WorldWideScience

Sample records for largest oil producing

  1. Sub-Sahara's second largest oil producer

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, C

    1991-05-01

    With the prospects for peace in Angola following the settlement of the civil war, the oil producing potential for the country is briefly reviewed. Topics covered include the problems of economic growth and development because of the civil war and communist ideology, US foreign policy, production sharing, military expenditure and economic planning. (UK).

  2. The world's largest LNG producer's next market

    International Nuclear Information System (INIS)

    Fuller, R.; Isworo Suharno; Simandjuntak, W.M.P.

    1996-01-01

    The development of the domestic gas market in Indonesia, the world's largest liquefied natural gas producing country, is described as part of the overall impact of the country's oil and gas production. The first large scale use of natural gas in Indonesia was established in 1968 when a fertiliser plant using gas as the feedstock was built. Ultimately, through increased yields, this has enabled Indonesia to be self-sufficient in rice and an exporter of fertiliser. Problems which stand in the way of further developments include: capital, though Pertamina and PGN are perceived as attractive for foreign investment; the lack of a regulatory framework for gas; geographical constraints, among them the fact that the gas deposits are remote from the largest population concentrations; lack of infrastructure. There are nevertheless plans for expansion and the provision of an integrated gas pipeline system. Pertamina, which has responsibility for all oil and gas developments, and PGN, whose primary role has been as a manufacturer and distributor of gas, are now working together in the coordination of all gas activities. (10 figures). (UK)

  3. State-owned companies dominate list of largest non-U.S. producers

    International Nuclear Information System (INIS)

    Beck, R.J.; Williamson, M.

    1994-01-01

    Because state-owned oil and gas companies dominate Oil and Gas Journal's list of largest non-US producers, data aren't fully comparable with those of the OGJ300. Many state companies report only production and reserves, with little or no financial data. Companies on the OGJ100, therefore, cannot be ranked by assets or revenues. Instead, they are listed by regions, based on location of corporate headquarters. There was no change in makeup of the top 20 holders of crude oil reserves. These companies' reserves totaled 872.3 billion bbl in 1993. The top 20 non-US companies now control 87.3 % of total world crude oil reserves, according to OGJ estimates. This is up marginally from 87.2 % of total world oil reserves in 1992. The top 20 had 87.7 % of total world reserves in 1991 and 85.5 % in 1990. The table lists company name, total assets, revenues, net income, capital and exploratory expenditures, worldwide oil production, gas production, oil and gas reserves worldwide

  4. World's third-largest producer of nuclear power. Japan in need of energy

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Japan is the third largest oil consumer in the world behind the United States and China, and the second largest net importer of oil. Japan boasts one of the largest economies in the world. The country continues to experience a moderate economic recovery that began in 2003, following a decade of economic stagnation. Japan's real gross domestic product (GDP) grew by 2.5% in 2005 and 2.3% in 2004. The modest upturn over the last few years reflects higher business confidence in Japan, a surge in export demand led by exports to China, and robust consumer spending. Unemployment in Japan fell to 4.4% in 2005, down from an early 2003 peak of 5.5%. Japan has virtually no domestic oil or natural gas reserves, and in 2005 was the second largest net importer of crude oil in the world. Despite the country's dearth of hydrocarbon resources, Japanese companies have actively pursued upstream oil and natural gas projects overseas. Japan remains one of the major exporters of energy-sector capital equipment, and Japanese companies provide engineering, construction, and project management services for energy projects. (orig.)

  5. Largest US oil and gas fields, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  6. Largest US oil and gas fields, August 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA's annual survey of oil and gas proved reserves. The series' objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series' approach is to integrate EIA's crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel

  7. Revisiting the impacts of oil price increases on monetary policy implementation in the largest oil importers

    Directory of Open Access Journals (Sweden)

    Nurtac Yildirim

    2015-06-01

    Full Text Available The aim of this paper is to test the impacts of oil price increases on monetary policy implementation in the largest oil importers. For that purpose, we estimate structural vector error correction (SVEC models to show the impacts of oil price increases on industrial production, consumer prices and immediate interest rates which are the elements of Taylor rule for the four largest oil importers (the USA, the EU, China and Japan. Our results indicate that oil price increases transmit to output and inflation and lead to fluctuations in industrial production, consumer prices and immediate interest rates which in turn influence the monetary policy stance in the following periods. The basic conclusion of research is that the channels through which oil prices affect output, inflation and interest rates should be identified by the monetary policy authorities of the USA, the EU, China and Japan. We also emphasize the importance of the determination of the optimal monetary policy framework to eliminate the negative consequences of oil price increases.

  8. Ready or Not: Namibia As a Potentially Successful Oil Producer

    Directory of Open Access Journals (Sweden)

    Andrzej Polus

    2015-01-01

    Full Text Available The primary objective of this paper is to assess whether Namibia is ready to become an oil producer. The geological estimates suggest that the country may possess the equivalent of as many as 11 billion barrels of crude oil. If the numbers are correct, Namibia would be sitting on the second-largest oil reserves in sub-Saharan Africa, and exploitation could start as soon as 2017. This clearly raises the question of whether Namibia is next in line to become a victim of the notorious “resource curse.” On the basis of critical discourse analysis and findings from field research, the authors have selected six dimensions of the resource curse and contextualised them within the spheres of Namibian politics and economy. While Namibia still faces a number of important challenges, our findings offer little evidence that the oil will have particularly disruptive effects.

  9. Can Producing Oil Store Carbon? Greenhouse Gas Footprint of CO2EOR, Offshore North Sea.

    Science.gov (United States)

    Stewart, R Jamie; Haszeldine, R Stuart

    2015-05-05

    Carbon dioxide enhanced oil recovery (CO2EOR) is a proven and available technology used to produce incremental oil from depleted fields while permanently storing large tonnages of injected CO2. Although this technology has been used successfully onshore in North America and Europe, there are currently no CO2EOR projects in the United Kingdom. Here, we examine whether offshore CO2EOR can store more CO2 than onshore projects traditionally have and whether CO2 storage can offset additional emissions produced through offshore operations and incremental oil production. Using a high-level Life Cycle system approach, we find that the largest contribution to offshore emissions is from flaring or venting of reproduced CH4 and CO2. These can already be greatly reduced by regulation. If CO2 injection is continued after oil production has been optimized, then offshore CO2EOR has the potential to be carbon negative--even when emissions from refining, transport, and combustion of produced crude oil are included. The carbon intensity of oil produced can be just 0.056-0.062 tCO2e/bbl if flaring/venting is reduced by regulation. This compares against conventional Saudi oil 0.040 tCO2e/bbl or mined shale oil >0.300 tCO2e/bbl.

  10. Intrastate conflict in oil producing states: A threat to global oil supply?

    International Nuclear Information System (INIS)

    Toft, Peter

    2011-01-01

    In this paper I investigate how often and how much outbreaks of intrastate conflict in oil producing states translates into oil supply shortfalls. The Libyan conflict that broke out in February 2011 highlighted the fear that intrastate conflict in oil producing states may imply shortfalls and ensuing volatile global oil prices. I argue, however, that it is far from certain that shortfalls following conflict outbreak will occur, since both sides in a conflict face incentives simultaneously to protect and maintain oil installations and to strike and destroy these. Based on a quantitative analysis of 39 intrastate wars in oil producing countries (1965-2007) I conclude that outbreak of conflict does not translate into production decline with any certainty. In fact, likelihoods are less than 50% for reductions to occur. In many cases growing production actually followed conflict outbreak. I conclude by investigating four characteristics of intrastate conflict that may explain when oil production is at risk during conflict: (1) proximity of oil producing fields to key battle zones, (2) duration of conflict, (3) separatism and the location of oil in separatist territory, and (4) the relative size of oil production. While the first three factors did not prove important, oil producer size could be significant. But further research is needed to establish this with greater certainty. - Highlights: → Oil shortfall during intrastate conflict is not a given. → Statistical analysis of 39 intrastate conflicts in oil producing countries since 1965. → Examination of four characteristics of intrastate conflict in oil producing countries. → Marginal significance related to large producers and production shortfall.

  11. Intrastate conflict in oil producing states: A threat to global oil supply?

    Energy Technology Data Exchange (ETDEWEB)

    Toft, Peter, E-mail: peter.toft@ec.europa.eu [Institute for Energy, Joint Research Centre of the European Commission, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2011-11-15

    In this paper I investigate how often and how much outbreaks of intrastate conflict in oil producing states translates into oil supply shortfalls. The Libyan conflict that broke out in February 2011 highlighted the fear that intrastate conflict in oil producing states may imply shortfalls and ensuing volatile global oil prices. I argue, however, that it is far from certain that shortfalls following conflict outbreak will occur, since both sides in a conflict face incentives simultaneously to protect and maintain oil installations and to strike and destroy these. Based on a quantitative analysis of 39 intrastate wars in oil producing countries (1965-2007) I conclude that outbreak of conflict does not translate into production decline with any certainty. In fact, likelihoods are less than 50% for reductions to occur. In many cases growing production actually followed conflict outbreak. I conclude by investigating four characteristics of intrastate conflict that may explain when oil production is at risk during conflict: (1) proximity of oil producing fields to key battle zones, (2) duration of conflict, (3) separatism and the location of oil in separatist territory, and (4) the relative size of oil production. While the first three factors did not prove important, oil producer size could be significant. But further research is needed to establish this with greater certainty. - Highlights: > Oil shortfall during intrastate conflict is not a given. > Statistical analysis of 39 intrastate conflicts in oil producing countries since 1965. > Examination of four characteristics of intrastate conflict in oil producing countries. > Marginal significance related to large producers and production shortfall.

  12. Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries

    International Nuclear Information System (INIS)

    Ebohon, Obas John; Ikeme, Anthony Jekwu

    2006-01-01

    The need to decompose CO 2 emission intensity is predicated upon the need for effective climate change mitigation and adaptation policies. Such analysis enables key variables that instigate CO 2 emission intensity to be identified while at the same time providing opportunities to verify the mitigation and adaptation capacities of countries. However, most CO 2 decomposition analysis has been conducted for the developed economies and little attention has been paid to sub-Saharan Africa. The need for such an analysis for SSA is overwhelming for several reasons. Firstly, the region is amongst the most vulnerable to climate change. Secondly, there are disparities in the amount and composition of energy consumption and the levels of economic growth and development in the region. Thus, a decomposition analysis of CO 2 emission intensity for SSA affords the opportunity to identify key influencing variables and to see how they compare among countries in the region. Also, attempts have been made to distinguish between oil and non-oil-producing SSA countries. To this effect a comparative static analysis of CO 2 emission intensity for oil-producing and non oil-producing SSA countries for the periods 1971-1998 has been undertaken, using the refined Laspeyres decomposition model. Our analysis confirms the findings for other regions that CO 2 emission intensity is attributable to energy consumption intensity, CO 2 emission coefficient of energy types and economic structure. Particularly, CO 2 emission coefficient of energy use was found to exercise the most influence on CO 2 emission intensity for both oil and non-oil-producing sub-Saharan African countries in the first sub-interval period of our investigation from 1971-1981. In the second subinterval of 1981-1991, energy intensity and structural effect were the two major influencing factors on emission intensity for the two groups of countries. However, energy intensity effect had the most pronounced impact on CO 2 emission

  13. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  14. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin.

    Science.gov (United States)

    Khan, Naima A; Engle, Mark; Dungan, Barry; Holguin, F Omar; Xu, Pei; Carroll, Kenneth C

    2016-04-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin

    Science.gov (United States)

    Khan, Naima A.; Engle, Mark A.; Dungan, Barry; Holguin, F. Omar; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production.

  16. Producers and oil markets

    International Nuclear Information System (INIS)

    Greaves, W.

    1993-01-01

    This article attempts an assessment of the potential use of futures by the Middle East oil producers. It focuses on Saudi Arabia since the sheer size of Saudi Arabian sales poses problems, but the basic issues discussed are similar for the other Middle East producers. (Author)

  17. The global diversion of pharmaceutical drugs. India: the third largest illicit opium producer?

    Science.gov (United States)

    Paoli, Letizia; Greenfield, Victoria A; Charles, Molly; Reuter, Peter

    2009-03-01

    This paper explores India's role in the world illicit opiate market, particularly its role as a producer. India, a major illicit opiate consumer, is also the sole licensed exporter of raw opium: this unique status may be enabling substantial diversion to the illicit market. Participant observation and interviews were carried out at eight different sites. Information was also drawn from all standard secondary sources and the analysis of about 180 drug-related criminal proceedings reviewed by Indian High Courts and the Supreme Court from 1985 to 2001. Diversion from licit opium production takes place on such a large scale that India may be the third largest illicit opium producer after Afghanistan and Burma. With the possible exceptions of 2005 and 2006, 200-300 tons of India's opium may be diverted yearly. After estimating India's opiate consumption on the basis of UN-reported prevalence estimates, we find that diversion from licit production might have satisfied a quarter to more than a third of India's illicit opiate demand to 2004. India is not only among the world's largest consumer of illicit opiates but also one of the largest illicit opium producers. In contrast to all other illicit producers, India owes the latter distinction not to blatantly illicit cultivation but to diversion from licit cultivation. India's experience suggests the difficulty of preventing substantial leakage, even in a relatively well-governed nation.

  18. Modelling the oil producers: Capturing oil industry knowledge in a behavioural simulation model

    International Nuclear Information System (INIS)

    Morecroft, J.D.W.; Van der Heijden, K.A.J.M.

    1992-01-01

    A group of senior managers and planners from a major oil company met to discuss the changing structure of the oil industry with the purpose of improving group understanding of oil market behaviour for use in global scenarios. This broad ranging discussion led to a system dynamics simulation model of the oil producers. The model produced new insights into the power and stability of OPEC (the major oil producers' organization), the dynamic of oil prices, and the investment opportunities of non-OPEC producers. The paper traces the model development process, starting from group discussions and leading to working simulation models. Particular attention is paid to the methods used to capture team knowledge and to ensure that the computer models reflected opinions and ideas from the meetings. The paper describes how flip-chart diagrams were used to collect ideas about the logic of the principal producers' production decisions. A sub-group of the project team developed and tested an algebraic model. The paper shows partial model simulations used to build confidence and a sense of ownership in the algebraic formulations. Further simulations show how the full model can stimulate thinking about producers' behaviour and oil prices. The paper concludes with comments on the model building process. 11 figs., 37 refs

  19. Development of new antioxidant systems for frying oil and omega-3 oils

    Science.gov (United States)

    The development of natural antioxidant systems for frying oil will be discussed in this presentation. This study aimed to utilize vegetable oils such as soybean oil for frying, of which the United States is the world’s largest producer. To overcome the vulnerability of soybean oil to oxidation due t...

  20. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  1. Thermal Cracking of Jatropha Oil with Hydrogen to Produce Bio-Fuel Oil

    Directory of Open Access Journals (Sweden)

    Yi-Yu Wang

    2016-11-01

    Full Text Available This study used thermal cracking with hydrogen (HTC to produce bio-fuel oil (BFO from jatropha oil (JO and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig, retention times (tr; 40–780 min, and set temperatures (TC; 623–683 K. By applying HTC, the oil molecules can be hydrogenated and broken down into smaller molecules. The acid value (AV, iodine value, kinematic viscosity (KV, density, and heating value (HV of the BFO produced were measured and compared with the prevailing standards for oil to assess its suitability as a substitute for fossil fuels or biofuels. The results indicate that an increase in PH2 tends to increase the AV and KV while decreasing the HV of the BFO. The BFO yield (YBFO increases with PH2 and tr. The above properties decrease with increasing TC. Upon HTC at 0.69 MPa (100 psig H2 pressure, 60 min time, and 683 K temperature, the YBFO was found to be 86 wt%. The resulting BFO possesses simulated distillation characteristics superior to those of boat oil and heavy oil while being similar to those of diesel oil. The BFO contains 15.48% light naphtha, 35.73% heavy naphtha, 21.79% light gas oil, and 27% heavy gas oil and vacuum residue. These constituents can be further refined to produce gasoline, diesel, lubricants, and other fuel products.

  2. Do Oil-Producing Countries Have Normal Oil Overconsumption? An Investigation of Economic Growth and Energy Subsidies

    Directory of Open Access Journals (Sweden)

    Seyed Reza Mirnezami

    2015-07-01

    Full Text Available The data shows that oil-producing countries have low oil retail prices and low economic growth compared with other countries. Considering that oil-producing countries experience high oil consumption and low economic growth, it is possible to argue that economic growth is not an appropriate justification for oil consumption and that the main cause for high oil consumption is the low retail price. In addition, it should be noted that the global environmental movement against increasing greenhouse gas emissions—for example, the Kyoto 1998 agreement—seems to have had no effect on oil consumption in oil-producing countries.

  3. Monitoring coastal pollution associated with the largest oil refinery complex of Venezuela

    Directory of Open Access Journals (Sweden)

    Aldo Croquer

    2016-06-01

    Full Text Available This study evaluated pollution levels in water and sediments of Península de Paraguaná and related these levels with benthic macrofauna along a coastal area where the largest Venezuelan oil refineries have operated over the past 60 years. For this, the concentration of heavy metals, of hydrocarbon compounds and the community structure of the macrobenthos were examined at 20 sites distributed along 40 km of coastline for six consecutive years, which included windy and calm seasons. The spatial variability of organic and inorganic compounds showed considerably high coastal pollution along the study area, across both years and seasons. The southern sites, closest to the refineries, had consistently higher concentrations of heavy metals and organic compounds in water and sediments when compared to those in the north. The benthic community was dominated by polychaetes at all sites, seasons and years, and their abundance and distribution were significantly correlated with physical and chemical characteristics of the sediments. Sites close to the oil refineries were consistently dominated by families known to tolerate xenobiotics, such as Capitellidae and Spionidae. The results from this study highlight the importance of continuing long-term environmental monitoring programs to assess the impact of effluent discharge and spill events from the oil refineries that operate in the western coast of Paraguaná, Venezuela.

  4. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in

  5. Yeast: A new oil producer?

    Directory of Open Access Journals (Sweden)

    Beopoulos Athanasios

    2012-01-01

    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  6. Do Oil-Producing Countries Have Normal Oil Overconsumption? An Investigation of Economic Growth and Energy Subsidies

    OpenAIRE

    Seyed Reza Mirnezami

    2015-01-01

    The data shows that oil-producing countries have low oil retail prices and low economic growth compared with other countries. Considering that oil-producing countries experience high oil consumption and low economic growth, it is possible to argue that economic growth is not an appropriate justification for oil consumption and that the main cause for high oil consumption is the low retail price. In addition, it should be noted that the global environmental movement against increasing greenhou...

  7. Evolution of oil-producing trichomes in Sisyrinchium (Iridaceae): insights from the first comprehensive phylogenetic analysis of the genus

    Science.gov (United States)

    Chauveau, Olivier; Eggers, Lilian; Raquin, Christian; Silvério, Adriano; Brown, Spencer; Couloux, Arnaud; Cruaud, Corine; Kaltchuk-Santos, Eliane; Yockteng, Roxana; Souza-Chies, Tatiana T.; Nadot, Sophie

    2011-01-01

    Background and Aims Sisyrinchium (Iridaceae: Iridoideae: Sisyrinchieae) is one of the largest, most widespread and most taxonomically complex genera in Iridaceae, with all species except one native to the American continent. Phylogenetic relationships within the genus were investigated and the evolution of oil-producing structures related to specialized oil-bee pollination examined. Methods Phylogenetic analyses based on eight molecular markers obtained from 101 Sisyrinchium accessions representing 85 species were conducted in the first extensive phylogenetic analysis of the genus. Total evidence analyses confirmed the monophyly of the genus and retrieved nine major clades weakly connected to the subdivisions previously recognized. The resulting phylogenetic hypothesis was used to reconstruct biogeographical patterns, and to trace the evolutionary origin of glandular trichomes present in the flowers of several species. Key Results and Conclusions Glandular trichomes evolved three times independently in the genus. In two cases, these glandular trichomes are oil-secreting, suggesting that the corresponding flowers might be pollinated by oil-bees. Biogeographical patterns indicate expansions from Central America and the northern Andes to the subandean ranges between Chile and Argentina and to the extended area of the Paraná river basin. The distribution of oil-flower species across the phylogenetic trees suggests that oil-producing trichomes may have played a key role in the diversification of the genus, a hypothesis that requires future testing. PMID:21527419

  8. Canadian Occidental joins Hunt as Yemen oil producer

    International Nuclear Information System (INIS)

    Gurney, J.

    1994-01-01

    On 23 September 1993, the Canadian Occidental Petroleum Company initiated the export of 120,000 b/d (barrels a day) of low sulphur, medium gravity crude oil from its Masila Block concession in Yemen. The oil is transported from Masila via a pipeline built by CanOxy and its partners to a new terminal at Ash Shihr, near Mukalla, in the Gulf of Aden. CanOxy is the third operator oil company to produce oil commercially in Yemen. The first, the Hunt Oil Company, began production in December 1987 and its output now totals about 187,000 b/d. The second, Nimir Petroleum, a Saudi venture which took over the facilities developed in the 1980s by two Soviet companies, is currently producing about 10,000 b/d and expects to increase its output to 25,000 b/d during this year. (Author)

  9. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs

    OpenAIRE

    A Tabatabaee, M Mazaheri Assadi, AA Noohi,VA Sajadian

    2005-01-01

    Biosurfactants or surface-active compounds are produced by microoaganisms. These molecules reduce surface tension both aqueous solutions and hydrocarbon mixtures. In this study, isolation and identification of biosurfactant producing bacteria were assessed. The potential application of these bacteria in petroleum industry was investigated. Samples (crude oil) were collected from oil wells and 45 strains were isolated. To confirm the ability of isolates in biosurfactant production, haemolysis ...

  10. Wage Inequality and Violent Protests in Oil/Gas Producing Countries

    Science.gov (United States)

    Nuraliyev, Nurlan

    This work examines contrasting claims made by academic scholars on the relationship between income inequality and political discontent. Does income inequality directly cause social unrest or is this relationship conditional on the level of democratic development? Using the data from 55 oil/gas producing countries between 2010-2013, the author finds: 1) income disparity between an average income per capita of local population and an average income of foreign labor employed in the oil/gas industry results in higher number of violent protests in more democratic oil/gas producing societies; 2) wage disparity between local and foreign labor in the oil/gas industry is associated with higher number of protests in this industry in more democratic oil/gas producing states.

  11. Biosurfactant Producing Microbes from Oil Contaminated Soil - Isolation, Screening and Characterization

    OpenAIRE

    , A Pandey; , D Nandi; , N Prasad; , S Arora

    2016-01-01

    Th1s paper bas1cally deals W1th 1solat10n, productıon and characterızatıon of biosurfactant producing microbes from oil contaminated soil sample. In this paper, we are comparing and discussing different methods to screen & characterize microbes from soil which can degrade oil due to their biosurfactant producing activity which helps in reduction of surface tension of oil. Oils used to check the biosurfactant activity of microbes, were engine oil and vegetable oil. Further isolation of...

  12. Preliminary evaluation of fuel oil produced from pyrolysis of waste ...

    African Journals Online (AJOL)

    It could be refined further to produce domestic kerosene and gasoline. The physical and structural properties of the fuel oil produced compared favorably with that of Aviation fuel JP-4 (a wide-cut US Air force fuel). Presently African countries are importing aviation fuels. The fuel oil produced from the pyrolysis of waste water ...

  13. Genome Annotation and Transcriptomics of Oil-Producing Algae

    Science.gov (United States)

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  14. Exploring oil market dynamics: a system dynamics model and microworld of the oil producers

    Energy Technology Data Exchange (ETDEWEB)

    Morecroft, J.D.W. [London Business School (United Kingdom); Marsh, B. [St Andrews Management Institute, Fife (United Kingdom)

    1997-11-01

    This chapter focuses on the development of a simulation model of global oil markets by Royal Dutch/Shell Planners in order to explore the implications of different scenarios. The model development process, mapping the decision making logic of the oil producers, the swing producer making enough to defend the intended price, the independents, quota setting, the opportunists, and market oil price and demand are examined. Use of the model to generate scenarios development of the model as a gaming simulator for training, design of the user interface, and the value of the model are considered in detail. (UK)

  15. How Unilever palm oil suppliers are burning up Borneo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-15

    New evidence shows expansion by Unilever palm oil suppliers is driving species extinction in Central Kalimantan, and fuelling climate change. In November 2007, Greenpeace released 'Cooking the Climate', an 82-page report summarizing the findings of a two-year investigation that revealed how the world's largest food, cosmetic and biofuel companies were driving the wholesale destruction of Indonesia's rainforests and peatlands through growing palm oil consumption. This follow-up report provides further evidence of the expansion of the palm oil sector in Indonesia into remaining rainforests, orang-utan habitat and peatlands in Kalimantan. It links the majority of the largest producers in Indonesia to Unilever, probably the largest palm oil corporate consumer in the world.

  16. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Zia [Battelle Memorial Inst., Columbus, OH (United States); Chadwell, Brad [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Hindin, Barry [Battelle Memorial Inst., Columbus, OH (United States); Ralston, Kevin [Battelle Memorial Inst., Columbus, OH (United States)

    2015-06-30

    The objectives of this project were to (1) develop a process to upgrade catalytic pyrolysis bio-oil, (2) investigate new upgrading catalysts suited for upgrading catalytic pyrolysis bio-oil, (3) demonstrate upgrading system operation for more than 1,000 hours using a single catalyst charge, and (4) produce a final upgraded product that can be blended to 30 percent by weight with petroleum fuels or that is compatible with existing petroleum refining operations. This project has, to the best of our knowledge, for the first time enabled a commercially viable bio-oil hydrotreatment process to produce renewable blend stock for transportation fuels.

  17. Potential use of produced oil sample analysis to monitor SAGD performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Nexen Petroleum International, Calgary, AB (Canada); Wollen, C. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[OPTI-Nexen Inc., Calgary, AB (Canada); Yang, P.; Fustic, M. [Nexen Petroleum International, Calgary, AB (Canada)

    2008-10-15

    Oil viscosity and compositional gradients can affect the performance of steam injection recovery processes. In this study, reservoir simulations were conducted to investigate the effects of viscosity variation with depth on steam assisted gravity drainage (SAGD) processes and produced oil characteristics. The 2-D reservoir model consisted of a reservoir with a 40 m clean sand matrix, overtopped with interbedded shales and sand. The oil phase was comprised of 2 pseudo-components representing top and bottom bitumens. Viscosities and concentrations of the pseudo-components were calculated using linear mixing rules. Four different viscosity distribution scenarios were examined. Conceptual 3-D models were then constructed to examine the characteristics of produced oil samples in scenarios with shale barriers extending down the well directions and blocking parts of the reservoir. Results from the simulations showed that produced oil characteristics are related to the in situ profiles of reservoir flow barriers. Produced oil characteristics can be used in conjunction with oil rates, surface heave and other data to predict steam chamber development and detect the presence of baffles and barriers. The relationship between the SAGD steam chamber and variations in produced fluid characteristics were accurately characterized by the simulations. It was concluded that the approach can be used to monitor SAGD steam chamber growth. 10 refs., 1 tab., 19 figs.

  18. New oil and gas incentives in Saskatchewan

    International Nuclear Information System (INIS)

    Patel, B.

    2003-01-01

    Saskatchewan is Canada's second largest producer of crude oil and the third largest producer of natural gas with nearly 400 oil and gas companies operating in the province. The oil ranges from heavy sour to light sweet crude oil. Nearly half of the production is heavy oil, 30 per cent is medium oil and 20 per cent is light oil. In 2002, the Province announced changes to the oil and gas Royalty and Tax Regime in an effort to encourage new oil and gas exploration and development activities in Saskatchewan and to help the industry compete with other jurisdictions around the world. This paper examined the pre-October 2002 Saskatchewan Crown Royalty and freehold production tax structure and compared them to the new structure. The paper also briefly outlined the corporation capital tax, resource surcharge, and flow-through share tax credit initiatives announced in 2001 and 2002. With reductions in the Crown Royalty, freehold production tax and corporation capital taxes, the Province expects that more than 9000 oil and gas wells will be drilled in the next decade, representing new investment of about $4.3 billion and 40,000 new jobs. The flow-through share credit may not attract significant investment because it only benefits those who pay taxes in Saskatchewan. 40 refs

  19. Oil producers facing a common challenge

    International Nuclear Information System (INIS)

    Galal, E.E.

    1992-01-01

    Among the numerous challenges facing our modern world, perhaps the most urgent and dominant are energy related. From the perspective of developing countries they are, in order of priorities, development, energy security and environment. Oil covers above 38% of the global commercial energy needs and gas about 20%. In some commanding sectors of the economy, like transport, oil is for now virtually the irreplaceable source of energy. In addition, oil and gas are two valuable primary materials of the chemical industry. It also happens that oil consumption is one of the sources of environmental pollution through the emission of CO 2 . Utilisation of the world's finite fossil energy resources (88% of total commercial energy) in the service of development reflects all the negative attributes of the mismanagement of the global economy, exemplified by waste, inefficiency, unfair terms of trade, market instability and short-sighted policies. These serious inequities have been further compounded by the growing menace of environmental and climatic degradation. In dealing with the interactions between these three complex systems, i.e., energy, environment and development, it is important for oil producers to delineate their priorities clearly, if they are to disentangle credible common goals for an international convention. (author)

  20. Mitsubishi Oil to become a major oil player?

    International Nuclear Information System (INIS)

    Ash, N.

    1994-01-01

    Mitsubishi Oil became a wholly-owned Japanese company in 1984. Before that, since 1981, it had been a joint venture between Mitsubishi and Getty oil. Recently the company has discovered a major new oilfield off the coast of Vietnam. In addition it has a strategic stake in the Canadian Athabasca Far Sands, major investments in Angola and operations in Papua New Guinea and Gabon. It aims to cover 30 % of the crude oil imports to its four existing, and fifth projected, refineries from owned sources by the end of the century. Mitsubishi has a network of 4500 service stations in Japan and has become one of the largest lubricating oil producers. The company's main overseas sales are of jet fuel, lubricating and tanker oils, sulphur and some petrochemicals. (UK)

  1. Technology transfer to US oil producers: A policy tool to sustain or increase oil production

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, W. T.

    1990-03-01

    The Department of Energy provided the Interstate Oil Compact Commission with a grant to identify and evaluate existing technology transfer channels to operators, to devise and test improvements or new technology transfer channels and to make recommendations as to how the Department of Energy's oil and gas technology transfer methods could be improved. The IOCC conducted this effort in a series of four tasks: a structural analysis to characterize the oil producing industry according to operator production size class, geographic location, awareness and use of reservoir management technologies, and strategies for adding reserves and replacing produced reserves; targeted interviews conducted with some 300 oil and gas industry participants to identify current technology transfer channels and their relative usefulness for various classes of industry participants; a design and testing phase, in which the IOCC critiqued the current technology transfer structure, based on results of the structural analysis and targeted interviews, and identified several strategies for improvement; and an evaluation of existing state outreach programs to determine whether they might provide a model for development of additional outreach programs in other producing states.

  2. Russian oil goes to market

    International Nuclear Information System (INIS)

    Kandelaki, T.L.; Tankayev, R.U.

    1997-01-01

    In 1996, Russia retained its place as the world's third largest producer of oil and gas condensate after Saudi Arabia and the USA. Data are provided on Russia's oil sales to its domestic market, to the former Soviet Union and to the rest of the world. These are accompanied by a commentary on Russia's world-wide market, refining in Russia, transportation costs of crude from the generally remote areas where it is produced and price ranges in the various market segments. (7 tables) (UK)

  3. Operational Aspects of Fiscal Policy in Oil-Producing Countries

    OpenAIRE

    Steven A Barnett; Rolando Ossowski

    2002-01-01

    Oil-producing countries face challenges arising from the fact that oil revenue is exhaustible, volatile, and uncertain, and largely originates from abroad. Reflecting these challenges, the paper proposes some important general principles for the formulation and assessment of fiscal policy in these countries. The main findings can be summarized in some key guidelines: the non-oil balance should feature prominently in the formulation of fiscal policy; it should generally be adjusted gradually; ...

  4. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    A Tabatabaee, M Mazaheri Assadi, AA Noohi,VA Sajadian

    2005-01-01

    Full Text Available Biosurfactants or surface-active compounds are produced by microoaganisms. These molecules reduce surface tension both aqueous solutions and hydrocarbon mixtures. In this study, isolation and identification of biosurfactant producing bacteria were assessed. The potential application of these bacteria in petroleum industry was investigated. Samples (crude oil were collected from oil wells and 45 strains were isolated. To confirm the ability of isolates in biosurfactant production, haemolysis test, emulsification test and measurement of surface tension were conducted. We also evaluated the effect of different pH, salinity concentrations, and temperatures on biosurfactant production. Among importance features of the isolated strains, one of the strains (NO.4: Bacillus.sp showed high salt tolerance and their successful production of biosurfactant in a vast pH and temperature domain and reduced surface tension to value below 40 mN/m. This strain is potential candidate for microbial enhanced oil recovery. The strain4 biosurfactant component was mainly glycolipid in nature.

  5. Producing Biosurfactants from Purified Microorganisms Obtained from Oil-contaminated Soil

    Directory of Open Access Journals (Sweden)

    Nader Mokhtarian

    2010-09-01

    Full Text Available Contamination of soil by crude oil can pose serious problems to ecosystems. Soil washing by solutions containing biosurfactants is one of the most efficient methods for the remediation of contaminated soil by crude oil because it removes not only the crude oil but also heavy metals. In this study, five soil samples were taken from fields exposed to oil compounds over the years in order to produce biosurfactants from microorganisms that were capable of degrading oil compounds. Sixteen such microorganisms were isolated. After cultivation, their emulsification strength was examined using E24 test. From among the experimental microorganisms, a gram-negative and rod-shape microorganism called A-12 showed the greatest value of the E24 test index (36%. For each liter of the culture medium containing 365 mg of microorganisms, 3 gr of the biosurfactant compound was produced and separated as dried powder. The purified biosurfactant was used in the soil washing process. Also, the insulated microorganisms were capable of degrading crude oil floating on wastewaters.

  6. Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources.

    Science.gov (United States)

    Akanda, Mohammed Jahurul Haque; Sarker, Mohammed Zaidul Islam; Ferdosh, Sahena; Manap, Mohd Yazid Abdul; Ab Rahman, Nik Norulaini Nik; Ab Kadir, Mohd Omar

    2012-02-10

    Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  7. Applications of Supercritical Fluid Extraction (SFE of Palm Oil and Oil from Natural Sources

    Directory of Open Access Journals (Sweden)

    Mohd Omar Ab Kadir

    2012-02-01

    Full Text Available Supercritical fluid extraction (SFE, which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO2 refers to supercritical fluid extraction (SFE that uses carbon dioxide (CO2 as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO2 extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  8. Produced water: Market and global trends - oil production - water production - choice of technology

    International Nuclear Information System (INIS)

    Robertson, Steve

    2006-01-01

    The presentation discusses various aspects of the world oil production, the energy demand, the future oil supply, the oil prices and the production growth. Some problems with produced water are also discussed as well as aspects of the market for produced water technology (tk)

  9. An Examination of Strategic Philanthropy and CSR Communication Patterns among the World’s Twenty-One Largest Oil Companies

    Directory of Open Access Journals (Sweden)

    J. Brad Gatlin

    2013-07-01

    Full Text Available Fortune Magazine’s 2012 list of 100 largest companies included 21 oil companies. This paper seeks to discern patterns of those 21 companies’ philanthropic efforts and communication thereof. Specifically, the paper will consider issues such as ownership (all companies were either publicly-traded or state-owned, the economic development of the home country, and the citizens’ expectations of corporate citizens. The philanthropic efforts of all 21 companies are discussed in the context of Porter and Kramer’s (2001 framework of the competitive context It is concluded that the oil industry is particularly well-suited to affect factor and, to a lesser extent, demand conditions, through philanthropic efforts. A model for classifying the philanthropic based on ownership and country conditions is proposed, and suggestions for further research are made.

  10. ECOLOGICAL REGIONALIZATION METHODS OF OIL PRODUCING AREAS

    Directory of Open Access Journals (Sweden)

    Inna Ivanovna Pivovarova

    2017-01-01

    Full Text Available The paper analyses territory zoning methods with varying degrees of anthropogenic pollution risk. The summarized results of spatial analysis of oil pollution of surface water in the most developed oil-producing region of Russia. An example of GIS-zoning according to the degree of environmental hazard is presented. All possible algorithms of cluster analysis are considered for isolation of homogeneous data structures. The conclusion is made on the benefits of using combined methods of analysis for assessing the homogeneity of specific environmental characteristics in selected territories.

  11. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    Science.gov (United States)

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  12. Carbonyl Compounds Produced by Vaporizing Cannabis Oil Thinning Agents.

    Science.gov (United States)

    Troutt, William D; DiDonato, Matthew D

    2017-11-01

    Cannabis use has increased in the United States, particularly the use of vaporized cannabis oil, which is often mixed with thinning agents for use in vaporizing devices. E-cigarette research shows that heated thinning agents produce potentially harmful carbonyls; however, similar studies have not been conducted (1) with agents that are commonly used in the cannabis industry and (2) at temperatures that are appropriate for cannabis oil vaporization. The goal of this study was to determine whether thinning agents used in the cannabis industry produce potentially harmful carbonyls when heated to a temperature that is appropriate for cannabis oil vaporization. Four thinning agents (propylene glycol [PG], vegetable glycerin [VG], polyethylene glycol 400 [PEG 400], and medium chain triglycerides [MCT]) were heated to 230°C and the resulting vapors were tested for acetaldehyde, acrolein, and formaldehyde. Each agent was tested three times. Testing was conducted in a smoking laboratory. Carbonyl levels were measured in micrograms per puff block. Analyses showed that PEG 400 produced significantly higher levels of acetaldehyde and formaldehyde than PG, MCT, and VG. Formaldehyde production was also significantly greater in PG compared with MCT and VG. Acrolein production did not differ significantly across the agents. PG and PEG 400 produced high levels of acetaldehyde and formaldehyde when heated to 230°C. Formaldehyde production from PEG 400 isolate was particularly high, with one inhalation accounting for 1.12% of the daily exposure limit, nearly the same exposure as smoking one cigarette. Because PG and PEG 400 are often mixed with cannabis oil, individuals who vaporize cannabis oil products may risk exposure to harmful formaldehyde levels. Although more research is needed, consumers and policy makers should consider these potential health effects before use and when drafting cannabis-related legislation.

  13. Palm oil industry in Ecuador. Good business for small farmers?

    Directory of Open Access Journals (Sweden)

    Lesley P. Potter

    2013-10-01

    Full Text Available Ecuador is the second largest producer in Latin America of crude palm oil and is the seventh largest producer worldwide, but with yields per hectare still lower than Colombia and Costa Rica. Although producers with over 1 000 hectares have the leadership in the palm oil industry, 87% of producers produce with less than 50 hectares. Moreover, the deforestation rate in Ecuador is ranked by FAO as the ninth highest in the world and the highest in South America. The African palm plantations have been criticized for causing deforestation and worsening work conditions. However, government sectors see the oil palm companies as a source of employment and development for poor regions. This fieldwork shows that there is a difference in perception among small farmers. Farmers from Quinindé-La Concordia were satisfied with the income they earn and the rising prices of land planted with palm. Farmers in San Lorenzo, in contrast, are not happy since the survey shows that a disease devastated trees and as a result, land prices have fallen in San Lorenzo.

  14. Turbidity and oil removal from oilfield produced water, middle oil company by electrocoagulation technique

    Directory of Open Access Journals (Sweden)

    Mohammed Thamer

    2018-01-01

    Full Text Available Huge quantity of produced water is salty water trapped in the oil wells rock and brought up along with oil or gas during production. It usually contains hydrocarbons as oil and suspended solids or turbidity. Therefore the aim of this study is to treat produced water before being discharge to surface water or re injected in oil wells. In this paper experimental results were investigated on treating produced water (which is obtained from Middle Oil Company-Iraq, through electrocoagulation (EC. The performance of EC was investigated for reduction of turbidity and oil content up to allowable limit. Effect of different parameters were studied; (pH, current density, distance between two electrodes, and electrolysis time. The experimental runs carried out by an electrocoagulation unit was assembled and installed in the lab and the reactor was made of a material Perspex, with a capacity of approximately 2.5 liters and dimensions were 20 cm in length, 14 cm in width and 16 cm height. The electrodes employed were made of commercial materials. The anode was a perforated aluminum rectangular plate with a thickness of 1.72 mm, a height of 60 mm and length of 140 mm and the cathode was a mesh iron. The current was used in the unit with different densities to test the turbidity removing efficiency (0.0025, 0.00633, 0.01266 and 0.0253 A/cm2.The experiment showed that the best turbidity removing was (10, 9.7, 9.2, 18 NTU respectively. The distance between the electrodes of the unit was 3cm. The present turbidity removing was 92.33%. A slight improvement of turbidity removing was shown when the distance between the electrodes was changed from 0.5 to 3 cm with fixation of current density. The best turbidity removing was 93.5% , (7.79 NTU when the distance between the electrodes were 1 cm. The experimental results found that concentration of oil had decreased to (10.7, 11.2, 11.7, 12.3 mg/l when different current densities (0.00253, 0.00633, 0.01266, 0.0253 A/cm2

  15. Characteristics of gas-liquid dynamics in operation of oil fields producing non-Newtonian crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadzhanzade, A Kh; Khasaev, A M; Gurbanov, R S; Akhmedov, Z M

    1968-08-01

    Experimental studies have shown that crude oils from Azerbaidzhan, Uzbekistan, Tataria, Kazakhstan and other areas have anomalous properties under reservoir conditions. Such crude oils are non-Newtonian and (1) obey Darcys Law at low velocities; (2) obey an exponential law at higher velocities; and (3) obey a modified Darcys Law at most velocities. A discussion is given of (1) flow of non-Newtonian crude oils together with gas or water; (2) flow of non-Newtonian crude oils in well tubing; (3) behavior of wells producing non-Newtonian crude oils; and (4) pumping of non-Newtonian oils in wells. Experiments have shown that a visco-plastic liquid does not fill pump inlets completely; as the diameter of the pump inlet decreases so also does the degree of liquid filling. A statistical analysis of production data from 160 fields with Newtonian oil and 129 fields with non- Newtonian oil has shown that much higher production is obtained from fields with Newtonian crude oils.

  16. Isolation and Identification of Crude Oil Degrading and Biosurfactant Producing Bacteria from the Oil-Contaminated Soils of Gachsaran

    Directory of Open Access Journals (Sweden)

    Seyyedeh Zahra Hashemi

    2016-03-01

    Full Text Available Background and Objectives: Petroleum hydrocarbons are harmful to the environment, human health, and all other living creatures. Oil and its byproducts in contact with water block sunshine to phytoplanktons and thus break the food chain and damage the marine food source. This study aims to isolate the crude oil degrading and biosurfactant producing bacteria from the oil contaminated soils of Gachsaran, Iran. Materials and Methods: Isolation was performed in peptone-water medium with yeast extract. Oil displacement area, emulsification index and bacterial phylogeny using 16S rRNA analysis were studied. Results and Conclusion: Three isolates were able to degrade the crude oil. In the first day, there were two phases in the medium; after a few days, these three bacteria degraded the crude oil until there was only one phase left in the medium. One strain was selected as a superior strain by homogenizing until the medium became clear and transparent. This method confirmed that the strain produces biosurfactant. According to the morphological and biochemical tests, the strain isolated from the oil contaminated soils is a member of Bacillus subtilis, so to study the bacterial phylogeny and taxonomy of the strain, an analysis of 16S rRNA was carried out, and the phylogenic tree confirmed them. The results verified that oil contaminated soils are good source for isolation of the biosurfactant producing bacteria.

  17. Yemen - the next big player? [as an oil producer

    International Nuclear Information System (INIS)

    Roberts, J.

    1993-01-01

    1993 should be the year in which United Yemen finally starts to fulfil its potential as a significant oil producer. In recession for three years, the country desperately needs the revenues and has spared no effort in its attempt to provide the right financial climate within which international oil companies can operate. But the last three years, in terms of revenues from actual oil production, have been disastrous, with production from the much-touted Shabwa fields persistently deferred and with the overall climate for the oil industry clouded by a border dispute with Saudi Arabia that prompted at least one western major, BP, to suspend operations for a while. (author)

  18. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Arami-Niya, Arash; Wan Daud, W.M.A.; Sahu, J.N.; Noor, I.M.

    2013-01-01

    Highlights: • About 14.72% of the total landmass in Malaysia was used for oil palm plantations. • Oil palm tree residues were pyrolyzed to produce bio-oil and bio-char. • The process was performed at a temperature of 500 °C and reaction time of 60 min. • Characterization of the products was performed. - Abstract: Oil palm tree residues are a rich biomass resource in Malaysia, and it is therefore very important that they be utilized for more beneficial purposes, particularly in the context of the development of biofuels. This paper described the possibility of utilizing oil palm tree residues as biofuels by producing bio-oil and bio-char via pyrolysis. The process was performed in a fixed-bed reactor at a temperature of 500 °C, a nitrogen flow rate of 2 L/min and a reaction time of 60 min. The physical and chemical properties of the products, which are important for biofuel testing, were then characterized. The results showed that the yields of the bio-oil and bio-char obtained from different residues varied within the ranges of 16.58–43.50 wt% and 28.63–36.75 wt%, respectively. The variations in the yields resulted from differences in the relative amounts of cellulose, hemicellulose, lignin, volatiles, fixed carbon, and ash in the samples. The energy density of the bio-char was found to be higher than that of the bio-oil. The highest energy density of the bio-char was obtained from a palm leaf sample (23.32 MJ/kg), while that of the bio-oil was obtained from a frond sample (15.41 MJ/kg)

  19. Hollow rods for the oil producing industry

    Energy Technology Data Exchange (ETDEWEB)

    Khalimova, L M; Elyasheva, M A

    1970-01-01

    Hollow sucker rods have several advantages over conventional ones. The hollow rods actuate the well pump and at the same time conduct produced fluids to surface. When paraffin deposition occurs, it can be minimized by injecting steam, hot oil or hot water into the hollow rod. Other chemicals, such as demulsifiers, scale inhibitors, corrosion inhibitors, etc., can also be placed in the well through the hollow rods. This reduces cost of preventive treatments, reduces number of workovers, increases oil production, and reduces cost of oil. Because the internal area of the rod is small, the passing liquids have a high velocity and thereby carry sand and dirt out of the well. This reduces pump wear between the piston and the plunger. Specifications of hollow rods, their operating characteristics, and results obtained with such rods under various circumstances are described.

  20. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    International Nuclear Information System (INIS)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim; Haddadin, Jamal

    2009-01-01

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K 2 HPO 4 to KH 2 PO 4 ratio, temperature, pH, and agitation speeds were 2:1, 37 deg. C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre- treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale

  1. Thermal stability of butter oils produced from sheep’s non-pasteurized and pasteurized milk

    Directory of Open Access Journals (Sweden)

    FLAVIA POP

    Full Text Available The physical and chemical characteristics and thermal stability of butter oil produced from non-pasteurized and pasteurized sheep’s milk were studied. Thermal stability of samples was estimated by using the accelerated shelf-life testing method. Samples were stored at 50, 60 and 70oC in the dark and the reaction was monitored by measuring peroxide, thiobarbituric acid and free fatty acid values. The peroxide and thiobarbituric acid values increased as the temperature increased. The increase of acid values of the two samples was not significant. A slight increase in free fatty acid value showed that hydrolytic reactions were not responsible for the deterioration of butter oil samples in thermal stability studies. When compared, butter oil produced from pasteurized sheep’s milk has higher thermal stability than butter oil produced from non-pasteurized sheep’s milk. Although butter oil produced from non-pasteurized milk was not exposed to any heat treatment, the shelf-life of this product was lower than the shelf-life of butter oil produced from pasteurized sheep’s milk. Therefore, heat treatment for pasteurization did not affect the thermal stability of butter oil.

  2. Oil price fluctuations and employment in Kern County: A Vector Error Correction approach

    International Nuclear Information System (INIS)

    Michieka, Nyakundi M.; Gearhart, Richard

    2015-01-01

    Kern County is one of the country's largest oil producing regions, in which the oil industry employs a significant fraction of the labor force in the county. In this study, the short- and long-run effects of oil price fluctuations on employment in Kern County are investigated using a Vector Error Correction model (VECM). Empirical results over the period 1990:01 to 2015:03 suggest long-run causality running from both WTI and Brent oil prices to employment. No causality is detected in the short-run. Kern County should formulate appropriate policies, which take into account the fact that changes in oil prices have long-term effects on employment rather than short term. - Highlights: • Kern County is California's largest oil producing region. • Historical data has shown increased employment during periods of high oil prices. • We study the short- and long run effects of oil prices on employment in Kern County. • Results suggest long run causality running from WTI and Brent to employment. • No causality is detected in the short run.

  3. Produced water management - clean and safe oil and gas production

    International Nuclear Information System (INIS)

    2006-01-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  4. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  5. WISMUT AG: Past, present and future of the largest uranium producer in Europe

    International Nuclear Information System (INIS)

    Madel, J.

    1990-01-01

    The author gives a brief summary of WISMUT AG the largest uranium producer operating in Europe. The jointly owned German-Soviet company operates its production facilities in the southern part of the former German Democratic Republic. Given the new political and economic frame in Germany and the Soviet Union WISMUT AG will receive due recognition. Uranium exploration, mining, and milling activities are summarized from 1946-1989, and a summary of present activities and projections of future activities in the area of decontamination, restoration, and recultivation of present and abandoned mining and milling sites are noted. A statement of WISMUT AG's projected role in the international nuclear fuels market is made

  6. Trade linkages and macroeconomic effects of the price of oil

    International Nuclear Information System (INIS)

    Korhonen, Iikka; Ledyaeva, Svetlana

    2010-01-01

    In this paper we assess the impact of oil price shocks on oil-producer and oil-consuming economies. VAR models for different countries are linked together via a trade matrix, as in Abeysinghe (2001). As expected, we find that oil producers (here, Russia and Canada) benefit from oil price shocks. For example, a large oil shock leading to a price increase of 50% boosts Russian GDP by about 6%. However, oil producers are hurt by indirect effects of positive oil price shocks, as economic activity in their exporter countries suffers. For oil consumers, the effects are more diverse. In some countries, output falls in response to an oil price shock, while other countries seem to be relatively immune to oil price changes. Finally, indirect effects are also detected for oil-consumer countries. Those countries, which trade more with oil producers, gain indirect benefits via higher demand from oil-producing countries. In general, the largest negative total effects from positive oil price shocks are found for Japan, China, the USA, Finland and Switzerland, while other countries in our sample seem to have fared quite well during recent positive oil price shocks. The indirect effects are negative for Russia, Finland, Germany and Netherlands. (author)

  7. State companies dominate OGJ100 list of non-U.S. oil producers

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    State owned oil and gas companies dominate the OGJ100 list of non-U.S. producers. Because many of them report only operating information, companies on the worldwide list cannot be ranked by assets or revenues. The list, therefore, is organized regionally, based on location of companies' corporate headquarters. The leading nongovernment company in both reserves and production is Royal Dutch/Shell. It ranks sixth in the world in liquids production and 11th in liquids reserves, as it has for the past 2 years. British Petroleum is the next largest nongovernment company. BP ranks 11th in liquids production and 16th in liquids reserves. Elf Aquitaine, 55.8% government-controlled, ranked 17th in liquids production. AGIP was 20th in liquids production. Kuwait Petroleum returned to the list of top 20 producers, ranking 12th, as it restored production shut in by facilities damage sustained during the Persian Gulf crisis. New to the top 20 reserves list is Petroleo Brasileiro, which moved to 20th position. The top 20 companies in the OGJ100 held reserves estimated at 869.3 billion bbl in 1992 vs. 869.5 billion bbl in 1991 and 854.2 billion bbl in 1990

  8. Abu Dhabi presses oil development program

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Abu Dhabi Co. for Onshore Operations (ADCO), the biggest oil producer in the United Arab Emirates, reports 1991 was a successful year despite the Persian Gulf war. Meantime, Abu Dhabi's Zakum, the second largest oil field in the Persian Gulf, boosted production to more than 300,000 b/d, and officials said production will rise further when a platform complex is recommissioned in 1993

  9. PREPARATION OF VARIOUS TYPES OF PULP FROM OIL PALM LIGNOCELLULOSIC RESIDUES

    Institute of Scientific and Technical Information of China (English)

    Ryohei Tanaka; Leh Cheu Peng; Wan Rosli Wan Daud

    2004-01-01

    @@ INTRODUCTION Oil palm, Elaeis Guineensis, (Figure 1) is one of the most important plants in Malaysia. It produces palm oil and palm kernel oil, which is widely being used in food and other industries such as detergents and cosmetics. Malaysia is the world′s largest producer and exporter of the oil, so that the country′s economy is very much dependent on these oil products. Although oil from the palm tree is an excellent product for the country, residues from oil palm have not been used sufficiently. In this 10~15 years, development in new technologies for utilizing this lignocellulosic waste is categorized as one of the most important issues in science policy of Malaysia.

  10. Water issues associated with heavy oil production.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  11. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim [Faculty of Graduate Studies, Jordan University, Queen Rania Street, Amman, 11942 (Jordan); Haddadin, Jamal [Faculty of Agriculture, Mutah University, P.O. Box 59, Mutah 61710 (Jordan)

    2009-04-15

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K{sub 2}HPO{sub 4} to KH{sub 2}PO{sub 4} ratio, temperature, pH, and agitation speeds were 2:1, 37 C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre-treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale. (author)

  12. Identification of molecular species of polyol oils produced from soybean oil by Pseudomonas aeruginosa e03-12 nrrl b-59991

    Science.gov (United States)

    The objective of this study is to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier methods for microbial screening and production of polyol oils from soybean oil (Hou and Lin, 2013). The polyol oil produced by Acinetobacter haemolyticus A01-35 (NR...

  13. Pollution Impact and Alternative Treatment for Produced Water

    Science.gov (United States)

    Hedar, Yusran; Budiyono

    2018-02-01

    Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  14. Comparison of Moringa Oleifera seeds oil characterization produced chemically and mechanically

    Science.gov (United States)

    Eman, N. A.; Muhamad, K. N. S.

    2016-06-01

    It is established that virtually every part of the Moringa oleifera tree (leaves, stem, bark, root, flowers, seeds, and seeds oil) are beneficial in some way with great benefits to human being. The tree is rich in proteins, vitamins, minerals. All Moringa oleifera food products have a very high nutritional value. They are eaten directly as food, as supplements, and as seasonings as well as fodder for animals. The purpose of this research is to investigate the effect of seeds particle size on oil extraction using chemical method (solvent extraction). Also, to compare Moringa oleifera seeds oil properties which are produced chemically (solvent extraction) and mechanically (mechanical press). The Moringa oleifera seeds were grinded, sieved, and the oil was extracted using soxhlet extraction technique with n-Hexane using three different size of sample (2mm, 1mm, and 500μm). The average oil yield was 36.1%, 40.80%, and 41.5% for 2mm, 1mm, and 500μm particle size, respectively. The properties of Moringa oleifera seeds oil were: density of 873 kg/m3, and 880 kg/m3, kinematic viscosity of 42.2mm2/s and 9.12mm2/s for the mechanical and chemical method, respectively. pH, cloud point and pour point were same for oil produced with both methods which is 6, 18°C and 12°C, respectively. For the fatty acids, the oleic acid is present with high percentage of 75.39%, and 73.60% from chemical and mechanical method, respectively. Other fatty acids are present as well in both samples which are (Gadoleic acid, Behenic acid, Palmitic acid) which are with lower percentage of 2.54%, 5.83%, and 5.73%, respectively in chemical method oil, while they present as 2.40%, 6.73%, and 6.04%, respectively in mechanical method oil. In conclusion, the results showed that both methods can produce oil with high quality. Moringa oleifera seeds oil appear to be an acceptable good source for oil rich in oleic acid which is equal to olive oil quality, that can be consumed in Malaysia where the olive oil

  15. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  16. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  17. Oil price risk management in the 1990s - issues for producers and lenders

    International Nuclear Information System (INIS)

    Lambert, S.

    1994-01-01

    Oil prices have exhibited considerable volatility over the past five or ten years and the management of oil price risk has become an important factor in underpinning the viability of many oil producing operations from both a lender's and investor's perspective. Various oil based hedging products are now available to protect against such volatility, ranging from products which fix forward prices to option based arrangements which set a floor price but retain some (or all) of the potential upside. These products have particular relevance for petroleum companies with limited financial resources or who are looking to limit recourse to particular assets/cash flows. There are a number of techniques which can be successfully combined to mitigate oil price volatility and the most relevant of these to a producer are discussed. The recent development of the Tapis swap and option markets, which have provided flexibility to Australasian producers, is also discussed. Oil based financial products can also be used as a method of funding (e.g. for a development or acquisition) as an alternative to traditional cash based borrowing structures, thus creating a natural hedge against oil price movements. It is estimated that the use of such structures, coupled with a well structured revenue hedging program, can enhance a project's attractiveness from a lender's perspective (particularly with respect to protection against down side movements in oil price) and/or provide greater certainty of returns to producers. A case study of a recent commodity risk management based financing is presented. 1 fig., 6 tabs

  18. Pollution Impact and Alternative Treatment for Produced Water

    Directory of Open Access Journals (Sweden)

    Hedar Yusran

    2018-01-01

    Full Text Available Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  19. Ex-Soviet Union: oil exporter or importer

    International Nuclear Information System (INIS)

    Khartukov, E.M.

    1993-01-01

    Perestroika of the Soviet economy and the political disintegration of the USSR have raised questions about the international ramifications of the ongoing economic and political developments in the world's largest oil-producing country. First of all, it relates to their impact on the quantity and quality of oil exports from the former Soviet Union (FSU). On the other hand, the opening of the national oil industry to foreign investors focuses their ever growing attention on the complicated internal, inter-republic oil issues which emerged after the sudden fragmentation of the Soviet oil empire into a dozen of sovereign but still interdependent parts. 1 fig., 7 tabs

  20. One last boom : Alberta's rapidly expanding oil mines may be the largest and messiest industrial projects in Canadian history

    International Nuclear Information System (INIS)

    Laird, G.

    2001-01-01

    The bitumen deposits of Alberta, 2.5 trillion barrels of oil, of which 300 billion are considered recoverable, represent the greatest single petroleum resources of the world, based on surface and subsurface calculations. Four deposits, covering an area the size of New Brunswick, are located in the area stretching from Cold Lake to Lloydminster (east of Edmonton), the upper reaches of the Athabasca River east to the Peace River. The largest by far is the Athabasca deposit in the vicinity of Fort McMurray, spread over 4.3 million hectares. The deposit is at the centre of the biggest industrial expansion witnessed by the province. Since 1996, 38 billion dollars worth of new projects have been announced. It is estimated that by 2025, the bulk of the national oil production will originate from open-pit mines and underground wells around Fort McMurray. This oil boom has economic benefits for the population, from welders to real estate agents to stakeholders. The environmental effects are not as beneficial. Huge strip mines are being carved next to the Athabasca River, with great amounts of greenhouse gases emissions. The Suncor and Syncrude oil-sands plants combined represent the fourth largest carbon dioxide emission source in Canada. The development of these projects dramatically affects global warming. The nitrogen and sulphur emissions could also acidify lakes and soil in the region. The Suncor mine resulted from the first boom to hit Fort McMurray in 1964. The Syncrude mine is the result of the second boom which took place in 1973. In 1996, Suncor installed a sulphur scrubber system that removes 95 per cent of sulphur dioxide from the electricity and steam-generation plant. Suncor also invested in various projects, such as wind-power, rainforest cultivation and biomass generation. The volume of pollution increases as the operations expand, even if operations are cleaner. If no new gains in pollution control are achieved, it is expected that by 2015, the total

  1. Giant Oil Fields - The Highway to Oil: Giant Oil Fields and their Importance for Future Oil Production

    International Nuclear Information System (INIS)

    Robelius, Fredrik

    2007-01-01

    Since the 1950s, oil has been the dominant source of energy in the world. The cheap supply of oil has been the engine for economic growth in the western world. Since future oil demand is expected to increase, the question to what extent future production will be available is important. The belief in a soon peak production of oil is fueled by increasing oil prices. However, the reliability of the oil price as a single parameter can be questioned, as earlier times of high prices have occurred without having anything to do with a lack of oil. Instead, giant oil fields, the largest oil fields in the world, can be used as a parameter. A giant oil field contains at least 500 million barrels of recoverable oil. Only 507, or 1 % of the total number of fields, are giants. Their contribution is striking: over 60 % of the 2005 production and about 65 % of the global ultimate recoverable reserve (URR). However, giant fields are something of the past since a majority of the largest giant fields are over 50 years old and the discovery trend of less giant fields with smaller volumes is clear. A large number of the largest giant fields are found in the countries surrounding the Persian Gulf. The domination of giant fields in global oil production confirms a concept where they govern future production. A model, based on past annual production and URR, has been developed to forecast future production from giant fields. The results, in combination with forecasts on new field developments, heavy oil and oil sand, are used to predict future oil production. In all scenarios, peak oil occurs at about the same time as the giant fields peak. The worst-case scenario sees a peak in 2008 and the best-case scenario, following a 1.4 % demand growth, peaks in 2018

  2. Oxidative stability during storage of structured lipids produced from fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Xu, Xuebing; Timm Heinrich, Maike

    2004-01-01

    Structured lipids produced by enzymatic or chemical methods for different applications have been receiving considerable attention. The oxidative stability of a randomized structured lipid (RFO), produced by chemical interesterification from fish oil (FO) and tricaprylin, and a specific structured...... lipid (SFO), produced by enzymatic interesterification from the same oil and caprylic acid, was compared with the stability of FO. Oils were stored at 2degreesC for 11 wk followed by storage at 20degreesC for 6 wk. In addition, the antioxidative effect of adding the metal chelators EDTA or citric acid...

  3. Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers

    Energy Technology Data Exchange (ETDEWEB)

    Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

    2000-01-12

    Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

  4. Biopretreatment of palm oil mill effluent by thermotolerant polymer-producing fungi

    Directory of Open Access Journals (Sweden)

    Masao Ukita

    2001-11-01

    Full Text Available Palm oil industry is one of the three major agro-industries in Southern Thailand and generates large quantities of effluent with high organic matter (BOD and COD values of 58,000 and 110,000 mg/l, respectively, total solids and suspended solids (70,000 and 40,000 mg/l, respectively, oil & grease (25,600 mg/l, and has a low pH (4.5. Conventional anaerobic ponding system is normally employed in palm oil mills to treat the effluent. To increase its efficiency, biopretreatment to remove the organic matter and oil & grease by thermotolerant polymer-producing fungi was investigated. The palm oil mill effluent (POME was treated by the two thermotolerant polymer-producing fungi, Rhizopus sp. ST4 and Rhizopus sp. ST29, at 45ºC under aseptic and septic conditions. Rhizopus sp. ST4 gave the same oil & grease removal (84.2% under both conditions but COD removal under septic condition (62.2% was 8.8% higher than that under aseptic condition (53.4%. On the contrary, Rhizopus sp. ST 29 under aseptic condition showed 11% and 25.4% higher oil & grease removal (91.4% and COD removal (66.0% than those under septic condition. Comparison between the two isolates under aseptic condition revealed that Rhizopus sp. ST29 exhibited higher oil & grease removal (91.4% as well as COD removal (66.0% than those of Rhizopus sp. ST4 (84.2% and 53.4%, respectively. Under septic condition, Rhizopus sp. ST4 gave higher oil & grease removal (84.2% and COD removal (62.2% than did Rhizopus sp. ST 29 (80.5 and 40.6%, respectively.

  5. Enzymatic transesterification of waste vegetable oil to produce biodiesel.

    Science.gov (United States)

    Lopresto, C G; Naccarato, S; Albo, L; De Paola, M G; Chakraborty, S; Curcio, S; Calabrò, V

    2015-11-01

    An experimental study on enzymatic transesterification was performed to produce biodiesel from waste vegetable oils. Lipase from Pseudomonas cepacia was covalently immobilized on a epoxy-acrylic resin support. The immobilized enzyme exhibited high catalytic specific surface and allowed an easy recovery, regeneration and reutilisation of biocatalyst. Waste vegetable oils - such as frying oils, considered not competitive with food applications and wastes to be treated - were used as a source of glycerides. Ethanol was used as a short chain alcohol and was added in three steps with the aim to reduce its inhibitory effect on lipase activity. The effect of biocatalyst/substrate feed mass ratios and the waste oil quality have been investigated in order to estimate the process performances. Biocatalyst recovery and reuse have been also studied with the aim to verify the stability of the biocatalyst for its application in industrial scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. OIL AS POLITICAL WEAPON

    Directory of Open Access Journals (Sweden)

    Mariana, BUICAN

    2013-12-01

    Full Text Available Oil (called by some black gold has not always been as coveted and used, but only in the last hundred years has established itself as a highly sought after as an indispensable proper functioning of modern economic activity that an important factor in international politics. International oil regime has changed in the last decades. In 1960, oil regime was a private oligopol which had links with governments main consuming countries. By then the price of a barrel of oil was two U.S. dollars and seven major transnational oil companies decided the amount of oil that will be produced. Meanwhile the world region with the largest oil exports were more strongly expressed nationalism and decolonization. Result, it was so in the late 60s in the region occur independent states. They have created an organization aim of this resource to their advantage - OPEC (Organization of Petroleum Exporting Countries. Thus since 1973 there have been changes in the international regime governing oil field, namely producing countries were fixed production rate and price. After this time the oil weapon has become increasingly important in the management of international relations. Oil influenced the great powers to Middle East conflicts that occurred in the last century, but their attitude about the emergence of new sources of oil outside OPEC. In the late 90's, Russia has become a major supplier of oil to the West.

  7. Pigments in Extra-Virgin Olive Oils Produced in Tuscany (Italy) in Different Years

    Science.gov (United States)

    Lazzerini, Cristina; Domenici, Valentina

    2017-01-01

    Pigments are responsible for the color of olive oils, and are an important ingredient that is directly related to the quality of this food. However, the concentration of pigments can vary significantly depending on the climate conditions, harvesting time, and olive cultivars. In this work, we quantified the main pigments in several extra-virgin olive oils produced from a blend of three cultivars (Moraiolo, Frantoio, and Leccino) typical of Tuscany (Italy) harvested in three different years: 2012, 2013, and 2014. Pigments—namely, β-carotene, lutein, pheophytin A, and pheophytin B—were quantified by a method based on the mathematical analysis of the near ultraviolet-visible absorption spectra of the oils. Data were analyzed by a multivariate statistical approach. The results show that the pigments’ content of extra-virgin olive oils produced in 2014 can be well distinguished with respect to previous years. This can be explained by the anomalous climate conditions, which strongly affected Italy and, in particular, Tuscany, where the olives were harvested. This study represents an interesting example of how pigment content can be significant in characterizing olive oils. Moreover, this is the first report of pigment quantification in extra-virgin olive oils produced in Tuscany. PMID:28353651

  8. Study Of The Physicochemical Analysis Of Biodiesel Produced From Waste Vegetable Oil.

    Directory of Open Access Journals (Sweden)

    C. O. Okpanachi

    2017-07-01

    Full Text Available The study of the physicochemical analysis of biodiesel produced from waste vegetable oil in Sedi Minna Nigeria was carried out in order to ascertain the quality of the biodiesel produced as regards physical and chemical parameters which include visual appearance colour cloud point flash point and cetane index diesel index kinematic velocity calorific value. Biodiesel is a renewable resource that can replace petroleum diesel which comes from fossil fuels that are limited and will be exhausted in the near future. Biodiesel can be made from the transesterification of vegetable oils animal fat greases and oil crops such as soybean and it is biodegradable. The biodiesel produced was subjected to physicochemical analysis and results of cetane index was established to be 52 the flash point using pensky martens close cup was determine to be 1600C diesel index using IP21 0.3411 kinematic viscosity at 400C to be 4.12 and calorific value of 10867calg. The investigated physicochemical parameters show that the biodiesel produced is suitable for use in diesel engines without modifications and is cheaper to produce compared to petroleum diesel.

  9. Environmental contaminants in oil field produced waters discharged into wetlands

    International Nuclear Information System (INIS)

    Ramirez, P. Jr.

    1994-01-01

    The 866-acre Loch Katrine wetland complex in Park County, Wyoming provides habitat for many species of aquatic birds. The complex is sustained primarily by oil field produced waters. This study was designed to determine if constituents in oil field produced waters discharged into Custer Lake and to Loch Katrine pose a risk to aquatic birds inhabiting the wetlands. Trace elements, hydrocarbons and radium-226 concentrations were analyzed in water, sediment and biota collected from the complex during 1992. Arsenic, boron, radium-226 and zinc were elevated in some matrices. The presence of radium-226 in aquatic vegetation suggests that this radionuclide is available to aquatic birds. Oil and grease concentrations in water from the produced water discharge exceeded the maximum 10 mg/l permitted by the WDEQ (1990). Total aliphatic and aromatic hydrocarbon concentrations in sediments were highest at the produced water discharge, 6.376 μg/g, followed by Custer Lake, 1.104 μg/g. The higher levels of hydrocarbons found at Custer Lake, compared to Loch Katrine, may be explained by Custer Lake's closer proximity to the discharge. Benzo(a)pyrene was not detected in bile from gadwalls collected at Loch Katrine but was detected in bile from northern shovelers collected at Custer Lake. Benzo(a)pyrene concentrations in northern shoveler bile ranged from 500 to 960 ng/g (ppb) wet weight. The presence of benzo(a)pyrene in the shovelers indicates exposure to petroleum hydrocarbons

  10. Produced water treatment for beneficial use : emulsified oil removal

    NARCIS (Netherlands)

    Waisi, Basma

    2016-01-01

    The development of novel carbon material, high accessible surface area, interconnected porosity, and stable nanofiber nonwoven media for emulsified oil droplets separation from oily wastewater, in particular for oilfields produced water treatment, is discussed in this thesis. Firstly, the quantity

  11. Business opportunities and food safety of the Myanmar edible oil sector

    NARCIS (Netherlands)

    Wijnands, J.H.M.; Biersteker, J.; Hagedoorn, L.F.; Louisse, J.

    2014-01-01

    This report analyses the business opportunities of the oilseed and edible oil sector in Myanmar as well as the food safety control system. Myanmar is a significant producer of oilseed specialities. It is world’s largest producer of sesame seeds, ranks on the sixth position for groundnut production

  12. Determining the water cut and water salinity in an oil-water flowstream by measuring the sulfur content of the produced oil

    International Nuclear Information System (INIS)

    Smith, H.D.; Arnold, D.M.

    1980-01-01

    A technique for detecting water cut and water salinity in an oil/water flowstream in petroleum refining and producing operations is described. The fluid is bombarded with fast neutrons which are slowed down and then captured producing gamma spectra characteristic of the fluid material. Analysis of the spectra indicates the relative presence of the elements sulfur, hydrogen and chlorine and from the sulfur measurement, the oil cut (fractional oil content) of the fluid is determined, enabling the water cut to be found. From the water cut, water salinity can also be determined. (U.K.)

  13. Alberta oil and gas industry annual statistics for 1999

    International Nuclear Information System (INIS)

    2000-01-01

    A compilation of statistical data from Alberta's oil and gas industry was presented to provide energy analysts and economists a single source of consistent energy-related data. Alberta is Canada's largest crude oil and natural gas producer. This report provides current monthly and historical annual energy data covering the last decade. Data is organized by energy type including butane, ethane, natural gas, natural gas liquids, oil, propane and sulphur. This CD-Rom also included statistical data on energy supply, energy production, disposition, and prices. tabs

  14. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    Energy Technology Data Exchange (ETDEWEB)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S

    2004-04-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered.

  15. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    International Nuclear Information System (INIS)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S.

    2004-01-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered

  16. Removal of oil, grease, and suspended solids from produced water with ceramic crossflow microfiltration

    International Nuclear Information System (INIS)

    Chen, A.S.C.; Flynn, J.T.; Cook, R.G.; Casaday, A.L.

    1991-01-01

    In this paper results of studies of two onshore and two offshore pilot plants that use ceramic crossflow microfiltration (CCFM) to separate oil, grease, and suspended solids from produced water are discussed. The method is capable of producing permeate quality with < =5 mg/L (detection limit) of dispersed oil and grease and <1 mg/L of suspended solids

  17. PREPARATION OF VARIOUS TYPES OF PULP FROM OIL PALM LIGNOCELLULOSIC RESIDUES

    Institute of Scientific and Technical Information of China (English)

    RyoheiTanaka; LehCheuPeng; WanRosliWanDaud

    2004-01-01

    Oil palm, Elaeis Guineensis, (Figure 1) is one of the most important plants in Malaysia. It produces palm oil and palm kernel oil, which is widely being used in food and other industries such as detergents and cosmetics. Malaysia is the world's largest producer and exporter of the oil, so that the country's economy is very much dependent on these oil products. Although oil from the palm tree is an excellent product for the country, residues from oil palm have not been used sufficiently. In this 10-15 years, development in new technologies for utilizing this lignocellulosic waste is categorized as one of the most important issues in science policy of Malaysia. Here we would like to introduce recent situation of palm oil and oil palm lignocellulosic residues at the first part of this paper. In the second part, our recent studies on the preparation of pulps for different purposes will be summarized.

  18. Properties and quality verification of biodiesel produced from tobacco seed oil

    Energy Technology Data Exchange (ETDEWEB)

    Usta, N., E-mail: n_usta@pau.edu.t [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Aydogan, B. [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Con, A.H. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey); Uguzdogan, E. [Pamukkale University, Chemical Engineering Department, 20070 Denizli (Turkey); Ozkal, S.G. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey)

    2011-05-15

    Research highlights: {yields} High quality biodiesel fuel can be produced from tobacco seed oil. {yields} Pyrogallol was found to be effective antioxidant improving the oxidation stability. {yields} The iodine number was reduced with a biodiesel including more saturated fatty acids. {yields} Octadecene-1-maleic anhydride copolymer was an effective cold flow improver. {yields} The appropriate amounts of the additives do not affect the properties negatively. -- Abstract: Tobacco seed oil has been evaluated as a feedstock for biodiesel production. In this study, all properties of the biodiesel that was produced from tobacco seed oil were examined and some solutions were derived to bring all properties of the biodiesel within European Biodiesel Standard EN14214 to verify biodiesel quality. Among the properties, only oxidation stability and iodine number of the biodiesel, which mainly depend on fatty acid composition of the oil, were not within the limits of the standard. Six different antioxidants that are tert-butylhydroquinone, butylated hydroxytoluene, propyl gallate, pyrogallol, {alpha}-tocopherol and butylated hydroxyanisole were used to improve the oxidation stability. Among them, pyrogallol was found to be the most effective antioxidant. The iodine number was improved with blending the biodiesel produced from tobacco seed oil with a biodiesel that contains more saturated fatty acids. However, the blending caused increasing the cold filter plugging point. Therefore, four different cold flow improvers, which are ethylene-vinyl acetate copolymer, octadecene-1-maleic anhydride copolymer and two commercial cold flow improvers, were used to decrease cold filter plugging point of the biodiesel and the blends. Among the improvers, the best improver is said to be octadecene-1-maleic anhydride copolymer. In addition, effects of temperature on the density and the viscosity of the biodiesel were investigated.

  19. The arch oil price manipulators

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    First set up in 1960, OPEC has become a highly successful cartel and a key player on the world geopolitical scene. Through quotas and dragooning its members, it has maintained the world price of oil at a level much higher than the marginal cost of new oil from the largest producers by holding off new supplies which might otherwise have flooded the market. The two main factors which have made this persistent success possible are examined. They are OPEC's very low production costs vis-a-vis its competitors and the extent of the organisation's shut-in, low-cost reserves. (UK)

  20. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR. PMID:27872613

  1. Rhamnolipids produced by indigenous Acinetobacter junii from petroleum reservoir and its potential in enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Hao Dong

    2016-11-01

    Full Text Available Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS. The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9 and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  2. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery.

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C 26 H 48 O 9 , C 28 H 52 O 9 , and C 32 H 58 O 13 . The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO 3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  3. Air Permitting Implications of a Biorefinery Producing Raw Bio-Oil in Comparison with Producing Gasoline and Diesel Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-01

    A biorefinery, considered a chemical process plant under the Clean Air Act permitting program, could be classified as a major or minor source based on the size of the facility and magnitude of regulated pollutants emitted. Our previous analysis indicates that a biorefinery using fast pyrolysis conversion process to produce finished gasoline and diesel blendstocks with a capacity of processing 2,000 dry metric tons of biomass per day would likely be classified as a major source because several regulated pollutants (such as particulate matter, sulfur dioxide, nitrogen oxide) are estimated to exceed the 100 tons per year (tpy) major source threshold, applicable to chemical process plants. Being subject to a major source classification could pose additional challenges associated with obtaining an air permit in a timely manner before the biorefinery can start its construction. Recent developments propose an alternative approach to utilize bio-oil produced via the fast pyrolysis conversion process by shipping it to an existing petroleum refinery, where the raw bio-oil can be blended with petroleum-based feedstocks (e.g., vacuum gas oil) to produce gasoline and diesel blendstocks with renewable content. Without having to hydro-treat raw bio-oil, a biorefinery is likely to reduce its potential-to-emit to below the 100 tpy major source threshold, and therefore expedite its permitting process. We compare the PTE estimates for the two biorefinery designs with and without hydrotreating of bio-oils and examine the air permitting implications on potential air permit classification and discuss the best available control technology requirements for the major source biorefinery utilizing hydrotreating operation. Our analysis is expected to provide useful information to new biofuel project developers to identify opportunities to overcome challenges associated with air permitting.

  4. 77 FR 8254 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS...

    Science.gov (United States)

    2012-02-14

    ... Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  5. 77 FR 19663 - Notice of Data Availability Concerning Renewable Fuels Produced from Palm Oil Under the RFS...

    Science.gov (United States)

    2012-04-02

    ... Concerning Renewable Fuels Produced from Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced from Palm Oil under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  6. Producing bio-pellets from sunflower oil cake for use as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yuichi; Kato, Hitoshi; Kanai, Genta; Togashi, Tatsushi [National Agricultural Research Center (Japan)], E-mail: kobay@affrc.go.jp

    2008-07-01

    Pellet fuels were produced from ground sunflower oil cake using a pelletizer. The length, hardness, and powder characteristics of dried pellets depend on the initial water content of the oil cake. The appropriate values of water contents were 19.9 - 21.0% w.b. Oil cake pellets were found to contain 6.07% ash and 20.99 MJ/kg caloric value, which are within the standard range of wood pellets. Combustion experiments using a commercial pellet stove demonstrate that oil cake pellets burn as well as wood pellets. Oil cake pellets are useful as a fuel alternative to wood pellets. (author)

  7. Rhamnolipid produced by Pseudomonas aeruginosa USM-AR2 facilitates crude oil distillation.

    Science.gov (United States)

    Asshifa Md Noh, Nur; Al-Ashraf Abdullah, Amirul; Nasir Mohamad Ibrahim, Mohamad; Ramli Mohd Yahya, Ahmad

    2012-01-01

    A biosurfactant-producing and hydrocarbon-utilizing bacterium, Pseudomonas aeruginosa USM-AR2, was used to assist conventional distillation. Batch cultivation in a bioreactor gave a biomass of 9.4 g L(-1) and rhamnolipid concentration of 2.4 g L(-1) achieved after 72 h. Biosurfactant activity (rhamnolipid) was detected by the orcinol assay, emulsification index and drop collapse test. Pretreatment of crude oil TK-1 and AG-2 with a culture of P. aeruginosa USM-AR2 that contains rhamnolipid was proven to facilitate the distillation process by reducing the duration without reducing the quality of petroleum distillate. It showed a potential in reducing the duration of the distillation process, with at least 2- to 3-fold decreases in distillation time. This is supported by GC-MS analysis of the distillate where there was no difference between compounds detected in distillate obtained from treated or untreated crude oil. Calorimetric tests showed the calorie value of the distillate remained the same with or without treatment. These two factors confirmed that the quality of the distillate was not compromised and the incubation process by the microbial culture did not over-degrade the oil. The rhamnolipid produced by this culture was the main factor that enhanced the distillation performance, which is related to the emulsification of hydrocarbon chains in the crude oil. This biotreatment may play an important role to improve the existing conventional refinery and distillation process. Reducing the distillation times by pretreating the crude oil with a natural biosynthetic product translates to energy and cost savings in producing petroleum products.

  8. Methods of refining natural oils, and methods of producing fuel compositions

    Science.gov (United States)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  9. Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Stigkær, Jens Peter; Løhndorf, Bo

    2013-01-01

    This paper discusses the application of plant-wide control philosophy to enhance the performance and capacity of the Produced Water Treatment (PWT) in offshore oil & gas production processes. Different from most existing facility- or material-based PWT innovation methods, the objective of this work...

  10. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  11. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor.

    Science.gov (United States)

    Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep

    2016-04-15

    Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Isolation and Characterization of Biosurfactant Producing Bacteria for the Application in Enhanced Oil Recovery

    Science.gov (United States)

    Prasad, Niraj; Dasgupta, Sumita; Chakraborty, Mousumi; Gupta, Smita

    2017-07-01

    In the present study, a biosurfactant producing bacterial strain was isolated, screened and identified. Further, various fermentation conditions (such as pH (5-10), incubation period (24-96h) and incubation temperature (20-60 °C) were optimized for maximum production of biosurfactant. The produced biosurfactant was characterized by measuring emulsification index, foaming characteristics, rhamnolipid detection, interfacial tension between water and oil and stability against pH and temperature for its potential application in oil recovery process. The additional oil recovery for two different sand, sand1 and sand2, was found to be 49% and 38%, respectively.

  13. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    Science.gov (United States)

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  14. Transesterification of mustard (Brassica nigra) seed oil with ethanol: Purification of the crude ethyl ester with activated carbon produced from de-oiled cake

    International Nuclear Information System (INIS)

    Fadhil, Abdelrahman B.; Abdulahad, Waseem S.

    2014-01-01

    Highlights: • Biodiesel ethyl ester has been developed from mustard seed oil. • Variables affect the transesterification were investigated. • Dry washing using the activated carbon produced from the extraction remaining was applied to purify the ethyl esters. • Properties of the produced fuels were measured. • Blending of the produced ethyl ester with petro diesel was also investigated. - Abstract: The present study reports the production of mustard seed oil ethyl esters (MSOEE) through alkali-catalyzed transesterification with ethanol using potassium hydroxide as a catalyst. The influence of the process parameters such as catalyst concentration, ethanol to oil molar ratio, reaction temperature, reaction duration and the catalyst type was investigated so as to find out the optimal conditions for the transesterification process. As a result, optimum conditions for production of MSOEE were found to be: 0.90% KOH wt/wt of oil, 8:1 ethanol to oil molar ratio, a reaction temperature of 60 °C, and a reaction time of 60 min. Dry washing method with (2.50% wt.) of the activated carbon that was produced from the de-oiled cake was used to purify the crude ethyl ester from the residual catalyst and glycerol. The transesterification process provided a yield of 94% w/w of ethyl esters with an ester content of 98.22% wt. under the optimum conditions. Properties of the produced ethyl esters satisfied the specifications prescribed by the ASTM standards. Blending MSOEE with petro diesel was also investigated. The results showed that the ethyl esters had a slight influence on the properties of petro diesel

  15. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Science.gov (United States)

    2010-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  16. Oil shale : could Shell's experimental oil shale technology be adapted to Alberta's bitumen carbonates?

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2006-07-01

    Although Shell has been trying to develop technologies to economically extract oil from shale containing kerogen for the last 25 years, the volume of oil Shell produced from its Mahogany Research Project in Colorado has added up to less than 2500 bbls in total, and the company has recently devoted $400 million to purchase leases on carbonate reservoirs in Alberta. This article examined whether or not the technologies developed by Shell for oil shales could be used to profitably extract bitumen from carbonates. Extracting bitumen from carbonates may be easier than producing oil from shale, as the resource in carbonates is already oil, whereas the oil in oil shale is actually kerogen, which needs to be chemically cracked at extremely high temperatures. Although the technical feasibility of an in situ cracking process has been proven, work remains to be done before Shell can invest in a commercial-scale oil shale project. Challenges to oil shale production include preventing groundwater from entering target zones and keeping produced fluids out of the groundwater. However, a freeze wall test has recently been designed where chilled liquid is circulated through a closed-loop pipe system to freeze formation water, sealing off an area about the size of a football field from the surrounding strata. The energy requirements of the process that Shell is testing to produce shale oil in Colorado remain unprofitably high, as higher temperatures are necessary for thermal cracking. Shell has yet to make a decision as to what energy sources it will use to make the production process economically viable. An energy conservation group in Colorado has claimed that production of 100,000 bbls of shale oil would require the largest power plant in Colorado history. 2 figs.

  17. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    Science.gov (United States)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  18. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon.

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m -1 , with the critical micelle concentration (CMC) of 56 mg L -1 . FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed.

  19. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed. PMID:28275373

  20. Predicting the nutritional health status of locally produced palm oil ...

    African Journals Online (AJOL)

    Three physical properties of locally produced palm oil – viscosity, thermal conductivity and density for varying temperatures were determined. The values obtained were compared with corresponding internationally stipulated standard values using statistics of mean and graphs. The purpose of the comparison was to predict ...

  1. World's largest off-road tires to be recycled

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-07-01

    Suncor Energy is the first company in Canada to use a new technology designed uniquely for tire recycling at oil sand facilities. The technology is owned by CuttingEdge Tire Recycling, a partnership between Denesoline Environmental Limited Partnership and Beaver Environmental Rubber Technologies Limited. Suncor has supported the development of this Aboriginal-owned and operated business by offering land, electricity, diesel fuel and stockpiles of used truck tires from its oil sand mining activities. These tires are the largest off-road tires in the world. In this new technology, tires that are worn-out through oil sand mining are shredded in a portable shredder before being recycled for subsequent use by the Alberta Recycling Management Association. 1 fig.

  2. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    Science.gov (United States)

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  3. Chemical examination of the organic matter in oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J B

    1914-01-01

    The analyses of Broxburn (Scotland), Pumpherston (Scotland), Armadale (Scotland), Australian, and Knightsbridge oil shales were given. Also, the action of nitric acid and solvents on some of the oil shales was determined. Carbon-hydrogen ratios of the oil shales varied from 6 to more than 8, and the shales with the lowest ratio (most hydrogen per carbon) produced the largest amount of oil from a given amount of organic matter. There was little resinous material in the oil shales, and most of the organic matter was insoluble in organic solvents. Nitric acid oxidized Australian torbanite, Broxburn shale, New Battle cannel coal (Scotland), and Glenfullock peat to organic acids. The hydrogen content of the organic acids obtained by oxidizing the following materials increased from ordinary coal to cannel coal to peat to Broxburn shale to torbanite. The organic substance in oil shale is a decomposition product of vegetable matter similar to that found in peat and cannel coal, and it was produced by a definite combination of external conditions.

  4. Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria

    Directory of Open Access Journals (Sweden)

    Santhakumar Muthukamalam

    Full Text Available ABSTRACT Role of microbes in bioremediation of oil spills has become inevitable owing to their eco friendly nature. This study focused on the isolation and characterization of bacterial strains with superior oil degrading potential from crude-oil contaminated soil. Three such bacterial strains were selected and subsequently identified by 16S rRNA gene sequence analysis as Corynebacterium aurimucosum, Acinetobacter baumannii and Microbacterium hydrocarbonoxydans respectively. The specific activity of catechol 1,2 dioxygenase (C12O and catechol 2,3 dioxygenase (C23O was determined in these three strains wherein the activity of C12O was more than that of C23O. Among the three strains, Microbacterium hydrocarbonoxydans exhibited superior crude oil degrading ability as evidenced by its superior growth rate in crude oil enriched medium and enhanced activity of dioxygenases. Also degradation of total petroleum hydrocarbon (TPH in crude oil was higher with Microbacterium hydrocarbonoxydans. The three strains also produced biosurfactants of glycolipid nature as indicated d by biochemical, FTIR and GCMS analysis. These findings emphasize that such bacterial strains with superior oil degrading capacity may find their potential application in bioremediation of oil spills and conservation of marine and soil ecosystem.

  5. Microbiological techniques for paraffin reduction in producing oil wells: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheimer, C. H.; Hiebert, F. K.

    1989-04-01

    Alpha Environmental has completed an eighteen month field oriented, cooperative research program with the US Department of Energy to demonstrate a new economically viable process using petroleum degrading microorganisms, a biocatalyst, formation water and inorganic nutrients to recover residual oil from reservoirs. Alpha's mixed community of microorganisms decomposes crude oil to produce detergents, CO/sub 2/, and new cells, thus mechanically and chemically releasing oil from reservoir pores. The naturally-occurring bacteria utilized in this project were previously selected by screening and isolating microorganisms from soils contaminated with crude oil and petroleum products. The activity and level of salt tolerance (to 20% salinity) of the bacteria is enhanced by a biocatalyst, previously developed by Alpha Environmental. Field evidence suggests that the biocatalyst provides catalytic oxygen to the microorganisms in the reservoir, which augments low levels of in-situ molecular oxygen. 25 refs., 10 figs., 6 tabs.

  6. Application of Biosurfactants Produced by Pseudomonas putida using Crude Palm Oil (CPO) as Substrate for Crude Oil Recovery using Batch Method

    Science.gov (United States)

    Suryanti, V.; Handayani, D. S.; Masykur, A.; Septyaningsih, I.

    2018-03-01

    The application of biosurfactants which have been produced by Pseudomonas putida in nutrient broth medium supplemented with NaCl and crude palm oil (CPO) for oil recovery has been evaluated. The crude and purified biosurfactants have been examined for oil recovery from a laboratory oil-contaminated sand in agitated flask (batch method). Two synthetic surfactants and water as control was also performed for oil recovery as comparisons. Using batch method, the results showed that removing ability of crude oil from the oil-contaminated sand by purified and crude biosurfactants were 79.40±3.10 and 46.84±2.23 %, respectively. On other hand, the recoveries obtained with the SDS, Triton X-100 and water were 94.33±0.47, 74.84±7.39 and 34.42±1.21%respectively.

  7. Determination of naturally occurring radionuclides in scales produced in oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masri, M S; Ali, A F; Kitue, M; Kawash, A [Atomic Energy Commission, Dept. of Radiation Protection and Nuclear Safety, Damascus (Syrian Arab Republic)

    1997-04-01

    Scales produced by Oil production operations contain relatively high concentrations of natural radionuclides especially radium isotopes (Ra-226, Ra-228, Ra-224) and their daughters. These scales deposit in oil surface equipment such as separator tanks, tubular, and storage tanks. In this work, naturally occurring radionuclides and radiation exposure levels in some Syrian oil lines have been determined. Radiation measurements have shown high radiation exposure in some production sites and reached about 23 {mu}Sv/hr (production wellhead) which is higher than the normal background (0.09 - 012 {mu}Sv/hr). The highest value of the exposure around storage tanks was about o.5 {mu}Sv/hr. Moreover, the highest concentration of radionuclides in scales were found to be 47000 Bq/Kg and 55000 Bq/Kg for Ra-226 and Ra-228 respectively while in sludge samples, the Ra-226 concentration was about 24.2 Bq/Kg, a relatively very low activity. In addition, results have shown that soil contamination can occur by disposal of produced water to the surrounding environment. Furthermore, the present paper shows some of protection procedures, which should be followed by workers for radiation protection. (author). 10 refs., 4 tabs.

  8. Heat transfer characteristics of some oils used for engine cooling

    International Nuclear Information System (INIS)

    Abou-Ziyan, Hosny Z.

    2004-01-01

    This paper reports the results of an experimental investigation of heat transfer from a cast iron test specimen to engine oils under boiling conditions. The work is aimed at evaluating the thermal characteristics of some engine oils in contact with high temperature parts in internal combustion engines. Three mono-grade oils and two multi-grade oils are examined at heat fluxes from about 30 to more than 400 kW/m 2 for bulk temperatures of 40, 60, 80, 100, 125, 150 and 175 deg. C. The considered oils are analyzed and tested according to some ASTM standards to determine their additives concentration and to obtain some of their thermophysical properties. The results indicated that oil additives, oil properties and bulk temperatures have substantial effects on the oil characteristics. The boiling heat flux, for the best oil, rises by a factor of 1.65 as the bulk temperature decreases from 175 to 40 deg. C. The mono-grade oils produce superior heat transfer characteristics compared to those produced by multi-grade oils. The oil with the best additive concentrations produces boiling heat fluxes up to 4.44 times higher than those produced by some other oils. Comparing the results of the tested oils revealed that the oil that has the largest concentrations of boron, magnesium, phosphorus and zinc with low concentration of calcium yields the best heat transport characteristics among the other tested oils. These additives provide superior detergent and dispersant characteristics, reflected in the large alkalinity and low corrosivity of the oil. On the other side, calcium has a negative interaction with other additives and yields an adverse effect on heat transfer characteristics even when it exists in oil with large concentrations of boron, magnesium, phosphorus and zinc

  9. Gasoline from biomass through refinery-friendly carbohydrate-based bio-oil produced by ketalization.

    Science.gov (United States)

    Batalha, Nuno; da Silva, Alessandra V; de Souza, Matheus O; da Costa, Bruna M C; Gomes, Elisa S; Silva, Thiago C; Barros, Thalita G; Gonçalves, Maria L A; Caramão, Elina B; dos Santos, Luciana R M; Almeida, Marlon B B; de Souza, Rodrigo O M A; Lam, Yiu L; Carvalho, Nakédia M F; Miranda, Leandro S M; Pereira, Marcelo M

    2014-06-01

    The introduction of biomass-derived compounds as an alternative feed into the refinery structure that already exists can potentially converge energy uses with ecological sustainability. Herein, we present an approach to produce a bio-oil based on carbohydrate-derived isopropylidene ketals obtained by reaction with acetone under acidic conditions directly from second-generation biomass. The obtained bio-oil showed a greater chemical inertness and miscibility with gasoil than typical bio-oil from fast pyrolysis. Catalytic upgrading of the bio-oil over zeolites (USY and Beta) yielded gasoline with a high octane number. Moreover, the co-processing of gasoil and bio-oil improved the gasoline yield and quality compared to pure gasoil and also reduced the amount of oxygenated compounds and coke compared with pure bio-oil, which demonstrates a synergistic effect. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An estimation of the capacity to produce hydrogen by wasted hydroelectric energy for the three largest Brazilian hydroelectric

    Energy Technology Data Exchange (ETDEWEB)

    Padilha, Janine C.; Trindade, Leticia G. da; Souza, Roberto F. de [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. of Chemistry], Email: janine@iq.ufrgs.br; Miguel, Marcelo [Itaipu Binacional, Foz do Iguacu, PR (Brazil)

    2010-07-01

    The use of water wasted in hydroelectric plants as normalization dam excess, which constitute a hydrodynamic potential useful to generate electric energy which can be subsequently used to produce hydrogen and its subsequent consumption in fuel cells has been considered as an alternative for hydraulic energy-rich countries like Brazil. The case is examined in which all the water wasted in the hydroelectric plants, spilled by dam gates to maintain acceptable water levels, from the 3 largest Brazilian hydroelectric plants was used to produce hydrogen. During the year of 2008, the electric energy produced from this utilization would have been equivalent to 52.8 TWh, an amount that corresponds to an increase of ca. 15% of the total electric energy produced in the country. Furthermore, if this amount of hydrogen was used in the replacement of internal combustion vehicles by fuel cells, this would have prevented the production of 2.26 x 10{sup 7} ton of Co{sub 2} per year. This plan would also significantly decrease production and release of greenhouse gases. (author)

  11. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes

  12. Oil Palm Expansion in the Brazilian Amazon (2006-2014): Effects of the 2010 Sustainable Oil Palm Production Program

    Science.gov (United States)

    Benami, E.; Curran, L. M.

    2017-12-01

    Brazil has the world's largest suitable land area for oil palm (Elaeis guineensis) establishment, with estimates as high as 238 million ha. To promote oil palm development, Brazil launched the Sustainable Palm Oil Production Program (SPOPP) in 2010 and delineated 30 million ha for its growth that excluded forested areas and indigenous reserves. Here we examine oil palm expansion (2006-2014) as well as the SPOPP's effectiveness in Pará, the major oil palm producing state in Brazil. By combining analyses of satellite imagery, land registration data, and site based interviews, we found that oil palm area expanded 205%. Although >50% of oil palm parcels were located within 0.5 km of intact forests, lands. Direct intact forest conversion pre- and post-SPOPP declined from 4% to <1%; however, <1% of the 30 million ha promoted for oil palm was developed by 2014. To explore the major factors that may have constrained oil palm expansion under the SPOPP, we conducted microeconomic simulations of oil palm production, combined with interviews with actors/individuals from oil palm companies, civil society, researchers at universities and NGOs, and governmental agencies. Brazil's oil palm-deforestation dynamics, policies, and economic conditions will be discussed.

  13. Combined effect of ultrasound and essential oils to reduce Listeria monocytogenes on fresh produce.

    Science.gov (United States)

    Özcan, Gülçin; Demirel Zorba, Nükhet Nilüfer

    2016-06-01

    Salads prepared from contaminated fresh produce have a high risk of causing food-borne illnesses. Essential oils obtained from plants have antimicrobial activity and may provide a natural approach to reduce the pathogens on fresh produce. Additionally, ultrasound treatments have been shown to reduce the microbial counts on different foods. The objective of this study was to investigate the antimicrobial activities of cinnamon and lemon essential oils in vitro and in food applications. Mixtures of lettuce, parsley and dill were inoculated with Listeria monocytogenes and then dip-treated for 5 min in one of the following treatments: sterile tap water, chlorinated water, 1% lemon essential oil, 2% cinnamon essential oil or 2% cinnamon essential oil + ultrasound. The samples were stored at 4 ℃ and collected at d 0, 1, 3, 5, 7 and 9 post inoculation. The 1% lemon (4 log) and 2% cinnamon (2 log) essential oil washes provided partial inhibition against L. monocytogenes by d 1. The combined application of 2% cinnamon oil and ultrasound resulted in only 0.85 log inhibition by d 1; however, the number of L. monocytogenes increased during storage and became nearly equal to the control at d 9. Therefore, different combinations of essential oils with other antimicrobials or novel technologies are required. © The Author(s) 2015.

  14. Energy consumption in desalinating produced water from shale oil and gas extraction

    OpenAIRE

    Tow, Emily W.; Chung, Hyung Won; Lienhard, John H.; Thiel, Gregory Parker; Banchik, Leonardo David

    2014-01-01

    On-site treatment and reuse is an increasingly preferred option for produced water management in unconventional oil and gas extraction. This paper analyzes and compares the energetics of several desalination technologies at the high salinities and diverse compositions commonly encountered in produced water from shale formations to guide technology selection and to inform further system development. Produced water properties are modeled using Pitzer's equations, and emphasis is placed on how t...

  15. Fluctuations in the size of the largest projectile fragment produced in 1 GeV/nucleon Au + C collisions

    International Nuclear Information System (INIS)

    Warren, P.; Elliott, J.B.; Gilkes, M.L.; Hauger, A.; Hirsch, A.S.

    1993-01-01

    Large fluctuations in quantities such as density are characteristic of critical phenomena in the neighborhood of the critical point. Using the EOS apparatus at the Bevalac, we have performed an exclusive experiment in which the size of the largest projectile fragment produced in 1 GeV/nucleon Au+C collisions is studied as a function of the charged multiplicity of the event. A peak in the fluctuations is expected at the critical multiplicity. The data are compared to a percolation model and a statistical multifragmentation model

  16. Flavor profiles of monovarietal virgin olive oils produced in the Oriental region of Morocco

    Directory of Open Access Journals (Sweden)

    Mansouri Farid

    2017-09-01

    Full Text Available The purpose of this study is the evaluation of flavor profiles of monovarietal virgin olive oils (VOO produced in the Oriental region of Morocco via the characterization of volatile compounds, using SPME-GC/MS technique, and the determination of total phenolic content (colorimetric method. The study concerns oils of three European olive cultivars (Arbosana, Arbequina and Koroneiki which were recently introduced in Morocco under irrigated high-density plantation system. GC/MS aroma profiles of analyzed VOOs showed the presence of 35 volatile compounds. The major compounds in such oils are C6 compounds produced from linoleic and linolenic acids via lipoxygenase pathway such as trans-2-hexenal, cis-2-hexenal, cis-3-hexen-1-ol, trans-3-hexen-1-ol, trans-3-hexen-1-ol acetate, hexanal and 1-hexanol in different proportions depending on the cultivar (p < 0.05. In addition, statistical analyses indicate that the analyzed VOOs have different aroma profiles. Arbequina oil has a high proportion of compounds with sensory notes “green” and “sweet” giving it a fruity sensation compared to Arbosana and Koroneiki. In parallel, Arbosana and Koroneiki oils are rich in phenolic compounds and provide relatively bitter and pungent tastes to these oils.

  17. New technology for producing petrochemical feedstock from heavy oils derived from Alberta oil sands

    International Nuclear Information System (INIS)

    Oballa, M.; Simanzhenkov, V.; Clark, P.; Laureshen, C.; Plessis du, D.

    2006-01-01

    This paper presented the results of a study demonstrating the feasibility of producing petrochemical feedstock or petrochemicals from vacuum gas oils derived from oil sands. A typical bitumen upgrader flow scheme was integrated with several new technologies and coupled with an ethane/propane cracker. Technologies included steam cracking, fluid catalytic cracking (FCC); and the catalytic pyrolysis process (CPP). The scheme was then integrated with the Nova Heavy Oil Cracking (NHC) technology. The NHC process uses a reactor to perform catalytic cracking followed by a main tower that separates gas and liquid products. Aromatic ring cleavage (ARORINCLE) technology was explored as a method of catalytic treatment. Experimental runs were conducted in a laboratory scale fixed bed reactor. A stacked catalyst bed was used, followed by a zeolite-based noble metal catalyst. Examples from process run results were presented. Results indicated that the NHC technology should be used on an FCC unit technology platform. The ARORINCLE technology was considered for use on a hydrotreating unit technology platform. Once the catalysts are fully developed and demonstrated, the economics of the technologies will be enhanced through the construction of world-scale complexes integrating upgrading, refining and petrochemical plants. refs., tabs., figs

  18. The characteristics of palm oil plantation solid biomass wastes as raw material for bio oil

    Science.gov (United States)

    Yanti, RN; Hambali, E.; Pari, G.; Suryani, A.

    2018-03-01

    Indonesia is the largest palm oil plantations estate in the world. It reached 11,30 million hectares in 2015 and increased up to 11,67 million hectares in 2016. The advancement of technology recent, the solid waste of palm oil plantation can be re-produced become bio oil through pyrolysis hydrothermal process and utilized for biofuel. The purpose of this research was to analyze the characteristics of feedstock of bio oil of solid waste of palm oil plantations estate. The feedstock used was derived from solid waste of palm oil plantations in Riau Province. Characteristic analysis of waste oil included chemical compound content (cellulose, hemicellulose, lignin), ultimate analysis (C, H, N, O, S) to know height heating value (HHV). The result of analysis of chemical content showed that solid waste of palm cellulose 31,33 – 66,36 %, hemicellulose 7,54 – 17,94 %, lignin 21,43 - 43,1. The HHV of hydrothermal pyrolysis feedstock was 15,18 kJ/gram - 19,57 kJ/gram. Generally, the solid waste of palm oil plantations estate containing lignocellulose can be utilized as bio oil through hydrothermal pyrolysis. The CG-MS analysis of bio oil indicated hydrocarbon contents such as pentadecane, octadecane, hexadecane and benzene.

  19. A look at one of the world`s largest apron feeder drives - Alberta Oil Sands Project

    Energy Technology Data Exchange (ETDEWEB)

    Persson, O. [Hagglunds Drives Canada Inc., Vancouver, BC (Canada)

    1999-10-01

    Various types of equipment to transport tar sands to processing plants are discussed, with special attention to the advantages of hydraulic direct drives over conventional electro-mechanical drives. A hydraulic direct drive such as the Hagglund Drive has exceptional starting torque capacity due to the high torque capability of the hydraulic motor. As such, it can be particularly useful in applications where shock loads occur with some frequency, or where many starts and stops are needed. Application of the Hagglund drive to power one of the world`s largest apron feeders in the Alberta Oil Sands is described as an illustration of the exceptional reliability, productivity and performance of this equipment. It has about one five-hundredth of the inertia of an equivalent high speed drive with gear reducer, a feature which is particularly significant in the case of feeders which are known to suffer much downtime due to chain related problems. These types of drives have also been used to great advantage in the process industries like pulp and paper, chemical, rubber and plastics, recycling and steel. 1 tab., 1 fig.

  20. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2003-12-15

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback

  1. Combustion of biodiesel fuel produced from hazelnut soapstock/waste sunflower oil mixture in a Diesel engine

    International Nuclear Information System (INIS)

    Usta, N.; Oeztuerk, E.; Can, Oe.; Conkur, E.S.; Nas, S.; Con, A.H.; Can, A.C.; Topcu, M.

    2005-01-01

    Biodiesel is considered as an alternative fuel to Diesel fuel No. 2, which can be generally produced from different kinds of vegetable oils. Since the prices of edible vegetable oils are higher than that of Diesel fuel No. 2, waste vegetable oils and non-edible crude vegetable oils are preferred as potential low priced biodiesel sources. In addition, it is possible to use soapstock, a by-product of edible oil production, for cheap biodiesel production. In this study, a methyl ester biodiesel was produced from a hazelnut soapstock/waste sunflower oil mixture using methanol, sulphuric acid and sodium hydroxide in a two stage process. The effects of the methyl ester addition to Diesel No. 2 on the performance and emissions of a four cycle, four cylinder, turbocharged indirect injection (IDI) Diesel engine were examined at both full and partial loads. Experimental results showed that the hazelnut soapstock/waste sunflower oil methyl ester can be partially substituted for the Diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification and preheating of the blends

  2. Oil and gas leasing/production program

    International Nuclear Information System (INIS)

    Heimberger, M.L.

    1992-01-01

    As the Congress declared in the Outer Continental Shelf Lands Act the natural gas and oil production from the Outer Continental Shelf constitutes an important part of the Nation's domestic energy supply. Federal offshore minerals are administered within the Department of the Interior by the Minerals Management Service (MMS), which provides access to potential new sources of natural gas and oil offshore by conducting lease sales. Each year, on or before March 31, the MMS presents to Congress a fiscal year annual report on the Federal offshore natural gas and oil leasing and production program. In FY 1991, this program was the third largest producer of non-tax revenue for the US Treasury, contributing more than $3 billion. This report presents Federal offshore leasing, sales, production, and exploration activities, and environmental monitoring activities

  3. Radionuclides in produced water from Norwegian oil and gas installations - concentrations and bioavailability

    International Nuclear Information System (INIS)

    Eriksen, D.Oe.; Sidhu, R.; Stralberg, E.; Iden, K.I.; Hylland, K.; Ruus, A.; Roeyset, O.; Berntssen, M.H.G.; Rye, H.

    2006-01-01

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226 Ra and 228 Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. This study reports results indicating that the presence of added chemicals such as scale inhibitors in produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bioavailability of radium (and barium) will be larger than anticipated. Also, the bioavailability of food-borne radium is shown to increase due to presence of such chemicals. (author)

  4. Perestroika, Soviet oil, and joint ventures

    International Nuclear Information System (INIS)

    Churkin, M. Jr.

    1991-01-01

    Glaznost, the freedom of expression in both the public and private sectors of the Soviet Union, has rapidly transformed the country form a largely isolated and closed society to one that is rapidly becoming more cosmopolitan and open to the West. Now that the Soviet Union is moving toward a free-market economy, a number of new laws are being generated to create a favorable environment for Western investment, especially joint ventures. First, crude oil sales have provided over 75% of much-needed hard currency, and oil has been the principal barter for manufactured goods produced in eastern Europe. Second, joint oil ventures with Western companies can reverse declining production levels and provide sufficient stimulus to turn around the economic recession. The Soviet Union has a very large inventory of discovered but undeveloped oil and gas fields. Most of these fields are difficult for the Soviets to produce technically, financially, and environmentally safely, and they are actively seeking appropriate Western partners. From an exploration point of view, the Soviet Union has probably the largest number of undrilled and highly prospective oil basins, which may replenish declining reserves in the West. Finally, the Soviet Union represents in the long term a large unsaturated market eager to absorb the surplus of goods and services in the Western world. Again, joint oil ventures could provide the convertible currency to increase East-West trade

  5. Effects of fatty acids composition and microstructure properties of fats and oils on textural properties of dough and cookie quality.

    Science.gov (United States)

    Devi, Amita; Khatkar, B S

    2018-01-01

    This study was carried out to investigate the effect of fatty acid composition and microstructure properties of fats and oils on the textural properties of cookie dough and quality attributes of cookies. Fatty acid composition and microstructure properties of six fats and oils (butter, hydrogenated fat, palm oil, coconut oil, groundnut oil, and sunflower oil) were analyzed. Sunflower oil was found to be the most unsaturated oil with 88.39% unsaturated fatty acid content. Coconut oil and palm oil differed from other fats and oils by having an appreciable amount of lauric acid (59.36%) and palmitic acid (42.14%), respectively. Microstructure size of all fats and oils ranged from 1 to 20 μm being the largest for coconut oil and the smallest for palm oil. In palm oil, small rod-shaped and randomly arranged microstructures were observed, whereas sunflower oil and groundnut oil possessed large, scattered ovule shaped microstructures. It was reported that sunflower oil produced the softest dough, the largest cookie spread and the hardest cookie texture, whereas hydrogenated fat produced the stiffest dough, the lowest spread and most tender cookies. Statistical analysis depicted that palmitic acid and oleic acid demonstrated a positive correlation with dough hardness. Linoleic acid exhibited positive link with cookie spread ratio (r = 0.836**) and breaking strength (r = 0.792**). Microstructure size showed a significant positive relationship with dough density (r = 0.792**), cookie density (r = 0.386*), spread ratio (r = 0.312*), and breaking strength (r = 0.303*).

  6. Fuel properties of biodiesel produced from the crude fish oil from the soapstock of marine fish

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Cherng-Yuan; Li, Rong-Ji [Department of Marine Engineering, National Taiwan Ocean, University, Keelung 20224 (China)

    2009-01-15

    The soapstock of a mixture of marine fish was used as the raw material to produce the biodiesel in this study. The soapstock was collected from discarded fish products. Crude fish oil was squeezed from the soapstock of the fish and refined by a series of processes. The refined fish oil was transesterified to produce biodiesel. The fuel properties of the biodiesel were analyzed. The experimental results showed that oleic acid (C18:1) and palmitic acid (C16:0) were the two major components of the marine fish-oil biodiesel. The biodiesel from the mixed marine fish oil contained a significantly greater amount of polyunsaturated fatty acids than did the biodiesel from waste cooking oil. In addition, the marine fish-oil biodiesel contained as high as 37.07 wt.% saturated fatty acids and 37.3 wt.% long chain fatty acids in the range between C20 and C22. Moreover, the marine fish-oil biodiesel appeared to have a larger acid number, a greater increase in the rate of peroxidization with the increase in the time that it was stored, greater kinematic viscosity, higher heating value, higher cetane index, more carbon residue, and a lower peroxide value, flash point, and distillation temperature than those of waste cooking-oil biodiesel. (author)

  7. Cleaning the Produced Water in Offshore Oil Production by Using Plant-wide Optimal Control Strategy

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Pedersen, Simon; Løhndorf, Petar Durdevic

    2014-01-01

    To clean the produced water is always a challenging critical issue in the offshore oil & gas industry. By employing the plant-wide control technology, this paper discussed the opportunity to optimize the most popular hydrocyclone-based Produced Water Treatment (PWT) system. The optimizations of t...... of this research is to promote a technical breakthrough in the PWT control design, which can lead to the best environmental protection in the oil & gas production, without sacrificing the production capability and production costs....

  8. Response strategies for oil producers in the face of environmental taxation

    International Nuclear Information System (INIS)

    Walker, I.O.; Brennand, G.J.

    1993-01-01

    The impact of environmental taxes on the oil export revenues of developing countries, particularly OPEC, is considered; the possibility of amelioration through production management is investigated. A model of oil market dynamics is considered and applied to for different tax secenarios. These are a base case scenario where no environmental tax is imposed; an unmanaged market where a $100/t of carbon tax is imposed in all OECD regions and the resulting fall in oil demand is absorbed by OPEC, thereby keeping oil prices at base case levels; a partially managed market where the same tax is imposed, but only OPEC responds by reducing oil production even further to maintain base case revenue; a totally managed market where the same tax is imposed but both OPEC and non-OPEC agree to manage and control the market. The conclusions reached is that as long as OPEC is not able to target a revenue-maximizing path, a totally managed market is likely to prove beneficial to all developing country producers with a much more manageable, higher than base case price in a partially managed market. If, however, OPEC were able to implement a revenue-maximizing course, there would be no need for total management, since non-OPEC revenue would be concomitantly maximized. (2 tables, 4 figures). (UK)

  9. Feasibility and comparative studies of thermochemical liquefaction of Camellia oleifera cake in different supercritical organic solvents for producing bio-oil

    International Nuclear Information System (INIS)

    Chen, Hongmei; Zhai, Yunbo; Xu, Bibo; Xiang, Bobin; Zhu, Lu; Li, Ping; Liu, Xiaoting; Li, Caiting; Zeng, Guangming

    2015-01-01

    Highlights: • Thermochemical liquefaction of COC was a prominent process for producing bio-oil. • Type of solvent affected the yield and composition of bio-oil considerably. • Liquefaction of COC in SCEL at 300 °C was preferred for producing bio-oil. - Abstract: Thermochemical liquefaction of Camellia oleifera cake (COC) for producing bio-oil was conducted in supercritical methanol (SCML), ethanol (SCEL) and acetone (SCAL), respectively. GC–MS, elemental analysis and ICP-OES were used to characterize properties of bio-oil. Results showed that thermochemical liquefaction of COC was a prominent process for generating bio-oil. Increase of temperature was beneficial to the increase of bio-oil yield, and yield of bio-oil followed the sequence of SCAL > SCEL > SCML. In spite of the highest bio-oil yield, the lowest calorific value and highest contents of Zn, Pb, Cd, Ni, Fe, Mn, and Cr were found in bio-oil from SCAL. Though SCML has very similar bio-oil composition and calorific value with SCEL, higher bio-oil yield and lower contents of heavy metals could be obtained with SCEL, especially in bio-oil from SCEL at 300 °C. Moreover, the origin of ethanol could make the bio-oil product totally renewable. Therefore, liquefaction of COC in SCEL at 300 °C could have great potential in generating bio-oil

  10. A comparison of cold flow properties of biodiesel produced from virgin and used frying oil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shanableh, Filiz [Food Engineering Department, Near East University (Cyprus); Evcil, Ali; Govsa, Cemal [Mechanical Engineering Department, Near East University (Cyprus); Savasdylmac, Mahmut A. [Mechanical Engineering Department, Booazici University (Turkey)

    2011-07-01

    Bio-diesel can be produced from different kinds of feedstock. The purpose of this paper is to research and make the comparison of the cold flow properties of bio-diesel produced from refined-virgin frying vegetable oil (RVFVO) and waste frying vegetable oil (WFVO). As is known, bio-diesel fuel will have higher cloud points (CP), cold filter plugging points (CFPP) and pour points (PP) if it is derived from fat or oil which consists of significant amounts of saturated fatty compounds. Both RVFVO and WFVO were derived from the same cafeteria on a Near East University campus and converted to biodiesel fuel through base catalyzed transesterification reaction. As the current results show, there is no considerable difference in cold flow properties of the bio-diesel produced from RVFVO and WFVO. So WFVO seems be better positioned to serve as raw material in biodiesel production because of its lower cost and its environmental benefits.

  11. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  12. A novel method of producing a microcrystalline beta-sitosterol suspension in oil

    DEFF Research Database (Denmark)

    Christiansen, Leena I; Rantanen, Jukka T; von Bonsdorff, Anna K

    2002-01-01

    This paper describes a novel method of producing a microcrystalline oral suspension containing beta-sitosterol in oil for the treatment of hypercholesterolaemia. beta-Sitosterol pseudopolymorphs with different water contents were crystallized from acetone and acetone-water solutions. Structural...

  13. Oxidative stability of mayonnaise containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Mayonnaise based on enzymatically produced specific structured lipid (SL) from sunflower oil and caprylic acid was compared with mayonnaise based on traditional sunflower oil (SO) or chemically randomized lipid (RL) with respect to their oxidative stability, sensory and rheological properties......, but was most likely influenced by the structure of the lipid, the lower tocopherol content and the higher initial levels of lipid hydroperoxides and secondary volatile oxidation compounds in the SL itself compared with the RL and traditional sunflower oil employed. EDTA was a strong antioxidant, while propyl...

  14. A look at one of the world's largest apron feeder drives - Alberta Oil Sands Project

    Energy Technology Data Exchange (ETDEWEB)

    Persson, O. (Hagglunds Drives Canada Inc., Vancouver, BC (Canada))

    1999-01-01

    Various types of equipment to transport tar sands to processing plants are discussed, with special attention to the advantages of hydraulic direct drives over conventional electro-mechanical drives. A hydraulic direct drive such as the Hagglund Drive has exceptional starting torque capacity due to the high torque capability of the hydraulic motor. As such, it can be particularly useful in applications where shock loads occur with some frequency, or where many starts and stops are needed. Application of the Hagglund drive to power one of the world's largest apron feeders in the Alberta Oil Sands is described as an illustration of the exceptional reliability, productivity and performance of this equipment. It has about one five-hundredth of the inertia of an equivalent high speed drive with gear reducer, a feature which is particularly significant in the case of feeders which are known to suffer much downtime due to chain related problems. These types of drives have also been used to great advantage in the process industries like pulp and paper, chemical, rubber and plastics, recycling and steel. 1 tab., 1 fig.

  15. 76 FR 61933 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Revision of...

    Science.gov (United States)

    2011-10-06

    ..., 733,877 pounds of Scotch spearmint oil have already been sold or committed, which leaves just 186,505... of essential oils and the products of essential oils. In addition, the Committee estimates that 8 of...-1A IR] Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Revision of...

  16. Original oilpatch; the biggest Canadian oil company laid its cornerstone in Sarnia 100 years ago

    International Nuclear Information System (INIS)

    Faulkner, P.

    2000-01-01

    The end of the 20. century also marked the occasion of 100 years of oil refining by Imperial Oil, the largest oil company in Canada. The first commercial oil well was dug at Oil Springs, near Petrolia in southwestern Ontario in the days when the only market for crude oil was kerosene for lamps and cooking. The original well today occupies the doorstep of the Oil Museum of Canada, which contains the records of the birth and growth of the industry which flourished long before anyone had dreamt of Leduc in Alberta, OPEC, or the myriads of petrochemical products, from nylon stockings and rubber tires to bubble bath and detergents, that are common place today. Documents at the Museum reveal that the first oil tanked for commercial sale came from a well at Oil Springs in 1858, a year ahead of the Titusville, Pennsylvania claim. By 1860 production reached a maximum of 800 barrels a day and Canada's first oilpatch was born. The original production equipment, primitive but durable, can be seen at the second local museum, the outdoor Discovery at Petrolia. Refining prior to the start of Imperial in 1880, was done by boiling down crude oil in cast iron vats to isolate kerosene, then the only byproduct of any use. At one stage, there were about 100 small refineries in southern Ontario. Sarnia became the centre of Canadian oil refining after Imperial was sold to the Rockefeller's Standard Oil of New York, who relocated it from Petrolia in 1898. With the arrival of the horseless carriage, gasoline had become a major byproduct. The refinery was rebuilt ; by 1927 it processed 15,500 barrels a day and manufactured 381 products, including vast numbers of candles. Today, plant capacity is up to 120,000 barrels a day. Although southwestern Ontario has long been overshadowed by Alberta as an oil producer, there are still some 600 active wells in the region, and a dozen entrepreneurs still ship about 60,000 barrels a year of southwest Ontario oil to Sarnia for refining. Imperial still

  17. An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources

    International Nuclear Information System (INIS)

    Sulaiman, F.; Abdullah, N.; Gerhauser, H.; Shariff, A.

    2011-01-01

    Malaysia has an abundance of energy resources, both renewable and non-renewable. The largest non-renewable energy resource found in Malaysia is oil, and second, is natural gas, primarily liquefied natural gas. The production and consumption of oil, gas and coal in Malaysia are given in this paper. The energy demand and supply by source are also shown in relation to the country's fuel diversification policy. In order to reduce the overall dependence on a single source of energy, efforts were undertaken to encourage the utilization of renewable resources. Forest residue and oil palm biomass are found to be potentially of highest energy value and considered as the main renewable energy option for Malaysia. Palm oil and related products represent the second largest export of Malaysia. The total oil palm planted area in Malaysia has increased significantly in recent years. This paper gives a detailed representation of oil palm planted and produced together with its yield from the year 1976 onwards. The large amounts of available forest and palm oil residues resulting from the harvest can be utilized for energy generation and other by-products in a manner that also addresses environmental concerns related to current waste disposal methods. -- Highlights: →Palm oil and related products represent the second largest export of Malaysia. →Malaysia has an abundance of energy resources, both renewable and non-renewable. →Forest and oil palm residues are the main renewable energy option for Malaysia. →Efforts were undertaken to encourage the utilization of renewable resources.

  18. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells.

    Science.gov (United States)

    Wang, Yanjun; Li, Haoyu; Liu, Xingbin; Zhang, Yuhui; Xie, Ronghua; Huang, Chunhui; Hu, Jinhai; Deng, Gang

    2016-10-14

    First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF) are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5-60 m³/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2-60 m³/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  19. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells

    Directory of Open Access Journals (Sweden)

    Yanjun Wang

    2016-10-01

    Full Text Available First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5–60 m3/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2–60 m3/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  20. The dirty oil card and Canadian foreign policy

    International Nuclear Information System (INIS)

    Chastko, P.

    2010-10-01

    This paper discussed Canada's oil sands industry in relation to its international reputation as the source of an unacceptable amount of pollution. Environmental lobbyists and awareness groups have targeted Canada's oil sands industry as an example of how the oil industry contributes to pollution during the production phase. Media attention has focused on the oil sands as a heavy grade of crude oil that requires significant upgrading and refining before it can be produced as a barrel of usable oil. Canadian exports of oil sands to the United States have been the target of consumer boycotts and proposed legislation. A lack of available alternative energy sources and infrastructure for the transportation sector, and the continued global demand for petroleum mean that oil sands will continue to be exported to the United States as well as to other export markets such as China and India. The United States is likely to remain the largest importer of Canadian crude oils. However, policy-makers must ensure that the discourse about oil sands does not devolve into an argument in which energy security is pitted against the need for increased environmental protection. 49 refs.

  1. The mother of all oil spills and the Dawhat ad Dafi

    International Nuclear Information System (INIS)

    O'Brien, J.L.; Gallagher, J.J.

    1993-01-01

    The Gulf War (Operation Desert Storm) produced some of the largest oil spills of all time when Saddam Hussein released millions of barrels of oil from the Mina al Ahmadi terminal in Kuwait into the Arabian Gulf. The resulting massive spill descended on the Saudi Arabian coastline threatening its industrial and environmental resources, as well as the desalination plant intakes that provide fresh water for most of the eastern provinces of the country. A fortuitous combination of geographical features, natural phenomena, and defensive preparations by Saudi Arabia averted a catastrophe of substantial proportions as the open-quotes mother of all oil spillsclose quotes impacted that country

  2. Material flow analysis for resource management towards resilient palm oil production

    Science.gov (United States)

    Kamahara, H.; Faisal, M.; Hasanudin, U.; Fujie, K.; Daimon, H.

    2018-03-01

    Biomass waste generated from palm oil mill can be considered not only as the feedstock of renewable energy but also as the nutrient-rich resources to produce organic fertilizer. This study explored the appropriate resource management towards resilient palm oil production by applying material flow analysis. This study was conducted based on two palm oil mills in Lampung, Indonesia. The results showed that the empty fruit bunch (EFB) has the largest potential in terms of amount and energy among the biomass waste. The results also showed that the palm oil mills themselves had already self-managed their energy consumption thatwas obtained from palm kernel shell and palm press fiber. Finally, this study recommended the several utilization options of EFB for improvement of soil sustainability to contribute towards resilient palm oil production.

  3. Radionuclides in produced water from Norwegian oil and gas installations — Concentrations and bioavailability

    Science.gov (United States)

    Eriksen, D. Ø.; Sidhu, R.; Strålberg, E.; Iden, K. I.; Hylland, K.; Ruus, A.; Røyset, O.; Berntssen, M. H. G.; Rye, H.

    2006-01-01

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226Ra and 228Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. This study reports results indicating that the presence of added chemicals such as scale inhibitors in produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bioavailability of radium (and barium) will be larger than anticipated. Also, the bioavailability of food-borne radium is shown to increase due to presence of such chemicals.

  4. Produced water ponds are an important source of aromatics and alcohols in Rocky Mountain oil and gas basins

    Science.gov (United States)

    Lyman, S. N.

    2017-12-01

    Most of the water extracted with oil and natural gas (i.e., produced water) is disposed of by injection into the subsurface. In the arid western United States, however, a significant portion of produced water is discharged in ponds for evaporative disposal, and produced water is often stored in open ponds prior to subsurface injection. Even though they are common in the West (Utah's Uinta Basin has almost 200 ha), produced water ponds have been excluded from oil and gas emissions inventories because little information about their emission rates and speciation is available. We used flux chambers and inverse plume modeling to measure emissions of methane, C2-C11 hydrocarbons, light alcohols, carbonyls, and carbon dioxide from oil and gas produced water storage and disposal ponds in the Uinta Basin and the Upper Green River Basin, Wyoming, during 2013-2017. Methanol was the most abundant organic compound in produced water (91 ± 2% of the total volatile organic concentration; mean ± 95% confidence interval) but accounted for only 25 ± 30% of total organic compound emissions from produced water ponds. Non-methane hydrocarbons, especially C6-C9 alkanes and aromatics, accounted for the majority of emitted organics. We were able to predict emissions of individual compounds based on water concentrations, but only to within an order of magnitude. The speciation and magnitude of emissions varied strongly across facilities and was influenced by water age, the presence or absence of oil sheens, and with meteorological conditions (especially ice cover). Flux chamber measurements were lower than estimates from inverse modeling techniques.Based on our flux chamber measurements, we estimate that produced water ponds are responsible for between 3 and 9% of all non-methane organic compound emissions in the Uinta Basin (or as much as 18% if we rely on our inverse modeling results). Emissions from produced water ponds contain little methane and are more reactive (i.e., they have

  5. Non-Renewable Energy and Macroeconomic Efficiency of Seven Major Oil Producing Economies in Africa

    Directory of Open Access Journals (Sweden)

    Awodumi Olabanji Benjamin

    2016-05-01

    Full Text Available This study adopted two-stage DEA to estimate the technical efficiency scores and assess the impact of the two most important components of fossil fuel associated with oil production on macroeconomic efficiency of Seven oil producing African countries during 2005-2012. Our results showed that increasing the consumption of natural gas would improve technical efficiency. Furthermore, increasing the share of fossil fuel in total energy consumption has negative effect on the efficiency of the economies of the top African oil producers. Also, we found that increasing the consumption of primary energy improves efficiency in these economies. We therefore, recommend that governments and other stakeholders in the energy industry should adopt inclusive strategies that will promote the use of natural gas in the short term. However, in the long-run, efforts should be geared towards increasing the use of primary energy, thereby reducing the percentage share of fossil fuel in total energy consumption.

  6. Oilseeds and vegetable oils in asia: a world of diversity

    Directory of Open Access Journals (Sweden)

    Mittaine Jean-François

    2016-11-01

    Full Text Available Out of the two dozen countries that constitute what is generally called “Asia”, some are the largest in the world while others are islands with smaller populations. When looking at oilseeds and vegetable oils in the region, one is faced with the same huge diversity which makes it complex to analyze, all the more that statistics are not easily available for many countries. Aside from the large differences in size, the region covers a wide spectrum of diversified climate environments. Asia is also mainly characterized by its huge population which has become largely urban, a key factor leading to the impressive growth of vegetable oil demand in the past 30 years. At an verage of 23.2 kg/year, Asian per capita consumption of oils and fats still remains slightly below the world average of 28.3 kg/capita/year. Therefore, although 53% of the world population is located in Asia, only 45% of world oils and fats is consumed in the region. As detailed in the paper, the world of Asian oilseeds and vegetable oils is highly concentrated on soybeans and palm oil. In spite of a large domestic production in China (12.3 MnT, soybeans are imported in huge quantities, mostly by China (78 MnT, 84% of the region’s imports where more than 28% of world soybeans production is being crushed. Palm oil, the second large commodity consumed in the region, is mainly produced within the region, mostly in Indonesia and Malaysia. So where is the “world of diversity”? Hidden behind those two dominant commodities, practically all of the ten oilseeds constituting the core of the world production are grown in significant quantities in the region while, for vegetable oils, all those of significant importance are produced within the region with the exception of olive oil. The main question that should be kept in mind when reviewing this large regional demand is under what condition will future vegetable oil production be able to meet the expected rise of per capita oils and

  7. Sustainable water management in Alberta's oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Byers, Bill; Usher, Robyn; Roach, Andrea [CH2M HILL, Englewood, CO (United States); Lambert, Gord; Kotecha, Prit [Suncor Energy Inc., Calgary (Canada)

    2012-07-01

    The Canadian Association of Petroleum Producers forecast published in 2011 predicts that oil production from oil sands will increase by 50% in the next 3 years and double by 2020. This rate of growth will result in significant pressure on water resources; water use per barrel of oil sands production is comparable to other energy resources - about 2.5 barrels of fresh water per barrel of oil produced are used by mining operations and 0.5 barrels by in-situ operations. Suncor Energy Inc. (Suncor) was the first company to develop the oil sands in northern Alberta and holds one of the largest oil sands positions in Canada. In 2010, Suncor announced plans to increase production to more than 1 million barrels of oil equivalent per day by 2020, which it plans to achieve through oil sands production growth of approximately 10% per year. Because water supply and potential impacts to water quality are critical to its future growth, in 2010-2011 Suncor conducted a risk assessment to identify water-related business risks related to its northern Alberta operations. The assessment identified more than 20 high level business risks in strategic water risk areas including water supply, water reuse, storm water management, groundwater, waste management and river water return. The risk assessment results prompted development of a strategic roadmap to guide water stewardship across Suncor's regional operations. The roadmap describes goals, objectives, and specific activities for each of six key water risk areas, and informs prioritization and selection of prospective water management activities. Suncor is not only exploring water within its own boundaries, but is also collaborating with other oil sands producers to explore ways of integrating its water systems through industry consortia; Suncor is a member of the Oil Sands Leadership Initiative and of the recently formed Canadian Oil Sands Innovation Alliance, among others. (author)

  8. Characterization of water-in-oil emulsions produced with microporous hollow polypropylene fibers

    Directory of Open Access Journals (Sweden)

    HELMAR SCHUBERT

    2000-11-01

    Full Text Available The preparation of fine and monodispersed water-in-oil (W/O emulsions by utilizing hydrophobic hollow polypropylene fibers with 0.4 mm pores was investigated in this work. The experiments were carried out using demineralized water as the disperse phase, mineral oil Velocite No. 3 as the continuous phase, and polyglycerol polyricinoleate (PGPR 90 in the concentration range of 2.5 – 10 wt % as the oil-soluble emulsifier. The size of the water droplets in the prepared emulsions and the droplet size distribution strongly depend on the content of the disperse phase, the transmembrane pressure difference, and the emulsifier concentration. Stable emulsions with a very narrow droplet size distribution and a mean droplet diameter lower than 0.27 µm were produced using 10 wt % PGPR 90 at a pressure difference below 30 kPa.

  9. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance)

    International Nuclear Information System (INIS)

    Hassanshahian, Mehdi

    2014-01-01

    Highlights: • Biosurfactant producing bacteria were isolated from Persian Gulf. • There is high diversity of biosurfactant producing bacteria in the Persian Gulf. • These bacteria are very useful for management of oil pollution in the sea. - Abstract: Biosurfactants are surface active materials that are produced by some microorganisms. These molecules increase biodegradation of insoluble pollutants. In this study sediments and seawater samples were collected from the coastline of Bushehr provenance in the Persian Gulf and their biosurfactant producing bacteria were isolated. Biosurfactant producing bacteria were isolated by using an enrichment method in Bushnell-Hass medium with diesel oil as the sole carbon source. Five screening tests were used for selection of Biosurfactant producing bacteria: hemolysis in blood agar, oil spreading, drop collapse, emulsification activity and Bacterial Adhesion to Hydrocarbon test (BATH). These bacteria were identified using biochemical and molecular methods. Eighty different colonies were isolated from the collected samples. The most biosurfactant producing isolates related to petrochemical plants of Khark Island. Fourteen biosurfactant producing bacteria were selected between these isolates and 7 isolates were screened as these were predominant producers that belong to Shewanella alga, Shewanella upenei, Vibrio furnissii, Gallaecimonas pentaromativorans, Brevibacterium epidermidis, Psychrobacter namhaensis and Pseudomonas fluorescens. The largest clear zone diameters in oil spreading were observed for G. pentaromativorans strain O15. Also, this strain has the best emulsification activity and reduction of surface tension, suggesting it is the best of thee isolated strains. The results of this study confirmed that there is high diversity of biosurfactant producing bacteria in marine ecosystem of Iran and by application of these bacteria in petrochemical waste water environmental problems can be assisted

  10. Research needs to maximize economic producibility of the domestic oil resource

    International Nuclear Information System (INIS)

    Tham, M.K.; Burchfield, T.; Chung, Ting-Horng; Lorenz, P.; Bryant, R.; Sarathi, P.; Chang, Ming Ming; Jackson, S.; Tomutsa, L.; Dauben, D.L.

    1991-10-01

    NIPER was contracted by the US Department of Energy Bartlesville (Okla.) Project Office (DOE/BPO) to identify research needs to increase production of the domestic oil resource, and K ampersand A Energy Consultants, Inc. was subcontracted to review EOR field projects. This report summarizes the findings of that investigation. Professional society and trade journals, DOE reports, dissertations, and patent literature were reviewed to determine the state-of-the-art of enhanced oil recovery (EOR) and drilling technologies and the constraints to wider application of these technologies. The impacts of EOR on the environment and the constraints to the application of EOR due to environmental regulations were also reviewed. A review of well documented EOR field projects showed that in addition to the technical constraints, management factors also contributed to the lower-than-predicted oil recovery in some of the projects reviewed. DOE-sponsored projects were reviewed, and the achievements by these projects and the constraints which these projects were designed to overcome were also identified. Methods of technology transfer utilized by the DOE were reviewed, and several recommendations for future technology transfer were made. Finally, several research areas were identified and recommended to maximize economic producibility of the domestic oil resource. 14 figs., 41 tabs

  11. Research needs to maximize economic producibility of the domestic oil resource

    Energy Technology Data Exchange (ETDEWEB)

    Tham, M.K.; Burchfield, T.; Chung, Ting-Horng; Lorenz, P.; Bryant, R.; Sarathi, P.; Chang, Ming Ming; Jackson, S.; Tomutsa, L. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)); Dauben, D.L. (K and A Energy Consultants, Inc., Tulsa, OK (United States))

    1991-10-01

    NIPER was contracted by the US Department of Energy Bartlesville (Okla.) Project Office (DOE/BPO) to identify research needs to increase production of the domestic oil resource, and K A Energy Consultants, Inc. was subcontracted to review EOR field projects. This report summarizes the findings of that investigation. Professional society and trade journals, DOE reports, dissertations, and patent literature were reviewed to determine the state-of-the-art of enhanced oil recovery (EOR) and drilling technologies and the constraints to wider application of these technologies. The impacts of EOR on the environment and the constraints to the application of EOR due to environmental regulations were also reviewed. A review of well documented EOR field projects showed that in addition to the technical constraints, management factors also contributed to the lower-than-predicted oil recovery in some of the projects reviewed. DOE-sponsored projects were reviewed, and the achievements by these projects and the constraints which these projects were designed to overcome were also identified. Methods of technology transfer utilized by the DOE were reviewed, and several recommendations for future technology transfer were made. Finally, several research areas were identified and recommended to maximize economic producibility of the domestic oil resource. 14 figs., 41 tabs.

  12. 78 FR 9575 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Change to...

    Science.gov (United States)

    2013-02-11

    ... reserve oil in such manner as to accurately account for its receipt, storage, and disposition. In a rule... FR] Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Change to Administrative Rules Regarding the Transfer and Storage of Excess Spearmint Oil AGENCY: Agricultural Marketing...

  13. COMPETITIVE POSITION OF THE MAIN PRODUCERS AND EXPORTERS OF OILSEEDS AND VEGETABLE OILS IN THE INTRA-EU TRADE

    Directory of Open Access Journals (Sweden)

    Karolina Pawlak

    2014-09-01

    Full Text Available The aim of the paper was to assess the competitive position of the main producers and exporters of oilseeds and vegetable oils in the intra-EU trade in 2004 and 2012. The competitiveness was assessed with the use of a selected set of quantitative measures of international competitive position. Moreover, some shares of the analysed countries in the intra-EU trade, as well as relative export intensity of oilseeds and vegetable oils in these countries were estimated. On the basis of the conducted analyses it is possible to conclude that apart from Germany in trade in rapeseed and soya beans, as well as the Netherlands in trade in rapeseed and sunflower-seed, the main producers and exporters of oilseeds were competitive on the Single European Market. Excluding soya-bean oil produced in the EU mainly from imported raw material, competitive advantage of most of the countries decreased together with the level of processing and was lower in trade in vegetable oils.

  14. The Resurgence of Shale Oil

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2017-09-01

    This study addresses the resilience factors of the American production of light tight oil, in particular regarding the evolution of the financial model, and the regulatory changes with the authorisation of exports for crude oil. The paper also evaluates the development perspectives of the production on the medium and long term. US production of light tight oil (LTO, commonly known as 'shale oil') experienced a spectacular expansion between 2010 and 2014, becoming the largest source of growth in world oil production. At the start of 2015, however, the sustainability of its business model became questionable. Oil prices had collapsed and uncertainty about future US production was at its height. The sharp drop in the number of drill holes as of January 2015 raised fears of a rapid fall in US petroleum output. The LTO business model, based largely on the use of debt, reinforced this projection. Independent producers were heavily indebted, and were no longer able to invest in new wells. LTO production would therefore run out of steam. Two years later, LTO has passed its first test successfully. While output of shale gas has clearly fallen, cuts have been modest and much less than had been feared, given the falls in capital spending (CAPEX) and the number of drill holes. Productivity improvements as well as cost reductions have permitted a halving of the LTO equilibrium price. Independent producers have refocused their activities on the most productive basins and sites. The essential role played by the Permian Basin should be stressed at this point. In two years, it has become a new El dorado. Despite the fall in drill holes through to May 2016, production has continued to rise and now amounts to a quarter of American oil output. Furthermore, independents have drawn extra value from their well inventories, which include drilled, but also uncompleted wells. Lastly, the impressive number of drilled wells prior to price cuts has allowed producers to maintain their output

  15. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    International Nuclear Information System (INIS)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area

  16. Trends in heavy oil production and refining in California

    International Nuclear Information System (INIS)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10 degrees to 20 degrees API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources

  17. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-04-30

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

  18. Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed?

    International Nuclear Information System (INIS)

    Thamsiriroj, T.; Murphy, J.D.

    2009-01-01

    The proposed EU Directive on the promotion of Renewable Energy stipulates that only biofuels that achieve greenhouse emissions savings of 35% will be eligible for inclusion with respect to meeting the 2020 target of 10% for the share of biofuels. This paper examines biodiesel for use in Ireland, produced from two different sources: indigenous rape seed and palm oil imported from Thailand. The palm oil system generates more biodiesel per hectare than the rape seed system, and has less parasitic demand. Greenhouse-gas reductions of 29% and 55%, respectively were calculated for the rape seed and palm oil systems. (author)

  19. A Primer on Alberta’s Oil sands Royalties

    Directory of Open Access Journals (Sweden)

    Sarah Dobson

    2015-12-01

    Full Text Available Fulfilling its campaign promise, the new NDP government announced a review of Alberta’s royalty framework in June 2015. The province receives royalty revenue from three main sources – natural gas, crude oil, and oil sands. Since the 2009-10 fiscal year the largest contributor to Alberta’s royalty revenues has been the oil sands. If you want a sense of how important oil sands royalties have been for Alberta’s finances, consider this: In the 2014–15 fiscal year, the government collected just over $5 billion from oil sands royalties. These royalties covered over 10 per cent of the province’s operational expenses of $48.6 billion in the same fiscal year. Over the last six fiscal years the oil sands have contributed an average of 10 per cent of revenues to provincial coffers. This makes oil sands royalties the fourth largest contributor behind personal income taxes (23 per cent, federal transfers (13 per cent and corporate income taxes (11 per cent. But how many Albertans really understand how the royalty system works? What do we mean when we say “royalty”? How does the Alberta Government calculate royalties on oil sands producers? If the system is going to change, it’s important that Albertans understand how the current system works. That is what this paper is designed to do. For Albertans to properly judge the impact of new policy, they need a solid understanding of the current policy environment. We all know that oil prices have dropped and oil sands producers are losing profitability. As such, changes to the royalty system could have a deep and profound impact on the sector. Here are some of the issues this primer will study: • Pre-payout projects vs. post-payout projects, in other words, the classification of projects for royalty purposes based on whether the cumulative costs of a project exceed its cumulative revenues • Monthly payment of royalties vs. annual payment • Understanding the unit price of bitumen and how that

  20. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC

  1. Unconventional Liquids, Peak Oil and Climate Change

    Science.gov (United States)

    Hughes, J. D.

    2015-12-01

    Oil is the largest source of primary energy in the world, at 32% of 2014 consumption. Forecasts by the International Energy Agency suggest oil will continue to provide the largest share of global energy through 2040, even with new policies to mitigate greenhouse gas emissions. The IPCC's Representative Concentration Pathway (RCP) scenarios indicate that between 1.5 and 3.8 trillion barrels of oil will be burnt between 2015 and 2100. Various sources suggest that the world has 5 to 6 trillion barrels of remaining recoverable oil, more than half of which are in low grade deposits. Although oil sands and extra heavy oil are claimed to hold 1.5 trillion barrels, assessments of major deposits in the Canadian oil sands and the Venezuela Orinoco Belt, which hold the bulk of these resources, total less than 500 billion barrels of recoverable oil. Kerogen oil (oil shale), which has never been produced in anything but miniscule volumes, comprises an additional trillion barrels of these estimates. These unconventional deposits are very different from the conventional oil of the past as: - they are rate constrained, as they require massive upfront capital investments and lengthy construction periods, and therefore cannot be scaled up quickly in response to declines in conventional production. - they are expensive, both in terms of cost per barrel and the large energy inputs required for production. The best in situ oil sands deposits may yield an energy return of 3:1 and kerogen oil even less if it ever becomes commercially viable. This compares to 10:1 or more for conventional oil. Shale oil (light tight oil), may yield another 300 billion barrels worldwide, but suffers from high decline rates, expensive wells and limited availability of high quality deposits. The most productive and economically viable portions of these unconventional deposits tend to be exploited first, leaving the less productive, higher cost oil for later. As a result, increasing global oil consumption

  2. Non-Invasive Rapid Harvest Time Determination of Oil-Producing Microalgae Cultivations for Biodiesel Production by Using Chlorophyll Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Yaqin [Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (China); University of Chinese Academy of Sciences, Beijing (China); Rong, Junfeng [SINOPEC Research Institute of Petroleum Processing, Beijing (China); Chen, Hui; He, Chenliu; Wang, Qiang, E-mail: wangqiang@ihb.ac.cn [Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (China)

    2015-10-05

    For the large-scale cultivation of microalgae for biodiesel production, one of the key problems is the determination of the optimum time for algal harvest when algae cells are saturated with neutral lipids. In this study, a method to determine the optimum harvest time in oil-producing microalgal cultivations by measuring the maximum photochemical efficiency of photosystem II, also called Fv/Fm, was established. When oil-producing Chlorella strains were cultivated and then treated with nitrogen starvation, it not only stimulated neutral lipid accumulation, but also affected the photosynthesis system, with the neutral lipid contents in all four algae strains – Chlorella sorokiniana C1, Chlorella sp. C2, C. sorokiniana C3, and C. sorokiniana C7 – correlating negatively with the Fv/Fm values. Thus, for the given oil-producing algae, in which a significant relationship between the neutral lipid content and Fv/Fm value under nutrient stress can be established, the optimum harvest time can be determined by measuring the value of Fv/Fm. It is hoped that this method can provide an efficient way to determine the harvest time rapidly and expediently in large-scale oil-producing microalgae cultivations for biodiesel production.

  3. Amine functionalized magnetic nanoparticles for removal of oil droplets from produced water and accelerated magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Saebom, E-mail: saebomko@austin.utexas.edu [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Kim, Eun Song [University of Texas, Department of Biomedical Engineering (United States); Park, Siman [University of Texas, Department of Civil, Architectural and Environmental Engineering (United States); Daigle, Hugh [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Milner, Thomas E. [University of Texas, Department of Biomedical Engineering (United States); Huh, Chun [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Bennetzen, Martin V. [Maersk Oil Corporate (Denmark); Geremia, Giuliano A. [Maersk Oil Research and Technology Centre (Qatar)

    2017-04-15

    Magnetic nanoparticles (MNPs) with surface coatings designed for water treatment, in particular for targeted removal of contaminants from produced water in oil fields, have drawn considerable attention due to their environmental merit. The goal of this study was to develop an efficient method of removing very stable, micron-scale oil droplets dispersed in oilfield produced water. We synthesized MNPs in the laboratory with a prescribed surface coating. The MNPs were superparamagnetic magnetite, and the hydrodynamic size of amine functionalized MNPs ranges from 21 to 255 nm with an average size of 66 nm. The initial oil content of 0.25 wt.% was reduced by as much as 99.9% in separated water. The electrostatic attraction between negatively charged oil-in-water emulsions and positively charged MNPs controls, the attachment of MNPs to the droplet surface, and the subsequent aggregation of the electrically neutral oil droplets with attached MNPs (MNPs-oils) play a critical role in accelerated and efficient magnetic separation. The total magnetic separation time was dramatically reduced to as short as 1 s after MNPs, and oil droplets were mixed, in contrast with the case of free, individual MNPs with which separation took about 36∼72 h, depending on the MNP concentrations. Model calculations of magnetic separation velocity, accounting for the MNP magnetization and viscous drag, show that the total magnetic separation time will be approximately 5 min or less, when the size of the MNPs-oils is greater than 360 nm, which can be used as an optimum operating condition.

  4. Oil and gas development in the United States in the early 1990`s: An expanded role for independent producers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Since 1991, the major petroleum companies` foreign exploration and development expenditures have exceeded their US exploration and development expenditures. The increasing dependence of US oil and gas development on the typically much smaller nonmajor companies raises a number of issues. Did those companies gain increased prominence largely through the reduced commitments of the majors or have they been significantly adding to the US reserve base? What are the characteristics of surviving and growing producers compared with companies exiting the US oil and gas business? Differences between majors` development strategies and those of other US oil and gas producers appear considerable. As the mix of exploration and development strategies in US oil and gas increasingly reflects the decisions of smaller, typically more specialized producers, what consequences can be seen regarding the costs of adding to US reserves? How are capital markets accessed? Are US oil and gas investments by the nonmajors likely to be undertaken only with higher costs of capital? This report analyzes these issues. 20 figs., 6 tabs.

  5. Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria.

    Science.gov (United States)

    Wagner, Jonathan; Bransgrove, Rachel; Beacham, Tracey A; Allen, Michael J; Meixner, Katharina; Drosg, Bernhard; Ting, Valeska P; Chuck, Christopher J

    2016-05-01

    A polyhydroxybutyrate (PHB) producing cyanobacteria was converted through hydrothermal liquefaction (HTL) into propylene and a bio-oil suitable for advanced biofuel production. HTL of model compounds demonstrated that in contrast to proteins and carbohydrates, no synergistic effects were detected when converting PHB in the presence of algae. Subsequently, Synechocystis cf. salina, which had accumulated 7.5wt% PHB was converted via HTL (15% dry weight loading, 340°C). The reaction gave an overall propylene yield of 2.6%, higher than that obtained from the model compounds, in addition to a bio-oil with a low nitrogen content of 4.6%. No propylene was recovered from the alternative non-PHB producing cyanobacterial strains screened, suggesting that PHB is the source of propylene. PHB producing microorganisms could therefore be used as a feedstock for a biorefinery to produce polypropylene and advanced biofuels, with the level of propylene being proportional to the accumulated amount of PHB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Evidence on the nature and extent of the relationship between oil prices and equity values in the UK

    International Nuclear Information System (INIS)

    El-Sharif, Idris; Brown, Dick; Burton, Bruce; Nixon, Bill; Russell, Alex

    2005-01-01

    A number of recent studies have found a link between movements in crude oil prices and equity values. However, the literature concentrates almost exclusively on North American and Australian data and is primarily conducted at a stock market-wide level. The present study therefore investigates the relationship between the price of crude oil and equity values in the oil and gas sector using data relating to the United Kingdom, the largest oil producer in the European Union. The evidence indicates that the relationship is always positive, often highly significant and reflects the direct impact of volatility in the price of crude oil on share values within the sector. (Author)

  7. Biomarker chemistry and flux quantification methods for natural petroleum seeps and produced oils, offshore southern California

    Science.gov (United States)

    Lorenson, T.D.; Leifer, Ira; Wong, Florence L.; Rosenbauer, Robert J.; Campbell, Pamela L.; Lam, Angela; Hostettler, Frances D.; Greinert, Jens; Finlayson, David P.; Bradley, Eliza S.; Luyendyk, Bruce P.

    2011-01-01

    Sustained, natural oil seepage from the seafloor is common off southern California, and is of great interest to resource managers, who are tasked with distinguishing natural from anthropogenic oil sources. The major purpose of this study was to build upon the work previously funded by the Bureau of Ocean Energy Management (BOEM) and the U.S. Geological Survey (USGS) that has refined the oil-fingerprinting process to enable differentiation of the highly similar Monterey Formation oils from Outer Continental Shelf (OCS) production and adjacent natural seeps. In these initial studies, biomarker and stable carbon isotope ratios were used to infer the age, lithology, organic-matter input, and depositional environment of the source rocks for 388 samples of produced crude oil, seep oil, and tarballs mainly from coastal California. The analysis resulted in a predictive model of oil source families that could be applied to samples of unknown origin.

  8. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils.

    Science.gov (United States)

    Souza, Pamella Macedo de; Goulart, Fátima Regina de Vasconcelos; Marques, Joana Montezano; Bizzo, Humberto Ribeiro; Blank, Arie Fitzgerald; Groposo, Claudia; Sousa, Maíra Paula de; Vólaro, Vanessa; Alviano, Celuta Sales; Moreno, Daniela Sales Alviano; Seldin, Lucy

    2017-04-19

    Strategies for the control of sulfate-reducing bacteria (SRB) in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO) produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium , Geotoga petraea , and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans . EO obtained from Citrus aurantifolia , Lippia alba LA44 and Cymbopogon citratus , as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC) = 78 µg/mL) the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral) and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  9. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils

    Directory of Open Access Journals (Sweden)

    Pamella Macedo de Souza

    2017-04-01

    Full Text Available Strategies for the control of sulfate-reducing bacteria (SRB in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC = 78 µg/mL the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  10. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance).

    Science.gov (United States)

    Hassanshahian, Mehdi

    2014-09-15

    Biosurfactants are surface active materials that are produced by some microorganisms. These molecules increase biodegradation of insoluble pollutants. In this study sediments and seawater samples were collected from the coastline of Bushehr provenance in the Persian Gulf and their biosurfactant producing bacteria were isolated. Biosurfactant producing bacteria were isolated by using an enrichment method in Bushnell-Hass medium with diesel oil as the sole carbon source. Five screening tests were used for selection of Biosurfactant producing bacteria: hemolysis in blood agar, oil spreading, drop collapse, emulsification activity and Bacterial Adhesion to Hydrocarbon test (BATH). These bacteria were identified using biochemical and molecular methods. Eighty different colonies were isolated from the collected samples. The most biosurfactant producing isolates related to petrochemical plants of Khark Island. Fourteen biosurfactant producing bacteria were selected between these isolates and 7 isolates were screened as these were predominant producers that belong to Shewanella alga, Shewanella upenei, Vibrio furnissii, Gallaecimonas pentaromativorans, Brevibacterium epidermidis, Psychrobacter namhaensis and Pseudomonas fluorescens. The largest clear zone diameters in oil spreading were observed for G. pentaromativorans strain O15. Also, this strain has the best emulsification activity and reduction of surface tension, suggesting it is the best of thee isolated strains. The results of this study confirmed that there is high diversity of biosurfactant producing bacteria in marine ecosystem of Iran and by application of these bacteria in petrochemical waste water environmental problems can be assisted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Addressing the CO2 emissions of the world's largest coal producer and consumer: Lessons from the Haishiwan Coalfield, China

    International Nuclear Information System (INIS)

    Li, Wei; Younger, Paul L.; Cheng, Yuanping; Zhang, Baoyong; Zhou, Hongxing; Liu, Qingquan; Dai, Tao; Kong, Shengli; Jin, Kan; Yang, Quanlin

    2015-01-01

    China is now the world's largest user of coal, and also has the highest greenhouse gas emissions associated with the mining and use of coal. In the mining sector, the interests of workforce safety coincide with those of GHG (greenhouse gas) management. While the traditional approach to ensuring workforce safety in coal mines was simply to vent the hazardous gases to the atmosphere, thus increasing GHG emissions, recent innovations have seen elements of CCS (carbon capture and storage) being used to simultaneously ensure workforce safety and minimization of GHG emissions. The Haishiwan Coalfield represents a particularly challenging environment for applying this approach, as the coal-bearing strata host both oil shales and a naturally-occurring CO 2 reservoir, disturbance of which could both imperil workers and lead to elevated GHG emissions. A low-carbon, CCS-based model of gas management developed in the Haishiwan Coalfield offers attractive lessons for application to other coal mines, within and beyond China. This approach achieves multiple benefits: energy production, enhanced workforce safety and minimization of GHG emissions. Given the extreme nature of the Haishiwan case, it ought to be even easier to implement these approaches elsewhere. - Highlights: • Boreholes coalbed CO 2 capture involving oil shales pyrolysis and retorting gas power generation. • A gas hydrate separation and CO 2 injection into abandoned mine for CO 2 capture and storage. • A low-carbon, CCS-based model of gas management developed in the Haishiwan Coalfield

  12. Agrochemical characterization of vermicomposts produced from residues of Palo Santo (Bursera graveolens) essential oil extraction

    DEFF Research Database (Denmark)

    Carrión-Paladines, Vinicio; Fries, Andreas; Gomez Muñoz, Beatriz

    2016-01-01

    Fruits of Palo Santo (Bursera graveolens) are used for essential oil extraction. The extraction process is very efficient, because up to 3% of the fresh fruits can be transformed into essential oil; however, a considerable amount of waste is concurrently produced (>97% of the fresh biomass). Rece...

  13. Anti-listerial effects of essential oils and herbs in fresh-cut produce: opportunities and limitations

    OpenAIRE

    Scollard, Johann

    2011-01-01

    peer-reviewed The potential anti-listerial benefits of essential oils and herbs in fresh-cut produce systems were investigated. Interactions with modified atmospheres and product types were examined in detail, including effects on quality. A strong anti-listerial response from rosemary herb was discovered during maceration and the chemical basis of this determined for future exploitation. The anti-listerial properties of essential oils (thyme, oregano and rosemary), under a ...

  14. Effect of unground oil palm ash as mixing ingredient towards properties of concrete

    Science.gov (United States)

    Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.

    2018-04-01

    Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.

  15. Canada's oil sands: nuclear power in an integrated energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Alberta (Canada)

    2008-06-15

    At a time of the expansive global growth in energy demand and the peaking of conventional oil, the Canadian Oil Sands have emerged as the largest new reserves to supply oil to world markets. Bitumen production in 2006 averaged 1.25 million barrels per day (an increase of 13% over 2005 and an 88% increase since 2000). If this trend continues Canada will be positioned as one of the world's premier suppliers of oil for many decades to come. The Oil Sands are one of the world's most challenging and complex oil resources. They require considerable amount of energy, water and land area to produce, resulting in contaminated tailings ponds, air emissions of concern and copious greenhouse gas (GHG) emissions. As the need to protect the environment and reduce GHG emissions moves higher on the public agenda Canada's ability to grow the energy supplies from oil sands will be severely tested. This paper focuses on the current and emerging methods and innovations that can be applied to produce these unconventional resources to value-added products with a decreasing impact on the environment. The paper will also describe the benefits and challenges for nuclear energy in the oil sands as a solution to the need for substitutes for natural gas in oil sands production and upgrading and in meeting Canada's GHG emission targets. (author)

  16. Risk Reduction and Soil Ecosystem Restoration in an Active Oil Producing Area in an Ecologically Sensitive Setting

    Energy Technology Data Exchange (ETDEWEB)

    Kerry L. Sublette; Greg Thoma; Kathleen Duncan

    2006-01-01

    The empowerment of small independent oil and gas producers to solve their own remediation problems will result in greater environmental compliance and more effective protection of the environment as well as making small producers more self-reliant. In Chapter 1 we report on the effectiveness of a low-cost method of remediation of a combined spill of crude oil and brine in the Tallgrass Prairie Preserve in Osage County, OK. Specifically, we have used hay and fertilizer as amendments for remediation of both the oil and the brine. No gypsum was used. Three spills of crude oil plus produced water brine were treated with combinations of ripping, fertilizers and hay, and a downslope interception trench in an effort to demonstrate an inexpensive, easily implemented, and effective remediation plan. There was no statistically significant effect of treatment on the biodegradation of crude oil. However, TPH reduction clearly proceeded in the presence of brine contamination. The average TPH half-life considering all impacted sites was 267 days. The combination of hay addition, ripping, and a downslope interception trench was superior to hay addition with ripping, or ripping plus an interception trench in terms of rates of sodium and chloride leaching from the impacted sites. Reductions in salt inventories (36 months) were 73% in the site with hay addition, ripping and an interception trench, 40% in the site with hay addition and ripping only, and < 3% in the site with ripping and an interception trench.

  17. Non-invasive rapid harvest time determination of oil-producing microalgae cultivations for bio-diesel production by using Chlorophyll fluorescence

    Directory of Open Access Journals (Sweden)

    Yaqin eQiao

    2015-10-01

    Full Text Available For the large-scale cultivation of microalgae for biodiesel production, one of the key problems is the determination of the optimum time for algal harvest when algae cells are saturated with neutral lipids. In this study, a method to determine the optimum harvest time in oil-producing microalgal cultivations by measuring the maximum photochemical efficiency of photosystem II (PSII, also called Fv/Fm, was established. When oil-producing Chlorella strains were cultivated and then treated with nitrogen starvation, it not only stimulated neutral lipid accumulation, but also affected the photosynthesis system, with the neutral lipid contents in all four algae strains – Chlorella sorokiniana C1, Chlorella sp. C2, C. sorokiniana C3, C. sorokiniana C7 – correlating negatively with the Fv/Fm values. Thus, for the given oil-producing algae, in which a significant relationship between the neutral lipid content and Fv/Fm value under nutrient stress can be established, the optimum harvest time can be determined by measuring the value of Fv/Fm. It is hoped that this method can provide an efficient way to determine the harvest time rapidly and expediently in large-scale oil-producing microalgae cultivations for biodiesel production.

  18. [Imperial Oil's Cold Lake oil sands operations

    International Nuclear Information System (INIS)

    Dingle, H. B.

    1999-01-01

    Imperial Oil Limited's Cold Lake oil sands resources, production and operations in Alberta are discussed. Cold Lake is the company's largest single asset and its largest source of crude oil production. In 1998, Cold Lake accounted for just under half of Imperial's total liquid production, averaging more than 135,000 barrels of bitumen a day. Despite the very difficult operating conditions experienced by the oil sands industry in 1998, Imperial Oil's Cold Lake operations generated a positive cash flow and earnings. Just as important, the near and long-term potential of Cold Lake property continues to be strong, even with the tough market conditions today and the foreseeable future. Proved reserves at the end of 1997 were 1.3 billions barrels, equal to about 24 years of current production, but even more important is Imperial's resource base in the Athabasca region, which represents 150 years of production at current rates. Although production forecasts for the near future are are revised downward because of production shut-in due to low prices, the company is confident of its long-term prospects mainly because of existing infrastructure, superior reservoir quality, 30 years worth of operating improvements and established bitumen-blend markets. Details of the company's future Cold Lake development plans are discussed. The need to continue technology development, which has been at the core of the industry's growth in the past and will continue to be the key to the future, are emphasized

  19. Revitalizing a mature oil play: Strategies for finding and producing unrecovered oil in frio fluvial-deltaic sandstone reservoirs at South Texas. Annual report, October 1994--October 1995

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, M.; Knox, P.; McRae, L. [and others

    1996-02-01

    The Frio Fluvial-Deltaic Sandstone oil play of South Texas has produced nearly 1 billion barrels of oil, yet it still contains about 1.6 billion barrels of unrecovered mobile oil and nearly the same amount of residual oil resources. Interwell-scale geologic facise models of Frio Fluvial-deltaic reservoirs are being combined with engineering assessments and geophysical evaluations in order to determine the controls that these characteristics exert on the location and volume or unrecovered mobile and residual oil. Progress in the third year centered on technology transfer. An overview of project tasks is presented.

  20. Effect of sucrose and safflower oil preloads on short term appetite and food intake of young men.

    Science.gov (United States)

    Woodend, D M; Anderson, G H

    2001-12-01

    The effects of carbohydrate and fat on satiety have been examined primarily through meal composition studies. The purpose of this study was to compare the effects of pure sucrose and safflower oil, isovolumetric beverage preloads, on appetite (measured every 15 minutes by visual analogue scales) and food intake 60 minutes later. Young men consumed 0, 418, 836 and 1254 kJ of sucrose in the first two experiments and these same doses of safflower oil in the third. Finally, the largest doses of sucrose and safflower oil were compared. Sucrose, but not safflower oil, suppressed average appetite compared with control. In experiment 2, food intake was reduced (psafflower oil significantly suppressed food intake by 480 kJ in the third experiment. When the 1254 kJ doses were compared directly, sucrose suppressed food intake by 653 kJ compared with control where as safflower oil did not. It is concluded that, in the short-term, sucrose produces a dose dependent reduction in appetite and food intake that is greater than that produced by safflower oil.

  1. Impact on world oil prices when larger and fewer producers emerge from a political restructuring of the Middle East

    International Nuclear Information System (INIS)

    Wirl, F.

    1992-01-01

    We investigate how a redistribution of oil reserves among a (probably reduced) set of producers affects OPEC's oil extraction policies and thus international crude oil-prices. The empirical investigation shows that this impact is fairly small, as long as OPEC members do not cooperate. Only cooperation will have a substantial impact. (author)

  2. Injury Rates on New and Old Technology Oil and Gas Rigs Operated by the Largest United States Onshore Drilling Contractor

    Science.gov (United States)

    Blackley, David J.; Retzer, Kyla D.; Hubler, Warren G.; Hill, Ryan D.; Laney, A. Scott

    2015-01-01

    Background Occupational fatality rates among oil and gas extraction industry and specifically among drilling contractor workers are high compared to the U.S. all-industry average. There is scant literature focused on non-fatal injuries among drilling contractors, some of which have introduced engineering controls to improve rig efficiency and reduce injury risk. Methods We compared injury rates on new and old technology rigs operated by the largest U.S. drilling contractor during 2003–2012, stratifying by job type and grouping outcomes by injury severity and body part affected. Results Six hundred seventy-one injuries were recorded over 77.4 million person-hours. The rate on new rigs was 66% of that on old rigs. Roughnecks had lower injury rates on new rigs, largely through reduced limb injury rates. New rigs had lower rates in each non-fatal injury severity category. Conclusions For this company, new technology rigs appear to provide a safer environment for roughnecks. Future studies could include data from additional companies. PMID:25164118

  3. Injury rates on new and old technology oil and gas rigs operated by the largest United States onshore drilling contractor.

    Science.gov (United States)

    Blackley, David J; Retzer, Kyla D; Hubler, Warren G; Hill, Ryan D; Laney, A Scott

    2014-10-01

    Occupational fatality rates among oil and gas extraction industry and specifically among drilling contractor workers are high compared to the U.S. all-industry average. There is scant literature focused on non-fatal injuries among drilling contractors, some of which have introduced engineering controls to improve rig efficiency and reduce injury risk. We compared injury rates on new and old technology rigs operated by the largest U.S. drilling contractor during 2003-2012, stratifying by job type and grouping outcomes by injury severity and body part affected. Six hundred seventy-one injuries were recorded over 77.4 million person-hours. The rate on new rigs was 66% of that on old rigs. Roughnecks had lower injury rates on new rigs, largely through reduced limb injury rates. New rigs had lower rates in each non-fatal injury severity category. For this company, new technology rigs appear to provide a safer environment for roughnecks. Future studies could include data from additional companies. © 2014 Wiley Periodicals, Inc.

  4. Phase separation of bio-oil produced by co-pyrolysis of corn cobs and polypropylene

    Science.gov (United States)

    Supramono, D.; Julianto; Haqqyana; Setiadi, H.; Nasikin, M.

    2017-11-01

    In co-pyrolysis of biomass-plastics, bio-oil produced contains both oxygenated and non-oxygenated compounds. High oxygen composition is responsible for instability and low heating value of bio-oil and high acid content for corrosiveness. Aims of the present work are to evaluate possibilities of achieving phase separation between oxygenated and non-oxygenated compounds in bio-oil using a proposed stirred tank reactor and to achieve synergistic effects on bio-oil yield and non-oxygenated compound layer yield. Separation of bio-oil into two layers, i.e. that containing oxygenated compounds (polar phase) and non-oxygenated compounds (non-polar phase) is important to obtain pure non-polar phase ready for the next processing of hydrogenation and used directly as bio-fuel. There has been no research work on co-pyrolysis of biomass-plastic considering possibility of phase separation of bio-oil. The present work is proposing a stirred tank reactor for co-pyrolysis with nitrogen injection, which is capable of tailoring co-pyrolysis conditions leading to low viscosity and viscosity asymmetry, which induce phase separation between polar phase and non-polar phase. The proposed reactor is capable of generating synergistic effect on bio-oil and non-polar yields as the composition of PP in feed is more than 25% weight in which non-polar layers contain only alkanes, alkenes, cycloalkanes and cycloalkenes.

  5. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization

  6. Biodiesel Production from Rubber Seed Oil via Esterification Process

    Directory of Open Access Journals (Sweden)

    W Widayat

    2012-07-01

    Full Text Available One promise source of alternative energy is biodiesel from rubber seed oil, because the raw materials available in plentiful quantities and can be renewed. In addition, the rubber seed is still lack of utilization, and Indonesia is one of the largest rubbers producing country in the world. The objective of this research is to studied on biodiesel production by esterification process. Parameters used in this study are the ratio of catalyst and temperature and its influence on the characteristics of the resulting biodiesel product. Characterization of rubber seed include acid content number analysis, saponification numbers, density, viscosity, iodine number, type of free fatty acids and triglyceride oils. The results of analysis showed that rubber seed oil content obtained is 50.5%. The results of the GCMS analysis showed that a free fatty acid level in rubber seed is very high. Conversion into bio-diesel oil is obtained by at most 59.91% and lowest 48.24%.

  7. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

  8. Refinery Upgrading of Hydropyrolysis Oil From Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael [Gas Technology Inst., Des Plaines, IL (United States); Marker, Terry [Gas Technology Inst., Des Plaines, IL (United States); Ortiz-Toral, Pedro [Gas Technology Inst., Des Plaines, IL (United States); Linck, Martin [Gas Technology Inst., Des Plaines, IL (United States); Felix, Larry [Gas Technology Inst., Des Plaines, IL (United States); Wangerow, Jim [Gas Technology Inst., Des Plaines, IL (United States); Swanson, Dan [Gas Technology Inst., Des Plaines, IL (United States); McLeod, Celeste [CRI Catalyst, Houston, TX (United States); Del Paggio, Alan [CRI Catalyst, Houston, TX (United States); Urade, Vikrant [CRI Catalyst, Houston, TX (United States); Rao, Madhusudhan [CRI Catalyst, Houston, TX (United States); Narasimhan, Laxmi [CRI Catalyst, Houston, TX (United States); Gephart, John [Johnson Timber, Hayward, WI (United States); Starr, Jack [Cargill, Wayzata, MN (United States); Hahn, John [Cargill, Wayzata, MN (United States); Stover, Daniel [Cargill, Wayzata, MN (United States); Parrish, Martin [Valero, San Antonio, TX (United States); Maxey, Carl [Valero, San Antonio, TX (United States); Shonnard, David [MTU, Friedrichshafen (Germany); Handler, Robert [MTU, Friedrichshafen (Germany); Fan, Jiquig [MTU, Friedrichshafen (Germany)

    2015-08-31

    Cellulosic and woody biomass can be converted to bio-oils containing less than 10% oxygen by a hydropyrolysis process. Hydropyrolysis is the first step in Gas Technology Institute’s (GTI) integrated Hydropyrolysis and Hydroconversion IH2®. These intermediate bio-oils can then be converted to drop-in hydrocarbon fuels using existing refinery hydrotreating equipment to make hydrocarbon blending components, which are fully compatible with existing fuels. Alternatively, cellulosic or woody biomass can directly be converted into drop-in hydrocarbon fuels containing less than 0.4% oxygen using the IH2 process located adjacent to a refinery or ethanol production facility. Many US oil refineries are actually located near biomass resources and are a logical location for a biomass to transportation fuel conversion process. The goal of this project was to work directly with an oil refinery partner, to determine the most attractive route and location for conversion of biorenewables to drop in fuels in their refinery and ethanol production network. Valero Energy Company, through its subsidiaries, has 12 US oil refineries and 11 ethanol production facilities, making them an ideal partner for this analysis. Valero is also part of a 50- 50 joint venture with Darling Ingredients called Diamond Green Diesel. Diamond Green Diesel’s production capacity is approximately 11,000 barrels per day of renewable diesel. The plant is located adjacent to Valero’s St Charles, Louisiana Refinery and converts recycled animal fats, used cooking oil, and waste corn oil into renewable diesel. This is the largest renewable diesel plant in the U.S. and has successfully operated for over 2 years For this project, 25 liters of hydropyrolysis oil from wood and 25 liters of hydropyrolysis oils from corn stover were produced. The hydropyrolysis oil produced had 4-10% oxygen. Metallurgical testing of hydropyrolysis liquids was completed by Oak Ridge National Laboratories (Oak Ridge) and showed the

  9. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-05-01

    During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

  10. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  11. Oil and influence: the oil weapon examined

    Energy Technology Data Exchange (ETDEWEB)

    Maull, H

    1975-01-01

    The term ''oil weapon'' as used here signifies any manipulation of the price and/or supply of oil by exporting nations with the intention of changing the political behavior of the consumer nations. The political potential of the oil price is fairly restricted so, in effect, the supply interruptions are of prime concern. Manipulating price does, in principle, offer the possibilities of both conferring rewards and inflicting sanctions. Oil could be sold on preferential prices and terms. A precondition for using the oil weapon successfully would be the ability to cause real and serious damage to the consumer countries. Four damaging potentials for using the oil weapon could include its application by: (1) one producer against one consumer; (2) one producer against all consumers; (3) a group of producers against one consumer; and (4) by a group of producers against all consumers. It is concluded that the oil weapon will continue to be a force in the international system. (MCW)

  12. Synthesis of polyhydroxyalkanoate from palm oil and some new applications.

    Science.gov (United States)

    Sudesh, Kumar; Bhubalan, Kesaven; Chuah, Jo-Ann; Kek, Yik-Kang; Kamilah, Hanisah; Sridewi, Nanthini; Lee, Yan-Fen

    2011-03-01

    Polyhydroxyalkanoate (PHA) is a potential substitute for some petrochemical-based plastics. This biodegradable plastic is derived from microbial fermentation using various carbon substrates. Since carbon source has been identified as one of the major cost-absorbing factors in PHA production, cheap and renewable substrates are currently being investigated as substitutes for existing sugar-based feedstock. Plant oils have been found to result in high-yield PHA production. Malaysia, being the world's second largest producer of palm oil, is able to ensure continuous supply of palm oil products for sustainable PHA production. The biosynthesis and characterization of various types of PHA using palm oil products have been described in detail in this review. Besides, by-products and waste stream from palm oil industry have also demonstrated promising results as carbon sources for PHA biosynthesis. Some new applications in cosmetic and wastewater treatment show the diversity of PHA usage. With proper management practices and efficient milling processes, it may be possible to supply enough palm oil-based raw materials for human consumption and other biotechnological applications such as production of PHA in a sustainable manner.

  13. Assessment of the quality of bran and bran oil produced from some Egyptian rice varieties.

    Science.gov (United States)

    Salem, Eglal G; El Hissewy, Ahmed; Agamy, Neveen F; Abd El Barry, Doaa

    2014-04-01

    Rice (Oryza sativa L.) is one of the leading food crops of the world, the staple food of over half the world's population. The bran, which is an important byproduct obtained during rice milling, constitutes about 1/10 of the weight of the rice grain. Rice bran is the outer brown layer including the rice germ that is removed during the milling process of brown grain. This milling byproduct is reported to be high in natural vitamins and minerals, particularly vitamin E. The present study was conducted to determine the chemical composition of bran and bran oil of 13 different rice varieties commonly produced in Egypt, to study the utilization of rice bran in bread production, and to assess the quality and acceptance of the rice bran edible oil produced. Rice bran was produced from 13 Egyptian varieties of recently harvested rice as well as from paddy rice stored for 1 year. The extracted bran was immediately stabilized then subjected to chemical analysis (such as moisture content, protein, fat, carbohydrates, fiber, and ash) as well as trace and heavy metals determination (P, K, Na, Ca, Fe, Zn, Cu, and Mg). Bread was produced by adding Giza172 rice bran at three different concentrations to wheat flour then subjected to chemical analysis, caloric content, and organoleptic examination. Bran oil was extracted from the different varieties of rice bran (recently harvested and stored) then subjected to chemical and organoleptic examinations as well as vitamin E and oryzanol determination. The percentage of rice bran of newly harvested Egyptian rice was 11.68% and was 10.97% in stored rice. The analysis showed mean values of 5.91 and 5.53% for moisture, 14.60 and 14.40% for crude protein, 14.83 and 15.20% for fat, 44.77 and 45.40% for carbohydrates, 6.55 and 7.06% for crude fiber, and 8.87 and 8.50% for ash for newly harvested and stored rice bran, respectively. Bread containing 15% rice bran showed the highest score percentages for organoleptic quality compared with the

  14. IMAA (Integrated Measurements of Aerosol in Agri valley) campaign: Multi-instrumental observations at the largest European oil/gas pre-treatment plant area

    Science.gov (United States)

    Calvello, Mariarosaria; Caggiano, Rosa; Esposito, Francesco; Lettino, Antonio; Sabia, Serena; Summa, Vito; Pavese, Giulia

    2017-11-01

    A short-term intensive multi-instrumental measurement campaign (Integrated Measurements of Aerosol in Agri valley - IMAA) was carried out near the largest European oil and gas pre-treatment plant (Centro Olio Val d'Agri - COVA) in a populated area, where, so far, ample characterization of aerosol loading is missing. As such, between the 2 and 17 July in 2013, using a number of instruments analyses were carried out on physical, chemical, morphological and optical properties of aerosol at this distinctive site, at both ground and over the atmospheric column, including the investigation of the mixing and transformation of particles. The observation of slag silicates with a rough surface texture is consistent with the presence of oil-related activities which represent the only industrial activity in the area. Desulfurization/sulfur liquefaction processes occurring at COVA can explain the peculiar morphology of calcium-sodium-aluminum particles. The common COVA source was associated with high concentrations of sulfur, nickel and zinc, and with significant correlations between zinc-sulfur and zinc-nickel. The Optical Particle Sizer (OPS) data, hygroscopicity and optical properties of atmospheric aerosol are consistent with the typical oil-derived gaseous emissions (e.g. sulfur dioxide and methane) that strongly influence the mixing state of particles and their size distributions. Continuous combustion processes at COVA were found to be responsible for Equivalent Black Carbon (EBC) concentrations from their relevant contribution to the total number of fine particles. The expected significant contribution of WS (water soluble) and BC (Black Carbon) components to the total Aerosol Optical Depth (AOD) are consistent with the results from the radiometric model especially for July 3 and 16.

  15. Bluebell Field, Uinta Basin: reservoir characterization for improved well completion and oil recovery

    Science.gov (United States)

    Montgomery, S.L.; Morgan, C.D.

    1998-01-01

    Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine

  16. Purification of produced waters in oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Niyazov, R S; Baikov, U M

    1970-01-01

    Experience has shown that a single step water-conditioning process cannot be used to prepare Bashkirian produced waters for underground injection. In the single-step process, the water is passed through horizontal or vertical settling basins to remove solids. This system does not work when suspended solids increase above 200 to 500 mg/liter. The required quality of injection water can be obtained by filtering the water through sand at flow velocities of 5 to 10 m/hr. The filter has a sand layer 0.6 to 1 m thick, composed of 0.35 to 1.0 mm sand. Water entering the filters should not contain more than 100 to 150 mg/liter of oil products. The filters are backwashed at velocity of 10 to 15 m/hr and rates of 12 to 16 liters/sec sq m for 10 to 15 min. Clean water is used in backwashing. When surfactant is added to the backwash water, the filter cycle lasts longer.

  17. In-situ data collection for oil palm tree height determination using synthetic aperture radar

    Science.gov (United States)

    Pohl, C.; Loong, C. K.

    2016-04-01

    The oil palm is recognized as the “golden crop,” producing the highest oil yield among oil seed crops. Malaysia, the world's second largest producer of palm oil, has 16 per cent of its territory planted with oil palms. To cope with the increasing global demand on edible oil, additional areas of oil palm are forecast to increase globally by 12 to 19 million hectares by 2050. Due to the limited land bank in Malaysia, new strategies have to be developed to avoid unauthorized clearing of primary forest for the use of oil palm cultivation. Microwave remote sensing could play a part by providing relevant, timely and accurate information for a plantation monitoring system. The use of synthetic aperture radar (SAR) has the advantage of daylight- and weather-independence, a criterion that is very relevant in constantly cloud-covered tropical regions, such as Malaysia. Using interferometric SAR, (InSAR) topographical and tree height profiles of oil palm plantations can be created; such information is useful for mapping oil palm age profiles of the plantations in the country. This paper reports on the use of SAR and InSAR in a multisensory context to provide up-to-date information at plantation level. Remote sensing and in-situ data collection for tree height determination are described. Further research to be carried out over the next two years is outlined.

  18. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)

    2008-09-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)

  19. Oil sands market and transportation solutions

    International Nuclear Information System (INIS)

    Sandahl, R.

    2004-01-01

    This presentation outlined the immense potential of the western Canadian oil sands reserves. Recoverable reserves have been estimated at 180 billion barrels, with production forecasts estimated at 5 million barrels per day by 2030. Resource development is occurring at a time when the world's largest oil importer is increasing supplies through concern for security of supply. The second and third largest oil importers in the world are experiencing economic and energy demand growth. These factors underscore the motivation for rapid growth of the Western Canadian Oil Sands reserves. One of the challenges that must be addressed is to ensure that incremental markets for the increased production are accessed. Another challenge is to ensure adequate infrastructure in terms of pipeline capacity to ensure deliverability of the product. tabs., figs

  20. Air emissions assessment from offshore oil activities in Sonda de Campeche, Mexico.

    Science.gov (United States)

    Schifter, I; González-Macías, C; Miranda, A; López-Salinas, E

    2005-10-01

    Air emission data from offshore oil platforms, gas and oil processing installations and contribution of marine activities at the Sonda de Campeche, located at the Gulf of Mexico, were compiled and integrated to facilitate the study of long range transport of pollutants into the region. From this important region, roughly 76% of the total Mexican oil and gas production is obtained. It was estimated that the total air emissions of all contaminants are approximately 821,000 tons per year. Hydrocarbons are the largest pollutant emissions with 277,590 tons per year, generated during flaring activities, and SOx in second place with 185,907 tons per year. Marine and aviation activities contribute with less than 2% of total emissions. Mass of pollutants emitted per barrel of petroleum produced calculated in this work, are in the range reported by similar oil companies.

  1. Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis

    International Nuclear Information System (INIS)

    Kim, Tae-Seung; Oh, Shinyoung; Kim, Jae-Young; Choi, In-Gyu; Choi, Joon Weon

    2014-01-01

    Crude bio-oil produced from fast pyrolysis of yellow poplar wood was subjected to HDO (hydrodeoxygenation) for the purpose of reducing water content as well as increasing heating value. HDO was performed in an autoclave reactor at three different reaction factors: temperature (250–370 °C), reaction time (40–120 min), and Pd/C catalyst loading (0–6 wt%) under hydrogen atmosphere. After completion of HDO, gas, char, and two immiscible liquid products (light oil and heavy oil) were obtained. Liquid products were less acidic and contained less water than crude bio-oil. Water content of heavy oil was ranged between 0.4 wt% and 1.9 wt%. Heating values of heavy oil were estimated between 28.7 and 37.4 MJ/kg, which was about twice higher than that of crude bio-oil. Elemental analysis revealed that heavy oil had a lower O/C ratio (0.17–0.36) than crude bio-oil (0.71). H/C ratio of heavy oil decreased from 1.50 to 1.32 with an increase of temperature from 250 °C to 350 °C, respectively. - Highlights: • Bio-oil was subjected to hydrodeoxygenation with Pd/C catalyst in supercritical ethanol. • Gas, char and two immiscible liquids (light/heavy oil) were obtained as final products. • Ethanol addition reduced the char formation during hydrodeoxygenation. • The heavy oil was characteristic to less acidic and less water content than bio-oil. • Higher heating value of the heavy oil was measured to 28.7–37.4 MJ/kg

  2. Environmentalism in the Periphery: Institutional Embeddedness and Deforestation among Fifteen Palm Oil Producers, 1990 – 2012

    Directory of Open Access Journals (Sweden)

    Kent Henderson

    2017-08-01

    Full Text Available Environmental sociologists highlight the exploitative nature of the global capitalist economy where resource extraction from nations in the periphery tends to disproportionately benefit those of the core. From the Brazilian Amazon to mineral-rich Sub-Saharan Africa, the practice of “unequal ecological exchange” persists. Simultaneously, a “global environmental regime” has coalesced as a prominent feature of the contemporary world system. In the post-World War II era, legitimate nation-states must take steps to protect the natural environment and prevent its degradation even at their own economic expense. Stronger national ties to global institutions, particularly international nongovernmental organizations (INGOs consistently yield more positive environmental outcomes. However, previous work suggests that normative expectations for improved environmental practice will be weak or nonexistent in the periphery. We use the case of palm oil production and its relationship to deforestation to provide a more nuanced analysis of the relationship between material and institutional forces in the periphery. Using unbalanced panels of fifteen palm oil producing countries from 1990 to 2012, we find that stronger national ties to world society via citizen memberships in INGOs result in greater primary forest area among palm oil producers. However, this effect is strongest where production is lowest and weakens as production increases. Even in the cases of Indonesia and Malaysia, where palm oil production is substantially higher than any other producer, ties to global institutions are significantly related to reduced forest loss. These results indicate the variable importance of national embeddedness into global institutions within the periphery of the world system.

  3. New bioemulsifiers produced by Candida lipolytica using D-glucose and babassu oil as carbon sources

    Directory of Open Access Journals (Sweden)

    Vance-Harrop Mabel H.

    2003-01-01

    Full Text Available Candida lipolytica IA 1055 produced extracellular biosurfactants with emulsification activity by fermentation using babassu oil and D-glucose as carbon sources. Natural seawater diluted at 50% supplemented with urea, ammonium sulfate, and phosphate was used as economic basal medium. The best results were achieved with the YSW-B2 medium, which contained urea, ammonium sulfate, and babassu oil and with YSW-B3 medium, which contained urea, ammonium sulfate, phosphate, and babassu oil, kept under fed batch fermentation for 60 hours with 5% of babassu oil. For the two media, the maximum specific growth rates were 0.02 h-1 and 0.04 h-1; the generation times were 34.6 h-1 and 17.3 h-1, and the emulsification activities were 0.666 and 0.158 units, respectively. The molecules of these new bioemulsifiers were contituted of carbohydrates, proteins and lipids.

  4. Environmental Impact Assessment Process for Oil, Gas and Mining Projects in Nigeria: A Critical Analysis

    Directory of Open Access Journals (Sweden)

    Allan Ingelson and Chilenye Nwapi

    2014-06-01

    Full Text Available Oil and gas development projects are well known to have damaging environmental effects, and that is especially true in the Niger Delta region. Since the enactment of the Environmental Impact Assessment Act in Nigeria in 1992, there has been a general perception that EIAs are seldom carried out in the region. This article presents a critical analysis of legislation and practice concerning the environmental impact assessment (EIA process for oil and gas projects in Nigeria, the world’s twelfth largest producer of crude oil. It discusses a range of reasons why the impacts of oil and gas projects are not being managed well, despite the legal requirements for EIAs. A review of Nigeria’s environmental governance is presented along with a comprehensive discussion of the EIA process and its significant deficiencies. We argue that the EIA system for oil and gas projects in Nigeria reflects tokenism, resulting in the concentration of benefits of developments in big corporations and government officials. The EIA process in Nigeria faces many challenges that must be addressed in order to improve its effectiveness and alleviate the environmental burdens on this rich oil-producing region.

  5. Shell's Big Dirty Secret. Insight into the world's most carbon intensive oil company and the legacy of CEO Jeroen van der Veer

    International Nuclear Information System (INIS)

    Stockman, L.; Rowell, A.; Kretzmann, S.

    2009-06-01

    Royal Dutch Shell plc is the largest oil operator in Nigeria, and holds more acreage in Canada's oil sands than any other corporation. Because of these facts, and several others, Shell is also the most carbon intensive oil company in the world. In short, for every barrel of oil it produces in the future, Shell will contribute more to global warming than any other oil company. This report documents Shell's record investment in dirty forms of energy, and it illuminates the corporate strategy and lobbying for regulations that indicate it intends to profit from that position for a long time to come (authors' abstract)

  6. 78 FR 22202 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Salable...

    Science.gov (United States)

    2013-04-15

    ... is produced outside of the U.S., with China and India being the largest global competitors of... entities, the volume control feature of this order has small entity orientation. This proposed rule would...

  7. 76 FR 33969 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Revision of...

    Science.gov (United States)

    2011-06-10

    ... the allotment percentage from 43 percent to 50 percent. This change is expected to balance the supply... cultural practice in the production of spearmint oil for weed, insect, and disease control. To remain... farms fall into the SBA category of large businesses. Small spearmint oil producers generally are not as...

  8. Radioactive contamination of oil produced from nuclear-broken shale

    International Nuclear Information System (INIS)

    Arnold, W.D.; Crouse, D.J.

    1970-01-01

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  9. Radioactive contamination of oil produced from nuclear-broken shale

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W D; Crouse, D J

    1970-05-15

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  10. Determination And Characteristic Oil Biomarker Of Illegal Crude Oil Production Using Mass Spectroscopy in Musi Banyuasin District

    Directory of Open Access Journals (Sweden)

    Edhi suryanto

    2018-03-01

    Full Text Available South Sumatra is one of the largest petroleum producing provinces in Indonesia, especially in the region of Musi Banyuasin Petroleum resources other than legally cultivated by Pertamina as government representatives, but on the other hand the community also participate through Illegal Drilling activities. This study aims to determine the hydrocarbon content and characterization of petroleum produced illegally by communities in the Sangadesa, Babattoman and Keluang districts through the biomarker analysis of the distribution of n-Alkane C10-C34 (m/z: 57, pristane, phytane, sterane C27-C29 (m/z: 217,218,259 and specific biomarker using Gas Chromatography Mass Spectroscopy agilent GCMSD 6890/5973i with data analysis using MSD Chemstation F.01.01.2317 and Library Database NIST14. Petroleum samples taken from 10 illegal wells with a depth range of 80-250 meters and production period of 3 months until 3 years. Oil is produced through The illegal drilling is not the main oil source rock but the result of migration. Biomarkers Hydrocarbon analysis is one of the most widely used devices for exploration geochemistry, exploitation, production and forensic environment in the assessment and determination of sources of pollution related to petroleum material and derivatives very well.

  11. Isolation and characterization of a biosurfactant-producing Fusarium sp. BS-8 from oil contaminated soil.

    Science.gov (United States)

    Qazi, Muneer A; Kanwal, Tayyaba; Jadoon, Muniba; Ahmed, Safia; Fatima, Nighat

    2014-01-01

    This study reports characterization of a biosurfactant-producing fungal isolate from oil contaminated soil of Missa Keswal oil field, Pakistan. It was identified as Fusarium sp. BS-8 on the basis of macroscopic and microscopic morphology, and 18S rDNA gene sequence homology. The biosurfactant-producing capability of the fungal isolates was screened using oil displacement activity, emulsification index assay, and surface tension (SFT) measurement. The optimization of operational parameters and culture conditions resulted in maximum biosurfactant production using 9% (v/v) inoculum at 30°C, pH 7.0, using sucrose and yeast extract, as carbon and nitrogen sources, respectively. A C:N ratio of 0.9:0.1 (w/w) was found to be optimum for growth and biosurfactant production. At optimal conditions, it attained lowest SFT (i.e., 32 mN m(-1) ) with a critical micelle concentration of ≥ 1.2 mg mL(-1) . During 5 L shake flask fermentation experiments, the biosurfactant productivity was 1.21 g L(-1) pure biosurfactant having significant emulsifying index (E24 , 70%) and oil-displacing activity (16 mm). Thin layer chromatography and Fourier transform infrared spectrometric analyses indicated a lipopeptide type of the biosurfactant. The Fusarium sp. BS-8 has substantial potential of biosurfactant production, yet it needs to be fully characterized with possibility of relatively new class of biosurfactants. © 2014 American Institute of Chemical Engineers.

  12. ISOLATION AND IDENTIFICATION OF LIPASE-PRODUCING FUNGI FROM LOCAL OLIVE OIL MANUFACTURE IN EAST OF ALGERIA

    Directory of Open Access Journals (Sweden)

    ALIMA RIHANI

    2018-03-01

    Full Text Available The main objective of this work was primary screening and isolation of lipase-producing microorganisms from oil-mill waste. For the screening of fungal strains with lipolytic activity, we employed a sensitive agar plate method, using a medium supplemented with CaCl2 and Tween 80. Another Tributyrin lipase activity was detected from clearing zones due to the hydrolysis of the triacylglycerols. The evolution of biomass and enzyme production has been assayed. A quantitative analysis of lipase activity was performed by the titration method using olive oil as a substrate supplemented with glucose or Tween 80. We have isolated some lipolytic strains from oil-mill effluent. Three of them were found to be excellent lipase producers that were identified as Penicillium sp, Aspergillus fumigatus and Aspergillus terreus. Lipolytic activity and biomass were enhanced in the medium supplemented by glucose. Tween 80 is also considered as a best inducer at the concentration of 1 %. In this condition, these isolates showed maximum lipase production within 24 h; achieved (3.91 IU‧mL-1 ± 0.12 for Penicillium sp.

  13. Radioactivity in produced water from Norwegian oil and gas installations - concentrations, bioavailability and doses to marine biota

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, R.; Eriksen, D. Oe.; Straalberg, E.; Iden, K. I.; Rye, H.; Hylland, K.; Ruus, A.; Roeyset, O.; Berntssen, M. H. G.

    2006-03-15

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226Ra and 228Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. Preliminary results indicate that presence of added chemicals such as scale inhibitors in the produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bio-availability of radium (and barium) may be larger than anticipated. Also, the bio-availability of radium may be increased due to presence of such chemicals, and this is presently being studied. (author) (tk)

  14. Comparison of Chemical and Enzymatic Interesterification of Fully Hydrogenated Soybean Oil and Walnut Oil to Produce a Fat Base with Adequate Nutritional and Physical Characteristics

    Directory of Open Access Journals (Sweden)

    Mariel Farfán

    2015-01-01

    Full Text Available The optimal physical, chemical and nutritional properties of natural lipids depend on the structure and composition of triacylglycerols. However, they are not always mutually compatible. Lipid modification is a good way to give them specific functionalities, increase their oxidative stability, or improve their nutritional value. As such, chemical and enzymatic interesterification may be used to modify them and produce structured lipids. In accordance, the aim of this study is to compare chemical and enzymatic interesterifi cation of binary blends of fully hydrogenated soybean oil and walnut oil, using sodium methoxide or Lipozyme TL IM, respectively, to produce a fat base with adequate nutritional and physical characteristics. Three different mass ratios of fully hydrogenated soybean oil and walnut oil blends (20:80, 40:60 and 60:40 were interesterified and evaluated. Total interesterification was determined by the stabilization of the solid fat content. Chemical reaction of the 20:80 blend was completed in 10 min and of the 40:60 and 60:40 blends in 15 min. Enzymatically interesterified blends were stabilized in 120 min at all of the mass ratios. Complete interesterification significantly reduced the solid fat content of the blends at any composition. Chemical and enzymatically interesterified fully hydrogenated blend of soybean and walnut oil at mass ratio of 40:60 showed the plastic curve of an all-purpose-type shortening rich in polyunsaturated fatty acids, with a high linolenic acid (C18:3n3 content and with zero trans-fatty acids.

  15. Efficient way of importing crude oil from oil producing countries - A review on diversification policy of crude oil import

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dal Sok [Korea Energy Economics Institute, Euiwang (Korea)

    1999-03-01

    Since the second oil crisis, the government has operated the import diversification support program to reduce the risk of crude oil import from Middle-East region and to raise the ability of dealing with the risk. This study tried to seek policy trends in future through reviewing the market environment related to the crude oil import diversification policy and the goal, instrument and effect of the policy. The supply and demand of crude oil and the price are influenced by market system in the world oil market and there are various types of crude oil trading available to both sellers and buyers. There is a probability that the suspension of supply in a certain area could be led to the price issue rather than the physical use of crude oil. In addition, the advantage of price with long-term contract of crude oil was abolished since the price of crude oil imported by term contract has been linked to spot prices. As a result, it is shown that the potential benefit from crude oil import diversification policy is reduced although political and social insecurity still exists in Middle-East region. Therefore, it is desirable to maintain the existing support program until the amount of stored oil reaches the optimum level and to help private enterprises determine the import considering economical efficiency and risk. (author). 36 refs., 5 figs., 23 tabs.

  16. The instability of world oil market and its impact on economic development: Indonesia's experience

    International Nuclear Information System (INIS)

    Patmosukismo, S.

    1991-01-01

    The world oil market has been characterized by fluctuating prices which have a direct impact on the world economy. If the world oil price rises in real terms, upstream activities become more attractive to producers, and if the price declines, downstream opportunities become more attractive. The world oil market is currently determined not only by producers and consumers, but also by the futures trade. In addition, the elasticity of oil prices has increased since the 1970s through competition among producers and competition from other energy sources. The Asia Pacific countries are experiencing rapid economic growth, and are thus heavily dependent on oil, but generally have small reserves. Their reserves/production ratio is ca 20 years, with a major share coming from China and Indonesia. The current situation of tight and inadequate supply may increase the region's dependence on Middle East sources. The effects of the three recent major oil crises on the Asia Pacific countries are reviewed and the role of oil and gas in Indonesia's economic development is described. Export earnings from oil and gas represent a major share of total Indonesian export revenues, and taxes and receipts from oil companies continue to be the largest receipts in Indonesian government revenues. Slow changes in the primary fuel mix and high growth in domestic consumption may turn Indonesia into a net oil importer before the year 2000. A major effort to decrease domestic oil consumption has been implemented by using natural gas and coal in the power generation sector. On the supply side, recoverable oil and gas reserves of 50 billion bbl and 200 trillion ft 3 respectively may be present but their development depends on the investment scheme of the continuing exploration program

  17. Optimal gasoline tax in developing, oil-producing countries: The case of Mexico

    International Nuclear Information System (INIS)

    Antón-Sarabia, Arturo; Hernández-Trillo, Fausto

    2014-01-01

    This paper uses the methodology of Parry and Small (2005) to estimate the optimal gasoline tax for a less-developed oil-producing country. The relevance of the estimation relies on the differences between less-developed countries (LDCs) and industrial countries. We argue that lawless roads, general subsidies on gasoline, poor mass transportation systems, older vehicle fleets and unregulated city growth make the tax rates in LDCs differ substantially from the rates in the developed world. We find that the optimal gasoline tax is $1.90 per gallon at 2011 prices and show that the estimate differences are in line with the factors hypothesized. In contrast to the existing literature on industrial countries, we show that the relative gasoline tax incidence may be progressive in Mexico and, more generally, in LDCs. - Highlights: • We estimate the optimal gasoline tax for a typical less-developed, oil-producing country like Mexico. • The relevance of the estimation relies on the differences between less-developed and industrial countries. • The optimal gasoline tax is $1.90 per gallon at 2011 prices. • Distance-related pollution damages, accident costs and gas subsidies account for the major differences. • Gasoline tax incidence may be progressive in less developed countries

  18. Produced water volumes and management practices in the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E.; Veil, J. A. (Environmental Science Division)

    2009-09-01

    Produced water volume generation and management in the United States are not well characterized at a national level. The U.S. Department of Energy (DOE) asked Argonne National Laboratory to compile data on produced water associated with oil and gas production to better understand the production volumes and management of this water. The purpose of this report is to improve understanding of produced water by providing detailed information on the volume of produced water generated in the United States and the ways in which produced water is disposed or reused. As the demand for fresh water resources increases, with no concomitant increase in surface or ground water supplies, alternate water sources, like produced water, may play an important role. Produced water is water from underground formations that is brought to the surface during oil or gas production. Because the water has been in contact with hydrocarbon-bearing formations, it contains some of the chemical characteristics of the formations and the hydrocarbons. It may include water from the reservoir, water previously injected into the formation, and any chemicals added during the production processes. The physical and chemical properties of produced water vary considerably depending on the geographic location of the field, the geologic formation, and the type of hydrocarbon product being produced. Produced water properties and volume also vary throughout the lifetime of a reservoir. Produced water is the largest volume by-product or waste stream associated with oil and gas exploration and production. Previous national produced water volume estimates are in the range of 15 to 20 billion barrels (bbl; 1 bbl = 42 U.S. gallons) generated each year in the United States (API 1988, 2000; Veil et al. 2004). However, the details on generation and management of produced water are not well understood on a national scale. Argonne National Laboratory developed detailed national-level information on the volume of produced

  19. Venezuela: World Oil Report 1991

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This paper reports on Venezuela's expansion by state oil company PDVSA has gone from a mere concept a year ago to a well-defined plan. The five-year project that began this year and runs through 1995 received a $4-billion upgrading last fall to $25 billion. Money will be spent in increments of $5 billion/year, and all sectors are involved. Largest share, about $10.5 billion, will go to upstream projects, with $6 billion to be invested in refining, $6 billion in petrochemicals, $1.5 billion in coal and $800 million in domestic marketing. PDVSA intends to finance most of the spending directly from its cash flow. The upstream spending will go toward boosting oil production to more than 3.6 MMbpd by the beginning of 1996, with capacity topping at 4.2 MMbopd. Such heavy spending should prove a boon to the Venezuelan economy. The oil industry constitutes 23% of Venezuela's GNP, accounts for 75% of governmental revenues and produces 70% of the nation's annual foreign exchange earnings. The Ministry of Planning already is forecasting a 7% leap in real growth of the GNP this year

  20. Oil and Gas Emergency Policy: India 2007 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    With almost 1.1 billion inhabitants, India is the second most populous country in the world and the seventh-largest country by geographical area. In 2005, India’s GDP was about USD 644 billion. In terms of purchasing power parity (PPP)21, GDP stood at USD 3 362 which makes it the fourth-largest economy in the world (after the United States, China and Japan). Per capita income in PPP terms is around USD 3 582, about one-tenth of the OECD average. GDP growth in 2005 was 9.2%. India has about 5.6 billion barrels of proven oil reserves (January 2007). The combination of rising oil consumption and fairly stable production levels leaves India increasingly dependent on imports to meet consumption needs; most of these imports are coming from the Middle East. In 2006, the country produced an average of 792 kb/d of total oil liquids, of which 87% (687 kb/d) was crude oil. During 2006, India’s demand for oil reached 2.64 mb/d. In 2004, India decided to build a strategic petroleum reserve (SPR) in a phased manner. The work on the first phase started in 2007, with invitations for tender for the construction of rock caverns with a capacity of some 37 mb (5 Mt), which equates to 20 days of net imports or 15 days of consumption in 2005. The work is planned to be fi nished in 2010, after which the rock caverns will begin to be filled. A second phase is projected (but not yet scheduled), which would expand the storage capacity to 45 days of consumption (roughly 110 mb or 15 Mt). The Integrated Energy Policy of 2006 states that the effectiveness of the reserves can be increased through co-operative operation with the reserves of other countries, such as IEA member countries.

  1. The role of Mexico in the first oil shortage: 1918-1922, an international perspective

    OpenAIRE

    M. del Mar Rubio Varas

    2005-01-01

    In 1921 Mexico produced a quarter of world’s petroleum, making the country the second largest producer in the world, but by 1930 it only accounted for 3 per cent of world’s production. To date the discussion has mostly relied on events taking place in Mexico for explaining the decline of the industry. Very little attention has been placed to developments in petroleum industry elsewhere, except Venezuela. Practically no attention has been paid to the reasons for the rise of oil output in Mexic...

  2. Noteworthy: oil markets: Saudis abandon WTI price as benchmark

    OpenAIRE

    Jackson Thies

    2010-01-01

    Saudi Arabia's state-owned oil company no longer uses West Texas Intermediate (WTI) crude oil as its pricing benchmark. Saudi Aramco, the third largest U.S. oil supplier, switched to the Argus Sour Crude Index (ASCI) in January.

  3. A cost-benefit analysis of produced water management opportunities in selected unconventional oil and gas plays

    Science.gov (United States)

    Marsters, P.; Macknick, J.; Bazilian, M.; Newmark, R. L.

    2013-12-01

    Unconventional oil and gas production in North America has grown enormously over the past decade. The combination of horizontal drilling and hydraulic fracturing has made production from shale and other unconventional resources economically attractive for oil and gas operators, but has also resulted in concerns over potential water use and pollution issues. Hydraulic fracturing operations must manage large volumes of water on both the front end as well as the back end of operations, as significant amounts of water are coproduced with hydrocarbons. This water--often called flowback or produced water--can contain chemicals from the hydraulic fracturing fluid, salts dissolved from the source rock, various minerals, volatile organic chemicals, and radioactive constituents, all of which pose potential management, safety, and public health issues. While the long-term effects of hydraulic fracturing on aquifers, drinking water supplies, and surface water resources are still being assessed, the immediate impacts of produced water on local infrastructure and water supplies are readily evident. Produced water management options are often limited to underground injection, disposal at centralized treatment facilities, or recycling for future hydraulic fracturing operations. The costs of treatment, transport, and recycling are heavily dependent on local regulations, existing infrastructure, and technologies utilized. Produced water treatment costs also change over time during energy production as the quality of the produced water often changes. To date there is no publicly available model that evaluates the cost tradeoffs associated with different produced water management techniques in different regions. This study addresses that gap by characterizing the volume, qualities, and temporal dynamics of produced water in several unconventional oil and gas plays; evaluating potential produced water management options, including reuse and recycling; and assessing how hydraulic

  4. Isolation of lipase producing fungi from palm oil Mill effluent (POME dump sites at Nsukka

    Directory of Open Access Journals (Sweden)

    Charles Ogugua Nwuche

    2011-02-01

    Full Text Available In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42% and was present in all the samples assayed. Mucor sp. was the least encountered (8.3%.The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL and Aspergillus (6.25 -7.54 u/mL spp. were the highest lipase producers while Mucor (5.72 u/mL was the least.

  5. Oil from coal: just not worth it, say NCB

    Energy Technology Data Exchange (ETDEWEB)

    Grainger, L

    1970-01-01

    The creation of new markets by making oil fuels from coal in Britain is unresolved at this time. The dominant factor in the economics is the price ratio between coal and oil, which in Britain is 3 times less favorable than in the U.S. Current conversion results in a price more than double that of natural oil; however, the National Coal Board (NCB) continues to assess oil-from-coal processes. A sound research background in the new field of coal derivatives from solvent processing is being developed to produce materials of higher specific value than fuels. A continuous pilot plant is being built to prepare coke from filtered coal solution on the scale of a half-a-ton per week. Future prospects of the industry lie in areas where markets for coal will diminish, such as metallurgical coke. The fate of the coal industry will depend more and more on its largest market-electricity generation. In order to compete with nuclear power, the NCB is developing a new system of fluidized combustion.

  6. Well-to-refinery emissions and net-energy analysis of China's crude-oil supply

    Science.gov (United States)

    Masnadi, Mohammad S.; El-Houjeiri, Hassan M.; Schunack, Dominik; Li, Yunpo; Roberts, Samori O.; Przesmitzki, Steven; Brandt, Adam R.; Wang, Michael

    2018-03-01

    Oil is China's second-largest energy source, so it is essential to understand the country's greenhouse gas emissions from crude-oil production. Chinese crude supply is sourced from numerous major global petroleum producers. Here, we use a per-barrel well-to-refinery life-cycle analysis model with data derived from hundreds of public and commercial sources to model the Chinese crude mix and the upstream carbon intensities and energetic productivity of China's crude supply. We generate a carbon-denominated supply curve representing Chinese crude-oil supply from 146 oilfields in 20 countries. The selected fields are estimated to emit between 1.5 and 46.9 g CO2eq MJ-1 of oil, with volume-weighted average emissions of 8.4 g CO2eq MJ-1. These estimates are higher than some existing databases, illustrating the importance of bottom-up models to support life-cycle analysis databases. This study provides quantitative insight into China's energy policy and the economic and environmental implications of China's oil consumption.

  7. Shale-oil-derived additives for fuel oils

    International Nuclear Information System (INIS)

    Raidma, E.; Leetsman, L.; Muoni, R.; Soone, Y.; Zhiryakov, Y.

    2002-01-01

    Studies have shown that the oxidation, wearing, and anticorrosive properties of shale oil as an additive to liquid fuels and oils enable to improve the conditions of their use. Studies conducted by Institute of Oil Shale have shown that it is possible, on the basis of shale oil produced by Viru Keemia Grupp AS (Viru Chemistry Group Ltd.) and, particularly, on the basis of its fractions 230-320 and 320-360 deg C to produce efficient and stable additives for liquid fuels to improve their combustion and storage properties. In the production of additives from shale oil the prerequisite taken into account is its complexity of composition and high concentration of neutral and phenolic oxygen compounds. Additives produced from shale oil have multifunctional properties which enable to improve operational data of liquid fuels and to increase the power of diesel engines and boilers. (author)

  8. Aqueous Extract Composition of Spent Ginger (Zingiber officinale var. Amarum) from Essential Oil Distillation

    Science.gov (United States)

    Manuhara, G. J.; Mentari, G. P.; Khasanah, L. U.; Utami, R.

    2018-03-01

    Ginger (Zingiber officinale var Amarum) is widely used as raw material for essential oil production in Indonesia and contain high functional compounds. After producing essential oil, distillation leave less valuable spent ginger. This research was conducted to determine the bioactive compounds remained in aqueous extract of the spent ginger. The extracts were produced at various combination of temperature (55, 75, 95°C) and duration (15, 30, 45 minutes). The extract composition was observed using Gas Chromatography - Mass Spectrometry analysis. The temperature and time of maceration extraction affected the content of compounds in spent ginger aqueous extracts. The extracts contained four largest components of α-curcumene, α-zingiberene, β-sesquiphellandrene and β-bisabolene. The aqueous extracts from spent ginger contained the compounds which may contribute to distinctive flavor of ginger and also bioactive function.

  9. Characterization and Performance Test of Palm Oil Based Bio-Fuel Produced Via Ni/Zeolite-Catalyzed Cracking Process

    Directory of Open Access Journals (Sweden)

    Sri Kadarwati

    2015-02-01

    Full Text Available Catalytic cracking process of palm oil into bio-fuel using Ni/zeolite catalysts (2-10% wt. Ni at various reaction temperatures (400-500oC in a flow-fixed bed reactor system has been carried out. Palm oil was pre-treated to produce methyl ester of palm oil as feedstock in the catalytic cracking reactions. The Ni/zeolite catalysts were prepared by wetness impregnation method using Ni(NO32.6H2O as the precursor. The products were collected and analysed using GC, GC-MS, and calorimeter. The effects of process temperatures and Ni content in Ni/zeolite have been studied. The results showed that Ni-2/zeolite could give a yield of 99.0% at 500oC but only produced gasoline fraction of 18.35%. The physical properties of bio-fuel produced in this condition in terms of density, viscosity, flash point, and specific gravity were less than but similar to commercial fuel. The results of performance test in a 4-strike engine showed that the mixture of commercial gasoline (petrol and bio-fuel with a ratio of 9:1 gave similar performance to fossil-based gasoline with much lower CO and O2 emissions and more efficient combustion

  10. Support of enhanced oil recovery to independent producers in Texas. Quarterly technical progress report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Fotouh, K.H.

    1995-09-30

    The main objective of this project is to support independent oil producers in Texas and to improve the productivity of marginal wells utilizing enhanced oil recovery techniques. The main task carried out this quarter was the generation of an electronic data base.

  11. SAGD pilot project, wells MFB-772 (producer) / MFB-773 (injector), U1,3 MFB-53 reservoir, Bare Field. Orinoco oil belt. Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Mago, R.; Franco, L.; Armas, F.; Vasquez, R.; Rodriguez, J.; Gil, E. [PDVSA EandP (Venezuela)

    2011-07-01

    In heavy oil and extra heavy oil fields, steam assisted gravity drainage is a thermal recovery method used to reduce oil viscosity and thus increase oil recovery. For SAGD to be successfully applied in deep reservoirs, drilling and completion of the producer and injector wells are critical. Petroleos de Venezuela SA (PDVSA) is currently assessing the feasibility of SAGD in the Orinoco oil belt in Venezuela and this paper aims at presenting the methodology used to ensure optimal drilling and completion of the project. This method was divided in several stages: planning, drilling and completion of the producer, injector and then of the observer wells and cold information capture. It was found that the use of magnetic guidance tools, injection pipe pre-insulated and pressure and temperature sensors helps optimize the drilling and completion process. A methodology was presented to standardize operational procedures in the drilling and completion of SAGD projects in the Orinoco oil belt.

  12. Bridging the Gap between Chemical Flooding and Independent Oil Producers

    Energy Technology Data Exchange (ETDEWEB)

    Stan McCool; Tony Walton; Paul Whillhite; Mark Ballard; Miguel Rondon; Kaixu Song; Zhijun Liu; Shahab Ahmed; Peter Senior

    2012-03-31

    Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increased with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.

  13. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  14. Investigation of bio-oil produced by hydrothermal liquefaction of food waste using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Kostyukevich, Yury; Vlaskin, Mikhail; Borisova, Ludmila; Zherebker, Alexander; Perminova, Irina; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2018-02-01

    Recent research has revealed that more than 1.3 billion tons of food is wasted globally every year. The disposal of such huge biomass has become a challenge. In the present paper, we report the production of the bio-oil by hydrothermal liquefaction of three classes of food waste: meat, cheese and fruits. The highest yield of the bio-oil was observed for meat (∼60%) and cheese (∼75%), while for fruits, it was considerably low (∼10%). The molecular composition of the obtained bio-oil was investigated using ultrahigh resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry and was found to be similar to that obtained from algae. Several thousand heteroatom compounds (N, N 2 , ON 2 , etc. classes) were reliably identified from each sample. It was found that bio-oils produced from meat and cheese have many compounds (∼90%) with common molecular formulas, while bio-oil produced from fruits differs considerably (∼30% of compounds are unique).

  15. Performance Comparison Between Support Vector Regression and Artificial Neural Network for Prediction of Oil Palm Production

    Directory of Open Access Journals (Sweden)

    Mustakim Mustakim

    2016-02-01

    Full Text Available The largest region that produces oil palm in Indonesia has an important role in improving the welfare of society and economy. Oil palm has increased significantly in Riau Province in every period, to determine the production development for the next few years with the functions and benefits of oil palm carried prediction production results that were seen from time series data last 8 years (2005-2013. In its prediction implementation, it was done by comparing the performance of Support Vector Regression (SVR method and Artificial Neural Network (ANN. From the experiment, SVR produced the best model compared with ANN. It is indicated by the correlation coefficient of 95% and 6% for MSE in the kernel Radial Basis Function (RBF, whereas ANN produced only 74% for R2 and 9% for MSE on the 8th experiment with hiden neuron 20 and learning rate 0,1. SVR model generates predictions for next 3 years which increased between 3% - 6% from actual data and RBF model predictions.

  16. Do high oil prices justify an increase in taxation in a mature oil province? The case of the UK continental shelf

    International Nuclear Information System (INIS)

    Nakhle, Carole

    2007-01-01

    In response to the structural shift in oil price coupled with greater import dependency, concerns about security of supply have once again emerged as a major policy issue. The UK, the largest producer of oil and natural gas in the European Union, became a net importer of natural gas in 2004, and according to Government estimates will become a net importer of oil by the end of the decade. A weakened North Sea performance means extra reliance, both for the UK and Europe as a whole, on global oil and gas network and imports. In 2002, the UK Government introduced a 10% supplementary charge and in 2005, doubled the charge to 20% in an attempt to capture more revenues from the oil industry as a result of the increase in the price of crude oil. However, higher tax rates do not necessarily generate higher fiscal revenue and in the long term may result in materially lower revenues if investment is discouraged as indeed occurred when the 2007 UK Annual Budget statement showed a shortfall in North Sea oil revenues below forecasts of Pounds 4 billion. It is therefore argued that the increase in the fiscal take came at the wrong time for the UK Continental Shelf and that the UK Government's concern should have been to encourage more oil production from its declining province, especially in the light of the rising concern surrounding the security of supply

  17. Russian crude-oil production and export still increasing

    International Nuclear Information System (INIS)

    Purho, P.

    2001-01-01

    Russian crude-oil production is still increasing. In 2000 the annual production 6.48 mb/d was about 6% higher than a year before. In 2001 the production is expected to rise near the level 7 mb/d, so the increase in production volume is fast. However, the production is still far away from the maximum level of the former Soviet Union, 12 mb/d. At the moment Russia is the second largest oil producer right after Saudi Arabia. The increase in production is based on intensified use of old oil fields caused by improved technology. The oil export of Russia far abroad in 2000 was 2.5 mb/d and near abroad into FSU countries only about 180 000 b/d. The recent export of crude-oil has been near the maximum export capacity corresponding to 2.7 mb/d. About 61 million tons of oil products were exported in 2000, and even the export of oil products is increasing. Most of this was gas oil and heavy fuel oil, but also the export of gasoline was significant. The export of oil and oil products is mainly based on shipments, but also the share of train transport is high. Nearly all the crude oil is transported west either by ships or via pipelines. The share of railway transport is only few percents. Russia will continue its own oil pumping policy despite of the appeals of OPEC for reduction of oil production. Opinion in Russia is that if the increase of production and export serves the interests of Russia, it will also be carried out. The target value for crude oil for 2002 is 22 USD per barrel. The Russian crude oil production is estimated to grow up to 7.4 - 8.4 mb/d by the year 2010

  18. Physico-chemical characteristics of oil produced from seeds of some date palm cultivars (Phoenix dactylifera L.) .

    Science.gov (United States)

    Soliman, S S; Al-Obeed, R S; Ahmed, T A

    2015-03-01

    The oil content of saturated and unsaturated fatty acids with some physico-chemical properties and nutrients were investigated in oil produced from seeds of six important date palm cultivars and one seed strain present in Saudi Arabia. The results indicated that the oil extracted from six seed cultivars of date palm ranged from 6.73-10.89% w/w oil. The refractive index of date seeds oil was found to be between 1.4574 to 1.4615. The iodine values, acid values and saponification values were in the range of 74.2-86.6 g iodine 100 g(-1); 2.50-2.58 mg KOH g(-1) and 0.206-0.217 mg KOH g(-1), respectively. Lauric acid, Myristic acid, Palmitic acid C15, Palmitic acid C16 Stearic acid, Arachidic acid and Behenic acid of date seeds oil contents were found between 8.67-49.27; 7.01-15.43; 0-0.57; 4.82-18.09; 1.02-7.86; 0-0.08; and 0-0.15% w/w, in that order. Omega-6 and Omega-9 of date seeds oil were found between 7.31-17.87 and 52.12-58.78%, respectively. Khalas, Barhy cvs. and seed strain gave highest K and Ca, Na and Fe, Mg as compared with other studied cultivars.

  19. Washing ashore: The politics of offshore oil in northern Angola

    Science.gov (United States)

    Reed, Kristin Michelle

    This dissertation examines the political ecology of Angolan oil, by exploring state and corporate political economies; historical convergences of violence and capital; and struggles over the costs and benefits of oil production from the perspective of artisanal fishing and farming communities in the extractive zones. Angola is sub-Saharan Africa's second-largest oil producer but revenues from the enclave sector in oil rarely trickle down to the impoverished populace. The Angolan government strategically invests petrodollars in patronage networks to bolster their power; and watchdog agencies claim top officials divert the balance to offshore accounts. While the enclaved nature of production facilitates the restricted distribution of oil monies by concentrating services and revenue streams, the distortions and externalities that bleed out from these enclaves increase the misery of Angolans---especially those living in the extractive zones. By focusing on the lived experience of extraction, I explore the politics of oil through the forms of violence and degradation threatening the lives and livelihoods of local people. Most of Angola's oil is produced from offshore fields, so oil spills present a considerable risk to the health of local communities and ecosystems. The fishers and fish traders suffering from oil spills demand compensation from the liable oil corporations, yet the skewed system of disbursements only reaches the most powerful claimants. Moreover, faced with a repressive and unresponsive government, communities in extractive zones have come to rely on the same corporations for schools and health posts in a system I refer to as oil-backed development. I demonstrate that local histories of violence, national political exigencies, and transnational corporate interests govern the distribution of oil-backed development projects. Furthermore, I argue that the Angolan government leverages corporate donations for development to suit its own exclusionary interests

  20. Oil Producers vulnerability: restrictions for oil supply strategy - OPEC, Mexico and Norway; Indicadores de vulnerabilidade do produtor de petroleo: restricoes a estrategia de oferta - OPEP, Mexico and Norway

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Fernanda; Schaeffer, Roberto; Szklo, Alexandre [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE)

    2008-07-01

    Few analysts address the socio-economic vulnerability faced by large oil producers countries that restricts their oil supply strategies. However, such as net import countries may be vulnerable to oil supply, large oil exporters countries may also become vulnerable due to their socio-economic dependence on oil, as export revenues are so important to their wealth generation and their populations' well-fare status. The objective of this paper is to evaluate the vulnerabilities of some oil exporters as the OPEC's member-countries, Mexico and Norway face, or may face, and that may restrict their degree of freedom for productive decision making (including investments) and for elaborating oil supply strategies (aiming at taking a larger share of the oil revenue). In order to do that this paper is divided in 3 sections. Initially, socio-economic vulnerability indicators for the oil exporting countries are presented, built and analyzed. Socio-economic vulnerability indicators comprehend, for instance, the following dimensions: physical, productive, fiscal, commercial, macroeconomic and social. The next section regards the application of a multi criteria method, the AHP - Analytic Hierarchy Process in order to summarize and organize the indicators. Finally, implications of the socio-economic vulnerabilities of these oil export countries for the world oil supply and price are derived. (author)

  1. Hyperspectral imaging of oil producing microalgae under thermal and nutritional stress.

    Energy Technology Data Exchange (ETDEWEB)

    Van Benthem, Mark Hilary; Davis, Ryan W.; Ricken, James Bryce; Powell, Amy Jo; Keenan, Michael Robert

    2008-09-01

    This short-term, late-start LDRD examined the effects of nutritional deprivation on the energy harvesting complex in microalgae. While the original experimental plan involved a much more detailed study of temperature and nutrition on the antenna system of a variety of TAG producing algae and their concomitant effects on oil production, time and fiscal constraints limited the scope of the study. This work was a joint effort between research teams at Sandia National Laboratories, New Mexico and California. Preliminary results indicate there is a photosystem response to silica starvation in diatoms that could impact the mechanisms for lipid accumulation.

  2. 30 CFR 250.1157 - How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap? 250.1157 Section 250.1157 Mineral Resources... do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap? (a...

  3. Economics of Newfoundland and Labrador's offshore oil industry : separating fact from myth

    International Nuclear Information System (INIS)

    Locke, W.

    2006-01-01

    This presentation provided an analysis of the Newfoundland offshore oil sector to help inform public understanding and debate. Four questions were posed to the oil sector in order to provide answers to questions the public may have concerning oil and gas operations and their socio-economic impacts in the region. It was observed that Newfoundland's daily production, reserves and activity levels are relatively small in comparison with other major oil producing regions, accounting for only 0.4 per cent of the world's daily oil production. On a per capita basis, oil production in the region is significant in comparison to other oil-producing regions, placing fourth in the world behind the United Arab Emirates, Kuwait, and Norway. The oil and gas sector is the largest single contributor to Newfoundland's economy, providing 16 per cent of Newfoundland's gross domestic product (GDP). An estimated $16 billion will be provided to the province's treasury through the exploitation of the province's resources. Production statistics for Hibernia, Terra Nova, White Rose and Hebron were presented. Price forecasts and projected royalty payments were also provided. It was noted that the Newfoundland government receives more than 50 per cent of the profits of the combined fields, and higher oil prices will yield higher shares to the government. Equity holders incur more risk and receive lower net present value than royalty and tax collectors. It was suggested that increases in local benefits will lead to increased project costs, which will in turn lead to reduced royalty incomes. It was concluded that the Newfoundland offshore oil sector is vitally important to all aspects of the province's economy. An informed debate on public policy issues that impact Newfoundland's offshore oil industry is needed. refs., tabs., figs

  4. Asymmetric membranes for destabilization of oil droplets in produced water from alkaline-surfactant-polymer (ASP) flooding

    Science.gov (United States)

    Ramlee, Azierah; Chiam, Chel-Ken; Sarbatly, Rosalam

    2018-05-01

    This work presents a study of destabilization of oil droplets in the produced water from alkaline-surfactant-polymer (ASP) flooding by using four types of laboratory-fabricated polyvinylidene fluoride (PVDF) membranes. The PVDF membranes were fabricated via immersion precipitation method with ethanol (0 - 30 %, v/v) as the coagulant. The membranes with the effective area of 17.35 cm2 were tested with synthesized ASP solution as the feed in cross-flow microfiltration process. The ASP feed solution initially contained the oil droplets with radius ranged from 40 to 100 nm and the mean radius was 61 nm. Results have shown that the concentration of the ethanol in the coagulation bath affects the formation of the membrane structure and the corresponding porosity, while no significance influence on the membrane thickness. Coalescence of the oil droplets was occurred when the ASP solution permeated through the asymmetric PVDF membranes. Through the coalescence process, the oil droplets were destabilized where the radius of the oil droplets in the permeates increased to 1.5-4 µm with the corresponding mean radius ranged from 2.4 to 2.7 µm.

  5. The future of Alberta's oil and gas: Long-term strategies necessary to sustain markets

    International Nuclear Information System (INIS)

    Anon

    2002-01-01

    The Canadian Association of Petroleum Producers predicts that based on current combustion and depending on world oil prices, Canadian oil sands can supply North American demand for 40 years and Canadian natural gas can meet North American requirements for 20 years. Natural gas production in the U.S. is greater in total energy output than oil production of the world's largest oil producer, Saudi Arabia. At the same time the U.S. gas industry is confronting a unique and profound combination of events, namely it is facing the first true shortage of deliverable reserves in its history. This may be harsh news for the consumer, however, for Alberta's oil and gas industry, the new world energy order has the potential to be a huge blessing. With relatively large, unexploited oil and gas reserves and a next door neighbour with the world's most voracious appetite for fossil fuels, it is inevitable that much of this shortage is going to be satisfied by oil and gas from Canadian sources. Nevertheless, there are some barriers to be overcome. The greatest barriers to an assured U. S. market for Canadian oil and gas is competition from Venezuelan heavy crude and synthetic crude and light sour crude from the Gulf of Mexico. To assure a ready market for Canadian heavy crude in the U. S. Midwest, Canadian producers need to be pro-active in working with U. S. refiners to develop new conversion capacity, or develop upgrading in Canada. Mexico and Venezuela have been successfully participating in major U. S. expansions in coker projects to allow projects to run heavy crude. This will eventually result in an additional 600,000 barrels per day of heavy crude available on the U. S. market, putting further pressure on Canadian markets. The challenge is for Albertan producers to undertake similar strategies with U. S. Midwest refiners for heavy and synthetic crude. Long-term supply arrangements appear to be the only way to induce American Midwest refiners to make more investment to process

  6. The richness of discovery : Amoco's first fifty years in Canada (1948-1998)

    International Nuclear Information System (INIS)

    McKenzie-Brown, P.

    1998-01-01

    A review of Amoco's first fifty years of operations in Canada, including investments, discoveries, and policies was presented. While no claim is made for this attractively produced slim volume to be a definitive history, it does manage to shed light on some of the great achievements and outstanding deeds of the people behind the company. The book provides a glimpse into how Amoco contributed to the growth of the Canadian petroleum industry in diverse areas including the manufacturing sector, the petroleum service sector, oil field technology, oil field infrastructure and petrochemical development. The company enjoyed spectacular success during the 1950s and 1960s. As evidence of that success, in 1997 Amoco Canada was the largest Canadian producer and exporter of natural gas and NGLs, the largest cold producer of heavy oil, the second largest in situ producer of heavy oil, and one of the 10 largest producers of conventional oil. refs., tabs., figs

  7. Innovating a system for producing and distributing hybrid oil palm seedlings to smallholder farmers in Benin

    NARCIS (Netherlands)

    Vissoh, Pierre V.; Tossou, Rigobert C.; Akpo, Essegbemon; Kossou, Dansou; Jiggins, Janice

    2017-01-01

    This article analyses the development of a system for producing and distributing hybrid oil palm seedlings to small-scale famers. The existing seed system had become so corrupted that the seedlings actually planted were largely of unimproved kinds. The article describes institutional experiments

  8. A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production.

    Science.gov (United States)

    Torres, Luisa; Yadav, Om Prakash; Khan, Eakalak

    2016-01-01

    The objective of this paper is to review different risk assessment techniques applicable to onshore unconventional oil and gas production to determine the risks to water quantity and quality associated with hydraulic fracturing and produced water management. Water resources could be at risk without proper management of water, chemicals, and produced water. Previous risk assessments in the oil and gas industry were performed from an engineering perspective leaving aside important social factors. Different risk assessment methods and techniques are reviewed and summarized to select the most appropriate one to perform a holistic and integrated analysis of risks at every stage of the water life cycle. Constraints to performing risk assessment are identified including gaps in databases, which require more advanced techniques such as modeling. Discussions on each risk associated with water and produced water management, mitigation strategies, and future research direction are presented. Further research on risks in onshore unconventional oil and gas will benefit not only the U.S. but also other countries with shale oil and gas resources. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Isotope and chemical investigation of geothermal springs and thermal water produced by oil wells in potwat area, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Tariq, J.A; Choudhry, M.A.; Hussain, Q.M.

    2008-10-01

    Isotopes and geochemical techniques were applied to investigate the origin, subsurface history and reservoir temperatures of geothermal springs in Potwar. Two sets of water samples were collected. Surface temperatures of geothermal springs ranges from 52 to 68.3 C. Waters produced by oil wells in Potwar area were also investigated. Geothermal springs of Potwar area are Na-HCO/sub 3/ type, while the waters produced by oil wells are Na-Cl and Ca-Cl types. Source of both the categories of water is meteoric water recharged from the outcrops of the formations in the Himalayan foothills. These waters undergo very high /sup 18/O-shift (up to 18%) due to rock-water interaction at higher temperatures. High salinity of the oil field waters is due to dissolution of marine evaporites. Reservoir temperatures of thermal springs determined by the Na-K geo thermometers are in the range of 56-91 deg. C, while Na-K-Ca, Na-K-Mg, Na-K-Ca-Mg and quartz geo thermometers give higher temperatures up to 177 C. Reservoir temperature determined by /sup 18/O(SO/Sub 4/-H/sub 2/O) geo thermometer ranges from 112 to 138 deg. C. There is wide variation in reservoir temperatures (54-297 deg. C) of oil fields estimated by different chemical geo thermometers. Na-K geo thermometer seems more reliable which gives close estimates to real temperature (about 100 deg. C) determined during drilling of oil wells. (author)

  10. Chemical profiling of clove bud oil (Syzygium aromaticum) from Toli-Toli and Bali by GC-MS analysis

    Science.gov (United States)

    Sulistyoningrum, A. S.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U. C.; Amelia, B.; Haib, J.

    2017-07-01

    Indonesia is the largest clove producer in the world. In 2012, total world clove production is 113,215 tons where nearly 71 % (79,250 tons) comes from Indonesia. Although Indonesia is a major producer of clove in the world, research and publications about cloves in this country are scarce and hence knowledge about characteristics of difference varieties of cloves is very limited. The present study was aimed to compare major and minor constituents in clove oil responsible for their flavor based on origin which are cloves from Toli-Toli and Bali. The clove bud oil was isolated from clove bud (Syzygium aromaticum) using steam distillation. The compounds of clove bud oil was analyzed using GC-MS. The major compounds of clove oil were eugenol, caryophyllene, α-humulene and eugenyl acetate with composition 66.37 %, 15.38 %, 1.97 % and 12.99 %, respectively (Toli-Toli) and clove from Bali were 72.34 %, 12.51 %, 2.34 % and 5.33 %, respectively. The unique minor compounds of clove oil from Toli-Toli were (+)-δ-cadinene (0.13 %) and β-caryophylladienol (0.19 %) while in clove oil from Bali were valencene (0.17 %), δ-selinene (0.22 %) and alloaromadendrene (0.24 %). A total of 36 compounds were identified from the clove bud oil Toli-Toli and 38 compounds from the clove bud oil Bali.

  11. Producing electricity from Israel oil shale with PFBC technology

    International Nuclear Information System (INIS)

    Grinberg, A.; Keren, M.; Podshivalov, V.; Anderson, J.

    2000-01-01

    Results of Israeli oil shale combustion at atmospheric pressure in the AFBC commercial boiler manufactured by Foster Wheeler Energia Oy (Finland) and in the pressurized test facility of ABB Carbon AB (Finspong, Sweden) confirm suitability of fluidized-bed technologies in case of oil shale. The results approve possibility to use the PFBC technology in case of oil shale after solving of some problems connected with great amounts of fine fly ash. (author)

  12. Pacific Basin Heavy Oil Refining Capacity

    Directory of Open Access Journals (Sweden)

    David Hackett

    2013-02-01

    Full Text Available The United States today is Canada’s largest customer for oil and refined oil products. However, this relationship may be strained due to physical, economic and political influences. Pipeline capacity is approaching its limits; Canadian oil is selling at substantive discounts to world market prices; and U.S. demand for crude oil and finished products (such as gasoline, has begun to flatten significantly relative to historical rates. Lower demand, combined with increased shale oil production, means U.S. demand for Canadian oil is expected to continue to decline. Under these circumstances, gaining access to new markets such as those in the Asia-Pacific region is becoming more and more important for the Canadian economy. However, expanding pipeline capacity to the Pacific via the proposed Northern Gateway pipeline and the planned Trans Mountain pipeline expansion is only feasible when there is sufficient demand and processing capacity to support Canadian crude blends. Canadian heavy oil requires more refining and produces less valuable end products than other lighter and sweeter blends. Canadian producers must compete with lighter, sweeter oils from the Middle East, and elsewhere, for a place in the Pacific Basin refineries built to handle heavy crude blends. Canadian oil sands producers are currently expanding production capacity. Once complete, the Northern Gateway pipeline and the Trans Mountain expansion are expected to deliver an additional 500,000 to 1.1 million barrels a day to tankers on the Pacific coast. Through this survey of the capacity of Pacific Basin refineries, including existing and proposed facilities, we have concluded that there is sufficient technical capacity in the Pacific Basin to refine the additional Canadian volume; however, there may be some modifications required to certain refineries to allow them to process Western Canadian crude. Any additional capacity for Canadian oil would require refinery modifications or

  13. Oxidative stability of structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Traditional sunflower oil (SO), randomized lipid (RL) and specific structured lipid (SL), both produced from SO and tricaprylin/caprylic acid, respectively, were stored for up to 12 wk to compare their oxidative stabilities by chemical and sensory analyses. Furthermore, the effect of adding...... a commercial antioxidant blend Grindox 117 (propyl gallate/citric acid/ascorbyl palmitate) or gallic acid to the SL was investigated. The lipid type affected the oxidative stability: SL was less stable than SO and RL. The reduced stability was most likely caused by both the structure of the lipid...

  14. An Estimate of Recoverable Heavy Oil Resources of the Orinoco Oil Belt, Venezuela

    Science.gov (United States)

    Schenk, Christopher J.; Cook, Troy A.; Charpentier, Ronald R.; Pollastro, Richard M.; Klett, Timothy R.; Tennyson, Marilyn E.; Kirschbaum, Mark A.; Brownfield, Michael E.; Pitman, Janet K.

    2009-01-01

    The Orinoco Oil Belt Assessment Unit of the La Luna-Quercual Total Petroleum System encompasses approximately 50,000 km2 of the East Venezuela Basin Province that is underlain by more than 1 trillion barrels of heavy oil-in-place. As part of a program directed at estimating the technically recoverable oil and gas resources of priority petroleum basins worldwide, the U.S. Geological Survey estimated the recoverable oil resources of the Orinoco Oil Belt Assessment Unit. This estimate relied mainly on published geologic and engineering data for reservoirs (net oil-saturated sandstone thickness and extent), petrophysical properties (porosity, water saturation, and formation volume factors), recovery factors determined by pilot projects, and estimates of volumes of oil-in-place. The U.S. Geological Survey estimated a mean volume of 513 billion barrels of technically recoverable heavy oil in the Orinoco Oil Belt Assessment Unit of the East Venezuela Basin Province; the range is 380 to 652 billion barrels. The Orinoco Oil Belt Assessment Unit thus contains one of the largest recoverable oil accumulations in the world.

  15. Economic impacts of natural resources on a regional economy: the case of the pre-salt oil discoveries in Espirito Santo, Brazil

    Directory of Open Access Journals (Sweden)

    Eduardo Amaral Haddad

    2014-03-01

    Full Text Available The Brazilian government has recently confirmed the discovery of a huge oil and natural gas field in the pre-salt layer of the country’s southeastern coast. It has been said that the oil fields can boost Brazil’s oil production and turn the country into one of the largest oil producers in the world. The fields are spatially concentrated in the coastal areas of a few Brazilian states that may directly benefit from oil production. This paper uses an interregional computable general equilibrium model to assess the impacts of pre-salt on the economy of the State of Espírito Santo, a region already characterized by an economic base that is heavily reliant on natural resources. We focus our analysis on the structural economic impacts on the local economy

  16. Research on heavy oil degradation by four thermophilic bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Bao, M.; Chen, Q.; Liu, Z.; Li, Y. [Ocean Univ. of China, Qingdao, Shandong (China)

    2009-07-01

    The Shengli oilfield is the second largest onshore oil field in China, with a crude oil output of approximately 30 million tons per year. The large quantities of wastewater that are produced during thermal recovery methods have posed a challenge in terms of water reuse, reinjection and discharge. The important aspect of wastewater treatment is the removal of residual heavy oil. Biological methods are considered to be efficient in solving this problem. This paper reported on a study in which 4 thermophilic microorganisms which had the ability to biodegrade heavy oil were screened from heavy oil wastewater in the Shengli oilfield. Their degradation to heavy oil was discussed and the suitable biodegradation conditions of these bacteria were investigated. The study showed that the degrading efficiency of heavy oil by the 4 bacteria was up to 42.0, 47.6, 55.6 and 43.4 per cent in the wastewater which contained 500 mg per litre of heavy oil, respectively. The crude oil samples were analyzed using gas chromatography/flame ionization detection (GC/FID) and gas chromatography/mass spectrometry (GC/MS) before and after degradation. The single 4 strains demonstrated strong biodegradability to normal alkanes and aromatics, and the average degrading efficiency was about 50 and 35 per cent. The degrading efficiency of the mixed 4 strains was better than the single ones, particularly for the poor biodegradable hydrocarbons such as phenanthrenes and fluorines. 21 refs., 2 tabs., 17 figs.

  17. Hydrotreatment of bio-oil distillates produced from pyrolysis and hydrothermal liquefaction of duckweed: A comparison study.

    Science.gov (United States)

    Wang, Feng; Tian, Ye; Zhang, Cai-Cai; Xu, Yu-Ping; Duan, Pei-Gao

    2018-09-15

    A comprehensive comparison of hydrothermal liquefaction (HTL) to the pyrolysis of duckweed was conducted to determine the yields and components of the crude bio-oils and their distillates. The upgrading behaviors of the distillates were thoroughly investigated with the use of used engine oil as a solvent. With all other variables fixed, HTL produced crude bio-oil with a lower H/C ratio (1.28 ± 0.03) than pyrolysis did (1.45 ± 0.04). However, its distillates had a higher H/C ratio (1.60 ± 0.05) and total yield (66.1 ± 2.0 wt%) than pyrolysis (1.46 ± 0.04 and 47.2 ± 1.4 wt%, respectively). Phenolics and nitrogenous heterocycles constituted relatively major proportions of the two crude bio-oils and most of their distillates. Obvious differences in molecular composition between the two crude bio-oils and their distillates were ascribed to the distinct impacts of HTL and pyrolysis and were affected by the distillate temperature. Co-hydrotreating with used engine oil (UEO) provided the upgraded bio-oils much higher H/C ratios (~1.78 ± 0.05) and higher heating values (~45.5 ± 1.4 MJ·kg -1 ), as well as much lower contents of N, O and S compared to their initial distillates. Aromatics and alkanes constituted a large proportion in most of upgraded bio-oils. N removal from the pyrolysis distillates was easier than from the HTL distillates. Distinct differences in yields and molecular compositions for the upgraded bio-oils were also attributed to the different influences associated with the two conversion routes. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery.

    Science.gov (United States)

    Alvarez, Vanessa Marques; Jurelevicius, Diogo; Marques, Joana Montezano; de Souza, Pamella Macedo; de Araújo, Livia Vieira; Barros, Thalita Gonçalves; de Souza, Rodrigo Octavio Mendonça Alves; Freire, Denise Maria Guimarães; Seldin, Lucy

    2015-12-01

    A screening for biosurfactant-producing bacteria was conducted with 217 strains that were isolated from environmental samples contaminated with crude oil and/or petroleum derivatives. Although 19 promising biosurfactant producers were detected, strain TSBSO 3.8, which was identified by molecular methods as Bacillus amyloliquefaciens, drew attention for its production of a high-activity compound that presented an emulsification activity of 63% and considerably decreased surface (28.5 mN/m) and interfacial (11.4 mN/m) tensions in Trypticase Soy Broth culture medium. TSBSO 3.8 growth and biosurfactant production were tested under different physical and chemical conditions to evaluate its biotechnological potential. Biosurfactant production occurred between 0.5% and 7% NaCl, at pH values varying from 6 to 9 and temperatures ranging from 28 to 50 °C. Moreover, biosurfactant properties remained the same after autoclaving at 121 °C for 15 min. The biosurfactant was also successful in a test to simulate microbial enhanced oil recovery (MEOR). Mass spectrometry analysis showed that the surface active compound was a surfactin, known as a powerful biosurfactant that is commonly produced by Bacillus species. The production of a high-efficiency biosurfactant, under some physical and chemical conditions that resemble those experienced in an oil production reservoir, such as high salinities and temperatures, makes TSBSO 3.8 an excellent candidate and creates good expectations for its application in MEOR. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Assessing the environmental impact of palm oil produced in Thailand

    NARCIS (Netherlands)

    Saswattecha, K.; Kroeze, C.; Jawjit, W.; Hein, L.G.

    2015-01-01

    There are several concerns related to the increasing production of palm oil in Southeast Asia, including pollution, greenhouse gas emissions and land conversion. The RSPO (Roundtable on Sustainable Palm Oil) certification standard provides an incentive for reducing environmental impacts of palm oil

  20. Synchrotron Emission on the Largest Scales: Radio Detection of the ...

    Indian Academy of Sciences (India)

    Abstract. Shocks and turbulence generated during large-scale structure formation are predicted to produce large-scale, low surface-brightness synchrotron emission. On the largest scales, this emission is globally correlated with the thermal baryon distribution, and constitutes the 'syn- chrotron cosmic-web'. I present the ...

  1. Oil atlas: National Petroleum Technology Office activities across the United States

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, H.A.

    1998-03-01

    Petroleum imports account for the largest share of the US trade deficit. Over one-third of the 1996 merchandise trade deficit is attributed to imported oil. The good news is that substantial domestic oil resources, both existing and yet-to-be-discovered, can be recovered using advanced petroleum technologies. The Energy Information Agency estimates that advanced technologies can yield 10 billion additional barrels, equal to $240 billion in import offsets. The US Department of Energy`s National Petroleum Technology Office works with industry to develop advanced petroleum technologies and to transfer successful technologies to domestic oil producers. This publication shows the locations of these important technology development efforts and lists DOE`s partners in this critical venture. The National Petroleum Technology Office has 369 active technology development projects grouped into six product lines: Advanced Diagnostics and Imaging Systems; Advanced Drilling, Completion, and Stimulation; Reservoir Life Extension and Management; Emerging Processing Technology Applications; Effective Environmental Protection; and Crosscutting Program Areas.

  2. Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil

    International Nuclear Information System (INIS)

    Abdullah, A.Z.; Salamatinia, B.; Mootabadi, H.; Bhatia, S.

    2009-01-01

    This article discusses current status of palm oil-based biodiesel industry in Malaysia, the policies introduced and strategies for its implementation. Due to renewability, high production rate, technical feasibility and role in reducing greenhouse gases (GHG) emission, palm oil is in the right position to supply the energy needs by the incorporation into the diesel supply. As a leading producer of palm oil, Malaysia has embarked on a comprehensive palm biofuel program since 1982. It has successfully established the use of palm biodiesel blend (B5) as a suitable fuel for the transport and industrial sectors through the introduction of the National Biofuel Policy. The current scenario of biodiesel program in Malaysia, as well as biofuel policies with respect to its use, technology, export, environmental issues and implementation aspects are thoroughly discussed. The roles of the policy towards the prosperity of the stakeholders, oil price and the reduction of greenhouse gasses are also highlighted. (author)

  3. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  4. Characterization and Catalytic Upgrading of Crude Bio-oil Produced by Hydrothermal Liquefaction of Swine Manure and Pyrolysis of Biomass

    Science.gov (United States)

    Cheng, Dan

    The distillation curve of crude bio-oil from glycerol-assisted hydrothermal liquefaction of swine manure was measured using an advanced distillation apparatus. The crude bio-oil had much higher distillation temperatures than diesel and gasoline and was more distillable than the bio-oil produced by the traditional liquefaction of swine manure and the pyrolysis of corn stover. Each 10% volumetric fraction was analyzed from aspects of its chemical compositions, chemical and physical properties. The appearance of hydrocarbons in the distillates collected at the temperature of 410.9°C and above indicated that the thermal cracking at a temperature from 410°C to 500°C may be a proper approach to upgrade the crude bio-oil produced from the glycerol-assisted liquefaction of swine manure. The effects of thermal cracking conditions including reaction temperature (350-425°C), retention time (15-60 min) and catalyst loadings (0-10 wt%) on the yield and quality of the upgraded oil were analyzed. Under the optimum thermal cracking conditions at 400°C, a catalyst loading of 5% by mass and the reaction time of 30 min, the yield of bio-oil was 46.14% of the mass of the crude bio-oil and 62.5% of the energy stored in the crude bio-oil was recovered in the upgraded bio-oil. The upgraded bio-oil with a heating value of 41.4 MJ/kg and viscosity of 3.6 cP was comparable to commercial diesel. In upgrading crude bio-oil from fast pyrolysis, converting organic acids into neutral esters is significant and can be achieved by sulfonated activated carbon/bio-char developed from fermentation residues. Acitivated carbon and bio-char were sulfonated by concentrated sulfuric acid at 150°C for 18 h. Sulfonation helped activated carbon/bio-char develop acid functional groups. Sulfonated activated carbon with BET surface area of 349.8 m2/g, was effective in converting acetic acid. Acetic acid can be effectively esterified by sulfonated activated carbon (5 wt%) at 78°C for 60 min with the

  5. Sinopec Goes After Oil Assets Worldwide

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ US$2.45b deal to gain reserves of 393m barrels of crude equivalent China's enterprises eye global expansion via mergers and acquisitions in 2010 as the country's economic power increases.China Petrochemical Corporation (Sinopec),Asia's largest oil refiner, plans to purchase the entire oil and gas assets in the Argentinean arm of US-based Occidental Petroleum Corp.

  6. Properties of a biosurfactant produced by Bacillus pumilus using vinasse and waste frying oil as alternative carbon sources

    Directory of Open Access Journals (Sweden)

    Juliana Guerra de Oliveira

    2013-02-01

    Full Text Available Biosurfactants are chemical molecules produced by the microorganisms with potential for application in various industrial and environmental sectors. The production parameters and the physicochemical properties of a biosurfactant synthesized by Bacillus pumilus using different concentrations of vinasse and waste frying oil as alternative carbon sources were analyzed. The microorganism was able to grow and produce a biosurfactant using both the residues. The surface tension was reduced up to 45 mN/m and the maximum production of crude biosurfactant was 27.7 and 5.7 g/l for vinasse and waste frying oil, respectively, in concentration of 5%. The critical micelle concentration (CMC results of 1.5 and 0.2 g/l showed the efficiency of the biosurfactant produced on both the substrates. The results showed that the alternative substrates could be used for the production of an efficient biosurfactant by B. pumilus. These properties have potential for industrial and environmental applications.

  7. Vanadium century record from Caribbean reef corals: A tracer of oil pollution in Panama

    International Nuclear Information System (INIS)

    Guzman, H.M.; Jarvis, K.E.

    1996-01-01

    The Caribbean region is potentially one of the largest oil-producing areas in the world, and contamination by petroleum is threatening the marine environment. Vanadium (V), an abundant element in crude oils, was used as proxy tracer of oil pollution along the Caribbean coast of Panama. We develop a century chronology based on the concentration of vanadium (using ICP-MS) incorporated into annual growth bands of coral skeletons. The chronology for vanadium showed a relatively clear pattern where background seawater concentrations were observed in the early history of the corals followed by an increase after 1962, the initiation of a refinery operation. The vanadium chronology suggests that a major degradation process in the coastal zone could have started around the 1960s, but we were unable to confirm such an assumption due to the lack of long-term ecological and pollution data. The gradual increase of vanadium into the marine environment might be used as a pointer to oil pollution. 46 refs, 4 figs, 1 tab

  8. Analysis of Flue Gas Emissions Using a Semi-industrial Boiler Fueled by Biodiesel Produced from Two-stage Transesterification of Waste Cooking Oil

    OpenAIRE

    Mansourpoor, M.; Shariati, A.

    2014-01-01

    In this work, waste cooking oil and methanol as feedstock together with sulfuric acid and potassium hydroxide as catalysts were used to produce biodiesel. The physical properties of the waste cooking oil, the produced biodiesel and the purchased petrodiesel were measured using specified ASTM standards. To examine their performance and their flue gases emissions, biodiesel and petrodiesel were burnt in a wet base semi-industrial boiler. The emitted combustion gases, including CO, NOx, SO2 and ...

  9. Economic impacts of Alberta's oil sands, volume 1

    International Nuclear Information System (INIS)

    Timilsina, G.R.; LeBlanc, N.; Walden, T.

    2005-01-01

    In 2004, the international media recognized Alberta's oil sands as part of the global oil reserves, thereby establishing Canada as second to Saudi Arabia as potential oil producing nations. The economic impacts of Alberta's oil sands industry on economies were assessed at regional, provincial and international levels for the 2000 to 2020 period. A customized input-output model was used to assess economic impacts, which were measured in terms of changes in gross domestic product; employment and labour income; and, government revenues. Cumulative impacts on employment by sector and by jurisdiction were also presented. An investment of $100 billion is expected through 2020, resulting in production of crude bitumen and synthetic crude oil outputs valued at about $531 billion. The impact of the oil sands industry on local employment was also evaluated. It was shown that activities in the oil sands industry will lead to significant economic impact in Alberta, Ontario, Quebec and the rest of Canada. Alberta's local economy would be the main beneficiary of oil sands activities with nearly 3.6 million person years employment created in Alberta during the 2000 to 2020. Another 3 million person years employment would be created in other Canadian provinces and outside Canada during the same time period. A sensitivity analysis on the responsiveness to oil prices and the removal of various constraints incorporated in the main analysis was also presented. The federal government will be the largest recipient of revenues generated to to oil sands activities. The results of the study were compared with that of the National Task Force on Oil Sands Strategies. This first volume revealed the results of the study while the second volume includes the data and detailed results. 48 refs., 57 tabs., 28 figs

  10. Chemical investigation of Nigella sativa L. seed oil produced in Morocco

    Directory of Open Access Journals (Sweden)

    Said Gharby

    2015-06-01

    Full Text Available Seeds of Nigella sativa L. (black cumin or black seeds are widely used in traditional Islamic medicine and for culinary purposes worldwide. Nigella seed oil is becoming popular in and out of the Islamic world. Composition of Nigella seed oil is known to be location-dependent. We investigated the composition of Nigella seed oil prepared by solvent- or cold press-extraction of Nigella seeds grown in Morocco. Oil extraction yield was 37% and 27% when solvent or cold press extraction methods were used, respectively. In terms of oil major components, composition of Nigella seed oil from Morocco is similar to that from other Mediterranean countries known for their Nigella seed-oil quality.

  11. Investigation of produced waters radioactivity of oil and gas deposits in the Dnieper-Donets province

    Directory of Open Access Journals (Sweden)

    Plyatsuk L. D.

    2017-12-01

    Full Text Available The process of radioactive pollution of produced waters, oilfield equipment, oil-contaminated soils and sludge is widely spread and differs within the various oil and gas regions. Formation waters contained radioactive element isotopes become the significant source and cause of elevated level of equivalent dose power and as a consequence, an increase in the incidence among the population. The author's idea is formulation of specific recommendations on the decontamination of the investigated objects by conducting the necessary appropriate experimental studies. The purpose of the article is to determine the content of radionuclides, γ- and α-emitters in technogenic objects of Bugruvate oil and gas fields, and to reveal the relationship with the features of mineralogical composition, geological structure and technological process. The γ-spectrometric analysis was used to determine the radionuclide composition of the natural radiators of the 238U (226Ra, 214Pо, 214Bi and 232Th (228Ac, 212Pb, 212Вi series in samples of technological sludge, oil, individual soil samples and water. The content of radionuclides of α-emitters was determined using separate radiochemical techniques. It was investigated that the radioactivity of the formation water is mainly determined by 226Ra and 228Ra and the products of their decay.

  12. Physicochemical characterization and quality of cold-pressed peanut oil obtained from organically produced peanuts from Macedonian Virginia” variety

    Energy Technology Data Exchange (ETDEWEB)

    Kostadinovic Velickovska, S.; Mitrev, S.; Mihajlov, L.

    2016-07-01

    The physicochemical characterization and quality of cold pressed peanut edible oil from the “Virginia” variety, organically produced from the region of Macedonia, were examined in this work for the first time. The fatty acid composition of the oil showed almost equal levels of oleic and linoleic acids with an abundance of 34.19±0.01 and 36.13±0.01%, respectively. The most dominant saturated fatty acid was palmitic acid with a level of 10.06±0.00%. The level of tocopherols and other vitamin-E-related compounds was in strong agreement with the antioxidant activity of the oils measured by the DPPH assay. Almost equal amounts of α and γ tocopherols indicated an antioxidant potential of 288.63±59.78 mg·L−1 α-tocopherol. Phytosterols, as minor compounds present in the oils, can be additional antioxidants responsible for the health benefits of this oil in human nutrition. The four major pytosterols were β-sitosterol (1812.21±22.17 mg·kg−1 oil), champesterol (320.55±17.07 mg·kg−1 oil), Δ5-avenasterol (236.16±14.18 mg·kg−1) and stigmasterol (133.12±12.51 mg·kg−1 oil). Induction time, Peroxide number, FFA and specific extinction (K232 and K270, values 1.82 and 0.22) gave us an indication of the oxidative stability of cold pressed peanut oil. (Author)

  13. Utilization of oil palm fronds in producing activated carbon using Na2CO3 as an activator

    Science.gov (United States)

    Maulina, S.; Anwari, FN

    2018-02-01

    Oil Palm Frond is a waste in palm oil plantations that have the potential to be processed into more valuable products. This possibility is because of the presence of cellulose, hemicellulose, and lignin in oil palm fronds. Therefore, this study aimed to utilize oil palm fronds in manufacturing of activated carbon through pyrolysis and impregnation that meets the requirements of the Industrial National Standard 06-3730-1995. The palm-fringed oil palm fronds were pyrolyzed in reactors at 150°C, 200°C, and 250°C for 60 minutes. Subsequently, the charcoal produced from the pyrolysis was smoothed with a ball mill, sieved with a size of 140 meshes, and impregnated using a Sodium Carbonate (Na2CO3) for 24 hours at a concentration of 0 %, 2.5%, 5%, and 7.5 % (w/v). The activated carbon has 35.13% of charcoal yield, 8.6% of water content, 14.25% of ash content, 24.75% of volatile matter, 72.75% of fixed carbon, and 492.29 of iodine number. Moreover, SEM analysis indicated that activated carbon porous are coarse and distributed.

  14. Whither Alberta's oil production?

    International Nuclear Information System (INIS)

    Purvis, R.A.; Dick, A.B.

    1991-01-01

    It is demonstrated how a combination of old theory (decline methods and statistics) and new technology (computer graphics) can enhance decline-curve forecasts for multi-well groupings. Production and well-count forecasts are presented for four different sized groups of aggregate production. The four examples are: the small Manville pool; the Pembina Cardium, Alberta's largest oil pool; an aggregate of all reef pools of Keg River age; and an aggregate of all wells reporting conventional oil production in the province of Alberta. In each case graphical results show the historical and forecast trends for the statistical distribution of well rates, the median well rate, the aggregated rate, and the number of producing wells. It is concluded that well rate distributions for groups ranging from 15 wells in a single pool to thousands of wells in hundreds of pools are all approximately lognormal. Lognormal well rate distributions and Lorenz graphs provide qualitative and quantitative assessments of a resource base. Decline curves for the median well rate can reveal trends masked in the aggregated rate by changing well count, operating practice and degradation of the resource base. The number of producing wells in Alberta has grown from ca 9000 in 1970 to ca 24,000 in 1988, has remained constant from 1988-1990, and will start to decline as the number of suspended or abandoned wells exceeds the number of new completions. 3 refs., 13 figs., 4 figs

  15. Micro Fine Sized Palm Oil Fuel Ash Produced Using a Wind Tunnel Production System

    Directory of Open Access Journals (Sweden)

    R. Ahmadi

    2016-01-01

    Full Text Available Micro fine sized palm oil fuel ash (POFA is a new supplementary cementitious material that can increase the strength, durability, and workability of concrete. However, production of this material incurs high cost and is not practical for the construction industry. This paper investigates a simple methodology of producing micro fine sized POFA by means of a laboratory scale wind tunnel system. The raw POFA obtained from an oil palm factory is first calcined to remove carbon residue and then grinded in Los Angeles abrasion machine. The grinded POFA is then blown in the fabricated wind tunnel system for separation into different ranges of particle sizes. The physical, morphological, and chemical properties of the micro fine sized POFA were then investigated using Laser Particle Size Analyser (PSA, nitrogen sorption, and Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX. A total of 32.1% micro fine sized POFA were collected from each sample blown, with the size range of 1–10 micrometers. The devised laboratory scale of wind tunnel production system is successful in producing micro fine sized POFA and, with modifications, this system is envisaged applicable to be used to commercialize micro fine sized POFA production for the construction industry.

  16. Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios

    International Nuclear Information System (INIS)

    Castanheira, Érica Geraldes; Acevedo, Helmer; Freire, Fausto

    2014-01-01

    Highlights: • A comprehensive evaluation of alternative LUC and fertilization schemes. • The GHG intensity of palm oil greatly depends on the LUC scenario. • Colombian palm area expansion resulted in negative or low palm oil GHG intensity. • GHG emissions from plantation vary significantly with N 2 O emission parameters. - Abstract: The main goal of this article is to assess the life-cycle greenhouse gas (GHG) intensity of palm oil produced in a specific plantation and mill in Colombia. A comprehensive evaluation of the implications of alternative land use change (LUC) scenarios (forest, shrubland, savanna and cropland conversion) and fertilization schemes (four synthetic and one organic nitrogen-fertilizer) was performed. A sensitivity analysis to field nitrous oxide emission calculation, biogas management options at mill, time horizon considered for global warming and multifunctionality approach were also performed. The results showed that the GHG intensity of palm oil greatly depends on the LUC scenario. Significant differences were observed between the LUC scenarios (−3.0 to 5.3 kg CO 2 eq kg −1 palm oil). The highest result is obtained if tropical rainforest is converted and the lowest if palm is planted on previous cropland, savanna and shrubland, in which almost all LUC from Colombian oil palm area expansion occurred between 1990 and 2009. Concerning plantation and oil extraction, it was shown that field nitrous oxide emissions and biogas management options have a high influence on GHG emissions

  17. Nigeria's oil production and the need for increased producing capacity

    International Nuclear Information System (INIS)

    Okoroji, C. E. I.

    1998-01-01

    After 40 years of commercial oil production, Nigeria's crude oil production is moving through difficult times. This transition period has been made more difficult because of recurring international economic recession, lack-luster crude prices, and slow oil demand growth and Government funding problems etc. Crude oil remains the most important export revenue earner in Nigeria, and more efforts are required to encourage higher output levels to support more foreign exchange generation. Nigeria's crude oil production at present stands at 2.2 million barrels per day (mbpd). This study, covers the period 1998-2005, during which oil production is forecast to grow to about 2.85 mbpd while potential for new discoveries could raise production to more than 3.0 mbpd. These projected rates could depend to a large extent on the rate and size of new discoveries. However, Nigeria's crude oil potential is being constrained by both lack of infrastructure and inadequate investment. The massive investment needed to raise the country's productive capacity will require foreign capital, yet the current fiscal environment leaves much to be desired. The purpose of this paper is to present a review of Nigeria's past, present and future oil production. To meet the projected production capacity very early in the next millennium, current estimates put the overall potential investment needed for an accelerated capacity-expansion drive in order to ensure that there is adequate cushion of crude potential at $19.7 billion during the next seven years. Furthermore, not more than $12.0 billion of this requirement can be generated from Nigeria's government cash flow

  18. Mapping palm oil expansion using SAR to study the impact on the CO2 cycle

    Science.gov (United States)

    Pohl, Christine

    2014-06-01

    With Malaysia being the second largest palm oil producer in the world and the fact that palm oil ranks first in vegetable oil production on the world market the palm oil industry became an important factor in the country. Along with the expansion of palm oil across the nation causing deforestation of natural rain forest and conversion of peat land into plantation land there are several factors causing a tremendous increase in carbon dioxide (CO2) emissions. Main causes of CO2 emission apart from deforestation and peat-land conversion are the fires to create plantation land plus the fires burning waste products of the plantations itself. This paper describes a project that aims at the development of a remote sensing monitoring system to allow a continuous observation of oil palm plantation activities and expansion in order to be able to quantify CO2 emissions. The research concentrates on developing a spaceborne synthetic aperture radar information extraction system for palm oil plantations in the Tropics. This will lead to objective figures that can be used internationally to create a policy implementation plan to sustainably reduce CO2 emission in the future.

  19. Mapping palm oil expansion using SAR to study the impact on the CO2 cycle

    International Nuclear Information System (INIS)

    Pohl, Christine

    2014-01-01

    With Malaysia being the second largest palm oil producer in the world and the fact that palm oil ranks first in vegetable oil production on the world market the palm oil industry became an important factor in the country. Along with the expansion of palm oil across the nation causing deforestation of natural rain forest and conversion of peat land into plantation land there are several factors causing a tremendous increase in carbon dioxide (CO 2 ) emissions. Main causes of CO 2 emission apart from deforestation and peat-land conversion are the fires to create plantation land plus the fires burning waste products of the plantations itself. This paper describes a project that aims at the development of a remote sensing monitoring system to allow a continuous observation of oil palm plantation activities and expansion in order to be able to quantify CO 2 emissions. The research concentrates on developing a spaceborne synthetic aperture radar information extraction system for palm oil plantations in the Tropics. This will lead to objective figures that can be used internationally to create a policy implementation plan to sustainably reduce CO 2 emission in the future

  20. Compositional simulations of producing oil-gas ratio behaviour in low permeable gas condensate reservoir

    OpenAIRE

    Gundersen, Pål Lee

    2013-01-01

    Master's thesis in Petroleum engineering Gas condensate flow behaviour below the dew point in low permeable formations can make accurate fluid sampling a difficult challenge. The objective of this study was to investigate the producing oil-gas ratio behaviour in the infinite-acting period for a low permeable gas condensate reservoir. Compositional isothermal flow simulations were performed using a single-layer, radial and two-dimensional, gas condensate reservoir model with low permeabili...

  1. Quality Attributes of Fresh Palm Oils Produced from Selected ...

    African Journals Online (AJOL)

    The oils were analyzed for their physical (refractive index, impurities, density, smoke point, flash point and fire point) and chemical (moisture, free fatty acids, peroxide value, saponification value iodine value and unsaponificable matter) qualities using standard methods. Palm oil processors in the selected communities were ...

  2. Wettability of Oil-Producing Reservoir Rocks as Determined from X-ray Photoelectron Spectroscopy

    Science.gov (United States)

    Toledo; Araujo; Leon

    1996-11-10

    Wettability has a dominant effect in oil recovery by waterflooding and in many other processes of industrial and environmental interest. Recently, the suggestion has been made that surface science analytical techniques (SSAT) could be used to rapidly determine the wettability of reservoir materials. Here, we bring the capability of X-ray photoelectron spectroscopy (XPS) to bear on the wettability evaluation of producing reservoir rocks. For a suite of freshly exposed fracture surfaces of rocks we investigate the relationship between wettability and surface composition as determined from XPS. The classical wettability index as measured with the Amott-Harvey test is used here as an indicator of the wettability of natural sandstones. The XPS spectra of oil-wet surfaces of rocks reveal the existence of organic carbon and also of an "organic" silicon species, of the kind Si-CH relevant to silanes, having a well-defined binding energy which differs from that of the Si-O species of mineral grains. We provide quantifiable evidence that chemisorbed organic material on the pore surfaces defines the oil-wetting character of various reservoir sandstones studied here which on a mineralogic basis are expected to be water-wet. This view is supported by a strong correlation between C content of pore surfaces and rock wettability. The results also suggest a correlation between organic silicon content on the pore surfaces and rock hydrophobicity.

  3. Mobil positioning itself to become Canada's premier oil and gas company

    International Nuclear Information System (INIS)

    Thomas, A.

    1994-01-01

    To achieve its goal of becoming Canada's premier oil and gas company by the year 2000, Mobil Oil Canada is empowering its employees and applying appropriate technology to unlock resources and create value. Mobil produces 4.1 million m 3 of oil and natural gas liquids, 5.6 million m 3 /y of natural gas and 438,000 tonnes/y of sulfur. It also operates over 3,000 wells in western Canada and eleven gas processing plants, manages 1,700 km of pipeline, and has 33% interest in the Hibernia project on the Grand Banks. Oil lifting costs have decreased over the past three years from $3.40/bbl to $2.80/bbl and development costs are under $2/bbl. Innovative technology used to achieve high production and low costs include the use of three dimensional seismic surveys and horizontal drilling. Other techniques used at particular sites include installation of downhole injection regulators to control problems of segregation and metering between different water injection zones at the Carson Creek field, use of artificial lifts in gas wells, and a dual gas lift at the Rainbow Lake oil field. At the Lone Pine gas plant, the first Superclaus-99 sulfur recovery process was installed, reducing sulfur emissions by 60% and increasing recovery efficiency from 95% to 98%. Mobil has operated in Canada since 1940 and has made significant discoveries, including Canada's largest producing oil field, the Pembina. In 1971, Mobil discovered gas of commercial significance off the east coast and helped discover the Hibernia and Venture fields. The Hibernia project is scheduled to come on stream in 1997 and Mobil expects the economics of the project to be favorable, with a $12-13/bbl oil price needed to break even. 7 figs

  4. Do oil dispersants make spilled oil more toxic to fish?

    International Nuclear Information System (INIS)

    Hodson, P.

    2010-01-01

    The Deepwater Horizon blowout in the Gulf of Mexico was the world's largest oil spill in terms of duration and volume spilled. Clean-up operations, which involved the continuous and wide-spread use of oil dispersant at the surface and at the seabed discharge point at 1500 metres depth, gave rise to public concern about dispersant toxicity. Reports from the United States Environmental Protection Agency (EPA) claimed little difference in acute toxicity to marine fish and invertebrate species among commonly available dispersants and between dispersed and non-dispersed Louisiana Sweet Crude. Technically, the toxicity of waterborne hydrocarbons does not vary with chemical dispersion. However, the EPA omitted any consideration of loading, and misled the public about the risks of dispersant use in oil clean-up. This study examined the chronic toxicity of dispersed oil to fish embryos. The study revealed that toxicity expressed as oil loading increases by a factor of 10 to 1000 times with dispersion, largely because 10 to 1000 times more oil enters the water column. Since the action of dispersant is on the exposure component of the risk equation, not on the potency of the toxic components of oil, then the risk of oil toxicity to fish increases an equivalent amount.

  5. The Kazakh oil industry: a potential critical role in Central Asia

    International Nuclear Information System (INIS)

    Dorian, J.P.; Indriyanto, S.H.; Zhanseitov, S.F.

    1994-01-01

    While mostly undeveloped, tremendous oil resources are found in the largest Central Asian republic, Kazakhstan. Owing to progressive legislation and a determined government, the second largest country of the former USSR is attracting significant investments from overseas energy companies. Continued limited access to global markets may, however, slow future investments unless the existing pipeline network can be expanded. This paper describes current oil exploration and production activities in Kazakhstan, and outlines prospects for future developments. (Author)

  6. PEMANFAATAN MINYAK SAWIT MERAH DALAM PEMBUATANBISKUIT KACANG KAYA BETA KAROTEN [Utilization of Red Palm Oil To Produce BetaCarotene-Rich Nuts Biscuit

    Directory of Open Access Journals (Sweden)

    Robiyansyah Robiyansyah

    2017-03-01

    Full Text Available The purpose of this research was to get formulation of red palm oil and cooking oil to produce nuts biscuits with the best organoleptic properties. The formula consisted of red palm oil and cooking oil mixture with 6 comparisons: (0:100, (20:80, (40:60, (60:40, (80:20 and (100:0. These formula were then used as basis to produce nuts biscuits. Observation was done on the organoleptic properties (aroma, texture, taste and color for all biscuits for all samples, while  proximates test (water, fat,protein,ash content and betacarotene content were done only for the best formulation. The data were descriptively analyzed and presented in tables and graphs. The best organoleptic properties of these betacarotene rich nuts biscuits was formulation of 20:80. This biscuits had water content 1,42%, ash content 1,21%, fat content 32,60%, protein content 12,59%, and the total of beta carotene 347,15 ppm, with the less normal for aroma (4,55, less crunchy for the texture (4,40, distinctive flavor beans for the taste (4,28, and yellowish for the color (4,50. Keywords: β-carotene, nuts biscuits,red palm oil.

  7. Feasibility evaluation of downhole oil/water separator (DOWS) technology.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Langhus, B. G.; Belieu, S.

    1999-01-31

    The largest volume waste stream associated with oil and gas production is produced water. A survey conducted by the American Petroleum Institute estimated that 20.9 billion barrels of produced water were disposed of in 1985 (Wakim 1987). Of this total, 91% was disposed of through disposal wells or was injected for enhanced oil recovery projects. Treatment and disposal of produced water represents a significant cost for operators. A relatively new technology, downhole oil/water separators (DOWS), has been developed to reduce the cost of handling produced water. DOWS separate oil and gas from produced water at the bottom of the well and reinject some of the produced water into another formation or another horizon within the same formation, while the oil and gas are pumped to the surface. Since much of the produced water is not pumped to the surface, treated, and pumped from the surface back into a deep formation, the cost of handling produced water is greatly reduced. When DOWS are used, additional oil may be recovered as well. In cases where surface processing or disposal capacity is a limiting factor for further production within a field, the use of DOWS to dispose of some of the produced water can allow additional production within that field. Simultaneous injection using DOWS minimizes the opportunity for contamination of underground sources of drinking water (USDWs) through leaks in tubing and casing during the injection process. This report uses the acronym 'DOWS' although the technology may also be referred to as DHOWS or as dual injection and lifting systems (DIALS). Simultaneous injection using DOWS has the potential to profoundly influence the domestic oil industry. The technology has been shown to work in limited oil field applications in the United States and Canada. Several technical papers describing DOWS have been presented at oil and gas industry conferences, but for the most part, the information on the DOWS technology has not been widely

  8. 77 FR 13019 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Salable...

    Science.gov (United States)

    2012-03-05

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 985 [Doc. No. AMS-FV-11-0088; FV12-985-1 PR] Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Salable Quantities and Allotment Percentages for the 2012-2013 Marketing Year AGENCY: Agricultural...

  9. 78 FR 32070 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Salable...

    Science.gov (United States)

    2013-05-29

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 985 [Doc. No. AMS-FV-12-0064; FV13-985-1 FR] Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Salable Quantities and Allotment Percentages for the 2013-2014 Marketing Year AGENCY: Agricultural...

  10. 76 FR 27852 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Salable...

    Science.gov (United States)

    2011-05-13

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 985 [Doc. No. AMS-FV-10-0094; FV11-985-1 FR] Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Salable Quantities and Allotment Percentages for the 2011-2012 Marketing Year AGENCY: Agricultural...

  11. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514.

    Science.gov (United States)

    Varjani, Sunita J; Upasani, Vivek N

    2016-11-01

    The aim of this work was to study the Microbial Enhanced Oil Recovery (MEOR) employing core field model ex-situ bioaugmenting a thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa. Thin Layer Chromatography (TLC) revealed that the biosurfactant produced was rhamnolipid type. Nuclear Magnetic Resonance analysis showed that the purified rhamnolipids comprised two principal rhamnolipid homologues, i.e., Rha-Rha-C10-C14:1 and Rha-C8-C10. The rhamnolipid was stable under wide range of temperature (4°C, 30-100°C), pH (2.0-10.0) and NaCl concentration (0-18%, w/v). Core Flood model was designed for oil recovery operations using rhamnolipid. The oil recovery enhancement over Residual Oil Saturation was 8.82% through ex-situ bioaugmentation with rhamnolipid. The thermal stability of rhamnolipid shows promising scope for its application at conditions where high temperatures prevail in oil recovery processes, whereas its halo-tolerant nature increases its application in marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Oxidative stability of mayonnaise and milk drink produced with structured lipids based on fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2004-01-01

    The oxidative stabilities of traditional fish oil (FO), randomized lipids (RFO), or specific structured lipids (SFO) produced from fish oil were compared when incorporated into either milk drink or mayonnaise. Furthermore, the effect of adding the potential antioxidants EDTA (240 mg...... not be ascribed to a single factor, but was most likely influenced by the structure of the lipids and differences in the processes used to produce and purify the lipids. In milk drinks based on SFO, EDTA slightly reduced oxidation, while lactoferrin did not exert a distinct antioxidative effect....../kg) or lactoferrin (1000 mg/kg) to the milk drink based on SFO was investigated. The lipid type significantly affected the oxidative stability of both mayonnaises and milk drinks: The oxidative stability decreased in the order RFO>FO>SFO. The reduced oxidative stability in the SFO food emulsions could...

  13. China's oil use, 1990-2008

    International Nuclear Information System (INIS)

    Leung, Guy C.K.

    2010-01-01

    Over the past two decades, China's oil demand has risen steeply. In 1990, it was only about 25% higher than that of 1978, the year economic reform was introduced. By 2008, it had reached 396.0 million tons, roughly four times the 1978 level, making China the second largest oil user worldwide. The country became a net oil importer in 1993, and between 1993 and 2008, its net import dependency - a yardstick for energy security - soared from 7.5% to 50.0%. China's increased demand for oil has made the country a global energy player of critical importance. Although the literature on the global implications of China's oil use has proliferated, relatively few studies have attempted to examine ''how China uses oil.'' Hence, this study covers every oil-consuming facility and sector in China, exploring the patterns of, and factors involved in, oil demand by power plants, oil refineries, heat plants and, gas-works, and industrial, transport, agricultural, household and commercial sectors. It concludes that in virtually all sectors in China, oil demand will grow, with transport and industry leading the way. (author)

  14. Environmental Degradation in Oil Producing Areas of Niger Delta ...

    African Journals Online (AJOL)

    Due to oil exploration and other human activities in the Niger Delta region, there is evidence of environmental degradation all over the area (Oronto, 1998). Environmental degradation is occasioned by consistent flow of industrial waste, oil spills, gas flares, fire disaster, acid rain, flooding erosion, etc., which has led to the ...

  15. After Macondo: how has Brazil reacted to the largest accidental marine oil spill in history?

    Energy Technology Data Exchange (ETDEWEB)

    Schwind, William Prescott [Thompson and Knight LLP, Houston, TX (United States); Porto, Nara Galeb [Thompson and Knight LLP, Dallas, TX (United States)

    2012-07-01

    The Macondo spill in the U.S. Gulf of Mexico was an undeniable and unprecedented environmental disaster. To many critics, however, the damage to the environment was exacerbated by harm to the economy, as a drilling moratorium and a regulatory slowdown practically eliminated new offshore drilling, cost both the nation and the region thousands of jobs and millions of dollars, and dealt a severe set-back to the offshore oil and gas industry in the United States. Over two years after the spill, the industry is still struggling to recover. What does Macondo mean for Brazil? As Brazil eyes its own abundant offshore oil and gas resources, the country is grappling with the environmental and political fallout of two recent spills that, while much smaller than Macondo, turned the public spotlight squarely on the possibility of a similar disaster in Brazilian waters. This article highlights the regulatory measures that were or are expected to be implemented in the United States and Brazil in the wake of Macondo, reviews the effects of the recent offshore spills in Brazil, and discusses evolutions in the contractual allocations of risks and responsibility in the international and the Brazilian oil and gas industry in response to Macondo. (author)

  16. The Potential of Microalgae Lipids for Edible Oil Production.

    Science.gov (United States)

    Huang, Yanfei; Zhang, Dongmei; Xue, Shengzhang; Wang, Meng; Cong, Wei

    2016-10-01

    The objective of this study was to evaluate the potential of oil-rich green algae, Chlorella vulgaris, Scenedesmus obliquus, and Nannochloropsis oceanica, to produce edible oil with respect to lipid and residue properties. The results showed that C. vulgaris and N. oceanica had similarly much higher lipid recovery (about 50 %) in hexane extraction than that of S. obliquus (about 25 %), and C. vulgaris had the highest content of neutral lipids among the three algae. The fatty acid compositions of neutral lipids from C. vulgaris and S. obliquus were mainly C16 and C18, resembling that of vegetable oils. ARA and EPA were the specific valuable fatty acids in lipids of N. oceanica, but the content of which was lower in neutral lipids. Phytol was identified as the major unsaponifiable component in lipids of the three algae. Combined with the evaluation of the ratios in SFA/MUFA/PUFA, (n-6):(n-3) and content of free fatty acids, lipids obtained from C. vulgaris displayed the great potential for edible oil production. Lipids of N. oceanica showed the highest antioxidant activity, and its residue contained the largest amounts of protein as well as the amino acid compositions were greatly beneficial to the health of human beings.

  17. Oil Production, The Price Crash and Uncertainty in Climate Change

    Science.gov (United States)

    Murray, J. W.

    2015-12-01

    World oil production increased to about 74 million barrels per day by January 2005, and was fairly constant until 2011 when it started to increase to 77.8 mb/d in 2014. This spectacular increase of 4 mb/d was almost entirely due to a sharp increase in production in the US from shale formations, called light tight oil (LTO). World oil production minus this increase in US LTO Production has been flat since 2005 at about 74 mb/d. When US production starts to decline, world oil production likely will as well. That surge is forecast to end soon because LTO is expensive to produce, the first year decline rates are extremely high requiring many new wells each year to maintain or increase production and the most productive locations have already been drilled. It is unprofitable for the Exploration and Production (E&P) companies. Full-year free cash flow has been negative for most tight oil E&P companies since 2009. The total negative cash flow for the 19 largest E&P companies totaled 10.5B in 2014. The surge in US LTO production created an imbalance in global supply and demand and resulted in a 50% decrease in the price of oil. The tight-oil producers who were are financially marginal at an oil price greater than 90 per barrel are even more so at the lower price. As a result the surge in US production of LTO is declining, making it unlikely that world oil production will exceed the present value of about 28 Gb/yr (equivalent to 75 mb/d) (175 EJ/yr). Many of the SRES (IPCC Special Report on Emission Scenarios) and RCP (IPCC Representative Concentration Pathways) projections (especially RCP 8.5 and 6) require CO2 emissions due to oil consumption in the range of 32 Gb/yr to 57 Gb/yr (200 to 350 EJ/yr). The higher values would require a doubling of world oil production. It is highly uncertain whether the higher CO2 scenarios will be reached. This is an element of uncertainty missing from most considerations of future climate change.

  18. Effect of hydrothermal pretreatment on product distribution and characteristics of oil produced by the pyrolysis of Huadian oil shale

    International Nuclear Information System (INIS)

    Jiang, Haifeng; Deng, Sunhua; Chen, Jie; Zhang, Mingyue; Li, Shu; Shao, Yifei; Yang, Jiaqi; Li, Junfeng

    2017-01-01

    Highlights: • The maximum yield of pyrolysis oil is obtained at the pretreatment time of 2.0 h. • The higher H/C ratio of oil is obtained after hydrothermal pretreatment. • Hydrothermal treatment promotes the formation of aliphatic hydrocarbons in the oil. • Long pretreatment time causes the increase of heavier oil fraction in the oil. - Abstract: In this work, Huadian oil shale from China was treated by hydrothermal pretreatment at 200 °C with 1.0–2.5 h in order to investigate the effect of hydrothermal pretreatment on pyrolysis product distribution and characteristics of oil. The differences in the elemental composition and thermal behavior between the untreated and treated oil shale were analyzed and compared. The hydrothermal treatment process could decompose oxygen functional groups and remove some water soluble inorganics in oil shale, which decreased the formation of gas and water during the pyrolysis. However, hydrothermal pretreatment was conducive to increasing shale oil yield. The maximum of oil yield was obtained at the pretreatment time of 2.0 h. The enhancement of the free-radical reactions during the pyrolysis and the reduction of the secondary cracking reactions of the generated oil vapors were considered as the main reasons. The oil obtained by the treated oil shale had a higher H/C ratio, indicating it had high energy content. The analysis results of chemical compositions in oils showed that the relative content of aliphatic hydrocarbons significantly increased after hydrothermal pretreatment. The further analysis demonstrated that the increase in the pretreatment time caused the generated long chain hydrocarbons tended to be directly released from oil shale particles, and were condensed into the oil.

  19. Laboratory scale conceptual process development for the isolation of renewable glycolaldehyde from pyrolysis oil to produce fermentation feedstock

    NARCIS (Netherlands)

    Vitasari, C.R.; Meindersma, G.W.; Haan, de A.B.

    2012-01-01

    A laboratory-based separation sequence has been developed to produce an aqueous glycolaldehyde solution as fermentation feedstock. It consists of water extraction of pyrolysis oil, acid removal, water removal, octanol extraction, phenolic removal, back-extraction, and washing. The octanol-free

  20. Africa's largest long-lasting insecticide-treated net producer: lessons from A to Z Textiles.

    Science.gov (United States)

    Masum, Hassan; Shah, Ronak; Schroeder, Karl; Daar, Abdallah S; Singer, Peter A

    2010-12-13

    Field trials have demonstrated the efficacy of insecticide-treated nets, and the WHO has recently endorsed a shift toward Long-Lasting Insecticide Treated nets (LLINs) due to factors such as reduced distribution costs. However, the need for LLINs poses several challenges. Is it possible to manufacture LLINs in large quantities in the African continent, where malaria is most endemic? When production is located in low-income countries, what role is played by local funding and employment, scaling up manufacturing, and partnerships? What factors influence availability and pricing? A case study of A to Z Textiles was undertaken to answer the question of how large-scale production of LLINs can occur in a low income setting. One of the largest sources of bed nets for Africa, A to Z Textiles is Africa-based, and its Tanzanian operations have a production capacity of 30 million LLINs per year, along with full WHO recommendation for its nets. Our analysis is based on semi-structured interviews with key informants familiar with A to Z, site visits in Tanzania, and literature reviews.This paper discusses the history and current status of A to Z Textiles, identifies the factors that led to its success, and suggests policy considerations that could support similar initiatives in the future. Local funding, scaling up manufacturing, technology transfer, and partnerships all played important roles in A to Z's ascent, as did perceived benefits of local employment and capacity-building. Regulatory issues and procurement rules acted as barriers. A to Z cost-effectively manufactures high-quality LLINs where malaria is most endemic. With a production capacity of 30 million LLINs per year, and full WHOPES (WHO Pesticide Evaluation Scheme) certification, A to Z Textiles demonstrates how key health goods can be successfully produced in the low-income countries that use them. Its example may be instructive and of high interest to readers in the malaria community, especially in developing

  1. FY 2000 report on the research cooperation project - Research cooperation in developmental support for oil producing countries. Development of the new field of usage of Orinoco oil for fuel of gas turbine combined power generation; 2000 nendo san'yukoku kaihatsu shien kenkyu kyoryoku jigyo seika hokokusho. Gasu tabin fukugo hatsuden nenryo muke Orinoko oil no shin yoto kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    For the purpose of spreading the usage of Orinoco crude oil which is suffering from sluggishness in the export and heightening the economical efficiency in Venezuela, research cooperation was made for a project for reduction of the power cost and environmental loads in Japan by producing the advanced gas turbine use fuel oil from Orinoco oil and exporting it to Japan. In this project, conducted were the technical verification that the gas turbine use fuel oil (GTF) can be produced from Orinoco oil and the economical verification based on the result thereof. As a result of the technical verification, it was confirmed that from the Orinoco crude oil which is heavy, high in sulfur and high in heavy metal concentration, a refined oil satisfying the following properties of the advanced gas turbine fuel oil could be trial-produced using the distilling unit, SDA unit, desulfurizer and de-metaling unit: vanadium concentration: 0.5 wtppm or below; sodium + potassium concentration: 1.0 wtppm or below; viscosity: 20 cSt or below at 135 degrees C. Further, from the economical verification, the good result was obtained that the price was lower than the LNG price and the domestic price of A heavy oil/C heavy oil. (NEDO)

  2. Sensory description of marine oils through development of a sensory wheel and vocabulary.

    Science.gov (United States)

    Larssen, W E; Monteleone, E; Hersleth, M

    2018-04-01

    The Omega-3 industry lacks a defined methodology and a vocabulary for evaluating the sensory quality of marine oils. This study was conducted to identify the sensory descriptors of marine oils and organize them in a sensory wheel for use as a tool in quality assessment. Samples of marine oils were collected from six of the largest producers of omega-3 products in Norway. The oils were selected to cover as much variation in sensory characteristics as possible, i.e. oils with different fatty acid content originating from different species. Oils were evaluated by six industry expert panels and one trained sensory panel to build up a vocabulary through a series of language sessions. A total of 184 aroma (odor by nose), flavor, taste and mouthfeel descriptors were generated. A sensory wheel based on 60 selected descriptors grouped together in 21 defined categories was created to form a graphical presentation of the sensory vocabulary. A selection of the oil samples was also evaluated by a trained sensory panel using descriptive analysis. Chemical analysis showed a positive correlation between primary and secondary oxidation products and sensory properties such as rancidity, chemical flavor and process flavor and a negative correlation between primary oxidation products and acidic. This research is a first step towards the broader objective of standardizing the sensory terminology related to marine oils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

    Science.gov (United States)

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit

    2009-05-01

    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity.

  4. Treatment of Oily Wastewater Produced From Old Processing Plant of North Oil Company

    Directory of Open Access Journals (Sweden)

    Dr. Faris Hammoodi Al-Ani

    2012-03-01

    Full Text Available The main objectives of this research were to study and analyses oily wastewater characteristics originating from old-processing plant of North Oil Company and to find a suitable and simple method to treat the waste so it can be disposed off safely. The work consists of two stages; the first was the study of oily wastewater characteristics and its negative impacts. The results indicated that oil and grease were the most dominant pollutant with concentration range between 1069 – 3269.3 mg/l that must be removed; other pollutants were found to be within Iraqi and EPA standards. The next stage was the use of these characteristics to choose the proper technology to treat that wastewater. This stage was divided into two stages: the first stage was a jar tests to find the optimum doses of alum, lime and powdered activated carbon (PAC. The second stage was the treatment by a batch pilot plant constructed for this purpose employing the optimum doses as determined from the first stage to treat the waste using a flotation unit followed by a filtration-adsorption unit. The removal efficiencies of flotation unit for oil and grease, COD, and T.S.S found to be 0.9789, 0.974, and 0.9933, respectively, while the removal efficiency for T.D.S was very low 0.0293. From filtration – adsorption column the removal efficiencies of oil and grease, T.D.S, COD, and T.S.S were found to be 0.9486, 0.8908, 0.6870, and 0.7815, respectively. The overall removal efficiencies of pilot plant were 0.9986, 0.8939, 0.9921, and 0.9950, respectively. The results indicated that this type of treatment was the simplest and most effective method that can be used to treat produced oily wastewater before disposal

  5. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-05-31

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

  6. Genetic determinism of oil acidity among some DELI oil palm (Elaeis ...

    African Journals Online (AJOL)

    USER

    2016-08-24

    Aug 24, 2016 ... Key words: Elaeis guineensis Jacq., free fatty acid content, crude palm oil, inheritance. INTRODUCTION. The oil palm (Elaeis ... of world's production of vegetable oils. The highest palm oil producing countries ... Without prior refining, acidic palm oil is improper for human consumption (Anonymous, 2005).

  7. sustainable management of nigeria's oil wealth: legal challenges ...

    African Journals Online (AJOL)

    RAYAN_

    link that may exist between oil resource and economic development, there is the .... examine the impact of revenue allocation on the sustainable management of ... Nigeria, the biggest oil exporter with the largest natural gas reserves in. Africa24 and ..... Issues' (PhD dissertation, the Law of the Sea and Maritime Law Institute,.

  8. Waste vegetable oil survey report

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, R. [Science enterprise Algoma seA, Sault Ste. Marie, ON (Canada)

    2009-02-06

    This study was conducted to estimate potential sources of feedstock waste oils for biodiesel production in the Sault Ste. Marie region of Ontario. Two feedstocks were investigated over a period of several months, notably cooking oil and waste vegetable oil. The study was conducted to examine oil throughput, collection practices, and to gauge interest in local initiatives. A distribution list of commercial restaurant listings was developed, and surveys were conducted with members of private enterprises, city government, and non-profit stakeholders in the region. Average volumes of waste vegetable oil were presented for different types of restaurants. The various types of oil used in the restaurants were also quantified. Results of the study showed a positive public response to the idea of a local biodiesel initiative. Steak house, fast food, and Italian establishments generated the largest portion of waste vegetable oil amongst survey respondents. However, the highest response rates came from establishments with little or no oil consumption. Many franchise fast food restaurants are already in contracts with waste oil removal companies. 3 tabs., 3 figs.

  9. The oil and gas industry and the Canadian economy: a backgrounder

    International Nuclear Information System (INIS)

    Curran, R.

    2000-02-01

    The impact of the oil and natural gas industry on the Canadian economy is explained in terms of employment, balance of trade, products, government revenues, international technology trade and industry support to the community. It is reported that the industry employs almost one half million people in Canada; is the second largest contributor to Canada's balance of trade; generate billions of dollars for the economy and pays hundreds of millions of dollars in taxes and its employees contribute millions of dollars and thousands of hours of time to charitable and community organizations. The industry is also one of the major contributors to Canada's technology export through its leadership in high technology exploration methods, cold climate and offshore operations, enhanced recovery technologies, producing and processing heavy oil; mining and upgrading oil sands bitumen, oil-well firefighting techniques and environmental protection technologies, among others. Citing Canada's cold climate and energy-intensive industries, hence the need for large quantities of energy, the booklet offers a rationale for the industry's need to continue to be profitable in order to develop new sources of oil and gas production and invest in energy-efficient technologies. Assuming continued profitability, combined with more efficient use of oil and gas, the Foundation remains confident that the industry will provide energy security and export revenues for the benefit of all Canadians. 12 refs., photos

  10. AL-PAM assisted filtration of mature fine tailings produced from oil sands development

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, A.; Masliyah, J.; Xu, Z. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2010-07-01

    The inventory of mature fine tailings (MFT) produced by the oil sands extraction process continues to grow, and is considered as a long-term environmental liability. Large amounts of water are trapped in the MFT, and the tailings ponds present a threat to local wildlife and ecosystems. This PowerPoint presentation discussed a research project that is being conducted to identify conditions for producing stackable MFT deposits. The study is investigating various types and dosages of polymers and evaluating the degrees of MFT dilution and process configurations needed to maximize re-usable water recovery. Polymeric flocculants include AL-PAM and Magnafloc 1011. Settling tests have demonstrated that 50 ppm is the optimum dosage for both polymers when MFT is diluted to 5 wt percent solids, while 75 ppm of AL-PAM and 100 ppm of MF1011 are optimum dosages for MFT diluted to 10 wt percent solids. A novel supernatant filtration method was then used to produce filtration cakes and water. The study showed that the supernatant can be used to further dilute the MFTs. tabs., figs.

  11. Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01.

    Science.gov (United States)

    Partovi, Maryam; Lotfabad, Tayebe Bagheri; Roostaazad, Reza; Bahmaei, Manochehr; Tayyebi, Shokoufe

    2013-06-01

    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals. Unexpectedly, wastes could stimulate the biodegradation activity of MR01 bacterial cells and thus biosurfactant synthesis beyond that of the refined soybean oil. This is evident from higher yields of biodegradation and production, as revealed in the waste cultures (Ydeg|(Soybean oil) = 53.9 % YP/S|(Soybean oil) = 0.31 g g(-1), respectively). Although production yields were approximately the same in the three waste cultures (YP/S|(wastes) =/~ 0.5 g g(-1)), microbial activity resulted in higher yields of biodegradation (96.5 ± 1.13 %), maximum specific growth rate (μ max = 0.26 ± 0.02 h(-1)), and biosurfactant purity (89.6 %) with a productivity of 14.55 ± 1.10 g l(-1), during the bioconversion of soapstock into biosurfactant. Consequently, applying soybean oil soapstock as a substrate for the production of biosurfactant with commercial value has the potential to provide a combination of economical production with environmental protection through the biosynthesis of an environmentally friendly (green) compound and reduction of waste load entering the environment. Moreover, this work inferred spectrophotometry as an easy method to detect rhamnolipids in the biosurfactant products.

  12. Utilization of tuna roe and using inulin as oil replacer for producing value added omega-3 mayonnaise product

    Directory of Open Access Journals (Sweden)

    Kanrawee Hunsakul

    2016-03-01

    Full Text Available Background: The fishery industry has been important for Thailand’s economy for more than 30 years. For example, Thailand isthe world’s largest canned tuna producer and exporter. However, onlyordinary meat or white meatis usedfor raw materialin canned tuna products. Whileroe, viscera, head and dark meataresold at cheap prices,with theseby-products being usedto feed plant or local human food,its nutritive values withfat,protein and minerals arestill high. It is well known that tuna is a good source of polyunsaturated fatty acid (PUFA, including Eicosapentaenoicacid (EPA and Docosahexanoic acid (DHA.People around the world pay more attention to eatingsaladsconsisting of fruits and vegetables, in addition todressing. Generally, mayonnaise, a kind of salad dressing, consists of chicken egg yolk(12-15% and soybean oil (30-65%. Both of these ingredients contain very high saturated fatty acid contents. Therefore, because normal mayonnaise is high in fat content and low in polyunsaturated fatty acid, this product is not ideal for people on a diet or those who are trying to control their weight. Objective: To increase omega-3 through tuna roe substitution and to replace fat content using inulin gel. Methods: Tuna roe was prepared by soaking in galangalsolutionextracted with 95% ethanol for removal fishy/rancidity odor. Inulin powder 45 g was suspended in 55 ml of water before being brought to heat at temperature 80oC for 30min to form a gel and stored at 4oC. Treatment ofmakingomega-3 mayonnaise product was started using 100% tuna roe substitution for egg yolk. Thereafter, inulin gel was added to replace vegetable oil at 0, 25, 50, 75 and 100%. Basic mayonnaise containing egg yolk and 0% inulin gel (100% soy bean oil was used asthecontrol sample. Color and emulsion stability testswere monitored for physical quality. pH value, peroxide value (PV and thiobarbituric acid reactive substances (TBARS were used for chemical qualityanalyses. Total viable

  13. Dynamics of two methanogenic microbiomes incubated in polycyclic aromatic hydrocarbons, naphthenic acids, and oil field produced water.

    Science.gov (United States)

    Oko, Bonahis J; Tao, Yu; Stuckey, David C

    2017-01-01

    Oil field produced water (OFPW) is widely produced in large volumes around the world. Transforming the organic matter in OFPW into bioenergy, such as biomethane, is one promising way to sustainability. However, OFPW is difficult to biologically degrade because it contains complex compounds such as naphthenic acids (NAs), or polycyclic aromatic hydrocarbons (PAHs). Although active microbial communities have been found in many oil reservoirs, little is known about how an exotic microbiome, e.g. the one which originates from municipal wastewater treatment plants, would evolve when incubated with OFPW. In this study, we harvested methanogenic biomass from two sources: a full-scale anaerobic digester (AD) treating oil and gas processing wastewater (named O&G sludge), and from a full-scale AD reactor treating multiple fractions of municipal solid wastes (named MS, short for mixed sludge). Both were incubated in replicate microcosms fed with PAHs, NAs, or OFPW. The results showed that the PAHs, NAs, and OFPW feeds could rapidly alter the methanogenic microbiomes, even after 14 days, while the O&G sludge adapted faster than the mixed sludge in all the incubations. Two rarely reported microorganisms, a hydrogenotrophic methanogen Candidatus methanoregula and a saccharolytic fermenter Kosmotoga , were found to be prevalent in the PAHs and OFPW microcosms, and are likely to play an important role in the syntrophic degradation of PAHs and OFPW, cooperating with methanogens such as Methanoregula, Methanosarcina, or Methanobacterium . The dominant phyla varied in certain patterns during the incubations, depending on the biomass source, feed type, and variation in nutrients. The sludge that originated from the oil and gas processing wastewater treatment (O&G) reactor adapted faster than the one from municipal solid waste reactors, almost certainly because the O&G biomass had been "pre-selected" by the environment. This study reveals the importance of biomass selection for other

  14. Is Estonian oil shale beneficial in the future?

    International Nuclear Information System (INIS)

    Reinsalu, Enno

    1998-01-01

    subsidization of oil processing is normal for the state as for an owner of all oil shale industry. Electricity is relatively cheap and the mining company has a possibility for producing concentrated oil shale for processing as a by-product. Particularly the mining company is interested in cash flow and agrees with cheaper trade oil shale concentrates than cost price. The motivation of subsidization on the State level is that the power company can not produce more electricity than it can trade at present, but the oil plant is able to trade all produced shale oil, including export. It is obvious that in the case of privatisation, the subsidisation of oil processing will cease. The power industry is utilising the largest part of the oil shale energy, but is delivering only 11-12% of the oil shale bed energy to the filial consumer. The reason is great losses in generation and distribution of electricity. The oil processing industry is also only delivering a low 10 per cent of the oil shale deposit energy, but oil is not as high quality of an energy form as electricity. A revision has been made of oil shale reserves according to market economy conditions. The bases for the prognosis is the electricity demand projection and the presumption that energy utilisation per gross domestic product must decrease significantly. One takes the energy rating of 35 G J per m 2 (about 10 MWh per m 2 ) as a critical value for a mine able bed. Mining fields have the energy rating from 36.5 to 46.3 G J per m 2 , with an average of 42.2 G J per m 2

  15. The oil and gas equipment and services market in New Zealand

    International Nuclear Information System (INIS)

    2002-01-01

    In terms of petroleum exploration investment, New Zealand ranks seventeenth in the world. The oil, gas, and petrochemical industry is mainly concentrated in Taranaki, a province where considerable onshore and offshore exploration and production (E and P) activity is taking place. The largest licensing round in the petroleum industry of New Zealand was recently completed, with 41 applications emanating from 21 companies were submitted, related to 26 new exploration blocks located onshore and frontier Taranaki basin. Starting in 2007, New Zealand is expected to suffer from a natural gas shortfall due to the gradual depletion of the main natural gas field called Maui. As a result, the development of the Pohokura project is being afforded top priority. In 2002, in the province of Taranaki, it is expected that 125 million dollars will be spent in support of exploration activity. The areas of oil and gas exploration such as seismic surveying services, geophysical services, drilling, monitoring and logging, and field management technologies represent potential opportunities for Canadian companies specialized in the provision of oil and gas equipment and services. For the period 2002-2005, New Zealand is planning significant offshore deep-water E and P projects with a view to ensure a secure supply of natural gas. The largest domestic oil and gas E and P company in New Zealand is Todd Petroleum Mining Company, while the largest foreign-owned oil and gas production company operating in the country is Shell Petroleum Mining Company. Responsible for over 90 per cent of oil and gas production, the largest joint oil service company in New Zealand is Shell Todd Oil Service (STOS), 50 per cent owned by Shell Petroleum Mining Company and 50 per cent by Todd Petroleum Mining Company. Canadian equipment and services might be particularly well received by companies such as STOS and Natural Gas Corporation. Partners in oil and gas projects are sought by companies such as Shell. Higher

  16. Use of Oil Palm Waste as a Renewable Energy Source and Its Impact on Reduction of Air Pollution in Context of Malaysia

    International Nuclear Information System (INIS)

    Begum, Shahida; Kumaran P; Jayakumar M

    2013-01-01

    One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane – a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO 2 . These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.

  17. Use of Oil Palm Waste as a Renewable Energy Source and Its Impact on Reduction of Air Pollution in Context of Malaysia

    Science.gov (United States)

    Begum, Shahida; P, Kumaran; M, Jayakumar

    2013-06-01

    One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane - a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO2. These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.

  18. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  19. Olive oil: an overview of the Japanese market

    Directory of Open Access Journals (Sweden)

    Capogna Daniela

    2016-11-01

    Full Text Available The article presents an overview of olive oil consumption in Japan, Asia’s largest per capita consumer and at present 14th in the world. Since the early 1990s, total purchases have increased from 4943 t in the 1992/93 campaign to 61 903 t in 2014/15, a more than 12-fold increase over the space of 22 years. Olive oil, in particular extra virgin olive oil, is appreciated by Japanese people primarily for its beneficial effects on health, as well as for its agreeable taste and for its cultural and historical associations. Other key factors to be considered are economic and cultural. Japan is one of the world’s largest economies; disposable incomes are high and these are reflected in household consumption behavior. Culturally, the country is increasingly open to the outside world, discovering and adopting practices from elsewhere, notably the West. This openness, allied to the country’s relative affluence, is demonstrated in the consumption of olive oil, a pillar of the Mediterranean Diet.

  20. Producing deep-water hydrocarbons

    International Nuclear Information System (INIS)

    Pilenko, Thierry

    2011-01-01

    Several studies relate the history and progress made in offshore production from oil and gas fields in relation to reserves and the techniques for producing oil offshore. The intention herein is not to review these studies but rather to argue that the activities of prospecting and producing deep-water oil and gas call for a combination of technology and project management and, above all, of devotion and innovation. Without this sense of commitment motivating men and women in this industry, the human adventure of deep-water production would never have taken place

  1. AN OVERVIEW OF GAS-UPGRADING TECHNOLOGIES FOR BIOHYDROGEN PRODUCED FROM TREATMENT OF PALM OIL MILL EFFLUENT

    Directory of Open Access Journals (Sweden)

    IZZATI NADIA MOHAMAD

    2017-03-01

    Full Text Available To date, a high energy demand has led to massive research efforts towards improved gas-separation techniques for more energy-efficient and environmenttally friendly methods. One of the potential alternative energies is biogas produced from the fermentation of liquid waste generated from the oil-extraction process, which is known as palm oil mill effluent (POME. Basically, the gas produced from the POME fermentation process consists mainly of a CO2 and H2 gas mixture. CO2 is known as an anthropogenic greenhouse gas, which contributes towards the climate change phenomenon. Hence, it is crucial to determine a suitable technique for H2 separation and purification with good capability for CO2 capture, as this will reduce CO2 emission to the environment as well. This paper reviewed the current gas-separation techniques that consist of absorption, adsorption and a membrane in order to determine the advantages and disadvantages of these techniques towards the efficiency of the separation system. Crucial aspects for gas-separation techniques such as energy, economic, and environmental considerations are discussed, and a potential biohydrogen and biogas-upgrading technique for industrial POME application is presented and concluded in this paper. Based on the comparison on these aspects, water scrubbing is found to be the best technique to be used in the biogas-upgrading industry, followed by membrane and chemical scrubbing as well as PSA. Hence, these guidelines are justified for selecting the best gas-upgrading technique to be used in palm oil mill industry applications.

  2. Investigation on the Influence of Bio-catalytic Enzyme Produced from Fruit and Vegetable Waste on Palm Oil Mill Effluent

    Science.gov (United States)

    Rasit, Nazaitulshila; Chee Kuan, Ooi

    2018-04-01

    Pre-consumer waste from supermarkets, such as vegetables and fruits dreg are always discarded as solid waste and disposed to landfill. Implementing waste recovery method as a form of waste management strategy will reduce the amount of waste disposed. One of the ways to achieve this goal is through fermentation of the pre-consumer supermarket waste to produce a solution known as garbage enzyme. This study has been conducted to produce and characterize biocatalytic garbage enzyme and to evaluate its influence on palm oil mill effluent as a pre-treatment process before further biological process takes place. Garbage enzyme was produced by three-month long fermentation of a mixture of molasses, pre-consumer supermarket residues, and water in the ratio of 1:3:10. Subsequently, the characterization of enzyme was conducted based on pH, total solids (TS), total suspended solids (TSS), total dissolved solids (TDS), chemical oxygen demand (COD), and enzyme activities. The influence of produced enzyme was evaluated on oil & grease (O&G), TSS and COD of palm oil mill effluent (POME). Different levels of dilution of garbage enzyme to POME samples (5%, 10%, 15%) were explored as pre-treatment (duration of six days) and the results showed that the garbage enzyme contained bio-catalytic enzyme such as amylase, protease, and lipase. The pre-treatment showed removal of 90% of O&G in 15% dilution of garbage enzyme. Meanwhile, reduction of TSS and COD in dilution of 10% garbage enzyme were measured at 50% and 25% respectively. The findings of this study are important to analyse the effectiveness of pre-treatment for further improvement of anaerobic treatment process of POME, especially during hydrolysis stage.

  3. Methane emissions due to oil and natural gas operations in the Netherlands

    International Nuclear Information System (INIS)

    Oonk, J.; Vosbeek, M.E.J.P.

    1995-01-01

    The Netherlands is the 4th largest natural gas producer, with about 4% of the total world natural gas production. Also, significant amounts of oil are extracted. For this reason it can be expected that methane emissions from oil and natural gas operations contribute significantly to total methane emissions. Estimates so far, made by both the Dutch government and the industry vary widely. A renewed estimate is made of methane emissions from oil and natural gas production, based on a detailed engineering study of sources of methane in the system and quantification of source strengths. The estimate is validated by interpretation of atmospheric measurements. 1990 methane emissions from natural gas production were estimated to be 62 to 108 kton. The main cause of methane emissions is the venting of off-gases from processes and passing-valve emissions in the off-shore. Emissions from oil production were estimated to be 14 kton, mainly caused by venting of off-gases from processes. Best feasible options for emission reduction are: identification and replacement of leaking valves, and reuse or re-compression of off-gases from processes. Both options are existing policy in the Netherlands. 23 figs., 38 tabs., 2 appendices, 53 refs

  4. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous pseudomonas aeruginosa WJ-1 using waste vegetable oils.

    Science.gov (United States)

    Xia, Wen-Jie; Luo, Zhi-Bin; Dong, Han-Ping; Yu, Li; Cui, Qing-Feng; Bi, Yong-Qiang

    2012-03-01

    A bacterial strain was isolated and cultured from the oil excavation areas in tropical zone in northern China. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, WJ-1, was identical to those of cultured representatives of the species Pseudomonas aeruginosa. This bacterium was able to produce a type of biosurfactant. Compositional analysis revealed that the extracted biosurfactant was composed of high percentage lipid (∼74%, w/w) and carbohydrate (∼20%, w/w) in addition to a minor fraction of protein (∼6%, w/w). The best production of 50.2 g/l was obtained when the cells were grown on minimal salt medium containing 6.0% (w/v) glucose and 0.75% (w/v) sodium nitrate supplemented with 0.1% (v/v) element solution at 37 °C and 180 rpm after 96 h. The optimum biosurfactant production pH value was found to be 6.0-8.0. The biosurfactant of WJ-1, with the critical micelle concentration of 0.014 g/L, could reduce surface tension to 24.5 mN/m and emulsified kerosene up to EI(24) ≈95. The results obtained from time course study indicated that the surface tension reduction and emulsification potential was increased in the same way to cell growth. However, maximum biosurfactant production occurred and established in the stationary growth phase (after 90 h). Thin layer chromatography, Fourier transform infrared spectrum, and mass spectrum analysis indicate the extracted biosurfactant was affiliated with rhamnolipid. The core holder flooding experiments demonstrated that the oil recovery efficiency of strain and its biosurfactant was 23.02% residual oil.

  5. Preparation and characterization of oil palm frond based cellulose hydrogel and its swelling properties

    Science.gov (United States)

    Selvakumaran, Nesha; Lazim, Mohd Azwani Shah bin Mat

    2016-11-01

    Malaysia is one of the largest producer of palm oil thus the quantity of biomass each year from this industry is very large. The oil palm frond from palm oil industry can be used as a source of cellulose which can be incorporated into hydrogel to be used as adsorbent. This research reported how to disperse 2 % cellulose in a `green-solution' prepared by using urea and sodium hydroxide. Polymerization is carried out between the monomers polyacrylamide and cellulose using microwave to form hydrogel. Hydrogel with 2 % cellulose have a swelling index of 1814 %. Meanwhile, zero hydrogel which is made with only polyacrylamide has swelling index of 15 %. Scanning electron microscope shows that cellulose hydrogel have a rough surface compared with zero hydrogel. This might attribute to the high swelling index for cellulose hydrogel compared with zero hydrogel. Meanwhile, FTIR shows that successful polymerization has occurred between polyacrylamide and cellulose with the characteristic band at 1657.99 cm-1 which is for N-H bond.

  6. A Comparative Study of the Eruptive and Non-eruptive Flares Produced by the Largest Active Region of Solar Cycle 24

    Science.gov (United States)

    Sarkar, Ranadeep; Srivastava, Nandita

    2018-02-01

    We investigate the morphological and magnetic characteristics of solar active region (AR) NOAA 12192. AR 12192 was the largest region of Solar Cycle 24; it underwent noticeable growth and produced 6 X-class flares, 22 M-class flares, and 53 C-class flares in the course of its disc passage. However, the most peculiar fact of this AR is that it was associated with only one CME in spite of producing several X-class flares. In this work, we carry out a comparative study between the eruptive and non-eruptive flares produced by AR 12192. We find that the magnitude of abrupt and permanent changes in the horizontal magnetic field and Lorentz force are significantly smaller in the case of the confined flares compared to the eruptive one. We present the areal evolution of AR 12192 during its disc passage. We find the flare-related morphological changes to be weaker during the confined flares, whereas the eruptive flare exhibits a rapid and permanent disappearance of penumbral area away from the magnetic neutral line after the flare. Furthermore, from the extrapolated non-linear force-free magnetic field, we examine the overlying coronal magnetic environment over the eruptive and non-eruptive zones of the AR. We find that the critical decay index for the onset of torus instability was achieved at a lower height over the eruptive flaring region, than for the non-eruptive core area. These results suggest that the decay rate of the gradient of overlying magnetic-field strength may play a decisive role to determine the CME productivity of the AR. In addition, the magnitude of changes in the flare-related magnetic characteristics are found to be well correlated with the nature of solar eruptions.

  7. Exploratory assessment of the economic gains of a pre-salt oil field in Brazil

    International Nuclear Information System (INIS)

    Araujo Rodrigues, Larissa; Luís Sauer, Ildo

    2015-01-01

    In recent years, Brazil has made public several oil discoveries located in deep waters, below the salt layer. Discoveries are steadily enhancing national reserves and have brought the country into a new role in the global oil industry. This paper aims at investigating the economic gains that could be expected from a Brazilian oil field in the pre-salt region. Analyses were conducted based on the Libra field, the largest oil discovery in Brazil until now, with approximately 10 billion barrels. The results were calculated for different scenarios of oil prices, companies' arrangements and regulatory regimes. The findings suggest that economic gains could be higher for the Brazilian Government if the oil production were conducted under a service contract scheme. However, considering the current production-sharing regime in force for pre-salt areas, economic gains could be higher if a bidding process was conducted, ensuring for the Brazilian Government a higher participation in the oil to be produced. Additionally, the results demonstrate that under the current rules applied for the production-sharing regime, the government quota of oil has decreased over time, putting at risk economic results. - Highlights: • The paper investigates the economic gains of a pre-salt oil field in Brazil. • Government earnings could be higher under a service contract scheme. • The first production-sharing regime bid did not encourage competition. • Under the production-sharing rules government quota of oil decreases over time.

  8. Agrochemical characterization of vermicomposts produced from residues of Palo Santo (Bursera graveolens) essential oil extraction.

    Science.gov (United States)

    Carrión-Paladines, Vinicio; Fries, Andreas; Gómez-Muñoz, Beatriz; García-Ruiz, Roberto

    2016-12-01

    Fruits of Palo Santo (Bursera graveolens) are used for essential oil extraction. The extraction process is very efficient, because up to 3% of the fresh fruits can be transformed into essential oil; however, a considerable amount of waste is concurrently produced (>97% of the fresh biomass). Recent developments in Ecuadorian policies to foster environmentally friendly agroforestry and industrial practices have led to widespread interest in reusing the waste. This study evaluated the application of four vermicomposts (VMs), which are produced from the waste of the Palo Santo fruit distillation in combination with other raw materials (kitchen leftovers, pig manure, goat manure, and King Grass), for agrochemical use and for carbon (C) and nitrogen (N) decomposition in two soils with different textures. The results showed that the vermicompost mixtures (VMM) were valuable for agricultural utilisation, because total N (min. 2.63%) was relatively high and the C/N ratio (max. 13.3), as well as the lignin (max. 3.8%) and polyphenol (max. 1.6%) contents were low. In addition, N availability increased for both soil types after the application of the VMM. In contrast, N became immobile during decomposition if the VM of the pure waste was added. This likely occurred because of the relatively low total N (1.16%) content and high C/N ratio (35.0). However, the comparatively low C decomposition of this VM type makes its application highly recommendable as a strategy to increase the levels of organic matter and C, as well as for soil reclamation. Overall, these results suggest that the residues of the Palo Santo essential oil extraction are a potential source for vermicompost production and sustainable agriculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Experiment on the Effects of Storage Duration of Biodiesel produced from Crude Palm Oil, Waste Cooking oil and Jatropha

    Science.gov (United States)

    Nanihar, Nadiarulah; Khalid, Amir; Mustaffa, Norrizal; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Sunar, Norshuhaila Mohamed

    2017-10-01

    Biodiesel based on vegetable oil is an alternative that had various advantage in term of sustainability and environmental attractive compare to others conventional diesel. Biodiesel is product of any fat or oil that derived from any organic sources through a refinery process called transesterification process. This research investigates the effects of storage duration and variant ambient condition on the biodiesel properties and characteristics. In this study, there are three types of blending which is 5vol% blends ( 5vol% plant oil 95vol% diesel), 10vol% blending (10vol% plant oil and 90vol% diesel) and 15vol% blending (15vol% plant oil and 85vol% diesel) each called CPO5 (crude palm oil 5vol%), CPO10 (crude palm oil 10vol%),CPO15 (crude palm oil 15vol%), JO5 (jatropha oil 5vol%), JO10 (jatropha oil 10vol%),and JO15 (jatropha oil 15vol%) respectively. Biodiesel samples were stored at indoor condition and outdoor condition for a 3 months period. The fuel properties such as acid value, viscosity, density, water content and flash point are observed with the laboratory instrument. Flash point value and water content increased under both of indoor and outdoor condition and a steady data for viscosity and density. However, acid value at indoor condition nearly constant but increased dramatically for outdoor condition over the time.

  10. Heavy crude and tar sands - the long-term oil reserve

    Energy Technology Data Exchange (ETDEWEB)

    Barnea, J

    1984-10-01

    It appears that heavy crude and tar sands occur in many sedimentary areas, and estimates of known world-wide quantities exceed those known for conventional light crude resources. Although there are not precise figures available, production could be as high as three million barrels per day, with Venezuela, the US, and Canada the largest producers. There are different scales to measure the costs of production because of differences in the quality of various types of heavy crude and tar sands. Economic development of these resources should banish fears of oil scarcity in the foreseeable future. A center for information exchange through international meetings and publications is under development.

  11. How the Addition of Spices and Herbs to Virgin Olive Oil to Produce Flavored Oils Affects Consumer Acceptance.

    Science.gov (United States)

    Issaoui, Manel; Flamini, Guido; Souid, Sondess; Bendini, Alessandra; Barbieri, Sara; Gharbi, Ines; Toschi, Tullia Gallina; Cioni, Pier Luigi; Hammami, Mohamed

    2016-06-01

    With the aim to expand the olive oil market to a larger number of consumers who are not familiar with the sensory characteristics of virgin olive oil, the use of novel products known as "flavored olive oils", obtained by adding different kind of spices and aromatic herbs, is spreading in many countries. In order to test consumer acceptability of this type of product, in a country (Tunisia) in which virgin olive oil is regularly consumed, flavored olive oils were prepared by adding aromatic extracts of thyme, oregano, a mix of herbs (used as pizza seasoning), rosemary, and basil to a monovarietal Chemlali virgin olive oil and a consumer test on 206 subjects was performed. Selected quality parameters (free acidity, peroxide number, oxidative stability, specific absorption at K232 nm and K270 nm) were also measured and no significant variations were detected. Slight differences were found concerning the content of minor compounds (chlorophylls, carotenoids and total phenols). On the other hand, notable differences were seen in the profiles of volatile compounds, which appeared to be responsible for the observed variability in consumer acceptance. Although the unflavored oil was more appreciated than the flavored ones, among the latter, thyme flavored olive oil was the most appreciated.

  12. Is It Feasible for China to Optimize Oil Import Source Diversification?

    OpenAIRE

    Xu, Jian; Zhang, Jin-Suo; Yao, Qin; Zhang, Wei

    2014-01-01

    In 2013, China imported 282 million tons of crude oil with an external dependence of 58.1%, surpassing the USA as the world’s largest net oil importer. An import source diversification strategy has been adopted by China to ensure oil supply security and to prevent oil supply disruption. However, the strategy is restricted by the imbalance of oil reserves. What is the reasonable and clear objective of the diversification strategy under an imbalanced environment? How do we assess the natural i...

  13. Proceedings of the 1999 Oil and Gas Conference: Technology Options for Producer Survival

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2000-04-12

    The 1999 Oil & Gas Conference was cosponsored by the U.S. Department of Energy (DOE), Office of Fossil Energy, Federal Energy Technology Center (FETC) and National Petroleum Technology Office (NPTO) on June 28 to 30 in Dallas, Texas. The Oil & Gas Conference theme, Technology Options for Producer Survival, reflects the need for development and implementation of new technologies to ensure an affordable, reliable energy future. The conference was attended by nearly 250 representatives from industry, academia, national laboratories, DOE, and other Government agencies. Three preconference workshops (Downhole Separation Technologies: Is it Applicable for Your Operations, Exploring and developing Naturally Fractured Low-Permeability Gas Reservoirs from the Rocky Mountains to the Austin Chalk, and Software Program Applications) were held. The conference agenda included an opening plenary session, three platform sessions (Sessions 2 and 3 were split into 2 concurrent topics), and a poster presentation reception. The platform session topics were Converting Your Resources Into Reserves (Sessions 1 and 2A), Clarifying Your Subsurface Vision (Session 2B), and High Performance, Cost Effective Drilling, Completion, Stimulation Technologies (Session 3B). In total, there were 5 opening speakers, 30 presenters, and 16 poster presentations.

  14. Estimation the Amount of Oil Palm Trees Production Using Remote Sensing Technique

    Science.gov (United States)

    Fitrianto, A. C.; Tokimatsu, K.; Sufwandika, M.

    2017-12-01

    Currently, fossil fuels were used as the main source of power supply to generate energy including electricity. Depletion in the amount of fossil fuels has been causing the increasing price of crude petroleum and the demand for alternative energy which is renewable and environment-friendly and it is defined from vegetable oils such palm oil, rapeseed and soybean. Indonesia known as the big palm oil producer which is the largest agricultural industry with total harvested oil palm area which is estimated grew until 8.9 million ha in 2015. On the other hand, lack of information about the age of oil palm trees and changes also their spatial distribution is mainly problem for energy planning. This research conducted to estimate fresh fruit bunch (FFB) of oil palm and their distribution using remote sensing technique. Cimulang oil palm plantation was choose as study area. First step, estimated the age of oil palm trees based on their canopy density as the result from Landsat 8 OLI analysis and classified into five class. From this result, we correlated oil palm age with their average FFB production per six months and classified into seed (0-3 years, 0kg), young (4-8 years, 68.77kg), teen (9-14 years, 109.08kg), and mature (14-25 years, 73.91kg). The result from satellite image analysis shows if Cimulang plantation area consist of teen old oil palm trees that it is covers around 81.5% of that area, followed by mature oil palm trees with 18.5% or corresponding to 100 hectares and have total production of FFB every six months around 7,974,787.24 kg.

  15. Africa's largest long-lasting insecticide-treated net producer: lessons from A to Z Textiles

    Directory of Open Access Journals (Sweden)

    Daar Abdallah S

    2010-12-01

    Full Text Available Abstract Background Field trials have demonstrated the efficacy of insecticide-treated nets, and the WHO has recently endorsed a shift toward Long-Lasting Insecticide Treated nets (LLINs due to factors such as reduced distribution costs. However, the need for LLINs poses several challenges. Is it possible to manufacture LLINs in large quantities in the African continent, where malaria is most endemic? When production is located in low-income countries, what role is played by local funding and employment, scaling up manufacturing, and partnerships? What factors influence availability and pricing? Discussion A case study of A to Z Textiles was undertaken to answer the question of how large-scale production of LLINs can occur in a low income setting. One of the largest sources of bed nets for Africa, A to Z Textiles is Africa-based, and its Tanzanian operations have a production capacity of 30 million LLINs per year, along with full WHO recommendation for its nets. Our analysis is based on semi-structured interviews with key informants familiar with A to Z, site visits in Tanzania, and literature reviews. This paper discusses the history and current status of A to Z Textiles, identifies the factors that led to its success, and suggests policy considerations that could support similar initiatives in the future. Local funding, scaling up manufacturing, technology transfer, and partnerships all played important roles in A to Z’s ascent, as did perceived benefits of local employment and capacity-building. Regulatory issues and procurement rules acted as barriers. A to Z cost-effectively manufactures high-quality LLINs where malaria is most endemic. Summary With a production capacity of 30 million LLINs per year, and full WHOPES (WHO Pesticide Evaluation Scheme certification, A to Z Textiles demonstrates how key health goods can be successfully produced in the low-income countries that use them. Its example may be instructive and of high interest to

  16. Transesterification of Jatropha oil with dimethyl carbonate to produce fatty acid methyl ester over reusable Ca–La–Al mixed-oxide catalyst

    International Nuclear Information System (INIS)

    Syamsuddin, Y.; Murat, M.N.; Hameed, B.H.

    2015-01-01

    Highlights: • Transesterification of Jatropha oil over CaO-based catalyst. • Physicochemical properties of the synthesized catalyst. • Best reaction condition for FAME synthesis. • The catalyst showed high activity and stability for transesterification with Jatropha oil. - Abstract: Jatropha oil (JO) was transesterified with dimethyl carbonate (DMC) to produce fatty acid methyl ester (FAME) over synthesized Ca–La–Al mixed-oxide catalyst. The influence of different parameters on transesterification of Jatropha oil was investigated in a batch reactor. These parameters included reaction temperature (110–160 °C), reaction time (30–240 min), DMC-to-oil molar ratio (4:1–18:1) and catalyst loading amount (1–10 wt.%, based on the oil weight). The mixed-oxide catalyst with a molar ratio of 6:2:1 (Ca–La–Al) showed high catalytic activity for FAME synthesis. More than 90% of FAME was obtained under the following reaction conditions: 150 °C, reaction temperature; 180 min, reaction time; 15:1, DMC-to-oil molar ratio; and 7 wt.% amount of catalyst loading. The catalyst also exhibited high stability and could be reused for up to five cycles with less than 5% yield reduction per cycle.

  17. Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

    1991-03-01

    The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

  18. The macroeconomic effects of oil price fluctuations on a small open oil-producing country. The case of Trinidad and Tobago

    International Nuclear Information System (INIS)

    Lorde, Troy; Thomas, Chrystol; Jackman, Mahalia

    2009-01-01

    Using vector autoregressive (VAR) methodology, this paper empirically investigates the macroeconomic effects of oil price fluctuations on Trinidad and Tobago. Overall, we find that the price of oil is a major determinant of economic activity of the country. Our impulse response functions suggest that following a positive oil price shock, output falls within the first two years followed by positive and growing response. We also investigate the macroeconomic impact of oil price volatility. Results suggest that an unanticipated shock to oil price volatility brings about random swings in the macroeconomy; however, only government revenue and the price level exhibit significant responses. With regard to the magnitude of the responses, shocks to oil price volatility tend to yield smaller macroeconomic impacts in comparison to shocks to oil prices. Variance decompositions suggest that the price of oil is a major component of forecast variation for most macroeconomic variables. Finally, Granger-causality tests indicate causality from oil prices to output and oil prices to government revenue. (author)

  19. Determination of vegetable oils and fats adulterants in diesel oil by high performance liquid chromatography and multivariate methods.

    Science.gov (United States)

    Brandão, Luiz Filipe Paiva; Braga, Jez Willian Batista; Suarez, Paulo Anselmo Ziani

    2012-02-17

    The current legislation requires the mandatory addition of biodiesel to all Brazilian road diesel oil A (pure diesel) marketed in the country and bans the addition of vegetable oils for this type of diesel. However, cases of irregular addition of vegetable oils directly to the diesel oil may occur, mainly due to the lower cost of these raw materials compared to the final product, biodiesel. In Brazil, the situation is even more critical once the country is one of the largest producers of oleaginous products in the world, especially soybean, and also it has an extensive road network dependent on diesel. Therefore, alternatives to control the quality of diesel have become increasingly necessary. This study proposes an analytical methodology for quality control of diesel with intention to identify and determine adulterations of oils and even fats of vegetable origin. This methodology is based on detection, identification and quantification of triacylglycerols on diesel (main constituents of vegetable oils and fats) by high performance liquid chromatography in reversed phase with UV detection at 205nm associated with multivariate methods. Six different types of oils and fats were studied (soybean, frying oil, corn, cotton, palm oil and babassu) and two methods were developed for data analysis. The first one, based on principal component analysis (PCA), nearest neighbor classification (KNN) and univariate regression, was used for samples adulterated with a single type of oil or fat. In the second method, partial least square regression (PLS) was used for the cases where the adulterants were mixtures of up to three types of oils or fats. In the first method, the techniques of PCA and KNN were correctly classified as 17 out of 18 validation samples on the type of oil or fat present. The concentrations estimated for adulterants showed good agreement with the reference values, with mean errors of prediction (RMSEP) ranging between 0.10 and 0.22% (v/v). The PLS method was

  20. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp.

    Science.gov (United States)

    Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Hassan, El Barbary; Dempster, Thomas A

    2018-03-01

    Upgrading of bio-oil obtained from hydrothermal liquefaction (HTL) of algae is necessary for it to be used as a fuel. In this study, bio-oil obtained from HTL of Nannochloropsis sp. was upgraded using five different catalysts (Ni/C, ZSM-5, Ni/ZSM-5, Ru/C and Pt/C) at 300 °C and 350 °C. The upgraded bio-oil yields were higher at 300 °C; however, higher quality upgraded bio-oils were obtained at 350 °C. Ni/C gave the maximum upgraded bio-oil yield (61 wt%) at 350 °C. However, noble metal catalysts (Ru/C and Pt/C) gave the better upgraded bio-oils in terms of acidity, heating values, and nitrogen values. The higher heating value of the upgraded bio-oils ranged from 40 to 44 MJ/kg, and the nitrogen content decreased from 5.37 to 1.29 wt%. Most of the upgraded bio-oils (35-40 wt%) were in the diesel range. The major components present in the gaseous products were CH 4 , CO, CO 2 and lower alkanes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Market brief : the oil and gas market in Bolivia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    This report presents a market overview of the oil and gas sector in Bolivia and describes the potential for Canadian suppliers to enter into joint ventures to establish local production facilities and transfer technology expertise. Bolivia has an estimated 54.9 trillion cubic feet of natural gas reserves and 440.5 million barrels of proven oil reserves. The main hope for future economic growth in Bolivia hinges on increasing natural gas exports. Opportunities for Canadian companies exist in exploration, production and pipeline construction. There is also a demand for drilling machinery equipment, pipeline components and services for the expansion of the proposed Bolivia-Brazil pipeline. The largest energy company in Bolivia is Repsol YPF which operates through its subsidiary Empress Petrolera Andina. The largest end-users of oil and gas equipment and services include domestic upstream operators and international oil majors and international exploration and production companies. This report describes the key factors shaping market growth along with the competitive environment, local capabilities, international competition and the Canadian position. Considerations for market-entry in Bolivia were also outlined.

  2. 77 FR 5385 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Revision of...

    Science.gov (United States)

    2012-02-03

    ... the ``order.'' The order is effective under the Agricultural Marketing Agreement Act of 1937, as... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 985 [Doc. Nos. AMS-FV-10-0094; FV11-985-1A FIR] Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West...

  3. 78 FR 23673 - Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West; Revision of...

    Science.gov (United States)

    2013-04-22

    ... the ``order.'' The order is effective under the Agricultural Marketing Agreement Act of 1937, as... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 985 [Doc. Nos. AMS-FV-11-0088; FV12-985-1A FIR] Marketing Order Regulating the Handling of Spearmint Oil Produced in the Far West...

  4. Immersion piston for producing crude oil and liquids from boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, I; Hornyos, J

    1967-02-09

    When using a free piston to pump an oil well, oil and gas accumulates above and below the piston; upon venting the gas pressure above the piston, the gas pressure below it drives the piston and the oil above it to the surface. In the past, such pistons were too heavy and did not run tight in the tubing, causing loss of efficiency and high gas consumption. According to this invention, the piston is made of aluminum or plastic; it consists of at least 2 parts flexibly connected by wire rope or plastic strings, and is equipped with a labyrinth gasket and a paraffin scraper. (3 claims)

  5. China’s Oil Rush in Africa

    Science.gov (United States)

    2006-07-01

    the loss of an estimated two million people. Today CNPC is the largest shareholder in GNPOC. The other shareholders in the consortium are Petronas ...several Chinese companies doing business in Ethiopia.27 On June 13, 2003, Malaysian oil giant Petronas announced the signing of an exclusive 25-year...Petrochemical Corporation, appears to be the primary oil firm currently operating in Gambella, under a subcontract with Petronas . Its base camp is located

  6. 7 CFR 985.56 - Excess oil.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Excess oil. 985.56 Section 985.56 Agriculture... HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST Order Regulating Handling Volume Limitations § 985.56 Excess oil. Oil of any class in excess of a producer's applicable annual allotment shall be identified as...

  7. The Kashagan Field: A Test Case for Kazakhstan's Governance of Its Oil and Gas Sector

    International Nuclear Information System (INIS)

    Campaner, N.; Yenikeyeff, S.

    2008-01-01

    This study focuses on the factors behind Kazakhstan's decision to renegotiate the terms of the existing Production Sharing Agreements (PSAs) with International Oil Companies (IOCs), in the context of the development of the huge Kashagan oil field. The development of Kashagan, one of the largest and most recently discovered oil fields in Kazakhstan, is crucial for Kazakhstan's ambitions of becoming a global oil producer. Kazakhstan, which has the largest oil reserves in the Caspian Sea region, is the second largest regional producer after Russia in the former Soviet Union. The country's potential for oil exports is also strategically significant as a future source of non- OPEC supplies. Amongst the CIS states, Kazakhstan is considered one of the most open countries for foreign investments. International projects in the form of Joint Ventures, Production Sharing Agreements (PSAs) or exploration/field concessions have brought foreign investments into the country's natural resources sector, particularly in the oil and gas industry. However, new developments have recently taken place, which have marked a shift in the Kazakh government's approach towards foreign investment in its energy sector. This study will therefore examine the following issues: - Kazakhstan's plans to abandon the practice of attracting foreign investments in its energy sector through new PSAs. - The recent entry of state-controlled KazMunaiGaz into the consortium operating over the Kashagan field and its impact on IOCs. - The impact of high oil prices on the negotiating power of producer states in the context of Kazakhstan's new stance on PSAs. Specifically, this study will focus on the following key factors, which will seek to further explain the changes in Kazakhstan's attitude toward the Kashagan PSA2: - Operational factors - management of the project, development strategy, cost estimates, levels of production and export markets. - Consortium factors - the relative strength of the investment

  8. Effects of oil drops containing Lactobacillus salivarius WB21 on periodontal health and oral microbiota producing volatile sulfur compounds.

    Science.gov (United States)

    Suzuki, Nao; Tanabe, Kazunari; Takeshita, Toru; Yoneda, Masahiro; Iwamoto, Tomoyuki; Oshiro, Sueko; Yamashita, Yoshihisa; Hirofuji, Takao

    2012-03-01

    The objective of this paper is to evaluate the effects of oil drops containing Lactobacillus salivarius WB21 on periodontal health and oral microbiota producing volatile sulfur compounds (VSCs). For this study, 42 subjects were randomly assigned to receive oil samples containing L. salivarius WB21 or a placebo for two weeks. Oral assessment and saliva collection were performed on days 1 and 15. Bacterial analysis was performed using the real-time polymerase chain reaction and terminal restriction fragment length polymorphism (T-RFLP). In both the experimental and placebo groups, the average probing depth, number of periodontal pockets, and the percentage of bleeding on probing (BOP) decreased while stimulated salivary flow increased on day 15. BOP was reduced in the experimental group compared with the placebo group (P = 0.010). In the experimental group, total bacterial numbers decreased, and the number of L. salivarius increased. The number of Prevotella intermedia, which is correlated with hydrogen sulfide concentration in mouth air, increased in the placebo group and did not change in the experimental group. T-RFLP analysis found that the peak area proportions representing Porphyromonas gingivalis, P. intermedia, Tannerella forsythensis, and Fusobacterium nucleatum decreased in the experimental group, although there was no significant change in the bacterial composition. Thus we observed oil drops containing L. salivarius WB21 improved BOP and inhibited the reproduction of total and VSC-producing periodontopathic bacteria compared with the placebo group, but also showed the limit of its efficacy in controlling VSCs producing and periodontal pathogens.

  9. 7 CFR 985.58 - Exempt oil.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Exempt oil. 985.58 Section 985.58 Agriculture... HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST Order Regulating Handling Volume Limitations § 985.58 Exempt oil. Oil held by a producer or handler on the effective date of this subpart shall not be...

  10. POLICY ANALYSIS OF PRODUCED WATER ISSUES ASSOCIATED WITH IN-SITU THERMAL TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Keiter; John Ruple; Heather Tanana

    2011-02-01

    Commercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limitations on water consumption imposed by interstate compacts and the Endangered Species Act, the State of Utah normally does not issue new water rights in oil shale or oil sands rich areas. Prospective oil shale and oil sands developers that do not already hold adequate water rights can acquire water rights from willing sellers, but large and secure water supplies may be difficult and expensive to acquire, driving oil shale and oil sands developers to seek alternative sources of supply. Produced water is one such potential source of supply. When oil and gas are developed, operators often encounter ground water that must be removed and disposed of to facilitate hydrocarbon extraction. Water produced through mineral extraction was traditionally poor in quality and treated as a waste product rather than a valuable resource. However, the increase in produced water volume and the often-higher quality water associated with coalbed methane development have drawn attention to potential uses of produced water and its treatment under appropriations law. This growing interest in produced water has led to litigation and statutory changes that must be understood and evaluated if produced water is to be harnessed in the oil shale and oil sands development process. Conversely, if water is generated as a byproduct of oil shale and oil sands production, consideration must be given to how this water will be disposed of or utilized in the shale oil production process. This report explores the role produced water could play in commercial oil shale and oil sands production, explaining the evolving regulatory framework associated with produced water, Utah water law and produced water regulation

  11. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    OpenAIRE

    Kurevija, Tomislav; Kukulj, Nenad; Rajković, Damir

    2007-01-01

    Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned...

  12. 17 CFR 210.4-10 - Financial accounting and reporting for oil and gas producing activities pursuant to the Federal...

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Financial accounting and... of General Application § 210.4-10 Financial accounting and reporting for oil and gas producing... section prescribes financial accounting and reporting standards for registrants with the Commission...

  13. Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes.

    Science.gov (United States)

    Peng, Chiung-Yu; Lan, Cheng-Hang; Lin, Pei-Chen; Kuo, Yi-Chun

    2017-02-15

    Cooking oil fumes (COFs) contain a mixture of chemicals. Of all chemicals, aldehydes draw a great attention since several of them are considered carcinogenic and formation of long-chain aldehydes is related to fatty acids in cooking oils. The objectives of this research were to compare aldehyde compositions and concentrations in COFs produced by different cooking oils, cooking methods, and food types and to suggest better cooking practices. This study compared aldehydes in COFs produced using four cooking oils (palm oil, rapeseed oil, sunflower oil, and soybean oil), three cooking methods (stir frying, pan frying, and deep frying), and two foods (potato and pork loin) in a typical kitchen. Results showed the highest total aldehyde emissions in cooking methods were produced by deep frying, followed by pan frying then by stir frying. Sunflower oil had the highest emissions of total aldehydes, regardless of cooking method and food type whereas rapeseed oil and palm oil had relatively lower emissions. This study suggests that using gentle cooking methods (e.g., stir frying) and using oils low in unsaturated fatty acids (e.g., palm oil or rapeseed oil) can reduce the production of aldehydes in COFs, especially long-chain aldehydes such as hexanal and t,t-2,4-DDE. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. NM WAIDS: A PRODUCED WATER QUALITY AND INFRASTRUCTURE GIS DATABASE FOR NEW MEXICO OIL PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Martha Cather; Robert Lee; Ibrahim Gundiler; Andrew Sung; Naomi Davidson; Ajeet Kumar Reddy; Mingzhen Wei

    2003-04-01

    The New Mexico Water and Infrastructure Data System (NM WAIDS) seeks to alleviate a number of produced water-related issues in southeast New Mexico. The project calls for the design and implementation of a Geographical Information System (GIS) and integral tools that will provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions. The major components of this system are: (1) databases on produced water quality, cultural and groundwater data, oil pipeline and infrastructure data, and corrosion information, (2) a web site capable of displaying produced water and infrastructure data in a GIS or accessing some of the data by text-based queries, (3) a fuzzy logic-based, site risk assessment tool that can be used to assess the seriousness of a spill of produced water, and (4) a corrosion management toolkit that will provide operators with data and information on produced waters that will aid them in deciding how to address corrosion issues. The various parts of NM WAIDS will be integrated into a website with a user-friendly interface that will provide access to previously difficult-to-obtain data and information. Primary attention during the first six months of this project has been focused on creating the water quality databases for produced water and surface water, along with collection of corrosion information and building parts of the corrosion toolkit. Work on the project to date includes: (1) Creation of a water quality database for produced water analyses. The database was compiled from a variety of sources and currently has over 4000 entries for southeast New Mexico. (2) Creation of a web-based data entry system for the water quality database. This system allows a user to view, enter, or edit data from a web page rather than having to directly access the database. (3) Creation of a semi-automated data capturing system for use with standard water quality analysis forms. This system improves the

  15. NM WAIDS: A PRODUCED WATER QUALITY AND INFRASTRUCTURE GIS DATABASE FOR NEW MEXICO OIL PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Martha Cather; Robert Lee; Ibrahim Gundiler; Andrew Sung

    2003-09-24

    The New Mexico Water and Infrastructure Data System (NM WAIDS) seeks to alleviate a number of produced water-related issues in southeast New Mexico. The project calls for the design and implementation of a Geographical Information System (GIS) and integral tools that will provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions. The major components of this system are: (1) Databases on produced water quality, cultural and groundwater data, oil pipeline and infrastructure data, and corrosion information. (2) A web site capable of displaying produced water and infrastructure data in a GIS or accessing some of the data by text-based queries. (3) A fuzzy logic-based, site risk assessment tool that can be used to assess the seriousness of a spill of produced water. (4) A corrosion management toolkit that will provide operators with data and information on produced waters that will aid them in deciding how to address corrosion issues. The various parts of NM WAIDS will be integrated into a website with a user-friendly interface that will provide access to previously difficult-to-obtain data and information. Primary attention during the first six months of this project was focused on creating the water quality databases for produced water and surface water, along with collecting of corrosion information and building parts of the corrosion toolkit. Work on the project to date includes: (1) Creation of a water quality database for produced water analyses. The database was compiled from a variety of sources and currently has over 7000 entries for New Mexico. (2) Creation of a web-based data entry system for the water quality database. This system allows a user to view, enter, or edit data from a web page rather than having to directly access the database. (3) Creation of a semi-automated data capturing system for use with standard water quality analysis forms. This system improves the accuracy and speed

  16. Technological advancements revitalize conventional oil sector

    International Nuclear Information System (INIS)

    Thomson, L.

    2000-01-01

    Maturing reserves in the Western Canada Sedimentary Basin is resulting in a gradual shift of focus from huge new discoveries and wildcat gushers to developing new technologies for exploration and enhanced recovery techniques of production, keeping costs down and reducing environmental impacts, as a means of keeping conventional oil plays a viable force in the oil and gas industry. The value in refocusing efforts towards technology development is given added weight by a recent announcement by the Petroleum Communication Foundation, which stated that in addition to the oil sands and offshore oil and gas developments, one of the country's largest undeveloped oil resource is the 70 per cent of discovered crude oil in western Canadian pools that cannot be recovered by current conventional production techniques. Therefore, development of new technologies to exploit these currently unrecoverable resources is a matter of high priority. To remain competitive, the new techniques must also lower the cost of recovering oil from these sources, given that the cost of oil production in Canada is already higher than that in most other competing countries

  17. An energy-saving opportunity in producing lubricating oil using mixed-solventin simulated Rotary Disc Contacting (RDC) extraction tower

    Energy Technology Data Exchange (ETDEWEB)

    Hatamipour, M.S.; Fakhr Hoseini, S.M.; Tavakkoli, T.; Mehrkesh, A.H. [Chemical Engineering Department, University of Isfahan, Isfahan (Iran)

    2010-05-15

    Industrial processes are the most energy consuming processes in the world. Modification of these processes helps us with controlling the consumption of energy and minimizing energy loss. Changing raw materials is one of the ways through which we can optimize industrial processes. In this paper, a new solvent mixture (furfural + a co-solvent) was used for the extraction of lubricating base oil from lube-oil cut. It was found that the energy consumption of the new solvent mixture for obtaining a product with the same quality was much lower than the original solvent. By using this new solvent mixture, the operating temperature of the top of tower was reduced by 30 K. This leads to a high reduction in energy consumption in extraction of aromatics from lube oil. At our new extraction process by means of using new solvent mixture, the maximum energy saving was 38% per cubic meter of produced raffinate. (author)

  18. Near-Infrared Spectroscopy Combined with Multivariate Calibration to Predict the Yield of Sesame Oil Produced by Traditional Aqueous Extraction Process

    Directory of Open Access Journals (Sweden)

    Yong-Dong Xu

    2017-01-01

    Full Text Available Sesame oil produced by the traditional aqueous extraction process (TAEP has been recognized by its pleasant flavor and high nutrition value. This paper developed a rapid and nondestructive method to predict the sesame oil yield by TAEP using near-infrared (NIR spectroscopy. A collection of 145 sesame seed samples was measured by NIR spectroscopy and the relationship between the TAEP oil yield and the spectra was modeled by least-squares support vector machine (LS-SVM. Smoothing, taking second derivatives (D2, and standard normal variate (SNV transformation were performed to remove the unwanted variations in the raw spectra. The results indicated that D2-LS-SVM (4000–9000 cm−1 obtained the most accurate calibration model with root mean square error of prediction (RMSEP of 1.15 (%, w/w. Moreover, the RMSEP was not significantly influenced by different initial values of LS-SVM parameters. The calibration model could be helpful to search for sesame seeds with higher TAEP oil yields.

  19. Steam producing plant concept of 4S for oil sand extraction

    International Nuclear Information System (INIS)

    Matsuyama, Shinichiro; Nishiguchi, Youhei; Sakashita, Yoshiaki; Kasuga, Shoji; Kawashima, Masatoshi

    2009-01-01

    Plant concept of small fast reactor '4S' applying to continuous steam production for recovery of crude oil from oil sands was investigated. Assuming typical steam assisted gravity drainage (SAGD) plant whose production scale is 120,000 barrels per day of a crude oil, concept of nuclear steam supply system consisting of eight reactor modules for steam production and three reactor modules for electric generation of the 4S with a thermal rating of 135 MWt was established without any essential or significant design change from the preceding 4S with a thermal rating of 30 MWt. The 4S, provided for an oil sand extraction, will reduce greenhouse gas emission significantly, and has not much burden for development and licensing and has economic competitiveness. (author)

  20. Introduction to special section: China shale gas and shale oil plays

    Science.gov (United States)

    Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng

    2015-01-01

    In the last 10 years, the success of shale gas and shale oil productions as a result of technological advances in horizontal drilling, hydraulic fracturing and nanoscale reservoir characterization have revolutionized the energy landscape in the United States. Resource assessment by the China Ministry of Land and Resources in 2010 and 2012 and by the U.S. Energy Information Administration in 2011 and 2013 indicates China’s shale gas resource is the largest in the world and shale oil resource in China is also potentially significant. Inspired by the success in the United States, China looks forward to replicating the U.S. experience to produce shale gas to power its economy and reduce greenhouse gas emissions. By 2014, China had drilled 400 wells targeting marine, lacustrine, and coastal swamp transitional shales spanning in age from the Precambrian to Cenozoic in the last five years. So far, China is the leading country outside of North America in the viable production of shale gas, with very promising prospects for shale gas and shale oil development, from the Lower Silurian Longmaxi marine shale in Fuling in the southeastern Sichuan Basin. Geological investigations by government and academic institutions as well as exploration and production activities from industry indicate that the tectonic framework, depositional settings, and geomechanical properties of most of the Chinese shales are more complex than many of the producing marine shales in the United States. These differences limit the applicability of geologic analogues from North America for use in Chinese shale oil and gas resource assessments, exploration strategies, reservoir characterization, and determination of optimal hydraulic fracturing techniques. Understanding the unique features of the geology, shale oil and gas resource potential, and reservoir characteristics is crucial for sweet spot identification, hydraulic fracturing optimization, and reservoir performance prediction.

  1. Oil-producing flowers within the Iridoideae (Iridaceae): evolutionary trends in the flowers of the New World genera.

    Science.gov (United States)

    Chauveau, Olivier; Eggers, Lilian; Souza-Chies, Tatiana T; Nadot, Sophie

    2012-08-01

    Oil-producing flowers related to oil-bee pollination are a major innovation in Neotropical and Mexican Iridaceae. In this study, phylogenetic relationships were investigated among a wide array of New World genera of the tribes Sisyrinchieae, Trimezieae and Tigridieae (Iridaceae: Iridoideae) and the evolution of floral glandular structures, which are predominantly trichomal elaiophores, was examined in relation to the diversification of New World Iridaceae. Phylogenetic analyses based on seven molecular markers obtained from 97 species were conducted to produce the first extensive phylogeny of the New World tribes of subfamily Iridoideae. The resulting phylogenetic hypothesis was used to trace the evolutionary history of glandular structures present in the flowers of numerous species in each tribe. Hypotheses of differential diversification rates among lineages were also investigated using both topological and Binary-State Speciation and Extinction methods. Floral glandular structures and especially trichomal elaiophores evolved multiple times independently in the American tribes of Iridoideae. The distribution pattern of species displaying glandular trichomes across the phylogeny reveals lability in the pollination system and suggests that these structures may have played a significant role in the diversification of the Iridoideae on the American continent.

  2. Monitoring of pipeline oil spill fire events using Geographical Information System and Remote Sensing

    Science.gov (United States)

    Ogungbuyi, M. G.; Eckardt, F. D.; Martinez, P.

    2016-12-01

    Nigeria, the largest producer of crude oil in Africa occupies sixth position in the world. Despite such huge oil revenue potentials, its pipeline network system is consistently susceptible to leaks causing oil spills. We investigate ground based spill events which are caused by operational error, equipment failure and most importantly by deliberate attacks along the major pipeline transport system. Sometimes, these spills are accompanied with fire explosion caused by accidental discharge, natural or illegal refineries in the creeds, etc. MODIS satellites fires data corresponding to the times and spill events (i.e. ground based data) of the Area of Interest (AOI) show significant correlation. The open source Quantum Geographical Information System (QGIS) was used to validate the dataset and the spatiotemporal analyses of the oil spill fires were expressed. We demonstrate that through QGIS and Google Earth (using the time sliders), we can identify and monitor oil spills when they are attended with fire events along the pipeline transport system accordingly. This is shown through the spatiotemporal images of the fires. Evidence of such fire cases resulting from bunt vegetation as different from industrial and domestic fire is also presented. Detecting oil spill fires in the study location may not require an enormous terabyte of image processing: we can however rely on a near-real-time (NRT) MODIS data that is readily available twice daily to detect oil spill fire as early warning signal for those hotspots areas where cases of oil seepage is significant in Nigeria.

  3. Canada: The largest uranium producer

    International Nuclear Information System (INIS)

    Lowell, A.F.

    1985-01-01

    Despite all the current difficulties, previous erroneous forecasts and other mistakes, the longer term future looks good for uranium mining and for Canada's industry in particular. Saskatchewan continues to offer the most exciting new prospects, the huge and fabulously high grade Cigar Lake deposits being the most spectacular of the recent discoveries. Notwithstanding continuous mining for 30 years from Elliot Lake there still remain there significant uncommitted reserves which can be developed when the market for uranium is in better balance

  4. Oil shale activities in China

    International Nuclear Information System (INIS)

    Peng, D.; Jialin, Q.

    1991-01-01

    China has abundant oil shale resources, of the Early Silurian to Neogene age, the most important being the Tertiary period. The proved oil shale reserves in Fushun amount to 3.6 billion t, in Maoming 4.1 billion t. In Fushun, oil shale is produced by open-pit mining as a byproduct of coal, in Maoming it is also mined in open pits, but without coal. In China, scale oil has been produced from oil shale for 60 years. Annual production of crude shale oil amounts to about 200 000 t. The production costs of shale oil are lower than the price of crude petroleum on the world market. China has accumulated the experience and technologies of oil shale retorting. The Fushun type retort has been elaborated, in which the latent and sensible heat of shale coke is well utilized. But the capacity of such retort is relatively small, therefore it is suitable for use in small or medium oil plants. China has a policy of steadily developing shale oil industry. China is conducting oil shale research and developing oil shale processing technology. Much attention is being pay ed to the comprehensive utilization of oil shale, shale oil, and to environmental problems. In China, oil shale is mostly used for producing shale by retorting, attention will also be paid to direct combustion for power generation. Great achievements in oil shale research have been made in the eighties, and there will be a further development in the nineties. (author), 12 refs., 3 tabs

  5. Dynamics of the Asia-Pacific oil market

    International Nuclear Information System (INIS)

    Yamaguchi, N.D.

    1996-01-01

    The Asia-Pacific could become the world's largest oil market with an estimated 10 million b/d new demand by 2010. At the same time less Asian crude will be available for the world market. Refinery expansion is likely to be insufficient and imports of refined products will rise. The Asia-Pacific market could be the world's largest middle distillate importer and a major centre of trade for essentially every other petroleum product and form of commercial energy. (Author)

  6. Effects of pollution from oil shale mining in Estonia

    International Nuclear Information System (INIS)

    Vallner, L.; Sepp, K.

    1993-01-01

    The largest commercially exploited oil shale deposit in the world is in northeast Estonia. The accumulation of solid residues by oil shale mines and processing plants has resulted in numerous dumps and ash hills, which are polluting the environment. The groundwater and streams are highly polluted by sulphates, phenols and oil products. A dump hill of radioactive wastes poses a serious threat to the Baltic Sea. Local people suffer from diseases more often than in other regions of Estonia. (author)

  7. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  8. The information content of supplemental reserve-based replacement measures relative to that of historical cost income and its cash and accrual components of oil and gas producing companies

    International Nuclear Information System (INIS)

    Spear, N.A.

    1992-01-01

    The empirical analysis indicated that two of the three reserve-based quantity replacement measures are very useful, in terms of explaining the security returns of full cost oil and gas producing companies during the release week of the 1982-1986 annual reports or 10-K filings of these companies. The analysis also indicated that two of the three reserve-based value replacement measures are very useful, in terms of explaining the security returns of full cost oil and gas producing companies during the release week of the 1984-1986 annual reports or 10-K filings. For the period 1987-1988, the empirical analysis indicated that all of the reserve-based quantity and value replacement measures are not useful, in terms of explaining the security returns of full cost oil and gas producing companies during the release week of the annual reports or 10-K filings. The empirical analysis showed no consistent evidence to indicate any systematic difference between the implications of the cash and accrual components of earnings of either the full cost or the successful efforts oil and gas producing companies during the release week of the annual report or 10-K filings

  9. WCB - the little oil patch that could

    International Nuclear Information System (INIS)

    Knoll, R. G.

    1999-01-01

    The globally dominant position of the Western Canadian Basin (WCB) in innovative exploitation technology (horizontal wells) and the major role it plays in related technical pursuits (underbalanced drilling, extended reach drilling, coiled tubing and multi-branch technology) are discussed. This enviable position has been gained despite the fact that in comparison to the world's major producing areas, the WCB is a region of relatively thin, varied, depleted reservoirs of limited reserves and meagre profit margins. Yet in this marginal setting, oil production increased over 90 per cent in the last decade, in large part due to the exponential growth of horizontal well applications. It is argued that Canada's leadership in exploitation technology is not simply a result of the thin, depleted reservoirs, but is promoted by a combination of many factors, foremost among them being a collective spirit of co-operation and innovation among the oil companies. The variance in reservoir setting, the corporate culture, the entrepreneurial spirit, a competitive service market, extremes of environment, a stable political and economic framework close to the largest diversified markets (i.e. the USA) also have played important contributory roles. 3 refs., 1 tab

  10. Peculiarity of radioactivity pollution of manufacturing environment gas and oil producing firms of the apsheron region

    International Nuclear Information System (INIS)

    Mamedov, A.M.; Alekperova, J.A.

    2002-01-01

    Full text: Present time protection of the biosphere from technogene pollution is the important problem, having common to all mankind value. In circuits of the technogene pollution of the environment the soil is a carrying on link for through soil the contaminants freely go to air environment, in underground waters in plants and in foodstuff of a vegetative and animal genesis. In subsequent these contaminants on the indicated chains by penetrating in an organism of the people render an ill effect on their health. In this plane the radiological contamination of soil introduces still large dangerous. As the radionuclides of soil can render as external radiation, and by getting in an organism with air, water and foodstuff can cause internal radiation. In this plane, for detection of a role of gas and oil producing firms in radiological contamination soil as object of an environment, we conduct researches by a hygienic estimation of radiological contamination of soil of territory of oil-fields OOGE 'Gum adasi' of the Apsheron region. By spectrometric method were studied a natural background radiation and radioactivity of soil of different territories of shop of complex opening-up of oil. Established, that for the raw tank the specific activity reaches 4438-9967 Bk/kg, close of the product repair shop the radioactivity reached 650- 700 micro R/hour. In territory of the region 'Gum adasi', where the waste from cleaning chisel tubes were accumulated, the radioactivity made 600 micro R/hour. These indexes the superior background level is significant. The analysis of power spectrums a gamma of radiations is model from the indicated sites has shown, that the radioactivity is conditioned by isotopes of a radium. The researches have allowed to demonstrate a radioactivity technogene of impurity of rocks to recommend urgent dumping of above-stated waste in bunkers on sites, retracted by it. Thus, was established, that gas and oil producing firms contributing to radiological

  11. The opening up of Middle Eastern Oil Producing countries

    International Nuclear Information System (INIS)

    Giannesini, J.F.

    2000-01-01

    Between them, Saudi Arabia, Iraq, Iran and Kuwait control nearly 56 % of the world's oil reserves. They account for almost 25 % of production. There are signs that they are opening their territories to foreign companies in different ways and to various degrees, according to the country. The reasons are technical (decline of production and human resources), economic (increasing state budgetary requirements and growing oil production investment costs) and geopolitical (protective military isolation of territories and regimes). The opening up to these countries will in the future, have a major impact on the strategies of large western company operators. (authors)

  12. The U.S. natural gas and oil resource base is abundant; but can we produce what the country needs?

    International Nuclear Information System (INIS)

    Ewing, T.E.

    1994-01-01

    Recent studies agree that the United States has abundant resources of gas and oil left to find and produce over the next 50--75 years -- if its exploration and production companies are given the resources to do the job. The NPC's estimate of 1,295 TCF of natural gas (advanced technology case) represents a resource/present production ration of 68 years. A similar estimate for oil gives 62 years. Furthermore, these resource estimates have been increasing through the 1980s, as the effects of new geological, geophysical, and engineering technologies has become more apparent. However, only 30% of this tremendous resource will be available under today's business-as-usual economic regime. The rest of the resource will be accessed if: (1) tax policies (and financial and trade policies) are adopted to stabilize prices and stimulate exploration and production (estimated 27% of the resource base); (2) technology is developed, transferred, and used (17%); (3) environmental regulation is held to a balanced level, considers economic costs as well as environmental benefits, and is applied consistently (13%); (4) access to Federal lands is eased for environmentally responsible drilling and development (13%). To convert America's gas and oil resources into delivered products in a timely manner, assuring the nation's gas users of a reliable supply -- and contribute up to $8.7 trillion to the nation's economy -- a doubling of industry effort is required, even at today's high levels of finding and producing efficiency. Coordinated action by industry, government, and the investment community is required to secure the future development of energy supplies. Government in particular must develop policies that encourage the needed investment in America's natural gas and oil

  13. Virgin olive oil yeasts: A review.

    Science.gov (United States)

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Macro factors in oil futures returns

    International Nuclear Information System (INIS)

    Le Pen, Yannick; Sevi, Benoit

    2012-01-01

    We investigate the macro factors that can explain the monthly oil futures return for the NYMEX WTI futures contract for the time period 1993:11 to 2010:03. We build a new database of 187 real and nominal macro-economic variables from developed and emerging countries and resort to the large factor approximate model to extract 9 factors from this dataset. We then regress crude oil return on several combinations of these factors. Our best model explains around 38% of the variability of oil futures return. More interestingly, the factor which has the largest influence on crude oil price is related to real variables from emerging countries. This result confirms the latest finding in the literature that the recent evolution in oil price is attributable to change in supply and demand conditions and not to the large increase in trading activity from speculators. (authors)

  15. Sleeving-back of horizontal wells to control downstream oil saturation and improve oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Greaves, M.; Saghr, A. M. [Bath Univ (United Kingdom)

    1998-12-31

    Air injection has become popular as an enhanced recovery technology, applicable over a wide variety of reservoir conditions including heavy, medium and light oils. One problem observed in light oil reservoirs is the tendency to desaturate the oil layer downstream of the moving front. This is particularly common in the case of thermal recovery processes. In this experiment designed to study ways to restrict the de-saturation of the oil layer, a modified horizontal producer well, incorporating a `sleeve-back` principal was used. The objective was to replicate the `toe-to-heel` displacement process occurring during heavy oil recovery, wherein downstream oil is essentially immobile due to its high viscosity. The `sleeve-back` of the well was achieved using a co-aligned, two-well assembly, so that the upstream section of the horizontal producer well was active, and continuously adjusted during propagation of the combustion front. The use of this continuous `sleeve-back` operation to control the level of de-saturation in the downstream section of a sand pack was successful as confirmed by the very high oil recovery achieved, equivalent to 93.5 per cent of oil in place. The level of CO{sub 2} production was also very high. The `sleeve-back` of the horizontal producer well made the light oil in-situ combustion more efficient compared to what would be expected in a fully-open well. The `sleeve-back` of the well also produced thermal contours in the sand pack that closely resembled those observed with heavy, highly viscous oil. By sealing-off the otherwise open well in the downstream part of the reservoir, the de-saturation of the oil layer was prevented. 9 refs., 4 tabs., 9 figs.

  16. Net oil exports embodied in China's international trade: An input–output analysis

    International Nuclear Information System (INIS)

    Tang, Xu; Zhang, Baosheng; Feng, Lianyong; Snowden, Simon; Höök, Mikael

    2012-01-01

    As the world's second largest oil importer, China has been one of the important factors which affect the global oil market. In recent years, China has attained great international trade surplus through exporting a large number of “Made in China” products even during the global economic crisis. Due to direct and indirect effects in production chain, each 'Made in China' product contains oil directly or indirectly. China is exporting much oil through “Made in China” products, which is not often considered even within China. An input–output model is established to calculate oil embodied in the international trade of China. The research results suggest the following: China's net oil exports embodied in the international trade were 87.02 million tonnes in 2007; manufacture of communication equipment, computers and other electronic equipment is the largest sector to export embodied oil; United States, China Hong Kong SAR and Netherlands are the top three countries and regions which benefit most from the embodied oil in “Made in China” products. China's adjusted degree of dependence on foreign oil is 24.9% in 2007, and 38.4% in 2011 if net oil exports embodied in international trade are considered. -- Highlights: ► Model is established based on IO analysis to calculate the net oil exports embodied in China's international trade. ► China's net oil exports through “Made in China” products are 87 million tones in 2007. ► United States, China Hong Kong SAR and Netherlands benefit most from the embodied oil in China's international trade. ► China's degree of dependence on foreign oil can be reduced obviously if oil embodied in international trade are considered.

  17. Lipase-catalyzed acidolysis of canola oil with caprylic acid to produce medium-, long- and medium-chain-type structured lipids

    DEFF Research Database (Denmark)

    Wang, Yingyao; Xia, Luan; Xu, Xuebing

    2012-01-01

    Lipase-catalyzed acidolysis of canola oil with caprylic acid was performed to produce structured lipids (SLs) containing medium-chain fatty acid (M) at position sn-1,3 and long-chain fatty acid (L) at the sn-2 position in a solvent-free system. Six commercial lipases from different sources were...

  18. Low level exposure to crude oil impacts avian flight performance: The Deepwater Horizon oil spill effect on migratory birds.

    Science.gov (United States)

    Perez, Cristina R; Moye, John K; Cacela, Dave; Dean, Karen M; Pritsos, Chris A

    2017-12-01

    In 2010, the Deepwater Horizon oil spill released 134 million gallons of crude oil into the Gulf of Mexico making it the largest oil spill in US history. The three month oil spill left tens of thousands of birds dead; however, the fate of tens of thousands of other migratory birds that were affected but did not immediately die is unknown. We used the homing pigeon as a surrogate species for migratory birds to investigate the effects of a single external oiling event on the flight performance of birds. Data from GPS data loggers revealed that lightly oiled pigeons took significantly longer to return home and spent more time stopped en route than unoiled birds. This suggests that migratory birds affected by the oil spill could have experienced long term flight impairment and delayed arrival to breeding, wintering, or crucial stopover sites and subsequently suffered reductions in survival and reproductive success. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Recovery of oil from underground drill sites

    International Nuclear Information System (INIS)

    Streeter, W.S.; Hutchinson, T.S.; Ameri, S.; Wasson, J.A.; Aminian, K.

    1991-01-01

    This paper reports that a significant quantity of oil is left in reservoirs after conventional oil recovery techniques have been applied. In West Virginia and Pennsylvania alone, this oil has been estimated at over 4.5 billion barrels (0.72 billion m 3 ). Conventional recovery methods are already being used when applicable. But a new recovery method is needed for use in reservoirs that have been abandoned. One alternative method for recovery of the residual oil is known as oil recovery from underground drill sites. This recovery technology is a combination of proven methods and equipment from the petroleum, mining, and civil construction industries. Underground oil recovery can be an economically viable method of producing oil. This has been shown in producing fields, field tests, and feasibility, studies. Faced with decreasing domestic oil production, the petroleum industry should give serious consideration to the use of oil recovery from underground drill sites as a safe, practical, and environmentally sensitive alternative method of producing oil from many reservoirs

  20. Composition of Asarum heterotropoides var. mandshuricum radix oil from different extraction methods and activities against human body odor-producing bacteria.

    Science.gov (United States)

    Haque, A S M Tanbirul; Moon, Jin Nam; Saravana, P S; Tilahun, Adane; Chun, Byung-Soo

    2016-10-01

    In this study, oils from Asarum heterotropoides were extracted by traditional solvent extraction and supercritical CO 2 (SC-CO 2 ) extraction methods and their antioxidant activities along with antimicrobial and inhibitory activities against five human body odor-producing bacteria (Staphylococcus epidermidis, Propionibacterium freudenreichii, Micrococcus luteus, Corynebacterium jeikeium, and Corynebacterium xerosis) were evaluated. The oil was found to contain 15 components, among which the most abundant component was methyl eugenol (37.6%), which was identified at every condition studied in different extraction methods. The oil extracted with n-hexane and ethanol mixture exhibited a strong antioxidant activity (92% ± 2%) and the highest ABTS and 2,2-diphenyl-1-picrylhydrazyl scavenging activities (89% ± 0.2%). The highest amounts of total phenolic content and total flavonoid content were 23.1±0.4 mg/g and 4.9±0.1 mg/g, respectively, in the traditional method. In the SC-CO 2 method performed at 200 bar/50°C using ethanol as an entrainer, the highest inhibition zone was recorded against all the aforementioned bacteria. In particular, strong antibacterial activity (38±2 mm) was found against M. luteus. The minimum inhibitory concentration (MIC) for the oil against bacteria ranged from 10.1±0.1 μg/mL to 46±2 μg/mL. The lowest MIC was found against M. luteus. Methyl eugenol was found to be one of the major compounds working against human body odor-producing bacteria. Copyright © 2016. Published by Elsevier B.V.

  1. Composition of Asarum heterotropoides var. mandshuricum radix oil from different extraction methods and activities against human body odor-producing bacteria

    Directory of Open Access Journals (Sweden)

    A.S.M. Tanbirul Haque

    2016-10-01

    Full Text Available In this study, oils from Asarum heterotropoides were extracted by traditional solvent extraction and supercritical CO2 (SC-CO2 extraction methods and their antioxidant activities along with antimicrobial and inhibitory activities against five human body odor-producing bacteria (Staphylococcus epidermidis, Propionibacterium freudenreichii, Micrococcus luteus, Corynebacterium jeikeium, and Corynebacterium xerosis were evaluated. The oil was found to contain 15 components, among which the most abundant component was methyl eugenol (37.6%, which was identified at every condition studied in different extraction methods. The oil extracted with n-hexane and ethanol mixture exhibited a strong antioxidant activity (92% ± 2% and the highest ABTS and 2,2-diphenyl-1-picrylhydrazyl scavenging activities (89% ± 0.2%. The highest amounts of total phenolic content and total flavonoid content were 23.1±0.4 mg/g and 4.9±0.1 mg/g, respectively, in the traditional method. In the SC-CO2 method performed at 200 bar/50°C using ethanol as an entrainer, the highest inhibition zone was recorded against all the aforementioned bacteria. In particular, strong antibacterial activity (38±2 mm was found against M. luteus. The minimum inhibitory concentration (MIC for the oil against bacteria ranged from 10.1±0.1 μg/mL to 46±2 μg/mL. The lowest MIC was found against M. luteus. Methyl eugenol was found to be one of the major compounds working against human body odor-producing bacteria.

  2. The Kashagan Field: A Test Case for Kazakhstan's Governance of Its Oil and Gas Sector

    Energy Technology Data Exchange (ETDEWEB)

    Campaner, N.; Yenikeyeff, S.

    2008-07-01

    This study focuses on the factors behind Kazakhstan's decision to renegotiate the terms of the existing Production Sharing Agreements (PSAs) with International Oil Companies (IOCs), in the context of the development of the huge Kashagan oil field. The development of Kashagan, one of the largest and most recently discovered oil fields in Kazakhstan, is crucial for Kazakhstan's ambitions of becoming a global oil producer. Kazakhstan, which has the largest oil reserves in the Caspian Sea region, is the second largest regional producer after Russia in the former Soviet Union. The country's potential for oil exports is also strategically significant as a future source of non- OPEC supplies. Amongst the CIS states, Kazakhstan is considered one of the most open countries for foreign investments. International projects in the form of Joint Ventures, Production Sharing Agreements (PSAs) or exploration/field concessions have brought foreign investments into the country's natural resources sector, particularly in the oil and gas industry. However, new developments have recently taken place, which have marked a shift in the Kazakh government's approach towards foreign investment in its energy sector. This study will therefore examine the following issues: - Kazakhstan's plans to abandon the practice of attracting foreign investments in its energy sector through new PSAs. - The recent entry of state-controlled KazMunaiGaz into the consortium operating over the Kashagan field and its impact on IOCs. - The impact of high oil prices on the negotiating power of producer states in the context of Kazakhstan's new stance on PSAs. Specifically, this study will focus on the following key factors, which will seek to further explain the changes in Kazakhstan's attitude toward the Kashagan PSA2: - Operational factors - management of the project, development strategy, cost estimates, levels of production and export markets. - Consortium factors - the

  3. Mahua (Madhuca Indica oil: A potential source for biodiesel production in India

    Directory of Open Access Journals (Sweden)

    Utkarsh

    2016-09-01

    Full Text Available The economic development of a country is highly dependent on the supply of fossil fuels which are constrained by its limited availability and pollution characteristics. India is among the world’s fourth-largest petroleum consumer due to which the vehicular emissions increased eight times over the last two decades. Due to the environmental awareness and depletion of fossil fuel reserves, attention has been given to find an alternative energy source. Among the alternatives existing, Biodiesel is the one which is less polluting and eco-friendly. So it can be used in industrial, commercial, agricultural and other sectors as a substitute for diesel. Biodiesel can be produced from crude vegetable oil, non-edible oil, frying oils (waste, animal tallow and algae by a process of chemical reaction called Transesterification. Biodiesel is also known as methyl or ethyl esters of the feedstock from which it is produced. It is miscible with diesel oil which allows the use of blends of petro diesel and biodiesel in any percentage. The C.I. engines fuelled with biodiesel perform more or less in the same fashion as that with the conventional fuel. Comparative to diesel, biodiesel has high Cetane number and lower compressibility. Additionally, the heat release rate of biodiesel is slightly lower than diesel owing to low calorific value, low volatility and high viscosity. The problem of high viscosity can be eradicated by transesterification process and by adding additives which help us to store the biodiesel for a longer duration of time without any decay. Exhaust emissions are significantly reduced with the use of biodiesel or its blends. The present paper investigates the potential of Mahua (Madhuca Indica oil for biodiesel production as it can be extracted from seeds of Mahua tree which are indigenous to India. It can grow even in dry regions and are found abundantly in several parts of India

  4. Precipitation of metals in produced water : influence on contaminant transport and toxicity

    International Nuclear Information System (INIS)

    Azetsu-Scott, K.; Wohlgeschaffen, G.; Yeats, P.; Dalziel, J.; Niven, S.; Lee, K.

    2006-01-01

    Produced water contains a number of compounds of environmental concern and is the largest volume waste stream from oil and gas production activities. Recent studies have shown that chemicals dissolved in waste water from oil platforms stunted the growth of North Sea cod and affected their breeding patterns. Scientific research is needed to identify the impact of produced water discharges on the environment as well as to identify acceptable disposal limits for produced water. This presentation provided details of a study to characterize produced water discharged within the Atlantic regions of Canada. The study included dose response biological effect studies; research on processes controlling the transport and transformation of contaminants associated with produced water discharges and the development of risk assessment models. The sample location for the study was a site near Sable Island off the coast of Nova Scotia. Chemical analysis of the produced water was conducted as well as toxicity tests. Other tests included a time-series particulate matter sedimentation test; time-series metal and toxicity analysis; time-series change in metal precipitates tests and a produced water/seawater layering experiment. Dissolved and particulate fractions were presented, and the relationship between toxicity and particulate concentrations was examined. Results of the study suggested that produced water contaminants are variable over spatial and temporal scales due to source variations and changes in discharge rates. Chemical changes occur within 24 hours of produced water being mixed with seawater and facilitate contaminant partitioning between the surface micro layer, water column and sediments. Changes in the toxicity of the produced water are correlated with the partitioning of chemical components. The impact zone may be influenced by chemical kinetics that control the distribution of potential toxic metals. Further research is needed to investigate the effects of low level

  5. Challenge - oil crisis

    International Nuclear Information System (INIS)

    Vogler, O.

    1981-01-01

    After a short survey on recent developments of energy supply the risks of future energy supply and its effects are discussed. The parameters of dependence on oil-producing countries are studied and an evaluation is given on the measures which have to be taken by the Western industrialized countries in response to the dependence on oil. Further subjects are: mechanism of oil distribution in case of crisis, long-term cooperation of producer countries, measures on international level in the USA and Japan, and the energy-importing countries in the conflict area between OPEC- and industrialized countries. (UA) [de

  6. Oil output's changing fortunes

    International Nuclear Information System (INIS)

    Eldridge, D.

    1994-01-01

    The Petroleum Economist, previously the Petroleum Press Service, has been making annual surveys of output levels of petroleum in all the oil-producing countries since its founding in 1934. This article documents trends and changes in the major oil-producing countries output from 1934 until the present. This analysis is linked with the political and historical events accompanying these changes, notably the growth of Middle Eastern oil production, the North Sea finds and most recently, Iraq's invasion of Kuwait in 1990. (UK)

  7. Production of oil from Israeli oil shale

    International Nuclear Information System (INIS)

    Givoni, D.

    1993-01-01

    Oil shale can be utilized in two-ways: direct combustion to generate steam and power or retorting to produce oil or gas. PAMA has been developing both direct combustion and retorting processes. Its main effort is in the combustion. An oil shale fired steam boiler was erected in the Rotem industrial complex for demonstration purposes. PAMA has also been looking into two alternative retorting concepts - slow heating of coarse particles and fast heating of fine particles. The present paper provides operating data of oil shale processing in the following scheme: (a) retorting in moving bed, pilot and bench scale units, and (b) retorting in a fluidized bed, bench scale units. (author)

  8. Loy Yang A - Australia's largest privatisation

    International Nuclear Information System (INIS)

    Yenckin, C.

    1997-01-01

    The recent A$4,746 million privatisation of the 2000MW Loy Yang A power station and the Loy Yang coal mine by the Victorian Government is Australia's largest privatisation and one of 1997's largest project financing deals. (author)

  9. Investing in Iranian oil production

    International Nuclear Information System (INIS)

    Barraclough, Colin.

    1997-01-01

    The decision by a French-led consortium to sign a 2bn oil development deal with Iran represents the largest single investment in the Islamic Republic since its revolution of 1978/79. Despite the threat of US sanctions on investors, Iran is on the threshold of a major revitalization of its hydrocarbon industries. (UK)

  10. Corruption and reduced oil production: An additional resource curse factor?

    International Nuclear Information System (INIS)

    Al-Kasim, Farouk; Søreide, Tina; Williams, Aled

    2013-01-01

    Prominent contributions to the resource curse literature suggest weak governance and corruption are important factors behind the wide welfare variations observed among oil producing countries. How weak governance and corruption influence revenue management and expenditure decisions, as well as the possible welfare benefits derived from oil, are broadly discussed. How they impact upon volumes of oil produced has, however, attracted little attention. This paper combines a review of the resource curse and oil production literatures with findings from qualitative interviews with oil sector experts to appreciate the feasibility of connections between corruption and oil production below its potential. We make particular reference to environments where regulatory institutions or political accountability are weak and focus primarily on producer government and oil firm relations. Drawing on insights from geology, political science and economics, we suggest suboptimal production solutions can impact volumes of oil actually produced and create constraints on long term revenues for oil producing countries. We argue greater disclosure of information on oil production efficiency on a field-by-field and country-by-country basis will assist further investigation of the relationships between corruption and volumes of oil produced. - Highlights: ► We combine a literature review with qualitative interviews with oil experts. ► We focus on feasible connections between corruption and oil production levels. ► We suggest suboptimal production solutions can impact volumes of oil produced. ► Corruption may reinforce suboptimal oil production. ► More data on oil production efficiency by field and country will assist research

  11. Challenge of the oil market

    Energy Technology Data Exchange (ETDEWEB)

    Jaidah, A M

    1981-11-01

    The oil market is experiencing a different environment in 1981 as demand for OPEC oil fades while customers run down their inventories. The oil-producing countries face a new challenge, but the need of consuming countries for secure oil supplies and the need of producing countries to broaden their economies and reduce dependence on a depleting resource continue. Two episodes 1973 to 1975 and late 1978 to the present, illustrate the current market situation. The impact of these episodes is the basis for recommended long-run goals that go beyond market management to the real challenge of converting oil resources into the real assets of economic development. (DCK)

  12. The potential of the Malaysian oil palm biomass as a renewable energy source

    International Nuclear Information System (INIS)

    Loh, Soh Kheang

    2017-01-01

    Highlights: • An energy resource data for oil palm biomass is generated. • The data encompasses crucial fuel and physicochemical characteristics. • These characteristics guide on biomass behaviors and technology selection. • Oil palm biomass is advantageous in today’s energy competitive markets. • Overall, it is a green alternative for biorefinery establishment. - Abstract: The scarcity of conventional energy such as fossil fuels (which will lead to eventual depletion) and the ever-increasing demand for new energy sources have resulted in the world moving into an era of renewable energy (RE) and energy efficiency. The Malaysian oil palm industry has been one of the largest contributor of lignocellulosic biomass, with more than 90% of the country’s total biomass deriving from 5.4 million ha of oil palms. Recent concerns on accelerating replanting activity, improving oil extraction rate, expanding mill capacity, etc. are expected to further increase the total oil palm biomass availability in Malaysia. This situation has presented a huge opportunity for the utilization of oil palm biomass in various applications including RE. This paper characterizes the various forms of oil palm biomass for their important fuel and other physicochemical properties, and assesses this resource data in totality – concerning energy potential, the related biomass conversion technologies and possible combustion-related problems. Overall, oil palm biomass possesses huge potential as one of the largest alternative energy sources for commercial exploitation.

  13. Bulk oil clauses

    International Nuclear Information System (INIS)

    Gough, N.

    1993-01-01

    The Institute Bulk Oil Clauses produced by the London market and the American SP-13c Clauses are examined in detail in this article. The duration and perils covered are discussed, and exclusions, adjustment clause 15 of the Institute Bulk Oil Clauses, Institute War Clauses (Cargo), and Institute Strikes Clauses (Bulk Oil) are outlined. (UK)

  14. Malaysian palm oil. Surviving the food versus fuel dispute for a sustainable future

    International Nuclear Information System (INIS)

    Lam, Man Kee; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2009-01-01

    For the past few decades, palm oil has gone through a revolution that few would have predicted. From a humble source of edible oil that was heavily criticized as being un-healthy and un-fit for human consumption, it has proven itself based on scientific findings that it is indeed one of the most nutritious edible oils in the world. Besides, palm oil, the cheapest vegetable oil in the market has diversified as one of the main feedstock for oleo-chemical industries. Recently, with the price of crude petroleum hitting records height every other day, palm oil has become one of the few feasible sources for biodiesel, a renewable substitute for petroleum-derived diesel. Nevertheless, the conversion of palm oil into biodiesel has again received criticism from various NGOs worldwide, mainly on extinction of orang utans, deforestation and particularly the food versus fuel dispute. It was claimed that the conversion of food crops to fuel would significantly increase the number of undernourished people in the world. Malaysia, being the world second largest producer of palm oil, is not spared from this criticism. On the contrary, in the present study it was found that palm oil is indeed the most economical and sustainable source of food and biofuel in the world market. Besides, it was shown that it has the capacity to fulfill both demands simultaneously rather than engaging in priority debate. Nevertheless, fuel is now a necessity rather than a luxury for economy and development purposes. A few strategies will then be presented on how palm oil can survive in this feud and emerged as the main supply of affordable and healthy source of edible oil while concurrently satisfying the market demand for biodiesel throughout the world. (author)

  15. Malaysian palm oil. Surviving the food versus fuel dispute for a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Man Kee; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2009-08-15

    For the past few decades, palm oil has gone through a revolution that few would have predicted. From a humble source of edible oil that was heavily criticized as being un-healthy and un-fit for human consumption, it has proven itself based on scientific findings that it is indeed one of the most nutritious edible oils in the world. Besides, palm oil, the cheapest vegetable oil in the market has diversified as one of the main feedstock for oleo-chemical industries. Recently, with the price of crude petroleum hitting records height every other day, palm oil has become one of the few feasible sources for biodiesel, a renewable substitute for petroleum-derived diesel. Nevertheless, the conversion of palm oil into biodiesel has again received criticism from various NGOs worldwide, mainly on extinction of orang utans, deforestation and particularly the food versus fuel dispute. It was claimed that the conversion of food crops to fuel would significantly increase the number of undernourished people in the world. Malaysia, being the world second largest producer of palm oil, is not spared from this criticism. On the contrary, in the present study it was found that palm oil is indeed the most economical and sustainable source of food and biofuel in the world market. Besides, it was shown that it has the capacity to fulfill both demands simultaneously rather than engaging in priority debate. Nevertheless, fuel is now a necessity rather than a luxury for economy and development purposes. A few strategies will then be presented on how palm oil can survive in this feud and emerged as the main supply of affordable and healthy source of edible oil while concurrently satisfying the market demand for biodiesel throughout the world. (author)

  16. Petroleum biodegradation and oil spill bioremediation

    International Nuclear Information System (INIS)

    Atlas, R.M.

    1995-01-01

    Hydrocarbon-utilizing microorganisms are ubiquitously distributed in the marine environment following oil spills. These microorganisms naturally biodegrade numerous contaminating petroleum hydrocarbons, thereby cleansing the oceans of oil pullutants. Bioremediation, which is accomplished by adding exogenous microbial populations or stimulating indigenous ones, attempts to raise the rates of degradation found naturally to significantly higher rates. Seeding with oil degraders has not been demonstrated to be effective, but addition of nitrogenous fertilizers has been shown to increase rates of petroleum biodegradation. In the case of the Exxon Valdez spill, the largest and most thoroughly studied application of bioremediation, the application of fertilizer (slow release or oleophilic) increased rates of biodegradation 3-5 times. Because of the patchiness of oil, an internally conserved compound, hopane, was critical for demonstrating the efficacy of bioremediation. Multiple regression models showed that the effectiveness of bioremediation depended upon the amount of nitrogen delivered, the concentration of oil, and time. (author)

  17. Extraction, Characterization and Modification of Castor Seed Oil

    Directory of Open Access Journals (Sweden)

    A. D. MOHAMMED

    2006-01-01

    Full Text Available This paper carried out experimental study, through extraction and characterization of both crude and refined castor oil. Normal hexane was used as solvent for the extraction process. The oil produced was refined through degumming, neutralization and bleaching process using local adsorbent (activated clay. The characterization analysis revealed that tested parameters, which include specific gravity, refractive index, acid value, saponification value and iodine value for both crude and refined castor oil produced, were within the ASTM standard specifications. In fact the iodine value obtained (84.8 for the refined oil indicates that the oil could certainly be used as lubricant, hydraulic break fluid and protecting coatings. The oil was modified via sulphation method to produce Turkey – red oil that was tested on wooden material, paper and cloth. The test revealed that the Turkey – red oil produced is suitable to be used as a good dying agent and polish.

  18. Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Daud, W.M.A. Wan; Husin, W.N.W.; Sahu, J.N.

    2011-01-01

    Agriculture residues such as palm shell are one of the biomass categories that can be utilized for conversion to bio-oil by using pyrolysis process. Palm shells were pyrolyzed in a fluidized-bed reactor at 400, 500, 600, 700 and 800 o C with N 2 as carrier gas at flow rate 1, 2, 3, 4 and 5 L/min. The objective of the present work is to determine the effects of temperature, flow rate of N 2 , particle size and reaction time on the optimization of production of renewable bio-oil from palm shell. According to this study the maximum yield of bio-oil (47.3 wt%) can be obtained, working at the medium level for the operation temperature (500 o C) and 2 L/min of N 2 flow rate at 60 min reaction time. Temperature is the most important factor, having a significant positive effect on yield product of bio-oil. The oil was characterized by Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) techniques. -- Highlights: → This study reports the results of experimental investing of conversion palm shell into bio-oil by using pyrolysis and to find the optimum condition to produce the highest yield of bio-oil. → Several parameters which have effect to the process such as temperature, N 2 flow rate, reaction time and particle size is will be investigated in this study. → The outcome of this result will be important for abatement and control of increasingly waste palm shell storage problems any energy source to the world.

  19. Seasonal and spatial trends in production and stable isotope signatures of primary producers in Alberta oil sands reclamation wetlands

    International Nuclear Information System (INIS)

    Boutsivongsakd, M; Chen, H.; Legg, A.; Farwell, A.; Dixon, G.

    2010-01-01

    Oil sands processing produces large amounts of waste water that contains polycyclic aromatic hydrocarbons (PAHs) and naphthenic acids (NAs). This study investigated the effects of exposure to PAHs and NA in aquatic organisms. The carbon and nitrogen dynamics in primary producers using stable isotopes in process-affected and reference wetlands were studied. Plankton and periphytic samples from artificial wetland substrates were collected and analyzed. Periphyton was collected in 14 to 20 day intervals for 5 different time periods in 2007 and 2008 in order to analyze seasonal trends in isotopic composition. Results of the study showed d15N enriched values for some consolidated tailings (CT) at sites in 2008. Other sites with mature fine tailings (MFT) as well as non-MFT sites did not have enriched d15N values. The study suggested that there are variations in ammonia levels in the CTs of different oil sands operators. Differences in the quality of the CT resulted in differences in d15N values of the periphyton-dominated by algae as well as in the periphyton dominated by microbes.

  20. Oil and natural gas

    International Nuclear Information System (INIS)

    Hamm, Keith

    1992-01-01

    The two major political events of 1991 produced a much less dramatic reaction in the global oil industry than might have been expected. The economic dislocation in the former USSR caused oil production to fall sharply but this was largely offset by a concurrent fall in demand. Within twelve months of the invasion of Kuwait, crude oil prices had returned to their pre-invasion level; there was no shortage of supply due to the ability of some producers to boost their output rapidly. Details are given of world oil production and developments in oil demand. Demand stagnated in 1991 due to mainly to the economic chaos in the former USSR and a slowdown in sales in the USA; this has produced problems for the future of the refining industry. By contrast, the outlook for the natural gas industry is much more buoyant. Most clean air or carbon emissions legislation is designed to promote the use of gas rather than other hydrocarbons. World gas production rose by 1.5% in 1991; details by production on a country by country basis are given. (UK)

  1. Opportunities for CANDU for the Alberta oil sands

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Bock, D.; Miller, A.; Kuran, S.; Keil, H.; Fiorino, L.; Hau, K.; Zhou, X.; Dunbar, R.B.

    2003-01-01

    The Alberta oil sands bitumen deposits comprise of one of the largest sources hydrocarbon in the world, and have emerged as the fastest growing, soon to be dominant, source of crude oil in Canada. The oil industry has made great strides in improving the effectiveness of gathering this resource. In particular, alternatives to open-pit mining have been developed which enable in-site recovery of underground deposits with a minimum of environmental disruption. The main challenge that remains is the large quantity of energy needed in the process of extracting the oil and upgrading it to commercial levels. For a typical in-situ extraction project, about 18% of the energy content of the oil produced is used up in the extraction process, while a further 5% is used in generating hydrogen to upgrade the bitumen to synthetic crude oil. Looking ahead, even as improvements in energy use efficiency, (and hydrocarbon use efficiency) counterbalance the increases in hydrocarbon demand from economic growth (particularly in the developing world), Canada and Alberta recognize that the oil sands resource will be needed, and both support the development of this resource in an environmentally responsible way. The large energy requirement for the oil sands extraction process represents a challenge with regard to both environmental impact and security of supply. The use of natural gas, the current energy supply, has impacts in terms of air quality (via NOX and other emissions) and also represents a large greenhouse gas emissions component. As the oil sands industry expands, the availability of natural gas also becomes a concern, as does price and price stability. With this background, the opportunity for nuclear reactors to provide an economical, reliable, virtually zero-emission source of energy for the oil sands becomes very important. Over the last few years, developments in oil sands extraction technology, and developments in CANDU technology through the Advanced CANDU Reactor, (ACR

  2. Tenth oil recovery conference

    International Nuclear Information System (INIS)

    Sleeper, R.

    1993-01-01

    The Tertiary Oil Recovery Project is sponsored by the State of Kansas to introduce Kansas producers to the economic potential of enhanced recovery methods for Kansas fields. Specific objectives include estimation of the state-wide tertiary oil resource, identification and evaluation of the most applicable processes, dissemination of technical information to producers, occasional collaboration on recovery projects, laboratory studies on Kansas applicable processes, and training of students and operators in tertiary oil recovery methods. Papers have been processed separately for inclusion on the data base

  3. Review of research on impacts to biota of discharges of naturally occurring radionuclides in produced water to the marine environment

    International Nuclear Information System (INIS)

    Hosseini, Ali; Brown, Justin E.; Gwynn, Justin P.; Dowdall, Mark

    2012-01-01

    Produced water has been described as the largest volume waste stream in the exploration and production process of oil and gas. It is accompanied by discharges of naturally occurring radionuclides raising concerns over the potential radiological impacts of produced water on marine biota. In the Northern European marine environment, radioactivity in produced water has received substantial attention owing to the OSPAR Radioactive Substances Strategy which aims at achieving ‘concentrations in the environment near background values for naturally occurring radioactive substances’. This review provides an overview of published research on the impacts to biota from naturally occurring radionuclides discharged in produced water by the offshore oil and gas industry. In addition to summarising studies and data that deal directly with the issue of dose and effect, the review also considers studies related to the impact of added chemicals on the fate of discharged radionuclides. The review clearly illustrates that only a limited number of studies have investigated possible impacts on biota from naturally occurring radionuclides present in produced water. Hence, although these studies indicate that the risk to the environment from naturally occurring radionuclides discharged in produced water is negligible, the substantial uncertainties involved in the assessments of impact make it difficult to be conclusive. With regard to the complexity involved in the problem under consideration there is a pressing need to supplement existing data and acquire new knowledge. Finally, the present work identifies some knowledge gaps to indicate future research requirements. -- Highlights: ► Produced water from offshore oil industry contains naturally occurring radionuclides. ► Published research on the impacts to biota from these radionuclides is reviewed. ► Review includes impact of added chemicals on the fate of discharged radionuclides. ► Studies indicate negligible risk to biota

  4. Maximizing heavy oil value while minimizing environmental impact with HTL upgrading of heavy to light oil

    Energy Technology Data Exchange (ETDEWEB)

    Koshka, E. [Ivanhoe Energy Inc., Calgary, AB (Canada)

    2009-07-01

    This presentation described Ivanhoe Energy Inc.'s proprietary HTL upgrading technology which was designed to process heavy oil in the field to cost effectively produce an upgraded synthetic oil that meets pipeline requirements. Steam and electricity are generated from the energy produced during the process. HTL improves the economics of heavy oil production by reducing the need for natural gas and diluent, and by capturing most of the heavy to light oil price differential. Integrated HTL heavy oil production also provides many environmental benefits regarding greenhouse gas (GHG) emissions. The HTL upgrading process is ready for full scale application. tabs., figs.

  5. Advances in biofuel production from oil palm and palm oil processing wastes: A review

    Directory of Open Access Journals (Sweden)

    Jundika C. Kurnia

    2016-03-01

    Full Text Available Over the last decades, the palm oil industry has been growing rapidly due to increasing demands for food, cosmetic, and hygienic products. Aside from producing palm oil, the industry generates a huge quantity of residues (dry and wet which can be processed to produce biofuel. Driven by the necessity to find an alternative and renewable energy/fuel resources, numerous technologies have been developed and more are being developed to process oil-palm and palm-oil wastes into biofuel. To further develop these technologies, it is essential to understand the current stage of the industry and technology developments. The objective of this paper is to provide an overview of the palm oil industry, review technologies available to process oil palm and palm oil residues into biofuel, and to summarise the challenges that should be overcome for further development. The paper also discusses the research and development needs, technoeconomics, and life cycle analysis of biofuel production from oil-palm and palm-oil wastes.

  6. Screening of thermophilic neutral lipase-producing Pseudomonas ...

    African Journals Online (AJOL)

    From oil-contaminated soil, three lipase-producing microorganisms were selected as good lipase producers using rhodamine B-olive oil plate agar and they were identified as from Pseudomonas, Burkholderia and Klebsiella genera by morphology, biochemical characterization and 16S rRNA gene sequencing. Among the ...

  7. Turmoil on the International Oil Markets. Getting Used to Production Capacity Constraints

    International Nuclear Information System (INIS)

    Ten Kate, W.; Van Geuns, L.

    2009-01-01

    In 2008 the world experienced a prelude to the new realities of the international oil market. These new realities include a tight balance between supply and demand, the rapidly increased cost of the marginal barrel and the extreme price volatility. This price volatility has driven prices up $50 a barrel in the space of 5 months, only to drop $50 in 2 months after the July 14 peak of $147 a barrel when consumers began to seriously drop out of the market and inventories were drawn down. After the extreme downward correction, the crisis on the international capital markets led to dim expectations about economic growth for the rest of the year and 2009, and this also played a role. However, prices are expected to rebound again, reflecting the fundamental upward shift of oil prices from an average of about $70-80 a barrel to about $110-120 a barrel. This fundamental upward shift is due to a combination of so-called 'underground' and 'above ground' conditions. The 'underground' problems include the size, depth and geological complexities of new oil fields that are driving up the cost per barrel. These complex oil fields need to be taken into production, since 'above ground' problems limit International Oil Companies' (IOCs) ability to access the lower-cost oil in producing countries. The 'above ground' problems slow the pace of development of medium-cost oil in the largest producing countries in the Middle East and Russia. Despite the expectation of a continued demand for oil, oil exporting countries are concerned about the security of demand, and adapt their development plans accordingly. Moreover, with the increased prices of the last few years and the resulting increase in oil revenues, the management of the monetarised oil wealth has become a concern as well. The value of the dollar has been slipping and oil exporting countries tried to match this depreciation by increasing oil prices. China's rise as an important manufacturer in the world, with the accompanying

  8. Reduction of light oil usage as power fluid for jet pumping in deep heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Li, H.; Yang, D. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada); Zhang, Q. [China Univ. of Petroleum, Dongying, Shandong (China); He, J. [China National Petroleum Corp., Haidan District, Beijing (China). PetroChina Tarim Oilfield Co.

    2008-10-15

    In deep heavy oil reservoirs, reservoir fluid can flow more easily in the formation as well as around the bottomhole. However, during its path along the production string, viscosity of the reservoir fluid increases dramatically due to heat loss and release of the dissolved gas, resulting in significant pressure drop along the wellbore. Artificial lifting methods need to be adopted to pump the reservoir fluids to the surface. This paper discussed the development of a new technique for reducing the amount of light oil used for jet pumping in deep heavy oil wells. Two approaches were discussed. Approach A uses the light oil as a power fluid first to obtain produced fluid with lower viscosity, and then the produced fluid is reinjected into the well as a power fluid. The process continues until the viscosity of the produced fluid is too high to be utilized. Approach B combines a portion of the produced fluid with the light oil at a reasonable ratio and then the produced fluid-light oil mixture is used as the power fluid for deep heavy oil well production. The viscosity of the blended power fluid continue to increase and eventually reach equilibrium. The paper presented the detailed processes of both approaches in order to indicate how to apply them in field applications. Theoretic models were also developed and presented to determine the key parameters in the field operations. A field case was also presented and a comparison and analysis between the two approaches were discussed. It was concluded from the field applications that, with a certain amount of light oil, the amount of reservoir fluid produced by using the new technique could be 3 times higher than that of the conventional jet pumping method. 17 refs., 3 tabs., 6 figs.

  9. Canada's crude oil resources : crude oil in our daily lives

    International Nuclear Information System (INIS)

    Bott, R.

    2001-10-01

    Created in 1975, the Petroleum Communication Foundation is a not-for-profit organization. The objective of the Foundation is to inform Canadians about the petroleum industry in Canada. It produces educational, fact-based publications and programs, employing a multi-stakeholder review process. The first section of this publication is devoted to crude oil and the benefits that are derived from it. It begins by providing a brief definition of crude oil, then moves to the many uses in our daily lives and the environmental impacts like air pollution, spills, and footprint on the land from exploration and production activities. Section 2 details the many uses of crude oil and identifies the major oil producing regions of Canada. A quick mention is made of non-conventional sources of crude oil. The search for crude oil is the topic of section 3 of the document, providing an overview of the exploration activities, the access rights that must be obtained before gaining access to the resource. The drilling of oil is discussed in section 4. Section 5 deals with issues pertaining to reservoirs within rocks, while section 6 covers the feeding of the refineries, discussing topics from the movement of oil to market to the refining of the crude oil, and the pricing issues. In section 7, the uncertain future is examined with a view of balancing the supply and demand, as crude oil is a non-renewable resource. Supplementary information is provided concerning additional publications published by various organizations and agencies. figs

  10. The control of Russia's oil

    International Nuclear Information System (INIS)

    Khartukov, E.M.

    1997-01-01

    Over the past several years, Russia's oil industry has undergone its radical transformation from a wholly state-run and generously subsidized oil distribution system toward a substantially privatized, cash-strapped, and quasi-market ''petropreneurship''. As this drama privatization process was poorly masterminded, evidently misguided, hardly transparent and highly controversial, its early fruits are difficult to digest. Indeed, the rapid and controversial privatization of Russian oil is far from completion and its current ownership and management patterns leave too much room for questioning and speculation. Not surprisingly, few Western analysts are able to properly determine a scope and degree of the remaining state control over the industry. Russian observers too are badly informed. Consequently, assessments of currents state stake in, say, the country's largest oil company LUKoil typically oscillate from zero to 51% whereas, in fact, excluding 24.5% of its shares put aside for new holders, at present the State definitely owns just under 11.6% of the company equity. (author)

  11. Upgrading pine sawdust pyrolysis oil to green biofuels by HDO over zinc-assisted Pd/C catalyst

    International Nuclear Information System (INIS)

    Huang, Yinbin; Wei, Lin; Zhao, Xianhui; Cheng, Shouyun; Julson, James; Cao, Yuhe; Gu, Zhengrong

    2016-01-01

    Highlights: • The Pd/Zn synergistic catalysis was employed. • The true pyrolysis oil as substrate was used in HDO. • The products (gas and liquid) were analyzed. • The optimal reaction conditions were obtained. - Abstract: Upgrading pyrolysis oil by hydrodeoxygenation (HDO) is a promising route for the production of advanced biofuels. The proper reaction conditions and catalysts are important for the success of this process. Previously our research group investigated the ratio of Zn and Pd on the synergistic effect for HDO bio-oil upgrading. This present research focuses on determining the optimal reaction conditions for HDO conversion of pyrolysis oil produced from pine sawdust. Temperatures of 150, 200 and 250 °C and hydrogen pressures of 1.38, 2.76 and 4.14 MPa were evaluated. Syngas, liquids and coke were the primary products evaluated. Syngas was characterized using a Gas chromatography (GC). The liquids were characterized using a Gas chromatography–mass spectrometry (GC–MS). Increasing reaction temperature resulted in increased coke yields. Treatment at 250 °C and 1.38 MPa resulted in the highest hydrocarbon content (6.06%). The treatment at 200 °C and 1.38 MPa produced the largest amounts of hydrocarbons in C_6–C_1_2 range (5.07%). The physicochemical characterizations further support the GCMS results. Syngas analysis revealed that higher hydrogen pressure leads to increased hydrogen consumption and results in more oxy-compounds conversion to hydrocarbons. The syngas analysis also supports the liquid analysis result.

  12. Black Gold, White Power: Mapping Oil, Real Estate, and Racial Segregation in the Los Angeles Basin, 1900-1939

    Directory of Open Access Journals (Sweden)

    Daniel G. Cumming

    2018-03-01

    Full Text Available In 1923, Southern California produced over twenty percent of the world’s oil. At the epicenter of an oil boom from 1892 to the 1930s, Los Angeles grew into the nation’s fifth largest city. By the end of the rush, it had also become one of the most racially segregated cities in the country. Historians have overlooked the relationship between industrialists drilling for oil and real estate developers codifying a racist housing market, namely through “redlining” maps and mortgage lending. While redlining is typically understood as a problem of horizontal territory, this paper argues that the mapping of the underground—the location and volume of subterranean oil fields, in particular—was a crucial technique in underwriting urban apartheid. Mapping technologies linked oil exploitation with restrictive property rights, constructing oil as a resource and vertically engineering a racialized housing market. By focusing on petro-industrialization interlocked with segregationist housing, this article reveals an unexamined chapter in Los Angeles’s history of resource exploitation and racial capitalism. Moreover, it contributes to a growing literature on the social production of resources, extractive technology and political exclusion, and the technoscientific practices used by states and corporations to mine the underground while constructing metropolitan inequality above ground.

  13. China's oil resources

    Energy Technology Data Exchange (ETDEWEB)

    Wiesegart, K

    1981-03-01

    The United Nations International Meeting on Petroleum Geology is being held this month from 18-25 in China, a country whose oil reserves up to mid-sixties had been judged by foreign observers to be minute and the development of her oil sector of no major importance. Today, with an annual crude output of 106 mn tons, China already ranks ninth among the world's oil producers. And, with the prospect of a further advance towards leadership among producers and exporters of the coveted energy material, the West is showing growing interest in China's energy potential. How real is this prospect forms the subject of this article. 3 tables.

  14. Oil seed marketing prospects

    International Nuclear Information System (INIS)

    Ceroni, G.

    1992-01-01

    With its 100 million tonnes annual production, the American continent is by far the world's biggest producer of oil seed, followed by Asia - 52 million, and Europe - 27 million tonnes. The Italian and European Communities have the farming capacity to double their production, but international agreements currently prohibit such initiatives. After first providing a panorama of the world oil seed market, this paper discusses new reforms in European Communities internal agricultural policies which currently limit production. These reforms, intended to encourage the production of oil seed for use as an ecological automotive fuel alternative, call for an obligatory set-aside of 15% of producing farm-land in exchange for the compensatory removal of oil seed production limits

  15. Examination of Ghana's oil sector: need for a new paradigm of oil ...

    African Journals Online (AJOL)

    The objective of this research paper is to address the issue of oil revenue management in Ghana for sustainable socio-economic development, as a model for emerging oil producing nations in West Africa. To meet its objectives, the research was designed to answer some questions pertaining to oil revenue management.

  16. 7 CFR 985.4 - Spearmint oil.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Spearmint oil. 985.4 Section 985.4 Agriculture... HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST Order Regulating Handling Definitions § 985.4 Spearmint oil. Spearmint oil, hereinafter referred to as oil, means essential oil extracted by distillation from...

  17. Production of polyol oils from soybean oil by Pseudomonas aeruginosa E03-12.

    Science.gov (United States)

    Soy-polyols are important starting materials for the manufacture of polymers such as polyurethane. We have been trying to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier the polyol products produced from soybean oil by Acinetobacter haemolyticus ...

  18. Easing the capacity crunch : infrastructure requirements to support rapidly developing oil sands

    International Nuclear Information System (INIS)

    Zupan, L.

    2003-01-01

    Through annual consultation with its customers, Enbridge develops a supply and demand forecast which forms the basis for the company's development. It is complex to develop the appropriate pipeline infrastructure to support resource development, based on the significant forecast growth in supply in Alberta from oil sands and the limited traditional markets. The largest crude oil pipeline serving the oil sands industry in Alberta is owned and operated by Enbridge. The first customer was Suncor, followed by PetroCanada and EnCana. In 2002, a pipeline concept was developed by Enbridge to provide a link to Edmonton via a new large diameter pipeline. The mainline system which originates in Edmonton is expected to evolve and grow as oil sands production comes on line. The completion of Terrace Phase III expansion is one of the priorities for Enbridge in 2003. Other projects involve the extension of one of its lines from Mokena to Chicago, the segregation of batches on the system to improve quality of its deliveries, and extension and expansion into new markets. Shipper support will determine the scale of these developments. The Canadian Association of Petroleum Producers (CAPP) has undergone a market study, as has Enbridge (Oil Sands Markets Study) in an effort to better understand markets and potential markets. It will assist in the determination of which pipeline infrastructure requires expansion, as well as the extent of infrastructure required to support new markets. tabs., figs

  19. Oxidative stability of milk drinks containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Milk drinks containing 5% traditional sunflower oil (SO), randomized lipid (RL) or specific structured lipid (SL) (both produced from SO and tricaprylin/caprylic acid) were compared with respect to their particle size, viscosity and oxidative stability during storage. Furthermore, the effect...... drink could not be ascribed was most likely influenced by the structure of the lipid and to a single factor, differences in the process applied to produce and purify the lipids. EDTA was a strong antioxidant, while gallic acid did not exert a distinct antioxidative effect in the milk drink based on SL....... of adding potential antioxidants EDTA or gallic acid to the milk drink based on SL was investigated. The lipid type significantly affected the oxidative stability of the milk drinks: Milk drink based on SL oxidized faster than milk drink based on RL or SO. The reduced oxidative stability in the SL milk...

  20. Attrition-free pyrolysis to produce bio-oil and char.

    Science.gov (United States)

    Mauviel, Guillain; Guillain, Mauviel; Kies, Fairouz; Fairouz, Kies; René, Mar Sans; Mar, Sans Rene; Ferrer, Monique; Monique, Ferrer; Lédé, Jacques; Jacques, Lédé

    2009-12-01

    Experiments are performed on a laboratory scale setup where beech wood chips are heated by gas convection and walls radiation. This study shows that it is possible to obtain high bio-oil and char yields with relatively low external heat transfer coefficients. The main advantage of this convection/radiation heat transfer mode compared to solid-solid collisions, applied in fluidized bed or twin screw reactors, is the reduction of solid attrition (char and sand). Thus tricky gas-solid separation through hot cyclones and/or hot filters could be avoided or reduced. It should be possible to recover directly bio-oil with less char particles and char free of sand dust. These qualities would allow easier use of these bio-products in different applications.

  1. A Survey on the Usage of Biomass Wastes from Palm Oil Mills on Sustainable Development of Oil Palm Plantations in Sarawak

    Science.gov (United States)

    Phang, K. Y.; Lau, S. W.

    2017-06-01

    As one of the world’s largest palm oil producers and exporters, Malaysia is committed to sustainable management of this industry to address the emerging environmental challenges. This descriptive study aims to evaluate the oil palm planters’ opinions regarding the usage of biomass wastes from palm oil mills and its impact on sustainable development of oil palm plantations in Sarawak. 253 planters across Sarawak were approached for their opinions about the usage of empty fruit bunch (EFB), palm oil mill effluent (POME), mesocarp fibre (MF), and palm kernel shell (PKS). This study revealed that the planters had generally higher agreement on the beneficial application of EFB and POME in oil palm plantations. This could be seen from the higher means of agreement rating of 3.64 - 4.22 for EFB and POME, compared with the rating of 3.19 - 3.41 for MF and PKS in the 5-point Likert scale (with 5 being the strongest agreement). Besides, 94.7 percent of the planters’ companies were found to comply with the Environmental Impact Assessment (EIA) requirements where nearly 38 percent carried out the EIA practice twice a year. Therefore high means of agreement were correlated to the compliance of environmental regulations, recording a Likert rating of 3.89 to 4.31. Lastly, the usage of EFB and POME also gained higher Likert scale point of 3.76 to 4.17 against MF and PKS of 3.34 to 3.49 in the evaluation of the impact of sustainability in oil palm plantations. The planters agreed that the usage of EFB and POME has reduced the environmental impact and improved the sustainable development, and its application has been improved and increased by research and development. However the planters were uncertain of the impact of usage of biomass wastes with respect to the contribution to social responsibility and company image in terms of transparency in waste management.

  2. Oil My Love

    International Nuclear Information System (INIS)

    Gay, Michel

    2014-01-01

    The author first describes how oil will disappear from non-producing countries, notably France and Europe and will therefore lead to an energy crisis. He outlines that renewable energies will have a weak contribution in the replacement of fossil energies (in this case, oil and gas). To illustrate these trends, the author proposes an appendix which presents and discusses the evolution of global consumption of fossil fuels, the evolution of production of different oil grades, a forecast of global oil demand by 2035, evolutions of productions and exports. Another appendix discusses additional issues on oil: the meaning of reserves, solutions for France in case of shortage of oil, the world oil situation (USA, China, Russia, the European Union, Japan)

  3. Variation in Scent Compounds of Oil-Bearing Rose (Rosa damascena Mill. Produced by Headspace Solid Phase Microextraction, Hydrodistillation and Solvent Extraction

    Directory of Open Access Journals (Sweden)

    Sabri Erbaş

    2016-03-01

    Full Text Available In this research, rose oil and rose water were hydro-distilled from the fresh oil-bearing rose flowers (Rosa damascena Mill. using Clevenger-type apparatus. Rose concretes were extracted from the fresh rose flowers by using non-polar solvents, e.g. diethyl ether, petroleum ether, cyclo-hexane, chloroform and n-hexane, and subsequently by evaporation of the solvents under vacuum. Absolutes were produced from the concretes with ethyl alcohol extraction at -20°C, leaving behind the wax and other paraffinic substances. Scent compounds of all these products detected by gas chromatography (GC-FID/GC-MS were compared with the natural scent compounds of fresh rose flower detected by using headspace solid phase microextraction (HS-SPME with carboxen/polydimethylsiloxane (CAR/PDMS fiber. A total of 46 compounds analysis were identified by HS-SPME-GC-MS in the fresh flower, and a total of 15 compounds were identified by GC-MS in the hydrodistilled rose oil. While main compounds in rose oil were geraniol (35.4%, citronellol (31.6%, and nerol (15.3%, major compound in fresh rose flower, rose water and residue water was phenylethyl alcohol (43.2, 35.6 and 98.2%, respectively. While the highest concrete yield (0.7% was obtained from diethyl ether extraction, the highest absolute yield (70.9% was obtained from the n-hexane concrete. The diethyl ether concrete gave the highest productivity of absolute, as 249.7 kg of fresh rose flowers was needed to produce 1 kg of absolute.

  4. More oil sand cooperation between Canada and Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    Venezuela has pioneered the production of heavy oil, according to Dr. A. Guzman-Reyes, director general of hydrocarbons for the Venezuelan government. The first heavy oil production began in Venezuela 60 yr ago and the oil industry has steadily improved methods of producing and handling heavy oil. The country's producing fields are capable of yielding almost one million barrels of heavy oil daily, although actual production, largely because of market limitations, is about 650,000 bpd. Canada's daily heavy oil production, including the 60,000 bbl of synthetic crude produced daily by the Great Canadian Oil Sands plant, is about 200,000 bbl. Dr. Guzman-Reyes stated that Venezuela intends to rapidly develop heavy oil production and upgrade facilities to maintain its export markets. The national oil company, Petroleos de Venezuela, plans to invest 4 times the amount spent on oil development over the last 60 yr during the next 10 yr, a total of $3 billion by 1980.

  5. Geochemical Variability and the Potential for Beneficial Use of Waste Water Coproduced with Oil from Permian Basin of the Southwest USA

    Science.gov (United States)

    Khan, N. A.; Holguin, F. O.; Xu, P.; Engle, M.; Dungan, B.; Hunter, B.; Carroll, K. C.

    2014-12-01

    The U.S. generates 21 billion barrels/year of coproduced water from oil and gas exploration, which is generally considered waste water. Growth in unconventional oil and gas production has spurred interest in beneficial uses of produced water, especially in arid regions such as the Permian Basin of Texas and New Mexico, the largest U.S. tight oil producer. Produced waters have variable chemistries, but generally contain high levels of organics and salts. In order to evaluate the environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of produced water. In the present study, produced water samples were collected from 12 wells across the Permian Basin. Compositional analyses including coupled gas chromatography-time of flight-mass spectrometry and inductively coupled plasma-optical emission spectroscopy were conducted. The samples show elevated benzene, ethylbenzene, toluene, xylene, alkyl benzenes, propyl-benzene, and naphthalene compared to other heteroaromatics; they also contain complex hydrocarbon compounds containing oxygen, nitrogen, and sulfur. Van Krevelen diagrams show an increase in the concentration of heteroaromatic hydrocarbons with increasing well depth. The salinity, dominated by sodium-chloride, also increases with depth, ranging from 37-150 g/L TDS. Depth of wells (or producing formation) is a primary control on predicting water quality for treatment and beneficial use. Our results suggest that partial treatment by removing suspended solids and organic contaminants would support some beneficial uses such as onsite reuse, bioenergy production, and other industrial uses. Due to the high salinity, conventional desalination processes are not applicable or very costly, making beneficial uses requiring low salinity not feasible.

  6. Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery.

    Science.gov (United States)

    Sun, Shanshan; Luo, Yijing; Cao, Siyuan; Li, Wenhong; Zhang, Zhongzhi; Jiang, Lingxi; Dong, Hanping; Yu, Li; Wu, Wei-Min

    2013-09-01

    Enterobacter cloacae strain JD, which produces water-insoluble biopolymers at optimal temperature of 30°C, and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at high temperatures by protoplast fusion. The obtained fusant strain ZR3 produced exopolysaccharides at up to 45°C with optimal growth temperature at 35°C. The fusant produced exopolysaccharides of approximately 7.5 g/L or more at pH between 7.0 and 9.0. The feasibility of the enhancement of crude oil recovery with the fusant was tested in a sand-packed column at 40°C. The results demonstrated that bioaugmentation of the fusant was promising approach for MEOR. Mass growth of the fusant was confirmed in fermentor tests. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Extraction of tocopherolquinone from commercially produced vegetable oil waste and its regeneration back to vitamin E

    Science.gov (United States)

    Bayala, Isso

    Vegetable oils are the most important natural source of vitamin E in the human diet. These oils are refined in order to eliminate impurities and undesirable substances that may affect the taste or cause health risks. While the goal of the refinery is to improve the quality of certain organoleptic parameters such as odors, it also has some negative impacts on the content and stability of the micronutrients such as tocopherols and tocotrienols. Synthetic vitamin E now manufactured as all-racemic alpha tocopheryl acetate is usually marked as d, l-tocopherol or d, l-tocopheryl acetate with no known side effects, but has been proven to be less active than its natural form. Naturopathic and orthomolecular medicine advocates consider the synthetic vitamin E forms to offer little or no benefit for cancer, circulatory and heart diseases. The market for vitamin E has been growing since the year 2000 causing a gradual rise in pricing because of the shortage in supplies. On a geographical basis North America constitutes the largest consumer on the planet with 50 % of the synthetic vitamin E world market followed by Europe with 25 % and Latin America and Asia Pacific sharing equally the remaining balance. In response to the shortfall, several companies are modifying their operations by rationalizing their older facilities while upgrading technology and adding capacity to meet the demand. But this response has also its downside with companies obligated to meet tough environmental regulations. The purpose of the present dissertation was to develop a method that can help industries involved in vitamin E production maximize their productivity by transforming some of the waste products to vitamin E. To that end, a cost effective simple method was developed in chapter II using tin (II) to regenerate tocopherolquinone back to vitamin E. Chapter II also concerns a method developed to reduce tocopherolquinone back to vitamin E but this time using the chemical species chromium (III

  8. Sensorial analysis and electronic aroma detection to compare olive oils produced by different extraction methods

    Directory of Open Access Journals (Sweden)

    Vaz Freire, L. T.

    2011-12-01

    Full Text Available A sensorial analysis and an aroma analysis by electronic sensory devices were used to compare olive oils produced according to two different extraction methods. The extraction methods compared were the press system and two phase decanter. Samples were taken from the harvests of 2002-2004 and the olives were all from the same variety. The variety used was the Portuguese Galega sp. Olives were picked and technologically handled under predetermined and supervised conditions. Olive oils produced were better classified when the sensory analysis by a panel was applied than when an electronic sensory analysis was performed, even after sensor optimization. This observation is in accordance with the fact that olive oil has a low volatility matrix and “flavor”, rather than aroma, can give a clearer characterization than electronic sensory analysis alone, where aroma is the main characteristic evaluated.

    El análisis sensorial y el análisis de aromas por medio de sistemas sensoriales electrónicos han sido utilizado para comparar aceites de oliva producidos a través de dos sistemas de extracción diferentes. Los métodos de extracción comparados han sido el sistema de prensas y el decantador de dos fases. Las muestras fueron producidas durante las cosechas del periodo 2002- 2004, y las aceitunas eran todas de la misma variedad portuguesa Gallega sp. Las aceitunas fueron seleccionadas y tratadas tecnológicamente bajo condiciones predeterminadas y supervisadas. Los aceites producidos resultaron mejor clasificados cuando fue aplicado el análisis sensorial por panel que cuando se utilizó el análisis con detección electrónica de aromas, incluso después de la optimización de los sensores. Esta observación está de acuerdo con el hecho de que los aceites son una matriz poco volátil y que es el “flavour”, más que el aroma, el que junto con el gusto puede proporcionar una caracterización mejor que la detección electrónica, en

  9. Simulating surface oil transport during the Deepwater Horizon oil spill: Experiments with the BioCast system

    Science.gov (United States)

    Jolliff, Jason Keith; Smith, Travis A.; Ladner, Sherwin; Arnone, Robert A.

    2014-03-01

    The U.S. Naval Research Laboratory (NRL) is developing nowcast/forecast software systems designed to combine satellite ocean color data streams with physical circulation models in order to produce prognostic fields of ocean surface materials. The Deepwater Horizon oil spill in the Gulf of Mexico provided a test case for the Bio-Optical Forecasting (BioCast) system to rapidly combine the latest satellite imagery of the oil slick distribution with surface circulation fields in order to produce oil slick transport scenarios and forecasts. In one such sequence of experiments, MODIS satellite true color images were combined with high-resolution ocean circulation forecasts from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS®) to produce 96-h oil transport simulations. These oil forecasts predicted a major oil slick landfall at Grand Isle, Louisiana, USA that was subsequently observed. A key driver of the landfall scenario was the development of a coastal buoyancy current associated with Mississippi River Delta freshwater outflow. In another series of experiments, longer-term regional circulation model results were combined with oil slick source/sink scenarios to simulate the observed containment of surface oil within the Gulf of Mexico. Both sets of experiments underscore the importance of identifying and simulating potential hydrodynamic conduits of surface oil transport. The addition of explicit sources and sinks of surface oil concentrations provides a framework for increasingly complex oil spill modeling efforts that extend beyond horizontal trajectory analysis.

  10. 7 CFR 985.11 - Salable oil.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Salable oil. 985.11 Section 985.11 Agriculture... HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST Order Regulating Handling Definitions § 985.11 Salable oil. Salable oil means that oil which is free to be handled. ...

  11. The Other Major 2010 Oil Spill: Oil weathering after the Kalamazoo River Dilbit Spill

    Science.gov (United States)

    Swarthout, B.; Reddy, C. M.; Nelson, R. K.; Hamilton, S. K.; Aeppli, C.; Valentine, D. L.; Fundaun, S. E.; Oliveira, A. H.

    2016-02-01

    Diluted bitumen (dilbit) from the oil sands (tar sands) of western Canada is increasingly being transported to US markets. North America's largest inland oil spill and the first major oil sands spill in a freshwater environment occurred in 2010, when at least 843,000 gallons leaked from a pipeline into the Kalamazoo River of southwest Michigan. Cleanup of this oil was unusually difficult and protracted, lasting through 2014 and costing over a billion dollars, largely because a substantial fraction of the oil became submersed and deposited in slack water areas over 60 km of river channel, reservoirs, and floodplain backwaters. To investigate the fate of the spilled dilbit from the 2010 Kalamazoo River release, black rings, presumably oil residues, on the bark of dead trees were collected in 2015. These residues were deposited on the trees during high flood levels that have not been observed since the spill and represent an opportunity to constrain weathering processes excluding dissolution. This material contained a major non-GC amenable fraction of 90-95%, presumably oxygenated hydrocarbons. The GC amenable portion was consistent with laboratory weathered dilbit. We used a variety of analytical tools to characterize the dilbit residues, as well as to identify dilbit weathering processes that occurred since the spill.

  12. An assessment of whole effluent toxicity testing as a means of regulating waters produced by the oil and gas industry

    International Nuclear Information System (INIS)

    Hill, S.L.; Bergman, H.L.

    1993-01-01

    Approximately 500 million barrels of produced water are discharged to Wyoming's surface waters by the oil and gas industry. This discharges are of two types: direct and indirect. The direct discharges have been issued NPDES permits requiring whole effluent toxicity testing. Toxicity testing requirements have not been incorporated into permits written for indirect discharges because of the applicability of toxicity testing for regulating these waters has not been determined. Preliminary testing has shown that most produced waters are toxic at the point of discharge because of high concentrations of hydrogen sulfide, but that the toxicity of an indirect discharge is often lost before it reaches a receiving stream. Thus, whole effluent toxicity testing of an indirect discharge may be overly stringent, resulting in treatment or reinjection of the water or closure of the well. Any of these options would have severe economic consequences for oil producers and the state's agricultural industry. The purpose of this study was to determine whether whole effluent toxicity testing actually predicts the in-stream effects of indirect discharges on water quality and benthic invertebrate populations. The authors will report the results of short-term ambient toxicity tests and in-stream bioassessments performed upstream and downstream of six indirect discharges located in four drainages in Wyoming

  13. Modeling OPEC behavior: theories of risk aversion for oil producer decisions

    International Nuclear Information System (INIS)

    Reynolds, D.B.

    1999-01-01

    Theories of OPEC such as price leadership, cartel, or game theoretic models suggest an incentive for OPEC members to expand their production capacity well above current levels in order to maximize revenues. Yet individual OPEC members consistently explore for and develop oil fields at a level well below their potential. The cause of low oil exploration and development efforts among OPEC members, and even some non-OPEC members, may have to do with risk aversion. This paper describes an alternative theory for OPEC behavior based on risk aversion using a two piece non-Neumann-Morgenstern utility function similar to Fishburn and Koehenberger (1979, Decision Science 10, 503-518), and Friedman and Savage (1948, Journal of political Economy 56). The model shows possible low oil production behavior. (author)

  14. Characterization of Biosurfactant Produced by Bacillus licheniformis TT42 Having Potential for Enhanced Oil Recovery.

    Science.gov (United States)

    Suthar, Harish; Nerurkar, Anuradha

    2016-09-01

    Bacillus licheniformis TT42 produced a low-molecular weight anionic biosurfactant that reduced the surface tension of water from 72 to 27 mN/m and the interfacial tension from 12 to 0.05 mN/m against crude oil. We have earlier reported significant enhancement in oil recovery in laboratory sand pack columns and core flood studies, by biosurfactant-TT42 compared to standard strain, Bacillus mojavensis JF2. In the context of this application of the biosurfactant-TT42, its characterization was deemed important. In the preliminary studies, the biosurfactant-TT42 was found to be functionally stable at under conditions of temperature, pH, and salinity generally prevalent in oil reservoirs. Furthermore, the purified biosurfactant-TT42 was found to have a CMC of 22 mg/l. A newly developed activity staining TLC method was used for the purification of biosurfactant-TT42. Structural characterization of biosurfactant-TT42 using TLC, Fourier transform infrared spectroscopy (FTIR), GC-MS, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF)/TOF suggested that it was a mixture of lipopeptide species, all having a common hydrophilic cyclic heptapeptide head with the sequence, Gln-Leu/Ileu-Leu/Ileu-Val-Asp-Leu/Ileu-Leu/Ileu linked to hydrophobic tails of different lengths of 3β-OH-fatty acids bearing 1043, 1057 and 1071 Da molecular weight, where 3β-OH-C19 fatty acid was predominant. This is the longest chain length of fatty acids reported in a lipopeptide.

  15. Multi-scale Multi-dimensional Imaging and Characterization of Oil Shale Pyrolysis

    Science.gov (United States)

    Gao, Y.; Saif, T.; Lin, Q.; Al-Khulaifi, Y.; Blunt, M. J.; Bijeljic, B.

    2017-12-01

    The microstructural evaluation of fine grained rocks is challenging which demands the use of several complementary methods. Oil shale, a fine-grained organic-rich sedimentary rock, represents a large and mostly untapped unconventional hydrocarbon resource with global reserves estimated at 4.8 trillion barrels. The largest known deposit is the Eocene Green River Formation in Western Colorado, Eastern Utah, and Southern Wyoming. An improved insight into the mineralogy, organic matter distribution and pore network structure before, during and after oil shale pyrolysis is critical to understanding hydrocarbon flow behaviour and improving recovery. In this study, we image Mahogany zone oil shale samples in two dimensions (2-D) using scanning electron microscopy (SEM), and in three dimensions (3-D) using focused ion beam scanning electron microscopy (FIB-SEM), laboratory-based X-ray micro-tomography (µCT) and synchrotron X-ray µCT to reveal a complex and variable fine grained microstructure dominated by organic-rich parallel laminations which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 300-500°C with the formation of micron-scale connected pore channels developing principally along the kerogen-rich lamellar structures.

  16. Controlled PVTS oil and gas production stimulation system

    Energy Technology Data Exchange (ETDEWEB)

    Ospina-Racines, E

    1970-02-01

    By completing oil- or gas-producing wells according to the PVTS method and energizing the flow of the oil-gas fluids in the reservoir with a small horse-power gas compressor at the wellhead, the following oil and gas production features are attained: (1) Original reservoir story energy conditions are restored, improved, used, and conserved while producing oil and/or gas. (2) The flow of oil or gas in the pay formation to the well bore is stimulated by gas compressor energy, outside of the reservoir system. The pressure drawdown is developed by gas-compressor energy in the well casing and not in the pay formation. (3) The stored energy of the reservoir is conserved while producing oil or gas. The potential energy (pressure) of the reservoir can be used to advantage up to bubble point of the virgin crude. (4) Producible reserves are increased from 4-to 5-fold by the conservation of reservoir energy. Present-day primary oil production practice yields a maximum of 20% of the oil in place by depleting the original reservoir energy. The PVTS system will yield over 80% + of oil in place. (5) Producible gas reserves can be increased greatly by establishing a low abandonment pressure at will. The principal features of the PVTS well mechanism and energy injection method are illustrated by a schematic diagram.

  17. It's the crude, dude : war, big oil and the fight for the planet

    Energy Technology Data Exchange (ETDEWEB)

    McQuaig, L.

    2004-07-01

    The economies of the industrialized world depend on oil, a finite resource with declining reserves. This book examines the role that oil played in the United States invasion of Iraq. It also explores the underlying issue of the modern world's addiction to oil. The sudden increase in oil prices in the spring of 2004 may reflect the beginning of a trend in fossil fuel prices and international competition over the remaining reserves of cheap oil, of which most are located in the Middle East. In addition, increased consumption of fossil fuels has been linked to global warming. The author notes that although renewable energy sources present a solution to our reliance on fossil fuels, some of the most powerful institutions in the world are resisting change, including the United States government and some of the world's largest corporations. The author suggests that the United States military presence in the oil-rich region of Iraq is due to Washington's ambition to gain control over the largest untapped oil reserves in the world. She also suggests that the search for oil continues to determine world events, and mentions how the North American Free Trade Agreement guaranteed the United States access to Canada's vast energy supplies. refs., figs.

  18. Research advancements in palm oil nutrition*

    Science.gov (United States)

    May, Choo Yuen; Nesaretnam, Kalanithi

    2014-01-01

    Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers (sn)-2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil. PMID:25821404

  19. Research advancements in palm oil nutrition.

    Science.gov (United States)

    May, Choo Yuen; Nesaretnam, Kalanithi

    2014-10-01

    Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers ( sn) -2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil.

  20. Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution

    International Nuclear Information System (INIS)

    Martínez, G.; Sánchez, N.; Encinar, J.M.; González, J.F.

    2014-01-01

    In this work, the quality of biodiesel produced by basic transesterification from several vegetable oils (soybean, rapeseed, sunflower, high oleic sunflower, Cynara Cardunculus L., Brassica Carinata and Jatropha Curca) cultivated in Extremadura has been studied in detail. The influence of raw material composition on properties such as density, viscosity, cetane number, higher heating value, iodine and saponification values and cold filter plugging point has been verified. Other biodiesel properties such as acid value, water content and flash and combustion points were more dependent on characteristics of production process. Biodiesel produced by rapeseed, sunflower and high oleic sunflower oils transesterification have been biofuels with better properties according to Norm EN 14214. Finally, it has been tested that it is possible to use oils mixtures in biodiesel production in order to improve the biodiesel quality. In addition, with the same process conditions and knowing properties of biodiesel from pure oils; for biodiesel from oils mixtures, its methyl esters content, and therefore properties dependent this content can be predicted from a simple mathematical equation proposed in this work. - Highlights: • Biodiesel quality produced by basic transesterification from vegetable oils. • We examine influences of methyl esters distribution on biodiesel properties. • Biofuels from soybean, sunflower and rapeseed oils were with better properties. • Oils mixtures improve biodiesel quality to fulfill Norm EN 14214. • An equation to predict properties of biodiesel from oil mixtures is proposed

  1. Optimization of Offshore De-oiling Hydrocyclone Performance

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Løhndorf, Petar Durdevic; Pedersen, Simon

    , along with the facts that the global oil demand will continuously grow by 7 mb/d to 2020 and exceed 99 mb/d in 2035, meanwhile, many production fields turn to be matured and thereby the water flooding technology is more and more employed as a key enhanced oil recovery solution for these fields [9]. Fig......One of the biggest environmental concerns in offshore oil & gas production is the quality of tremendous amounts of produced water discharged into the oceans. Today, in average three barrels of water are produced along with each barrel of oil [9]. This concern will become more severe in the future...... companies, Maersk Oil and Ramboll Oil & Gas A/S, launched a research project HTF-PDPWAC with total budget of 10 million dkk. One of the focuses of this project is to optimization of the de-oiling hydrocyclone performance in order to improve the produced water treatment quality without sacrificing...

  2. Determination of the growth rate and volume of lipid produced by ...

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... generally been preferred over bacteria and algae as sources of oil because of the higher yield obtainable with some species, the quality of the oil produced, .... oleaginous organism is edible, can be used as fuel oil additive and for other industrial purposes. With further investigations, the oil produced by the ...

  3. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Guangul, F M; Sulaiman, S A; Ramli, A

    2013-01-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  4. Comparative Study and Critical Analysis of Sustainability Reporting in the Oil and Gas Sector

    OpenAIRE

    Thomas, Prakash M.

    2006-01-01

    Oil and Gas sector is one of the largest and major economic sectors globally. It is also one of the most critical in terms of being a basic driver for all other economic activities worldwide. In the recent times we have seen large scale volatility in Oil and Gas prices and a surge in huge profits for Oil and Gas sector companies. Oil and Gas sector is also one of the major sectors with tremendous impact on not just environmental factors but also on Social and Economic factors. All major Oil a...

  5. Scrap tire pyrolysis using a new type two-stage pyrolyzer: Effects of dolomite and olivine on producing a low-sulfur pyrolysis oil

    International Nuclear Information System (INIS)

    Choi, Gyung-Goo; Oh, Seung-Jin; Kim, Joo-Sik

    2016-01-01

    Scrap tire pyrolysis was performed using a two-stage pyrolyzer consisting of an auger reactor and a fluidized bed reactor to produce a low-sulfur pyrolysis oil. In the experiments, the effect of the residence time of the feed material in the auger reactor was investigated at ∼300 (auger reactor) and 500 °C (fluidized bed reactor). In addition, natural dolomite and olivine and calcined dolomite and olivine were used as the fluidized bed materials to examine their effects on reducing the sulfur content of pyrolysis oil. In the experiments, the yields of the oil from the auger reactor were 1.4–3.7 wt%, and it was enriched with DL-limonene whose content in the oil was 40–50 wt%. The yields of the oil from the fluidized bed reactor were 42–46 wt%. The optimum residence time of the feed material in the auger reactor turned out to be 3.5 min. Calcined dolomite and olivine significantly decreased the sulfur content of pyrolysis oil. Metal oxides of the additives appeared to react with H_2S to form metal sulfides. The sulfur content of pyrolysis oil obtained with calcined olivine was 0.45 wt%. - Highlights: • Scrap tires were successfully pyrolyzed in a new type two-stage pyrolyzer. • The two-stage pyrolyzer is composed of an auger and fluidized bed reactors. • Calcination of olivine and dolomite led to a strong decrease in sulfur. • The lowest sulfur content of pyrolysis oil was 0.45 wt%. • Pyrolysis oil yields from the fluidized bed reactor were 43–46 wt%.

  6. Oil markets to 2010: the impact of non-Opec oil

    International Nuclear Information System (INIS)

    Enav, Peter

    1998-09-01

    This report provides an in-depth assessment of oil development scenarios in every non-Opec oil producing country from 1998 to 2010, in addition to evaluating the extent and direction of future oil trade for Opec and non-Opec countries alike. It re-assesses world oil consumption patterns in light of the Asian financial crisis, providing a concise yet comprehensive coverage of an often-neglected oil production group. The oil market development scenario is analysed in each country, with detailed consideration of the major players providing historical production, consumption, import and export data; current oil balance - production, imports and exports; an assessment of oil development policy; analysis of potential development obstacles considering regulatory, financial, political and environmental issues; oil production and consumption projections to 2010, by type; and import and export projections to 2010, by destination and source. More than 80 tables supplying essential statistics on the world's non-Opec markets accompany the report, with maps and schematic diagrams showing existing and potential infrastructure and fields. (Author)

  7. An Investigation on Gas Lift Performance Curve in an Oil-Producing Well

    Directory of Open Access Journals (Sweden)

    Deni Saepudin

    2007-01-01

    Full Text Available The main objective in oil production system using gas lift technique is to obtain the optimum gas injection rate which yields the maximum oil production rate. Relationship between gas injection rate and oil production rate is described by a continuous gas lift performance curve (GLPC. Obtaining the optimum gas injection rate is important because excessive gas injection will reduce production rate, and also increase the operation cost. In this paper, we discuss a mathematical model for gas lift technique and the characteristics of the GLPC for a production well, for which one phase (liquid is flowing in the reservoir, and two phases (liquid and gas in the tubing. It is shown that in certain physical condition the GLPC exists and is unique. Numerical computations indicate unimodal properties of the GLPC. It is also constructed here a numerical scheme based on genetic algorithm to compute the optimum oil production.

  8. Analysing oil-production subsidies

    Science.gov (United States)

    Steenblik, Ronald

    2017-11-01

    Understanding how subsidies affect fossil-fuel investment returns and production is crucial to commencing new reforms. New analysis on the impact of subsidies on US crude-oil producers finds that, at recent oil prices of around US50 per barrel, tax preferences and other subsidies push nearly half of new oil investments into profitability.

  9. Esterification for butyl butyrate formation using Candida cylindracea lipase produced from palm oil mill effluent supplemented medium

    Directory of Open Access Journals (Sweden)

    Aliyu Salihu

    2014-12-01

    Full Text Available The ability of Candida cylindracea lipase produced using palm oil mill effluent (POME as a basal medium to catalyze the esterification reaction for butyl butyrate formation was investigated. Butyric acid and n-butanol were used as substrates at different molar ratios. Different conversion yields were observed according to the affinity of the produced lipase toward the substrates. The n-butanol to butyric acid molar ratio of 8 and lipase concentration of 75 U/mg gave the highest butyl butyrate formation of 63.33% based on the statistical optimization using face centered central composite design (FCCCD after 12 h reaction. The esterification potential of the POME based lipase when compared with the commercial lipase from the same strain using the optimum levels was found to show a similar pattern. It can be concluded therefore that the produced lipase possesses appropriate characteristics to be used as a biocatalyst in the esterification reactions for butyl butyrate formation.

  10. Placing Brazil's heavy acid oils on international markets

    International Nuclear Information System (INIS)

    Szklo, Alexandre Salem; Machado, Giovani; Schaeffer, Roberto; Felipe Simoes, Andre; Barboza Mariano, Jacqueline

    2006-01-01

    This paper identifies the international market niches of Brazil's heavy acid oils. It analyzes the perspectives for making wider use of heavy acid oils, assessing their importance for certain oil-producing regions such as Brazil, Venezuela, West Africa, the North Sea and China. Within this context, the oil produced in the Marlim Field offshore Brazil is of specific interest, spurred by the development of its commercial brand name for placement on international markets and backed by ample production volumes. This analysis indicates keener international competition among acid oils produced in Brazil, the North Sea and the West Coast of Africa, through to 2010. However, over the long term, refinery conversion capacity is the key factor for channeling larger volumes of heavy acid oils to the international market. In this case, the future of acid oil producers will depend on investments in refineries close to oil product consumption centers. For Brazil, this means investments in modifying its refineries and setting up partnerships in the downstream segment for consumer centers absorbing all products of high added value, such as the USA and even Southeast Asia and Western Europe

  11. Automated oil spill detection with multispectral imagery

    Science.gov (United States)

    Bradford, Brian N.; Sanchez-Reyes, Pedro J.

    2011-06-01

    In this publication we present an automated detection method for ocean surface oil, like that which existed in the Gulf of Mexico as a result of the April 20, 2010 Deepwater Horizon drilling rig explosion. Regions of surface oil in airborne imagery are isolated using red, green, and blue bands from multispectral data sets. The oil shape isolation procedure involves a series of image processing functions to draw out the visual phenomenological features of the surface oil. These functions include selective color band combinations, contrast enhancement and histogram warping. An image segmentation process then separates out contiguous regions of oil to provide a raster mask to an analyst. We automate the detection algorithm to allow large volumes of data to be processed in a short time period, which can provide timely oil coverage statistics to response crews. Geo-referenced and mosaicked data sets enable the largest identified oil regions to be mapped to exact geographic coordinates. In our simulation, multispectral imagery came from multiple sources including first-hand data collected from the Gulf. Results of the simulation show the oil spill coverage area as a raster mask, along with histogram statistics of the oil pixels. A rough square footage estimate of the coverage is reported if the image ground sample distance is available.

  12. 7 CFR 985.155 - Identification of oil by producer.

    Science.gov (United States)

    2010-01-01

    ....155 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE MARKETING...) Handler's pickup receipt number, when applicable; (g) Destination of oil for storage; (h) Name of the firm...

  13. Life Cycle Assessment for the Production of Oil Palm Seeds.

    Science.gov (United States)

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.

  14. The chemistry and beneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices

    Science.gov (United States)

    Aromatic plants produce organic compounds that may be involved in the defense of plants against phytopathogenic insects, bacteria, fungi, and viruses. One of these compounds called carvacrol that is found in high concentrations in essential oils such as oregano has been reported to exhibit numerous...

  15. Bio-oil hydrodeoxygenation catalysts produced using strong electrostatic adsorption

    Science.gov (United States)

    We synthesized hydrothermally stable metal catalysts with controlled particle size and distribution, with the goal of determining which catalyst(s) can selectively catalyze the production of aromatics from bio-oil (from pyrolysis of biomass). Both precious and base transition metal catalysts (Ru, Pt...

  16. Produced water reuse aiming reinjection; Reuso de agua produzida visando reinjecao

    Energy Technology Data Exchange (ETDEWEB)

    Louvisse, Ana Maria Travalloni; Hora, Jairo Maynard da Fonseca; Guilherme, Claudio [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    As an oil reservoir goes aging, the BSW (water and solid content associated to the crude oil ) from the produced oil increase acutely. As this associated water is isolated from the crude oil, it presents several contaminants with concentrations above to that specified in the environmental norms for its discharge. Attending the environmental legislation, some times, is very difficult and can even enable the entire project. As the reservoir becomes old, enhance techniques are necessary to maintain the oil producing. A common recovery mechanism, called secondary recovery, is the water injection. Commonly the water for secondary recovery is not easily available. The main objective of this work is present a treatment system for produced water used in a specific field in the Northwest region. This treatment involves reinjection of this water after filtration. We will have a high environmental benefited, avoiding the discharge of produced water, highly toxic, and at the same time enhanced the oil production. In this work, we develop a method to modify the physical chemistry characteristics of the produced water and increase the treatment process efficiency. (author)

  17. Past, Present, and Future Production of Bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Philip; Yu, Fei; Gajjela, Sanjeev

    2009-04-01

    Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 oC. The vapors produced by this rapid heating are then condensed to produce a dark brown water-based emulsion composed of frag-ments of the original hemicellulose, cellulose and lignin molecules contained in the biomass. Yields range from 60 to 75% based on the feedstock type and the pyrolysis reactor employed. The bio-oil pro-duced by this process has a number of negative prop-erties that are produced mainly by the high oxygen content (40 to 50%) contributed by that contained in water (25 to 30% of total mass) and oxygenated compounds. Each bio-oil contains hundreds of chemi-cal compounds. The chemical composition of bio-oil renders it a very recalcitrant chemical compound. To date, the difficulties in utilizing bio-oil have limited its commercial development to the production of liq-uid smoke as food flavoring. Practitioners have at-tempted to utilize raw bio-oil as a fuel; they have also applied many techniques to upgrade bio-oil to a fuel. Attempts to utilize raw bio-oil as a combustion engine fuel have resulted in engine or turbine dam-age; however, Stirling engines have been shown to successfully combust raw bio-oil without damage. Utilization of raw bio-oil as a boiler fuel has met with more success and an ASTM standard has recently been released describing bio-oil characteristics in relation to assigned fuel grades. However, commercialization has been slow to follow and no reports of distribution of these bio-oil boiler fuels have been reported. Co-feeding raw bio-oil with coal has been successfully performed but no current power generation facilities are following this practice. Upgrading of bio-oils to hydrocarbons via hydroprocessing is being performed by several organizations. Currently, limited catalyst life is the obstacle to commercialization of this tech-nology. Researchers

  18. Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS

    Directory of Open Access Journals (Sweden)

    A. Koss

    2017-08-01

    Full Text Available VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS/PTR-ToF-MS from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX campaign in March–April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N and pyrroline (C4H7N, H2S, and a diamondoid (adamantane or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.

  19. Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS)

    Science.gov (United States)

    Koss, Abigail; Yuan, Bin; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Veres, Patrick R.; Peischl, Jeff; Eilerman, Scott; Wild, Rob; Brown, Steven S.; Thompson, Chelsea R.; Ryerson, Thomas; Hanisco, Thomas; Wolfe, Glenn M.; St. Clair, Jason M.; Thayer, Mitchell; Keutsch, Frank N.; Murphy, Shane; de Gouw, Joost

    2017-08-01

    VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS/PTR-ToF-MS) from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign in March-April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N) and pyrroline (C4H7N), H2S, and a diamondoid (adamantane) or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.

  20. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  1. Produce More Oil Gas via eBusiness Data Sharing

    Energy Technology Data Exchange (ETDEWEB)

    Paul Jehn; Mike Stettner

    2004-09-30

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  2. Analysis of Angola as a new OPEC member (2007) for the world oil market; Analise da entrada de Angola na OPEC (2007) para o mercado mundial do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Ana Paula Alves S.L.; Almeida, Gabriela Gomes de [Universidade Vila Velha, ES (Brazil). Curso de Relacoes Internacionais; Samarco Mineracao S.A., Belo Horizonte, MG (Brazil)], e-mail: anapaula_aslg@hotmail.com, e-mail: gabiptu@hotmail.com

    2008-07-01

    Angola is in the spot light lately as one of the major oil producers in the world, being the second largest oil producer in Africa. Therefore, in 2007, this country became a member of OPEC which brought to table several speculations concerning Angola's position facing the pressures and demands of an international organization. This article comes to analyse Angola's possible strategies when it comes to defending its economic interests and its participation in the price politics implemented by OPEC. All hypotheses considered in this article are analysed according to the Complex Interdependence Theory (Keohane and Nye). This International Affairs Theory is defined by a mutual and multilateral dependence between the nations. This way, we may conclude that even though Angola has a history of non fulfilling its agreements, the cooperation is made necessary because it is the most benefice alternative. The tendency is that when Angola starts fulfilling its quotas on the oil matter it will receive cooperation from OPEC and other nations in other areas where this country needs assistance. (author)

  3. The end of cheap oil

    International Nuclear Information System (INIS)

    Zagar, J.J.; Campbell, C.J.

    1999-01-01

    Easy to find 'conventional' oil in huge quantities has fueled and satisfied the World's thirst for energy this century. About 95% of all oil produced-and 90% of today's production---comes from this group of hydrocarbons. But the coming century of the new millennium will see the exit of conventional oil as a major player on the World's energy stage. Already, outside the Middle East, conventional oil production is on the decline. And the Middle East with its vast reservoirs of oil will soon reach the mid-point of depletion and begin its irreversible decline. Currently, one barrel of oil is being found for every four barrels that are produced. The Middle East now supplies 30% of the World's conventional oil production and that trend is rising because, unlike in the 1970s, no new major provinces, save perhaps the Caspian, are there to deliver flush production. The stage is now set for another 'energy crisis' starting with higher prices from Middle East control and followed by the onset of physical shortage around 2010. We face something new to human experience. (author)

  4. Largest solar installation on a hotel in Switzerland; Groesste Hotel-Solaranlage der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Stadelmann, M.

    2008-07-01

    This article describes the solar thermal installation on the Hotel Europa in St. Moritz-Champfer, Switzerland. The installation provides heat energy for domestic hot water preparation and for the heating of the hotel's indoor swimming pool. A thirty-percent reduction of heating oil consumption has been obtained. The system, which is based on the 'low-flow' principle, provides the highest possible temperature difference while using low pumping energy. The hotel's hot-water circulation system, which ensures fast availability of hot water at the taps, is also discussed. This largest hotel solar installation is designed to meet heating and hot-water requirements during the summer season. The high requirements placed on the materials used are discussed. Schematics are provided and first operational experience is briefly discussed.

  5. Reclamation from palm oil mill effluent using an integrated zero discharge membrane-based process

    Directory of Open Access Journals (Sweden)

    Ahmad A.L.

    2015-12-01

    Full Text Available This research emphasizes eloquently on membrane technology for treatment of palm oil mill effluent (POME as it is the Malaysia’s largest and most important agro based industry. Findings established significant quality improvement with an efficient recovery of water from palm oil mill via innovative membrane application. Conventional bio-methods, whilst adhering to the Department of Environment’s (DOE discharge regulations, produces brownish liquid which pales in comparison to the crystal clear water obtained through membrane treatment. The pre-treatment process consists of coagulation-flocculation using green environmental coagulant bases such as Moringa oleifera (MO seeds. The ultrafiltration polyvinylidene difluoride (PVDF and thin film composite (TFC reverse osmosis were vital for the membrane processes. The system gave 99% suspended solids reduction in suspended solid and 78% of water present was successfully recovered. This technology guarantees water recovery with drinking water quality; meeting the US Environmental Protection Agency (USEPA standard or could be recycled into the plant with sludge utilization for palm oil estates, thus enabling the concept of zero discharge to be executed in the industries. In addition, green and healthy antioxidants such as oil and beta-carotene can be recovered from POME further demonstrate. Silica gel showed better performance in separation of carotenes from oil at temperature 40°C using adsorption chromatography with 1154.55 ppm. The attractiveness of this technology, enabling the utilization of reuse of agricultural waste into potentially value added products.

  6. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait

    Directory of Open Access Journals (Sweden)

    Pham Anh-Tung

    2010-09-01

    Full Text Available Abstract Background The alteration of fatty acid profiles in soybean [Glycine max (L. Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Results Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. Conclusions We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the

  7. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait.

    Science.gov (United States)

    Pham, Anh-Tung; Lee, Jeong-Dong; Shannon, J Grover; Bilyeu, Kristin D

    2010-09-09

    The alteration of fatty acid profiles in soybean [Glycine max (L.) Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the mutant alleles. The resources described here for the creation

  8. Produced water - composition and analysis

    International Nuclear Information System (INIS)

    Kvernheim, Arne Lund

    1998-01-01

    Produced water can be defined as ''High volume waste-water separated from oil and gas that is produced from subsurface formations''. The water contains aliphatic and aromatic hydrocarbons, particulate matter and soluble salts as well as elements originating from formations and from sea water injections. Residues of chemicals may also be present. The accepted North Sea discharge limit is 40 ppm. In this presentation the focus will be on the chemical composition of produced water and on the challenges involved in developing and implementing analytical methods. The focus will also be on the development of a new oil-in-water analytical method as a replacement for the Freon method. 7 refs., 1 tab

  9. It's all about the bitumen : oilsands producers have the attention of the world

    International Nuclear Information System (INIS)

    Jaremko, D.

    2005-01-01

    Within 10 years, oilsands growth will make Canada the fifth largest oil producing country in the world, thereby greatly increasing Canada's political power. A review of oil sands development was presented, with reference to the way in which Steam Assisted Gravity Drainage (SAGD) has revolutionized the industry. Recent acquisitions have pointed to the growing level of international interest in the oilsands industry. Construction details of the Surmont project were discussed along with Devon Canada's SAGD project at Jackfish where about 100 well-pairs are expected to be drilled. Petrobank Energy and Resources is constructing its Whitesands project, which will employ the first field-scale application of the toe-to-heel air injection (THAI) recovery method which has lower operating costs and which uses less water and creates fewer greenhouse (GHG) emissions. The pilot was designed to produce up to 1800 barrels per day of partially upgraded bitumen. Details of CNRI's Horizon project were presented, including construction plans and schedules. Shell Canada's increased budget for the first expansion of the Athabasca Oilsands Project was reviewed with reference to their strategic decision to pre-build infrastructure for future expansions. Details of Suncor Energy's production goals were also reviewed, including details of new upgraders and applications. Syncrude's continuing expansions were discussed, as well as their current production levels. An outline of UTS Energy Corporation and Petro-Canada's plans concerning the Fort Hills Mining Project was presented, with details of the new BITMIN extraction process. It was noted that Imperial Oil has filed regulatory applications for the Kearl Oilsands Project, which have estimated total recoverable bitumen resources of 4.4 billion barrels. Husky Energy's Sunrise Project was discussed, as well as MEG Energy's regulatory approval for the first phase of the Christina Lake Regional Project. The Canadian Association of Petroleum

  10. Oil Production, Refining and Transportation in Canada

    Directory of Open Access Journals (Sweden)

    Igbal A. Guliyev

    2015-01-01

    Full Text Available The article deals with fuel and energy complex of Canada as one of the largest manufacturers of primary energy in the world, which provides up to 6 percent of the world energy supply. Only the Russian Federation, PRC, the United States of America and the Kingdom of Saudi Arabia have larger production volumes. However, oil plays the most significant role in Canada's energy exports. It is estimated that its proven reserves are sufficient to meet the demand for 140 years at current production rate. The relevance of the study, including the analysis of fuel and energy complex of Canada, is due to the fact that such comparison and synthesis of data on the amount of recoverable oil reserves, the volume of its production, imports, exports and transit of oil and oil products, the distribution of oil for transportation (via pipelines, rail, sea, road, strategic oil field, refining and transportation of oil and oil products development projects, as well as implementation of Canada's best practices in the Russian Federation, is being developed for the first time. In addition, the data given in previously published articles on the subject, due to the dynamic development of the industry, are obsolete and do not reflect the real situation.

  11. Experimental investigation of evaporation rate and emission studies of diesel engine fuelled with blends of used vegetable oil biodiesel and producer gas

    Directory of Open Access Journals (Sweden)

    Nanjappan Balakrishnan

    2015-01-01

    Full Text Available An experimental study to measure the evaporation rates, engine performance and emission characteristics of used vegetable oil methyl ester and its blends with producer gas on naturally aspirated vertical single cylinder water cooled four stroke single cylinder diesel engine is presented. The thermo-physical properties of all the bio fuel blends have been measured and presented. Evaporation rates of used vegetable oil methyl ester and its blends have been measured under slow convective environment of air flowing with a constant temperature and the values are compared with fossil diesel. Evaporation constants have been determined by using the droplet regression rate data. The fossil diesel, biodiesel blends and producer gas have been utilized in the test engine with different load conditions to evaluate the performance and emission characteristics of diesel engine and the results are compared with each other. From these observations, it could be noted that, smoke and hydrocarbon drastically reduced with biodiesel in the standard diesel engine without any modifications.

  12. Low-temperature tar and oil: properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, R

    1942-01-01

    In Germany the value of low-temperature tar is largely dependent on its fuel fractions; these vary with the coal and the method of carbonization (external heating or recirculated gases). Brown-coal tars can be processed by distillation, cracking under pressure, hydrogenation under pressure (largest volume of tar is processed by this method) and by solvent extraction, with EtOH, SO/sub 2/, or phenol. Each of these processes is discussed in detail. In the pressure-hydrogenation process, 1.25 kilogram of brown-coal tar yields approximately 1 kilogram of gasoline with an octane number of 60 to 70. Low-temperature tars from bituminous coals can be hydrogenated readily but are not well adapted to solvent extraction. Attempts should be made to produce tar approximating the desired characteristics for fuel directly from the carbonizing apparatus. For laboratory carbonization tests, an approximation to results secured by externally heated retorts is secured by using an insert consisting of a series of perforated trays in the 200-gram Fischer aluminum retort; this reduces the capacity to 100 gram. Fractional condensation is used to separate heavy oil, middle oil, and liquor; low-boiling products are condensed at -20/sup 0/ by solid CO/sub 2/.

  13. Precipitation Chemistry and Occurrence of Acid Rain over the Oil-Producing Niger Delta Region of Nigeria

    Directory of Open Access Journals (Sweden)

    John Kanayo Chukwu Nduka

    2010-01-01

    Full Text Available This study investigated the nitrate, sulfate, total dissolved solid (TDS, electrical conductivity, total hardness (TH, and bicarbonates of rainwater samples collected from Warri and Port Harcourt between April–June, July–August, and September–October of 2005 and 2006 to depict onset of rainy season, mid-rainy season, and end of rainy season for the two major crude oil–producing cities of the Niger Delta region of Nigeria (although Port Harcourt is also noted for non-oil manufacturing industries. The same was done in Awka, a non-oil producing city in the hinterland of southeastern Nigeria. In each of the cities, rain samples were collected from three points in a triangular equilibrium using a clean plastic basin fastened to a table 2 m above ground level and 115 m away from tall buildings and trees. The parameters were determined after filtering, using their respective standard methods. Averages of 1.50, 1.81, 1.13 and 2.14, 1.50, 1.86 mg/l of nitrate for April–June, July–August, and September–October were recorded for Warri in 2005 and 2006, respectively. While 15.21, 3.23, 22.31 and 20.89, 9.96, and 14.27 mg/l were recorded in Port Harcourt. Sulfate levels for Warri and Port Harcourt for the same periods are follows: 1.38, 1.88, 1.06, 1.50, 1.43, 1.50 and 2.64, 1.15, 5.88, 4.73, 1.90, 1.55 mg/l, respectively. Nitrate levels were higher than sulfate. Other parameters include TDS (5.44, 4.79, 3.30 and 7.63, 3.69, 2.56 mg/l for Warri in 2005 and 2006; 12.57, 2.07, 25.214 and 28.87, 6.73, 7.80 mg/l for Port Harcourt for the same periods. Other parameters also varied in that order for the 2 years in same cities. Crude oil exploration and gas flaring in the Niger Delta, and multiplicity of cottage industries in Awka, impacted on the inorganic ion pollution of the rainwater. This may have public health implications in the region.

  14. AUTOMATIC CALCULATION OF OIL SLICK AREA FROM MULTIPLE SAR ACQUISITIONS FOR DEEPWATER HORIZON OIL SPILL

    Directory of Open Access Journals (Sweden)

    B. Osmanoğlu

    2012-07-01

    Full Text Available The Deepwater Horizon oil spill occurred in the Gulf of Mexico in April 2010 and became the largest accidental marine oil spill in history. Oil leaked continuously between April 20th and July 15th of 2010, releasing about 780, 000m3 of crude oil into the Gulf of Mexico. The oil spill caused extensive economical and ecological damage to the areas it reached, affecting the marine and wildlife habitats along with fishing and tourism industries. For oil spill mitigation efforts, it is important to determine the areal extent, and most recent position of the contaminated area. Satellitebased oil pollution monitoring systems are being used for monitoring and in hazard response efforts. Due to their high accuracy, frequent acquisitions, large area coverage and day-and-night operation Synthetic Aperture Radar (SAR satellites are a major contributer of monitoring marine environments for oil spill detection. We developed a new algorithm for determining the extent of the oil spill from multiple SAR images, that are acquired with short temporal intervals using different sensors. Combining the multi-polarization data from Radarsat-2 (C-band, Envisat ASAR (C-band and Alos-PALSAR (L-band sensors, we calculate the extent of the oil spill with higher accuracy than what is possible from only one image. Short temporal interval between acquisitions (hours to days allow us to eliminate artifacts and increase accuracy. Our algorithm works automatically without any human intervention to deliver products in a timely manner in time critical operations. Acquisitions using different SAR sensors are radiometrically calibrated and processed individually to obtain oil spill area extent. Furthermore the algorithm provides probability maps of the areas that are classified as oil slick. This probability information is then combined with other acquisitions to estimate the combined probability map for the spill.

  15. Preparation and characterization of soaps made from soya bean oil ...

    African Journals Online (AJOL)

    This research work deals with the preparation of soaps from neem oil and soya bean oil blends and analyses the soap produced. The soaps were produced using cold process technique by varying the percentage of oils; (soya bean oil and neem oil) in the ratio of 100%, 90/10%, 80/20%, 70/30%, 60/40%, 50/50%, 40/60%, ...

  16. Physicochemical characteristics of commercial coconut oils produced in India

    Directory of Open Access Journals (Sweden)

    Prasanth Kumar, P. K.

    2015-03-01

    Full Text Available The physico-chemical characteristics and phytonutrient compositions of commercially available coconut oils [prepared from either copra (unrefined coconut oil- UCNO; Refined Bleached and Deodorized coconut oil- RBDCNO or from milk extracted from wet mature coconut (virgin coconut oil- VCNO] were analyzed and compared with the quality of VCNO. The color (2.6, 0.0, 1.6 lovibond units, free fatty acid value (0.61, 0.58, 0.53%, and peroxide value (1.35, 0.0, 0.0 meq.O2Kg−1 of UCNOs, VCNOs, and RBDCNOs, respectively, indicated higher units of color and peroxide value for UCNOs, and similar free fatty acid values to the other two oils. The UCNOs showed a slightly lower saponification value and higher iodine value as compared to VCNO. The composition of lauric acid (55.8%, medium chain fatty acids (69.65% and medium chain triglycerides (59.27% mainly dicapricmonolaurin (14.32%, dilauricmonocaprin (18.89% and trilaurin (21.88% were significantly higher in VCNO. The % phytosterol, phenolics and tocopherol + tocotrienol contents of UCNOs, VCNO and RBDCNO were 83.7, 54.9 and 81.4 mg; 9.4, 1.8 and 2.1 mg; 4.9, 2.8 and 4 mg, respectively. In UCNOs the values were significantly higher than in VCNO and RBDCNO. These results showed that UCNOs have more phytonutrients compared to VCNO and RBDCNO.Se analizaron y compararon las características físico-químicas y la composición de fitonutrientes de aceites de coco disponibles comercialmente preparados a partir de copra [aceite de coco sin refinar, UCNO; aceite de coco decolorado, y desodorizado (RBDCNO] y de la leche extraída de coco húmedo madurado [aceite de coco virgen (VCNO]. El color (2,6; 0,0; 1,6 unidades lovibond, los ácidos grasos libres (0,61; 0,58; 0,53% y el índice de peróxidos (1,35; 0,0; 0,0 meq·O2Kg−1 para UCNOs, VCNOs y RBDCNOs respectivamente, indican valores superiores de color y PV para UCNOs y FFA similar que para los otros dos aceites. Los aceites UCNOs mostraron valores de

  17. Switzerland's largest wood-pellet factory in Balsthal

    International Nuclear Information System (INIS)

    Stohler, F.

    2004-01-01

    This article describes how a small Swiss electricity utility has broken out of its traditional role in power generation and the distribution of electricity and gone into the production of wood pellets. The pellets, which are made from waste wood (sawdust) available from wood processing companies, are produced on a large scale in one of Europe's largest pellets production facilities. The boom in the use of wood pellets for heating purposes is discussed. The article discusses this unusual approach for a Swiss power utility, which also operates a wood-fired power station and is even involved in an incineration plant for household wastes. The markets being aimed for in Switzerland and in Europe are described, including modern low-energy-consumption housing projects. A further project is described that is to use waste wood available from a large wood processing facility planned in the utility's own region

  18. Fractional distillation of oil

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L D

    1931-10-31

    A method of dividing oil into lubricating oil fractions without substantial cracking by introducing the oil in a heated state into a fractionating column from which oil fractions having different boiling points are withdrawn at different levels, while reflux liquid is supplied to the top of the column, and additional heat is introduced into the column by contacting with the oil therein a heated fluid of higher monlecular weight than water and less susceptible to thermal decomposition than is the highest boiling oil fraction resulting from the distillation, or of which any products produced by thermal decomposition will not occur in the highest boiling distillate withdrawn from the column.

  19. Evaluation of five essential oils from aromatic plants of Cameroon for controlling food spoilage and mycotoxin producing fungi.

    Science.gov (United States)

    Nguefack, J; Leth, V; Amvam Zollo, P H; Mathur, S B

    2004-08-01

    Five essential oils (EO) extracted from Cymbopogon citratus, Monodora myristica, Ocimum gratissimum, Thymus vulgaris and Zingiber officinale were investigated for their inhibitory effect against three food spoilage and mycotoxin producing fungi, Fusarium moniliforme, Aspergillus flavus and Aspergillus fumigatus. Five strains of each fungus were tested. The agar dilution technique was used to determine the inhibitory effect of each EO on the radial growth of the fungus, and a dose response was recorded. The EO from O. gratissimum, T. vulgaris and C. citratus were the most effective and prevented conidial germination and the growth of all three fungi on corn meal agar at 800, 1000 and 1200 ppm, respectively. Moderate activity was observed for the EO from Z. officinale between 800 and 2500 ppm, while the EO from M. myristica was less inhibitory. These effects against food spoilage and mycotoxin producing fungi indicated the possible ability of each essential oil as a food preservative. A comparative test on the preservative ability of the EO from O. gratissimum and potassium sorbate against A. flavus at pH 3.0 and 4.5 showed that the EO remained stable at both pH, whereas the efficacy of potassium sorbate was reduced at higher pH. We concluded that the EO from O. gratissimum is a potential food preservative with a pH dependent superiority against potassium sorbate, and these are novel scientific information.

  20. The economic impact of oil prices

    International Nuclear Information System (INIS)

    Krymm, R.

    1974-01-01

    During the last three months of 1973, the tax-paid costs of typical grades of crude petroleum in the main producing areas of the world, around the Persian Gulf, were roughly quadrupled, rising for typical Iranian and Arabian Ugh t crudes from about $1.85 per barrel in September 1973 to more than $7.00 by 1 January 1974, or from approximately $13.30 to more than $50.00 per ton. Since the cost of production represents an insignificantly small fraction of the new cost level (less than 2%) and subject to complex adjustments reflecting varying qualities of crude oils and advantages of geographical location, the producing countries may expect to receive a minimum average revenue of $50.00 per ton of crude oil produced on their territory instead of $12.50. If we ignore the purchases which carried the prices of relatively small amounts of oil to the $100-$150 range, this figure of $50.00 per ton with future adjustments for inflation represents a probable guide line for future cost estimates. The change affects exports of close to 1.4 billion tons of oil and consequently involves an immediate shift of financial resources of close to 60 billion dollars per year from the oil-consuming to the oil-producing countries. Tables 1, 2 and 3 give an idea of the distribution of this burden by main geographical regions and of its possible evolution over the next seven years. The figures involved are so large that comparisons have been made by some authors with the reparations proposals advanced by the Allies at the end of the First World War. It has been pointed out that the market price of a typical quality of crude such as Arabian light had in fact fallen from $1.93 per barrel in 1955 to $1.26 in 1970. When the intervening industrial price inflation is taken into account this means that the price of oil had in fact been divided by 3 during a period when oil consumption was growing at an annual rate of more than 7% and oil was displacing coal as the major fuel of the world. During the