  7. Evolution of the Largest Mammalian Genome.

    Science.gov (United States)

    Evans, Ben J; Upham, Nathan S; Golding, Goeffrey B; Ojeda, Ricardo A; Ojeda, Agustina A

    2017-06-01

    The genome of the red vizcacha rat (Rodentia, Octodontidae, Tympanoctomys barrerae) is the largest of all mammals, and about double the size of their close relative, the mountain vizcacha rat Octomys mimax, even though the lineages that gave rise to these species diverged from each other only about 5 Ma. The mechanism for this rapid genome expansion is controversial, and hypothesized to be a consequence of whole genome duplication or accumulation of repetitive elements. To test these alternative but nonexclusive hypotheses, we gathered and evaluated evidence from whole transcriptome and whole genome sequences of T. barrerae and O. mimax. We recovered support for genome expansion due to accumulation of a diverse assemblage of repetitive elements, which represent about one half and one fifth of the genomes of T. barrerae and O. mimax, respectively, but we found no strong signal of whole genome duplication. In both species, repetitive sequences were rare in transcribed regions as compared with the rest of the genome, and mostly had no close match to annotated repetitive sequences from other rodents. These findings raise new questions about the genomic dynamics of these repetitive elements, their connection to widespread chromosomal fissions that occurred in the T. barrerae ancestor, and their fitness effects-including during the evolution of hypersaline dietary tolerance in T. barrerae. ©The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  9. Liverpool Telescope 2: beginning the design phase

    Science.gov (United States)

    Copperwheat, Christopher M.; Steele, Iain A.; Barnsley, Robert M.; Bates, Stuart D.; Bode, Mike F.; Clay, Neil R.; Collins, Chris A.; Jermak, Helen E.; Knapen, Johan H.; Marchant, Jon M.; Mottram, Chris J.; Piascik, Andrzej S.; Smith, Robert J.

    2016-07-01

    The Liverpool Telescope is a fully robotic 2-metre telescope located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope began routine science operations in 2004, and currently seven simultaneously mounted instruments support a broad science programme, with a focus on transient followup and other time domain topics well suited to the characteristics of robotic observing. Work has begun on a successor facility with the working title `Liverpool Telescope 2'. We are entering a new era of time domain astronomy with new discovery facilities across the electromagnetic spectrum, and the next generation of optical survey facilities such as LSST are set to revolutionise the field of transient science in particular. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time, and will be designed to meet the challenges of this new era. Following a conceptual design phase, we are about to begin the detailed design which will lead towards the start of construction in 2018, for first light ˜2022. In this paper we provide an overview of the facility and an update on progress.

  10. Habitable exoplanet imager optical telescope concept design

    Science.gov (United States)

    Stahl, H. Philip

    2017-09-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sunlike stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirroranastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  11. Canada's largest co-gen project

    International Nuclear Information System (INIS)

    Salaff, S.

    2000-01-01

    In November 2000, the TransAlta Energy Corp. began construction on its $400 million natural gas fuelled cogeneration project in Sarnia Ontario. The Sarnia Regional Cogeneration Project (SRCP) is designed to integrate a new 440 MW cogeneration facility to be built at the Sarnia Division of Dow Chemicals Canada Inc. with nearby existing generators totaling 210 MW at Dow and Bayer Inc. At 650 MW, the new facility will rank as Canada's largest cogeneration installation. Commercial operation is scheduled for October 2002. TransAlta owns three natural gas fuelled cogeneration facilities in Ontario (in Ottawa, Mississauga and Windsor) totaling 250 MW. The cost of electric power in Ontario is currently controlled by rising natural gas prices and the supply demand imbalance. This balance will be significantly affected by the possible return to service of 2000 MW of nuclear generating capacity. The SRCP project was announced just prior to the Ontario Energy Competition Act of October 1998 which committed the province to introduce competition to the electricity sector and which created major uncertainties in the electricity market. Some of the small, 25 MW projects which survived the market uncertainty included the Toronto-based Toromont Energy Ltd. project involving gas fuelled cogeneration and methane gas generation from landfill projects in Sudbury and Waterloo. It was emphasized that cogeneration and combined heat and power projects have significant environmental advantages over large combined cycle facilities. The Ontario Energy Board is currently considering an application from TransAlta to link the SRCP facility to Ontario's Hydro One Network Inc.'s transmission grid. 1 fig

  12. Exploring Galileo's Telescope

    Science.gov (United States)

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  13. Taiwan Automated Telescope Network

    Directory of Open Access Journals (Sweden)

    Dean-Yi Chou

    2010-01-01

    can be operated either interactively or fully automatically. In the interactive mode, it can be controlled through the Internet. In the fully automatic mode, the telescope operates with preset parameters without any human care, including taking dark frames and flat frames. The network can also be used for studies that require continuous observations for selected objects.

  14. The Falcon Telescope Network

    Science.gov (United States)

    Chun, F.; Tippets, R.; Dearborn, M.; Gresham, K.; Freckleton, R.; Douglas, M.

    2014-09-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. Since the FTN has a general use purpose, objects of interest include satellites, astronomical research, and STEM support images. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA in the Cadet Space Operations Center. FTN users will be able to submit observational requests via a web interface. The requests will then be prioritized based on the type of user, the object of interest, and a user-defined priority. A network wide schedule will be developed every 24 hours and each FTN site will autonomously execute its portion of the schedule. After an observational request is completed, the FTN user will receive notification of collection and a link to the data. The Falcon Telescope Network is an ambitious endeavor, but demonstrates the cooperation that can be achieved by multiple educational institutions.

  15. DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 {<=} z {<=} 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, A.; Siana, B.; Masters, D. [Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521 (United States); Henry, A. L.; Martin, C. L. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Scarlata, C.; Bedregal, A. G. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Atek, H.; Colbert, J. W. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Teplitz, H. I.; Rafelski, M. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); McCarthy, P.; Hathi, N. P.; Dressler, A. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Bunker, A., E-mail: albertod@ucr.edu [Department of Physics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom)

    2013-02-15

    Spectroscopic observations of H{alpha} and H{beta} emission lines of 128 star-forming galaxies in the redshift range 0.75 {<=} z {<=} 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (H{alpha}/H{beta}). We present dust extinction as a function of H{alpha} luminosity (down to 3 Multiplication-Sign 10{sup 41} erg s{sup -1}), galaxy stellar mass (reaching 4 Multiplication-Sign 10{sup 8} M {sub Sun }), and rest-frame H{alpha} equivalent width. The faintest galaxies are two times fainter in H{alpha} luminosity than galaxies previously studied at z {approx} 1.5. An evolution is observed where galaxies of the same H{alpha} luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower H{alpha} luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O III] {lambda}5007/H{alpha} flux ratio as a function of luminosity where galaxies with L {sub H{alpha}} < 5 Multiplication-Sign 10{sup 41} erg s{sup -1} are brighter in [O III] {lambda}5007 than H{alpha}. This trend is evident even after extinction correction, suggesting that the increased [O III] {lambda}5007/H{alpha} ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.

  16. The big data telescope

    International Nuclear Information System (INIS)

    Finkel, Elizabeth

    2017-01-01

    On a flat, red mulga plain in the outback of Western Australia, preparations are under way to build the most audacious telescope astronomers have ever dreamed of - the Square Kilometre Array (SKA). Next-generation telescopes usually aim to double the performance of their predecessors. The Australian arm of SKA will deliver a 168-fold leap on the best technology available today, to show us the universe as never before. It will tune into signals emitted just a million years after the Big Bang, when the universe was a sea of hydrogen gas, slowly percolating with the first galaxies. Their starlight illuminated the fledgling universe in what is referred to as the “cosmic dawn”.

  17. [Galileo and his telescope].

    Science.gov (United States)

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  18. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  19. Workshop: Neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-05-15

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role.

  20. Largest US oil and gas fields, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  1. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    Science.gov (United States)

    1999-11-01

    replaced by COSTAR. During the second Servicing Mission instruments and other equipment were repaired and updated. The Space Telescope Imaging Spectrograph (STIS) replaced the Goddard High Resolution Spectrograph (GHRS) and the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) replaced the Faint Object Spectrograph (FOS). Servicing mission 3A The original Servicing Mission 3 (initially planned for June 2000) has been split into two missions - SM3A and SM3B - due in part to its complexity, and in part to the urgent need to replace the failed gyroscopes on board. Three gyroscopes must function to meet the telescope's very precise pointing requirements. With only two new operational, observations have had to be suspended, but the telescope will remain safely in orbit until the servicing crew arrives. During this servicing mission * all six gyroscopes will be replaced, * a Fine Guidance Sensor will be replaced, * the spacecraft's computer will be replaced by a new one which will reduce the burden of flight software maintenance and significantly lower costs, * six voltage/temperature kits will be installed to protect spacecraft batteries from overcharging and overheating if the spacecraft enters safe mode, * a new S-Band Single Access Transmitter will replace a failed spare currently aboard the spacecraft, * a solid-state recorder will be installed to replace the tape recorder, * degraded telescope thermal insulation will be replaced if time allows; this insulation is necessary to control the internal temperature on HST. For the mission to be fully successful the gyroscopes, the Fine Guidance Sensor, the computer and the voltage/temperature kits must be installed. The minimum mission success criterion is that HST will have 5 operational gyros after the mission, 4 of them newly installed. The Future During SM3B (presently scheduled for 2001) the astronauts will replace the Faint Object Camera with the Advanced Camera for Surveys (ACS), install a cooling system for

  2. Imaging extrasolar planets with the European Extremely Large Telescope

    Directory of Open Access Journals (Sweden)

    Jolissaint L.

    2011-07-01

    Full Text Available The European Extremely Large Telescope (E-ELT is the most ambitious of the ELTs being planned. With a diameter of 42 m and being fully adaptive from the start, the E-ELT will be more than one hundred times more sensitive than the present-day largest optical telescopes. Discovering and characterising planets around other stars will be one of the most important aspects of the E-ELT science programme. We model an extreme adaptive optics instrument on the E-ELT. The resulting contrast curves translate to the detectability of exoplanets.

  3. Foreign exchange risk management : how are the largest non-financial companies in Norway managing their foreign exchange rate exposure?

    OpenAIRE

    Eriksen, Krister; Wedøe, Ola

    2010-01-01

    The purpose of this thesis is to investigate how the largest non-financial companies in Norway manage their foreign exchange rate exposure. This is investigated through the use of a survey distributed to a sample the largest non-financial firms in Norway. According to our results, the largest non-financial companies in Norway have a predefined strategy for managing foreign exchange risk, which is defined by the board of directors or by the management in the organisation. The companies’ mai...

  4. The Planck Telescope reflectors

    Science.gov (United States)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  5. Deep space telescopes

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo’s telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics throughout the complete electromagnetic spectrum. Such information is there for the taking, from millimiter wavelengths to gamma rays. Forty years astronomy from space, covering now most of the e.m. spectrum, have thus given us a better understanding of our physical Universe then t...

  6. Antares Reference Telescope System

    International Nuclear Information System (INIS)

    Viswanathan, V.K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    1983-01-01

    Antares is a 24-beam, 40-TW carbon-dioxide laser-fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300 to 1000 μm in diameter) located approximately at the center of a 7.3-m-diameter by 9.3-m-long vacuum (10 - 6 torr) chamber. The design goal is to position the targets to within 10 μm of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front-lighting subsystem which illuminates the target; and (4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail

  7. SNAP Telescope Latest Developments

    Science.gov (United States)

    Lampton, M.; SNAP Collaboration

    2004-12-01

    The coming era of precision cosmology imposes new demands on space telescopes with regard to spectrophotometric accuracy and image stability. To meet these requirements for SNAP we have developed an all reflecting two-meter-class space telescope of the three-mirror anastigmat type. Our design features a large flat annular field (1.5 degrees = 580mm diameter) and a telephoto advantage of 6, delivering a 22m focal length within an optical package length of only 3.5 meters. The use of highly stable materials (Corning ULE glass and carbon-fiber reinforced cyanate ester resin for the metering structure) combined with agressive distributed thermal control and an L2 orbit location will lead to unmatched figure stability. Owing to our choice of rigid structure with nondeployable solar panels, finite-element models show no structural resonances below 10Hz. An exhaustive stray light study has been completed. Beginning in 2005, two industry studies will develop plans for fabrication, integration and test, bringing SNAP to a highly realistic level of definition. SNAP is supported by the Office of Science, US DoE, under contract DE-AC03-76SF00098.

  8. Cost Modeling for Space Telescope

    Science.gov (United States)

    Stahl, H. Philip

    2011-01-01

    Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models.

  9. Status of the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Colin, Pierre; Carmona, Emiliano; Schweizer, Thomas; Sitarek, Julian [Max-Planck-Institut fuer Physik, Werner-Heisenberg Institut, Muenchen (Germany)

    2010-07-01

    MAGIC is a system of two 17-m Cherenkov telescopes located on La Palma (Canary islands),sensitive to gamma-rays above 30 GeV. It has been recently upgraded by a second telescope which strongly improves the sensitivity, particularly at low energy. Here we present the status of the MAGIC telescopes and an overview of the recent results obtained in single or stereoscopic mode. We also discuss the real performance of the new stereoscopic system based on Crab Nebula observations.

  10. ALMA Telescope Reaches New Heights

    Science.gov (United States)

    2009-09-01

    (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. The National Radio Astronomy Observatory is the North American partner in ALMA. ALMA, the largest astronomical project in existence, is a revolutionary telescope, comprising an array of 66 giant 40-foot and 23-foot diameter antennas. Russell noted that the first antenna's move to the high site illustrates the international nature of the project. "A Japanese antenna with North American electronics was carried by a European transporter," he explained.

  11. When clusters collide: constraints on antimatter on the largest scales

    International Nuclear Information System (INIS)

    Steigman, Gary

    2008-01-01

    Observations have ruled out the presence of significant amounts of antimatter in the Universe on scales ranging from the solar system, to the Galaxy, to groups and clusters of galaxies, and even to distances comparable to the scale of the present horizon. Except for the model-dependent constraints on the largest scales, the most significant upper limits to diffuse antimatter in the Universe are those on the ∼Mpc scale of clusters of galaxies provided by the EGRET upper bounds to annihilation gamma rays from galaxy clusters whose intracluster gas is revealed through its x-ray emission. On the scale of individual clusters of galaxies the upper bounds to the fraction of mixed matter and antimatter for the 55 clusters from a flux-limited x-ray survey range from 5 × 10 −9 to −6 , strongly suggesting that individual clusters of galaxies are made entirely of matter or of antimatter. X-ray and gamma-ray observations of colliding clusters of galaxies, such as the Bullet Cluster, permit these constraints to be extended to even larger scales. If the observations of the Bullet Cluster, where the upper bound to the antimatter fraction is found to be −6 , can be generalized to other colliding clusters of galaxies, cosmologically significant amounts of antimatter will be excluded on scales of order ∼20 Mpc (M∼5×10 15 M sun )

  12. Optical Design of the STAR-X Telescope

    Science.gov (United States)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2017-01-01

    Top-level science goals of the Survey and Time-domain Astrophysical Research eXplorer (STAR-X) include: investigations of most violent explosions in the universe, study of growth of black holes across cosmic time and mass scale, and measure how structure formation heats majority of baryons in the universe. To meet these goals, the field-of-view of the telescope should be about 1 square-degree, the angular resolution should be 5 arc-seconds or below across large part of the field-of-view. The on-axis effective area at 1 KeV should be about 2,000 sq cm. Payload cost and launch considerations limit the outer diameter, focal length, and mass to 1.3 meters, 5 meters, and 250 kilograms, respectively. Telescope design is based on a segmented meta-shell approach we have developed at Goddard Space Flight Center for the STAR-X telescope. The telescope shells are divided into 30-degree segments. Individual telescopes and meta-shells are nested inside each other to meet the effective area requirements in 0.5 - 6.0 KeV range. We consider Wolter-Schwarzschild, and Modified-Wolter-Schwarzschild telescope designs as basic building blocks of the nested STAR-X telescope. These designs offer an excellent resolution over a large field of views. Nested telescopes are vulnerable to stray light problems. We have designed a multi-component baffle system to eliminate direct and single-reflection light paths inside the telescopes. Large number of internal and external baffle vane structures are required to prevent stray rays from reaching the focal plane. We have developed a simple ray-trace based tool to determine the dimensions and locations of the baffles. In this paper, we present the results of our trade studies, baffle design studies, and optical performance analyses of the STAR-X telescope.

  13. First results of the Test-Bed Telescopes (TBT) project: Cebreros telescope commissioning

    Science.gov (United States)

    Ocaña, Francisco; Ibarra, Aitor; Racero, Elena; Montero, Ángel; Doubek, Jirí; Ruiz, Vicente

    2016-07-01

    The TBT project is being developed under ESA's General Studies and Technology Programme (GSTP), and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario within the Space Situational Awareness (SSA) programme of the European Space Agency (ESA). The goal of the project is to provide two fully robotic telescopes, which will serve as prototypes for development of a future network. The system consists of two telescopes, one in Spain and the second one in the Southern Hemisphere. The telescope is a fast astrograph with a large Field of View (FoV) of 2.5 x 2.5 square-degrees and a plate scale of 2.2 arcsec/pixel. The tube is mounted on a fast direct-drive mount moving with speed up to 20 degrees per second. The focal plane hosts a 2-port 4K x 4K back-illuminated CCD with readout speeds up to 1MHz per port. All these characteristics ensure good survey performance for transients and fast moving objects. Detection software and hardware are optimised for the detection of NEOs and objects in high Earth orbits (objects moving from 0.1-40 arcsec/second). Nominal exposures are in the range from 2 to 30 seconds, depending on the observational strategy. Part of the validation scenario involves the scheduling concept integrated in the robotic operations for both sensors. Every night it takes all the input needed and prepares a schedule following predefined rules allocating tasks for the telescopes. Telescopes are managed by RTS2 control software, that performs the real-time scheduling of the observation and manages all the devices at the observatory.1 At the end of the night the observing systems report astrometric positions and photometry of the objects detected. The first telescope was installed in Cebreros Satellite Tracking Station in mid-2015. It is currently in the commissioning phase and we present here the first results of the telescope. We evaluate the site characteristics and the performance of the TBT Cebreros

  14. Silicon Telescope Detectors

    CERN Document Server

    Gurov, Yu B; Sandukovsky, V G; Yurkovski, J

    2005-01-01

    The results of research and development of special silicon detectors with a large active area ($> 8 cm^{2}$) for multilayer telescope spectrometers (fulfilled in the Laboratory of Nuclear Problems, JINR) are reviewed. The detector parameters are listed. The production of totally depleted surface barrier detectors (identifiers) operating under bias voltage two to three times higher than depletion voltage is described. The possibility of fabrication of lithium drifted counters with a very thin entrance window on the diffusion side of the detector (about 10--20 $\\mu$m) is shown. The detector fabrication technique has allowed minimizing detector dead regions without degradation of their spectroscopic characteristics and reliability during long time operation in charge particle beams.

  15. The Origins Space Telescope (OST)

    Science.gov (United States)

    Staguhn, Johannes

    2018-01-01

    The Origins Space Telescope is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies to be submitted by NASA Headquarters to the 2020 Astronomy and Astrophysics Decadal survey. The observatory will provide orders of magnitude improvements in sensitivity over prior missions, in particular for spectroscopy, enabling breakthrough science across astrophysics. The observatory will cover a wavelength range between 5 μm and 600 μm in order to enable the study of the formation of proto-planetary disks, detection of bio-signatures from extra-solar planet's atmospheres, characterization of the first galaxies in the universe, and many more. The five instruments that are currently studied are two imaging far-infrared spectrometers using incoherent detectors, providing up to R 10^5 spectral resolution, one far-infrared infrared heterodyne instrument for even higher spectral resolving powers, one far-infrared continuum imager and polarimeter, plus a mid-infrared coronagraph with imaging and spectroscopy mode. I will describe the scientific and technical capabilities of the observatory with focus on the expected synergies with AtLAST.

  16. VLTI auxiliary telescopes: a full object-oriented approach

    Science.gov (United States)

    Chiozzi, Gianluca; Duhoux, Philippe; Karban, Robert

    2000-06-01

    The Very Large Telescope (VLT) Telescope Control Software (TCS) is a portable system. It is now in use or will be used in a whole family of ESO telescopes VLT Unit Telescopes, VLTI Auxiliary Telescopes, NTT, La Silla 3.6, VLT Survey Telescope and Astronomical Site Monitors in Paranal and La Silla). Although it has been developed making extensive usage of Object Oriented (OO) methodologies, the overall development process chosen at the beginning of the project used traditional methods. In order to warranty a longer lifetime to the system (improving documentation and maintainability) and to prepare for future projects, we have introduced a full OO process. We have taken as a basis the United Software Development Process with the Unified Modeling Language (UML) and we have adapted the process to our specific needs. This paper describes how the process has been applied to the VLTI Auxiliary Telescopes Control Software (ATCS). The ATCS is based on the portable VLT TCS, but some subsystems are new or have specific characteristics. The complete process has been applied to the new subsystems, while reused code has been integrated in the UML models. We have used the ATCS on one side to tune the process and train the team members and on the other side to provide a UML and WWW based documentation for the portable VLT TCS.

  17. Robo-AO M Dwarf Multiplicity Survey

    Science.gov (United States)

    Lamman, Claire; Baranec, Christoph; Berta-Thompson, Zachory K.; Law, Nicholas M.; Ziegler, Carl; Schonhut-Stasik, Jessica

    2018-06-01

    We analyzed close to 7,000 observations from Robo-AO’s field M dwarf survey taken on the 2.1m Kitt Peak telescope. Results will help determine the total multiplicity fraction and multiplicity functions of M dwarfs, which are crucial steps towards understanding their evolution and formation mechanics. Through its robotic, laser-guided, and automated system, the Robo-AO instrument has yielded the largest adaptive-optics M dwarf survey to date. I developed a graphical user interface to quickly analyze this data. Initial data analysis included assessing data quality, checking the result from Robo-AO’s automatic reduction pipeline, and determining existence as well as the relative position of companions through a visual inspection. This program can be applied to other datasets and was successfully tested by re-analyzing observations from a separate Robo-AO survey. After a conservative initial cut for quality, over 350 companions were found within 4” of a primary star out of 2,746 high quality Robo-AO M dwarf observations, including four triple systems. Further observations were done with the Keck II telescope by using its NIRC2 imager to follow up on ten select targets for the existence and physical association of companions. Future research will yield insights into low-mass stellar formation and provide a database of nearby M dwarf multiples that will potentially assist ongoing and future surveys for planets around these stars, such as the NASA TESS mission.

  18. Single particle detecting telescope system

    International Nuclear Information System (INIS)

    Yamamoto, I.; Tomiyama, T.; Iga, Y.; Komatsubara, T.; Kanada, M.; Yamashita, Y.; Wada, T.; Furukawa, S.

    1981-01-01

    We constructed the single particle detecting telescope system for detecting a fractionally charged particle. The telescope consists of position detecting counters, wall-less multi-cell chambers, single detecting circuits and microcomputer system as data I/0 processor. Especially, a frequency of double particle is compared the case of the single particle detecting with the case of an ordinary measurement

  19. Building the Hubble Space Telescope

    International Nuclear Information System (INIS)

    O'dell, C.R.

    1989-01-01

    The development of the design for the Hubble Space Telescope (HST) is discussed. The HST optical system is described and illustrated. The financial and policy issues related to the development of the HST are considered. The actual construction of the HST optical telescope is examined. Also, consideration is given to the plans for the HST launch

  20. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...

  1. CLASH: COMPLETE LENSING ANALYSIS OF THE LARGEST COSMIC LENS MACS J0717.5+3745 AND SURROUNDING STRUCTURES

    International Nuclear Information System (INIS)

    Medezinski, Elinor; Lemze, Doron; Ford, Holland; Umetsu, Keiichi; Nonino, Mario; Merten, Julian; Mroczkowski, Tony; Zitrin, Adi; Broadhurst, Tom; Donahue, Megan; Sayers, Jack; Czakon, Nicole; Waizmann, Jean-Claude; Meneghetti, Massimo; Koekemoer, Anton; Coe, Dan; Postman, Marc; Molino, Alberto; Melchior, Peter; Grillo, Claudio

    2013-01-01

    The galaxy cluster MACS J0717.5+3745 (z = 0.55) is the largest known cosmic lens, with complex internal structures seen in deep X-ray, Sunyaev-Zel'dovich effect, and dynamical observations. We perform a combined weak- and strong-lensing analysis with wide-field BVR c i'z' Subaru/Suprime-Cam observations and 16-band Hubble Space Telescope observations taken as part of the Cluster Lensing And Supernova survey with Hubble. We find consistent weak distortion and magnification measurements of background galaxies and combine these signals to construct an optimally estimated radial mass profile of the cluster and its surrounding large-scale structure out to 5 Mpc h –1 . We find consistency between strong-lensing and weak-lensing in the region where these independent data overlap, –1 . The two-dimensional weak-lensing map reveals a clear filamentary structure traced by distinct mass halos. We model the lensing shear field with nine halos, including the main cluster, corresponding to mass peaks detected above 2.5σ κ . The total mass of the cluster as determined by the different methods is M vir ≈ (2.8 ± 0.4) × 10 15 M ☉ . Although this is the most massive cluster known at z > 0.5, in terms of extreme value statistics, we conclude that the mass of MACS J0717.5+3745 by itself is not in serious tension with ΛCDM, representing only a ∼2σ departure above the maximum simulated halo mass at this redshift

  2. CLASH: COMPLETE LENSING ANALYSIS OF THE LARGEST COSMIC LENS MACS J0717.5+3745 AND SURROUNDING STRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Medezinski, Elinor; Lemze, Doron; Ford, Holland [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Umetsu, Keiichi [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Nonino, Mario [INAF/Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Merten, Julian; Mroczkowski, Tony [Jet Propulsion Laboratory, California Institute of Technology, MS 169-327, Pasadena, CA 91109 (United States); Zitrin, Adi [Institut für Theoretische Astrophysik, Universität Heidelberg, Zentrum für Astronomie, Philosophenweg 12, D-69120 Heidelberg (Germany); Broadhurst, Tom [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao (Spain); Donahue, Megan [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Sayers, Jack; Czakon, Nicole [Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Waizmann, Jean-Claude; Meneghetti, Massimo [Dipartimento di Astronomia, Universit' a di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Koekemoer, Anton; Coe, Dan; Postman, Marc [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Molino, Alberto [Instituto de Astrofísica de Andalucía (CSIC), E-18080 Granada (Spain); Melchior, Peter [Center for Cosmology and Astro-Particle Physics and Department of Physics, The Ohio State University, Columbus, OH 43210 (United States); Grillo, Claudio, E-mail: elinor@pha.jhu.edu [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Mariesvej 30, DK-2100 Copenhagen (Denmark); and others

    2013-11-01

    The galaxy cluster MACS J0717.5+3745 (z = 0.55) is the largest known cosmic lens, with complex internal structures seen in deep X-ray, Sunyaev-Zel'dovich effect, and dynamical observations. We perform a combined weak- and strong-lensing analysis with wide-field BVR{sub c} i'z' Subaru/Suprime-Cam observations and 16-band Hubble Space Telescope observations taken as part of the Cluster Lensing And Supernova survey with Hubble. We find consistent weak distortion and magnification measurements of background galaxies and combine these signals to construct an optimally estimated radial mass profile of the cluster and its surrounding large-scale structure out to 5 Mpc h {sup –1}. We find consistency between strong-lensing and weak-lensing in the region where these independent data overlap, <500 kpc h {sup –1}. The two-dimensional weak-lensing map reveals a clear filamentary structure traced by distinct mass halos. We model the lensing shear field with nine halos, including the main cluster, corresponding to mass peaks detected above 2.5σ{sub κ}. The total mass of the cluster as determined by the different methods is M{sub vir} ≈ (2.8 ± 0.4) × 10{sup 15} M{sub ☉}. Although this is the most massive cluster known at z > 0.5, in terms of extreme value statistics, we conclude that the mass of MACS J0717.5+3745 by itself is not in serious tension with ΛCDM, representing only a ∼2σ departure above the maximum simulated halo mass at this redshift.

  3. Results from the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    Spurio M.

    2016-01-01

    Full Text Available ANTARES is the largest neutrino telescope in the Northern hemisphere, running in its final configuration since 2008. After the discovery of a cosmic neutrino diffuse flux by the IceCube detector, the search for its origin has become a key mission in high-energy astrophysics. The ANTARES sensitivity is large enough to constrain the origin of the IceCube excess from regions extended up to 0.2 sr in the Southern sky. The Southern sky has been studied searching for point-like objects, for extended regions of emission (as the Galactic plane and for signal from transient objects selected through multimessenger observations. Upper limits are presented assuming different spectral indexes for the energy spectrum of neutrino sources. In addition, ANTARES provides results on studies of the sky in combination with different multimessenger experiments, on atmospheric neutrinos, on the searches for rare particles in the cosmic radiation (such as magnetic monopoles and nuclearites, and on Earth and Sea science. Particularly relevant are the searches for Dark Matter: the limits obtained for the spin-dependent WIMP-nucleon cross section overcome that of existing direct-detection experiments. The recent results, widely discussed in dedicated presentations during the 7th edition of the Very Large Volume Neutrino Telescope Workshop (VLVνT-2015, are highlighted in this paper.

  4. The "Very Cool" James Webb Space Telescope!

    Science.gov (United States)

    Teague, Peter J. B.

    2018-01-01

    For over twenty years, scientists, engineers, technicians, and other personnel have been working on the next generation space telescope. As a partnership between NASA (National Aeronautics and Space Administration), CSA (Canadian Space Agency), and ESA (European Space Angency), the James Webb Space Telescope will complement the previous research performed by the Hubble by utilizing a larger primary mirror, which will also be optimized for infrared wavelengths. This combination will allow JWST to collect data and take images of light having traveled over 13.7 billion light years. This presentation will focus on the mission, as well as the contamination control challenges during the integration and testing in the NASA Goddard Spacecraft Systems Development and Integration Facility (SSDIF), one of the largest cleanrooms in the world. Additional information will be presented regarding space simulation testing down to a cool 20 degrees Kelvin [-424 degrees Fahrenheit] that will occur at Johnson Space Center in Houston, TX, and more testing and integration to happen at Northrop Grumman Corp., in Redondo Beach, CA. Launch of the JWST is currently scheduled for the spring of 2019 at Ariane Spaceport in French Guiana, South America.

  5. A project of a two meter telescope in North Africa

    Science.gov (United States)

    Benkhaldoun, Zouhair

    2015-03-01

    Site testing undertaken during the last 20 years by Moroccan researchers through international studies have shown that the Atlas mountains in Morocco has potentialities similar to those sites which host the largest telescopes in world. Given the quality of the sites and opportunities to conduct modern research, we believe that the installation of a 2m diameter telescope will open new horizons for Astronomy in Morocco and north Africa allowing our region to enter definitively into the very exclusive club of countries possessing an instrument of that size. A state of the art astrophysical observatory on any good astronomical observation site should be equipped with a modern 2m-class, robotic telescope and some smaller telescopes. Our plan should be to operate one of the most efficient robotic 2m class telescopes worldwide in order to offer optimal scientific opportunities for researchers and maintain highest standards for the education of students. Beside all categories of astronomical research fields, students will have the possibility to be educated intensively on the design, manufacturing and operating of modern state of the art computer controlled instruments. In the frame of such education and observation studies several PhD and dissertational work packages are possible. Many of the observations will be published in articles worldwide and a number of guest observers from other countries will have the possibility to take part in collaborations. This could be a starting point of an international reputation of our region in the field of modern astronomy.

  6. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    Science.gov (United States)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  7. A decade of cost-reduction in very large telescopes - The SST as prototype of special-purpose telescopes

    Science.gov (United States)

    Smith, Harlan J.

    1989-10-01

    Many design and technical innovations over the past ten or fifteen years have reduced the costs of very large telescopes by nearly an order of magnitude over those of classical designs. Still a further order of magnitude reduction is possible if the telescope is specialized for on-axis spectroscopy, giving up especially the luxuries of wide field, multiple focal positions, and access to all the sky at will. The SST (Spectroscopic Survey Telescope) will use eighty-five 1-m circular mirrors mounted in a steel frame composed of hundreds of interlocking tetrahedrons, keeping a fixed elevation angle of 60 deg with rotation only in azimuth. Using an optical fiber it will feed as much light to spectrographs as can be done by a conventional 8-m telescope, yet has a target basic completion cost of only $6 million.

  8. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  9. Guaranteeing uptime at worl's largest particle physics lab

    CERN Multimedia

    Brodkin, Jon

    2007-01-01

    "As the European agency CERN was gearing up to build the world's largest particle accelerator, officials there knew they could not afford to have problems in their technical infrastructure cause any downtime." (1 page)

  10. Lightweighted ZERODUR for telescopes

    Science.gov (United States)

    Westerhoff, T.; Davis, M.; Hartmann, P.; Hull, T.; Jedamzik, R.

    2014-07-01

    The glass ceramic ZERODUR® from SCHOTT has an excellent reputation as mirror blank material for earthbound and space telescope applications. It is known for its extremely low coefficient of thermal expansion (CTE) at room temperature and its excellent CTE homogeneity. Recent improvements in CNC machining at SCHOTT allow achieving extremely light weighted substrates up to 90% incorporating very thin ribs and face sheets. In 2012 new ZERODUR® grades EXPANSION CLASS 0 SPECIAL and EXTREME have been released that offer the tightest CTE grades ever. With ZERODUR® TAILORED it is even possible to offer ZERODUR® optimized for customer application temperature profiles. In 2013 SCHOTT started the development of a new dilatometer setup with the target to drive the industrial standard of high accuracy thermal expansion metrology to its limit. In recent years SCHOTT published several paper on improved bending strength of ZERODUR® and lifetime evaluation based on threshold values derived from 3 parameter Weibull distribution fitted to a multitude of stress data. ZERODUR® has been and is still being successfully used as mirror substrates for a large number of space missions. ZERODUR® was used for the secondary mirror in HST and for the Wolter mirrors in CHANDRA without any reported degradation of the optical image quality during the lifetime of the missions. Some years ago early studies on the compaction effects of electron radiation on ZERODUR® were re analyzed. Using a more relevant physical model based on a simplified bimetallic equation the expected deformation of samples exposed in laboratory and space could be predicted in a much more accurate way. The relevant ingredients for light weighted mirror substrates are discussed in this paper: substrate material with excellent homogeneity in its properties, sufficient bending strengths, space radiation hardness and CNC machining capabilities.

  11. Advanced Athermal Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed innovative athermal telescope design uses advanced lightweight and high-stiffness material of Beryllium-Aluminum (Be-38Al). Peregrine's expertise with...

  12. The JCMT Telescope Management System

    Science.gov (United States)

    Tilanus, Remo P. J.; Jenness, Tim; Economou, Frossie; Cockayne, Steve

    Established telescopes often face a challenge when trying to incorporate new software standards and utilities into their existing real-time control system. At the JCMT we have successfully added important new features such as a Relational Database (the Telescope Management System---TMS), an online data Archive, and WWW based utilities to an, in part, 10-year old system. The new functionality was added with remarkably few alterations to the existing system. We are still actively expanding and exploring these new capabilities.

  13. Alt-Az Spacewatch Telescope

    Science.gov (United States)

    Gehrels, Tom

    1997-01-01

    This grant funded about one third of the cost of the construction of a telescope with an aperture 1.8 meters in diameter to discover asteroids and comets and investigate the statistics of their populations and orbital distributions. This telescope has been built to the PI's specifications and installed in a dome on Kitt Peak mountain in Arizona. Funds for the dome and building were provided entirely by private sources. The dome building and telescope were dedicated in a ceremony at the site on June 7, 1997. The attached abstract describes the parameters of the telescope. The telescope is a new item of capital property. It is permanently located in University of Arizona building number 910 in the Steward Observatory compound on Kitt Peak mountain in the Tohono O'odham Nation, Arizona. fts property tag number is A252107. This grant did not include funds for the coma corrector lens, instrument derotator, CCD detector, detector electronics, or computers to acquire or process the data. It also did not include funds to operate the telescope or conduct research with it. Funds for these items and efforts are pending from NASA and other sources.

  14. The Submillimeter Telescope (SMT) project

    International Nuclear Information System (INIS)

    Martin, R.N.; Baars, J.W.M.

    1990-01-01

    To exploit the potential of submillimeter astronomy, the Submillimeter Telescope (SMT) will be located at an altitude of 3178 meters on Emerald Peak 75 miles northeast of Tucson in Southern Arizona. The instrument is an altazimuth mounted f/13.8 Cassegrain homology telescope with two Nasmyth and bent Cassegrain foci. It will have diffraction limited performance at a wavelength of 300 microns and an operating overall figure accuracy of 15 microns rms. An important feature of the SMT is the construction of the primary and secondary reflectors out of aluminum-core CFRP face sheet sandwich panels, and the reflector backup structure and secondary support out of CFRP structural elements. This modern technology provides both a means for reaching the required precision of the SMT for both night and day operation (basically because of the low coefficient of thermal expansion and high strength-to-weight ratio of CFRP) and a potential route for the realization of lightweight telescopes of even greater accuracy in the future. The SMT will be the highest accuracy radio telescope ever built (at least a factor of 2 more accurate than existing telescopes). In addition, the SMT will be the first 10 m-class submillimeter telescope with a surface designed for efficient measurements at the important 350 microns wavelength atmospheric window. 9 refs

  15. Swift Burst Alert Telescope (BAT) Instrument Response

    International Nuclear Information System (INIS)

    Parsons, A.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Hullinger, D.; Krimm, H.; Markwardt, C.; Tueller, J.; Fenimore, E.; Palmer, D.; Sato, G.; Takahashi, T.; Nakazawa, K.; Okada, Y.; Takahashi, H.; Suzuki, M.; Tashiro, M.

    2004-01-01

    The Burst Alert Telescope (BAT), a large coded aperture instrument with a wide field-of-view (FOV), provides the gamma-ray burst triggers and locations for the Swift Gamma-Ray Burst Explorer. In addition to providing this imaging information, BAT will perform a 15 keV - 150 keV all-sky hard x-ray survey based on the serendipitous pointings resulting from the study of gamma-ray bursts, and will also monitor the sky for transient hard x-ray sources. For BAT to provide spectral and photometric information for the gamma-ray bursts, the transient sources and the all-sky survey, the BAT instrument response must be determined to an increasingly greater accuracy. This paper describes the spectral models and the ground calibration experiments used to determine the BAT response to an accuracy suitable for gamma-ray burst studies

  16. THE CHALLENGE OF THE LARGEST STRUCTURES IN THE UNIVERSE TO COSMOLOGY

    International Nuclear Information System (INIS)

    Park, Changbom; Choi, Yun-Young; Kim, Sungsoo S.; Kim, Kap-Sung; Kim, Juhan; Gott III, J. Richard

    2012-01-01

    Large galaxy redshift surveys have long been used to constrain cosmological models and structure formation scenarios. In particular, the largest structures discovered observationally are thought to carry critical information on the amplitude of large-scale density fluctuations or homogeneity of the universe, and have often challenged the standard cosmological framework. The Sloan Great Wall (SGW) recently found in the Sloan Digital Sky Survey (SDSS) region casts doubt on the concordance cosmological model with a cosmological constant (i.e., the flat ΛCDM model). Here we show that the existence of the SGW is perfectly consistent with the ΛCDM model, a result that only our very large cosmological N-body simulation (the Horizon Run 2, HR2) could supply. In addition, we report on the discovery of a void complex in the SDSS much larger than the SGW, and show that such size of the largest void is also predicted in the ΛCDM paradigm. Our results demonstrate that an initially homogeneous isotropic universe with primordial Gaussian random phase density fluctuations growing in accordance with the general relativity can explain the richness and size of the observed large-scale structures in the SDSS. Using the HR2 simulation we predict that a future galaxy redshift survey about four times deeper or with 3 mag fainter limit than the SDSS should reveal a largest structure of bright galaxies about twice as big as the SGW.

  17. Origins Space Telescope: Breaking the Confusion Limit

    Science.gov (United States)

    Wright, Edward L.; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s.OST will have a background-limited sensitivity for a background 27,000 times lower than the Herschel background caused by thermal emission from Herschel's warm telescope. For continuum observations the confusion limit in a diffraction-limited survey can be reached in very short integration times at longer far-infrared wavelengths. But the confusion limit can be pierced for both the nearest and the farthest objects to be observed by OST. For outer the Solar System the targets' motion across the sky will provide a clear signature in surveys repeated after an interval of days to months. This will provide a size-frequency distribution of TNOs that is not biased toward high albedo objects.For the distant Universe the first galaxies and the first metals will provide a third dimension of spectral information that can be measured with a long-slit, medium resolution spectrograph. This will allow 3Dmapping to measure source densities as a function of redshift. The continuum shape associated with sourcesat different redshifts can be derived from correlation analyses of these 3D maps.Fairly large sky areas can be scanned by moving the spacecraft at a constant angular rate perpendicular to the orientation of the long slit of the spectrograph, avoiding the high overhead of step-and-stare surveying with a large space observatory.We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.edu

  18. Advanced Dark Energy Physics Telescope (ADEPT)

    Energy Technology Data Exchange (ETDEWEB)

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first

  19. Alignment and phasing of deployable telescopes

    Science.gov (United States)

    Woolf, N. J.; Ulich, B. L.

    1983-01-01

    The experiences in coaligning and phasing the Multi-Mirror Telescope (MMT), together with studies in setting up radio telescopes, are presented. These experiences are discussed, and on the basis they furnish, schemes are suggested for coaligning and phasing four large future telescopes with complex primary mirror systems. These telescopes are MT2, a 15-m-equivalent MMT, the University of California Ten Meter Telescope, the 10 m sub-mm wave telescope of the University of Arizona and the Max Planck Institute for Radioastronomy, and the Large Deployable Reflector, a future space telescope for far-IR and sub-mm waves.

  20. VizieR Online Data Catalog: Space telescope RM project. V. NGC5548 sp. monitoring (Pei+, 2017)

    Science.gov (United States)

    Pei, L.; Fausnaugh, M. M.; Barth, A. J.; Peterson, B. M.; Bentz, M. C.; De Rosa, G.; Denney, K. D.; Goad, M. R.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Pogge, R. W.; Bennert, V. N.; Brotherton, M.; Clubb, K. I.; Dalla Bonta, E.; Filippenko, A. V.; Greene, J. E.; Grier, C. J.; Vestergaard, M.; Zheng, W.; Adams, S. M.; Beatty, T. G.; Bigley, A.; Brown, J. E.; Brown, J. S.; Canalizo, G.; Comerford, J. M.; Coker, C. T.; Corsini, E. M.; Croft, S.; Croxall, K. V.; Deason, A. J.; Eracleous, M.; Fox, O. D.; Gates, E. L.; Henderson, C. B.; Holmbeck, E.; Holoien, T. W.-S.; Jensen, J. J.; Johnson, C. A.; Kelly, P. L.; Kim, S.; King, A.; Lau, M. W.; Li, M.; Lochhaas, C.; Ma, Z.; Manne-Nicholas, E. R.; Mauerhan, J. C.; Malkan, M. A.; McGurk, R.; Morelli, L.; Mosquera, A.; Mudd, D.; Sanchez, F. M.; Nguyen, M. L.; Ochner, P.; Ou-Yang, B.; Pancoast, A.; Penny, M. T.; Pizzella, A.; Poleski, R.; Runnoe, J.; Scott, B.; Schimoia, J. S.; Shappee, B. J.; Shivvers, I.; Simonian, G. V.; Siviero, A.; Somers, G.; Stevens, D. J.; Strauss, M. A.; Tayar, J.; Tejos, N.; Treu, T.; van Saders, J.; Vican, L.; Villanueva, S.; Yuk, H.; Zakamska, N. L.; Zhu, W.; Anderson, M. D.; Arevalo, P.; Bazhaw, C.; Bisogni, S.; Borman, G. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Cackett, E. M.; Carini, M. T.; Crenshaw, D. M.; de Lorenzo-Caceres, A.; Dietrich, M.; Edelson, R.; Efimova, N. V.; Ely, J.; Evans, P. A.; Ferland, G. J.; Flatland, K.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Grupe, D.; Gupta, A.; Hall, P. B.; Hicks, S.; Horenstein, D.; Horne, K.; Hutchison, T.; Im, M.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kennea, J. A.; Kim, M.; Kim, S. C.; Klimanov, S. A.; Lee, J. C.; Leonard, D. C.; Lira, P.; Macinnis, F.; Mathur, S.; McHardy, I. M.; Montouri, C.; Musso, R.; Nazarov, S. V.; Netzer, H.; Norris, R. P.; Nousek, J. A.; Okhmat, D. N.; Papadakis, I.; Parks, J. R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Saylor, D. A.; Schnulle, K.; Sergeev, S. G.; Siegel, M.; Skielboe, A.; Spencer, M.; Starkey, D.; Sung, H.-I.; Teems, K. G.; Turner, C. S.; Uttley, P.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Zu, Y.

    2017-10-01

    Spectroscopic data were obtained from five telescopes: the McGraw-Hill 1.3m telescope at the MDM Observatory (4225-5775Å; median S/N=118), the Shane 3m telescope at the Lick Observatory (Kast Double Spectrograph: 3250-7920Å; median S/N=194), the 1.22m Galileo telescope at the Asiago Astrophysical Observatory (3250-7920Å; median S/N=160), the 3.5m telescope at Apache Point Observatory (APO; Dual Imaging Spectrograph: 4180-5400Å, median S/N =160), and the 2.3m telescope at the Wyoming Infrared Observatory (WIRO; 5599-4399Å; median S/N=217). The optical spectroscopic monitoring targeting NGC 5548 began on 2014 January 4 and continued through 2014 July 6 with approximately daily cadence. MDM contributed the largest number of spectra with 143 epochs. (1 data file).

  1. ESO Council Visits First VLT Unit Telescope Structure in Milan

    Science.gov (United States)

    1995-12-01

    As the ESO Very Large Telescope (VLT) rapidly takes on shape, Europe has just come one step closer to the realisation of its 556 million DEM astronomical showcase project. Last week, the ESO Council held its semi-annual meeting in Milan (Italy) [1]. During a break in the long agenda list, Council members had the opportunity to visit the Ansaldo factory in the outskirts of this city and to see for the first time the assembled mechanical structure of one of the four 8.2-metre VLT Unit telescopes. This Press Release is accompanied by a photo that shows the ESO Council delegates in front of the giant telescope. After a long climb up the steep staircase to the large Nasmyth platform at the side of the telescope where the astronomical instruments will later be placed, Dr. Peter Creola (Switzerland) , President of the ESO Council and a mechanics expert, grabbed the handrail and surveyed the structure with a professional eye: `I knew it was going to be big, but not that enormous!', he said. Other delegates experienced similar feelings, especially when they watched the 430 tonnes of steel in the 24-metre tall and squat structure turn smoothly and silently around the vertical axis. The Chairman of the ESO Scientific Technical Committee (STC), Dr. Johannes Andersen (Denmark) , summarized his first, close encounter with the VLT by `This is great fun!' and several of his colleague astronomers were soon seen in various corners of the vast structure, engaged in elated discussions about the first scientific investigations to be done with the VLT in two years' time. The VLT Main Structures The visit by Council took place at the invitation of Ansaldo Energia S.p.A. (Genova), EIE-European Industrial Engineering S.r.I. (Venice) and SOIMI-Societa Impianti Industriale S.p.A. (Milan), the three Italian enterprises responsible for the construction of the main structures of the VLT 8.2-metre Unit telescopes. Short speeches were given on this occasion by Drs. Ferruccio Bressani (Ansaldo

  2. The readout and control system of the mid-size telescope prototype of the Cherenkov telescope array

    International Nuclear Information System (INIS)

    Oya, I; Anguner, O; Birsin, E; Schwanke, U; Behera, B; Melkumyan, D; Schmidt, T; Sternberger, R; Wegner, P; Wiesand, S; Fuessling, M

    2014-01-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  3. The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    Science.gov (United States)

    Oya, I.; Anguner, O.; Behera, B.; Birsin, E.; Fuessling, M.; Melkumyan, D.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.; Cta Consortium,the

    2014-06-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  4. Fermi Large Area Telescope Bright Gamma-ray Source List

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /KIPAC, Menlo Park /SLAC; Ajello, M.; /KIPAC, Menlo Park /SLAC; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Bechtol, K.; /KIPAC, Menlo Park /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /KIPAC, Menlo Park /SLAC; Bignami, G.F.; /Pavia U.; Bloom, Elliott D.; /KIPAC, Menlo Park /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /KIPAC, Menlo Park /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /KIPAC, Menlo Park /SLAC /ASDC, Frascati /NASA, Goddard /Maryland U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /UC, Santa Cruz /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /NASA, Goddard; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  5. Joint Asymptotic Distributions of Smallest and Largest Insurance Claims

    Directory of Open Access Journals (Sweden)

    Hansjörg Albrecher

    2014-07-01

    Full Text Available Assume that claims in a portfolio of insurance contracts are described by independent and identically distributed random variables with regularly varying tails and occur according to a near mixed Poisson process. We provide a collection of results pertaining to the joint asymptotic Laplace transforms of the normalised sums of the smallest and largest claims, when the length of the considered time interval tends to infinity. The results crucially depend on the value of the tail index of the claim distribution, as well as on the number of largest claims under consideration.

  6. Challenges with the largest commercial hydrogen station in the world

    Energy Technology Data Exchange (ETDEWEB)

    Charbonneau, Thomas; Gauthier, Pierre [Air Liquide Canada (Canada)

    2010-07-01

    This abstract's objective is to share with the participants the story of the largest hydrogen fueling station made to this date and to kick-start the story, we will cover the challenges; first the technical ones; the operational ones; the distribution ones and; the financial ones. We will then move on to review the logistic (geographic) issues raised by the project and conclude our presentation by sharing the output values of the largest fueling station built so far in the world. (orig.)

  7. Trick or Treat and Telescopes

    Science.gov (United States)

    Buratti, Bonnie J.; Meinke, Bonnie K.; Schmude, Richard W.

    2017-10-01

    Based on an activity that DPS member Richard Schmude Jr. has been doing for years, with over 5000 children reached, DPS initiated in 2016 a pilot program entitled “Trick-or-Treat and Telescopes.” DPS encouraged its members to put out their telescopes during trick-or-treat time on Halloween, in their own lawns or in a neighbor’s lawn with better viewing (or more traffic). The program will be continued in 2017. This year should offer good viewing with a waxing gibbous moon and Saturn visible. The program was also advertised though the Night Sky Network, a consortium of astronomy clubs. The following website gives advice and connections to resources.https://dps.aas.org/education/trick-or-treat-and-telescopes acknowledged.

  8. Scientific management of Space Telescope

    Science.gov (United States)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  9. Space Telescope maintenance and refurbishment

    Science.gov (United States)

    Trucks, H. F.

    1983-01-01

    The Space Telescope (ST) represents a new concept regarding spaceborne astronomical observatories. Maintenance crews will be brought to the orbital worksite to make repairs and replace scientific instruments. For major overhauls the telescope can be temporarily returned to earth with the aid of the Shuttle. It will, thus, be possible to conduct astronomical studies with the ST for two decades or more. The five first-generation scientific instruments used with the ST include a wide field/planetary camera, a faint object camera, a faint object spectrograph, a high resolution spectrograph, and a high speed photometer. Attention is given to the optical telescope assembly, the support systems module, aspects of mission and science operations, unscheduled maintenance, contingency orbital maintenance, planned on-orbit maintenance, ground maintenance, ground refurbishment, and ground logistics.

  10. Giat Industries selected for construction of the "Very Large Telescope"

    Science.gov (United States)

    1995-06-01

    Versailles-Satory (France) May 31, 1995 - Giat Industries has just obtained a contract from the European Southern Observatory (ESO) for the construction of the primary and tertiary mirror supports and the positioning apparatus of the world's largest optical telescope. This contract, worth almost 140 million francs, represents over 100,000 hours of work. It was won by Gitech, a division of Giat Industries, in collaboration with the Sfim group, following an international competition between the largest European groups in the space field. Gitech is charged with the development of civil and military industrial equipment for the Giat Industries group, in particular in high technology fields. The VLT (Very Large Telescope) will be installed in Chile before the year 2000; the delivery schedule provides for reception of the first assembly in May 1997. It will consist of four telescopes of 8.2m diameter, providing, in its most powerful configuration, a close-up view of an object measuring one meter on the surface of the moon. The cell, built by Gitech, is one of the key parts of the telescope. It mainly consists of a very rigid metal structure and an electro-hydraulic system of more that 200 hydraulic jacks and 150 electrically-controlled jacks linking the metallic structure to the mirror. This structure, produced to an original design of laser-welded steel chambers, weighs less than 10 tonnes and will support over 37 tonnes of mirror and equipment, while guaranteeing precise positioning to within a micron. The electro-hydraulic jack system, manufactured in collaboration with the Sfim group, will support and position the mirror, and correct its geometry by applying a precise distribution of forces to its rear. The assembly is designed to meet the requirements of para-seismic safety. Gitech is also producing the computerised control system to ensure the operation and the reliability of the assembly.

  11. The Nuclear Spectroscopic Telescope Array (NuSTAR)

    DEFF Research Database (Denmark)

    Harrison, Fiona A.; Boggs, Steve; Christensen, Finn Erland

    2010-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (6 - 80 keV) telescope to orbit. NuSTAR will offer a factor 50 - 100 sensitivity improvement compared to previous collimated or coded mask imagers that have operated...... in this energy band. In addition, NuSTAR provides sub-arcminute imaging with good spectral resolution over a 12-arcminute eld of view. After launch, NuSTAR will carry out a two-year primary science mission that focuses on four key programs: studying the evolution of massive black holes through surveys carried...... on-orbit deployment of an extendable mast. An aspect and alignment metrology system enable reconstruction of the absolute aspect and variations in the telescope alignment resulting from mast exure during ground data processing. Data will be publicly available at GSFC's High Energy Archive Research...

  12. NAFTA: The World's Largest Trading Zone Turns 20

    Science.gov (United States)

    Ferrarini, Tawni Hunt; Day, Stephen

    2014-01-01

    Everyone under the age of 20 who has grown up in North America has lived in the common market created by NAFTA--the North American Free Trade Agreement. In a zone linking the United States, Canada, and Mexico, most goods and investments flow freely across borders to users, consumers, and investors. In 1994, NAFTA created the largest relatively…

  13. Synchrotron Emission on the Largest Scales: Radio Detection of the ...

    Indian Academy of Sciences (India)

    Abstract. Shocks and turbulence generated during large-scale structure formation are predicted to produce large-scale, low surface-brightness synchrotron emission. On the largest scales, this emission is globally correlated with the thermal baryon distribution, and constitutes the 'syn- chrotron cosmic-web'. I present the ...

  14. Building Earth's Largest Library: Driving into the Future.

    Science.gov (United States)

    Coffman, Steve

    1999-01-01

    Examines the Amazon.com online bookstore as a blueprint for designing the world's largest library. Topics include selection; accessibility and convenience; quality of Web sites and search tools; personalized service; library collection development, including interlibrary loan; library catalogs and catalog records; a circulation system; costs;…

  15. Analysis of Human Standing Balance by Largest Lyapunov Exponent

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2015-01-01

    Full Text Available The purpose of this research is to analyse the relationship between nonlinear dynamic character and individuals’ standing balance by the largest Lyapunov exponent, which is regarded as a metric for assessing standing balance. According to previous study, the largest Lyapunov exponent from centre of pressure time series could not well quantify the human balance ability. In this research, two improvements were made. Firstly, an external stimulus was applied to feet in the form of continuous horizontal sinusoidal motion by a moving platform. Secondly, a multiaccelerometer subsystem was adopted. Twenty healthy volunteers participated in this experiment. A new metric, coordinated largest Lyapunov exponent was proposed, which reflected the relationship of body segments by integrating multidimensional largest Lyapunov exponent values. By using this metric in actual standing performance under sinusoidal stimulus, an obvious relationship between the new metric and the actual balance ability was found in the majority of the subjects. These results show that the sinusoidal stimulus can make human balance characteristics more obvious, which is beneficial to assess balance, and balance is determined by the ability of coordinating all body segments.

  16. Worlds largest particle physics laboratory selects Proxim Wireless Mesh

    CERN Multimedia

    2007-01-01

    "Proxim Wireless has announced that the European Organization for Nuclear Research (CERN), the world's largest particle physics laboratory and the birthplace of the World Wide Web, is using it's ORiNOCO AP-4000 mesh access points to extend the range of the laboratory's Wi-Fi network and to provide continuous monitoring of the lab's calorimeters" (1/2 page)

  17. PNNL supercomputer to become largest computing resource on the Grid

    CERN Multimedia

    2002-01-01

    Hewlett Packard announced that the US DOE Pacific Northwest National Laboratory will connect a 9.3-teraflop HP supercomputer to the DOE Science Grid. This will be the largest supercomputer attached to a computer grid anywhere in the world (1 page).

  18. A monolithic silicon detector telescope

    International Nuclear Information System (INIS)

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  19. Artificial Intelligence in Autonomous Telescopes

    Science.gov (United States)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  20. Engaging Undergraduate Students in Transiting Exoplanet Research with Small Telescopes

    Science.gov (United States)

    Stephens, Denise C.; Stoker, E.; Gaillard, C.; Ranquist, E.; Lara, P.; Wright, K.

    2013-10-01

    Brigham Young University has a relatively large undergraduate physics program with 300 to 360 physics majors. Each of these students is required to be engaged in a research group and to produce a senior thesis before graduating. For the astronomy professors, this means that each of us is mentoring at least 4-6 undergraduate students at any given time. For the past few years I have been searching for meaningful research projects that make use of our telescope resources and are exciting for both myself and my students. We first started following up Kepler Objects of Interest with our 0.9 meter telescope, but quickly realized that most of the transits we could observe were better analyzed with Kepler data and were false positive objects. So now we have joined a team that is searching for transiting planets, and my students are using our 16" telescope to do ground based follow-up on the hundreds of possible transiting planet candidates produced by this survey. In this presentation I will describe our current telescopes, the observational setup, and how we use our telescopes to search for transiting planets. I'll describe some of the software the students have written. I'll also explain how to use the NASA Exoplanet Archive to gather data on known transiting planets and Kepler Objects of Interests. These databases are useful for determining the observational limits of your small telescopes and teaching your students how to reduce and report data on transiting planets. Once that is in place, you are potentially ready to join existing transiting planet missions by doing ground-based follow-up. I will explain how easy it can be to implement this type of research at any high school, college, or university with a small telescope and CCD camera.

  1. The ROTSE-IIIa telescope system

    International Nuclear Information System (INIS)

    Smith, D.; Akerlof, C.; Kehoe, R.; McKay, T.; Rykoff, E.; Ashley, M.C.B.; Phillips, M.A.; Casperson, D.; Gisler, G.; McGowan, K.; Vestrand, W.T.; Wozniak, P.; Wren, J.; Marshall, S.

    2003-01-01

    We report on the current operating status of the ROTSE-IIIa telescope, currently undergoing testing at Los Alamos National Laboratories in New Mexico. It will be shipped to Siding Spring Observatory, Australia, in first quarter 2002. ROTSE-IIIa has been in automated observing mode since early October, 2001, after completing several weeks of calibration and check-out observations. Calibrated lists of objects in ROTSE-IIIa sky patrol data are produced routinely in an automated pipeline, and we are currently automating analysis procedures to compile these lists, eliminate false detections, and automatically identify transient and variable objects. The manual application of these procedures has already led to the detection of a nova that rose over six magnitudes in two days to a maximum detected brightness of mR ∼ 13.9 and then faded two magnitudes in two weeks. We also readily identify variable stars, includings those suspected to be variables from the Sloan Digital Sky Survey. We report on our system to allow public monitoring of the telescope operational status in real time over the WWW

  2. Observations of VHE γ-Ray Sources with the MAGIC Telescope

    Science.gov (United States)

    Bartko, H.

    2008-10-01

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy γ-radiation in the energy band between about 50 GeV and 10 TeV. Since Autumn of 2004 MAGIC has been taking data routinely, observing various objects like supernova remnants (SNRs), γ-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results for individual sources. An outlook to the construction of the second MAGIC telescope is given.

  3. Neutrino telescopes in the World

    International Nuclear Information System (INIS)

    Ernenwein, J.-P.

    2007-01-01

    Neutrino astronomy has rapidly developed these last years, being the only way to get specific and reliable information about astrophysical objects still poorly understood.Currently two neutrino telescopes are operational in the World: BAIKAL, in the lake of the same name in Siberia, and AMANDA, in the ices of the South Pole. Two telescopes of the same type are under construction in the Mediterranean Sea: ANTARES and NESTOR. All these telescopes belong to a first generation, with an instrumented volume smaller or equal to 0.02 km3. Also in the Mediterranean Sea, the NEMO project is just in its starting phase, within the framework of a cubic kilometer size neutrino telescope study. Lastly, the ICECUBE detector, with a volume reaching about 1 km3, is under construction on the site of AMANDA experiment, while an extension of the BAIKAL detector toward km3 is under study. We will present here the characteristics of these experiments, as well as the results of their observations

  4. Push-To Telescope Mathematics

    Science.gov (United States)

    Teets, Donald

    2012-01-01

    Two coordinate systems are related here, one defined by the earth's equator and north pole, the other by the orientation of a telescope at some location on the surface of the earth. Applying an interesting though somewhat obscure property of orthogonal matrices and using the cross-product simplifies this relationship, revealing that a surprisingly…

  5. GISOT: a giant solar telescope

    Science.gov (United States)

    Hammerschlag, Robert H.; von der Lühe, Oskar F.; Bettonvil, Felix C.; Jägers, Aswin P.; Snik, Frans

    2004-10-01

    A concept is presented for an extremely large high-resolution solar telescope with an aperture of 11 m and diffraction limited for visual wavelengths. The structure of GISOT will be transparent to wind and placed on a transparent stiff tower. For efficient wind flushing, all optics, including the primary mirror, will be located above the elevation axis. The aperture will be of the order of 11 m, not rotatively symmetrical, but of an elongated shape with dimensions 11 x 4 m. It consists of a central on-axis 4 m mirror with on both sides 3 pieces of 2 m mirrors. The optical layout will be kept simple to guarantee quality and minimize stray light. A Coudé room for instruments is planned below the telescope. The telescope will not be housed in a dome-like construction, which interferes with the open principle. Instead the telescope will be protected by a foldable tent construction with a diameter of the order of 30 m, which doesn"t form any obstruction during observations, but can withstand the severe weather circumstances on mountain sites. Because of the nature of the solar scene, extremely high resolution in only one dimension is sufficient to solve many exciting problems in solar physics and in this respect the concept of GISOT is very promising.

  6. The Thirty-Meter Telescope

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The Thirty-Meter Telescope international observatory will enable transformational observations over the full cosmic timeline all the way from the first luminous objects in the Universe to the planets and moons of our own solar system. To realize its full scientific potential, TMT will be equipped with a powerful ...

  7. Overdenture dengan Pegangan Telescopic Crown

    Directory of Open Access Journals (Sweden)

    Pambudi Santoso

    2014-06-01

    Full Text Available Kaitan presisi merupakan alat retensi mekanis yang menghubungkan antara satu atau lebih pegangan gigi tiruan, yang bertujuan untuk menambah retensi dan/atau stabilisasi. Kaitan presisi dapat digunakan secara luas pada gigi tiruan cekat, gigi tiruan sebagian lepasan, overdenture, implant untuk retensi overdenture, dan protesa maksilo fasial. Overdenture dengan kaitan presisi dapat membantu dalam pembagian beban kunyah, meminimalkan trauma pada gigi pegangan dan jaringan lunak, meminimalkan resorbsi tulang, dan meningkatkan estetik dan pengucapan suara. Salah satu jenis dari kaitan presisi adalah telescopic crown, terdiri dari 2 macam mahkota, yaitu mahkota primer yang melekat secara permanen pada gigi penyangga, dan mahkota sekunder yang melekat pada gigi tiruan. Tujuan pemaparan kasus ini adalah untuk memberikan informasi tentang rehabilitasi pasien edentulous sebagian rahang atas dengan telescopic crown..  Pasien wanita berusia 45 tahun datang ke klinik prostodonsia RSGM Prof.Soedomo dengan keluhan ingin dibuatkan gigi tiruan. Pasien kehilangan gigi 11 12 15 16 17 21 22 24 25 26 dan 27 yang diindikasikan untuk pembuatan overdenture gigi tiruan sebagian lepasan (GTS kerangka logam dengan pegangan telescopic crown pada gigi 13 dan 14 dengan sistem parallel-sided crown. Tahap-tahap pembuatan telescopic crown yaitu mencetak model study dengan catatan gigit pendahuluan. Perawatan saluran dilakukan pada akar gigi 13, dilanjutkan pemasangan pasak fiber serta rewalling dinding bukal. Gigi 13 dan 14 dilakukan preparasi mahkota penuh, dilanjutkan dengan pencetakan model kerja untuk coping primer dan kerangka logam dengan metode double impression. Coping primer disementasi pada gigi penyangga, dilanjutkan pasang coba coping sekunder beserta kerangka logam. Selanjutnya dilakukan pencatatan gigit, pencetakan model kerja, penyusunan gigi dan pasang coba penyusunan gigi pada pasien. Prosedur dilanjutkan dengan proses di laboratorium, serta insersi pada

  8. The Kilo-Degree Survey

    NARCIS (Netherlands)

    de Jong, J. T. A.; Kuijken, K.; Applegate, D.; Begeman, K.; Belikov, A.; Blake, C.; Bout, J.; Boxhoorn, D.; Buddelmeijer, H.; Buddendiek, A.; Cacciato, M.; Capaccioli, M.; Choi, A.; Cordes, O.; Covone, G.; Dall'Ora, M.; Edge, A.; Erben, T.; Franse, J.; Getman, F.; Grado, A.; Harnois-Deraps, J.; Helmich, E.; Herbonnet, R.; Heymans, C.; Hildebrandt, H.; Hoekstra, H.; Huang, Z.; Irisarri, N.; Joachimi, B.; Köhlinger, F.; Kitching, T.; La Barbera, F.; Lacerda, P.; McFarland, J.; Miller, L.; Nakajima, R.; Napolitano, N. R.; Paolillo, M.; Peacock, J.; Pila-Diez, B.; Puddu, E.; Radovich, M.; Rifatto, A.; Schneider, P.; Schrabback, T.; Sifon, C.; Sikkema, G.; Simon, P.; Sutherland, W.; Tudorica, A.; Valentijn, E.; van der Burg, R.; van Uitert, E.; van Waerbeke, L.; Velander, M.; Kleijn, G. V.; Viola, M.; Vriend, W.-J.

    2013-01-01

    The Kilo-Degree Survey (KiDS), a 1500-square-degree optical imaging survey with the recently commissioned OmegaCAM wide-field imager on the VLT Survey Telescope (VST), is described. KiDS will image two fields in u-,g-,r- and i-bands and, together with the VIKING survey, produce nine-band (u- to

  9. Temporal properties of seismicity and largest earthquakes in SE Carpathians

    Directory of Open Access Journals (Sweden)

    S. Byrdina

    2006-01-01

    Full Text Available In order to estimate the hazard rate distribution of the largest seismic events in Vrancea, South-Eastern Carpathians, we study temporal properties of historical and instrumental catalogues of seismicity. First, on the basis of Generalized Extreme Value theory we estimate the average return period of the largest events. Then, following Bak et al. (2002 and Corral (2005a, we study scaling properties of recurrence times between earthquakes in appropriate spatial volumes. We come to the conclusion that the seismicity is temporally clustered, and that the distribution of recurrence times is significantly different from a Poisson process even for times largely exceeding corresponding periods of foreshock and aftershock activity. Modeling the recurrence times by a gamma distributed variable, we finally estimate hazard rates with respect to the time elapsed from the last large earthquake.

  10. Worlds Largest Wave Energy Project 2007 in Wales

    DEFF Research Database (Denmark)

    Christensen, Lars; Friis-Madsen, Erik; Kofoed, Jens Peter

    2006-01-01

    This paper introduces world largest wave energy project being developed in Wales and based on one of the leading wave energy technologies. The background for the development of wave energy, the total resource ands its distribution around the world is described. In contrast to wind energy turbines...... Dragon has to be scaled in accordance with the wave climate at the deployment site, which makes the Welch demonstrator device the worlds largest WEC so far with a total width of 300 meters. The project budget, the construction methods and the deployment site are also given....... a large number of fundamentally different technologies are utilised to harvest wave energy. The Wave Dragon belongs to the wave overtopping class of converters and the paper describes the fundamentals and the technical solutions used in this wave energy converter. An offshore floating WEC like the Wave...

  11. Results from the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    Losa Agustín Sánchez

    2017-01-01

    Full Text Available The ANTARES detector is an underwater neutrino telescope, the largest in the Northern Hemisphere and the first one ever built under the sea, located in the Mediterranean Sea 40 km off the Southern coast of France, at a depth of 2.5 km. It comprises 885 photomultiplier tubes distributed along twelve detection lines. The signal due to neutrinos is searched by reconstructing the tracks of secondary particles produced in the surroundings of the detector. The detector is in data taking with its final configuration since 2008. It is aimed at identifying the sources, either steady or flaring, of cosmic neutrinos, and is also suitable for detection of dark matter within the Sun and/or Galactic Centre. ANTARES can contribute in the confirmation of the cosmic neutrino flux observed by IceCube, being particularly competitive for the Galactic Centre, and in general for galactic sources, due its latitude and at lower energies and softer spectra due its configuration. Several multi-messenger analyses have been also attempted, including the search of coincidence signals of neutrinos with gravitational-waves. Additional topics include neutrino oscillations or the search of exotic particles, like nuclearites and magnetic monopoles. Results from the latest analyses are presented.

  12. Upgrade and modernization of the six largest HPPs in Macedonia

    International Nuclear Information System (INIS)

    Hadzievska, M.

    2002-01-01

    In 1998, Electric Power Company of Macedonia and the International Bank for Development and Reconstruction, started the Power System Improvement Project a part of which is the Project for rehabilitation of the six largest Hydro Power Plants (HPPs) in the Republic of Macedonia. The six largest Hydro Power Plants (HPP Vrutok, HPP Raven, HPP Globocica, HPP Tikves and HPP Spilje and HPP Vrben) represent 91% of the country's hydropower capacity. The rehabilitation program is divided in five parts (contracts) and covers the refurbishment of: turbine runners, turbine and generator bearings, governors, inlet valves; butterfly valves, including accessories and control systems; generators, excitation system and voltage regulation; control system, protection and LV auxiliaries; switch gears and control gears in 220 kV, 110 kV and 35 kV substations. At the moment, only the implementation of switch gears has started, the first phase is already finished, and 50 % of the rehabilitation works for HPP Vrutok, the largest HPP, has been finished. With the realization of this project, greater hydropower production is expected. It also expected that HPPs will become a more vital part of the Macedonian power system

  13. Kabob report. Pt. 3. Chevron plant largest in Canada

    Energy Technology Data Exchange (ETDEWEB)

    1971-01-18

    Canada's largest fully integrated primary natural- gas processing and sulfur recovery plant is heading for physical completion by mid-summer of 1971. The Ralph M. Parsons Construction Co. of Canada Ltd., contractor for the S. Kaybob Beaverhill Lake Unit No. 3 gas-processing plant, to be operated by Chevron Standard Ltd., estimates completion by June 30. After that the $80 million complex will have tests and running in time. With any reasonable luck, it should be fully on stream by late summer. Preliminary construction on the 200-acre site started in Jan. 1969 with clearing and contouring of the main plant and sulfur storage sites. Initial rough grading started in the early summer, after spring breakup was over. Delivery of most of the big items was made by rail because the local secondary roads were inadequate for them. Concrete has been a large item. The contractor has its own batch plant on the site for the estimated 28,000 cu yd which will be needed for the whole job. Dominating the construction site from the start has been the high sulfur plant stack, first of the major items to be finished. It will serve to dispose of effluent from the largest sulfur recovery unit in Canada. It is 465 ft high, one of the largest in Alberta, and a significant contribution to pollution control and environmental protection.

  14. Origins Space Telescope: Cosmology and Reionization

    Science.gov (United States)

    Vieira, Joaquin Daniel; Origins Space Telescope

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.

  15. The Brightest of Reionizing Galaxies Survey: Constraints on the Bright End of the z ~ 8 Luminosity Function

    Science.gov (United States)

    Bradley, L. D.; Trenti, M.; Oesch, P. A.; Stiavelli, M.; Treu, T.; Bouwens, R. J.; Shull, J. M.; Holwerda, B. W.; Pirzkal, N.

    2012-12-01

    We report the discovery of 33 Lyman-break galaxy candidates at z ~ 8 detected in Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging as part of the Brightest of Reionizing Galaxies (BoRG) pure-parallel survey. The ongoing BoRG survey currently has the largest area (274 arcmin2) with Y 098 (or Y 105), J 125, and H 160 band coverage needed to search for z ~ 8 galaxies, about three times the current CANDELS area, and slightly larger than what will be the final CANDELS wide component with Y 105 data (required to select z ~ 8 sources). Our sample of 33 relatively bright Y 098-dropout galaxies have J 125-band magnitudes between 25.5 and 27.4 mag. This is the largest sample of bright (J 125 universe. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS5-26555. These observations are associated with programs 11519, 11520, 11524, 11528, 11530, 11533, 11534, 11541, 11700, 11702, 12024, 12025, and 12572.

  16. How the largest electric and gas utility companies administer public relations

    Energy Technology Data Exchange (ETDEWEB)

    Bogart, J.D.

    1979-04-12

    This article describes the findings of a survey conducted by the author in the second half of 1978 to determine the sizes of the public relations staffs of the nation's largest operating electric and gas utilities, their budgets, organizational differences, and specific functions. Common public relations issues and major public relations problems of the utilities are identified, as well as recent trends or changes in budgeting and organization. Some functional variations of public relations departments among utility companies were detected and described.

  17. The Dutch Open Telescope: History, Status, Prospects

    NARCIS (Netherlands)

    Rutten, R.J.

    1999-01-01

    After many years of persistent telescope design and telescope construction, R.H. Hammerschlag has installed his Dutch Open Telescope (DOT) on La Palma. I brie y review its history and design. The future of optical solar physics at Utrecht hinges on a recently-funded three- year DOT science

  18. Focusing Telescopes in Nuclear Astrophysics

    CERN Document Server

    Ballmoos, Peter von

    2007-01-01

    This volume is the first of its kind on focusing gamma-ray telescopes. Forty-eight refereed papers provide a comprehensive overview of the scientific potential and technical challenges of this nascent tool for nuclear astrophysics. The book features articles dealing with pivotal technologies such as grazing incident mirrors, multilayer coatings, Laue- and Fresnel-lenses - and even an optic using the curvature of space-time. The volume also presents an overview of detectors matching the ambitious objectives of gamma ray optics, and facilities for operating such systems on the ground and in space. The extraordinary scientific potential of focusing gamma-ray telescopes for the study of the most powerful sources and the most violent events in the Universe is emphasized in a series of introductory articles. Practicing professionals, and students interested in experimental high-energy astrophysics, will find this book a useful reference

  19. The Atacama Cosmology Telescope: Instrument

    Science.gov (United States)

    Thornton, Robert J.; Atacama Cosmology Telescope Team

    2010-01-01

    The 6-meter Atacama Cosmology Telescope (ACT) is making detailed maps of the Cosmic Microwave Background at Cerro Toco in northern Chile. In this talk, I focus on the design and operation of the telescope and its commissioning instrument, the Millimeter Bolometer Array Camera. The camera contains three independent sets of optics that operate at 148 GHz, 217 GHz, and 277 GHz with arcminute resolution, each of which couples to a 1024-element array of Transition Edge Sensor (TES) bolometers. I will report on the camera performance, including the beam patterns, optical efficiencies, and detector sensitivities. Under development for ACT is a new polarimeter based on feedhorn-coupled TES devices that have improved sensitivity and are planned to operate at 0.1 K.

  20. RHCV Telescope System Operations Manual

    Science.gov (United States)

    2018-01-05

    KRISTOFFER A. SMITH-RODRIGUEZ, LTCOL, USAF Chief, Warfighter Interface Division Airman Systems Directorate This report is published in the...other system components via ASCOM protocols. 1. Start the MaxImDL application using the desktop shortcut (a) Start Observatory dialog, (b...the desktop shortcut (a) Select “Connect Telescope” from Startup menu in Telescope tab (b) Select “Look Up” icon on ribbon menu at the top right of

  1. Telescopic Overdenture: A Case Report

    OpenAIRE

    Shruthi, C. S.; Poojya, R.; Ram, Swati; Anupama,

    2017-01-01

    Patient: This report describes the case of a 68 year old female patient who presented with the chief complaint of difficulty in chewing and poor aesthetics due to missing teeth. The patient was interested in saving the remaining natural teeth and desired minimal tissue coverage from the prosthesis. After consideration of all the factors involved, it was deemed advisable to resort to a palate free maxillary telescopic complete denture and a mandibular removable partial denture. Discussion: Con...

  2. Telescopic mine roof-support

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, A

    1989-05-17

    A mining roof support which includes a main body consisting of a pair of telescopically associated elongated members and which slide relative to each other to extend the support, engaging one of the members. A locking plate which is movable into engagement with the member by means of a lever operated cam causes tilting of the plate to engage the member and then to raise the member and lock it in the raised position. 1 fig.

  3. The Environmental Responsibility of the World’s Largest Banks

    Directory of Open Access Journals (Sweden)

    Ryszawska Bożena

    2018-03-01

    Full Text Available Sustainability transition is changing the role and function of banks, specially their products and services also in relation to stakeholders. Banks are one of the main actors supporting the transition to sustainable economy. The purpose of this study is to emphasise the role of world’s largest banks in that process. Banks are slowly responding to the new demand of sustainability and responsibility, and they try to align with it. The paper is based on an overview of the world’s five largest banks that employ corporate social responsibility (CSR reporting standards, together with detailed enumeration of pro-environmental activities included in the reports. The first section of this paper presents the most popular approaches to the problem at hand, as reported in professional literature. Section two presents the characteristics of the CSR actions in banks. The third section discusses the environmental actions of the biggest banks in Global Reporting Initiative (GRI reporting the most popular standard for reporting non-financial information. And the last part of the paper presents the conclusions resulting from the article. The research was conducted using a variety of sources, such as scientific articles, statistical data, CSR reports of the world’s largest banks, as well reporting principles and standard disclosures. The basic method used in the process of writing was a critical analysis of literature and reports concerning the CSR reporting standards, environmental responsibilities of different kinds of entities, as well as own observations based on special reports of banks. In the article, also the analysis of financial market data, induction method and comparison method have been used. The main conclusions of the analysis of the CSR reports disclosed by the world’s largest banks confirm all three of the theses presented in the article. The findings suggest that the banks under study can be regarded as environmentally responsible

  4. Longevity in Calumma parsonii, the World's largest chameleon.

    Science.gov (United States)

    Tessa, Giulia; Glaw, Frank; Andreone, Franco

    2017-03-01

    Large body size of ectothermic species can be correlated with high life expectancy. We assessed the longevity of the World's largest chameleon, the Parson's chameleon Calumma parsonii from Madagascar by using skeletochronology of phalanges taken from preserved specimens held in European natural history museums. Due to the high bone resorption we can provide only the minimum age of each specimen. The highest minimum age detected was nine years for a male and eight years for a female, confirming that this species is considerably long living among chameleons. Our data also show a strong correlation between snout-vent length and estimated age. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Environmental isotope signatures of the largest freshwater lake in Kerala

    International Nuclear Information System (INIS)

    Unnikrishnan Warrier, C.

    2007-01-01

    Sasthamkotta lake, the largest freshwater lake in Kerala, serves as a source for drinking water for more than half a million people. Environmental 137 Cs analysis done on undisturbed sediment core samples reveals that the recent rate of sedimentation is not uniform in the lake. The useful life of lake is estimated as about 800 years. The δD and δ 18 O values of the lake waters indicate that the lake is well mixed with a slight variation horizontally. The stable isotope studies on well waters from the catchment indicate hydraulic communication with the lake and lake groundwater system is flow-through type. Analytical model also supports this view. (author)

  6. The 1.5 meter solar telescope GREGOR

    Science.gov (United States)

    Schmidt, W.; von der Lühe, O.; Volkmer, R.; Denker, C.; Solanki, S. K.; Balthasar, H.; Bello Gonzalez, N.; Berkefeld, Th.; Collados, M.; Fischer, A.; Halbgewachs, C.; Heidecke, F.; Hofmann, A.; Kneer, F.; Lagg, A.; Nicklas, H.; Popow, E.; Puschmann, K. G.; Schmidt, D.; Sigwarth, M.; Sobotka, M.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Waldmann , T. A.

    2012-11-01

    The 1.5 m telescope GREGOR opens a new window to the understanding of solar small-scale magnetism. The first light instrumentation includes the Gregor Fabry Pérot Interferometer (GFPI), a filter spectro-polarimeter for the visible wavelength range, the GRating Infrared Spectro-polarimeter (GRIS) and the Broad-Band Imager (BBI). The excellent performance of the first two instruments has already been demonstrated at the Vacuum Tower Telescope. GREGOR is Europe's largest solar telescope and number 3 in the world. Its all-reflective Gregory design provides a large wavelength coverage from the near UV up to at least 5 microns. The field of view has a diameter of 150 arcsec. GREGOR is equipped with a high-order adaptive optics system, with a subaperture size of 10 cm, and a deformable mirror with 256 actuators. The science goals are focused on, but not limited to, solar magnetism. GREGOR allows us to measure the emergence and disappearance of magnetic flux at the solar surface at spatial scales well below 100 km. Thanks to its spectro-polarimetric capabilities, GREGOR will measure the interaction between the plasma flows, different kinds of waves, and the magnetic field. This will foster our understanding of the processes that heat the chromosphere and the outer layers of the solar atmosphere. Observations of the surface magnetic field at very small spatial scales will shed light on the variability of the solar brightness.

  7. Telescopic Overdenture: A Case Report

    Science.gov (United States)

    Shruthi, C. S.; Poojya, R.; Ram, Swati; Anupama

    2017-01-01

    Patient: This report describes the case of a 68 year old female patient who presented with the chief complaint of difficulty in chewing and poor aesthetics due to missing teeth. The patient was interested in saving the remaining natural teeth and desired minimal tissue coverage from the prosthesis. After consideration of all the factors involved, it was deemed advisable to resort to a palate free maxillary telescopic complete denture and a mandibular removable partial denture. Discussion: Considering the age of the patient and the cost involved, implant supported prosthesis was ruled out as a treatment option for the patient. A telescopic denture was chosen as a favourable treatment option since it overcomes many of the problems posed by conventional complete dentures like progressive bone loss, lower stability and retention, loss of periodontal proprioception and low masticatory efficiency. It also provides minimal tissue coverage and better distribution of forces. Evaluation of occlusion, esthetics, phonetics and comfort after 24 hours, 1 week and 1 month of treatment showed that the patient was happy with the prosthesis and was able to speak and chew well. Conclusion: Telescopic overdentures have better retention and stability as compared to conventional complete dentures. They improve the chewing efficiency, patient comfort and also decrease the alveolar bone resorption. As such they are an excellent alternative to conventional complete denture treatment. PMID:28533736

  8. Black holes at neutrino telescopes

    International Nuclear Information System (INIS)

    Kowalski, M.; Ringwald, A.; Tu, H.

    2002-01-01

    In scenarios with extra dimensions and TeV-scale quantum gravity, black holes are expected to be produced in the collision of light particles at center-of-mass energies above the fundamental Planck scale with small impact parameters. Black hole production and evaporation may thus be studied in detail at the large hadron collider (LHC). But even before the LHC starts operating, neutrino telescopes such as AMANDA/IceCube, ANTARES, Baikal, and RICE have an opportunity to search for black hole signatures. Black hole production in the scattering of ultrahigh energy cosmic neutrinos on nucleons in the ice or water may initiate cascades and through-going muons with distinct characteristics above the Standard Model rate. In this Letter, we investigate the sensitivity of neutrino telescopes to black hole production and compare it to the one expected at the Pierre Auger Observatory, an air shower array currently under construction, and at the LHC. We find that, already with the currently available data, AMANDA and RICE should be able to place sensible constraints in black hole production parameter space, which are competitive with the present ones from the air shower facilities Fly's Eye and AGASA. In the optimistic case that a ultrahigh energy cosmic neutrino flux significantly higher than the one expected from cosmic ray interactions with the cosmic microwave background radiation is realized in nature, one even has discovery potential for black holes at neutrino telescopes beyond the reach of LHC. (orig.)

  9. Academic Training: Deep Space Telescopes

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 20, 21, 22, 23, 24 February from 11:00 to 12:00 - Council Chamber on 20, 21, 23, 24 February, TH Auditorium, bldg 4 - 3-006, on 22 February Deep Space Telescopes G. BIGNAMI / CNRS, Toulouse, F & Univ. di Pavia, I The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo's telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics thro...

  10. EUSO-TA prototype telescope

    Energy Technology Data Exchange (ETDEWEB)

    Bisconti, Francesca, E-mail: francesca.bisconti@kit.edu

    2016-07-11

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  11. The NASA Spitzer Space Telescope.

    Science.gov (United States)

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  12. Telescopic Overdenture: A Case Report.

    Science.gov (United States)

    Shruthi, C S; Poojya, R; Ram, Swati; Anupama

    2017-03-01

    This report describes the case of a 68 year old female patient who presented with the chief complaint of difficulty in chewing and poor aesthetics due to missing teeth. The patient was interested in saving the remaining natural teeth and desired minimal tissue coverage from the prosthesis. After consideration of all the factors involved, it was deemed advisable to resort to a palate free maxillary telescopic complete denture and a mandibular removable partial denture. Considering the age of the patient and the cost involved, implant supported prosthesis was ruled out as a treatment option for the patient. A telescopic denture was chosen as a favourable treatment option since it overcomes many of the problems posed by conventional complete dentures like progressive bone loss, lower stability and retention, loss of periodontal proprioception and low masticatory efficiency. It also provides minimal tissue coverage and better distribution of forces. Evaluation of occlusion, esthetics, phonetics and comfort after 24 hours, 1 week and 1 month of treatment showed that the patient was happy with the prosthesis and was able to speak and chew well. Telescopic overdentures have better retention and stability as compared to conventional complete dentures. They improve the chewing efficiency, patient comfort and also decrease the alveolar bone resorption. As such they are an excellent alternative to conventional complete denture treatment.

  13. EUSO-TA prototype telescope

    Science.gov (United States)

    Bisconti, Francesca; JEM-EUSO Collaboration

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  14. Advanced Dark Energy Physics Telescope (ADEPT). Final Report

    International Nuclear Information System (INIS)

    Bennett, Charles L.

    2009-01-01

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for ∼10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z ∼ 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first detected in 2005 in Sloan Digital

  15. Twin-Telescope Wettzell (TTW)

    Science.gov (United States)

    Hase, H.; Dassing, R.; Kronschnabl, G.; Schlüter, W.; Schwarz, W.; Lauber, P.; Kilger, R.

    2007-07-01

    Following the recommendations made by the VLBI2010 vision report of the IVS, a proposal has been made to construct a Twin Telescope for the Fundamental Station Wettzell in order to meet the future requirements of the next VLBI generation. The Twin Telescope consists of two identical radiotelescopes. It is a project of the Federal Agency for Cartography and Geodesy (BKG). This article summarizes the project and some design ideas for the Twin-Telescope. %ZALMA (2005). Technical Specification for Design, Manufacturing, Transport and Integration on Site of the ALMA ANTENNAS, Doc. ALMA-34.00.00.00.006-BSPE. Behrend, D. (2006). VLBI2010 Antenna Specs, Data sheet. DeBoer, D. (2001). The ATA Offset Gregorian Antenna, ATA Memo #16, February 10. Imbriale, W.A. (2006). Design of a Wideband Radio Telescope, Jet Propulsion Laboratory and S. Weinreb and H. Mandi, California Institute of Technology. Kilger, R. (2007). TWIN-Design studies, Presentation for the IVS board members (internal document),Wettzell. Kronschnabl, G. (2006). Subject: Memo from Bill Petrachenko, E-mail to the Twin-Working Group (in German), July. Lindgren, ETS-Lindgren (2005). The Model 3164-05 Open Boundary Quadridge Horn, Data Sheet. Niell, A., A. Whitney, W. Petrachenko, W. Schlüter, N. Vandenberg, H.Hase, Y. Koyama, C. Ma, H. Schuh, G. Tucari (2006). in: IVS Annual Report 2005, pg. 13-40, NASA/TP-2006-214136, April. Olsson, R., Kildal, P.-S., and Weinreb, S. (2006). IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, February. Petrachenko, B. (2006). The Case For and Against Multiple Antennas at a Site, IVS Memorandum, 2006-019v01. Petrachenko, B. (2006). IVS Memorandum, 2006-016v01. RFSpin (2004). Double Ridged Waveguide Horn-Model DRH20, Antenna Specifications, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Crossed Log- Periodic Antennas HL024A1/S1, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Log-Periodic Antennas HL050/HL050S1, Data Sheet. Rogers, A.E.E. (2006). Simulations of broadband

  16. Fishing down the largest coral reef fish species.

    Science.gov (United States)

    Fenner, Douglas

    2014-07-15

    Studies on remote, uninhabited, near-pristine reefs have revealed surprisingly large populations of large reef fish. Locations such as the northwestern Hawaiian Islands, northern Marianas Islands, Line Islands, U.S. remote Pacific Islands, Cocos-Keeling Atoll and Chagos archipelago have much higher reef fish biomass than islands and reefs near people. Much of the high biomass of most remote reef fish communities lies in the largest species, such as sharks, bumphead parrots, giant trevally, and humphead wrasse. Some, such as sharks and giant trevally, are apex predators, but others such as bumphead parrots and humphead wrasse, are not. At many locations, decreases in large reef fish species have been attributed to fishing. Fishing is well known to remove the largest fish first, and a quantitative measure of vulnerability to fishing indicates that large reef fish species are much more vulnerable to fishing than small fish. The removal of large reef fish by fishing parallels the extinction of terrestrial megafauna by early humans. However large reef fish have great value for various ecological roles and for reef tourism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. ROBO-AO M DWARF MULTIPLICITY SURVEY

    Science.gov (United States)

    Lamman, Claire; Berta-Thompson, Zachory; Baranec, Christoph; Law, Nicholas; Schonhut, Jessica

    2018-01-01

    We analyzed over 7,000 observations from Robo-AO’s field M dwarf survey taken on the 2.1m Kitt Peak telescope. Results will help determine the multiplicity fraction of M dwarfs as a function of primary mass, which is a crucial step towards understanding their evolution and formation mechanics. Through its robotic, laser-guided, and automated system, the Robo-AO instrument has yielded the largest adaptive-optics M dwarf survey to date. I developed a graphical user interface to quickly analyze this data. Initial data analysis included assessing data quality, checking the result from Robo-AO’s automatic reduction pipeline, and determining existence as well as the relative position of companions through a visual inspection. This program can be applied to other datasets and was successfully tested by re-analyzing observations from a separate Robo-AO survey. Following the preliminary results from this data analysis tool, further observations were done with the Keck II telescope by using its NIRC2 imager to follow up on ten select targets for the existence and physical association of companions. After a conservative initial cut for quality, 356 companions were found within 4” of a primary star out of 2,746 high quality Robo-AO M dwarf observations, including four triple systems. We will present a preliminary estimate for the multiplicity rate of wide M dwarf companions after accounting for observation limitations and the completeness of our search. Future research will yield insights into low-mass stellar formation and provide a database of nearby M dwarf multiples that will potentially assist ongoing and future surveys for planets around these stars, such as the NASA TESS mission.

  18. Health Insurance Premium Increases for the 5 Largest School Districts in the United States, 2004–2008

    Science.gov (United States)

    Cantillo, John R.

    2010-01-01

    Background Local school districts are often one of the largest, if not the largest, employers in their respective communities. Like many large employers, school districts offer health insurance to their employees. There is a lack of information about the rate of health insurance premiums in US school districts relative to other employers. Objective To assess the change in the costs of healthcare insurance in the 5 largest public school districts in the United States, between 2004 and 2008, as representative of large public employers in the country. Methods Data for this study were drawn exclusively from a survey sent to the 5 largest public school districts in the United States. The survey requested responses on 3 data elements for each benefit plan offered from 2004 through 2008; these included enrollment, employee costs, and employer costs. Results The premium growth for the 5 largest school districts has slowed down and is consistent with other purchasers—Kaiser/Health Research & Educational Trust and the Federal Employee Health Benefit Program. The average increase in health insurance premium for the schools was 5.9% in 2008, and the average annual growth rate over the study period was 7.5%. For family coverage, these schools provide the most generous employer contribution (80.8%) compared with the employer contribution reported by other employers (73.5%) for 2008. Conclusions Often the largest employers in their communities, school districts demonstrate a commitment to provide choice of benefits and affordability for employees and their families. Despite constraints typical of public employers, the 5 largest school districts in the United States have decelerated in premium growth consistent with other purchasers, albeit at a slower pace. PMID:25126311

  19. Health insurance premium increases for the 5 largest school districts in the United States, 2004-2008.

    Science.gov (United States)

    Cantillo, John R

    2010-03-01

    Local school districts are often one of the largest, if not the largest, employers in their respective communities. Like many large employers, school districts offer health insurance to their employees. There is a lack of information about the rate of health insurance premiums in US school districts relative to other employers. To assess the change in the costs of healthcare insurance in the 5 largest public school districts in the United States, between 2004 and 2008, as representative of large public employers in the country. Data for this study were drawn exclusively from a survey sent to the 5 largest public school districts in the United States. The survey requested responses on 3 data elements for each benefit plan offered from 2004 through 2008; these included enrollment, employee costs, and employer costs. The premium growth for the 5 largest school districts has slowed down and is consistent with other purchasers-Kaiser/Health Research & Educational Trust and the Federal Employee Health Benefit Program. The average increase in health insurance premium for the schools was 5.9% in 2008, and the average annual growth rate over the study period was 7.5%. For family coverage, these schools provide the most generous employer contribution (80.8%) compared with the employer contribution reported by other employers (73.5%) for 2008. Often the largest employers in their communities, school districts demonstrate a commitment to provide choice of benefits and affordability for employees and their families. Despite constraints typical of public employers, the 5 largest school districts in the United States have decelerated in premium growth consistent with other purchasers, albeit at a slower pace.

  20. James Webb Space Telescope Studies of Dark Energy

    Science.gov (United States)

    Gardner, Jonathan P.; Stiavelli, Massimo; Mather, John C.

    2010-01-01

    The Hubble Space Telescope (HST) has contributed significantly to studies of dark energy. It was used to find the first evidence of deceleration at z=1.8 (Riess et al. 2001) through the serendipitous discovery of a type 1a supernova (SN1a) in the Hubble Deep Field. The discovery of deceleration at z greater than 1 was confirmation that the apparent acceleration at low redshift (Riess et al. 1998; Perlmutter et al. 1999) was due to dark energy rather than observational or astrophysical effects such as systematic errors, evolution in the SN1a population or intergalactic dust. The GOODS project and associated follow-up discovered 21 SN1a, expanding on this result (Riess et al. 2007). HST has also been used to constrain cosmological parameters and dark energy through weak lensing measurements in the COSMOS survey (Massey et al 2007; Schrabback et al 2009) and strong gravitational lensing with measured time delays (Suyu et al 2010). Constraints on dark energy are often parameterized as the equation of state, w = P/p. For the cosmological constant model, w = -1 at all times; other models predict a change with time, sometimes parameterized generally as w(a) or approximated as w(sub 0)+(1-a)w(sub a), where a = (1+z)(sup -1) is the scale factor of the universe relative to its current scale. Dark energy can be constrained through several measurements. Standard candles, such as SN1a, provide a direct measurement of the luminosity distance as a function of redshift, which can be converted to H(z), the change in the Hubble constant with redshift. An analysis of weak lensing in a galaxy field can be used to derive the angular-diameter distance from the weak-lensing equation and to measure the power spectrum of dark-matter halos, which constrains the growth of structure in the Universe. Baryonic acoustic oscillations (BAO), imprinted on the distribution of matter at recombination, provide a standard rod for measuring the cosmological geometry. Strong gravitational lensing of a

  1. Discovery of KPS-1b, a Transiting Hot-Jupiter, with an Amateur Telescope Setup (Abstract)

    Science.gov (United States)

    Benni, P.; Burdanov, A.; Krushinsky, V.; Sokov, E.

    2018-06-01

    (Abstract only) Using readily available amateur equipment, a wide-field telescope (Celestron RASA, 279 mm f/2.2) coupled with a SBIG ST-8300M camera was set up at a private residence in a fairly light polluted suburban town thirty miles outside of Boston, Massachusetts. This telescope participated in the Kourovka Planet Search (KPS) prototype survey, along with a MASTER-II Ural wide field telescope near Yekaterinburg, Russia. One goal was to determine if higher resolution imaging ( 2 arcsec/pixel) with much lower sky coverage can practically detect exoplanet transits compared to the successful very wide-field exoplanet surveys (KELT, XO, WASP, HATnet, TrES, Qatar, etc.) which used an array of small aperture telescopes coupled to CCDs.

  2. A Galaxy Zoo - WorldWide Telescope Mashup: Expanding User Defined Exploration

    Science.gov (United States)

    Luebbert, Jarod; Sands, M.; Fay, J.; Smith, A.; Gay, P. L.; Galaxy Zoo Team

    2010-01-01

    We present a new way of exploring your favorite Galaxy Zoo galaxies within the context of the sky using Microsoft Research's WorldWide Telescope. Galaxy Zoo has a fantastic community that is eager to learn and contribute to science through morphological classifications of galaxies. WorldWide Telescope is an interactive observatory that allows users to explore the sky. WorldWide Telescope uses images from the world's best telescopes, including the galaxies of the Sloan Digital Sky Survey. WorldWide Telescope provides a fantastic sense of size and distance that is hard to experience in Galaxy Zoo. Creating tours from favorite galaxies directly from Galaxy Zoo aims to solve this dilemma.The incorporation of Galaxy Zoo and WorldWide telescope provides a great resource for users to learn more about the galaxies they are classifying. Users can now explore the areas around certain galaxies and view information about that location from within WorldWide Telescope. Not only does this encourage self-motivated research but after tours are created they can be shared with anyone. We hope this will help spread citizen science to different audiences via email, Facebook, and Twitter.Without the WorldWide Telescope team at Microsoft Research this project would not have been possible. Please go start exploring at http://wwt.galaxyzoo.org. This project was funded through the Microsoft Research Academic Program.

  3. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    Science.gov (United States)

    Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.

  4. Environmental impacts of SMEs and the effects of formal management tools : Evidence from EU's largest survey

    NARCIS (Netherlands)

    Graafland, Johan; Smid, Hugo

    Much literature on corporate social responsibility suggests that formal management tools to manage environmental impacts, such as environmental reporting or ISO14001 certification, are not suitable for small and medium-sized enterprises (SMEs). Other studies, however, argue that using some form of

  5. Carbon and energy fluxes from China's largest freshwater lake

    Science.gov (United States)

    Gan, G.; LIU, Y.

    2017-12-01

    Carbon and energy fluxes between lakes and the atmosphere are important aspects of hydrology, limnology, and ecology studies. China's largest freshwater lake, the Poyang lake experiences tremendous water-land transitions periodically throughout the year, which provides natural experimental settings for the study of carbon and energy fluxes. In this study, we use the eddy covariance technique to explore the seasonal and diurnal variation patterns of sensible and latent heat fluxes of Poyang lake during its high-water and low-water periods, when the lake is covered by water and mudflat, respectively. We also determine the annual NEE of Poyang lake and the variations of NEE's components: Gross Primary Productivity (GPP) and Ecosystem Respiration (Re). Controlling factors of seasonal and diurnal variations of carbon and energy fluxes are analyzed, and land cover impacts on the variation patterns are also studied. Finally, the coupling between the carbon and energy fluxes are analyzed under different atmospheric, boundary stability and land cover conditions.

  6. SSC RIAR is the largest centre of research reactors

    International Nuclear Information System (INIS)

    Kalygin, V.V.

    1997-01-01

    The State Scientific Centre (SSC) ''Research Institute of Atomic Reactors'' (RIAR) is situated 100 km to the south-east from Moscow, in Dimitrovgrad, the Volga Region of the Russian Federation. SSC RIAR is the largest centre of research reactors in Russia. At present there are 5 types of reactor facilities in operation, including two NPP. One of the main tasks the Centre is the investigations on safety increase for power reactors. Broad international connections are available at the Institute. On the basis of the SSC RIAR during 3 years work has been done on the development of the branch training centre (TC) for the training of operation personnel of research and pilot reactors in Russia. (author). 3 tabs

  7. BALU: Largest autoclave research facility in the world

    Directory of Open Access Journals (Sweden)

    Hakan Ucan

    2016-03-01

    Full Text Available Among the large-scale facilities operated at the Center for Lightweight-Production-Technology of the German Aerospace Center in Stade BALU is the world's largest research autoclave. With a loading length of 20m and a loading diameter of 5.8 m the main objective of the facility is the optimization of the curing process operated by components made of carbon fiber on an industrial scale. For this reason, a novel dynamic autoclaving control has been developed that is characterized by peripheral devices to expend the performance of the facility for differential applications, by sensing systems to detect the component state throughout the curing process and by a feedback system, which is capable to intervene into the running autoclave process.

  8. Switzerland's largest wood-pellet factory in Balsthal

    International Nuclear Information System (INIS)

    Stohler, F.

    2004-01-01

    This article describes how a small Swiss electricity utility has broken out of its traditional role in power generation and the distribution of electricity and gone into the production of wood pellets. The pellets, which are made from waste wood (sawdust) available from wood processing companies, are produced on a large scale in one of Europe's largest pellets production facilities. The boom in the use of wood pellets for heating purposes is discussed. The article discusses this unusual approach for a Swiss power utility, which also operates a wood-fired power station and is even involved in an incineration plant for household wastes. The markets being aimed for in Switzerland and in Europe are described, including modern low-energy-consumption housing projects. A further project is described that is to use waste wood available from a large wood processing facility planned in the utility's own region

  9. Opportunities for biodiversity gains under the world's largest reforestation programme

    Science.gov (United States)

    Hua, Fangyuan; Wang, Xiaoyang; Zheng, Xinlei; Fisher, Brendan; Wang, Lin; Zhu, Jianguo; Tang, Ya; Yu, Douglas W.; Wilcove, David S.

    2016-01-01

    Reforestation is a critical means of addressing the environmental and social problems of deforestation. China's Grain-for-Green Program (GFGP) is the world's largest reforestation scheme. Here we provide the first nationwide assessment of the tree composition of GFGP forests and the first combined ecological and economic study aimed at understanding GFGP's biodiversity implications. Across China, GFGP forests are overwhelmingly monocultures or compositionally simple mixed forests. Focusing on birds and bees in Sichuan Province, we find that GFGP reforestation results in modest gains (via mixed forest) and losses (via monocultures) of bird diversity, along with major losses of bee diversity. Moreover, all current modes of GFGP reforestation fall short of restoring biodiversity to levels approximating native forests. However, even within existing modes of reforestation, GFGP can achieve greater biodiversity gains by promoting mixed forests over monocultures; doing so is unlikely to entail major opportunity costs or pose unforeseen economic risks to households. PMID:27598524

  10. SSC RIAR is the largest centre of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kalygin, V V [State Scientific Centre, Research Inst. of Atomic Reactors (Russian Federation)

    1997-10-01

    The State Scientific Centre (SSC) ``Research Institute of Atomic Reactors`` (RIAR) is situated 100 km to the south-east from Moscow, in Dimitrovgrad, the Volga Region of the Russian Federation. SSC RIAR is the largest centre of research reactors in Russia. At present there are 5 types of reactor facilities in operation, including two NPP. One of the main tasks the Centre is the investigations on safety increase for power reactors. Broad international connections are available at the Institute. On the basis of the SSC RIAR during 3 years work has been done on the development of the branch training centre (TC) for the training of operation personnel of research and pilot reactors in Russia. (author). 3 tabs.

  11. The largest Silurian vertebrate and its palaeoecological implications

    Science.gov (United States)

    Choo, Brian; Zhu, Min; Zhao, Wenjin; Jia, Liaotao; Zhu, You'an

    2014-01-01

    An apparent absence of Silurian fishes more than half-a-metre in length has been viewed as evidence that gnathostomes were restricted in size and diversity prior to the Devonian. Here we describe the largest pre-Devonian vertebrate (Megamastax amblyodus gen. et sp. nov.), a predatory marine osteichthyan from the Silurian Kuanti Formation (late Ludlow, ~423 million years ago) of Yunnan, China, with an estimated length of about 1 meter. The unusual dentition of the new form suggests a durophagous diet which, combined with its large size, indicates a considerable degree of trophic specialisation among early osteichthyans. The lack of large Silurian vertebrates has recently been used as constraint in palaeoatmospheric modelling, with purported lower oxygen levels imposing a physiological size limit. Regardless of the exact causal relationship between oxygen availability and evolutionary success, this finding refutes the assumption that pre-Emsian vertebrates were restricted to small body sizes. PMID:24921626

  12. The largest glitch observed in the Crab pulsar

    Science.gov (United States)

    Shaw, B.; Lyne, A. G.; Stappers, B. W.; Weltevrede, P.; Bassa, C. G.; Lien, A. Y.; Mickaliger, M. B.; Breton, R. P.; Jordan, C. A.; Keith, M. J.; Krimm, H. A.

    2018-05-01

    We have observed a large glitch in the Crab pulsar (PSR B0531+21). The glitch occurred around MJD 58064 (2017 November 8) when the pulsar underwent an increase in the rotation rate of Δν = 1.530 × 10-5 Hz, corresponding to a fractional increase of Δν/ν = 0.516 × 10-6 making this event the largest glitch ever observed in this source. Due to our high-cadence and long-dwell time observations of the Crab pulsar we are able to partially resolve a fraction of the total spin-up of the star. This delayed spin-up occurred over a timescale of ˜1.7 days and is similar to the behaviour seen in the 1989 and 1996 large Crab pulsar glitches. The spin-down rate also increased at the glitch epoch by Δ \\dot{ν } / \\dot{ν } = 7 × 10^{-3}. In addition to being the largest such event observed in the Crab, the glitch occurred after the longest period of glitch inactivity since at least 1984 and we discuss a possible relationship between glitch size and waiting time. No changes to the shape of the pulse profile were observed near the glitch epoch at 610 MHz or 1520 MHz, nor did we identify any changes in the X-ray flux from the pulsar. The long-term recovery from the glitch continues to progress as \\dot{ν } slowly rises towards pre-glitch values. In line with other large Crab glitches, we expect there to be a persistent change to \\dot{ν }. We continue to monitor the long-term recovery with frequent, high quality observations.

  13. The Northwest Indiana Robotic Telescope

    Science.gov (United States)

    Slavin, Shawn D.; Rengstorf, A. W.; Aros, J. C.; Segally, W. B.

    2011-01-01

    The Northwest Indiana Robotic (NIRo) Telescope is a remote, automated observing facility recently built by Purdue University Calumet (PUC) at a site in Lowell, IN, approximately 30 miles from the PUC campus. The recently dedicated observatory will be used for broadband and narrowband optical observations by PUC students and faculty, as well as pre-college students through the implementation of standards-based, middle-school modules developed by PUC astronomers and education faculty. The NIRo observatory and its web portal are the central technical elements of a project to improve astronomy education at Purdue Calumet and, more broadly, to improve science education in middle schools of the surrounding region. The NIRo Telescope is a 0.5-meter (20-inch) Ritchey-Chrétien design on a Paramount ME robotic mount, featuring a seven-position filter wheel (UBVRI, Hα, Clear), Peltier (thermoelectrically) cooled CCD camera with 3056 x 3056, square, 12 μm pixels, and off-axis guiding. It provides a coma-free imaging field of 0.5 degrees square, with a plate scale of 0.6 arcseconds per pixel. The observatory has a wireless internet connection, local weather station which publishes data to an internet weather site, and a suite of CCTV security cameras on an IP-based, networked video server. Control of power to every piece of instrumentation is maintained via internet-accessible power distribution units. The telescope can be controlled on-site, or off-site in an attended fashion via an internet connection, but will be used primarily in an unattended mode of automated observation, where queued observations will be scheduled daily from a database of requests. Completed observational data from queued operation will be stored on a campus-based server, which also runs the web portal and observation database. Partial support for this work was provided by the National Science Foundation's Course, Curriculum, and Laboratory Improvement (CCLI) program under Award No. 0736592.

  14. History of Robotic and Remotely Operated Telescopes

    Science.gov (United States)

    Genet, Russell M.

    2011-03-01

    While automated instrument sequencers were employed on solar eclipse expeditions in the late 1800s, it wasn't until the 1960s that Art Code and associates at Wisconsin used a PDP minicomputer to automate an 8-inch photometric telescope. Although this pioneering project experienced frequent equipment failures and was shut down after a couple of years, it paved the way for the first space telescopes. Reliable microcomputers initiated the modern era of robotic telescopes. Louis Boyd and I applied single board microcomputers with 64K of RAM and floppy disk drives to telescope automation at the Fairborn Observatory, achieving reliable, fully robotic operation in 1983 that has continued uninterrupted for 28 years. In 1985 the Smithsonian Institution provided us with a suburb operating location on Mt. Hopkins in southern Arizona, while the National Science Foundation funded additional telescopes. Remote access to our multiple robotic telescopes at the Fairborn Observatory began in the late 1980s. The Fairborn Observatory, with its 14 fully robotic telescopes and staff of two (one full and one part time) illustrates the potential for low operating and maintenance costs. As the information capacity of the Internet has expanded, observational modes beyond simple differential photometry opened up, bringing us to the current era of real-time remote access to remote observatories and global observatory networks. Although initially confined to smaller telescopes, robotic operation and remote access are spreading to larger telescopes as telescopes from afar becomes the normal mode of operation.

  15. Sunyaev-Zeldovich Predictions for the Atacama Cosmology Telescope

    Science.gov (United States)

    Menanteau, Felipe; Hughes, J. P.; Jimenez, R.; Barkhouse, W.; Berta, Z.; Hansen, S.; Hernandez-Monteagudo, C.; Kosowsky, A.; Lin, Y. T.; Moodley, K.; Ngeow, C.; Roche, N.; Spergel, D.; Tucker, D.; Verde, L.

    2007-05-01

    We present predictions for the microwave sky in a low-extinction region centered near RA = 23:00 and Dec = -55:12, which will be surveyed in the coming year at 145 GHz by the Atacama Cosmology Telescope (ACT, PI: Lyman Page) and in the X-ray band by XMM-Newton (PI: Hans Boehringer). The predictions are based on Sunyaev-Zeldovich distortions drawn from optical data collected by the Blanco Cosmology Survey (BCS). We also compare the predictions with X-ray data from the ROSAT All Sky Survey. The BCS (PI: Joe Mohr) is a NOAO large, wide-field survey project that has been awarded 45 nights on the CTIO Blanco 4-meter telescope to image two 50 square-degree patches of the southern sky in four bands (griz). The survey began in 2005 and has completed two (out of three) years of data taking. A preliminary automated image reduction and analysis pipeline for the BCS data is briefly summarized. Financial support was provided by the NSF under the PIRE program (OISE-0530095).

  16. New discoveries with radio telescopes

    International Nuclear Information System (INIS)

    Schmidt, J.

    1985-01-01

    The author describes in a simple fashion the results obtained by astronomers from ETH Zurich using the broadband 7-m radio telescope in Switzerland to observe the sun over a period of six years. He explains the results in terms of our present understanding of the sun's workings. The astronomers found that a solar eruption is not a single event but consists of tens of thousands of small eruptions or spikes each only 200 km high and producing a burst of radio waves 10-100 times as intense as the background. (T.J.R.A.)

  17. Imaging monolithic silicon detector telescopes

    International Nuclear Information System (INIS)

    Amorini, F.; Sipala, V.; Cardella, G.; Boiano, C.; Carbone, B.; Cosentino, L.; Costa, E.; Di Pietro, A.; Emanuele, U.; Fallica, G.; Figuera, P.; Finocchiaro, P.; La Guidara, E.; Marchetta, C.; Pappalardo, A.; Piazza, A.; Randazzo, N.; Rizzo, F.; Russo, G.V.; Russotto, P.

    2008-01-01

    We show the results of some test beams performed on a new monolithic strip silicon detector telescope developed in collaboration with the INFN and ST-microelectronics. Using an appropriate design, the induction on the ΔE stages, generated by the charge released in the E stage, was used to obtain the position of the detected particle. The position measurement, together with the low threshold for particle charge identification, allows the new detector to be used for a large variety of applications due to its sensitivity of only a few microns measured in both directions

  18. The VANDELS ESO spectroscopic survey

    Science.gov (United States)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Le Fèvre, O.; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 motivation, survey design and target selection.

  19. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W.B.; /UC, Santa Cruz; Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Anderson, B. /UC, Santa Cruz; Axelsson, M.; /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bartelt, J.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bederede, D.; /DAPNIA, Saclay; Bellardi, F.; /INFN, Pisa; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bignami, G.F.; /Pavia U.; Bisello, D.; /INFN, Padua /Padua U.; Bissaldi, E.; /Garching, Max Planck Inst., MPE; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Pisa /INFN, Pisa /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /INFN, Padua /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /Kalmar U. /Royal Inst. Tech., Stockholm /DAPNIA, Saclay /ASI, Rome /INFN, Pisa /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /NASA, Goddard /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2009-05-15

    The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view (FoV), high-energy {gamma}-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. The LAT was built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. This paper describes the LAT, its preflight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4 x 4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 (x, y) tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an eight-layer hodoscopic configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information about the energy deposition pattern. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and ensuring that most pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. Data obtained with the LAT are intended to (1) permit rapid notification of high-energy {gamma}-ray bursts and transients and facilitate monitoring of variable sources, (2) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (3

  20. American Housing Survey (AHS)

    Data.gov (United States)

    Department of Housing and Urban Development — The AHS is the largest, regular national housing sample survey in the United States. The U.S. Census Bureau conducts the AHS to obtain up-to-date housing statistics...

  1. Toward an Autonomous Telescope Network: the TBT Scheduler

    Science.gov (United States)

    Racero, E.; Ibarra, A.; Ocaña, F.; de Lis, S. B.; Ponz, J. D.; Castillo, M.; Sánchez-Portal, M.

    2015-09-01

    Within the ESA SSA program, it is foreseen to deploy several robotic telescopes to provide surveillance and tracking services for hazardous objects. The TBT project will procure a validation platform for an autonomous optical observing system in a realistic scenario, consisting of two telescopes located in Spain and Australia, to collect representative test data for precursor SSA services. In this context, the planning and scheduling of the night consists of two software modules, the TBT Scheduler, that will allow the manual and autonomous planning of the night, and the control of the real-time response of the system, done by the RTS2 internal scheduler. The TBT Scheduler allocates tasks for both telescopes without human intervention. Every night it takes all the inputs needed and prepares the schedule following some predefined rules. The main purpose of the scheduler is the distribution of the time for follow-up of recently discovered targets and surveys. The TBT Scheduler considers the overall performance of the system, and combine follow-up with a priori survey strategies for both kind of objects. The strategy is defined according to the expected combined performance for both systems the upcoming night (weather, sky brightness, object accessibility and priority). Therefore, TBT Scheduler defines the global approach for the network and relies on the RTS2 internal scheduler for the final detailed distribution of tasks at each sensor.

  2. Advances in telescope mirror cleaning

    Science.gov (United States)

    Blanken, Maarten F.; Chopping, Alan K.; Dee, Kevin M.

    2004-09-01

    Metrology and cleaning techniques for telescope mirrors are generally well established. CO2 cleaning and water washing are mainly used. Water washing has proven to be the best method of removing oil and water stains and restoring the aluminium to nearly fresh values. The risk of water getting to unwanted places such as electronics or other optics prevents this method from being employed more often. Recently the Isaac Newton Group introduced a new cleaning technique for their telescope mirrors, which reduces the risks discussed above. This technique uses water vapour instead of water to wash the mirror. The advantage of this method is that the amount of water needed is drastically reduced. In addition the pressure of the vapour will blow away any large dust particles on the mirror and the temperature shock between the vapour and the mirror will help to de-bond the dust particles. Adding a soapy solution will help to clean oil and watermarks of the mirror. This paper describes the vapour cleaning method, tests that have been done and the overall findings.

  3. Telescoping phenomenon in pathological gambling

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Mooney, Marc E

    2012-01-01

    The course of pathological gambling (PG) in women has been described as having a later age of initiation but a shorter time to problematic gambling ("telescoped"). This study examined evidence for telescoping and its relationship with comorbidities. Seventy-one treatment-seeking individuals with PG...... underwent a diagnostic interview to examine gambling behaviors, age at initiation of gambling, and time from initiation to meeting criteria for PG. The women had a higher mean age at gambling initiation compared with that of the men (mean [SD] age, 31.3 [13.0] years, compared with 22.4 [7.9] years; p = 0.......0003) and a significantly shorter time from initiation of gambling to meeting the criteria for PG (8.33 [8.7] years compared with 11.97 [9.1] years; p = 0.0476) after controlling for demographic and clinical variables. This study presents evidence for a gender-specific course of PG unrelated to psychiatric comorbidities...

  4. ANTARES: An Undersea Neutrino telescope

    CERN Multimedia

    2002-01-01

    The ANTARES (Astronomy with a Neutrino Telescope and ${Abyss}$ environmental RESearch) deep-sea neutrino telescope is designed to search for neutrinos of astrophysical origin. Neutrinos are unique probes of the high energy universe; being neutral they are not deflected by magnetic fields and interacting weakly they can readily escape from the densest regions of the universe. Potential sources of neutrino are galactic (e.g supernova remnants, micro-quasars) and extra-galactic (e.g active galactic nuclei, gamma-ray bursters). Annihilation of dark matter particles in the Sun or Galactic Centre is another well motivated potential source of extra terrestrial neutrinos. The ANTARES detector is located 40 km off the coast of Toulon (France) at a depth of 2475m in the Mediterranean Sea. Being located in the Northern hemisphere it studies the Southern sky and in particular has the Galactic Centre in its field of view. Since 2006, the detector has operated continuously in a partial configuration. The detector was compl...

  5. Review of lunar telescope studies at MSFC

    Science.gov (United States)

    Hilchey, John D.; Nein, Max E.

    1993-09-01

    In the near future astronomers can take advantage of the lunar surface as the new 'high ground' from which to study the universe. Optical telescopes placed and operated on the lunar surface would be successors to NASA's Great Observatories. Four telescopes, ranging in aperture from a 16-m, IR/Vis/UV observatory down to a 1-m, UV 'transit' instrument, have been studied by the Lunar Telescope Working Group and the LUTE (lunar telescope ultraviolet experiment) Task Team of the Marshall Space Flight Center (MSFC). This paper presents conceptual designs of the telescopes, provides descriptions of the telescope subsystem options selected for each concept, and outlines the potential evolution of their science capabilities.

  6. Radio Telescopes Reveal Unseen Galactic Cannibalism

    Science.gov (United States)

    2008-06-01

    quasars and blazars are hundreds of times more powerful. The astronomers picked a number of relatively nearby Seyfert galaxies that had previously been observed with visible-light telescopes. They then carefully studied the Seyferts with the VLA, specifically looking for radio waves emitted by hydrogen atoms. The VLA images showed the vast majority of the Seyferts were disturbed by encounters with neighbor galaxies. By comparison, similar VLA images of inactive galaxies showed that very few were disturbed. "This comparison clearly shows a connection between close galactic encounters and the black-hole-powered activity in the cores," said Ya-Wen Tang, who began this work at the Institute of Astronomy & Astrophysics, Academia Sinica (ASIAA), in Taiwan and now is a graduate student at the National Taiwan University. "This is the best evidence yet for the fueling of Seyfert galaxies. Other mechanisms have been proposed, but they have shown little if any difference between Seyferts and inactive galaxies," Tang added. "Our results show that images of the hydrogen gas are a powerful tool for revealing otherwise-invisible gravitational interactions among galaxies," said Jeremy Lim, also of ASIAA. "This is a welcome advance in our understanding of these objects, made possible by the best and most extensive survey ever made of hydrogen in Seyferts," Lim said. Kuo, Tang and Lim worked with Paul Ho, of ASIAA and the Harvard-Smithsonian Center for Astrophysics. The scientists reported their findings in the Astrophysical Journal. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  7. Launch Will Create a Radio Telescope Larger than Earth

    Science.gov (United States)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long

  8. Kalman Filter for Calibrating a Telescope Focal Plane

    Science.gov (United States)

    Kang, Bryan; Bayard, David

    2006-01-01

    The instrument-pointing frame (IPF) Kalman filter, and an algorithm that implements this filter, have been devised for calibrating the focal plane of a telescope. As used here, calibration signifies, more specifically, a combination of measurements and calculations directed toward ensuring accuracy in aiming the telescope and determining the locations of objects imaged in various arrays of photodetectors in instruments located on the focal plane. The IPF Kalman filter was originally intended for application to a spaceborne infrared astronomical telescope, but can also be applied to other spaceborne and ground-based telescopes. In the traditional approach to calibration of a telescope, (1) one team of experts concentrates on estimating parameters (e.g., pointing alignments and gyroscope drifts) that are classified as being of primarily an engineering nature, (2) another team of experts concentrates on estimating calibration parameters (e.g., plate scales and optical distortions) that are classified as being primarily of a scientific nature, and (3) the two teams repeatedly exchange data in an iterative process in which each team refines its estimates with the help of the data provided by the other team. This iterative process is inefficient and uneconomical because it is time-consuming and entails the maintenance of two survey teams and the development of computer programs specific to the requirements of each team. Moreover, theoretical analysis reveals that the engineering/ science iterative approach is not optimal in that it does not yield the best estimates of focal-plane parameters and, depending on the application, may not even enable convergence toward a set of estimates.

  9. ANTARES: The first undersea neutrino telescope

    Science.gov (United States)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th.; Charvis, Ph.; Chauchot, P.; Chiarusi, T.; Circella, M.; Compère, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; de Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J.-J.; di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J.-L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J.-F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatá, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gómez-González, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J.-C.; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Levansuu, A.; Lefèvre, D.; Legou, T.; Lelaizant, G.; Lévéque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazéas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Palioselitis, D.; Papaleo, R.; Păvălaş, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J.-F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2011-11-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  10. ANTARES: The first undersea neutrino telescope

    International Nuclear Information System (INIS)

    Ageron, M.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Ameli, F.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A.C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  11. The BUFFALO HST Survey

    Science.gov (United States)

    Steinhardt, Charles; Jauzac, Mathilde; Capak, Peter; Koekemoer, Anton; Oesch, Pascal; Richard, Johan; Sharon, Keren q.; BUFFALO

    2018-01-01

    Beyond Ultra-deep Frontier Fields And Legacy Observations (BUFFALO) is an astronomical survey built around the six Hubble Space Telescope (HST) Frontier Fields clusters designed to learn about early galactic assembly and clustering and prepare targets for observations with the James Webb Space Telescope. BUFFALO will place significant new constraints on how and when the most massive and luminous galaxies in the universe formed and how early galaxy formation is linked to dark matter assembly. The same data will also probe the temperature and cross section of dark matter in the massive Frontier Fields galaxy clusters, and tell us how the dark matter, cluster gas, and dynamics of the clusters influence the galaxies in and around them. These studies are possible because the Spitzer Space Telescope, Chandra X-ray Observatory, XMM-Newton, and ground based telescopes have already invested heavily in deep observations around the Frontier Fields, so that the addition of HST observations can yield significant new results.

  12. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). III. Possible evidence for formation of NGC 6618 cluster in M 17 by cloud-cloud collision

    Science.gov (United States)

    Nishimura, Atsushi; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Fujita, Shinji; Matsuo, Mitsuhiro; Hattori, Yusuke; Kohno, Mikito; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Torii, Kazufumi; Tsutsumi, Daichi; Okawa, Kazuki; Sano, Hidetoshi; Tachihara, Kengo; Ohama, Akio; Fukui, Yasuo

    2018-05-01

    We present 12CO (J = 1-0), 13CO (J = 1-0), and C18O (J = 1-0) images of the M 17 giant molecular clouds obtained as part of the FUGIN (FOREST Ultra-wide Galactic Plane Survey In Nobeyama) project. The observations cover the entire area of the M 17 SW and M 17 N clouds at the highest angular resolution (˜19″) to date, which corresponds to ˜0.18 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: a very low velocity (VLV) clump, a low velocity component (LVC), a main velocity component (MVC), and a high velocity component (HVC). The LVC and the HVC have cavities. Ultraviolet photons radiated from NGC 6618 cluster penetrate into the N cloud up to ˜5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of young stellar objects in the N cloud. The LVC and the HVC are distributed complementarily after the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC created the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s-1 and 1.1 × 105 yr, respectively. The high collision velocity can provide a mass accretion rate of up to 10^{-3} M_{⊙}yr-1, and the high column density (4 × 1023 cm-2) might result in massive cluster formation. The scenario of cloud-cloud collision likely explains well the stellar population and the formation history of the NGC 6618 cluster proposed by Hoffmeister et al. (2008, ApJ, 686, 310).

  13. European Extremely Large Telescope: progress report

    Science.gov (United States)

    Tamai, R.; Spyromilio, J.

    2014-07-01

    The European Extremely Large Telescope is a project of the European Southern Observatory to build and operate a 40-m class optical near-infrared telescope. The telescope design effort is largely concluded and construction contracts are being placed with industry and academic/research institutes for the various components. The siting of the telescope in Northern Chile close to the Paranal site allows for an integrated operation of the facility providing significant economies. The progress of the project in various areas is presented in this paper and references to other papers at this SPIE meeting are made.

  14. GRANITE- A steroscopic imaging Chernkov telescope system

    International Nuclear Information System (INIS)

    Shubnell, M.; Akerlof, C.W.; Cawley, M.F.; Chantell, M.; Fegan, D.J.; Fennell, S.; O'Flaherty, K.S.; Freeman, S.; Frishman, D.; Gaidos, J.A.; Hagan, J.; Harris, K.; Hillas, A.M.; Kerrick, A.D.; Lamb, R.C.; Lappin, T.; Lawrence, M.A.; Levy, H.; Lewis, D.A.; Meyer, D.I.; Mohanty, G.; Punch, M.; Reynolds, P.T.; Rovero, A.C.; Sembroski, G.; Weaverdyck, C.; Weekes, T.C.; Whitaker, T.; Wilson, C.

    1993-01-01

    A second 10 meter class imaging telescope was constructed on Mt. Hopkins, Arizona, the site of the original 10 meter Whipple Cherenkov telescope. The twin telescope system with a 140 meter base line will allow both a reduction in the energy threshold and an improvement in the rejection of the hardonic background. The new telescope started operation in December 1991. With the final completion of the first installation stage (GRANITE I) during spring 92, it is now operating simultaneously with the orginal reflector. We describe in this paper design and construction of the new instrument and demonstrate the capability of the experiment to record coincident events

  15. Preliminary Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  16. The MAGIC telescope for gamma-ray astronomy above 30 GeV

    Science.gov (United States)

    Moralejo, A.; MAGIC Collaboration

    The MAGIC telescope is presently at its commissioning phase at the Roque de los Muchachos Observatory (ORM) on the island of La Palma. MAGIC will become the largest ground-based gamma ray telescope in the world, being sensitive to photons of energies as low as 30 GeV. The spectral range between 10 and 300 GeV remains to date mostly unexplored. Observations in this region of the spectrum are expected to provide key data for the understanding of a wide variety of astrophysical phenomena belonging to the so-called ``non thermal Universe'', like the processes in the nuclei of active galaxies, the radiation mechanisms of pulsars and supernova remnants, and the enigmatic gamma-ray bursts. And overview of the telescope and its Physics goals is presented.

  17. Observation of Galactic Sources of Very High Energy γ-RAYS with the Magic Telescope

    Science.gov (United States)

    Bartko, H.

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200 m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy γ-radiation in the energy band between about 50 GeV and 10 TeV. Since the autumn of 2004 MAGIC has been taking data routinely, observing various objects, like supernova remnants (SNRs), γ-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results of observations of Galactic Sources.

  18. Oceans of Opportunity. Harnessing Europe's largest domestic energy resource

    International Nuclear Information System (INIS)

    Fichaux, N.; Wilkes, J.

    2009-09-01

    Europe's offshore wind potential is enormous and able to power Europe seven times over. Over 100 GW of offshore wind projects are already in various stages of planning. If realised, these projects would produce 10% of the EU's electricity whilst avoiding 200 million tonnes of CO2 emissions each year. EWEA has a target of 40 GW of offshore wind in the EU by 2020, implying an average annual market growth of 28% over the coming 12 years. The EU market for onshore wind grew by an average 32% per year in the 12-year period from 1992-2004 - what the wind energy industry has achieved on land can be repeated at sea. EWEA's proposed offshore grid builds on the 11 offshore grids currently operating and 21 offshore grids currently being considered by the grid operators in the Baltic and North Seas to give Europe a truly pan-European electricity super highway. Strong political support and action from Europe's policy-makers will allow a new, multi-billion euro industry to be built. This new industry will deliver thousands of green collar jobs and a new renewable energy economy and establish Europe as world leader in offshore wind power technology. A single European electricity market with large amounts of wind power will bring affordable electricity to consumers, reduce import dependence, cut CO2 emissions and allow Europe to access its largest domestic energy source.

  19. Characterization of the largest effector gene cluster of Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Thomas Brefort

    2014-07-01

    Full Text Available In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  20. El Paso natural gas nearing completion of system's largest expansion

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    El Paso Natural Gas Co.'s largest expansion program in its 64-year history will be completed along its northern system this spring or early summer. According to the company, the three-tiered, $241.5 million expansion program will increase El Paso's gas-transport capacity by 835 MMcfd to 2.5 bcfd of conventional and coal-seam gas from the San Juan basin in northwestern New Mexico. That's enough natural gas, says the company, to supply the needs of a city of more than 800,000 residents. This paper reports that the expansion involves the San Juan Triangle system, the company's northern main line, and the Permian-San Juan crossover line. The company also filed with the Federal Energy Regulatory Commission (FERC) in October 1991 to construct a new $15.2 million compressor station, Rio Vista, south of Bloomfield, N.M. The station would be used to move additional gas to the main line

  1. Benchmark Testing of the Largest Titanium Aluminide Sheet Subelement Conducted

    Science.gov (United States)

    Bartolotta, Paul A.; Krause, David L.

    2000-01-01

    To evaluate wrought titanium aluminide (gamma TiAl) as a viable candidate material for the High-Speed Civil Transport (HSCT) exhaust nozzle, an international team led by the NASA Glenn Research Center at Lewis Field successfully fabricated and tested the largest gamma TiAl sheet structure ever manufactured. The gamma TiAl sheet structure, a 56-percent subscale divergent flap subelement, was fabricated for benchmark testing in three-point bending. Overall, the subelement was 84-cm (33-in.) long by 13-cm (5-in.) wide by 8-cm (3-in.) deep. Incorporated into the subelement were features that might be used in the fabrication of a full-scale divergent flap. These features include the use of: (1) gamma TiAl shear clips to join together sections of corrugations, (2) multiple gamma TiAl face sheets, (3) double hot-formed gamma TiAl corrugations, and (4) brazed joints. The structural integrity of the gamma TiAl sheet subelement was evaluated by conducting a room-temperature three-point static bend test.

  2. Phosphorus Loadings to the World's Largest Lakes: Sources and Trends

    Science.gov (United States)

    Fink, Gabriel; Alcamo, Joseph; Flörke, Martina; Reder, Klara

    2018-04-01

    Eutrophication is a major water quality issue in lakes worldwide and is principally caused by the loadings of phosphorus from catchment areas. It follows that to develop strategies to mitigate eutrophication, we must have a good understanding of the amount, sources, and trends of phosphorus pollution. This paper provides the first consistent and harmonious estimates of current phosphorus loadings to the world's largest 100 lakes, along with the sources of these loadings and their trends. These estimates provide a perspective on the extent of lake eutrophication worldwide, as well as potential input to the evaluation and management of eutrophication in these lakes. We take a modeling approach and apply the WorldQual model for these estimates. The advantage of this approach is that it allows us to fill in large gaps in observational data. From the analysis, we find that about 66 of the 100 lakes are located in developing countries and their catchments have a much larger average phosphorus yield than the lake catchments in developed countries (11.1 versus 0.7 kg TP km-2 year-1). Second, the main source of phosphorus to the examined lakes is inorganic fertilizer (47% of total). Third, between 2005-2010 and 1990-1994, phosphorus pollution increased at 50 out of 100 lakes. Sixty percent of lakes with increasing pollution are in developing countries. P pollution changed primarily due to changing P fertilizer use. In conclusion, we show that the risk of P-stimulated eutrophication is higher in developing countries.

  3. LHC : The World's Largest Vacuum Systems being commissioned at CERN

    CERN Document Server

    Jiménez, J M

    2008-01-01

    When it switches on in 2008, the 26.7 km Large Hadron Collider (LHC) at CERN, will have the world's largest vacuum system operating over a wide range of pressures and employing an impressive array of vacuum technologies. This system is composed by 54 km of UHV vacuum for the circulating beams and 50 km of insulation vacuum around the cryogenic magnets and the liquid helium transfer lines. Over the 54 km of UHV beam vacuum, 48 km of this are at cryogenic temperature (1.9 K). The remaining 6 km of beam vacuum containing the insertions for "cleaning" the proton beams, radiofrequency cavities for accelerating the protons as well as beam-monitoring equipment is at ambient temperature and uses non-evaporable getter (NEG) coatings - a vacuum technology that was born and industrialized at CERN. The pumping scheme is completed using 780 ion pumps to remove noble gases and to provide pressure interlocks to the 303 vacuum safety valves. Pressure readings are provided by 170 Bayard-Alpert gauges and 1084 gauges (Pirani a...

  4. Victorian telescope makers. The lives and letters of Thomas and Howard Grubb.

    Science.gov (United States)

    Glass, I. S.

    This book is the story of a highly specialized and unusual nineteenth-century business enterprise. Makers of some of the largest and best known telescopes of the Victorian era, the Grubbs of Dublin were at the forefront of optical and mechanical engineering. For 95 years Thomas and Howard Grubb, father and son, supplied astronomical instruments to the world. Through extensive use of their original letters and documents the author has allowed the Grubbs to speak for themselves.

  5. Swift Burst Alert Telescope Data Products and Analysis Software

    International Nuclear Information System (INIS)

    Krimm, Hans A.; Barbier, Louis M.; Barthelmy, Scott D.; Cummings, Jay R.; Gehrels, Neil; Parsons, Ann M.; Tueller, Jack; Fenimore, Edward E.; Palmer, David M.; Hullinger, Derek D.; Markwardt, Craig B.

    2004-01-01

    The Burst Alert Telescope (BAT) on the Swift gamma-ray burst mission serves as the GRB trigger for Swift as well as a sensitive imaging telescope for the energy range of 15-150 keV. All BAT data products will be available to the astronomical community along with a complete set of analysis tools. Gamma-ray burst data products include rapid discovery messages delivered immediately via the GRB Coordinates Network, and event-by-event data from which light curves and spectra of the burst are generated. During nominal operations, the instrument provides accumulated survey histograms with 5-minute time sampling and appropriate energy resolution. These survey accumulations are analyzed in a pipeline to detect new sources and derive light curves of known sources. The 5-minute surveys will also be combined to produce the BAT all sky hard X-ray survey. In addition, the instrument accumulates high time resolution light curves of the brightest BAT sources in multiple energy bands, which are merged into a source light curve database on the ground. The BAT science data products and analysis tools will be described in this paper

  6. Diffractive X-Ray Telescopes

    International Nuclear Information System (INIS)

    Skinner, G.K.; Skinner, G.K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro arc seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the supermassive black holes in the center of active galaxies What then is precluding their immediate adoption Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed atmospheric absorption

  7. Can Radio Telescopes Find Axions?

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    axions. Now scientists Katharine Kelley and Peter Quinn at ICRAR, University of Western Australia, have explored how we might use next-generation radio telescopes to search for photons that were created by axions interacting with the magnetic fields of our galaxy.Hope for Next-Gen TelescopesPotential axion coupling strengths vs. mass (click for a closer look). The axion mass is thought to lie between a eV and a meV; two theoretical models are shown with dashed lines. The plot shows the sensitivity of the upcoming SKA and its precursors, ASKAP and MEERKAT. [KelleyQuinn 2017]By using a simple galactic halo model and reasonable assumptions for the central galactic magnetic field even taking into account the time dependence of the field Kelley and Quinn estimate the radio-frequency power density that we would observe at Earth from axions being converted to photons within the Milky Ways magnetic field.The authors then compare this signature to the detection capabilities of upcoming radio telescope arrays. They show that the upcoming Square Kilometer Array and its precursors should have the capability to detect signs of axions across large parts of parameter space.Kelley and Quinn conclude that theres good cause for optimism about future radio telescopes ability to detect axions. And if we did succeed in making a detection, it would be a triumph for both particle physics and astrophysics, finally providing an explanation for the universes dark matter.CitationKatharine Kelley and P. J. Quinn 2017 ApJL 845 L4. doi:10.3847/2041-8213/aa808d

  8. NESTOR Deep Sea Neutrino Telescope

    International Nuclear Information System (INIS)

    Aggouras, G.; Anassontzis, E.G.; Ball, A.E.; Bourlis, G.; Chinowsky, W.; Fahrun, E.; Grammatikakis, G.; Green, C.; Grieder, P.; Katrivanos, P.; Koske, P.; Leisos, A.; Markopoulos, E.; Minkowsky, P.; Nygren, D.; Papageorgiou, K.; Przybylski, G.; Resvanis, L.K.; Siotis, I.; Sopher, J.; Staveris-Polikalas, A.; Tsagli, V.; Tsirigotis, A.; Tzamarias, S.; Zhukov, V.A.

    2006-01-01

    One module of NESTOR, the Mediterranean deep-sea neutrino telescope, was deployed at a depth of 4000m, 14km off the Sapienza Island, off the South West coast of Greece. The deployment site provides excellent environmental characteristics. The deployed NESTOR module is constructed as a hexagonal star like latticed titanium star with 12 Optical Modules and an one-meter diameter titanium sphere which houses the electronics. Power and data were transferred through a 30km electro-optical cable to the shore laboratory. In this report we describe briefly the detector and the detector electronics and discuss the first physics data acquired and give the zenith angular distribution of the reconstructed muons

  9. Reach and messages of the world's largest ivory burn.

    Science.gov (United States)

    Braczkowski, Alexander; Holden, Matthew H; O'Bryan, Christopher; Choi, Chi-Yeung; Gan, Xiaojing; Beesley, Nicholas; Gao, Yufang; Allan, James; Tyrrell, Peter; Stiles, Daniel; Brehony, Peadar; Meney, Revocatus; Brink, Henry; Takashina, Nao; Lin, Ming-Ching; Lin, Hsien-Yung; Rust, Niki; Salmo, Severino G; Watson, James Em; Kahumbu, Paula; Maron, Martine; Possingham, Hugh P; Biggs, Duan

    2018-03-01

    Recent increases in ivory poaching have depressed African elephant populations. Successful enforcement has led to ivory being stockpiled. Stockpile destruction is becoming increasingly popular, and most destruction has occurred in the last five years. Ivory destruction is intended to send a strong message against ivory consumption, both in promoting a taboo on ivory use and catalyzing policy change. However, there has been no effort to establish the distribution and extent of media reporting on ivory destruction events globally. We analyze media coverage across eleven important nation states of the largest ivory destruction event in history (Kenya, 30 April 2016). We used a well-accepted online media crawling tool and key language translations to search online and print newspapers. We found most online news on the ivory burn came from the US (81% of articles), while print news was dominated by Kenya (61% of articles). We subjected online articles from five key countries and territories to content analysis and found 86-97% of all online articles reported the burn as a positive conservation action, while between 4-50% discussed ivory burning as having a negative impact on elephant conservation. Most articles discussed law enforcement and trade bans as effective for elephant conservation. There was more relative search interest globally on the 2016 Kenyan ivory burn than any other in five years. Our study is the first attempt to track the spread of media around an ivory burn and is a case study in tracking the effects of a conservation-marketing event. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Genome size analyses of Pucciniales reveal the largest fungal genomes.

    Science.gov (United States)

    Tavares, Sílvia; Ramos, Ana Paula; Pires, Ana Sofia; Azinheira, Helena G; Caldeirinha, Patrícia; Link, Tobias; Abranches, Rita; Silva, Maria do Céu; Voegele, Ralf T; Loureiro, João; Talhinhas, Pedro

    2014-01-01

    Rust fungi (Basidiomycota, Pucciniales) are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 225.3 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi). In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp). Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94%). The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research.

  11. Efficient Mosaicking of Spitzer Space Telescope Images

    Science.gov (United States)

    Jacob, Joseph; Makovoz, David; Eisenhardt, Peter

    2007-01-01

    A parallel version of the MOPEX software, which generates mosaics of infrared astronomical images acquired by the Spitzer Space Telescope, extends the capabilities of the prior serial version. In the parallel version, both the input image space and the output mosaic space are divided among the available parallel processors. This is the only software that performs the point-source detection and the rejection of spurious imaging effects of cosmic rays required by Spitzer scientists. This software includes components that implement outlier-detection algorithms that can be fine-tuned for a particular set of image data by use of a number of adjustable parameters. This software has been used to construct a mosaic of the Spitzer Infrared Array Camera Shallow Survey, which comprises more than 17,000 exposures in four wavelength bands from 3.6 to 8 m and spans a solid angle of about 9 square degrees. When this software was executed on 32 nodes of the 1,024-processor Cosmos cluster computer at NASA s Jet Propulsion Laboratory, a speedup of 8.3 was achieved over the serial version of MOPEX. The performance is expected to improve dramatically once a true parallel file system is installed on Cosmos.

  12. WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope : The next generation wide-field spectroscopy facility for the William Herschel Telescope

    NARCIS (Netherlands)

    Dalton, Gavin; Trager, Scott C.; Abrams, Don Carlos; Carter, David; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; MacIntosh, Mike; Evans, Chris; Lewis, Ian; Navarro, Ramon; Agocs, Tibor; Dee, Kevin; Rousset, Sophie; Tosh, Ian; Middleton, Kevin; Pragt, Johannes; Terrett, David; Brock, Matthew; Benn, Chris; Verheijen, Marc; Cano Infantes, Diego; Bevil, Craige; Steele, Iain; Mottram, Chris; Bates, Stuart; Gribbin, Francis J.; Rey, Jürg; Rodriguez, Luis Fernando; Delgado, Jose Miguel; Guinouard, Isabelle; Walton, Nic; Irwin, Michael J.; Jagourel, Pascal; Stuik, Remko; Gerlofsma, Gerrit; Roelfsma, Ronald; Skillen, Ian; Ridings, Andy; Balcells, Marc; Daban, Jean-Baptiste; Gouvret, Carole; Venema, Lars; Girard, Paul

    We present the preliminary design of the WEAVE next generation spectroscopy facility for the William Herschel Telescope (WHT), principally targeting optical ground-based follow up of upcoming ground-based (LOFAR) and spacebased (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing

  13. Mauna Loa--history, hazards and risk of living with the world's largest volcano

    Science.gov (United States)

    Trusdell, Frank A.

    2012-01-01

    Mauna Loa on the Island Hawaiʻi is the world’s largest volcano. People residing on its flanks face many hazards that come with living on or near an active volcano, including lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and local tsunami (giant seawaves). The County of Hawaiʻi (Island of Hawaiʻi) is the fastest growing County in the State of Hawaii. Its expanding population and increasing development mean that risk from volcano hazards will continue to grow. U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory (HVO) closely monitor and study Mauna Loa Volcano to enable timely warning of hazardous activity and help protect lives and property.

  14. The role and attributes of entrepreneurs at South Africa´s largest arts festival

    Directory of Open Access Journals (Sweden)

    E. Jonker

    2009-01-01

    Full Text Available The Klein Karoo National Arts Festival (KKNK in Oudtshoorn, South Africa, is the largest arts festival in South Africa. The purpose of this research was to determine the attributes and role of the entrepreneurs at the Klein Karoo National Arts Festival. This was done by means of a questionnaire survey (N=249. After data capturing was completed, two factor analyses were conducted. The first factor analysis revealed six factors (entrepreneurial attributes, namely organisational skills, resourcefulness, self-edification, explorative, acquired skill and drive, of which resourcefulness had the highest mean value. The second factor analysis identified the role of entrepreneurs at KKNK and revealed three primary roles, namely festival promotion, product promotion and income generation, of which product promotion had the highest mean value. This is the first time that the roles of entrepreneurs at festivals were investigated in South Africa.

  15. Proxy magnetometry with the Dutch Open Telescope

    NARCIS (Netherlands)

    Rutten, R.J.; Hammerschlag, R.H.; Sütterlin, P.; Bettonvil, F.C.M.

    1999-01-01

    Superb movies from the Dutch Open Telescope (DOT) on La Palma have proven the validity of the open concept of this innovative telescope for high-resolution imaging of the solar atmosphere. A five- camera speckle-burst registration system is being installed that should permit consistent and

  16. ANTARES : The first undersea neutrino telescope

    NARCIS (Netherlands)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Carloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th; Charvis, Ph; Chauchot, P.; Chiarusi, T.; Circella, M.; Compere, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; De Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J. -J.; Di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J. -L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J. -F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J. -P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. -L.; Galata, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gomez-Gonzalez, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J-C; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; LeVanSuu, A.; Lefevre, D.; Legou, T.; Lelaizant, G.; Leveque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazeas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Patioselitis, D.; Papaleo, R.; Pavalas, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Rethore, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J. -F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schoeck, F.; Schuller, J. -P.; Schuessler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zuniga, J.; van Wijk, R.

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the

  17. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.

    1996-01-01

    The Hard X-Ray Telescope was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity...

  18. The Gemini 8-Meter Telescopes Project

    Science.gov (United States)

    Boroson, Todd A.

    1995-05-01

    The Gemini 8-Meter Telescopes Project is an international partnership to build and operate two 8-meter telescopes, one on Mauna Kea, Hawaii, and one on Cerro Pachon, Chile. The telescopes will be international facilities, open to the scientific communities of the six member countries, the United States (50%), the United Kingdom (25%), Canada (15%), Chile (5%), Argentina (2.5%), and Brazil (2.5%). The telescopes are designed to exploit the best atmospheric conditions at these excellent sites. Near diffraction limited performance will be delivered at 2.2 microns and longward, with minimal degradation of the best seeing conditions at shorter wavelengths. The telescopes and facilities are designed to achieve emissivity opportunity. First light for the Mauna Kea telescope is expected in late 1998, and for the Cerro Pachon telescope in mid-2000. This talk will report on construction progress, the instrumental capabilities, and operations strategies being considered. The Gemini 8-meter Telescopes Project is managed by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation which serves as executive agency for the Gemini partner countries. U.S. participation in the project is through the U.S. Gemini Program, a division of the National Optical Astronomy Observatories. NOAO is operated by AURA, Inc. under cooperative agreement with the National Science Foundation.

  19. The space telescope: A study of NASA, science, technology, and politics

    Science.gov (United States)

    Smith, Robert William

    1989-01-01

    Scientific, technological, economic, and political aspects of NASA efforts to orbit a large astronomical telescope are examined in a critical historical review based on extensive interviews with participants and analysis of published and unpublished sources. The scientific advantages of large space telescopes are explained; early plans for space observatories are summarized; the history of NASA and its major programs is surveyed; the redesign of the original Large Space Telescope for Shuttle deployability is discussed; the impact of the yearly funding negotiations with Congress on the development of the final Hubble Space Telescope (HST) is described; and the implications of the HST story for the future of large space science projects are explored. Drawings, photographs, a description of the HST instruments and systems, and lists of the major contractors and institutions participating in the HST program are provided.

  20. GIS learning tool for world's largest earthquakes and their causes

    Science.gov (United States)

    Chatterjee, Moumita

    The objective of this thesis is to increase awareness about earthquakes among people, especially young students by showing the five largest and two most predictable earthquake locations in the world and their plate tectonic settings. This is a geographic based interactive tool which could be used for learning about the cause of great earthquakes in the past and the safest places on the earth in order to avoid direct effect of earthquakes. This approach provides an effective way of learning for the students as it is very user friendly and more aligned to the interests of the younger generation. In this tool the user can click on the various points located on the world map which will open a picture and link to the webpage for that point, showing detailed information of the earthquake history of that place including magnitude of quake, year of past quakes and the plate tectonic settings that made this place earthquake prone. Apart from knowing the earthquake related information students will also be able to customize the tool to suit their needs or interests. Students will be able to add/remove layers, measure distance between any two points on the map, select any place on the map and know more information for that place, create a layer from this set to do a detail analysis, run a query, change display settings, etc. At the end of this tool the user has to go through the earthquake safely guidelines in order to be safe during an earthquake. This tool uses Java as programming language and uses Map Objects Java Edition (MOJO) provided by ESRI. This tool is developed for educational purpose and hence its interface has been kept simple and easy to use so that students can gain maximum knowledge through it instead of having a hard time to install it. There are lots of details to explore which can help more about what a GIS based tool is capable of. Only thing needed to run this tool is latest JAVA edition installed in their machine. This approach makes study more fun and

  1. Southern Fireworks above ESO Telescopes

    Science.gov (United States)

    1999-05-01

    New Insights from Observations of Mysterious Gamma-Ray Burst International teams of astronomers are now busy working on new and exciting data obtained during the last week with telescopes at the European Southern Observatory (ESO). Their object of study is the remnant of a mysterious cosmic explosion far out in space, first detected as a gigantic outburst of gamma rays on May 10. Gamma-Ray Bursters (GRBs) are brief flashes of very energetic radiation - they represent by far the most powerful type of explosion known in the Universe and their afterglow in optical light can be 10 million times brighter than the brightest supernovae [1]. The May 10 event ranks among the brightest one hundred of the over 2500 GRB's detected in the last decade. The new observations include detailed images and spectra from the VLT 8.2-m ANTU (UT1) telescope at Paranal, obtained at short notice during a special Target of Opportunity programme. This happened just over one month after that powerful telescope entered into regular service and demonstrates its great potential for exciting science. In particular, in an observational first, the VLT measured linear polarization of the light from the optical counterpart, indicating for the first time that synchrotron radiation is involved . It also determined a staggering distance of more than 7,000 million light-years to this GRB . The astronomers are optimistic that the extensive observations will help them to better understand the true nature of such a dramatic event and thus to bring them nearer to the solution of one of the greatest riddles of modern astrophysics. A prime example of international collaboration The present story is about important new results at the front-line of current research. At the same time, it is also a fine illustration of a successful collaboration among several international teams of astronomers and the very effective way modern science functions. It began on May 10, at 08:49 hrs Universal Time (UT), when the Burst

  2. A virtual reality environment for telescope operation

    Science.gov (United States)

    Martínez, Luis A.; Villarreal, José L.; Ángeles, Fernando; Bernal, Abel

    2010-07-01

    Astronomical observatories and telescopes are becoming increasingly large and complex systems, demanding to any potential user the acquirement of great amount of information previous to access them. At present, the most common way to overcome that information is through the implementation of larger graphical user interfaces and computer monitors to increase the display area. Tonantzintla Observatory has a 1-m telescope with a remote observing system. As a step forward in the improvement of the telescope software, we have designed a Virtual Reality (VR) environment that works as an extension of the remote system and allows us to operate the telescope. In this work we explore this alternative technology that is being suggested here as a software platform for the operation of the 1-m telescope.

  3. Remote secure observing for the Faulkes Telescopes

    Science.gov (United States)

    Smith, Robert J.; Steele, Iain A.; Marchant, Jonathan M.; Fraser, Stephen N.; Mucke-Herzberg, Dorothea

    2004-09-01

    Since the Faulkes Telescopes are to be used by a wide variety of audiences, both powerful engineering level and simple graphical interfaces exist giving complete remote and robotic control of the telescope over the internet. Security is extremely important to protect the health of both humans and equipment. Data integrity must also be carefully guarded for images being delivered directly into the classroom. The adopted network architecture is described along with the variety of security and intrusion detection software. We use a combination of SSL, proxies, IPSec, and both Linux iptables and Cisco IOS firewalls to ensure only authenticated and safe commands are sent to the telescopes. With an eye to a possible future global network of robotic telescopes, the system implemented is capable of scaling linearly to any moderate (of order ten) number of telescopes.

  4. A telescope with augmented reality functions

    Science.gov (United States)

    Hou, Qichao; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian

    2016-10-01

    This study introduces a telescope with virtual reality (VR) and augmented reality (AR) functions. In this telescope, information on the micro-display screen is integrated to the reticule of telescope through a beam splitter and is then received by the observer. The design and analysis of telescope optical system with AR and VR ability is accomplished and the opto-mechanical structure is designed. Finally, a proof-of-concept prototype is fabricated and demonstrated. The telescope has an exit pupil diameter of 6 mm at an eye relief of 19 mm, 6° field of view, 5 to 8 times visual magnification , and a 30° field of view of the virtual image.

  5. Simulation and Track Reconstruction for Beam Telescopes

    CERN Document Server

    Maqbool, Salman

    2017-01-01

    Beam telescopes are an important tool to test new detectors under development in a particle beam. To test these novel detectors and determine their properties, the particle tracks need to be reconstructed from the known detectors in the telescope. Based on the reconstructed track, its predicted position on the Device under Test (DUT) are compared with the actual hits on the DUT. Several methods exist for track reconstruction, but most of them do not account for the effects of multiple scattering. General Broken Lines is one such algorithm which incorporates these effects during reconstruction. The aim of this project was to simulate the beam telescope and extend the track reconstruction framework for the FE-I4 telescope, which takes these effects into account. Section 1 introduces the problem, while section 2 focuses on beam telescopes. This is followed by the Allpix2 simulation framework in Section 3. And finally, Section 4 introduces the Proteus track reconstruction framework along with the General Broken ...

  6. WHITE-DWARF-MAIN-SEQUENCE BINARIES IDENTIFIED FROM THE LAMOST PILOT SURVEY

    International Nuclear Information System (INIS)

    Ren Juanjuan; Luo Ali; Li Yinbi; Wei Peng; Zhao Jingkun; Zhao Yongheng; Song Yihan; Zhao Gang

    2013-01-01

    We present a set of white-dwarf-main-sequence (WDMS) binaries identified spectroscopically from the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) pilot survey. We develop a color selection criteria based on what is so far the largest and most complete Sloan Digital Sky Survey (SDSS) DR7 WDMS binary catalog and identify 28 WDMS binaries within the LAMOST pilot survey. The primaries in our binary sample are mostly DA white dwarfs except for one DB white dwarf. We derive the stellar atmospheric parameters, masses, and radii for the two components of 10 of our binaries. We also provide cooling ages for the white dwarf primaries as well as the spectral types for the companion stars of these 10 WDMS binaries. These binaries tend to contain hot white dwarfs and early-type companions. Through cross-identification, we note that nine binaries in our sample have been published in the SDSS DR7 WDMS binary catalog. Nineteen spectroscopic WDMS binaries identified by the LAMOST pilot survey are new. Using the 3σ radial velocity variation as a criterion, we find two post-common-envelope binary candidates from our WDMS binary sample

  7. The On-Site Analysis of the Cherenkov Telescope Array

    CERN Document Server

    Bulgarelli, Andrea; Zoli, Andrea; Aboudan, Alessio; Rodríguez-Vázquez, Juan José; De Cesare, Giovanni; De Rosa, Adriano; Maier, Gernot; Lyard, Etienne; Bastieri, Denis; Lombardi, Saverio; Tosti, Gino; Bergamaschi, Sonia; Beneventano, Domenico; Lamanna, Giovanni; Jacquemier, Jean; Kosack, Karl; Antonelli, Lucio Angelo; Boisson, Catherine; Borkowski, Jerzy; Buson, Sara; Carosi, Alessandro; Conforti, Vito; Colomé, Pep; Reyes, Raquel de los; Dumm, Jon; Evans, Phil; Fortson, Lucy; Fuessling, Matthias; Gotz, Diego; Graciani, Ricardo; Gianotti, Fulvio; Grandi, Paola; Hinton, Jim; Humensky, Brian; Inoue, Susumu; Knödlseder, Jürgen; Flour, Thierry Le; Lindemann, Rico; Malaguti, Giuseppe; Markoff, Sera; Marisaldi, Martino; Neyroud, Nadine; Nicastro, Luciano; Ohm, Stefan; Osborne, Julian; Oya, Igor; Rodriguez, Jerome; Rosen, Simon; Ribo, Marc; Tacchini, Alessandro; Schüssler, Fabian; Stolarczyk, Thierry; Torresi, Eleonora; Testa, Vincenzo; Wegner, Peter

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory will be one of the largest ground-based very high-energy gamma-ray observatories. The On-Site Analysis will be the first CTA scientific analysis of data acquired from the array of telescopes, in both northern and southern sites. The On-Site Analysis will have two pipelines: the Level-A pipeline (also known as Real-Time Analysis, RTA) and the level-B one. The RTA performs data quality monitoring and must be able to issue automated alerts on variable and transient astrophysical sources within 30 seconds from the last acquired Cherenkov event that contributes to the alert, with a sensitivity not worse than the one achieved by the final pipeline by more than a factor of 3. The Level-B Analysis has a better sensitivity (not be worse than the final one by a factor of 2) and the results should be available within 10 hours from the acquisition of the data: for this reason this analysis could be performed at the end of an observation or next morning. The latency (in part...

  8. Colours of the Outer Solar System Origins Survey: An Update

    Science.gov (United States)

    Schwamb, Megan E.; Fraser, Wesley C.; Pike, Rosemary E.; Bannister, Michele T.; Marsset, Michaël; Kavelaars, J. J.; Benecchi, Susan; Delsanti, Audrey C.; Lehner, Matthew J.; Wang, Shiang-Yu; Thirouin, Audrey; Nesvorný, David

    2018-01-01

    The vast majority of the known dwarf-planet sized bodies are bright enough to be studied through optical and infrared spectroscopy. As a result, we have an understanding of the surface properties for the largest Kuiper belt objects (KBOs) which retain their primordial inventory of volatile ices. For the typically smaller > 22 mag KBO, we must rely instead on what colors reveal by proxy; yet this picture remains incomplete. Most KBO physical property studies examine the hodgepodge set of objects discovered by various surveys with different and varying detection biases that make it difficult if not impossible to reliably estimate the sizes of the different surface color groupings (compositional classes) residing in the modern-day Kuiper belt.The Colours of the Outer Solar System Origins Survey (Col-OSSOS) probes the surface properties within the Kuiper belt primarily through near simultaneous g,r and J colors with the Gemini North Telescope and u-band with Canada-France-Hawaii Telescope. The project aims to target ~100 KBOs brighter than 23.6 r‧ mag found by the Outer Solar System Origins Survey (OSSOS), a survey with a well-measured detection efficiency. Thus, Col-OSSOS provides the first brightness-complete, compositional-dynamical map of the Outer Solar System, probing in a new light the radial color distribution in the primordial planetesimal disk from which KBOs originated. We will provide an update on the current status of the program highlighting results from the first two years of the survey; including size estimates of the two color KBO subgroups (the red and neutral surfaces) within the dynamically excited Kuiper belt and implications for the early planetesimal disk composition based on neutral-colored binaries found in the cold classical Kuiper belt.

  9. Watching the Creation of Southern California's Largest Reservoir

    Science.gov (United States)

    2001-01-01

    The new Diamond Valley Lake Reservoir near the city of Hemet in Riverside County is billed as the largest earthworks construction project in U.S.history. Construction began in 1995 and involved 31 million cubic meters of foundation excavation and 84 million cubic meters of embankment construction. This set of MISR images captures the most recent phase in the reservoir's activation. At the upper left is a natural-color view acquired by the instrument's vertical-viewing (nadir) camera on March 14, 2000 (Terra orbit 1273), shortly after the Metropolitan Water District began filling the reservoir with water from the Colorado River and Northern California. Water appears darker than the surrounding land. The image at the upper right was acquired nearly one year later on March 1, 2001 (Terra orbit 6399), and shows a clear increase in the reservoir's water content. When full, the lake will hold nearly a trillion liters of water.According to the Metropolitan Water District, the 7 kilometer x 3 kilometer reservoir nearly doubles Southern California's above-groundwater storage capacity. In addition to routine water management, Diamond Valley Lake is designed to provide protection against drought and a six-month emergency supply in the event of earthquake damage to a major aqueduct. In the face of electrical power shortages, it is also expected to reduce dependence on the pumping of water from northern mountains during the high-demand summer months. An unexpected result of site excavation was the uncovering of mastodon and mammoth skeletons along with bones from extinct species not previously thought to have been indigenous to the area, such as the giant long-horned bison and North American lion. A museum and interpretive center is being built to protect these finds.The lower MISR image, from May 20, 2001 (Terra orbit 7564), is a false-color view combining data from the instrument's 26-degree forward view (displayed as blue) with data from the 26-degree backward view

  10. Drilling the Bushveld Complex- the world's largest layered mafic intrusion

    Science.gov (United States)

    Ashwal, L. D.; Webb, S. J.; Trumbull, R. B.

    2013-12-01

    The fact that surprising new discoveries can be made in layered mafic intrusions (e.g., subtle 100-150 m cyclicity in apparently homogeneous cumulates over 1000s of m) means that we are still in the first-order characterization phase of understanding these objects. Accordingly, we have secured funding from ICDP for a planning workshop to be held in Johannesburg in early 2014, aimed at scientific drilling of the Bushveld Complex, the world's largest layered mafic intrusion. Science objectives include, but are not limited to: 1. Magma chamber processes & melt evolution. How many melts/magmas/mushes were involved, what were their compositions and how did they interact? What, if anything, is missing from the Complex, and where did it go? Did Bushveld magmatism have an effect upon Earth's atmosphere at 2 Ga? 2. Crust-mantle interactions & origin of Bushveld granitoids. Are Bushveld granites & rhyolites crustal melts, differentiates from the mafic magmas or products of immiscibility? How can the evolved isotopic signatures in the mafic rocks (e.g., epsilon Nd to -8) be understood? 3. Origin of ore deposits. What were the relative roles of gravity settling, magma mixing, immiscibility and hydrothermal fluid transport in producing the PGE, Cr and V deposits? We have identified 3 potential drilling targets representing a total of ~12 km of drill core. Exact locations of drill sites are to be discussed at the workshop. Target A- East-Central Bushveld Complex. We propose 3 overlapping 3 km boreholes that will provide the first roof-to-floor continuous coverage of the Rustenburg Layered Suite. These boreholes will represent a curated, internationally available reference collection of Bushveld material for present and future research. Target B- Southeastern Bushveld Complex. We propose a single borehole of ~2 km depth, collared in Rooiberg felsite, and positioned to intersect the Roof Zone, Upper Zone, Main Zone and floor of the Complex. Amongst other things, this site will

  11. The STAR-X X-Ray Telescope Assembly (XTA)

    Science.gov (United States)

    McClelland, Ryan S.; Bautz, Mark W.; Bonafede, Joseph A.; Miller, Eric D.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2017-01-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCD's capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called meta-shells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  12. An afocal telescope configuration for the ESA Ariel mission

    Science.gov (United States)

    Da Deppo, V.; Middleton, K.; Focardi, M.; Morgante, G.; Pace, E.; Claudi, R.; Micela, G.

    2017-09-01

    ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three candidates for the next ESA medium-class science mission (M4) expected to be launched in 2026. This mission will be devoted to observing spectroscopically in the infrared (IR) a large population of known transiting planets in the neighborhood of the Solar System, opening a new discovery space in the field of extrasolar planets and enabling the understanding of the physics and chemistry of these far away worlds. ARIEL is based on a 1-m class telescope ahead of two spectrometer channels covering the band 1.95 to 7.8 microns. In addition there are four photometric channels: two wide band, also used as fine guidance sensors, and two narrow band. During its 3.5 years of operations from L2 orbit, ARIEL will continuously observe exoplanets transiting their host star. The ARIEL optical design is conceived as a fore-module common afocal telescope that will feed the spectrometer and photometric channels. The telescope optical design is composed of an off-axis portion of a two-mirror classic Cassegrain coupled to a tertiary off-axis paraboloidal mirror. The telescope and optical bench operating temperatures, as well as those of some subsystems, will be monitored and fine tuned/stabilised mainly by means of a thermal control subsystem (TCU-Telescope Control Unit) working in closed-loop feedback and hosted by the main Payload electronics unit, the Instrument Control Unit (ICU). Another important function of the TCU will be to monitor the telescope and optical bench thermistors when the Payload decontamination heaters will be switched on (when operating the instrument in Decontamination Mode) during the Commissioning Phase and cyclically, if required. Then the thermistors data will be sent by the ICU to the On Board Computer by means of a proper formatted telemetry. The latter (OBC) will be in charge of switching on and off the decontamination heaters on the basis of the thermistors readout

  13. Using the Hobby-Eberly telescope to place constraints on planetary system formation

    International Nuclear Information System (INIS)

    Cochran, William D; Endl, Michael

    2008-01-01

    We are conducting several radial velocity surveys with the 9.2 m Hobby-Eberly telescope (HET). These surveys are designed to improve our understanding of the physics of planetary system formation and evolution. We present recent results from two of these HET surveys. The first is from our survey of metal-poor stars. This survey is designed to probe the physics of planet formation at low metallicities. We present the detection of two planetary companions to HD 155358, a star with [Fe/H] of -0.68. This is the lowest metallicity of any planet host star

  14. Prospects for γ-ray imaging telescopes

    International Nuclear Information System (INIS)

    Carter, J.N.; Dean, A.J.; Ramsden, D.

    1981-01-01

    Apart from the requirement for a new, high angular-resolution gamma-ray telescope for the more precise location of known COS-B gamma-ray sources, there is also a need for another instrument that can be used in a search for the gamma-ray emission from specific X-ray-emitting objects. If there is to be any hope of relating gamma ray emission to specific candidate X-ray objects, then an angular resolution of typically a few minutes of arc is required to resolve adjacent sources in crowded regions of the sky such as the galactic centre. Efforts to improve the angular resolution of track-chamber telescopes are compared. For energies close to 1 MeV telescopes have either used collimators to restrict the field of view or have made use of the kinematics of the Compton scattering process to determine the direction of the incident photon. The use of coded aperture techniques in high angular resolution X-ray astronomy telescopes is reviewed. A practical telescope for astronomy at high energies described by Carter is mentioned. At low energies an imaging telescope could be constructed by making use of position-sensitive detectors initially developed for use in medical physics. Such a telescope is outlined in general terms and its benefits and uses given. (U.K.)

  15. Shutter heating system of Antarctic bright star survey telescope

    Science.gov (United States)

    Chen, Jie; Dong, Shucheng; Jiang, Fengxin; Zhang, Hongfei; Wang, Jian

    2016-07-01

    A heat preservation system for mechanical shutter in Antarctic is introduced in the paper. The system consists of the heat preservation chamber, the host controller STM32F103C8T6 with peripheral circuit and the control algorithm. The whole design is carried out on the basis of the low temperature requirement, including the cavity structure and thermal insulation. The heat preservation chamber is used to keep the shutter warm and support the weight of the camera. Using PT100 as the temperature sensor, the signal processing circuit converts the temperature to the voltage which is then digitized by the 12 bit ADC in the STM32. The host controller transforms the voltage data into temperature, and through the tuning of the Fussy PID algorithm which controls the duty cycle of the MOSFET, the temperature control of chamber is realized. The System has been tested in the cryogenic environment for a long time, with characteristic of low temperature resistance, small volume, high accuracy of temperature control as well as remote control and detection.

  16. Evidence for protection of targeted reef fish on the largest marine reserve in the Caribbean.

    Science.gov (United States)

    Pina-Amargós, Fabián; González-Sansón, Gaspar; Martín-Blanco, Félix; Valdivia, Abel

    2014-01-01

    Marine reserves can restore fish abundance and diversity in areas impacted by overfishing, but the effectiveness of reserves in developing countries where resources for enforcement are limited, have seldom been evaluated. Here we assess whether the establishment in 1996 of the largest marine reserve in the Caribbean, Gardens of the Queen in Cuba, has had a positive effect on the abundance of commercially valuable reef fish species in relation to neighboring unprotected areas. We surveyed 25 sites, including two reef habitats (reef crest and reef slope), inside and outside the marine reserve, on five different months, and over a one-and-a-half year period. Densities of the ten most frequent, highly targeted, and relatively large fish species showed a significant variability across the archipelago for both reef habitats that depended on the month of survey. These ten species showed a tendency towards higher abundance inside the reserve in both reef habitats for most months during the study. Average fish densities pooled by protection level, however, showed that five out of these ten species were at least two-fold significantly higher inside than outside the reserve at one or both reef habitats. Supporting evidence from previously published studies in the area indicates that habitat complexity and major benthic communities were similar inside and outside the reserve, while fishing pressure appeared to be homogeneous across the archipelago before reserve establishment. Although poaching may occur within the reserve, especially at the boundaries, effective protection from fishing was the most plausible explanation for the patterns observed.

  17. Decision Announced in Green Bank Telescope Arbitration Case

    Science.gov (United States)

    2001-02-01

    A decision has been reached by the arbitrator in the dispute between COMSAT Corporation, now part of Lockheed-Martin Global Telecommunications, and Associated Universities, Inc. (AUI) regarding additional costs on the contract to design and construct the Robert C. Byrd Green Bank Telescope (GBT). The GBT, in West Virginia, is the world's largest fully steerable radio telescope, the newest facility in the National Radio Astronomy Observatory's (NRAO) suite of astronomical instruments. The decision, released by the American Arbitration Association (AAA), calls for AUI, which operates the NRAO, to pay COMSAT 4.07 million over the fixed-price contract amount. The contract had standard provisions for disputes, which specify binding arbitration through the AAA for matters that could not be resolved in negotiation. The Robert C. Byrd Green Bank Telescope The contract to design and construct the GBT had an agreed fixed price of 55 million, with work to begin on December 19, 1990 and to be completed by the end of 1994. The contract terms required the telescope to be designed and built to performance specifications, placing most of the performance risks associated with the project on the contractor. The telescope was accepted from the contractor on October 13, 2000, nearly six years later than the original contract delivery date. During the entire period of contract work the only agreed change in scope was a single change order for 150,000 executed in August of 1993. In 1998, COMSAT sought an additional payment of approximately 29 million above the contracted amount, alleging that AUI/NRAO had forced it to conduct unnecessary work on the telescope design and to build the telescope to an unreasonable life cycle (fatigue) specification. COMSAT also claimed that AUI/NRAO was obligated to pay the costs of accommodating what it claimed to be additional wind loads. COMSAT blamed these circumstances for its delay in completing the project on time and within the contract price. AUI

  18. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  19. Ground-Based Telescope Parametric Cost Model

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  20. Hubble Space Telescope Image of Omega Nebula

    Science.gov (United States)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  1. Alternative Fuels Data Center: America's Largest Home Runs on Biodiesel in

    Science.gov (United States)

    North Carolina America's Largest Home Runs on Biodiesel in North Carolina to someone by E-mail Share Alternative Fuels Data Center: America's Largest Home Runs on Biodiesel in North Carolina on Facebook Tweet about Alternative Fuels Data Center: America's Largest Home Runs on Biodiesel in North

  2. The ATHENA telescope and optics status

    Science.gov (United States)

    Bavdaz, Marcos; Wille, Eric; Ayre, Mark; Ferreira, Ivo; Shortt, Brian; Fransen, Sebastiaan; Collon, Maximilien; Vacanti, Giuseppe; Barriere, Nicolas; Landgraf, Boris; Haneveld, Jeroen; van Baren, Coen; Zuknik, Karl-Heintz; Della Monica Ferreira, Desiree; Massahi, Sonny; Christensen, Finn; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Spiga, Daniele; Valsecchi, Giuseppe; Vernani, Dervis; Oliver, Paul; Seidel, André

    2017-08-01

    The work on the definition and technological preparation of the ATHENA (Advanced Telescope for High ENergy Astrophysics) mission continues to progress. In parallel to the study of the accommodation of the telescope, many aspects of the X-ray optics are being evolved further. The optics technology chosen for ATHENA is the Silicon Pore Optics (SPO), which hinges on technology spin-in from the semiconductor industry, and uses a modular approach to produce large effective area lightweight telescope optics with a good angular resolution. Both system studies and the technology developments are guided by ESA and implemented in industry, with participation of institutional partners. In this paper an overview of the current status of the telescope optics accommodation and technology development activities is provided.

  3. EDUCATIONAL ASTRONOMICAL OBSERVATIONS ON REMOTE ACCESS TELESCOPES

    Directory of Open Access Journals (Sweden)

    Ivan P. Kriachko

    2016-01-01

    Full Text Available The purpose of this article is to show the way of overcoming one of the major problems of astronomy teaching methods in upper secondary school – organization of educational astronomical observations. Nowadays it became possible to perform such observations on remote access telescopes. By using up-to-date informational and communicational technologies, having an opportunity to work with robotic telescopes allows us to organize a unique cognitive and research oriented activities for students while conducting their specialized astronomical studies. Below here is given a brief description of the most significant robotic telescopes and the way of the usage of open remote access telescopic network which was created by professors and scientists of Harvard-Smithsonian Center for Astrophysics, USA.

  4. Possible GRB Observation with the MAGIC Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Mariotti, M.; Peruzzo, L.; Saggion, A.

    2001-08-01

    The MAGIC Telescope, with its reflecting parabolic dish of 17 m of diameter and its careful design of a robust, lightweight, alto-azimuthal mount, is an ideal detector for GRB phenomena. The telescope is an air Cherenkov telescope that, even in the first phase, equipped with standard PMTs, can reach an energy threshold below 30 GeV. The threshold is going to drop well below 10 GeV in the envisaged second phase, when chamber PMTs will be substituted by high quantum efficiency APDs. The telescope can promptly respond to GRB alerts coming, for instance, from GCN, and can reposition itself in less than 30 seconds, 20 seconds being the time to turn half a round for the azimuth bearing. In this report, the effective area of the detector as a function of energy and zenith angle is taken into account, in order to evaluate the expected yearly occurrence and the response to different kinds of GRBs.

  5. Direct illumination LED calibration for telescope photometry

    International Nuclear Information System (INIS)

    Barrelet, E.; Juramy, C.

    2008-01-01

    A calibration method for telescope photometry, based on the direct illumination of a telescope with a calibrated light source regrouping multiple LEDs, is proposed. Its purpose is to calibrate the instrument response. The main emphasis of the proposed method is the traceability of the calibration process and a continuous monitoring of the instrument in order to maintain a 0.2% accuracy over a period of years. Its specificity is to map finely the response of the telescope and its camera as a function of all light ray parameters. This feature is essential to implement a computer model of the instrument representing the variation of the overall light collection efficiency of each pixel for various filter configurations. We report on hardware developments done for SNDICE, the first application of this direct illumination calibration system which will be installed in Canada France Hawaii telescope (CFHT) for its leading supernova experiment (SNLS)

  6. Proposed National Large Solar Telescope Jagdev Singh

    Indian Academy of Sciences (India)

    proposed to design, fabricate and install a 2-meter class solar telescope at a suitable site in India to ... which can facilitate simultaneous measurements of the solar atmospheric parameters and of the vector ... Intensity variation of. 1% or less.

  7. First Steps Toward K-12 Teacher Professional Development Using Internet-based Telescopes

    Science.gov (United States)

    Berryhill, K. J.; Gershun, D.; Slater, T. F.; Armstrong, J. D.

    2012-12-01

    How can science teachers become more familiar with emerging technology, excite their students and give students a taste of astronomy research? Astronomy teachers do not always have research experience, so it is difficult for them to convey to students how researchers use telescopes. The nature of astronomical observation (e.g., remote sites, expensive equipment, and odd hours) has been a barrier to providing teachers with insight into the process. Robotic telescopes (operated automatically with queued observing schedules) and remotely controlled telescopes (controlled by the user via the Internet) allow scientists to conduct observing sessions on research-grade telescopes half a world away. The same technology can now be harnessed by STEM educators to engage students and reinforce what is being taught in the classroom, as seen in some early research in elementary schools (McKinnon and Mainwaring 2000 and McKinnon and Geissinger 2002), and middle/high schools (Sadler et al. 2001, 2007 and Gehret et al. 2005). However, teachers need to be trained to use these resources. Responding to this need, graduate students and faculty at the University of Wyoming and CAPER Center for Astronomy & Physics Education Research are developing teacher professional development programs using Internet-based telescopes. We conducted an online course in the science education graduate program at the University of Wyoming. This course was designed to sample different types of Internet-based telescopes to evaluate them as resources for teacher professional development. The 10 participants were surveyed at the end of the course to assess their experiences with each activity. In addition, pre-test/post-test data were collected focusing specifically on one of the telescopes (Gershun, Berryhill and Slater 2012). Throughout the course, the participants learned to use a variety of robotic and remote telescopes including SLOOH Space Camera (www.slooh.com), Sky Titan Observatory (www

  8. A 16-m Telescope for the Advanced Technology Large Aperture Telescope (ATLAST) Mission

    Science.gov (United States)

    Lillie, Charles F.; Dailey, D. R.; Polidan, R. S.

    2010-01-01

    Future space observatories will require increasingly large telescopes to study the earliest stars and galaxies, as well as faint nearby objects. Technologies now under development will enable telescopes much larger than the 6.5-meter diameter James Webb Space Telescope (JWST) to be developed at comparable costs. Current segmented mirror and deployable optics technology enables the 6.5 meter JWST telescope to be folded for launch in the 5-meter diameter Ariane 5 payload fairing, and deployed autonomously after reaching orbit. Late in the next decade, when the Ares V Cargo Launch Vehicle payload fairing becomes operational, even larger telescope can be placed in orbit. In this paper we present our concept for a 16-meter JWST derivative, chord-fold telescope which could be stowed in the 10-m diameter Ares V fairing, plus a description of the new technologies that enable ATLAST to be developed at an affordable price.

  9. Spectroscopic surveys of LAMOST

    International Nuclear Information System (INIS)

    Zhao Yongheng

    2015-01-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), a new type of reflecting Schmidt telescope, has been designed and produced in China. It marks a breakthrough for large scale spectroscopic survey observation in that both large aperture and wide field of view have been achieved. LAMOST has the highest spectrum acquisition rate, and from October 2011 to June 2014 it has obtained 4.13 million spectra of celestial objects, of which 3.78 million are spectra of stars, with the stellar parameters of 2.20 million stars included. (author)

  10. The ARC (Astrophysical Research Consortium) telescope project.

    Science.gov (United States)

    Anderson, K. S.

    A consortium of universities intends to construct a 3.5 meter optical-infrared telescope at a site in south-central New Mexico. The use of innovative mirror technology, a fast primary, and an alt-azimuth mounting results in a compact and lightweight instrument. This telescope will be uniquely well-suited for addressing certain observational programs by virtue of its capability for fully remote operation and rapid instrument changes.

  11. The ATHENA telescope and optics status

    DEFF Research Database (Denmark)

    Bavdaz, Marcos; Wille, Eric; Ayre, Mark

    2017-01-01

    chosen for ATHENA is the Silicon Pore Optics (SPO), which hinges on technology spin-in from the semiconductor industry, and uses a modular approach to produce large effective area lightweight telescope optics with a good angular resolution. Both system studies and the technology developments are guided...... by ESA and implemented in industry, with participation of institutional partners. In this paper an overview of the current status of the telescope optics accommodation and technology development activities is provided....

  12. CLIC Telescope optimization with ALLPIX simulation

    CERN Document Server

    Qi, Wu

    2015-01-01

    A simulation study of CLIC-EUDET telescope resolution with MIMOSA 26 as reference sensors under DESY (5.6 GeV electron beam) and CERN-SPS (120-180 GeV pion^{-} beam) conditions. During the study, a virtual DUT sensor with cylindrical sensing area was defined and used with ALLPIX software. By changing the configuration of telescope, some results for DESY's setup were found agreeing with the theoretical calculation.

  13. LYCORIS - A Large Area Strip Telescope

    CERN Document Server

    Krämer, U; Stanitzki, M; Wu, M

    2018-01-01

    The LYCORIS Large Area Silicon Strip Telescope for the DESY II Test Beam Facility is presented. The DESY II Test Beam Facility provides elec- tron and positron beams for beam tests of up to 6 GeV. A new telescope with a large 10 × 20 cm2 coverage area based on a 25 μm pitch strip sensor is to be installed within the PCMAG 1 T solenoid. The current state of the system is presented.

  14. New infrared telescopic observation of Vesta

    Science.gov (United States)

    Palomba, E.; D'Aversa, E.; Sato, T.; Longobardo, A.; Aoki, S.; Sindoni, G.; Oliva, F.

    2017-09-01

    In this work we present new telescopic observations of the Vesta asteroid made at the Subaru Telescope by using the COMICS IR spectrometer. We were able to obtain 5 different observations in 5 day, at two different epochs. The obtained spectra do not exhibit Reststrahlen bands and show only weak features attributable to the Christiansen peak and to the transparency feature compatible with a fine grain size regolith.

  15. 4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review

    NARCIS (Netherlands)

    de Jong, Roelof S.; Barden, Samuel C.; Bellido-Tirado, Olga; Brynnel, Joar G.; Frey, Steffen; Giannone, Domenico; Haynes, Roger; Johl, Diana; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob C.; Winkler, Roland; Ansorge, Wolfgang R.; Feltzing, Sofia; McMahon, Richard G.; Baker, Gabriella; Caillier, Patrick; Dwelly, Tom; Gaessler, Wolfgang; Iwert, Olaf; Mandel, Holger G.; Piskunov, Nikolai A.; Pragt, Johan H.; Walton, Nicholas A.; Bensby, Thomas; Bergemann, Maria; Chiappini, Cristina; Christlieb, Norbert; Cioni, Maria-Rosa L.; Driver, Simon; Finoguenov, Alexis; Helmi, Amina; Irwin, Michael J.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Liske, Jochen; Merloni, Andrea; Minchev, Ivan; Richard, Johan; Starkenburg, Else

    2016-01-01

    We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics

  16. Hartman Testing of X-Ray Telescopes

    Science.gov (United States)

    Saha, Timo T.; Biskasch, Michael; Zhang, William W.

    2013-01-01

    Hartmann testing of x-ray telescopes is a simple test method to retrieve and analyze alignment errors and low-order circumferential errors of x-ray telescopes and their components. A narrow slit is scanned along the circumference of the telescope in front of the mirror and the centroids of the images are calculated. From the centroid data, alignment errors, radius variation errors, and cone-angle variation errors can be calculated. Mean cone angle, mean radial height (average radius), and the focal length of the telescope can also be estimated if the centroid data is measured at multiple focal plane locations. In this paper we present the basic equations that are used in the analysis process. These equations can be applied to full circumference or segmented x-ray telescopes. We use the Optical Surface Analysis Code (OSAC) to model a segmented x-ray telescope and show that the derived equations and accompanying analysis retrieves the alignment errors and low order circumferential errors accurately.

  17. The DAG project, a 4m class telescope: the telescope main structure performances

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Ghedin, L.; Marcuzzi, E.; Manfrin, C.; Battistel, C.; Pirnay, O.; Flebus, Carlo; Yeşilyaprak, C.; Keskin, O.; Yerli, S.

    2016-07-01

    Dogu Anatolu Gözlemevi (DAG-Eastern Anatolia Observatory) Project is a 4m class optical, near-infrared Telescope and suitable enclosure which will be located at an altitude of 3.170m in Erzurum, Turkey. The DAG telescope is a project fully funded by Turkish Ministry of Development and the Atatürk University of Astrophysics Research Telescope - ATASAM. The Project is being developed by the Belgian company AMOS (project leader), which is also the optics supplier and EIE GROUP, the Telescope Main Structure supplier and responsible for the final site integration. The design of the Telescope Main Structure fits in the EIE TBO Program which aims at developing a Dome/Telescope systemic optimization process for both performances and competitive costs based on previous project commitments like NTT, VLT, VST and ASTRI. The optical Configuration of the DAG Telescope is a Ritchey-Chretien with two Nasmyth foci and a 4m primary thin mirror controlled in shape and position by an Active Optic System. The main characteristics of the Telescope Main Structure are an Altitude-Azimuth light and rigid structure system with Direct Drive Systems for both axis, AZ Hydrostatic Bearing System and Altitude standard bearing system; both axes are equipped with Tape Encoder System. An innovative Control System characterizes the telescope performance.

  18. NASA Telescopes Help Identify Most Distant Galaxy Cluster

    Science.gov (United States)

    2011-01-01

    electromagnetic spectrum, from X-ray to millimeter wavelengths, were all critical in providing a comprehensive view of the cluster's many facets." COSMOS-AzTEC3, located in the constellation Sextans, is named after the region where it was found, called COSMOS after the Cosmic Evolution Survey. AzTEC is the name of the camera used on the James Clerk Maxwell Telescope -- this camera is now on its way to the Large Millimeter Telescope located in Mexico's Puebla state. For more information about NASA's Spitzer, Chandra and Hubble space telescopes, visit: http://www.nasa.gov/chandra http://www.nasa.gov/spitzer http://www.nasa.gov/hubble

  19. Tricerascope: The Triple Threat Robotic Telescope of the Community College of Southern Nevada

    Science.gov (United States)

    Nations, H. L.; Erwin, T. D.

    2005-12-01

    With over 34000 students and three primary campuses, the Community College of Southern Nevada is the largest college or university in the state. It is also the largest provider of astronomy education, with a total of forty sections of introductory astronomy classes and labs in the Fall of 2005, six full time astronomy faculty, and a busy planetarium which has just been upgraded to a digital projector. Unfortunately, it is also located in the light pollution capital of the observable universe, Las Vegas, Nevada. But to counterbalance that somewhat, we do have over 300 clear, sunny days per year. This has led us to develop Tricerascope, our triple threat robotic telescope. Given the busy teaching schedules of our faculty, Tricerascope was designed to use, as much as possible, commercial, off-the-shelf technology. The primary hardware consists of a Coronado Solarmax 60 Halpha telescope with a bandpass of Robo-Focus devices. The telescopes themselves are piggy-backed on an eight inch Meade LX200GPS which has an SBIG ST7 XME camera and CFW filter wheel. All of these reside in a Technical Innovations RoboDome . The overall software controlling the observatory is Astronomy Control Panel 4.1. We show details of the hardware (including an unique shutter for the LX200) and software and how they work together as well as daytime and nighttime images. We will also discuss how the observatory is being integrated into the astronomy curriculum at the college and in local secondary schools.

  20. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  1. Open principle for large high-resolution solar telescopes

    NARCIS (Netherlands)

    Hammerschlag, R.H.; Bettonvil, F.C.M.; Jägers, A.P.L.; Sliepen, G.

    2009-01-01

    Vacuum solar telescopes solve the problem of image deterioration inside the telescope due to refractive index fluctuations of the air heated by the solar light. However, such telescopes have a practical diameter limit somewhat over 1 m. The Dutch Open Telescope (DOT) was the pioneering demonstrator

  2. Using frequency response functions to manage image degradation from equipment vibration in the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.

  3. VizieR Online Data Catalog: RR Lyrae stars from the PS1 3π survey (Sesar+, 2017)

    Science.gov (United States)

    Sesar, B.; Hernitschek, N.; Mitrovic, S.; Ivezic, Z.; Rix, H.-W.; Cohen, J. G.; Bernard, E. J.; Grebel, E. K.; Martin, N. F.; Schlafly, E. F.; Burgett, W. S.; Draper, P. W.; Flewelling, H.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Tonry, J. L.; Waters, C.

    2018-04-01

    Building on the work by Hernitschek+ (2016, J/ApJ/817/73), in this paper, we use the final PS1 data release (PV3) to significantly increase the completeness and purity of the PS1 sample of RR Lyrae stars. Pan-STARRS1 (PS1; Kaiser+ 2010, see II/349) is a wide-field optical/near-IR survey telescope system located at the Haleakala Observatory on the island of Maui in Hawai'i. The largest survey undertaken by the telescope, the PS1 3π survey (Chambers K.C. 2011, BAAS, 43, 113.01), has observed the entire sky north of decl. -30° in five filter bands, reaching 5σ single-epoch depths of about 22.0, 22.0, 21.9, 21.0, and 19.8mag in gP1, rP1, iP1, zP1, and yP1 bands, respectively. The uncertainty in photometric calibration of the survey is <~0.01mag, and the astrometric precision of single-epoch detections is 10mas. (4 data files).

  4. Discovering Interacting Binaries with Halpha Surveys

    NARCIS (Netherlands)

    Witham, A.; Knigge, C.; Drew, J.; Groot, P.J.; Greimel, R.; Parker, Q.

    2005-01-01

    A deep (R ~ 19.5) photographic Halpha Survey of the southern Galactic Plane was recently completed using the UK Schmidt Telescope at the AAO. In addition, we have recently started a similar, CCD-based survey of the northern Galactic Plane using the Wide Field Camera on the INT. Both surveys aim to

  5. The VANDELS ESO public spectroscopic survey

    Science.gov (United States)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Fèvre, O. Le; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 motivation, survey design and target selection.

  6. High-redshift supernova rates measured with the gravitational telescope A 1689

    OpenAIRE

    Petrushevska, T.; Amanullah, R.; Goobar, A.; Fabbro, S.; Johansson, J.; Kjellsson, T.; Lidman, C.; Paech, K.; Richard, J.; Dahle, Håkon; Ferretti, R.; Kneib, J.-P.; Limousin, M.; Nordin, J.; Stanishev, V.

    2016-01-01

    Aims. We present a ground-based, near-infrared search for lensed supernovae behind the massive cluster Abell 1689 at z = 0.18, which is one of the most powerful gravitational telescopes that nature provides. Methods. Our survey was based on multi-epoch J-band observations with the HAWK-I instrument on VLT, with supporting optical data from the Nordic Optical Telescope. Results. Our search resulted in the discovery of five photometrically classified, core-collapse supernovae with high re...

  7. FERMI/LARGE AREA TELESCOPE BRIGHT GAMMA-RAY SOURCE LIST

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Atwood, W. B.; Axelsson, M.; Battelino, M.; Baldini, L.; Bellazzini, R.; Ballet, J.; Band, D. L.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bignami, G. F.; Bonamente, E.

    2009-01-01

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the γ-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than ∼10σ) γ-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) γ-ray sources in the early mission data.

  8. Evidence for protection of targeted reef fish on the largest marine reserve in the Caribbean

    Directory of Open Access Journals (Sweden)

    Fabián Pina-Amargós

    2014-02-01

    Full Text Available Marine reserves can restore fish abundance and diversity in areas impacted by overfishing, but the effectiveness of reserves in developing countries where resources for enforcement are limited, have seldom been evaluated. Here we assess whether the establishment in 1996 of the largest marine reserve in the Caribbean, Gardens of the Queen in Cuba, has had a positive effect on the abundance of commercially valuable reef fish species in relation to neighboring unprotected areas. We surveyed 25 sites, including two reef habitats (reef crest and reef slope, inside and outside the marine reserve, on five different months, and over a one-and-a-half year period. Densities of the ten most frequent, highly targeted, and relatively large fish species showed a significant variability across the archipelago for both reef habitats that depended on the month of survey. These ten species showed a tendency towards higher abundance inside the reserve in both reef habitats for most months during the study. Average fish densities pooled by protection level, however, showed that five out of these ten species were at least two-fold significantly higher inside than outside the reserve at one or both reef habitats. Supporting evidence from previously published studies in the area indicates that habitat complexity and major benthic communities were similar inside and outside the reserve, while fishing pressure appeared to be homogeneous across the archipelago before reserve establishment. Although poaching may occur within the reserve, especially at the boundaries, effective protection from fishing was the most plausible explanation for the patterns observed.

  9. Vibration measurements of the Daniel K. Inouye Solar Telescope mount, Coudé rotator, and enclosure assemblies

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K. Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, with a 4-meter off-axis primary mirror and 16 meter rotating Coudé laboratory within the telescope pier. The off-axis design requires a mount similar to an 8-meter on-axis telescope. Both the telescope mount and the Coudé laboratory utilize a roller bearing technology in place of the more commonly used hydrostatic bearings. The telescope enclosure utilizes a crawler mechanism for the altitude axis. As these mechanisms have not previously been used in a telescope, understanding the vibration characteristics and the potential impact on the telescope image is important. This paper presents the methodology used to perform jitter measurements of the enclosure and the mount bearings and servo system in a high-noise environment utilizing seismic accelerometers and high dynamic-range data acquisition equipment, along with digital signal processing (DSP) techniques. Data acquisition and signal processing were implemented in MATLAB. In the factory acceptance testing of the telescope mount, multiple accelerometers were strategically located to capture the six axes-of-motion of the primary and secondary mirror dummies. The optical sensitivity analysis was used to map these mirror mount displacements and rotations into units of image motion on the focal plane. Similarly, tests were done with the Coudé rotator, treating the entire rotating instrument lab as a rigid body. Testing was performed by recording accelerometer data while the telescope control system performed tracking operations typical of various observing scenarios. The analysis of the accelerometer data utilized noise-averaging fast Fourier transform (FFT) routines, spectrograms, and periodograms. To achieve adequate dynamic range at frequencies as low as 3Hz, the use of special filters and advanced windowing functions were necessary. Numerous identical automated tests were compared to identify and select the data sets

  10. Hubble Space Telescope, Faint Object Camera

    Science.gov (United States)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  11. Simulation and track reconstruction for beam telescopes

    CERN Document Server

    Maqbool, Salman

    2017-01-01

    Beam telescopes are used for testing new detectors under development. Sensors are placed and a particle beam is passed through them. To test these novel detectors and determine their properties, the particle tracks need to be reconstructed from the known detectors in the telescope. Based on the reconstructed track, it’s predicted hits on the Device under Test (DUT) are compared with the actual hits on the DUT. Several methods exist for track reconstruction, but most of them don’t account for the effects of multiple scattering. General Broken Lines is one such algorithm which incorporates these effects during reconstruction. The aim of this project was to simulate the beam telescope and extend the track reconstruction framework for the FE-I4 telescope, which takes these effects into account. Section 1 introduces the problem, while section 2 focuses on beam telescopes. This is followed by the Allpix2 simulation framework in Section 3. And finally, Section 4 introduces the Proteus track reconstruction framew...

  12. Calibration strategies for the Cherenkov Telescope Array

    Science.gov (United States)

    Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher

    2014-08-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.

  13. The Telescope: Outline of a Poetic History

    Science.gov (United States)

    Stocchi, M. P.

    2011-06-01

    Amongst the first editions of Galileo's books, only the Saggiatore has on its frontispiece the image of the telescope. Indeed, the telescope is not pictured on the very emphatic frontispieces of the other books in which Galileo was presenting and defending the results achieved by his celestial observations, such as the Sidereus Nuncius. Many contemporary scientists denied the reliability of the telescope, and some even refused to look into the eyepiece. In the 16th and 17th century, the lenses, mirrors, and optical devices of extraordinary complexity did not have the main task of leading to the objective truth but obtaining the deformation of the reality by means of amazing effects of illusion. The Baroque art and literature had the aim of surprising, and the artists gave an enthusiastic support to the telescope. The poems in praise of Galileo's telescopic findings were quite numerous, including Adone composed by Giovanni Battista Marino, one of the most renowned poets of the time. The Galilean discoveries were actually accepted by the poets as ideologically neutral contributions to the "wonder" in spite they were rejected or even condemned by the scientists, philosophers, and theologians.

  14. A free market in telescope time?

    Science.gov (United States)

    Etherton, Jason; Steele, Iain A.; Mottram, Christopher J.

    2004-09-01

    As distributed systems are becoming more and more diverse in application there is a growing need for more intelligent resource scheduling. eSTAR Is a geographically distributed network of Grid-enabled telescopes, using grid middleware to provide telescope users with an authentication and authorisation method, allowing secure, remote access to such resources. The eSTAR paradigm is based upon this secure, single sign-on, giving astronomers or their agent proxies direct access to these telescopes. This concept, however, involves the complex issue of how to schedule observations stored within physically distributed media, on geographically distributed resources. This matter is complicated further by the varying degrees of constraints placed upon observations such as timeliness, atmospheric and meteorological conditions, and sky brightness to name a few. This paper discusses a free market approach to this scheduling problem, where astronomers are given credit, instead of time, from their respective TAGs to spend on telescopes as they see fit. This approach will ultimately provide a community-driven schedule, genuine indicators of the worth of specific telescope time and promote a more efficient use of that time, as well as demonstrating a 'survival of the fittest' type selection.

  15. Development and Performances of the Magic Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Dazzi, F.; Mariotti, M.; Moralejo, A.; Peruzzo, L.; Saggion, A.; Tonello, N.

    2002-11-01

    The MAGIC Collaboration is building an imaging Čerenkov telescope at La Palma site (2200 m a.s.l.), in the Canary Islands, to observe gamma rays in the hundred-GeV region. The MAGIC telescope, with its reflecting parabolic dish, 17 m in diameter, and a two-level pattern trigger designed to cope with severe trigger rates, is the Čerenkov telescope with the lowest envisaged energy threshold. Due to its lightweight alto-azimuthal mounting, MAGIC can be repositioned in less than 30 seconds, becoming the only detector, with an adequate effective area, capable to observe GRB phenomena above 30 GeV. MAGIC telescope is characterised by a 30 GeV energy threshold and a sensitivity of 6×l0-11 cm-2s-1 for a 5σ-detection in 50-hours of observation. In this report, some future scientific goals for MAGIC will be highlighted and the technical development for the main elements of the telescope will be detailed. Special emphasis will be given to the construction of the individual metallic mirrors which form the reflecting surface and the development of the fast pattern-recognition trigger.

  16. American Housing Survey (AHS) 2011

    Data.gov (United States)

    Department of Housing and Urban Development — The AHS is the largest, regular national housing sample survey in the United States. The U.S. Census Bureau conducts the AHS to obtain up-to-date housing statistics...

  17. CsI Calorimeter for a Compton-Pair Telescope

    Science.gov (United States)

    Grove, Eric J.

    We propose to build and test a hodoscopic CsI(Tl) scintillating-crystal calorimeter for a medium-energy γ-ray Compton and pair telescope. The design and technical approach for this calorimeter relies deeply on heritage from the Fermi LAT CsI Calorimeter, but it dramatically improves the low-energy performance of that design by reading out the scintillation light with silicon photomultipliers (SiPMs), making the technology developed for Fermi applicable in the Compton regime. While such a hodoscopic calorimeter is useful for an entire class of medium-energy γ-ray telescope designs, we propose to build it explicitly to support beam tests and balloon flight of the Proto-ComPair telescope, the development and construction of which was funded in a four-year APRA program beginning in 2015 ("ComPair: Steps to a Medium Energy γ-ray Mission" with PI J. McEnery of GSFC). That award did not include funding for its CsI calorimeter subsystem, and this proposal is intended to cover that gap. ComPair is a MIDEX-class instrument concept to perform a high-sensitivity survey of the γ-ray sky from 0.5 MeV to 500 MeV. ComPair is designed to provide a dramatic increase in sensitivity relative to previous instruments in this energy range (predominantly INTEGRAL/SPI and Compton COMPTEL), with the same transformative sensitivity increase - and corresponding scientific return- that the Fermi Large Area Telescope provided relative to Compton EGRET. To enable transformative science over a broad range of MeV energies and with a wide field of view, ComPair is a combined Compton telescope and pair telescope employing a silicon-strip tracker (for Compton scattering and pair conversion and tracking) and a solid-state CdZnTe calorimeter (for Compton absorption) and CsI calorimeter (for pair calorimetry), surrounded by a plastic scintillator anti-coincidence detector. Under the current proposal, we will complete the detailed design, assembly, and test of the CsI calorimeter for the risk

  18. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    radio astronomers for more than half a century. To see a level of detail equal to that revealed by optical telescopes would require a radio-telescope dish miles across. In the 1950s, British and Australian scientists developed a technique that used smaller, widely-separated antennas, and combined their signals to produce resolving power equal to that of a single dish as large as the distance between the smaller dishes. This technique, called interferometry, is used by the VLA, with 27 antennas and a maximum separation of 20 miles, and the VLBA, with 10 antennas and a maximum separation of 5,000 miles. Systems such as the VLBA, in which the antennas are so widely separated that data must be individually tape-recorded at each site and combined after the observation, are called Very Long Baseline Interferometry (VLBI) systems. VLBI was developed by American and Canadian astronomers and was first successfully demonstrated in 1967. The VLBA, working with radio telescopes in Europe, represents the largest radio telescope that can be accommodated on the surface of the Earth. With an orbit that carries it more than 13,000 miles above the Earth, HALCA, working with the ground-based telescopes, extends the "sharp vision" of radio astronomy farther than ever before. Using HALCA, radio astronomers expect to routinely produce images with more than 100 times the detail seen by the Hubble Space Telescope. Astronomers around the world are waiting to use the satellite to seek answers to questions about some of the most distant and intriging objects in the universe. As much as one-third of the VLBA's observing time will be devoted to observations in conjunction with HALCA. Over the expected five-year lifetime of HALCA, scientists hope to observe hundreds of quasars, pulsars, galaxies, and other objects. Launched from Japan's Kagoshima Space Center, HALCA orbits the Earth every six hours, ranging from 350 to 13,200 miles high. The 1,830-pound satellite has a dish antenna 26 feet in

  19. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, R.; Othman, M. Abou Bakr [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Allen, C. [University of Kansas, Lawrence, KS 66045 (United States); Beard, L. [Purdue University, West Lafayette, IN 47907 (United States); Belz, J. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Besson, D. [University of Kansas, Lawrence, KS 66045 (United States); Moscow Engineering and Physics Institute, 31 Kashirskaya Shosse, Moscow 115409 (Russian Federation); Byrne, M.; Farhang-Boroujeny, B.; Gardner, A. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Gillman, W.H. [Gillman and Associates, Salt Lake City, UT 84106 (United States); Hanlon, W. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Hanson, J. [University of Kansas, Lawrence, KS 66045 (United States); Jayanthmurthy, C. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Kunwar, S. [University of Kansas, Lawrence, KS 66045 (United States); Larson, S.L. [Utah State University, Logan, Utah 84322 (United States); Myers, I., E-mail: isaac@cosmic.utah.edu [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Prohira, S.; Ratzlaff, K. [University of Kansas, Lawrence, KS 66045 (United States); Sokolsky, P. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Takai, H. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2014-12-11

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  20. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    International Nuclear Information System (INIS)

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W.H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S.L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.

    2014-01-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems

  1. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    Science.gov (United States)

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W. H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.; Thomson, G. B.; Von Maluski, D.

    2014-12-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest "conventional" cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  2. WorldWide Telescope in High School Astronomy Competitions

    Science.gov (United States)

    Constantin, Ana-Maria; Goodman, A. A.; Udomprasert, P. S.

    2014-01-01

    This project aims to improve astronomy education at the high school level, and to increase awareness in astronomy for pre-university students, on an international scale. In 2013, the WorldWide Telescope Ambassadors Program began a collaboration with the International Olympiad in Astronomy and Astrophysics (IOAA), which was held in the city of Volos, Greece in August 2013. Now at its VIIth edition, IOAA is the largest annual astronomy competition for high school students, and it consists of one team task and three individual ones - Theoretical, Data Analysis, and Observational. Each of the participating countries (35 in 2013, compared to 21 in 2007) is responsible for selecting up to five representative students for the International round. IOAA is meant to promote future collaborations between these students, and to encourage friendships inside a global scientific community. Ana-Maria Constantin, a current Harvard undergraduate student and a former medalist of IOAA, represented WorldWide Telescope Ambassadors in Greece by giving a talk on the advantages of using WWT as a tool for research and education. As a result, the President and the International Board of the Olympiad have expressed support for including WWT in the competition for future editions. WWTA is working with the Organizing Board for next year’s competition in Romania, to include WWT as a testing tool. This poster will summarize key points from the WWTA presentation in Greece, present ideas for WWT-based activities in future IOAA competitions, and outline plans for new collaborations from representatives of Sri Lanka, Poland, Bangladesh, and Colombia. Given the positive feedback we have received after the presentation in Greece, we are also considering future implementations of WWT in summer research camps for high school students, such as the Summer Science Program.

  3. An innovative telescope control system architecture for SST-GATE telescopes at the CTA Observatory

    Science.gov (United States)

    Fasola, Gilles; Mignot, Shan; Laporte, Philippe; Abchiche, Abdel; Buchholtz, Gilles; Jégouzo, Isabelle

    2014-07-01

    SST-GATE (Small Size Telescope - GAmma-ray Telescope Elements) is a 4-metre telescope designed as a prototype for the Small Size Telescopes (SST) of the Cherenkov Telescope Array (CTA), a major facility for the very high energy gamma-ray astronomy of the next three decades. In this 100-telescope array there will be 70 SSTs, involving a design with an industrial view aiming at long-term service, low maintenance effort and reduced costs. More than a prototype, SST-GATE is also a fully functional telescope that shall be usable by scientists and students at the Observatoire de Meudon for 30 years. The Telescope Control System (TCS) is designed to work either as an element of a large array driven by an array controller or in a stand-alone mode with a remote workstation. Hence it is built to be autonomous with versatile interfacing; as an example, pointing and tracking —the main functions of the telescope— are managed onboard, including astronomical transformations, geometrical transformations (e.g. telescope bending model) and drive control. The core hardware is a CompactRIO (cRIO) featuring a real-time operating system and an FPGA. In this paper, we present an overview of the current status of the TCS. We especially focus on three items: the pointing computation implemented in the FPGA of the cRIO —using CORDIC algorithms— since it enables an optimisation of the hardware resources; data flow management based on OPCUA with its specific implementation on the cRIO; and the use of an EtherCAT field-bus for its ability to provide real-time data exchanges with the sensors and actuators distributed throughout the telescope.

  4. Evaluating SLOOH Robotic Telescopes for Formal Educational Use

    Science.gov (United States)

    Gershun, D.; Berryhill, K. J.; Slater, T. F.

    2012-12-01

    The past several years has seen a gradual shift from telescopes being used only by top researchers to a case where educators across the STEM spectrum now have access to quality telescopes. This has been made possible by equipping telescopes to be controlled over the internet, either robotically which requires no human interaction during observation, or remotely which retain full user controllability. Education researchers around the world have recently focused on applications in elementary and secondary education (McKinnon & Geissinger 2002, Sadler et al. 2007). Responding to this paradigm shift, graduate students and faculty at the University of Wyoming and Center for Physic & Astronomy Education Research (www.caperteam.com) are dedicating time to explore this further at the undergraduate level, in order to better advise STEM educators of the most effective technological resources and curriculum development. Current research focuses on evaluating the academic merit of using SLOOH Space Camera in a summer online course offered by the University of Wyoming Outreach Program. SLOOH has robotic telescopes in the Canary Islands and La Dehesa, Chile. This evaluation will provide valuable data on an emerging technology as well as serve to advise future introductory astronomy sections at the University of Wyoming on the use of similar internet-controlled telescopes. The eight-week course exposed nine graduate science education students to basic night sky observing knowledge as well as provided hands-on experience using several robotic and remote observatories1,2,3,4. This mixed-methods case study collected data in the forms of six focus-group recordings, pre- and post-tests from all participants, a post-class survey, and general observations by the lead researcher. Transcripts and comments are coded to determine the most important features of SLOOH, and testing measures are analyzed to gauge the incoming and outgoing knowledge of participants. Analysis of testing measures

  5. Pulsar searches of Fermi unassociated sources with the Effelsberg telescope

    International Nuclear Information System (INIS)

    Barr, E. D.; Guillemot, L.; Champion, D. J.; Kramer, M.; Eatough, R. P.

    2012-01-01

    Using the 100-m Effelsberg radio telescope operating at 1.36 GHz, we have performed a targeted radio pulsar survey of 289 unassociated γ-ray sources discovered by the Large Area Telescope (LAT) aboard the Fermi satellite and published in the 1FGL catalogue (Abdo et al. 2010a). In addition, this survey resulted in the discovery of millisecond pulsar J1745+1017, which resides in a short-period binary system with a low-mass companion, M c,min ~0.0137M⊙, indicative of ‘black widow’ type systems. A 2-yr timing campaign has produced a refined radio ephemeris, accurate enough to allow for phase-folding of the LAT photons, resulting in the detection of a dual-peaked γ-ray light curve, proving that PSR J1745+1017 is the source responsible for the γ-ray emission seen in 1FGL J1745.5+1018 (2FGL J1745.6+1015; Nolan et al. 2012). We find the γ-ray spectrum of PSR J1745+1017 to be well modelled by an exponentially cut-off power law with cut-off energy 3.2 GeV and photon index 1.6. The observed sources are known to contain a further 10 newly discovered pulsars which were undetected in this survey. Our radio observations of these sources are discussed and in all cases limiting flux densities are calculated. Lastly, the reasons behind the seemingly low yield of discoveries are also discussed.

  6. LOBSTER - New Space X-Ray telescopes

    International Nuclear Information System (INIS)

    Hudec, R.; Pina, L.; Simon, V.; Sveda, L.; Inneman, A.; Semencova, V.; Skulinova, M.

    2007-01-01

    We discuss the technological and scientific aspects of fully innovative very wide-field X-ray telescopes with high sensitivity. The prototypes of Lobster telescopes designed, developed and tested are very promising, allowing the proposals for space projects with very wide-field Lobster Eye X-ray optics to be considered for the first time. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. For example, the Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science

  7. The SPIRIT Telescope Initiative: six years on

    Science.gov (United States)

    Luckas, Paul

    2017-06-01

    Now in its sixth year of operation, the SPIRIT initiative remains unique in Australia, as a robust web-enabled robotic telescope initiative funded for education and outreach. With multiple modes of operation catering for a variety of usage scenarios and a fully supported education program, SPIRIT provides free access to contemporary astronomical tools for students and educators in Western Australia and beyond. The technical solution itself provides an excellent model for low cost robotic telescope installations, and the education program has evolved over time to include a broad range of student experiences-from engagement activities to authentic science. This paper details the robotic telescope solution, student interface and educational philosophy, summarises achievements and lessons learned and examines the possibilities for future enhancement including spectroscopy.

  8. Hubble Space Telescope via the Web

    Science.gov (United States)

    O'Dea, Christopher P.

    The Space Telescope Science Institute (STScI) makes available a wide variety of information concerning the Hubble Space Telescope (HST) via the Space Telescope Electronic Information Service (STEIS). STEIS is accessible via anonymous ftp, gopher, WAIS, and WWW. The information on STEIS includes how to propose for time on the HST, the current status of HST, reports on the scientific instruments, the observing schedule, data reduction software, calibration files, and a set of publicly available images in JPEG, GIF and TIFF format. STEIS serves both the astronomical community as well as the larger Internet community. WWW is currently the most widely used interface to STEIS. Future developments on STEIS are expected to include larger amounts of hypertext, especially HST images and educational material of interest to students, educators, and the general public, and the ability to query proposal status.

  9. Observatories and Telescopes of Modern Times

    Science.gov (United States)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  10. Simulation of the Simbol-X Telescope

    International Nuclear Information System (INIS)

    Chauvin, M.; Roques, J. P.

    2009-01-01

    We have developed a simulation tool for a Wolter I telescope operating in formation flight. The aim is to understand and predict the behavior of the Simbol-X instrument. As the geometry is variable, formation flight introduces new challenges and complex implications. Our code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, along with the relative drifts of the two spacecrafts. It takes into account angle and energy dependent interactions of the photons with the mirrors and applies to any grazing incidence telescope. The resulting images of simulated sources from 0.1 keV to 100 keV allow us to optimize the configuration of the instrument and to assess the performance of the Simbol-X telescope.

  11. Simulation of the Simbol-X Telescope

    Science.gov (United States)

    Chauvin, M.; Roques, J. P.

    2009-05-01

    We have developed a simulation tool for a Wolter I telescope operating in formation flight. The aim is to understand and predict the behavior of the Simbol-X instrument. As the geometry is variable, formation flight introduces new challenges and complex implications. Our code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, along with the relative drifts of the two spacecrafts. It takes into account angle and energy dependent interactions of the photons with the mirrors and applies to any grazing incidence telescope. The resulting images of simulated sources from 0.1 keV to 100 keV allow us to optimize the configuration of the instrument and to assess the performance of the Simbol-X telescope.

  12. Deployable reflector configurations. [for space telescope

    Science.gov (United States)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    1983-01-01

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  13. Neutrino telescopes sensitivity to dark matter

    International Nuclear Information System (INIS)

    Albuquerque, I.F.M.; Lamoureux, J.; Smoot, G.F.

    2002-01-01

    The nature of the dark matter of the Universe is yet unknown and most likely is connected with new physics. The search for its composition is underway through direct and indirect detection. Fundamental physical aspects such as energy threshold, geometry and location are taken into account to investigate proposed neutrino telescopes of km3 volume sensitivities to dark matter. These sensitivities are just sufficient to test a few weakly interacting massive particle scenarios. Telescopes of km3 volume, such as IceCube, can definitely discover or exclude superheavy (M>1010 GeV) strong interacting massive particles (simpzillas). Smaller neutrino telescopes such as ANTARES, AMANDA-II and NESTOR can probe a large region of simpzilla parameter space

  14. Template analysis for the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Uta [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    The MAGIC telescopes are two 17-m-diameter Imaging Air Cherenkov Telescopes located on the Canary island of La Palma. They record the Cherenkov light from air showers induced by very high energy photons. The current data analysis uses a parametrization of the two shower images (including Hillas parameters) to determine the characteristics of the primary particle. I am implementing an advanced analysis method that compares shower images on a pixel basis with template images based on Monte Carlo simulations. To reduce the simulation effort the templates contain only pure shower images that are convolved with the telescope response later in the analysis. The primary particle parameters are reconstructed by maximizing the likelihood of the template. By using all the information available in the shower images, the performance of MAGIC is expected to improve. In this presentation I will explain the general idea of a template-based analysis and show the first results of the implementation.

  15. The VTIE telescope resource management system

    Science.gov (United States)

    Busschots, B.; Keating, J. G.

    2005-06-01

    The VTIE Telescope Resource Management System (TRMS) provides a frame work for managing a distributed group of internet telescopes as a single "Virtual Observatory". The TRMS provides hooks which allow for it to be connected to any Java Based web portal and for a Java based scheduler to be added to it. The TRMS represents each telescope and observatory in the system with a software agent and then allows the scheduler and web portal to communicate with these distributed resources in a simple transparent way, hence allowing the scheduler and portal designers to concentrate only on what they wish to do with these resources rather than how to communicate with them. This paper outlines the structure and implementation of this frame work.

  16. An afocal telescope configuration for the ESA ARIEL mission

    Science.gov (United States)

    Da Deppo, Vania; Focardi, Mauro; Middleton, Kevin; Morgante, Gianluca; Pascale, Enzo; Grella, Samuele; Pace, Emanuele; Claudi, Riccardo; Amiaux, Jérôme; Colomé Ferrer, Josep; Hunt, Thomas; Rataj, Miroslaw; Sierra-Roig, Carles; Ficai Veltroni, Iacopo; Eccleston, Paul; Micela, Giuseppina; Tinetti, Giovanna

    2017-12-01

    Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (ARIEL) is a candidate as an M4 ESA mission to launch in 2026. During its 3.5 years of scientific operations, ARIEL will observe spectroscopically in the infrared (IR) a large population of known transiting planets in the neighbourhood of the solar system. ARIEL aims to give a breakthrough in the observation of exoplanet atmospheres and understanding of the physics and chemistry of these far-away worlds. ARIEL is based on a 1 m class telescope feeding a collimated beam into two separate instrument modules: a spectrometer module covering the waveband between 1.95 and 7.8 μm and a combined fine guidance system/visible photometer/NIR spectrometer. The telescope configuration is a classic Cassegrain layout used with an eccentric pupil and coupled to a tertiary off-axis paraboloidal mirror. To constrain the thermo-mechanically induced optical aberrations, the primary mirror (M1) temperature will be monitored and finely tuned using an active thermal control system based on thermistors and heaters. They will be switched on and off to maintain the M1 temperature within ± 1 K by the telescope control unit (TCU). The TCU is a payload electronics subsystem also responsible for the thermal control of the spectrometer module detectors as well as the secondary mirror mechanism and IR calibration source management. The TCU, being a slave subsystem of the instrument control unit, will collect the housekeeping data from the monitored subsystems and will forward them to the master unit. The latter will run the application software, devoted to the main spectrometer management and to the scientific data on-board processing.

  17. MROI Array telescopes: the relocatable enclosure domes

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Payne, I.

    2016-07-01

    The MROI - Magdalena Ridge Interferometer is a project which comprises an array of up to 10 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. EIE GROUP Srl, Venice - Italy, was awarded the contract for the design, the construction and the erection on site of the MROI by the New Mexico Institute of Mining and Technology. The close-pack array of the MROI - including all 10 telescopes, several of which are at a relative distance of less than 8m center to center from each other - necessitated an original design for the Unit Telescope Enclosure (UTE). This innovative design enclosure incorporates a unique dome/observing aperture system to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). The main characteristics of this Relocatable Enclosure Dome are: a Light insulated Steel Structure with a dome made of composites materials (e.g. glass/carbon fibers, sandwich panels etc.), an aperture motorized system for observation, a series of louvers for ventilation, a series of electrical and plants installations and relevant auxiliary equipment. The first Enclosure Dome is now under construction and the completion of the mounting on site id envisaged by the end of 2016. The relocation system utilizes a modified reachstacker (a transporter used to handle freight containers) capable of maneuvering between and around the enclosures, capable of lifting the combined weight of the enclosure with the telescope (30tons), with minimal impacts due to vibrations.

  18. Construction of the Advanced Technology Solar Telescope

    Science.gov (United States)

    Rimmele, T. R.; Keil, S.; McMullin, J.; Knölker, M.; Kuhn, J. R.; Goode, P. R.; Rosner, R.; Casini, R.; Lin, H.; Tritschler, A.; Wöger, F.; ATST Team

    2012-12-01

    The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. The project has entered its construction phase. Major subsystems have been contracted. As its highest priority science driver ATST shall provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4m aperture, ATST will resolve features at 0.″03 at visible wavelengths and obtain 0.″1 resolution at the magnetically highly sensitive near infrared wavelengths. A high order adaptive optics system delivers a corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the Coudé laboratory facility. The initial set of first generation instruments consists of five facility class instruments, including imagers and spectro-polarimeters. The high polarimetric sensitivity and accuracy required for measurements of the illusive solar magnetic fields place strong constraints on the polarization analysis and calibration. Development and construction of a four-meter solar telescope presents many technical challenges, including thermal control of the enclosure, telescope structure and optics and wavefront control. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the design status of the telescope and its instrumentation, including design status of major subsystems, such as the telescope mount assembly, enclosure, mirror assemblies, and wavefront correction

  19. The TACTIC atmospheric Cherenkov imaging telescope

    International Nuclear Information System (INIS)

    Koul, R.; Tickoo, A.K.; Kaul, S.K.; Kaul, S.R.; Kumar, N.; Yadav, K.K.; Bhatt, N.; Venugopal, K.; Goyal, H.C.; Kothari, M.; Chandra, P.; Rannot, R.C.; Dhar, V.K.; Koul, M.K.; Kaul, R.K.; Kotwal, S.; Chanchalani, K.; Thoudam, S.; Chouhan, N.; Sharma, M.; Bhattacharyya, S.; Sahayanathan, S.

    2007-01-01

    The TACTIC (TeV Atomospheric Cherenkov Telescope with Imaging Camera) γ-ray telescope, equipped with a light collector of area ∼9.5m 2 and a medium resolution imaging camera of 349 pixels, has been in operation at Mt. Abu, India, since 2001. This paper describes the main features of its various subsystems and its overall performance with regard to (a) tracking accuracy of its two-axes drive system, (b) spot size of the light collector, (c) back-end signal processing electronics and topological trigger generation scheme, (d) data acquisition and control system and (e) relative and absolute gain calibration methodology. Using a trigger field-of-view of 11x11 pixels (∼3.4 a tx3.4 a t), the telescope records a cosmic ray event rate of ∼2.5Hz at a typical zenith angle of 15 a t. Monte Carlo simulation results are also presented in the paper for comparing the expected performance of the telescope with actual observational results. The consistent detection of a steady signal from the Crab Nebula above ∼1.2TeV energy, at a sensitivity level of ∼5.0σ in ∼25h, along with excellent matching of its energy spectrum with that obtained by other groups, reassures that the performance of the TACTIC telescope is quite stable and reliable. Furthermore, encouraged by the detection of strong γ-ray signals from Mrk 501 (during 1997 and 2006 observations) and Mrk 421 (during 2001 and 2005-2006 observations), we believe that there is considerable scope for the TACTIC telescope to monitor similar TeV γ-ray emission activity from other active galactic nuclei on a long-term basis

  20. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    Science.gov (United States)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Oliver; Stark, Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and Exo-Earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling it.

  1. The Lunar Transit Telescope (LTT) - An early lunar-based science and engineering mission

    Science.gov (United States)

    Mcgraw, John T.

    1992-01-01

    The Sentinel, the soft-landed lunar telescope of the LTT project, is described. The Sentinel is a two-meter telescope with virtually no moving parts which accomplishes an imaging survey of the sky over almost five octaves of the electromagnetic spectrum from the ultraviolet into the infrared, with an angular resolution better than 0.1 arsec/pixel. The Sentinel will incorporate innovative techniques of interest for future lunar-based telescopes and will return significant engineering data which can be incorporated into future lunar missions. The discussion covers thermal mapping of the Sentinel, measurement of the cosmic ray flux, lunar dust, micrometeoroid flux, the lunar atmosphere, and lunar regolith stability and seismic activity.

  2. THE TIME DOMAIN SPECTROSCOPIC SURVEY: VARIABLE SELECTION AND ANTICIPATED RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Morganson, Eric; Green, Paul J. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Anderson, Scott F.; Ruan, John J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Eracleous, Michael; Brandt, William Nielsen [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Kelly, Brandon [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530 (United States); Badenes, Carlos [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara St, Pittsburgh, PA 15260 (United States); Bañados, Eduardo [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Borissova, Jura [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030, and Millennium Institute of Astrophysics (MAS), Santiago (Chile); Burgett, William S. [GMTO Corp, Suite 300, 251 S. Lake Ave, Pasadena, CA 91101 (United States); Chambers, Kenneth, E-mail: emorganson@cfa.harvard.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); and others

    2015-06-20

    We present the selection algorithm and anticipated results for the Time Domain Spectroscopic Survey (TDSS). TDSS is an Sloan Digital Sky Survey (SDSS)-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) subproject that will provide initial identification spectra of approximately 220,000 luminosity-variable objects (variable stars and active galactic nuclei across 7500 deg{sup 2} selected from a combination of SDSS and multi-epoch Pan-STARRS1 photometry. TDSS will be the largest spectroscopic survey to explicitly target variable objects, avoiding pre-selection on the basis of colors or detailed modeling of specific variability characteristics. Kernel Density Estimate analysis of our target population performed on SDSS Stripe 82 data suggests our target sample will be 95% pure (meaning 95% of objects we select have genuine luminosity variability of a few magnitudes or more). Our final spectroscopic sample will contain roughly 135,000 quasars and 85,000 stellar variables, approximately 4000 of which will be RR Lyrae stars which may be used as outer Milky Way probes. The variability-selected quasar population has a smoother redshift distribution than a color-selected sample, and variability measurements similar to those we develop here may be used to make more uniform quasar samples in large surveys. The stellar variable targets are distributed fairly uniformly across color space, indicating that TDSS will obtain spectra for a wide variety of stellar variables including pulsating variables, stars with significant chromospheric activity, cataclysmic variables, and eclipsing binaries. TDSS will serve as a pathfinder mission to identify and characterize the multitude of variable objects that will be detected photometrically in even larger variability surveys such as Large Synoptic Survey Telescope.

  3. Cosmic inquirers: Modern telescopes and their makers

    International Nuclear Information System (INIS)

    Tucker, W.; Tucker, K.

    1986-01-01

    An historical account is given of major, telescopic instrument-related advancements in 20th-century astronomy, with attention to the roles played by leading figures in the various fields of astronomical research involved. These biographical treatments encompass David Heeshen and the development of the VLA; Riccardo Giacconi and the X-ray astronomy Uhuru, High Energy Astronomy Observatory, and X-ray Explorer, and Einstein Observatory satellites; Allan Jacobson and the Gamma Ray Observatory satellite; the involvements of Frank Low and Gerry Neugebauer in the development of the IR Astronomy Satellite; and C. R. O'Dell's organization of the NASA Space Telescope program. 62 references

  4. Autonomous Dome for a Robotic Telescope

    Science.gov (United States)

    Kumar, A.; Sengupta, A.; Ganesh, S.

    2016-12-01

    The Physical Research Laboratory operates a 50 cm robotic observatory at Mount Abu (Rajsthan, India). This Automated Telescope for Variability Studies (ATVS) makes use of the Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5 m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  5. Status of the GroundBIRD Telescope

    Science.gov (United States)

    Choi, J.; Génova-Santos, R.; Hattori, M.; Hazumi, M.; Ishitsuka, H.; Kanno, F.; Karatsu, K.; Kiuchi, K.; Koyano, R.; Kutsuma, H.; Lee, K.; Mima, S.; Minowa, M.; Nagai, M.; Nagasaki, T.; Naruse, M.; Oguri, S.; Okada, T.; Otani, C.; Rebolo, R.; Rubiño-Martín, J.; Sekimoto, Y.; Suzuki, J.; Taino, T.; Tajima, O.; Tomita, N.; Uchida, T.; Won, E.; Yoshida, M.

    2018-01-01

    Our understanding of physics at very early Universe, as early as 10-35 s after the Big Bang, relies on the scenario known as the inflationary cosmology. Inflation predicts a particular polarization pattern in the cosmic microwave background, known as the B-mode yet the strength of such polarization pattern is extremely weak. To search for the B-mode of the polarization in the cosmic microwave background, we are constructing an off-axis rotating telescope to mitigate systematic effects as well as to maximize the sky coverage of the observation. We will discuss the present status of the GroundBIRD telescope.

  6. The Status of the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tokuno, H; Azuma, R [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Abu-Zayyad, T; Allen, M; Barcikowski, E; Belz, J W; Blake, S A; Brusova, O; Cady, R [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Aida, R [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Benno, T; Chikawa, M; Doura, K [Kinki University, Higashi Osaka, Osaka (Japan); Bergman, D R [Rutgers University, Piscataway (United States); Cheon, B G; Cho, E J [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J [Tokyo University of Science, Noda, Chiba (Japan); Cho, L S; Cho, W R [Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Cohen, F, E-mail: htokuno@cr.phys.titech.ac.jp [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan)

    2011-04-01

    The purpose of The Telescope Array experiment is to identify origin of the ultra high energy cosmic rays. The Telescope Array is a hybrid detector consists of a surface detector array and air fluorescence detectors. This hybrid detector is observing extensive air showers to measure the energy spectrum, anisotropy and composition of Ultra High Energy Cosmic Rays. The detector construction has been completed in March 2008, and the hybrid observation with the full configuration has been running since that time. In this talk, the status of observation and our prospects are described.

  7. The Telescope Array experiment: status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Tokuno, H; Cohen, F [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa (Japan); Abbasi, R U; Abu-Zayyad, T; Belz, J W; Blake, S A; Brusova, O; Cady, R; Cao, Z [University of Utah, Salt Lake City (United States); Azuma, R [Tokyo Institute of Technology, Tokyo (Japan); Benno, T; Chikawa, M; Doura, K [Kinki University, Osaka (Japan); Bergman, D R [Rutgers University, Piscataway (United States); Cheon, B G [Hanyang University, Seoul (Korea, Republic of); Chiba, J [Tokyo University of Science, Noda (Japan); Cho, I S [Yonsei University, Seoul (Korea, Republic of); Chung, T [Ewha Womans University, Seoul (Korea, Republic of); Doyle, T [Utah State University, Logan (United States); Endo, A [Saitama University, Saitama (Japan)], E-mail: htokuno@icrr.u-tokyo.ac.jp (and others)

    2008-07-15

    Telescope Array (TA) is a hybrid detector of a surface detector array and fluorescence telescopes. This hybrid detector will measure the energy spectrum, anisotropy and composition of ultra-high energy cosmic rays (UHECRs) to identify their origin. The almost construction of the detector has been completed in May 2007, and the detector is running under test and adjustments. The first hybrid observation with the full configuration is planned in beginning of 2008. In this paper the status and prospects of TA detector is described.

  8. Status of the GroundBIRD Telescope

    Directory of Open Access Journals (Sweden)

    Choi J.

    2018-01-01

    Full Text Available Our understanding of physics at very early Universe, as early as 10−35 s after the Big Bang, relies on the scenario known as the inflationary cosmology. Inflation predicts a particular polarization pattern in the cosmic microwave background, known as the B-mode yet the strength of such polarization pattern is extremely weak. To search for the B-mode of the polarization in the cosmic microwave background, we are constructing an off-axis rotating telescope to mitigate systematic effects as well as to maximize the sky coverage of the observation. We will discuss the present status of the GroundBIRD telescope.

  9. The site conditions of the Guo Shou Jing Telescope

    International Nuclear Information System (INIS)

    Yao Song; Liu Chao; Zhang Haotong; Deng Licai; Zhang Yueyang; Li Jing; Liu Nian; Zhou Xu; Gao Shuang; Xu Yan; Newberg, Heidi Jo; Carlin, Jeffrey L.; Chen Li; Hou Jinliang; Christlieb Norbert; Han Zhanwen; Lee, Hsu-Tai; Liu Xiaowei; Pan Kaike; Wang Hongchi

    2012-01-01

    The weather at the Xinglong Observing Station, where the Guo Shou Jing Telescope (GSJT) is located, is strongly affected by the monsoon climate in northeast China. The LAMOST survey strategy is constrained by these weather patterns. We present statistics on observing hours from 2004 to 2007, and the sky brightness, seeing, and sky transparency from 1995 to 2011 at the site. We investigate effects of the site conditions on the survey plan. Operable hours each month show a strong correlation with season: on average there are eight operable hours per night available in December, but only one—two hours in July and August. The seeing and the sky transparency also vary with season. Although the seeing is worse in windy winters, and the atmospheric extinction is worse in the spring and summer, the site is adequate for the proposed scientific program of the LAMOST survey. With a Monte Carlo simulation using historical data on the site condition, we find that the available observation hours constrain the survey footprint from 22 h to 16 h in right ascension; the sky brightness allows LAMOST to obtain a limiting magnitude of V = 19.5 mag with S/N=10.

  10. Science Flight Program of the Nuclear Compton Telescope

    Science.gov (United States)

    Boggs, Steven

    This is the lead proposal for this program. We are proposing a 5-year program to perform the scientific flight program of the Nuclear Compton Telescope (NCT), consisting of a series of three (3) scientific balloon flights. NCT is a balloon-borne, wide-field telescope designed to survey the gamma-ray sky (0.2-5 MeV), performing high-resolution spectroscopy, wide-field imaging, and polarization measurements. NCT has been rebuilt as a ULDB payload under the current 2-year APRA grant. (In that proposal we stated our goal was to return at this point to propose the scientific flight program.) The NCT rebuild/upgrade is on budget and schedule to achieve flight-ready status in Fall 2013. Science: NCT will map the Galactic positron annihilation emission, shedding more light on the mysterious concentration of this emission uncovered by INTEGRAL. NCT will survey Galactic nucleosynthesis and the role of supernova and other stellar populations in the creation and evolution of the elements. NCT will map 26-Al and positron annihilation with unprecedented sensitivity and uniform exposure, perform the first mapping of 60-Fe, search for young, hidden supernova remnants through 44-Ti emission, and enable a host of other nuclear astrophysics studies. NCT will also study compact objects (in our Galaxy and AGN) and GRBs, providing novel measurements of polarization as well as detailed spectra and light curves. Design: NCT is an array of germanium gamma-ray detectors configured in a compact, wide-field Compton telescope configuration. The array is shielded on the sides and bottom by an active anticoincidence shield but is open to the 25% of the sky above for imaging, spectroscopy, and polarization measurements. The instrument is mounted on a zenith-pointed gondola, sweeping out ~50% of the sky each day. This instrument builds off the Compton telescope technique pioneered by COMPTEL on the Compton Gamma Ray Observatory. However, by utilizing modern germanium semiconductor strip detectors

  11. The NASA/AFRL Meter Class Autonomous Telescope

    Science.gov (United States)

    Cowardin, H.; Lederer, S.; Buckalew, B.; Frith, J.; Hickson, P.; Glesne, T.; Anz-Meador, P.; Barker, E.; Stansbery, G.; Kervin, P.

    2016-01-01

    For the past decade, the NASA Orbital Debris Program Office (ODPO) has relied on using various ground-based telescopes in Chile to acquire statistical survey data as well as photometric and spectroscopic data of orbital debris in geosynchronous Earth orbit (GEO). The statistical survey data have been used to supply the Orbital Debris Engineering Model (ORDEM) v.3.0 with debris detections in GEO to better model the environment at altitudes where radar detections are limited. The data produced for the statistical survey ranged from 30 to 40 nights per year, which only accounted for 10% of the possible observing time. Data collection was restricted by ODPO resources and weather conditions. In order to improve the statistical sampling in GEO, as well as observe and sample other orbits, NASA's ODPO with support from the Air Force Research Laboratory (AFRL), has constructed a new observatory dedicated to orbital debris - the Meter Class Autonomous Telescope (MCAT) on Ascension Island. This location provides MCAT with the unique ability to access targets orbiting at an altitude of less than 1,000 km and low inclinations (< 20 deg). This orbital regime currently has little to no coverage by the U.S. Space Surveillance Network. Unlike previous ODPO optical assets, the ability to operate autonomously will allow rapid response observations of break-up events, an observing mode that was only available via radar tasking prior to MCAT's deployment. The primary goal of MCAT is to statistically characterize GEO via daily tasking files uploaded from ODPO. These tasking files define which operating mode to follow, providing the field center, rates, and/or targets to observe over the entire observing period. The system is also capable of tracking fast-moving targets in low Earth orbit (LEO), middle Earth orbit (MEO), as well as highly eccentric orbits like geostationary transfer orbits. On 25 August 2015, MCAT successfully acquired scientific first light, imaging the Bug Nebula and

  12. Fermi Large Area Telescope Operations: Progress Over 4 Years

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.; /SLAC

    2012-06-28

    The Fermi Gamma-ray Space Telescope was launched into orbit in June 2008, and is conducting a multi-year gamma-ray all-sky survey, using the main instrument on Fermi, the Large Area Telescope (LAT). Fermi began its science mission in August 2008, and has now been operating for almost 4 years. The SLAC National Accelerator Laboratory hosts the LAT Instrument Science Operations Center (ISOC), which supports the operation of the LAT in conjunction with the Mission Operations Center (MOC) and the Fermi Science Support Center (FSSC), both at NASA's Goddard Space Flight Center. The LAT has a continuous output data rate of about 1.5 Mbits per second, and data from the LAT are stored on Fermi and transmitted to the ground through TDRS and the MOC to the ISOC about 10 times per day. Several hundred computers at SLAC are used to process LAT data to perform event reconstruction, and gamma-ray photon data are subsequently delivered to the FSSC for public release with a few hours of being detected by the LAT. We summarize the current status of the LAT, and the evolution of the data processing and monitoring performed by the ISOC during the first 4 years of the Fermi mission, together with future plans for further changes to detected event data processing and instrument operations and monitoring.

  13. The Infrared-Optical Telescope (IRT) of the Exist Observatory

    Science.gov (United States)

    Kutyrev, Alexander; Bloom, Joshua; Gehrels, Neil; Golisano, Craig; Gong, Quan; Grindlay, Jonathan; Moseley, Samuel; Woodgate, Bruce

    2010-01-01

    The IRT is a 1.1m visible and infrared passively cooled telescope, which can locate, identify and obtain spectra of GRB afterglows at redshifts up to z 20. It will also acquire optical-IR, imaging and spectroscopy of AGN and transients discovered by the EXIST (The Energetic X-ray Imaging Survey Telescope). The IRT imaging and spectroscopic capabilities cover a broad spectral range from 0.32.2m in four bands. The identical fields of view in the four instrument bands are each split in three subfields: imaging, objective prism slitless for the field and objective prism single object slit low resolution spectroscopy, and high resolution long slit on single object. This allows the instrument, to do simultaneous broadband photometry or spectroscopy of the same object over the full spectral range, thus greatly improving the efficiency of the observatory and its detection limits. A prompt follow up (within three minutes) of the transient discovered by the EXIST makes IRT a unique tool for detection and study of these events, which is particularly valuable at wavelengths unavailable to the ground based observatories.

  14. Celestial harvest 300-plus showpieces of the heavens for telescope viewing and contemplation

    CERN Document Server

    Mullaney, James

    2012-01-01

    This book describes over 300 celestial wonders that can be viewed with common binoculars and low-power ""backyard"" telescopes incorporating refractors and reflectors.In addition to such showpieces as the Andromeda Galaxy, the largest and brightest of all galaxies after the Milky Way, and the Blue Snowball, one of the autumn sky's outstanding planetary nebulas, over 20 other special objects are listed and characterized, many of which are visible to the unaided eye on a dark, clear night.The sun, moon, Venus, Mars, Jupiter, Saturn, and other members of the earth's solar system are also describ

  15. Revisiting the Effectiveness of Large Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available To create large-size optical telescopes, various design concepts have been used. Each concept inevitably faced the challenge to optimize technical characteristics and parameters of the telescope. There was always a question: what concept to choose, how to estimate efficiency of such telescopes and by what criteria and how to estimate expediency of this or that project of the large-size telescope. It is, obviously, insufficient to make a resolution-based estimation. An estimate by the angular field size is inappropriate too. Well, it may be also an estimate by the stellar magnitude. All these criteria are related to each other. Improvement of one of these parameters inevitably leads to deterioration of the others. Obviously, the certain generalized criterion considering all parameters and features of the design concept of the large-size telescope is necessary here. As such can serve the criterion of informational content of the telescope.The article offers a complex criterion allowing not only to estimate efficiency of large-size optical telescopes, but also to compare their conceptual and technological level among themselves in terms of obtaining information.The article suggests a new term, i.e. the informational content invariant to characterize informative capacities of the chosen concept and of the realizing technology. It will allow us to avoid unjustified complications of technical solutions, wrong accents in designing and excess material inputs when developing the project.The informational content criterion-based analysis of the existing projects of large-size telescopes has been convincingly shown that, conceptually, there are three best telescopes, namely: GSMT, CELT, and ACT-25. And, in terms of informational content, the АCТ-25 is 10 times more than GSMT and CELT, and the existing Keck-telescope exceeds by 30 times. Hence, it is hard to escape a conclusion that it is more favourable to implement one ACT-25, than to do 10 GSMT or CELT

  16. A Subaru galaxy redshift survey: WFMOS survey

    International Nuclear Information System (INIS)

    Takada, M

    2008-01-01

    A planned galaxy redshift survey with the Subaru 8.2m telescope, the WFMOS survey, offers a unique opportunity for probing detailed properties of large-scale structure formation in the expanding universe by measuring clustering strength of galaxy distribution as a function of distance scale and redshift. In particular, the precise measurement of the galaxy power spectrum, combined with the cosmic microwave background experiments, allows us to obtain stringent constraints on or even determine absolute mass scales of the Big-Bang relic neutrinos as the neutrinos imprint characteristic scale- and redshift-dependent modifications onto the galaxy power spectrum shape. Here we describe the basic concept of how the galaxy clustering measurement can be used to explore the neutrino masses, with particular emphasis on advantages of the WFMOS survey over the existing low-redshift surveys such as SDSS

  17. James Webb Space Telescope Optical Telescope Element Mirror Development History and Results

    Science.gov (United States)

    Feinber, Lee D.; Clampin, Mark; Keski-Kuha, Ritva; Atkinson, Charlie; Texter, Scott; Bergeland, Mark; Gallagher, Benjamin B.

    2012-01-01

    In a little under a decade, the James Webb Space Telescope (JWST) program has designed, manufactured, assembled and tested 21 flight beryllium mirrors for the James Webb Space Telescope Optical Telescope Element. This paper will summarize the mirror development history starting with the selection of beryllium as the mirror material and ending with the final test results. It will provide an overview of the technological roadmap and schedules and the key challenges that were overcome. It will also provide a summary or the key tests that were performed and the results of these tests.

  18. The Mission Accessible Near-Earth Object Survey (MANOS)

    Science.gov (United States)

    Moskovitz, N.; Manos Team

    2014-07-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of various regions within the Solar System they can provide insight to more distant, less accessible populations. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes such as space weathering, planetary encounters, and non-gravitational dynamics. Knowledge of their physical properties is essential to impact hazard assessment. Finally, the proximity of NEOs to Earth make them favorable targets for robotic and human exploration. However, in spite of their scientific importance, only the largest (km-scale) NEOs have been well studied and a representative sample of physical characteristics for sub-km NEOs does not exist. To address these issues we are conducting the Mission Accessible Near-Earth Object Survey (MANOS), a fully allocated multi-year survey of sub-km NEOs that will provide a large, uniform catalog of physical properties including light curves, spectra, and astrometry. From this comprehensive catalog, we will derive global properties of the NEO population, as well as identify individual targets that are of potential interest for exploration. We will accomplish these goals for approximately 500 mission-accessible NEOs across the visible and near-infrared ranges using telescope assets in both the northern and southern hemispheres. MANOS has been awarded large survey status by NOAO to employ Gemini-N, Gemini-S, SOAR, the Kitt Peak 4 m, and the CTIO 1.3 m. Access to additional facilities at Lowell Observatory (DCT 4.3 m, Perkins 72'', Hall 42'', LONEOS), the University of Hawaii, and the Catalina Sky Survey provide essential complements to this suite of telescopes. Targets for MANOS are selected based on three primary criteria: mission accessibility (i.e. Δ v 20), and observability. Our telescope assets allow us to obtain

  19. Commissioning and first tests of the MAGIC telescope

    Science.gov (United States)

    Baixeras, C.; Bastieri, D.; Bigongiari, C.; Blanch, O.; Blanchot, G.; Bock, R.; Bretz, T.; Chilingarian, A.; Coarasa, J. A.; Colombo, E.; Contreras, J. C.; Corti, D.; Cortina, J.; Domingo, C.; Domingo, E.; Ferenc, D.; Fernández, E.; Flix, J.; Fonseca, V.; Font, L.; Galante, N.; Gaug, M.; Garczarczyk, M.; Gebauer, J.; Giller, M.; Goebel, F.; Hengstebeck, T.; Jacone, P.; de Jager, O. C.; Kalekin, O.; Kestel, M.; Kneiske, T.; Laille, A.; López, M.; López, J.; Lorenz, E.; Mannheim, K.; Mariotti, M.; Martínez, M.; Mase, K.; Merck, M.; Meucci, M.; Miralles, L.; Mirzoyan, R.; Moralejo, A.; Wilhelmi, E. Oña; Orduña, R.; Paneque, D.; Paoletti, R.; Pascoli, D.; Pavel, N.; Pegna, R.; Peruzzo, L.; Piccioli, A.; Roberts, A.; Reyes, R.; Saggion, A.; Sánchez, A.; Sartori, P.; Scalzotto, V.; Schweizer, T.; Sillanpaa, A.; Sobczynska, D.; Stamerra, A.; Stepanian, A.; Stiehler, R.; Takalo, L.; Teshima, M.; Tonello, N.; Torres, A.; Turini, N.; Vitale, V.; Volkov, S.; Wagner, R. M.; Wibig, T.; Wittek, W.

    2004-02-01

    Major Atmospheric Gamma Imaging Cherenkov telescope is starting its operations with a set of engineering runs to tune the telescope subsystem elements to be ready for the first physics campaign. Many technical improvements have been developed and implemented in several elements of the telescope to reach the lowest energy threshold ever obtained by an Imaging Atmospheric Cherenkov Telescope. A general description of the telescope is presented. The commissioning of the telescope's elements is described and the expected performances are reviewed with the final detector set-up.

  20. The all-sky 408 MHz survey

    International Nuclear Information System (INIS)

    Haslam, C.G.T.; Salter, C.J.; Stoffel, H.

    1981-01-01

    A brief outline of the results of this survey is presented. The 408 MHz All-sky Survey has been made from four radio continuum surveys observed between 1965 and 1978, using the Jodrell Bank MKI telescope (Haslam et al., 1970), the Effelsberg 100 metre telescope (Haslam et al., 1974) and the Parkes 64 metre telescope (Haslam et al., 1975). A detailed description of the survey data reduction and calibration methods, with preliminary astronomical results will soon be published (Haslam et al., 1980a) and a second paper will give an atlas of maps at the full survey resolution of 51' arc between half power points (Haslam et al., 1980b). A map, smoothed to a gaussian beam with resolution between half power poitns of 3 0 , is presented. (Auth.)

  1. First Experience from the World Largest fully commercial Solar Heating Plant

    DEFF Research Database (Denmark)

    Heller, Alfred; Furbo, Simon

    1997-01-01

    The first experience from the largest solar heating plant in the world is given. The plant is situated in Marstal and is has a total area of 8000 square m.......The first experience from the largest solar heating plant in the world is given. The plant is situated in Marstal and is has a total area of 8000 square m....

  2. Revisiting the phylogeny of Ocellularieae, the second largest tribe within Graphidaceae (lichenized Ascomycota: Ostropales)

    Science.gov (United States)

    Ekaphan Kraichak; Sittiporn Parnmen; Robert Lücking; Eimy Rivas Plata; Andre Aptroot; Marcela E.S. Caceres; Damien Ertz; Armin Mangold; Joel A. Mercado-Diaz; Khwanruan Papong; Dries Van der Broeck; Gothamie Weerakoon; H. Thorsten. Lumbsch; NO-VALUE

    2014-01-01

    We present an updated 3-locus molecular phylogeny of tribe Ocellularieae, the second largest tribe within subfamily Graphidoideae in the Graphidaceae. Adding 165 newly generated sequences from the mitochondrial small subunit rDNA (mtSSU), the nuclear large subunit rDNA (nuLSU), and the second largest subunit of the DNA-directed RNA polymerase II (RPB2), we currently...

  3. The NASA Meter Class Autonomous Telescope: Ascension Island

    Science.gov (United States)

    Lederer, S. M.; Stansbery, E. G.; Cowardin, H. M.; Hickson, P.; Pace, L. F.; Abercromby, K. J.; Kervin, P. W.

    2013-01-01

    The Meter Class Autonomous Telescope (MCAT) is the newest optical sensor dedicated to NASA's mission to characterize the space debris environment. It is the successor to a series of optical telescopes developed and operated by the JSC Orbital Debris Program Office (ODPO) to monitor and assess the debris environment in (1) Low Earth Orbit (LEO), (2) Medium Earth Orbit (MEO), and (3) Geosynchronous Orbit (GEO), with emphasis on LEO and GEO altitudes. A joint NASA - Air Force Research Labs project, MCAT is a 1.3m optical telescope dedicated to debris research. Its optical path and sensor yield a large survey fence at the cutting edge of current detector performance. It has four primary operational observing modes, two of which were not computationally feasible a decade ago. Operations are supported by a sophisticated software suite that monitors clouds and weather conditions, and controls everything from data collection to dome rotation to processing tens of gigabytes of image data nightly. With fainter detection limits, precision detection, acquisition and tracking of targets, multi-color photometry, precision astrometry, automated re-acquisition capability, and the ability to process all data at the acquisition rate, MCAT is capable of producing and processing a volume and quality of data far in excess of any current (or prior) ODPO operations. This means higher fidelity population inputs and eliminating the multi-year backlog from acquisition-to-product typical of optical campaigns. All of this is possible given a suitable observing location. Ascension Island offers numerous advantages. As a British overseas territory with a US Air Force base presence, the necessary infrastructure and support already exists. It is located mid-way between Brazil and Africa at 7.93S latitude and 14.37 W longitude. With the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) asset in Moron, Spain shutting down, this presents access to the sky from a unique latitude

  4. Modeling and control of antennas and telescopes

    CERN Document Server

    Gawronski, Wodek

    2008-01-01

    The book shows, step-by-step, the design, implementation, and testing of the antenna/telescope control system, from the design stage (analytical model) to fine tuning of the RF beam pointing (monopulse and conscan). It includes wide use of Matlab and Simulink..

  5. The telescopic tourist's guide to the Moon

    CERN Document Server

    May, Andrew

    2017-01-01

    Whether you’re interested in visiting Apollo landing sites or the locations of classic sci-fi movies, this is the tourist guide for you! This tourist guide has a twist – it is a guide to a whole different world, which you can visit from the comfort of your backyard with the aid of nothing more sophisticated than an inexpensive telescope. It tells you the best times to view the Moon, the most exciting sights to look out for, and the best equipment to use, allowing you to snap stunning photographs as well as view the sights with your own eyes. Have you ever been inspired by stunning images from the Hubble telescope, or the magic of sci-fi special effects, only to look through a small backyard telescope at the disappointing white dot of a planet or faint blur of a galaxy? Yet the Moon is different. Seen through even a relatively cheap telescope, it springs into life like a real place, with mountains and valleys and rugged craters. With a bit of imagination, you can even picture yourself as a sightseeing visi...

  6. Functional check of telescoping transfer pumps

    International Nuclear Information System (INIS)

    Sharpe, C.L.

    1994-01-01

    Activities are defined which constitute a functional check of a telescoping transfer pump (TTP). This report is written to the Procedures group of HLW and particularly applies to those TTP's which are the sole means of emergency transfer from a HLW waste tank

  7. Laser Truss Sensor for Segmented Telescope Phasing

    Science.gov (United States)

    Liu, Duncan T.; Lay, Oliver P.; Azizi, Alireza; Erlig, Herman; Dorsky, Leonard I.; Asbury, Cheryl G.; Zhao, Feng

    2011-01-01

    A paper describes the laser truss sensor (LTS) for detecting piston motion between two adjacent telescope segment edges. LTS is formed by two point-to-point laser metrology gauges in a crossed geometry. A high-resolution (distribution can be optimized using the range-gated metrology (RGM) approach.

  8. Hydrodynamic experiments on dacryoconarid shell telescoping

    Czech Academy of Sciences Publication Activity Database

    Hladil, Jindřich; Šimčík, Miroslav; Růžička, Marek; Kulaviak, Lukáš; Lisý, Pavel

    2014-01-01

    Roč. 47, č. 3 (2014), s. 376-396 ISSN 0024-1164 R&D Projects: GA ČR GAP210/10/2351 Institutional support: RVO:67985831 ; RVO:67985858 Keywords : dacryoconarid shells * experimental fluid mechanics * narrow cones * Palaeozoic * telescoping Subject RIV: DB - Geology ; Mineralogy; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) Impact factor: 1.454, year: 2014

  9. The 3.5-Meter Telescope Enclosure

    Science.gov (United States)

    1994-04-01

    and acoustic vibrations, and the enclosure cannot be stopped quickly in an emergency. Also, the work of Zago indicates that open-air operation of the...enclosure. This capability is useful during operational testing and maintenance of the telescope. ’ Zago , L., "Design and Performance of Large

  10. FACT. Bokeh alignment for Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Sebastian Achim [ETH Zurich (Switzerland); Buss, Jens [TU Dortmund (Germany)

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need fast and large imaging optics to map the faint Cherenkov light emitted in cosmic ray air showers onto their image sensors. Segmented reflectors are inexpensive, lightweight and offer good image quality. However, alignment of the mirror facets remains a challenge. A good alignment is crucial in IACT observations to separate gamma rays from hadronic cosmic rays. We present a simple, yet extendable method, to align segmented reflectors using their Bokeh. Bokeh alignment does not need a star or good weather nights but can be done anytime, even during the day. Bokeh alignment optimizes the facet orientations by comparing the segmented reflector's Bokeh to a predefined template. The Bokeh is observed using the out of focus image of a nearby point like light source in a distance of about ten times the focal lengths. We introduce Bokeh alignment on segmented reflectors and present its use on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on Canary Island La Palma, as well as on the Cherenkov Telescope Array (CTA) Medium Size Telescope (MST) prototype in Berlin Adlershof.

  11. Space Telescope Pointing Control System software

    Science.gov (United States)

    Dougherty, H.; Rodoni, C.; Rossini, R.; Tompetrini, K.; Nakashima, A.; Bradley, A.

    1982-01-01

    The Space Telescope Pointing Control System software is in the advanced development stage, having been tested on both the airbearing and the static simulator. The overall structure of the software is discussed, along with timing and sizing evaluations. The interaction between the controls analysts and software designer is described.

  12. Calibration strategies for the Cherenkov Telescope Array

    NARCIS (Netherlands)

    Gaug, M.; Berge, D.; Daniel, M.; Doro, M.; Förster, A.; Hofmann, W.; Maccarone, M.C.; Parsons, D.; de los Reyes Lopez, R.; van Eldik, C.

    2014-01-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration

  13. Choosing and Using a Refracting Telescope

    CERN Document Server

    English, Neil

    2011-01-01

    The refracting telescope has a long and illustrious past. Here’s what the author says about early telescopes and today’s refractors: “Four centuries ago, a hitherto obscure Italian scientist turned a home-made spyglass towards the heavens. The lenses he used were awful by modern standards, inaccurately figured and filled with the scars of their perilous journey from the furnace to the finishing workshop. Yet, despite these imperfections, they allowed him to see what no one had ever seen before – a universe far more complex and dynamic than anyone had dared imagine. But they also proved endlessly useful in the humdrum of human affairs. For the first time ever, you could spy on your neighbor from a distance, or monitor the approach of a war-mongering army, thus deciding the fate of nations. “The refractor is without doubt the prince of telescopes. Compared with all other telescopic designs, the unobstructed view of the refractor enables it to capture the sharpest, highest contrast images and the wides...

  14. Go-To Telescopes Under Suburban Skies

    CERN Document Server

    Monks, Neale

    2010-01-01

    For the last four centuries stargazers have turned their telescopes to the night skies to look at its wonders, but only in this age of computers has it become possible to let the telescope find for you the object you are looking for! So-called “go-to” telescopes are programmed with the locations of thousands of objects, including dazzling distant Suns, stunning neighboring galaxies, globular and open star clusters, the remnants of past supernovae, and many other breathtaking sights. This book does not tell you how to use your Go-to telescope. Your manual will help you do that. It tells you what to look for in the deep sky and why, and what equipment to best see it with. Organized broadly by what is best for viewing in the northern hemisphere in different seasons, Monks further divides the sights of each season into groupings such as “Showpiece Objects,” “Interesting Deep Sky Objects,” and “Obscure and Challenging Deep Sky Objects.” He also tells what objects are visible even in light-polluted ...

  15. The Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected Via the Sunyaev-Zel'Dovich Effect

    Science.gov (United States)

    Menanteau, Felipe; Gonzalez, Jorge; Juin, Jean-Baptiste; Marriage, Tobias; Reese, Erik D.; Acquaviva, Viviana; Aguirre, Paula; Appel, John Willam; Baker, Andrew J.; Barrientos, L. Felipe; hide

    2010-01-01

    We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps. coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 10(exp 14) Stellar Mass. with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 10(exp 15) Stellar Mass and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton. and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically-significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the Universe.

  16. The WFCAM Transit Survey

    Directory of Open Access Journals (Sweden)

    Hodgkin S.

    2011-02-01

    Full Text Available The WFCAM Transit Survey (WTS has been obtaining data on the United Kingdom Infrared Telescope since 2007. The WTS targets about 8,000 M dwarfs over several square degrees of sky, and aims to find low-mass eclipsing binaries and planets, down to the size of the Earth, transiting M dwarf stars with periods up to a few days.

  17. First Results from the Dense Extragalactic GBT+ARGUS Survey (DEGAS): A Direct, Quantitative Test of the Role of Gas Density in Star Formation

    Science.gov (United States)

    Kepley, Amanda; Bigiel, Frank; Bolatto, Alberto; Church, Sarah; Cleary, Kieran; Frayer, David; Gallagher, Molly; Gundersen, Joshua; Harris, Andrew; Hughes, Annie; Jimenez-Donaire, Maria Jesus; Kessler, Sarah; Lee, Cheoljong; Leroy, Adam; Li, Jialu; Donovan Meyer, Jennifer; Rosolowsky, Erik; Sandstrom, Karin; Schinnener, Eva; Schruba, Andreas; Sieth, Matt; Usero, Antonio

    2018-01-01

    Gas density plays a central role in all modern theories of star formation. A key test of these theories involves quantifying the resolved gas density distribution and its relationship to star formation within a wide range of galactic environments. Until recently, this experiment has been difficult to perform owing to the faint nature of key molecular gas tracers like HCN and HCO+, but the superior sensitivity of modern millimeter instruments like ALMA and the IRAM 30m make these types of experiments feasible. In particular, the sensitivity and resolution provided by large aperture of the GBT combined with fast mapping speeds made possible by its new 16-pixel, 3mm focal plane array (Argus) make the GBT an almost-ideal instrument for this type of study. The Dense Extragalactic GBT+Argus Survey (DEGAS) will leverage these capabilities to perform the largest, resolved survey of molecular gas tracers in nearby galaxies, ultimately mapping a suite of four molecular gas tracers in the inner 2’ by 2’ of 36 nearby galaxies. When complete in 2020, DEGAS will be the largest resolved survey of dense molecular gas tracers in nearby galaxies. This talk will present early results from the first observations for this Green Bank Telescope large survey and highlight some exciting future possibilities for this survey.

  18. The Southern African Large Telescope project

    Science.gov (United States)

    Buckley, David A. H.; Charles, Philip A.; Nordsieck, Kenneth H.; O'Donoghue, Darragh

    The recently completed Southern African Large Telescope (SALT) is a low cost, innovative, 10 m class optical telescope, which began limited scientific operations in August 2005, just 5 years after ground-breaking. This paper describes the design and construction of SALT, including the first-light instruments, SALTICAM and the Robert Stobie Spectrograph (RSS). A rigorous systems engineering approach has ensured that SALT was built to specification, on budget, close to the original schedule and using a relatively small project team. The design trade-offs, which include an active spherical primary mirror array and a fixed altitude telescope with a prime focus tracker, although restrictive in comparison to conventional telescopes, have resulted in an affordable 10 m class telescope for South Africa and its ten partners. Coupled with an initial set of two seeing-limited instruments that concentrate on the UV-visible region (320 - 900 nm) and featuring some niche observational capabilities, SALT will have an ability to conduct some unique science. This includes high time resolution studies, for which some initial results have already been obtained. Many of the versatile modes available with the RSS - which is currently being commissioned - are unique and provide unparallelled opportunities for imaging polarimetry and spectropolarimetry. Likewise, Multi-Object Spectroscopy (with slit masks) and imaging spectroscopy with the RSS, the latter using Fabry-Perot étalons and interference filters, will extend the multiplex advantage over resolutions from 300 to 9000 and fields of view of 2 to 8 arcminutes. Future instrumentation plans include an extremely stable, fibre-fed, high resolution échelle spectrograph and a near-IR (to between 1.5 to 1.7 μm) extension to the RSS. Future development possibilities include phasing the primary mirror and AO. Finally, extrapolations of the SALT/HET designs to ELT proportions remain viable and are surely more affordable than conventional

  19. Completion of the Southern African Large Telescope

    Science.gov (United States)

    Buckley, D. A. H.; Charles, P. A.; O'Donoghue, D.; Nordsieck, K. H.

    2006-08-01

    The Southern African Large Telescope (SALT) is a low cost (19.7M), innovative, 10-m class optical telescope, which was inaugurated on 10 November 2005, just 5 years after ground-breaking. SALT and its first-light instruments are currently being commissioned, and full science operations are expected to begin later this year. This paper describes the design and construction of SALT, including the first-light instruments, SALTICAM and the Robert Stobie Spectrograph (RSS). A rigorous Systems Engineering approach was adopted to ensure that SALT was built to specification, on budget, close to the original schedule and using a relatively small project team. The design trade-offs, which include an active spherical primary mirror array in a fixed altitude telescope with a prime focus tracker, although restrictive in comparison to conventional telescopes, have resulted in an affordable and capable 10-m class telescope for South Africa and its ten partners. Coupled with an initial set of two seeing-limited instruments that concentrate on the UV-visible region (320 - 900nm) and featuring some unique observational capabilities, SALT will have an ability to conduct a wide range of science programs. These will include high time resolution studies, for which some initial results have already been obtained and are presented here. Many of the versatile modes available with the RSS will provide unparalleled opportunities for imaging polarimetry and spectropolarimetry. Likewise, Multi-Object Spectroscopy (using laser cut graphite slit masks) and imaging spectroscopy with the RSS, the latter using Fabry-Perot etalons and interference filters, will extend the multiplex advantage over resolutions from R = 300 to 9000 over fields of view of 2 to 8 arcminutes. Future instrumentation plans include an extremely stable, fibre-fed, high resolution échelle spectrograph and a near-IR (possibly to 1.7 μm) extension to the RSS. Future development possibilities include phasing the primary mirror

  20. European astronaut selected for the third Hubble Space Telescope

    Science.gov (United States)

    1998-08-01

    will remove the European-built Faint Object Camera, which has been working without any problem since the launch in 1990, and replace it with a new-generation instrument, called the Advanced Camera for Survey. With its three electronic cameras and complement of filters, this camera is expected to improve the telescope's sensitivity tenfold. Other primary tasks to be accomplished during STS-104 mission include replacement of the existing solar arrays with rigid, high-efficiency arrays for which ESA will deliver the mechanisms, manufactured by Daimler-Benz Aerospace/Dornier. In common with optical instruments, solar arrays gradually decline in performance when exposed to the space environment. Further tasks are the replacement of a mechanical tape recorder with a new-generation solid-state recorder and the replacement of Fine Guidance Sensor no. 2, one of three such devices that help to point the telescope at a celestial target with an accuracy of 0.007 arc seconds. This is equivalent to keeping the telescope pointed at a candle in Amsterdam from Vevey, Switzerland, about 700 km away, where Nicollier was born. The crew will also install a cooling system to improve the thermal protection of some of the telescope's systems, a new-technology cryogenic cooler for the Near Infrared Camera and Mutli-Object Spectrometer instrument and six improvement kits which will enhance Hubble's battery charge capability. In addition, they will repair and replace much of the multi-layer exterior thermal insulation on the sun-facing side of the telescope. On the second Hubble servicing mission, STS-82 in February 1997, the crew noticed peeling on several areas of the insulation and applied four patches to the worst affected areas. Both Smith and Nicollier have previous in-flight experience with Hubble: Smith performed three extravehicular sorties during the STS-82 mission to Hubble and Nicollier operated the Shuttle's Canadian robot arm during the first servicing mission on the STS-61 mission

  1. Solomon Islands largest hawksbill turtle rookery shows signs of recovery after 150 years of excessive exploitation.

    Directory of Open Access Journals (Sweden)

    Richard J Hamilton

    Full Text Available The largest rookery for hawksbill turtles in the oceanic South Pacific is the Arnavon Islands, which are located in the Manning Strait between Isabel and Choiseul Province, Solomon Islands. The history of this rookery is one of overexploitation, conflict and violence. Throughout the 1800s Roviana headhunters from New Georgia repeatedly raided the Manning Strait to collect hawksbill shell which they traded with European whalers. By the 1970s the Arnavons hawksbill population was in severe decline and the national government intervened, declaring the Arnavons a sanctuary in 1976. But this government led initiative was short lived, with traditional owners burning down the government infrastructure and resuming intensive harvesting in 1982. In 1991 routine beach monitoring and turtle tagging commenced at the Arnavons along with extensive community consultations regarding the islands' future, and in 1995 the Arnavon Community Marine Conservation Area (ACMCA was established. Around the same time national legislation banning the sale of all turtle products was passed. This paper represents the first analysis of data from 4536 beach surveys and 845 individual turtle tagging histories obtained from the Arnavons between 1991-2012. Our results and the results of others, reveal that many of the hawksbill turtles that nest at the ACMCA forage in distant Australian waters, and that nesting on the Arnavons occurs throughout the year with peak nesting activity coinciding with the austral winter. Our results also provide the first known evidence of recovery for a western pacific hawksbill rookery, with the number of nests laid at the ACMCA and the remigration rates of turtles doubling since the establishment of the ACMCA in 1995. The Arnavons case study provides an example of how changes in policy, inclusive community-based management and long term commitment can turn the tide for one of the most charismatic and endangered species on our planet.

  2. OVERVIEW OF THE ATACAMA COSMOLOGY TELESCOPE: RECEIVER, INSTRUMENTATION, AND TELESCOPE SYSTEMS

    International Nuclear Information System (INIS)

    Swetz, D. S.; Devlin, M. J.; Dicker, S. R.; Ade, P. A. R.; Amiri, M.; Battistelli, E. S.; Burger, B.; Halpern, M.; Hasselfield, M.; Appel, J. W.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hincks, A. D.; Jarosik, N.; Chervenak, J.; Doriese, W. B.; Hilton, G. C.; Irwin, K. D.; Duenner, R.

    2011-01-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  3. Overview of the Atacama Cosmology Telescope: Receiver, Instrumentation, and Telescope Systems

    Science.gov (United States)

    Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Battistelli, E. S.; Burger, B.; Chervenak, J.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dünner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Hincks, A. D.; Irwin, K. D.; Jarosik, N.; Kaul, M.; Klein, J.; Lau, J. M.; Limon, M.; Marriage, T. A.; Marsden, D.; Martocci, K.; Mauskopf, P.; Moseley, H.; Netterfield, C. B.; Niemack, M. D.; Nolta, M. R.; Page, L. A.; Parker, L.; Staggs, S. T.; Stryzak, O.; Switzer, E. R.; Thornton, R.; Tucker, C.; Wollack, E.; Zhao, Y.

    2011-06-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' × 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  4. BATMAN: a DMD-based MOS demonstrator on Galileo Telescope

    Science.gov (United States)

    Zamkotsian, Frédéric; Spanò, Paolo; Bon, William; Riva, Marco; Lanzoni, Patrick; Nicastro, Luciano; Molinari, Emilio; Cosentino, Rosario; Ghedina, Adriano; Gonzalez, Manuel; Di Marcantonio, Paolo; Coretti, Igor; Cirami, Roberto; Manetta, Marco; Zerbi, Filippo; Tresoldi, Daniela; Valenziano, Luca

    2012-09-01

    Multi-Object Spectrographs (MOS) are the major instruments for studying primary galaxies and remote and faint objects. Current object selection systems are limited and/or difficult to implement in next generation MOS for space and groundbased telescopes. A promising solution is the use of MOEMS devices such as micromirror arrays which allow the remote control of the multi-slit configuration in real time. We are developing a Digital Micromirror Device (DMD) - based spectrograph demonstrator called BATMAN. We want to access the largest FOV with the highest contrast. The selected component is a DMD chip from Texas Instruments in 2048 x 1080 mirrors format, with a pitch of 13.68μm. Our optical design is an all-reflective spectrograph design with F/4 on the DMD component. This demonstrator permits the study of key parameters such as throughput, contrast and ability to remove unwanted sources in the FOV (background, spoiler sources), PSF effect, new observational modes. This study will be conducted in the visible with possible extension in the IR. A breadboard on an optical bench, ROBIN, has been developed for a preliminary determination of these parameters. The demonstrator on the sky is then of prime importance for characterizing the actual performance of this new family of instruments, as well as investigating the operational procedures on astronomical objects. BATMAN will be placed on the Nasmyth focus of Telescopio Nazionale Galileo (TNG) during next year.

  5. The Atacama Cosmology Telescope: Data Characterization and Map Making

    Science.gov (United States)

    Duenner, Rolando; Hasselfield, Matthew; Marriage, Tobias A.; Sievers, Jon; Acquaviva, Viviana; Addison, Graeme E.; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; hide

    2012-01-01

    We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% or the 90 TB collected by ACT from 2007 to 2010. In 2008 we observed for 136 days, producing a total of 142h of data (11 TB for the 148 GHz band only), with a daily average of 10.5 h of observation. From these, 108.5 h were devoted to 850 sq deg stripe (11.2 h by 9 deg.1) centered on a declination of -52 deg.7, while 175 h were devoted to a 280 square deg stripe (4.5 h by 4 deg.8) centered at the celestial equator. We discuss sources of statistical and systematic noise, calibration, telescope pointing and data selection. Out of 1260 survey hours and 1024 detectors per array, 816 h and 593 effective detectors remain after data selection for this frequency band, yielding a 38 % survey efficiency. The total sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in the time-ordered data stream (TOD), is 32 muK square root of s in CMB units. Atmospheric brightness fluctuations constitute the main contaminant in the data and dominate the detector and noise covariance at low frequencies in the TOD. The maps were made by solving the lease squares problem using the Preconditioned Conjugate Gradient method, incorporating the details of the detector and noise correlations. Cross-correlation with WMAP sky maps as well as analysis from simulations reveal the our maps are unbiased at l > 300. This paper accompanies the public release of the 148 GHz southern stripe maps from 2008. The techniques described here will be applied to future maps and data releases.

  6. THE ATACAMA COSMOLOGY TELESCOPE: DATA CHARACTERIZATION AND MAPMAKING

    Energy Technology Data Exchange (ETDEWEB)

    Duenner, Rolando; Aguirre, Paula; Barrientos, L. Felipe [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Hasselfield, Matthew; Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Marriage, Tobias A.; Acquaviva, Viviana; Das, Sudeep [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Sievers, Jon; Appel, John William [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Addison, Graeme E.; Calabrese, Erminia [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Ade, Peter A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Brown, Ben [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Chervenak, Jay [Code 553/665, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Devlin, Mark J.; Dicker, Simon R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); and others

    2013-01-01

    We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from 2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hr of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hr of observation. From these, 1085 hr were devoted to an 850 deg{sup 2} stripe (11.2 hr by 9. Degree-Sign 1) centered on a declination of -52. Degree-Sign 7, while 175 hr were devoted to a 280 deg{sup 2} stripe (4.5 hr by 4. Degree-Sign 8) centered at the celestial equator. The remaining 163 hr correspond to calibration runs. We discuss sources of statistical and systematic noise, calibration, telescope pointing, and data selection. For the 148 GHz band, out of 1260 survey hours and 1024 detectors in the array, 816 hr and 593 effective detectors remain after data selection, yielding a 38% survey efficiency. The total sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in the time-ordered data stream (TOD), is 32 {mu}K{radical}s in cosmic microwave background units. Atmospheric brightness fluctuations constitute the main contaminant in the data and dominate the detector noise covariance at low frequencies in the TOD. The maps were made by solving the least-squares problem using the Preconditioned Conjugate Gradient method, incorporating the details of the detector and noise correlations. Simulations, as well as cross-correlations with Wilkinson Microwave Anisotropy Probe sky maps on large angular scales, reveal that our maps are unbiased at multipoles l > 300. This paper accompanies the public release of the 148 GHz southern stripe maps from 2008. The techniques described here will be applied to future maps and data releases.

  7. Origins Space Telescope: The Far Infrared Imager and Polarimeter FIP

    Science.gov (United States)

    Staguhn, Johannes G.; Chuss, David; Howard, Joseph; Meixner, Margaret; Vieira, Joaquin; Amatucci, Edward; Bradley, Damon; Carter, Ruth; Cooray, Asantha; Flores, Anel; Leisawitz, David; Moseley, Samuel Harvey; Wollack, Edward; Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST)* is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The current "concept 1", which envisions a cold (4K) 9m space telescope, includes 5 instruments, providing a wavelength coverage ranging from 6um and 667um. The achievable sensitivity of the observatory will provide three to four orders of magnitude of improvement in sensitivity over current observational capabilities, allowing to address a wide range of new and so far inaccessible scientific questions, ranging from bio-signatures on exo-planets to mapping primordial H_2 from the "dark ages" before the universe went through the phase of re-ionization.Here we present the Far Infrared Imager and Polarimeter (FIP) for OST. The cameral will cover four bands, 40um, 80um, 120um, and 240um. It will allow for differential polarimetry in those bands with the ability to observe two colors in polarimtery mode simultaneously, while all four bands can be observed simultaneously in total power mode. While the confusion limit will be reached in only 32ms at 240um, at 40um the source density on the sky is so low, that at the angular resolution of 1" of OST at this wavelength there will be no source confusion, even for the longest integration times. Science topics that can be addressed by FIP include but are not limited to galactic and extragalactic magnetic field studies, Deep Galaxy Surveys, and Outer Solar System objects..*Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.edu

  8. Mechanical design of SST-GATE, a dual-mirror telescope for the Cherenkov Telescope Array

    Science.gov (United States)

    Dournaux, Jean-Laurent; Huet, Jean-Michel; Amans, Jean-Philippe; Dumas, Delphine; Laporte, Philippe; Sol, Hélène; Blake, Simon

    2014-07-01

    The Cherenkov Telescope Array (CTA) project aims to create the next generation Very High Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays over a wide band of energy, from a few tens of GeV to more than 100 TeV. Two sites are foreseen to view the whole sky where about 100 telescopes, composed of three different classes, related to the specific energy region to be investigated, will be installed. Among these, the Small Size class of Telescopes, SSTs, are devoted to the highest energy region, to beyond 100 TeV. Due to the large number of SSTs, their unit cost is an important parameter. At the Observatoire de Paris, we have designed a prototype of a Small Size Telescope named SST-GATE, based on the dual-mirror Schwarzschild-Couder optical formula, which has never before been implemented in the design of a telescope. Over the last two years, we developed a mechanical design for SST-GATE from the optical and preliminary mechanical designs made by the University of Durham. The integration of this telescope is currently in progress. Since the early stages of mechanical design of SST-GATE, finite element method has been used employing shape and topology optimization techniques to help design several elements of the telescope. This allowed optimization of the mechanical stiffness/mass ratio, leading to a lightweight and less expensive mechanical structure. These techniques and the resulting mechanical design are detailed in this paper. We will also describe the finite element analyses carried out to calculate the mechanical deformations and the stresses in the structure under observing and survival conditions.

  9. Distribution and Modeled Transport of Plastic Pollution in the Great Lakes, the World's Largest Freshwater Resource

    Directory of Open Access Journals (Sweden)

    Rachel N. Cable

    2017-07-01

    Full Text Available Most plastic pollution originates on land. As such, freshwater bodies serve as conduits for the transport of plastic litter to the ocean. Understanding the concentrations and fluxes of plastic litter in freshwater ecosystems is critical to our understanding of the global plastic litter budget and underpins the success of future management strategies. We conducted a replicated field survey of surface plastic concentrations in four lakes in the North American Great Lakes system, the largest contiguous freshwater system on the planet. We then modeled plastic transport to resolve spatial and temporal variability of plastic distribution in one of the Great Lakes, Lake Erie. Triplicate surface samples were collected at 38 stations in mid-summer of 2014. Plastic particles >106 μm in size were quantified. Concentrations were highest near populated urban areas and their water infrastructure. In the highest concentration trawl, nearly 2 million fragments km−2 were found in the Detroit River—dwarfing previous reports of Great Lakes plastic abundances by over 4-fold. Yet, the accuracy of single trawl counts was challenged: within-station plastic abundances varied 0- to 3-fold between replicate trawls. In the smallest size class (106–1,000 μm, false positive rates of 12–24% were determined analytically for plastic vs. non-plastic, while false negative rates averaged ~18%. Though predicted to form in summer by the existing Lake Erie circulation model, our transport model did not predict a permanent surface “Lake Erie Garbage Patch” in its central basin—a trend supported by field survey data. Rather, general eastward transport with recirculation in the major basins was predicted. Further, modeled plastic residence times were drastically influenced by plastic buoyancy. Neutrally buoyant plastics—those with the same density as the ambient water—were flushed several times slower than plastics floating at the water's surface and exceeded the

  10. NASA 3D Models: James Webb Space Telescope

    Data.gov (United States)

    National Aeronautics and Space Administration — The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror. The project is working to a 2018 launch date. The JWST will...

  11. Scientific Performance Analysis of the SYZ Telescope Design versus the RC Telescope Design

    Science.gov (United States)

    Ma, Donglin; Cai, Zheng

    2018-02-01

    Recently, Su et al. propose an innovative design, referred as the “SYZ” design, for China’s new project of a 12 m optical-infrared