WorldWideScience

Sample records for largest historic earthquake

  1. Temporal properties of seismicity and largest earthquakes in SE Carpathians

    Directory of Open Access Journals (Sweden)

    S. Byrdina

    2006-01-01

    Full Text Available In order to estimate the hazard rate distribution of the largest seismic events in Vrancea, South-Eastern Carpathians, we study temporal properties of historical and instrumental catalogues of seismicity. First, on the basis of Generalized Extreme Value theory we estimate the average return period of the largest events. Then, following Bak et al. (2002 and Corral (2005a, we study scaling properties of recurrence times between earthquakes in appropriate spatial volumes. We come to the conclusion that the seismicity is temporally clustered, and that the distribution of recurrence times is significantly different from a Poisson process even for times largely exceeding corresponding periods of foreshock and aftershock activity. Modeling the recurrence times by a gamma distributed variable, we finally estimate hazard rates with respect to the time elapsed from the last large earthquake.

  2. Intensity estimation of historical earthquakes through seismic analysis of wooden house

    International Nuclear Information System (INIS)

    Choi, I. K.; Soe, J. M.

    1999-01-01

    The intensity of historical earthquake records related with house collapses are estimated by the seismic analyses of traditional three-bay-straw-roof house. Eighteen artificial time histories for magnitudes 6-8, epicentral distances 5 km - 350 km and hard and soft soil condition were generated for the analyses. Nonlinear dynamic analyses were performed for a traditional three-bay-roof house. Damage level of the wooden house according to the input earthquake motions and the MM intensity were estimated by maximum displacement response at the top of columns. Considering the structural characteristics of the three-bay-straw-roof house, the largest historical earthquake record related to the house collapse is about MMI VIII

  3. Historical earthquake research in Austria

    Science.gov (United States)

    Hammerl, Christa

    2017-12-01

    Austria has a moderate seismicity, and on average the population feels 40 earthquakes per year or approximately three earthquakes per month. A severe earthquake with light building damage is expected roughly every 2 to 3 years in Austria. Severe damage to buildings ( I 0 > 8° EMS) occurs significantly less frequently, the average period of recurrence is about 75 years. For this reason the historical earthquake research has been of special importance in Austria. The interest in historical earthquakes in the past in the Austro-Hungarian Empire is outlined, beginning with an initiative of the Austrian Academy of Sciences and the development of historical earthquake research as an independent research field after the 1978 "Zwentendorf plebiscite" on whether the nuclear power plant will start up. The applied methods are introduced briefly along with the most important studies and last but not least as an example of a recently carried out case study, one of the strongest past earthquakes in Austria, the earthquake of 17 July 1670, is presented. The research into historical earthquakes in Austria concentrates on seismic events of the pre-instrumental period. The investigations are not only of historical interest, but also contribute to the completeness and correctness of the Austrian earthquake catalogue, which is the basis for seismic hazard analysis and as such benefits the public, communities, civil engineers, architects, civil protection, and many others.

  4. Earthquake clustering in modern seismicity and its relationship with strong historical earthquakes around Beijing, China

    Science.gov (United States)

    Wang, Jian; Main, Ian G.; Musson, Roger M. W.

    2017-11-01

    Beijing, China's capital city, is located in a typical intraplate seismic belt, with relatively high-quality instrumental catalogue data available since 1970. The Chinese historical earthquake catalogue contains six strong historical earthquakes of Ms ≥ 6 around Beijing, the earliest in 294 AD. This poses a significant potential hazard to one of the most densely populated and economically active parts of China. In some intraplate areas, persistent clusters of events associated with historical events can occur over centuries, for example, the ongoing sequence in the New Madrid zone of the eastern US. Here we will examine the evidence for such persistent clusters around Beijing. We introduce a metric known as the `seismic density index' that quantifies the degree of clustering of seismic energy release. For a given map location, this multi-dimensional index depends on the number of events, their magnitudes, and the distances to the locations of the surrounding population of earthquakes. We apply the index to modern instrumental catalogue data between 1970 and 2014, and identify six clear candidate zones. We then compare these locations to earthquake epicentre and seismic intensity data for the six largest historical earthquakes. Each candidate zone contains one of the six historical events, and the location of peak intensity is within 5 km or so of the reported epicentre in five of these cases. In one case—the great Ms 8 earthquake of 1679—the peak is closer to the area of strongest shaking (Intensity XI or more) than the reported epicentre. The present-day event rates are similar to those predicted by the modified Omori law but there is no evidence of ongoing decay in event rates. Accordingly, the index is more likely to be picking out the location of persistent weaknesses in the lithosphere. Our results imply zones of high seismic density index could be used in principle to indicate the location of unrecorded historical of palaeoseismic events, in China and

  5. Historic Eastern Canadian earthquakes

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Atchinson, R.J.

    1981-01-01

    Nuclear power plants licensed in Canada have been designed to resist earthquakes: not all plants, however, have been explicitly designed to the same level of earthquake induced forces. Understanding the nature of strong ground motion near the source of the earthquake is still very tentative. This paper reviews historical and scientific accounts of the three strongest earthquakes - St. Lawrence (1925), Temiskaming (1935), Cornwall (1944) - that have occurred in Canada in 'modern' times, field studies of near-field strong ground motion records and their resultant damage or non-damage to industrial facilities, and numerical modelling of earthquake sources and resultant wave propagation to produce accelerograms consistent with the above historical record and field studies. It is concluded that for future construction of NPP's near-field strong motion must be explicitly considered in design

  6. State-of-the-art of historical earthquake research in Fennoscandia and the Baltic Republics

    Directory of Open Access Journals (Sweden)

    V. Nikulin

    2004-06-01

    Full Text Available We review historical earthquake research in Northern Europe. 'Historical' is defined as being identical with seismic events occurring in the pre-instrumental and early instrumental periods between 1073 and the mid-1960s. The first seismographs in this region were installed in Uppsala, Sweden and Bergen, Norway in 1904-1905, but these mechanical pendulum instruments were broad band and amplification factors were modest at around 500. Until the 1960s few modern short period electromagnetic seismographs were deployed. Scientific earthquake studies in this region began during the first decades of the 1800s, while the systematic use of macroseismic questionnaires commenced at the end of that century. Basic research efforts have vigorously been pursued from the 1970s onwards because of the mandatory seismic risk studies for commissioning nuclear power plants in Sweden, Finland, NW Russia, Kola and installations of huge oil platforms in the North Sea. The most comprehensive earthquake database currently available for Northern Europe is the FENCAT catalogue covering about six centuries and representing the accumulation of work conducted by many scientists during the last 200 years. This catalogue is given in parametric form, while original macroseismic observations and intensity maps for the largest earthquakes can be found in various national publications, often in local languages. No database giving intensity data points exists in computerized form for the region. The FENCAT catalogue still contains some spurious events of various kinds but more serious are some recent claims that some of the presumed largest historical earthquakes have been assigned too large magnitude values, which would have implications for earthquake hazard levels implemented in national building codes. We discuss future cooperative measures such as establishing macroseismic data archives as a means for promoting further research on historical earthquakes in Northern Europe.

  7. Historical earthquake investigations in Greece

    Directory of Open Access Journals (Sweden)

    K. Makropoulos

    2004-06-01

    Full Text Available The active tectonics of the area of Greece and its seismic activity have always been present in the country?s history. Many researchers, tempted to work on Greek historical earthquakes, have realized that this is a task not easily fulfilled. The existing catalogues of strong historical earthquakes are useful tools to perform general SHA studies. However, a variety of supporting datasets, non-uniformly distributed in space and time, need to be further investigated. In the present paper, a review of historical earthquake studies in Greece is attempted. The seismic history of the country is divided into four main periods. In each one of them, characteristic examples, studies and approaches are presented.

  8. Keeping the History in Historical Seismology: The 1872 Owens Valley, California Earthquake

    International Nuclear Information System (INIS)

    Hough, Susan E.

    2008-01-01

    The importance of historical earthquakes is being increasingly recognized. Careful investigations of key pre-instrumental earthquakes can provide critical information and insights for not only seismic hazard assessment but also for earthquake science. In recent years, with the explosive growth in computational sophistication in Earth sciences, researchers have developed increasingly sophisticated methods to analyze macroseismic data quantitatively. These methodological developments can be extremely useful to exploit fully the temporally and spatially rich information source that seismic intensities often represent. For example, the exhaustive and painstaking investigations done by Ambraseys and his colleagues of early Himalayan earthquakes provides information that can be used to map out site response in the Ganges basin. In any investigation of macroseismic data, however, one must stay mindful that intensity values are not data but rather interpretations. The results of any subsequent analysis, regardless of the degree of sophistication of the methodology, will be only as reliable as the interpretations of available accounts - and only as complete as the research done to ferret out, and in many cases translate, these accounts. When intensities are assigned without an appreciation of historical setting and context, seemingly careful subsequent analysis can yield grossly inaccurate results. As a case study, I report here on the results of a recent investigation of the 1872 Owen's Valley, California earthquake. Careful consideration of macroseismic observations reveals that this event was probably larger than the great San Francisco earthquake of 1906, and possibly the largest historical earthquake in California. The results suggest that some large earthquakes in California will generate significantly larger ground motions than San Andreas fault events of comparable magnitude

  9. Reassessment of source parameters for three major earthquakes in the East African rift system from historical seismograms and bulletins

    OpenAIRE

    Ayele, A.; Kulhánek, O.

    2000-01-01

    Source parameters for three majo earthquakes in the East African rift are re-computed from historical seismograms and bulletins. The main shock and the largest foreshock of the August 25, 1906 earthquake sequence in the main Ethiopian rift are re-located on the eastern shoulder of the rift segment.The magnitude of the main shock is estimated to be 6.5 (Mw) from spectral analysis. The December 13, 1910 earthquake in the Rukwa rift (Western Tanzania) indicated a significant strike-slip componen...

  10. Reassessment of source parameters for three major earthquakes in the East African rift system from historical seismograms and bulletins

    Directory of Open Access Journals (Sweden)

    O. Kulhánek

    2000-06-01

    Full Text Available Source parameters for three majo earthquakes in the East African rift are re-computed from historical seismograms and bulletins. The main shock and the largest foreshock of the August 25, 1906 earthquake sequence in the main Ethiopian rift are re-located on the eastern shoulder of the rift segment.The magnitude of the main shock is estimated to be 6.5 (Mw from spectral analysis. The December 13, 1910 earthquake in the Rukwa rift (Western Tanzania indicated a significant strike-slip component from teleseismcs body-waveform inversion for fault mechanism and seismic moment. The January 6, 1928 earthquake in the Gregory rift (Kenya showed a multiple rupture process and unusually long duration for a size of 6.6(Mw. The May 20, 1990 earthquake in Southern Sudan, mentioned merely for the sake of comparison, is the largest of all instrumentally recorded events in the East African rift system. Despite the fact that the mode of deformation in the continental rift is predominantly of extensional nature, the three largest earthquakes known to occur in the circum-Tanzanian craton have shallow focal depths and significant strike-slip component in their fault mechanisms. This and similar works will enrich the database for seismic hazard assessment in East Africa.

  11. Introduction to thematic collection "Historical and geological studies of earthquakes"

    Science.gov (United States)

    Satake, Kenji; Wang, Jian; Hammerl, Christa; Malik, Javed N.

    2017-12-01

    This thematic collection contains eight papers mostly presented at the 2016 AOGS meeting in Beijing. Four papers describe historical earthquake studies in Europe, Japan, and China; one paper uses modern instrumental data to examine the effect of giant earthquakes on the seismicity rate; and three papers describe paleoseismological studies using tsunami deposit in Japan, marine terraces in Philippines, and active faults in Himalayas. Hammerl (Geosci Lett 4:7, 2017) introduced historical seismological studies in Austria, starting from methodology which is state of the art in most European countries, followed by a case study for an earthquake of July 17, 1670 in Tyrol. Albini and Rovida (Geosci Lett 3:30, 2016) examined 114 historical records for the earthquake on April 6, 1667 on the east coast of the Adriatic Sea, compiled 37 Macroseismic Data Points, and estimated the epicenter and the size of the earthquake. Matsu'ura (Geosci Lett 4:3, 2017) summarized historical earthquake studies in Japan which resulted in about 8700 Intensity Data Points, assigned epicenters for 214 earthquakes between AD 599 and 1872, and estimated focal depth and magnitudes for 134 events. Wang et al. (Geosci Lett 4:4, 2017) introduced historical seismology in China, where historical earthquake archives include about 15,000 sources, and parametric catalogs include about 1000 historical earthquakes between 2300 BC and AD 1911. Ishibe et al. (Geosci Lett 4:5, 2017) tested the Coulomb stress triggering hypothesis for three giant (M 9) earthquakes that occurred in recent years, and found that at least the 2004 Sumatra-Andaman and 2011 Tohoku earthquakes caused the seismicity rate change. Ishimura (2017) re-estimated the ages of 11 tsunami deposits in the last 4000 years along the Sanriku coast of northern Japan and found that the average recurrence interval of those tsunamis as 350-390 years. Ramos et al. (2017) studied 1000-year-old marine terraces on the west coast of Luzon Island, Philippines

  12. Overview of Historical Earthquake Document Database in Japan and Future Development

    Science.gov (United States)

    Nishiyama, A.; Satake, K.

    2014-12-01

    In Japan, damage and disasters from historical large earthquakes have been documented and preserved. Compilation of historical earthquake documents started in the early 20th century and 33 volumes of historical document source books (about 27,000 pages) have been published. However, these source books are not effectively utilized for researchers due to a contamination of low-reliability historical records and a difficulty for keyword searching by characters and dates. To overcome these problems and to promote historical earthquake studies in Japan, construction of text database started in the 21 century. As for historical earthquakes from the beginning of the 7th century to the early 17th century, "Online Database of Historical Documents in Japanese Earthquakes and Eruptions in the Ancient and Medieval Ages" (Ishibashi, 2009) has been already constructed. They investigated the source books or original texts of historical literature, emended the descriptions, and assigned the reliability of each historical document on the basis of written age. Another database compiled the historical documents for seven damaging earthquakes occurred along the Sea of Japan coast in Honshu, central Japan in the Edo period (from the beginning of the 17th century to the middle of the 19th century) and constructed text database and seismic intensity data base. These are now publicized on the web (written only in Japanese). However, only about 9 % of the earthquake source books have been digitized so far. Therefore, we plan to digitize all of the remaining historical documents by the research-program which started in 2014. The specification of the data base will be similar for previous ones. We also plan to combine this database with liquefaction traces database, which will be constructed by other research program, by adding the location information described in historical documents. Constructed database would be utilized to estimate the distributions of seismic intensities and tsunami

  13. Evaluation and cataloging of Korean historical earthquakes

    International Nuclear Information System (INIS)

    Lee, Kew Hwa; Han, Young Woo; Lee, Jun Hui; Park, Ji Eok; Na, Kwang Wooing; Shin, Byung Ju

    1999-03-01

    Historical earthquake data of the Korean Peninsula which are very important is evaluating seismicity and seismic hazard of the peninsula were collected and analyzed by seismologist and historian. A preliminary catalog of Korean historical earthquake data translated in English was made. Felt places of 528 events felt at more than 2 places were indicated on maps and MMI III isoseismal were drawn for 52 events of MMI≥VII. Epicenters and intensities of these MMI≥VII events were estimated from these isoseismal maps

  14. Evaluation and cataloging of Korean historical earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kew Hwa; Han, Young Woo; Lee, Jun Hui; Park, Ji Eok; Na, Kwang Wooing; Shin, Byung Ju [The Reaearch Institute of Basic Sciences, Seoul Nationl Univ., Seoul (Korea, Republic of)

    1999-03-15

    Historical earthquake data of the Korean Peninsula which are very important is evaluating seismicity and seismic hazard of the peninsula were collected and analyzed by seismologist and historian. A preliminary catalog of Korean historical earthquake data translated in English was made. Felt places of 528 events felt at more than 2 places were indicated on maps and MMI III isoseismal were drawn for 52 events of MMI{>=}VII. Epicenters and intensities of these MMI{>=}VII events were estimated from these isoseismal maps.

  15. Tutorial on earthquake rotational effects: historical examples

    Czech Academy of Sciences Publication Activity Database

    Kozák, Jan

    2009-01-01

    Roč. 99, 2B (2009), s. 998-1010 ISSN 0037-1106 Institutional research plan: CEZ:AV0Z30120515 Keywords : rotational seismic models * earthquake rotational effects * historical earthquakes Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.860, year: 2009

  16. Geological and historical evidence of irregular recurrent earthquakes in Japan.

    Science.gov (United States)

    Satake, Kenji

    2015-10-28

    Great (M∼8) earthquakes repeatedly occur along the subduction zones around Japan and cause fault slip of a few to several metres releasing strains accumulated from decades to centuries of plate motions. Assuming a simple 'characteristic earthquake' model that similar earthquakes repeat at regular intervals, probabilities of future earthquake occurrence have been calculated by a government committee. However, recent studies on past earthquakes including geological traces from giant (M∼9) earthquakes indicate a variety of size and recurrence interval of interplate earthquakes. Along the Kuril Trench off Hokkaido, limited historical records indicate that average recurrence interval of great earthquakes is approximately 100 years, but the tsunami deposits show that giant earthquakes occurred at a much longer interval of approximately 400 years. Along the Japan Trench off northern Honshu, recurrence of giant earthquakes similar to the 2011 Tohoku earthquake with an interval of approximately 600 years is inferred from historical records and tsunami deposits. Along the Sagami Trough near Tokyo, two types of Kanto earthquakes with recurrence interval of a few hundred years and a few thousand years had been recognized, but studies show that the recent three Kanto earthquakes had different source extents. Along the Nankai Trough off western Japan, recurrence of great earthquakes with an interval of approximately 100 years has been identified from historical literature, but tsunami deposits indicate that the sizes of the recurrent earthquakes are variable. Such variability makes it difficult to apply a simple 'characteristic earthquake' model for the long-term forecast, and several attempts such as use of geological data for the evaluation of future earthquake probabilities or the estimation of maximum earthquake size in each subduction zone are being conducted by government committees. © 2015 The Author(s).

  17. Investigating landslides caused by earthquakes - A historical review

    Science.gov (United States)

    Keefer, D.K.

    2002-01-01

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides. This paper traces the historical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquake are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession of post-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing "retrospective" analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, synthesis of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  18. Archiving, sharing, processing and publishing historical earthquakes data: the IT point of view

    Science.gov (United States)

    Locati, Mario; Rovida, Andrea; Albini, Paola

    2014-05-01

    Digital tools devised for seismological data are mostly designed for handling instrumentally recorded data. Researchers working on historical seismology are forced to perform their daily job using a general purpose tool and/or coding their own to address their specific tasks. The lack of out-of-the-box tools expressly conceived to deal with historical data leads to a huge amount of time lost in performing tedious task to search for the data and, to manually reformat it in order to jump from one tool to the other, sometimes causing a loss of the original data. This reality is common to all activities related to the study of earthquakes of the past centuries, from the interpretations of past historical sources, to the compilation of earthquake catalogues. A platform able to preserve the historical earthquake data, trace back their source, and able to fulfil many common tasks was very much needed. In the framework of two European projects (NERIES and SHARE) and one global project (Global Earthquake History, GEM), two new data portals were designed and implemented. The European portal "Archive of Historical Earthquakes Data" (AHEAD) and the worldwide "Global Historical Earthquake Archive" (GHEA), are aimed at addressing at least some of the above mentioned issues. The availability of these new portals and their well-defined standards makes it easier than before the development of side tools for archiving, publishing and processing the available historical earthquake data. The AHEAD and GHEA portals, their underlying technologies and the developed side tools are presented.

  19. GIS learning tool for world's largest earthquakes and their causes

    Science.gov (United States)

    Chatterjee, Moumita

    The objective of this thesis is to increase awareness about earthquakes among people, especially young students by showing the five largest and two most predictable earthquake locations in the world and their plate tectonic settings. This is a geographic based interactive tool which could be used for learning about the cause of great earthquakes in the past and the safest places on the earth in order to avoid direct effect of earthquakes. This approach provides an effective way of learning for the students as it is very user friendly and more aligned to the interests of the younger generation. In this tool the user can click on the various points located on the world map which will open a picture and link to the webpage for that point, showing detailed information of the earthquake history of that place including magnitude of quake, year of past quakes and the plate tectonic settings that made this place earthquake prone. Apart from knowing the earthquake related information students will also be able to customize the tool to suit their needs or interests. Students will be able to add/remove layers, measure distance between any two points on the map, select any place on the map and know more information for that place, create a layer from this set to do a detail analysis, run a query, change display settings, etc. At the end of this tool the user has to go through the earthquake safely guidelines in order to be safe during an earthquake. This tool uses Java as programming language and uses Map Objects Java Edition (MOJO) provided by ESRI. This tool is developed for educational purpose and hence its interface has been kept simple and easy to use so that students can gain maximum knowledge through it instead of having a hard time to install it. There are lots of details to explore which can help more about what a GIS based tool is capable of. Only thing needed to run this tool is latest JAVA edition installed in their machine. This approach makes study more fun and

  20. Evidence for strong Holocene earthquake(s) in the Wabash Valley seismic zone

    International Nuclear Information System (INIS)

    Obermeier, S.

    1991-01-01

    Many small and slightly damaging earthquakes have taken place in the region of the lower Wabash River Valley of Indiana and Illinois during the 200 years of historic record. Seismologists have long suspected the Wabash Valley seismic zone to be capable of producing earthquakes much stronger than the largest of record (m b 5.8). The seismic zone contains the poorly defined Wabash Valley fault zone and also appears to contain other vaguely defined faults at depths from which the strongest earthquakes presently originate. Faults near the surface are generally covered with thick alluvium in lowlands and a veneer of loess in uplands, which make direct observations of faults difficult. Partly because of this difficulty, a search for paleoliquefaction features was begun in 1990. Conclusions of the study are as follows: (1) an earthquake much stronger than any historic earthquake struck the lower Wabash Valley between 1,500 and 7,500 years ago; (2) the epicentral region of the prehistoric strong earthquake was the Wabash Valley seismic zone; (3) apparent sites have been located where 1811-12 earthquake accelerations can be bracketed

  1. The characteristic of the building damage from historical large earthquakes in Kyoto

    Science.gov (United States)

    Nishiyama, Akihito

    2016-04-01

    The Kyoto city, which is located in the northern part of Kyoto basin in Japan, has a long history of >1,200 years since the city was initially constructed. The city has been a populated area with many buildings and the center of the politics, economy and culture in Japan for nearly 1,000 years. Some of these buildings are now subscribed as the world's cultural heritage. The Kyoto city has experienced six damaging large earthquakes during the historical period: i.e., in 976, 1185, 1449, 1596, 1662, and 1830. Among these, the last three earthquakes which caused severe damage in Kyoto occurred during the period in which the urban area had expanded. These earthquakes are considered to be inland earthquakes which occurred around the Kyoto basin. The damage distribution in Kyoto from historical large earthquakes is strongly controlled by ground condition and earthquakes resistance of buildings rather than distance from estimated source fault. Therefore, it is necessary to consider not only the strength of ground shaking but also the condition of building such as elapsed years since the construction or last repair in order to more accurately and reliably estimate seismic intensity distribution from historical earthquakes in Kyoto. The obtained seismic intensity map would be helpful for reducing and mitigating disaster from future large earthquakes.

  2. Research in historical earthquakes in the Korean peninsula and its circumferential regions

    Institute of Scientific and Technical Information of China (English)

    翟文杰; 吴戈; 韩绍欣

    2004-01-01

    @@ The historical earthquake data is one of the important foundations for seismic monitoring, earthquake fore-cast and seismic safety evaluation. However, the recognition of earthquake is limited by the scientific and techno-logical level. Therefore, the earthquake can only be described using perfect earthquake catalogue after the seismo-graph is invented. Before this time, the earthquake parameters were determined according to the earthquake disas-ter on the surface and the written records in history, and the earthquake level was measured using earthquake in-tensity.

  3. Earthquake Catalogue of the Caucasus

    Science.gov (United States)

    Godoladze, T.; Gok, R.; Tvaradze, N.; Tumanova, N.; Gunia, I.; Onur, T.

    2016-12-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283 (Ms˜7.0, Io=9); Lechkhumi-Svaneti earthquake of 1350 (Ms˜7.0, Io=9); and the Alaverdi earthquake of 1742 (Ms˜6.8, Io=9). Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088 (Ms˜6.5, Io=9) and the Akhalkalaki earthquake of 1899 (Ms˜6.3, Io =8-9). Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; Racha earthquake of 1991 (Ms=7.0), is the largest event ever recorded in the region; Barisakho earthquake of 1992 (M=6.5); Spitak earthquake of 1988 (Ms=6.9, 100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of the various national networks (Georgia (˜25 stations), Azerbaijan (˜35 stations), Armenia (˜14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. In order to improve seismic data quality a catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences/NSMC, Ilia State University) in the framework of regional joint project (Armenia, Azerbaijan, Georgia, Turkey, USA) "Probabilistic Seismic Hazard Assessment (PSHA) in the Caucasus. The catalogue consists of more then 80,000 events. First arrivals of each earthquake of Mw>=4.0 have been carefully examined. To reduce calculation errors, we corrected arrivals from the seismic records. We improved locations of the events and recalculate Moment magnitudes in order to obtain unified magnitude

  4. Application of laser scanning technique in earthquake protection of Istanbul's historical heritage buildings

    Science.gov (United States)

    Çaktı, Eser; Ercan, Tülay; Dar, Emrullah

    2017-04-01

    Istanbul's vast historical and cultural heritage is under constant threat of earthquakes. Historical records report repeated damages to the city's landmark buildings. Our efforts towards earthquake protection of several buildings in Istanbul involve earthquake monitoring via structural health monitoring systems, linear and non-linear structural modelling and analysis in search of past and future earthquake performance, shake-table testing of scaled models and non-destructive testing. More recently we have been using laser technology in monitoring structural deformations and damage in five monumental buildings which are Hagia Sophia Museum and Fatih, Sultanahmet, Süleymaniye and Mihrimah Sultan Mosques. This presentation is about these efforts with special emphasis on the use of laser scanning in monitoring of edifices.

  5. The CATDAT damaging earthquakes database

    Science.gov (United States)

    Daniell, J. E.; Khazai, B.; Wenzel, F.; Vervaeck, A.

    2011-08-01

    The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture) database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes. Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon. Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected), and economic losses (direct, indirect, aid, and insured). Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto (214 billion USD damage; 2011 HNDECI-adjusted dollars) compared to the 2011 Tohoku (>300 billion USD at time of writing), 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product), exchange rate, wage information, population, HDI (Human Development Index), and insurance information have been collected globally to form comparisons. This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global reinsurance field.

  6. The CATDAT damaging earthquakes database

    Directory of Open Access Journals (Sweden)

    J. E. Daniell

    2011-08-01

    Full Text Available The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes.

    Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon.

    Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected, and economic losses (direct, indirect, aid, and insured.

    Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto ($214 billion USD damage; 2011 HNDECI-adjusted dollars compared to the 2011 Tohoku (>$300 billion USD at time of writing, 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product, exchange rate, wage information, population, HDI (Human Development Index, and insurance information have been collected globally to form comparisons.

    This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global

  7. Locations and magnitudes of historical earthquakes in the Sierra of Ecuador (1587-1996)

    Science.gov (United States)

    Beauval, Céline; Yepes, Hugo; Bakun, William H.; Egred, José; Alvarado, Alexandra; Singaucho, Juan-Carlos

    2010-06-01

    The whole territory of Ecuador is exposed to seismic hazard. Great earthquakes can occur in the subduction zone (e.g. Esmeraldas, 1906, Mw 8.8), whereas lower magnitude but shallower and potentially more destructive earthquakes can occur in the highlands. This study focuses on the historical crustal earthquakes of the Andean Cordillera. Several large cities are located in the Interandean Valley, among them Quito, the capital (~2.5 millions inhabitants). A total population of ~6 millions inhabitants currently live in the highlands, raising the seismic risk. At present, precise instrumental data for the Ecuadorian territory is not available for periods earlier than 1990 (beginning date of the revised instrumental Ecuadorian seismic catalogue); therefore historical data are of utmost importance for assessing seismic hazard. In this study, the Bakun & Wentworth method is applied in order to determine magnitudes, locations, and associated uncertainties for historical earthquakes of the Sierra over the period 1587-1976. An intensity-magnitude equation is derived from the four most reliable instrumental earthquakes (Mw between 5.3 and 7.1). Intensity data available per historical earthquake vary between 10 (Quito, 1587, Intensity >=VI) and 117 (Riobamba, 1797, Intensity >=III). The bootstrap resampling technique is coupled to the B&W method for deriving geographical confidence contours for the intensity centre depending on the data set of each earthquake, as well as confidence intervals for the magnitude. The extension of the area delineating the intensity centre location at the 67 per cent confidence level (+/-1σ) depends on the amount of intensity data, on their internal coherence, on the number of intensity degrees available, and on their spatial distribution. Special attention is dedicated to the few earthquakes described by intensities reaching IX, X and XI degrees. Twenty-five events are studied, and nineteen new epicentral locations are obtained, yielding

  8. Investigating Landslides Caused by Earthquakes A Historical Review

    Science.gov (United States)

    Keefer, David K.

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated withearthquake-induced landslides. This paper traces thehistorical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquakes are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession ofpost-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing ``retrospective'' analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, syntheses of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  9. Earthquake response of heavily damaged historical masonry mosques after restoration

    Science.gov (United States)

    Altunışık, Ahmet Can; Fuat Genç, Ali

    2017-10-01

    Restoration works have been accelerated substantially in Turkey in the last decade. Many historical buildings, mosques, minaret, bridges, towers and structures have been restored. With these restorations an important issue arises, namely how restoration work affects the structure. For this reason, we aimed to investigate the restoration effect on the earthquake response of a historical masonry mosque considering the openings on the masonry dome. For this purpose, we used the Hüsrev Pasha Mosque, which is located in the Ortakapı district in the old city of Van, Turkey. The region of Van is in an active seismic zone; therefore, earthquake analyses were performed in this study. Firstly a finite element model of the mosque was constructed considering the restoration drawings and 16 window openings on the dome. Then model was constructed with eight window openings. Structural analyses were performed under dead load and earthquake load, and the mode superposition method was used in analyses. Maximum displacements, maximum-minimum principal stresses and shear stresses are given with contours diagrams. The results are analyzed according to Turkish Earthquake Code (TEC, 2007) and compared between 8 and 16 window openings cases. The results show that reduction of the window openings affected the structural behavior of the mosque positively.

  10. A Study of the Historical Earthquake Catalog and Gutenberg-richter Parameter Values of the Korean Peninsula

    International Nuclear Information System (INIS)

    Seo, Jeong Moon; Choi, In Kil; Rhee, Hyun Me

    2010-01-01

    The KIER's Korean historical earthquake catalog was revised for MMI≥VI events recorded from the years 27 A.D. to 1904. The magnitude of each event was directly determined from the criteria suggested by Seo. The criteria incorporated the damage phenomena of the Japanese historical earthquake catalog, recent seismological studies, and the results of tests performed on ancient structures in Korea. Thus, the uncertainty of the magnitudes of the Korean historical earthquakes can be reduced. Also, the Gutenberg-Richter parameter values were estimated based on the revised catalog of this study. It was determined that the magnitudes of a maximum inland and minimum offshore event were approximately 6.3 and 6.5, respectively. The Gutenberg-Richter parameter pairs of the historical earthquake catalog were estimated to be a=5.32±0.21, b=0.95±0.19, which were somewhat lower than those obtained from recent complete instrumental earthquakes. No apparent change in the Gutenberg-Richter parameter is observed for the 16 th -17 th centuries of the seismically active period

  11. Probabilistic Seismic Hazard Assessment for Himalayan-Tibetan Region from Historical and Instrumental Earthquake Catalogs

    Science.gov (United States)

    Rahman, M. Moklesur; Bai, Ling; Khan, Nangyal Ghani; Li, Guohui

    2018-02-01

    The Himalayan-Tibetan region has a long history of devastating earthquakes with wide-spread casualties and socio-economic damages. Here, we conduct the probabilistic seismic hazard analysis by incorporating the incomplete historical earthquake records along with the instrumental earthquake catalogs for the Himalayan-Tibetan region. Historical earthquake records back to more than 1000 years ago and an updated, homogenized and declustered instrumental earthquake catalog since 1906 are utilized. The essential seismicity parameters, namely, the mean seismicity rate γ, the Gutenberg-Richter b value, and the maximum expected magnitude M max are estimated using the maximum likelihood algorithm assuming the incompleteness of the catalog. To compute the hazard value, three seismogenic source models (smoothed gridded, linear, and areal sources) and two sets of ground motion prediction equations are combined by means of a logic tree on accounting the epistemic uncertainties. The peak ground acceleration (PGA) and spectral acceleration (SA) at 0.2 and 1.0 s are predicted for 2 and 10% probabilities of exceedance over 50 years assuming bedrock condition. The resulting PGA and SA maps show a significant spatio-temporal variation in the hazard values. In general, hazard value is found to be much higher than the previous studies for regions, where great earthquakes have actually occurred. The use of the historical and instrumental earthquake catalogs in combination of multiple seismogenic source models provides better seismic hazard constraints for the Himalayan-Tibetan region.

  12. Innovative Technologies for the Protection of Historical Structures against Earthquakes

    Directory of Open Access Journals (Sweden)

    Fuat Aras

    2016-01-01

    This study aims to represent innovative technologies and strategies to preserve the cultural heritage structures against earthquake effect. In particular, the application of fibre reinforced polymers and structural control systems are explained. Suitability of the strategies to architectural, historical and structural features and reversibility aspects are evaluated. As a case study the application of these strategies to a historical building in Istanbul is discussed.

  13. Locations and magnitudes of historical earthquakes in the Sierra of Ecuador (1587–1996)

    Science.gov (United States)

    Beauval, Celine; Yepes, Hugo; Bakun, William H.; Egred, Jose; Alvarado, Alexandra; Singaucho, Juan-Carlos

    2010-01-01

    The whole territory of Ecuador is exposed to seismic hazard. Great earthquakes can occur in the subduction zone (e.g. Esmeraldas, 1906, Mw8.8), whereas lower magnitude but shallower and potentially more destructive earthquakes can occur in the highlands. This study focuses on the historical crustal earthquakes of the Andean Cordillera. Several large cities are located in the Interandean Valley, among them Quito, the capital (∼2.5 millions inhabitants). A total population of ∼6 millions inhabitants currently live in the highlands, raising the seismic risk. At present, precise instrumental data for the Ecuadorian territory is not available for periods earlier than 1990 (beginning date of the revised instrumental Ecuadorian seismic catalogue); therefore historical data are of utmost importance for assessing seismic hazard. In this study, the Bakun & Wentworth method is applied in order to determine magnitudes, locations, and associated uncertainties for historical earthquakes of the Sierra over the period 1587–1976. An intensity-magnitude equation is derived from the four most reliable instrumental earthquakes (Mwbetween 5.3 and 7.1). Intensity data available per historical earthquake vary between 10 (Quito, 1587, Intensity ≥VI) and 117 (Riobamba, 1797, Intensity ≥III). The bootstrap resampling technique is coupled to the B&W method for deriving geographical confidence contours for the intensity centre depending on the data set of each earthquake, as well as confidence intervals for the magnitude. The extension of the area delineating the intensity centre location at the 67 per cent confidence level (±1σ) depends on the amount of intensity data, on their internal coherence, on the number of intensity degrees available, and on their spatial distribution. Special attention is dedicated to the few earthquakes described by intensities reaching IX, X and XI degrees. Twenty-five events are studied, and nineteen new epicentral locations are obtained, yielding

  14. Aseismic blocks and destructive earthquakes in the Aegean

    Science.gov (United States)

    Stiros, Stathis

    2017-04-01

    Aseismic areas are not identified only in vast, geologically stable regions, but also within regions of active, intense, distributed deformation such as the Aegean. In the latter, "aseismic blocks" about 200m wide were recognized in the 1990's on the basis of the absence of instrumentally-derived earthquake foci, in contrast to surrounding areas. This pattern was supported by the available historical seismicity data, as well as by geologic evidence. Interestingly, GPS evidence indicates that such blocks are among the areas characterized by small deformation rates relatively to surrounding areas of higher deformation. Still, the largest and most destructive earthquake of the 1990's, the 1995 M6.6 earthquake occurred at the center of one of these "aseismic" zones at the northern part of Greece, found unprotected against seismic hazard. This case was indeed a repeat of the case of the tsunami-associated 1956 Amorgos Island M7.4 earthquake, the largest 20th century event in the Aegean back-arc region: the 1956 earthquake occurred at the center of a geologically distinct region (Cyclades Massif in Central Aegean), till then assumed aseismic. Interestingly, after 1956, the overall idea of aseismic regions remained valid, though a "promontory" of earthquake prone-areas intruding into the aseismic central Aegean was assumed. Exploitation of the archaeological excavation evidence and careful, combined analysis of historical and archaeological data and other palaeoseismic, mostly coastal data, indicated that destructive and major earthquakes have left their traces in previously assumed aseismic blocks. In the latter earthquakes typically occur with relatively low recurrence intervals, >200-300 years, much smaller than in adjacent active areas. Interestingly, areas assumed a-seismic in antiquity are among the most active in the last centuries, while areas hit by major earthquakes in the past are usually classified as areas of low seismic risk in official maps. Some reasons

  15. Calibration of Crustal Historical Earthquakes from Intra-Carpathian Region of Romania

    Science.gov (United States)

    Oros, Eugen; Popa, Mihaela; Rogozea, Maria

    2017-12-01

    The main task of the presented study is to elaborate a set of relations of mutual conversion macroseismic intensity - magnitude, necessary for the calibration of the historical crustal earthquakes produced in the Intra - Carpathian region of Romania, as a prerequisite for homogenization of the parametric catalogue of Romanian earthquakes. To achieve the goal, we selected a set of earthquakes for which we have quality macroseismic data and the Mw moment magnitude obtained instrumentally. These seismic events were used to determine the relations between the Mw and the peak/epicentral intensity, the isoseist surface area for I=3, I=4 and I=5: Mw = f (Imax / Io), Mw = f (Imax / Io, h), Mw = f (A3, A4; A5). We investigated several variants of such relationships and combinations, taking into account that the macroseismic data necessary for the re-evaluation of historical earthquakes in the investigated region are available in several forms. Thus, a number of investigations provided various information resulted after revising initial historical data: 1) Intensity data point (IDP) assimilated or not with the epicentre intensity after analysis of the correlation level with recent seismicity data and / or active tectonics / seismotectonics, 2) Sets of intensities obtained in several localities (IDPs) with variable values having maxims that can be considered equal to epicentral intensity (Io), 3) Sets of intensities obtained in several localities (IDPs) but without obvious maximum values, assimilable with the epicentral intensity, 4) maps with isoseismals, 5) Information on the areas in which the investigated earthquake was felt or the area of perceptiveness (e.g. I = 3 EMS during the day and I = 4 EMS at night) or the surfaces corresponding to a certain degree of well-defined intensity. The obtained relationships were validated using a set of earthquakes with instrumental source parameters (localization, depth, Mw). These relationships lead to redundant results meaningful in

  16. Testing earthquake prediction algorithms: Statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992-1997

    Science.gov (United States)

    Kossobokov, V.G.; Romashkova, L.L.; Keilis-Borok, V. I.; Healy, J.H.

    1999-01-01

    Algorithms M8 and MSc (i.e., the Mendocino Scenario) were used in a real-time intermediate-term research prediction of the strongest earthquakes in the Circum-Pacific seismic belt. Predictions are made by M8 first. Then, the areas of alarm are reduced by MSc at the cost that some earthquakes are missed in the second approximation of prediction. In 1992-1997, five earthquakes of magnitude 8 and above occurred in the test area: all of them were predicted by M8 and MSc identified correctly the locations of four of them. The space-time volume of the alarms is 36% and 18%, correspondingly, when estimated with a normalized product measure of empirical distribution of epicenters and uniform time. The statistical significance of the achieved results is beyond 99% both for M8 and MSc. For magnitude 7.5 + , 10 out of 19 earthquakes were predicted by M8 in 40% and five were predicted by M8-MSc in 13% of the total volume considered. This implies a significance level of 81% for M8 and 92% for M8-MSc. The lower significance levels might result from a global change in seismic regime in 1993-1996, when the rate of the largest events has doubled and all of them become exclusively normal or reversed faults. The predictions are fully reproducible; the algorithms M8 and MSc in complete formal definitions were published before we started our experiment [Keilis-Borok, V.I., Kossobokov, V.G., 1990. Premonitory activation of seismic flow: Algorithm M8, Phys. Earth and Planet. Inter. 61, 73-83; Kossobokov, V.G., Keilis-Borok, V.I., Smith, S.W., 1990. Localization of intermediate-term earthquake prediction, J. Geophys. Res., 95, 19763-19772; Healy, J.H., Kossobokov, V.G., Dewey, J.W., 1992. A test to evaluate the earthquake prediction algorithm, M8. U.S. Geol. Surv. OFR 92-401]. M8 is available from the IASPEI Software Library [Healy, J.H., Keilis-Borok, V.I., Lee, W.H.K. (Eds.), 1997. Algorithms for Earthquake Statistics and Prediction, Vol. 6. IASPEI Software Library]. ?? 1999 Elsevier

  17. Methodology and procedures for compilation of historical earthquake data

    International Nuclear Information System (INIS)

    1987-10-01

    This report was prepared subsequent to the recommendations of the project initiation meeting in Vienna, November 25-29, 1985, under the IAEA Interregional project INT/9/066 Seismic Data for Nuclear Power Plant Siting. The aim of the project is to co-ordinate national efforts of Member States in the Mediterranean region in the compilation and processing of historical earthquake data in the siting of nuclear facilities. The main objective of the document is to assist the participating Member States, especially those who are initiating an NPP siting programme, in their effort to compile and process historical earthquake data and to provide a uniform interregional framework for this task. Although the document is directed mainly to the Mediterranean countries using illustrative examples from this region, the basic procedures and methods herein described may be applicable to other parts of the world such as Southeast Asia, Himalayan belt, Latin America, etc. 101 refs, 7 figs

  18. Estimation of historical earthquake intensities and intensity-PGA relationship for wooden house damages

    International Nuclear Information System (INIS)

    Choi, In-Kil; Seo, Jeong-Moon

    2002-01-01

    A series of tests and dynamic analyses on Korean traditional wooden houses was performed for the intensity estimation of the typical large historical earthquake records. Static and cyclic lateral load tests on the wooden frames were performed to assess the lateral load capacity of wooden frames. The shaking table tests on two 1:4 scaled models of a Korean ancient commoner's house made of fresh pine lumber were performed. Typical earthquake time histories recorded on soil and rock sites were used as input for the tests. The prototypical wooden house was analyzed for multiple time histories which match Ohsaki's ground response spectra. Seismic analyses comprise the aging of lumber and different soil condition. The relationship between the earthquake intensity and the peak ground acceleration (PGA) is proposed for the wooden house damages based on the results of this study. The intensity of major Korean historical earthquake records related with house collapses was quantitatively estimated to be MM VIII

  19. Evaluating spatial and temporal relationships between an earthquake cluster near Entiat, central Washington, and the large December 1872 Entiat earthquake

    Science.gov (United States)

    Brocher, Thomas M.; Blakely, Richard J.; Sherrod, Brian

    2017-01-01

    We investigate spatial and temporal relations between an ongoing and prolific seismicity cluster in central Washington, near Entiat, and the 14 December 1872 Entiat earthquake, the largest historic crustal earthquake in Washington. A fault scarp produced by the 1872 earthquake lies within the Entiat cluster; the locations and areas of both the cluster and the estimated 1872 rupture surface are comparable. Seismic intensities and the 1–2 m of coseismic displacement suggest a magnitude range between 6.5 and 7.0 for the 1872 earthquake. Aftershock forecast models for (1) the first several hours following the 1872 earthquake, (2) the largest felt earthquakes from 1900 to 1974, and (3) the seismicity within the Entiat cluster from 1976 through 2016 are also consistent with this magnitude range. Based on this aftershock modeling, most of the current seismicity in the Entiat cluster could represent aftershocks of the 1872 earthquake. Other earthquakes, especially those with long recurrence intervals, have long‐lived aftershock sequences, including the Mw">MwMw 7.5 1891 Nobi earthquake in Japan, with aftershocks continuing 100 yrs after the mainshock. Although we do not rule out ongoing tectonic deformation in this region, a long‐lived aftershock sequence can account for these observations.

  20. Use of Ground Motion Simulations of a Historical Earthquake for the Assessment of Past and Future Urban Risks

    Science.gov (United States)

    Kentel, E.; Çelik, A.; karimzadeh Naghshineh, S.; Askan, A.

    2017-12-01

    Erzincan city located in the Eastern part of Turkey at the conjunction of three active faults is one of the most hazardous regions in the world. In addition to several historical events, this city has experienced one of the largest earthquakes during the last century: The 27 December 1939 (Ms=8.0) event. With limited knowledge of the tectonic structure by then, the city center was relocated to the North after the 1939 earthquake by almost 5km, indeed closer to the existing major strike slip fault. This decision coupled with poor construction technologies, led to severe damage during a later event that occurred on 13 March 1992 (Mw=6.6). The 1939 earthquake occurred in the pre-instrumental era in the region with no available local seismograms whereas the 1992 event was only recorded by 3 nearby stations. There are empirical isoseismal maps from both events indicating indirectly the spatial distribution of the damage. In this study, we focus on this region and present a multidisciplinary approach to discuss the different components of uncertainties involved in the assessment and mitigation of seismic risk in urban areas. For this initial attempt, ground motion simulation of the 1939 event is performed to obtain the anticipated ground motions and shaking intensities. Using these quantified results along with the spatial distribution of the observed damage, the relocation decision is assessed and suggestions are provided for future large earthquakes to minimize potential earthquake risks.

  1. New data about historical earthquakes occurred on the Romanian territory

    International Nuclear Information System (INIS)

    Constantin, A.P.; Pantea, A.; Stoica, R.; Amaranadei, C.; Stefan, S.

    2009-01-01

    The goal of the present paper is to enrich qualitatively and quantitatively the existing database about historical earthquakes occurred on the Romanian territory and in the adjacent areas by reevaluating and completing it with new information obtained after some complex research activities. In this respect there were studied the old book funds existing in Bucharest, especially those from the religious and cultural institutions - monasteries, libraries, archives and museums, starting with the documents existing under the custody of the Romanian Patriarchy. For the beginning there were researched three thousand books appeared between 1683-1902 where there were found information about some earthquakes occurred between 1802 and 1913. By this research, there is achieved the extension in the past of the database regarding the seismicity of the Romania's territory, by emphasizing seismic events that, according to some seismicity schemes, can repeat in the future, thus, being taken into account the major contribution of the historical seismicity to the seismic hazard assessment. (authors)

  2. Estimation of Source Parameters of Historical Major Earthquakes from 1900 to 1970 around Asia and Analysis of Their Uncertainties

    Science.gov (United States)

    Han, J.; Zhou, S.

    2017-12-01

    Asia, located in the conjoined areas of Eurasian, Pacific, and Indo-Australian plates, is the continent with highest seismicity. Earthquake catalogue on the bases of modern seismic network recordings has been established since around 1970 in Asia and the earthquake catalogue before 1970 was much more inaccurate because of few stations. With a history of less than 50 years of modern earthquake catalogue, researches in seismology are quite limited. After the appearance of improved Earth velocity structure model, modified locating method and high-accuracy Optical Character Recognition technique, travel time data of earthquakes from 1900 to 1970 can be included in research and more accurate locations can be determined for historical earthquakes. Hence, parameters of these historical earthquakes can be obtained more precisely and some research method such as ETAS model can be used in a much longer time scale. This work focuses on the following three aspects: (1) Relocating more than 300 historical major earthquakes (M≥7.0) in Asia based on the Shide Circulars, International Seismological Summary and EHB Bulletin instrumental records between 1900 and 1970. (2) Calculating the focal mechanisms of more than 50 events by first motion records of P wave of ISS. (3) Based on the geological data, tectonic stress field and the result of relocation, inferring focal mechanisms of historical major earthquakes.

  3. Earthquake recovery of historic buildings: exploring cost and time needs.

    Science.gov (United States)

    Al-Nammari, Fatima M; Lindell, Michael K

    2009-07-01

    Disaster recovery of historic buildings has rarely been investigated even though the available literature indicates that they face special challenges. This study examines buildings' recovery time and cost to determine whether their functions (that is, their use) and their status (historic or non-historic) affect these outcomes. The study uses data from the city of San Francisco after the 1989 Loma Prieta earthquake to examine the recovery of historic buildings owned by public agencies and non-governmental organisations. The results show that recovery cost is affected by damage level, construction type and historic status, whereas recovery time is affected by the same variables and also by building function. The study points to the importance of pre-incident recovery planning, especially for building functions that have shown delayed recovery. Also, the study calls attention to the importance of further investigations into the challenges facing historic building recovery.

  4. Historical reconstruction of oil and gas spills during moderate and strong earthquakes and related geochemical surveys in Southern Apennines

    Science.gov (United States)

    Sciarra, Alessandra; Cantucci, Barbara; Ferrari, Graziano; Pizzino, Luca; Quattrocchi, Fedora

    2016-04-01

    The aim of this study is to contribute to the assessment of natural hazards in a seismically active area of southern Italy through the joint analysis of historical sources and fluid geochemistry. In particular, our studies have been focalized in the Val d'Agri basin, in the Apennines extensional belt, since it hosts the largest oilfield in onshore Europe and normal-fault systems with high seismogenic potential (up to M7). The work was organized into three main themes: 1) literature search aimed at identifying fluid emissions during previous moderate-strong earthquakes; 2) consultation of local and national archives to identify historic local place names correlated to natural fluids emissions; 3) geochemical sampling of groundwater and gas issuing at surface, identified on the basis of the bibliographic sources. A reasoned reading of written documents and available historical data was performed. Moreover, we reworked information reported in historical catalogues, referred to liquid and gas hydrocarbon leakages occurred during seismic events of the past (in a range of magnitude from 5 to 7) in the Southern Apennines (with a particular focus on the Val d'Agri). Special attention was given to the phenomena of geochemical emissions related to major historical earthquakes that took place in the area, most notably that of 16 December 1857 (M = 7). A careful analysis of the Robert Mallet's report, a complete work aimed at describing the social impact and the effects on the environment produced by this earthquake through illustrated maps and diagrams, included several hundred monoscopic and stereoscopic photographs, was done. From archival sources (at national and/or local administrations), "sensitive" sites to the onset of leakage of liquid and gaseous hydrocarbons in the past were identified. A soil-gas survey (22 gas concentrations and flux measurements) and 35 groundwater samplings were carried out in specific sites recognized through the above studies. From a

  5. Properties of the probability distribution associated with the largest event in an earthquake cluster and their implications to foreshocks

    International Nuclear Information System (INIS)

    Zhuang Jiancang; Ogata, Yosihiko

    2006-01-01

    The space-time epidemic-type aftershock sequence model is a stochastic branching process in which earthquake activity is classified into background and clustering components and each earthquake triggers other earthquakes independently according to certain rules. This paper gives the probability distributions associated with the largest event in a cluster and their properties for all three cases when the process is subcritical, critical, and supercritical. One of the direct uses of these probability distributions is to evaluate the probability of an earthquake to be a foreshock, and magnitude distributions of foreshocks and nonforeshock earthquakes. To verify these theoretical results, the Japan Meteorological Agency earthquake catalog is analyzed. The proportion of events that have 1 or more larger descendants in total events is found to be as high as about 15%. When the differences between background events and triggered event in the behavior of triggering children are considered, a background event has a probability about 8% to be a foreshock. This probability decreases when the magnitude of the background event increases. These results, obtained from a complicated clustering model, where the characteristics of background events and triggered events are different, are consistent with the results obtained in [Ogata et al., Geophys. J. Int. 127, 17 (1996)] by using the conventional single-linked cluster declustering method

  6. Properties of the probability distribution associated with the largest event in an earthquake cluster and their implications to foreshocks.

    Science.gov (United States)

    Zhuang, Jiancang; Ogata, Yosihiko

    2006-04-01

    The space-time epidemic-type aftershock sequence model is a stochastic branching process in which earthquake activity is classified into background and clustering components and each earthquake triggers other earthquakes independently according to certain rules. This paper gives the probability distributions associated with the largest event in a cluster and their properties for all three cases when the process is subcritical, critical, and supercritical. One of the direct uses of these probability distributions is to evaluate the probability of an earthquake to be a foreshock, and magnitude distributions of foreshocks and nonforeshock earthquakes. To verify these theoretical results, the Japan Meteorological Agency earthquake catalog is analyzed. The proportion of events that have 1 or more larger descendants in total events is found to be as high as about 15%. When the differences between background events and triggered event in the behavior of triggering children are considered, a background event has a probability about 8% to be a foreshock. This probability decreases when the magnitude of the background event increases. These results, obtained from a complicated clustering model, where the characteristics of background events and triggered events are different, are consistent with the results obtained in [Ogata, Geophys. J. Int. 127, 17 (1996)] by using the conventional single-linked cluster declustering method.

  7. Intensity assignments from historical earthquake data: issues of certainty and quality

    Directory of Open Access Journals (Sweden)

    R. M. W. Musson

    1998-06-01

    Full Text Available The use of macroseismic data in assessing parameters for historical earthquakes for use in seismic hazard assessment has thrown more attention on the way in which these data are treated. The processes involved in selecting which macroseismic data from a historical earthquake survive to the present day can be modelled as a series of filters, most of which are outside the control of the seismologist/historian, and which cause distortion in the resulting picture of the earthquake. The ways in which the data become distorted should be taken into account when interpreting the data as intensity values. One can usefully discriminate between the certainty of an intensity assignment (how well the data fits the scale and the quality of an intensity assignment (how well one can trust that the value is a true reflection of what really happened. The expression of uncertainty is usually in the form of ranged intensity values; the expression of quality requires an extra symbol or rating of some sort. A system is presented for three types of quality problems: reliability of intensity assessment, locational certainty or uncertainty, and veracity of the original data. Each of these is treated as a binary variable, giving a final quality code ranging from 0 (best to 7 (worst. This single integer quality code preserves three types of information which can then be expanded as required by computer programs designed to handle macroseismic data.

  8. Using structures of the August 24, 2016 Amatrice earthquake affected area as seismoscopes for assessing ground motion characteristics and parameters of the main shock and its largest aftershocks

    Science.gov (United States)

    Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon

    2017-04-01

    induced by the studied earthquakes indicated the predominant effect of the vertical ground motion on buildings based on already reported building damage induced by recent destructive events in the Mediterranean region, (c) the conventional dynamic parameters of buildings did not play a significant role in their seismic response against the vertical component, due to its impact type of loading, (d) structures and materials presented similar response to ground motions almost independent from type and existing quality, and carried memories from previous large shocks of this sequence, (e) the main shock and its largest aftershocks caused building damage including spatial homothetic motions that reached statistically significant levels, it is concluded that the main shock and its largest aftershocks had similar focal mechanism parameters (normal faulting), were shallow events and were near-field earthquakes with short duration but high amplitude and the vertical component of the earthquakes' ground motion has prevailed. The aforementioned approach based solely on macroseismic observations was applied in the case of the 1755 Great Lisbon earthquake in order to determine its mechanism and epicenter location. Thus, it is suggested that the aforementioned methodology can be applied either in past historic earthquakes or complementarily in cases when the available seismological data are insufficient.

  9. A rare moderate‐sized (Mw 4.9) earthquake in Kansas: Rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection

    Science.gov (United States)

    Choy, George; Rubinstein, Justin L.; Yeck, William; McNamara, Daniel E.; Mueller, Charles; Boyd, Oliver

    2016-01-01

    The largest recorded earthquake in Kansas occurred northeast of Milan on 12 November 2014 (Mw 4.9) in a region previously devoid of significant seismic activity. Applying multistation processing to data from local stations, we are able to detail the rupture process and rupture geometry of the mainshock, identify the causative fault plane, and delineate the expansion and extent of the subsequent seismic activity. The earthquake followed rapid increases of fluid injection by multiple wastewater injection wells in the vicinity of the fault. The source parameters and behavior of the Milan earthquake and foreshock–aftershock sequence are similar to characteristics of other earthquakes induced by wastewater injection into permeable formations overlying crystalline basement. This earthquake also provides an opportunity to test the empirical relation that uses felt area to estimate moment magnitude for historical earthquakes for Kansas.

  10. FEATURES AND PROBLEMS WITH HISTORICAL GREAT EARTHQUAKES AND TSUNAMIS IN THE MEDITERRANEAN SEA

    Directory of Open Access Journals (Sweden)

    Lobkovsky L.

    2016-11-01

    Full Text Available The present study examines the historical earthquakes and tsunamis of 21 July 365 and of 9 February 1948 in the Eastern Mediterranean Sea. Numerical simulations were performed for the tsunamis generated by underwater seismic sources in frames of the keyboard model, as well as for their propagation in the Mediterranean Sea basin. Similarly examined were three different types of seismic sources at the same localization near the Island of Crete for the earthquake of 21 July 365, and of two different types of seismic sources for the earthquake of 9 February 1948 near the Island of Karpathos. For each scenario, the tsunami wave field characteristics from the earthquake source to coastal zones in Mediterranean Sea’s basin were obtained and histograms were constructed showing the distribution of maximum tsunami wave heights, along a 5-m isobath. Comparison of tsunami wave characteristics for all the above mentioned scenarios, demonstrates that underwater earthquakes with magnitude M > 7 in the Eastern Mediterranean Sea basin, can generate waves with coastal runup up to 9 m.

  11. EARTHQUAKE TRIGGERING AND SPATIAL-TEMPORAL RELATIONS IN THE VICINITY OF YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    na

    2001-02-08

    It is well accepted that the 1992 M 5.6 Little Skull Mountain earthquake, the largest historical event to have occurred within 25 km of Yucca Mountain, Nevada, was triggered by the M 7.2 Landers earthquake that occurred the day before. On the premise that earthquakes can be triggered by applied stresses, we have examined the earthquake catalog from the Southern Great Basin Digital Seismic Network (SGBDSN) for other evidence of triggering by external and internal stresses. This catalog now comprises over 12,000 events, encompassing five years of consistent monitoring, and has a low threshold of completeness, varying from M 0 in the center of the network to M 1 at the fringes. We examined the SGBDSN catalog response to external stresses such as large signals propagating from teleseismic and regional earthquakes, microseismic storms, and earth tides. Results are generally negative. We also examined the interplay of earthquakes within the SGBDSN. The number of ''foreshocks'', as judged by most criteria, is significantly higher than the background seismicity rate. In order to establish this, we first removed aftershocks from the catalog with widely used methodology. The existence of SGBDSN foreshocks is supported by comparing actual statistics to those of a simulated catalog with uniform-distributed locations and Poisson-distributed times of occurrence. The probabilities of a given SGBDSN earthquake being followed by one having a higher magnitude within a short time frame and within a close distance are at least as high as those found with regional catalogs. These catalogs have completeness thresholds two to three units higher in magnitude than the SGBDSN catalog used here. The largest earthquake in the SGBDSN catalog, the M 4.7 event in Frenchman Flat on 01/27/1999, was preceded by a definite foreshock sequence. The largest event within 75 km of Yucca Mountain in historical time, the M 5.7 Scotty's Junction event of 08/01/1999, was also

  12. EARTHQUAKE TRIGGERING AND SPATIAL-TEMPORAL RELATIONS IN THE VICINITY OF YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    2001-01-01

    It is well accepted that the 1992 M 5.6 Little Skull Mountain earthquake, the largest historical event to have occurred within 25 km of Yucca Mountain, Nevada, was triggered by the M 7.2 Landers earthquake that occurred the day before. On the premise that earthquakes can be triggered by applied stresses, we have examined the earthquake catalog from the Southern Great Basin Digital Seismic Network (SGBDSN) for other evidence of triggering by external and internal stresses. This catalog now comprises over 12,000 events, encompassing five years of consistent monitoring, and has a low threshold of completeness, varying from M 0 in the center of the network to M 1 at the fringes. We examined the SGBDSN catalog response to external stresses such as large signals propagating from teleseismic and regional earthquakes, microseismic storms, and earth tides. Results are generally negative. We also examined the interplay of earthquakes within the SGBDSN. The number of ''foreshocks'', as judged by most criteria, is significantly higher than the background seismicity rate. In order to establish this, we first removed aftershocks from the catalog with widely used methodology. The existence of SGBDSN foreshocks is supported by comparing actual statistics to those of a simulated catalog with uniform-distributed locations and Poisson-distributed times of occurrence. The probabilities of a given SGBDSN earthquake being followed by one having a higher magnitude within a short time frame and within a close distance are at least as high as those found with regional catalogs. These catalogs have completeness thresholds two to three units higher in magnitude than the SGBDSN catalog used here. The largest earthquake in the SGBDSN catalog, the M 4.7 event in Frenchman Flat on 01/27/1999, was preceded by a definite foreshock sequence. The largest event within 75 km of Yucca Mountain in historical time, the M 5.7 Scotty's Junction event of 08/01/1999, was also preceded by foreshocks. The

  13. Historical intensity VIII earthquakes along the Rhone valley (Valais, Switzerland): primary and secondary effects

    Energy Technology Data Exchange (ETDEWEB)

    Fritsche, S.; Faeh, D.; Schwarz-Zanetti, G.

    2012-06-15

    In recent years the upper Rhone Valley has been one of the most intensively investigated regions by the Swiss Seismological Service. The high seismicity in the region encourages research in the seismological field and one main focus has been historical seismology. This report presents the state of the art of our historical investigations by giving an overview of the effects of four damaging earthquakes with intensity larger than VII, for which a fairly large number of documents could be found and analyzed. The overview includes the events of 1584 (Aigle, epicentral intensity VIII), 1755 (Brig, epicentral intensity VIII), 1855 (Visp, epicentral intensity VIII), and 1946 (Sierre, epicentral intensity VIII for the main shock and intensity VII for the largest aftershock). The paper focuses mainly on primary and secondary effects in the epicentral region, providing the key data and a general characterization of the event. Generally, primary effects such as the reaction of the population and impact on buildings took more focus in the past. Thus building damage is more frequently described in historic documents. However, we also found a number of sources describing secondary effects such as landslides, snow avalanches, and liquefaction. Since the sources may be useful, we include citations of these documents. The 1584 Aigle event, for example, produced exceptional movements in the Lake of Geneva, which can be explained by an expanded sub aquatic slide with resultant tsunami and seiche. The strongest of the aftershocks of the 1584 event triggered a destructive landslide covering the villages Corbeyrier and Yvorne, Vaud. All macroseismic data on the discussed events are accessible through the web page of the Swiss Seismological Service (http://www.seismo.ethz.ch). (authors)

  14. The Quanzhou large earthquake: environment impact and deep process

    Science.gov (United States)

    WANG, Y.; Gao*, R.; Ye, Z.; Wang, C.

    2017-12-01

    The Quanzhou earthquake is the largest earthquake in China's southeast coast in history. The ancient city of Quanzhou and its adjacent areas suffered serious damage. Analysis of the impact of Quanzhou earthquake on human activities, ecological environment and social development will provide an example for the research on environment and human interaction.According to historical records, on the night of December 29, 1604, a Ms 8.0 earthquake occurred in the sea area at the east of Quanzhou (25.0°N, 119.5°E) with a focal depth of 25 kilometers. It affected to a maximum distance of 220 kilometers from the epicenter and caused serious damage. Quanzhou, which has been known as one of the world's largest trade ports during Song and Yuan periods was heavily destroyed by this earthquake. The destruction of the ancient city was very serious and widespread. The city wall collapsed in Putian, Nanan, Tongan and other places. The East and West Towers of Kaiyuan Temple, which are famous with magnificent architecture in history, were seriously destroyed.Therefore, an enormous earthquake can exert devastating effects on human activities and social development in the history. It is estimated that a more than Ms. 5.0 earthquake in the economically developed coastal areas in China can directly cause economic losses for more than one hundred million yuan. This devastating large earthquake that severely destroyed the Quanzhou city was triggered under a tectonic-extensional circumstance. In this coastal area of the Fujian Province, the crust gradually thins eastward from inland to coast (less than 29 km thick crust beneath the coast), the lithosphere is also rather thin (60 70 km), and the Poisson's ratio of the crust here appears relatively high. The historical Quanzhou Earthquake was probably correlated with the NE-striking Littoral Fault Zone, which is characterized by right-lateral slip and exhibiting the most active seismicity in the coastal area of Fujian. Meanwhile, tectonic

  15. Investigating Earthquake-induced Landslides­a Historical Review

    Science.gov (United States)

    Keefer, D. K.; Geological Survey, Us; Park, Menlo; Usa, Ca

    Although earthquake-induced landslides have been described in documents for more than 3700 years, accounts from earthquakes before the late eighteenth century are incomplete concerning landslide numbers and vague concerning landslide character- istics. They are thus typically misleading concerning the true abundance of landslides and range of landslide characteristics. Beginning with studies of the 1783 Calabria, Italy earthquake, more complete and precise data concerning the occurrence of land- slides in earthquakes have become available. The historical development of knowl- edge concerning landslides triggered by earthquakes can be divided into several peri- ods. The first period, from 1783 until the first application of aerial photography, was characterized by ground-based studies of earthquake effects, typically carried out by formal scientific commissions. These formal studies typically identified a large, but not necessarily comprehensive, sampling of localities where landslides had occurred. In some, but not all cases, landslide characteristics were also described in enough de- tail that the general range of landslide characteristics could begin to be determined. More recently, some nineteenth to mid-twentieth century earthquakes have been stud- ied using retrospective analyses, in which the landslide occurrences associated with the event are inferred years to decades later, using contemporary accounts, mapping from aerial photographs, statistical studies, and (or) geotechnical analyses. The first use of aerial photographs to map earthquake effects immediately after the event prob- ably occurred in 1948. Since that time, the use of aerial photography has greatly facil- itated the compilation of post-earthquake landslide inventories, although because of the limitations of aerial photography, ground-based field studies continue to be cru- cial in preparing accurate and comprehensive landslide maps. Beginning with a small California earthquake in 1957

  16. [Earthquakes--a historical review, environmental and health effects, and health care measures].

    Science.gov (United States)

    Nola, Iskra Alexandra; Doko Jelinić, Jagoda; Žuškin, Eugenija; Kratohvil, Mladen

    2013-06-01

    Earthquakes are natural disasters that can occur at any time, regardless of the location. Their frequency is higher in the Circum-Pacific and Mediterranean/Trans-Asian seismic belt. A number of sophisticated methods define their magnitude using the Richter scale and intensity using the Mercani-Cancani-Sieberg scale. Recorded data show a number of devastating earthquakes that have killed many people and changed the environment dramatically. Croatia is located in a seismically active area, which has endured a series of historical earthquakes, among which several occurred in the Zagreb area. The consequences of an earthquake depend mostly on the population density and seismic resistance of buildings in the affected area. Environmental consequences often include air, water, and soil pollution. The effects of this kind of pollution can have long-term health effects. The most dramatic health consequences result from the demolition of buildings. Therefore, quick and efficient aid depends on well-organized health professionals as well as on the readiness of the civil defence, fire department, and Mountain Rescue Service members. Good coordination among these services can save many lives Public health interventions must include effective control measures in the environment as secondary prevention methods for health problems caused by unfavourable environmental factors. The identification and control of long-term hazards can reduce chronic health effects. The reduction of earthquake-induced damages includes setting priorities in building seismically safe buildings.

  17. Accounts of damage from historical earthquakes in the northeastern Caribbean to aid in the determination of their location and intensity magnitudes

    Science.gov (United States)

    Flores, Claudia H.; ten Brink, Uri S.; Bakun, William H.

    2012-01-01

    Earthquakes have been documented in the northeastern Caribbean since the arrival of Columbus to the Americas; written accounts of these felt earthquakes exist in various parts of the world. To better understand the earthquake cycle in the Caribbean, the records of earthquakes in earlier catalogs and historical documents from various archives, which are now available online, were critically examined. This report updates previous catalogs of earthquakes, in particular earthquakes in Hispaniola, to give to the public the most comprehensive documentation of earthquake damage and to further the understanding of the earthquake cycle in the northeastern Caribbean.

  18. HOT Faults", Fault Organization, and the Occurrence of the Largest Earthquakes

    Science.gov (United States)

    Carlson, J. M.; Hillers, G.; Archuleta, R. J.

    2006-12-01

    We apply the concept of "Highly Optimized Tolerance" (HOT) for the investigation of spatio-temporal seismicity evolution, in particular mechanisms associated with largest earthquakes. HOT provides a framework for investigating both qualitative and quantitative features of complex feedback systems that are far from equilibrium and punctuated by rare, catastrophic events. In HOT, robustness trade-offs lead to complexity and power laws in systems that are coupled to evolving environments. HOT was originally inspired by biology and engineering, where systems are internally very highly structured, through biological evolution or deliberate design, and perform in an optimum manner despite fluctuations in their surroundings. Though faults and fault systems are not designed in ways comparable to biological and engineered structures, feedback processes are responsible in a conceptually comparable way for the development, evolution and maintenance of younger fault structures and primary slip surfaces of mature faults, respectively. Hence, in geophysical applications the "optimization" approach is perhaps more aptly replaced by "organization", reflecting the distinction between HOT and random, disorganized configurations, and highlighting the importance of structured interdependencies that evolve via feedback among and between different spatial and temporal scales. Expressed in the terminology of the HOT concept, mature faults represent a configuration optimally organized for the release of strain energy; whereas immature, more heterogeneous fault networks represent intermittent, suboptimal systems that are regularized towards structural simplicity and the ability to generate large earthquakes more easily. We discuss fault structure and associated seismic response pattern within the HOT concept, and outline fundamental differences between this novel interpretation to more orthodox viewpoints like the criticality concept. The discussion is flanked by numerical simulations of a

  19. Earthquake hazard evaluation for Switzerland

    International Nuclear Information System (INIS)

    Ruettener, E.

    1995-01-01

    Earthquake hazard analysis is of considerable importance for Switzerland, a country with moderate seismic activity but high economic values at risk. The evaluation of earthquake hazard, i.e. the determination of return periods versus ground motion parameters, requires a description of earthquake occurrences in space and time. In this study the seismic hazard for major cities in Switzerland is determined. The seismic hazard analysis is based on historic earthquake records as well as instrumental data. The historic earthquake data show considerable uncertainties concerning epicenter location and epicentral intensity. A specific concept is required, therefore, which permits the description of the uncertainties of each individual earthquake. This is achieved by probability distributions for earthquake size and location. Historical considerations, which indicate changes in public earthquake awareness at various times (mainly due to large historical earthquakes), as well as statistical tests have been used to identify time periods of complete earthquake reporting as a function of intensity. As a result, the catalog is judged to be complete since 1878 for all earthquakes with epicentral intensities greater than IV, since 1750 for intensities greater than VI, since 1600 for intensities greater than VIII, and since 1300 for intensities greater than IX. Instrumental data provide accurate information about the depth distribution of earthquakes in Switzerland. In the Alps, focal depths are restricted to the uppermost 15 km of the crust, whereas below the northern Alpine foreland earthquakes are distributed throughout the entire crust (30 km). This depth distribution is considered in the final hazard analysis by probability distributions. (author) figs., tabs., refs

  20. Static stress drop of the largest recorded M 4.6 hydraulic fracturing induced earthquake and its aftershock pattern in the northern Montney Play, British Columbia, Canada

    Science.gov (United States)

    Wang, B.; Harrington, R. M.; Liu, Y.; Kao, H.

    2016-12-01

    The largest suspected fracking-induced earthquake to date occurred near Fort St. John, British Columbia on August 17, 2015, with a reported magnitude of Mw 4.6. Here we estimate the static stress released by the mainshock and the five cataloged aftershocks using new data from eight broadband seismometers installed approximately 50km from the hypocenter of the mainshock, at distances much closer than the Natural Resources Canada regional seismic stations. The estimated cross-correlation coefficient among the 5 cataloged earthquakes is 0.35 or greater. We will present seismic moment (M0) and spectral corner frequency (fc) values estimated using both individual earthquake spectra and spectral ratios to correct for travel-path attenuation and site effects. Static stress drop and scaled energy value calculations based on the estimated moment and corner frequency values will be presented, as well as focal mechanisms for the largest events with adequate station coverage. We will also use a multi-station matched-filter approach to detect additional uncataloged earthquakes on continuous waveforms for a period of two months after the mainshock. Using the results of the matched-filter approach, we will present the aftershock magnitude distribution and locations. The results of our detection and location calculations will be compared to reported fracking parameters, such as fluid injection pressure and duration, to determine their correlation with the spatial and temporal distribution of aftershocks. The objective of this study is to relate operational parameters to earthquake occurrence in order to help to develop procedures to understand the mechanisms responsible for fracking induced earthquakes, their relation to the maximum induced magnitude, and to reduce potential hazards of anthropogenically induced seismic activity.

  1. A new catalogue of earthquakes in the historical Armenian area from antiquity to the 12th century

    Directory of Open Access Journals (Sweden)

    G. Traina

    1995-06-01

    Full Text Available The present contribution describes the method of work, the types of source materia] used, and the historio- graphical and historico-eismic tradition of Armenia. The catalogue' s territorial frame of reference is that of socalled historical Armenia (which included part of present Eastern Turkey, and part of present Azerbaijan. The sources belong to different languages and cultures: Armenian, Syriac, Greek, Arab, Persian and Georgian. A comparison of the local sources with those belonging to other cultures enab]es the historical and seismological I"adition of the Mediterl'anean to be "linked" with that of the Iranian p]ateau, traditionally considered as two separate areas. We analyzed historical events listed in the most recent catalogues of earthquakes in the Armenian area compiled by Kondorskaya and Shebalin (1982 and Karapetian (1991. Important and valuable though these catalogues are, they are in need of revision. We found evidence for six hitherto unrecorded seismic events. Numerous errors of dating and location have been corrected, and several new localities and seismic effects have been evidenced. Each modification of the previous catalogues has been documented on the hasis of the historiographical and literary sources and the data from the written sources have been linked with those concerning the history of Armenian cities and architecture (monasteries, churches, episcopal complexes. On the whole. the revised earthquakes seem underestimated in the previous catalogues. The aim of this catalogue is to make a contribution to the knowledge of historical seismicity in Armenia, and at the same time to underline the specific nature of the Armenian case, thus avoiding a procedure which has generally tended to place this area in a marginal position, within the wider field of other research on historical earthquakes.

  2. The global historical and future economic loss and cost of earthquakes during the production of adaptive worldwide economic fragility functions

    Science.gov (United States)

    Daniell, James; Wenzel, Friedemann

    2014-05-01

    Over the past decade, the production of economic indices behind the CATDAT Damaging Earthquakes Database has allowed for the conversion of historical earthquake economic loss and cost events into today's terms using long-term spatio-temporal series of consumer price index (CPI), construction costs, wage indices, and GDP from 1900-2013. As part of the doctoral thesis of Daniell (2014), databases and GIS layers for a country and sub-country level have been produced for population, GDP per capita, net and gross capital stock (depreciated and non-depreciated) using studies, census information and the perpetual inventory method. In addition, a detailed study has been undertaken to collect and reproduce as many historical isoseismal maps, macroseismic intensity results and reproductions of earthquakes as possible out of the 7208 damaging events in the CATDAT database from 1900 onwards. a) The isoseismal database and population bounds from 3000+ collected damaging events were compared with the output parameters of GDP and net and gross capital stock per intensity bound and administrative unit, creating a spatial join for analysis. b) The historical costs were divided into shaking/direct ground motion effects, and secondary effects costs. The shaking costs were further divided into gross capital stock related and GDP related costs for each administrative unit, intensity bound couplet. c) Costs were then estimated based on the optimisation of the function in terms of costs vs. gross capital stock and costs vs. GDP via the regression of the function. Losses were estimated based on net capital stock, looking at the infrastructure age and value at the time of the event. This dataset was then used to develop an economic exposure for each historical earthquake in comparison with the loss recorded in the CATDAT Damaging Earthquakes Database. The production of economic fragility functions for each country was possible using a temporal regression based on the parameters of

  3. "Treatises on Earthquakes" in late Renaissance (16th-17th cent), at the roots of historical seismology

    Science.gov (United States)

    Albini, P.

    2009-04-01

    It was soon after the damaging November 1570 earthquake at Ferrara, Northern Italy, that the academic Stefano Breventano from Pavia, a small town in Northern Italy as well, started to compose his "Treatise on the earthquake". Completed by September 1576, this 250-page manuscript was to remain unpublished for centuries. The critical edition recently appeared (Albini, 2007) was a due tribute to the remarkable amount of information put together by Breventano, an otherwise "obscure" literate who, before getting involved with earthquakes, had published a history of the antiquities and remarkable events at his hometown Pavia (1570). Indeed, he was not the first Renaissance author to pursue the goal of checking into the historical sources of the previous centuries in search of earthquakes and other natural phenomena. What is outstanding in his "Treatise" is that he suceeded in retrieving information on more than two hundred earthquakes, along two thousand years, between 504 B.C. and 1575 A.D., covering the whole Euro-Mediterranean region, and the West Indies in early 16th century. Breventano's essay is here presented, together with a comparison between his style and amount of information with those included in the work by the contemporary British author Stephen Batman, "The Doome warning all men to the Judgement" (1581). A later treatise is presented also, the work by Marcello Bonito (1690) "Terra Tremante [Trembling Earth]", which could easily be defined as a worldwide list of earthquakes. In structure and content, Bonito's work goes along the same lines of Breventano, and could be considered a precursor of today descriptive catalogues, because of his outstandingly modern approach that paved the way to modern historical seismology.

  4. Earthquake, GIS and multimedia. The 1883 Casamicciola earthquake

    Directory of Open Access Journals (Sweden)

    M. Rebuffat

    1995-06-01

    Full Text Available A series of multimedia monographs concerning the main seismic events that have affected the Italian territory are in the process of being produced for the Documental Integrated Multimedia Project (DIMP started by the Italian National Seismic Survey (NSS. The purpose of the project is to reconstruct the historical record of earthquakes and promote an earthquake public education. Producing the monographs. developed in ARC INFO and working in UNIX. involved designing a special filing and management methodology to integrate heterogeneous information (images, papers, cartographies, etc.. This paper describes the possibilities of a GIS (Geographic Information System in the filing and management of documental information. As an example we present the first monograph on the 1883 Casamicciola earthquake. on the island of Ischia (Campania, Italy. This earthquake is particularly interesting for the following reasons: I historical-cultural context (first destructive seismic event after the unification of Italy; 2 its features (volcanic earthquake; 3 the socioeconomic consequences caused at such an important seaside resort.

  5. Mitigating the consequences of future earthquakes in historical centres: what perspectives from the joined use of past information and geological-geophysical surveys?

    Science.gov (United States)

    Terenzio Gizzi, Fabrizio; Moscatelli, Massimiliano; Potenza, Maria Rosaria; Zotta, Cinzia; Simionato, Maurizio; Pileggi, Domenico; Castenetto, Sergio

    2015-04-01

    To mitigate the damage effects of earthquakes in urban areas and particularly in historical centres prone to high seismic hazard is an important task to be pursued. As a matter of fact, seismic history throughout the world informs us that earthquakes have caused deep changes in the ancient urban conglomerations due to their high building vulnerability. Furthermore, some quarters can be exposed to an increase of seismic actions if compared with adjacent areas due to the geological and/or topographical features of the site on which the historical centres lie. Usually, the strategies aimed to estimate the local seismic hazard make only use of the geological-geophysical surveys. Thorough this approach we do not draw any lesson from what happened as a consequences of past earthquakes. With this in mind, we present the results of a joined use of historical data and traditional geological-geophysical approach to analyse the effects of possible future earthquakes in historical centres. The research activity discussed here is arranged into a joint collaboration between the Department of Civil Protection of the Presidency of Council of Ministers, the Institute of Environmental Geology and Geoengineering and the Institute of Archaeological and Monumental Heritage of the National (Italian) Research Council. In order to show the results, we discuss the preliminary achievements of the integrated study carried out on two historical towns located in Southern Apennines, a portion of the Italian peninsula exposed to high seismic hazard. Taking advantage from these two test sites, we also discuss some methodological implications that could be taken as a reference in the seismic microzonation studies.

  6. Some aspects of historical research on <> earthquakes in eighteenth century Europe

    Directory of Open Access Journals (Sweden)

    N. N. Ambraseys

    1995-06-01

    Full Text Available In the framework of the CEC project <Historical Seismicity in Europe (RHISE,,. the investigation of transfrontier earthquakes has been one of our main tasks. Using a number of case histories, among many others considered during the project, some of the specific problems encountered during the research <> the border areas and <> repositories are presented, with special attention paid to eighteenth century Europe.

  7. Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake

    Science.gov (United States)

    Yagi, Yuji; Kikuchi, Masayuki; Nishimura, Takuya

    2003-11-01

    We analyzed continuous GPS data to investigate the spatio-temporal distribution of co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake (Mw = 7.7). To get better resolution for co-seismic and post-seismic slip distribution, we imposed a weak constraint as a priori information of the co-seismic slip determined by seismic wave analyses. We found that the post-seismic slip during 100 days following the main-shock amount to as much moment release as the main-shock, and that the sites of co-seismic slip and post-seismic slip are partitioning on a plate boundary region in complimentary fashion. The major post-seismic slip was triggered by the mainshock in western side of the co-seismic slip, and the extent of the post-seismic slip is almost unchanged with time. It rapidly developed a shear stress concentration ahead of the slip area, and triggered the largest aftershock.

  8. Luminescence dating of some historical/pre-historical natural hazards of India

    International Nuclear Information System (INIS)

    Gartia, R.K.

    2008-01-01

    The Indian sub-continent is characterized by host of natural hazards like earthquake, tsunami, cyclones, floods, landslides/mudflows. It is necessary to build-up a database of historical/pre-historical natural hazards for planning scenarios for emergency response to various them. In short, there is a vast scope of providing chronology to hazardous events by using known techniques of dating including luminescence dating which has an excellent window span down from few hundred years to one hundred thousand years. In this work we report the dates of some historical/pre-historical natural hazards of India. In particular we focus on three kinds of natural hazards namely, earthquakes, tsunami, and mudflows. For example of earthquake we cover a historical earthquake of Manipur that created two massive fissures at Kumbi, 25 km from the state capital, Imphal. For pre-historical ones, we cover Assam-Shillong area known for its highest levels of seismicity in India. We demonstrate the evidence of a paleo-tsunami that devastated Mahabalipuram near Chennai. Incidentally, Mahabalipuram was badly affected by the great tsunami of 26th Dec 2004. Finally, luminescence dating technique has been applied to some historical/pre-historical mudflows of Manipur. A recent mudflow on 10th July 2004 damaged more than 90 houses, block National Highway-39, the life-line of Manipur for more than a fort-night. (author)

  9. The Northern Rupture of the 1762 Arakan Meghathrust Earthquake and other Potential Earthquake Sources in Bangladesh.

    Science.gov (United States)

    Akhter, S. H.; Seeber, L.; Steckler, M. S.

    2015-12-01

    Bangladesh is one of the most densely populated countries in the world. It occupies a major part of the Bengal Basin, which contains the Ganges-Brahmaputra Delta (GBD), the largest and one of the most active of world deltas, and is located along the Alpine-Himalayan seismic belt. As such it is vulnerable to many natural hazards, especially earthquakes. The country sits at the junction of three tectonic plates - Indian, Eurasian, and the Burma 'sliver' of the Sunda plate. These form two boundaries where plates converge- the India-Eurasia plate boundary to the north forming the Himalaya Arc and the India-Burma plate boundary to the east forming the Indo-Burma Arc. The India-Burma plate boundary is exceptionally wide because collision with the GBD feeds an exception amount of sediment into the subduction zone. Thus the Himalayan continent collision orogeny along with its syntaxes to the N and NE of Bangladesh and the Burma Arc subduction boundary surround Bangladesh on two sides with active faults of regional scale, raising the potential for high-magnitude earthquakes. In recent years Bangladesh has experienced minor to moderate earthquakes. Historical records show that major and great earthquakes have ravaged the country and the neighboring region several times over the last 450 years. Field observations of Tertiary structures along the Chittagong-Teknaf coast reveal that the rupture of 1762 Arakan megathrust earthquake extended as far north as the Sitakund anticline to the north of the city of Chittagong. This earthquake brought changes to the landscape, uplifting the Teknaf peninsula and St. Martin's Island by about 2-2.5 m, and activated two mud volcanos along the axis of the Sitakund anticline, where large tabular blocks of exotic crystalline limestone, were tectonically transported from a deep-seated formation along with the eruptive mud. Vast area of the coast including inland areas east of the lower Meghna River were inundated. More than 500 peoples died near

  10. Detailed Mapping of Historical and Preinstrumental Earthquake Ruptures in Central Asia Using Multi-Scale, Multi-Platform Photogrammetry

    Science.gov (United States)

    Elliott, A. J.; Walker, R. T.; Parsons, B.; Ren, Z.; Ainscoe, E. A.; Abdrakhmatov, K.; Mackenzie, D.; Arrowsmith, R.; Gruetzner, C.

    2016-12-01

    In regions of the planet with long historical records, known past seismic events can be attributed to specific fault sources through the identification and measurement of single-event scarps in high-resolution imagery and topography. The level of detail captured by modern remote sensing is now sufficient to map and measure complete earthquake ruptures that were originally only sparsely mapped or overlooked entirely. We can thus extend the record of mapped earthquake surface ruptures into the preinstrumental period and capture the wealth of information preserved in the numerous historical earthquake ruptures throughout regions like Central Asia. We investigate two major late 19th and early 20th century earthquakes that are well located macroseismically but whose fault sources had proved enigmatic in the absence of detailed imagery and topography. We use high-resolution topographic models derived from photogrammetry of satellite, low-altitude, and ground-based optical imagery to map and measure the coseismic scarps of the 1889 M8.3 Chilik, Kazakhstan and 1932 M7.6 Changma, China earthquakes. Measurement of the scarps on the combined imagery and topography reveals the extent and slip distribution of coseismic rupture in each of these events, showing both earthquakes involved multiple faults with variable kinematics. We use a 1-m elevation model of the Changma fault derived from Pleiades satellite imagery to map the changing kinematics of the 1932 rupture along strike. For the 1889 Chilik earthquake we use 1.5-m SPOT-6 satellite imagery to produce a regional elevation model of the fault ruptures, from which we identify three distinct, intersecting fault systems that each have >20 km of fresh, single-event scarps. Along sections of each of these faults we construct high resolution (330 points per sq m) elevation models using quadcopter- and helikite-mounted cameras. From the detailed topography we measure single-event oblique offsets of 6-10 m, consistent with the large

  11. Active faults and historical earthquakes in the Messina Straits area (Ionian Sea

    Directory of Open Access Journals (Sweden)

    A. Polonia

    2012-07-01

    Full Text Available The Calabrian Arc (CA subduction complex is located at the toe of the Eurasian Plate in the Ionian Sea, where sediments resting on the lower plate have been scraped off and piled up in the accretionary wedge due to the African/Eurasian plate convergence and back arc extension. The CA has been struck repeatedly by destructive historical earthquakes, but knowledge of active faults and source parameters is relatively poor, particularly for seismogenic structures extending offshore. We analysed the fine structure of major tectonic features likely to have been sources of past earthquakes: (i the NNW–SSE trending Malta STEP (Slab Transfer Edge Propagator fault system, representing a lateral tear of the subduction system; (ii the out-of-sequence thrusts (splay faults at the rear of the salt-bearing Messinian accretionary wedge; and (iii the Messina Straits fault system, part of the wide deformation zone separating the western and eastern lobes of the accretionary wedge.

    Our findings have implications for seismic hazard in southern Italy, as we compile an inventory of first order active faults that may have produced past seismic events such as the 1908, 1693 and 1169 earthquakes. These faults are likely to be source regions for future large magnitude events as they are long, deep and bound sectors of the margin characterized by different deformation and coupling rates on the plate interface.

  12. Earthquake geology of the Bulnay Fault (Mongolia)

    Science.gov (United States)

    Rizza, Magali; Ritz, Jean-Franciois; Prentice, Carol S.; Vassallo, Ricardo; Braucher, Regis; Larroque, Christophe; Arzhannikova, A.; Arzhanikov, S.; Mahan, Shannon; Massault, M.; Michelot, J-L.; Todbileg, M.

    2015-01-01

    The Bulnay earthquake of July 23, 1905 (Mw 8.3-8.5), in north-central Mongolia, is one of the world's largest recorded intracontinental earthquakes and one of four great earthquakes that occurred in the region during the 20th century. The 375-km-long surface rupture of the left-lateral, strike-slip, N095°E trending Bulnay Fault associated with this earthquake is remarkable for its pronounced expression across the landscape and for the size of features produced by previous earthquakes. Our field observations suggest that in many areas the width and geometry of the rupture zone is the result of repeated earthquakes; however, in those areas where it is possible to determine that the geomorphic features are the result of the 1905 surface rupture alone, the size of the features produced by this single earthquake are singular in comparison to most other historical strike-slip surface ruptures worldwide. Along the 80 km stretch, between 97.18°E and 98.33°E, the fault zone is characterized by several meters width and the mean left-lateral 1905 offset is 8.9 ± 0.6 m with two measured cumulative offsets that are twice the 1905 slip. These observations suggest that the displacement produced during the penultimate event was similar to the 1905 slip. Morphotectonic analyses carried out at three sites along the eastern part of the Bulnay fault, allow us to estimate a mean horizontal slip rate of 3.1 ± 1.7 mm/yr over the Late Pleistocene-Holocene period. In parallel, paleoseismological investigations show evidence for two earthquakes prior to the 1905 event with recurrence intervals of ~2700-4000 years.

  13. Earthquake-triggered landslides in southwest China

    OpenAIRE

    X. L. Chen; Q. Zhou; H. Ran; R. Dong

    2012-01-01

    Southwest China is located in the southeastern margin of the Tibetan Plateau and it is a region of high seismic activity. Historically, strong earthquakes that occurred here usually generated lots of landslides and brought destructive damages. This paper introduces several earthquake-triggered landslide events in this region and describes their characteristics. Also, the historical data of earthquakes with a magnitude of 7.0 or greater, having occurred in this region, is col...

  14. Earthquake effect on the geological environment

    International Nuclear Information System (INIS)

    Kawamura, Makoto

    1999-01-01

    Acceleration caused by the earthquake, changes in the water pressure, and the rock-mass strain were monitored for a series of 344 earthquakes from 1990 to 1998 at Kamaishi In Situ Test Site. The largest acceleration was registered to be 57.14 gal with the earthquake named 'North coast of Iwate Earthquake' (M4.4) occurred in June, 1996. Changes of the water pressure were recorded with 27 earthquakes; the largest change was -0.35 Kgt/cm 2 . The water-pressure change by earthquake was, however, usually smaller than that caused by rainfall in this area. No change in the electric conductivity or pH of ground water was detected before and after the earthquake throughout the entire period of monitoring. The rock-mass strain was measured with a extensometer whose detection limit was of the order of 10 -8 to 10 -9 degrees and the remaining strain of about 2.5x10 -9 degrees was detected following the 'Offshore Miyagi Earthquake' (M5.1) in October, 1997. (H. Baba)

  15. Integration of historical, archaeoseismic and paleoseismological data for the reconstruction of the early seismic history in Messina Strait (south Italy: the 1st and 4th centuries AD earthquakes

    Directory of Open Access Journals (Sweden)

    Maria Serafina Barbano

    2014-03-01

    Full Text Available Historical accounts, archaeoseismic and paleoseismological evidence allowed us to reappraise two earthquakes affecting northeastern Sicily and southern Calabria in the 1st (probably between 14 and 37 and 4th (likely between 361 and 363 centuries AD, to obtain a better reconstruction of their effects and to reconsider their sources.The 1st century event damaged the area from Oppido (Calabria to Tindari (Sicily, roughly that of the February 6, 1783 Calabria earthquake. The similitude of these earthquakes is further stressed by the fact that they generated tsunamis, as recorded by historical data and by the tsunami deposits found at Capo Peloro, the oldest dated 0-125 AD, the youngest linked to the 1783 event. These earthquakes could be related to the same Calabria seismic source: the Scilla fault. Northeastern Sicily and southern Calabria were also damaged by one or more earthquakes in the 4th century AD and several towns were rebuilt/restored at that time. The hit area roughly coincides with that of the Messina 1908 earthquake suggesting similar seismic sources for the events. However, because close in time, historical descriptions of the 4th century Sicilian earthquake were mixed with those of the 365 Crete earthquake that generated a basin-wide tsunami most likely reaching also the Sicilian coasts. Reevaluating location, size, damage area and tsunamigenic potential of these two earthquakes of the 1st and 4th centuries AD is relevant for reassessing the seismogenic and tsunamigenic potential of the faults around the Messina Strait and the seismic hazard of the affected areas.

  16. Geological evidence of tsunamis and earthquakes at the Eastern Hellenic Arc: correlation with historical seismicity in the eastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Gerassimos Papadopoulos

    2012-12-01

    Full Text Available Sedimentary stratigraphy determined by trenching in Dalaman, south-western Turkey, revealed three sand layers at a distance of approximately 240 m from the shoreline and at elevations of +0.30, +0.55 and +0.90 cm. Storm surge action does not explain the features of these deposits that show instead typical characteristics of tsunami deposition. The sand layers correlate with historical tsunamis generated by large earthquakes which ruptured the eastern Hellenic Arc and Trench in 1303, 1481 and 1741. Accelerator mass spectrometry 14C dating of a wood sample from layer II indicated deposition in AD 1473±46, which fits the 1481 event. From an estimated average alluvium deposition rate of approximately 0.13 cm/year, layers I and III were dated at 1322 and 1724, which may represent the large 1303 and 1741 tsunamis. The geological record of the 1303 key event is very poor; therefore, sand layer I perhaps represents an important geological signature of the 1303 tsunami. However, the strong tsunami reported to have been generated by the 1609 earthquake is missing from Dalaman stratigraphy: this underlines the sensitivity of tsunami geological signatures to various local factors. The 1303 earthquake ruptured the trench between the islands of Crete and Rhodes. For the earthquakes of 1481, 1609 and 1741 we suggested that they were very likely generated in the Rhodes Abyssal Plain where sea depths of up to approximately 4200 m, together with the thrust component of seismotectonics, favor tsunami generation. Sand dykes directed upwards from layer I to layer II indicated that the 1481 earthquake triggered liquefaction of sand layer I. The results substantially widen our knowledge about the historical earthquake and tsunami activity in the eastern Mediterranean basin.

  17. The analysis of historical seismograms: an important tool for seismic hazard assessment. Case histories from French and Italian earthquakes

    International Nuclear Information System (INIS)

    Pino, N.A.

    2011-01-01

    Seismic hazard assessment relies on the knowledge of the source characteristics of past earthquakes. Unfortunately, seismic waveform analysis, representing the most powerful tool for the investigation of earthquake source parameters, is only possible for events occurred in the last 100-120 years, i.e., since seismographs with known response function were developed. Nevertheless, during this time significant earthquakes have been recorded by such instruments and today, also thanks to technological progress, these data can be recovered and analysed by means of modern techniques. In this paper, aiming at giving a general sketch of possible analyses and attainable results in historical seismogram studies, I briefly describe the major difficulties in processing the original waveforms and present a review of the results that I obtained from previous seismogram analysis of selected significant historical earthquakes occurred during the first decades of the 20. century, including (A) the December 28, 1908, Messina straits (southern Italy), (B) the June 11, 1909, Lambesc (southern France) - both of which are the strongest ever recorded instrumentally in their respective countries - and (C) the July 13, 1930, Irpinia (southern Italy) events. For these earthquakes, the major achievements are represented by the assessment of the seismic moment (A, B, C), the geometry and kinematics of faulting (B, C), the fault length and an approximate slip distribution (A, C). The source characteristics of the studied events have also been interpreted in the frame of the tectonic environment active in the respective region of interest. In spite of the difficulties inherent to the investigation of old seismic data, these results demonstrate the invaluable and irreplaceable role of historical seismogram analysis in defining the local seismo-genic potential and, ultimately, for assessing the seismic hazard. The retrieved information is crucial in areas where important civil engineering works

  18. Effect of historical earthquakes on pre-stressed anchor tie back diaphragm wall and on near-by building

    Directory of Open Access Journals (Sweden)

    Kamal Mohamed Hafez Ismail Ibrahim

    2013-04-01

    Full Text Available Pre-stressed tie back anchored diaphragm walls are considered one of the safest lateral supports which help in overall stability when there is a significant difference in land level between back and front of these walls. Permanent lateral supports to these walls are frequently represented by supporting it laterally with foundation and floor slabs of the building. In this paper a special study of one raw anchor diaphragm wall subjected to different earthquake dynamic loads will be presented. The wall retains an excavation of 9.5 m and supports laterally a near-by 5 floor building. Five historical strong motions with different fundamental frequencies are subjected on the wall. The wall displacement, straining actions, anchor extreme force and the influence of variation of anchor stiffness are calculated using a dynamic Plaxis finite element program. The soil is considered as elasto-plastic material and represented using Mohr–Coulomb criteria, the wall and the anchor are considered to behave elastically. Prescribed displacement at the lower bottom boundary represents the earthquake motion. Far left and right absorbent boundaries are assumed to prevent dynamic wave reflection. Four static phases representing construction procedure and one dynamic loading phase are considered. It is found that the straining actions of different historical earthquakes match in shape with each other, the only change is in the amplitude which is affected by earthquake fundamental frequency and its intensity. The maximum dynamic lateral displacement of the wall is at its free top. The near-by building shows a differential settlement towards the wall which causes a change in the sign and amplitude of the straining actions. Increasing the stiffness of anchor was also studied and it was found that it reduces too much the maximum dynamic top wall lateral displacement.

  19. Sedimentary evidence of historical and prehistorical earthquakes along the Venta de Bravo Fault System, Acambay Graben (Central Mexico)

    Science.gov (United States)

    Lacan, Pierre; Ortuño, María; Audin, Laurence; Perea, Hector; Baize, Stephane; Aguirre-Díaz, Gerardo; Zúñiga, F. Ramón

    2018-03-01

    The Venta de Bravo normal fault is one of the longest structures in the intra-arc fault system of the Trans-Mexican Volcanic Belt. It defines, together with the Pastores Fault, the 80 km long southern margin of the Acambay Graben. We focus on the westernmost segment of the Venta de Bravo Fault and provide new paleoseismological information, evaluate its earthquake history, and assess the related seismic hazard. We analyzed five trenches, distributed at three different sites, in which Holocene surface faulting offsets interbedded volcanoclastic, fluvio-lacustrine and colluvial deposits. Despite the lack of known historical destructive earthquakes along this fault, we found evidence of at least eight earthquakes during the late Quaternary. Our results indicate that this is one of the major seismic sources of the Acambay Graben, capable of producing by itself earthquakes with magnitudes (MW) up to 6.9, with a slip rate of 0.22-0.24 mm yr- 1 and a recurrence interval between 1940 and 2390 years. In addition, a possible multi-fault rupture of the Venta de Bravo Fault together with other faults of the Acambay Graben could result in a MW > 7 earthquake. These new slip rates, earthquake recurrence rates, and estimation of slips per event help advance our understanding of the seismic hazard posed by the Venta de Bravo Fault and provide new parameters for further hazard assessment.

  20. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation.

    Science.gov (United States)

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-05-10

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011.

  1. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation

    Science.gov (United States)

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-01-01

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011. PMID:27161897

  2. Mechanical coupling between earthquakes and volcanoes inferred from stress transfer models: evidence from Vesuvio, Etna and Alban Hills (Italy)

    Science.gov (United States)

    Cocco, M.; Feuillet, N.; Nostro, C.; Musumeci, C.

    2003-04-01

    We investigate the mechanical interactions between tectonic faults and volcanic sources through elastic stress transfer and discuss the results of several applications to Italian active volcanoes. We first present the stress modeling results that point out a two-way coupling between Vesuvius eruptions and historical earthquakes in Southern Apennines, which allow us to provide a physical interpretation of their statistical correlation. Therefore, we explore the elastic stress interaction between historical eruptions at the Etna volcano and the largest earthquakes in Eastern Sicily and Calabria. We show that the large 1693 seismic event caused an increase of compressive stress along the rift zone, which can be associated to the lack of flank eruptions of the Etna volcano for about 70 years after the earthquake. Moreover, the largest Etna eruptions preceded by few decades the large 1693 seismic event. Our modeling results clearly suggest that all these catastrophic events are tectonically coupled. We also investigate the effect of elastic stress perturbations on the instrumental seismicity caused by magma inflation at depth both at the Etna and at the Alban Hills volcanoes. In particular, we model the seismicity pattern at the Alban Hills volcano (central Italy) during a seismic swarm occurred in 1989-90 and we interpret it in terms of Coulomb stress changes caused by magmatic processes in an extensional tectonic stress field. We verify that the earthquakes occur in areas of Coulomb stress increase and that their faulting mechanisms are consistent with the stress perturbation induced by the volcanic source. Our results suggest a link between faults and volcanic sources, which we interpret as a tectonic coupling explaining the seismicity in a large area surrounding the volcanoes.

  3. The Philippine historical earthquakecatalog: its development, current stateand future directions

    Directory of Open Access Journals (Sweden)

    B. C. Bautista

    2004-06-01

    Full Text Available This report will trace the development of the historical earthquake catalog of the Philippines, assess its present state and recommend future research directions. The current Philippine historical earthquake catalog is culled from various catalogs, both global and local, that were developed since the first Philippine catalog by Perrey was published in 1860. While early global catalogs gave simple mention of earthquakes in the Philippines, more focused earthquake catalogs about the Philippines gave more explicit descriptions of earthquake accounts and adopted descriptions by local historians. Over the years, various historians and seismologists continued to compile their catalogs whose contents depended on the author?s perspectives and purposes. These works varied from simple listings to others including detailed descriptions. It was only recently that an attempt made to parameterize the magnitudes and epicenters of Philippine historical earthquakes using magnitude-felt area relations was done. A more detailed catalog, however, is now underway that will show details of intensity distribution for each significant historical earthquake. By comparing the historical catalog with the recent catalog and assuming that the recent catalog is complete, we find that there are still a substantial amount of historical earthquakes that needs to be reviewed and located. Possible sources of new information are local libraries, museums and archives in the Philippines, Spain and other Southeast Asian countries to which the country was in contact with during historical times.

  4. A short history of Japanese historical seismology: past and the present

    Science.gov (United States)

    Matsu'ura, Ritsuko S.

    2017-12-01

    Since seismicity in Japan is fairly high, Japanese interest in historical seismicity can be traced back to the nineth century, only a few centuries after the formation of the ancient ruling state. A 1000 years later, 2 years earlier than the modern seismological society was founded, the research on historical seismology started in Japan in 1878. By the accumulation for the recent 140 years, the present Japanese seismologists can read many historical materials without reading cursive scripts. We have a convenient access to the historical information related to earthquakes, in the modern characters of 27,759 pages. We now have 214 epicenters of historical earthquakes from 599 ad to 1872. Among them, 134 events in the early modern period were assigned hypocentral depths and proper magnitudes. The intensity data of 8700 places by those events were estimated. These precise intensity data enabled us to compare the detailed source areas of pairs of repeated historical earthquakes, such as the 1703 Genroku earthquake with the 1923 Kanto earthquake, and the 1707 Hoei earthquake with the summation of the 1854 Ansei Tokai and Ansei Nankai earthquakes. It is revealed that the focal area of the former larger event cannot completely include those of the latter smaller earthquakes, although those were believed to be typical sets of characteristic interplate earthquakes at the Sagami trough and at the Nankai trough. Research on historical earthquakes is very important to assess the seismic hazard in the future. We still have one-fifth events of the early modern period to be analyzed in detail. The compilation of places experienced high intensities in the modern events is also necessary. For the ancient and medieval periods, many equivocal events are still left. The further advance of the interdisciplinary research on historical seismology is necessary.

  5. Fault parameters and macroseismic observations of the May 10, 1997 Ardekul-Ghaen earthquake

    Science.gov (United States)

    Amini, H.; Zare, M.; Ansari, A.

    2018-01-01

    The Ardekul (Zirkuh) earthquake (May 10, 1997) is the largest recent earthquake that occurred in the Ardekul-Ghaen region of Eastern Iran. The greatest destruction was concentrated around Ardekul, Haji-Abad, Esfargh, Pishbar, Bashiran, Abiz-Qadim, and Fakhr-Abad (completely destroyed). The total surface fault rupture was about 125 km with the longest un-interrupted segment in the south of the region. The maximum horizontal and vertical displacements were reported in Korizan and Bohn-Abad with about 210 and 70 cm, respectively; moreover, other building damages and environmental effects were also reported for this earthquake. In this study, the intensity value XI on the European Macroseismic Scale (EMS) and Environmental Seismic Intensity (ESI) scale was selected for this earthquake according to the maximum effects on macroseismic data points affected by this earthquake. Then, according to its macroseismic data points of this earthquake and Boxer code, some macroseismic parameters including magnitude, location, source dimension, and orientation of this earthquake were also estimated at 7.3, 33.52° N-59.99° E, 75 km long and 21 km wide, and 152°, respectively. As the estimated macroseismic parameters are consistent with the instrumental ones (Global Centroid Moment Tensor (GCMT) location and magnitude equal 33.58° N-60.02° E, and 7.2, respectively), this method and dataset are suggested not only for other instrumental earthquakes, but also for historical events.

  6. Aftershocks and triggered events of the Great 1906 California earthquake

    Science.gov (United States)

    Meltzner, A.J.; Wald, D.J.

    2003-01-01

    The San Andreas fault is the longest fault in California and one of the longest strike-slip faults in the world, yet little is known about the aftershocks following the most recent great event on the San Andreas, the Mw 7.8 San Francisco earthquake on 18 April 1906. We conducted a study to locate and to estimate magnitudes for the largest aftershocks and triggered events of this earthquake. We examined existing catalogs and historical documents for the period April 1906 to December 1907, compiling data on the first 20 months of the aftershock sequence. We grouped felt reports temporally and assigned modified Mercalli intensities for the larger events based on the descriptions judged to be the most reliable. For onshore and near-shore events, a grid-search algorithm (derived from empirical analysis of modern earthquakes) was used to find the epicentral location and magnitude most consistent with the assigned intensities. For one event identified as far offshore, the event's intensity distribution was compared with those of modern events, in order to contrain the event's location and magnitude. The largest aftershock within the study period, an M ???6.7 event, occurred ???100 km west of Eureka on 23 April 1906. Although not within our study period, another M ???6.7 aftershock occurred near Cape Mendocino on 28 October 1909. Other significant aftershocks included an M ???5.6 event near San Juan Bautista on 17 May 1906 and an M ???6.3 event near Shelter Cove on 11 August 1907. An M ???4.9 aftershock occurred on the creeping segment of the San Andreas fault (southeast of the mainshock rupture) on 6 July 1906. The 1906 San Francisco earthquake also triggered events in southern California (including separate events in or near the Imperial Valley, the Pomona Valley, and Santa Monica Bay), in western Nevada, in southern central Oregon, and in western Arizona, all within 2 days of the mainshock. Of these trigerred events, the largest were an M ???6.1 earthquake near Brawley

  7. The earthquakes of stable continental regions. Volume 2: Appendices A to E. Final report

    International Nuclear Information System (INIS)

    Johnston, A.C.; Kanter, L.R.; Coppersmith, K.J.; Cornell, C.A.

    1994-12-01

    The objectives of the study were to develop a comprehensive database of earthquakes in stable continental regions (SCRs) and to statistically examine use of the database for the assessment of large earthquake potential. We identified nine major and several minor SCRs worldwide and compiled a database of geologic characteristics of tectonic domains within each SCR. We examined all available earthquake data from SCRs, from historical accounts of events with no instrumental ground-motion data to present-day instrumentally recorded events. In all, 1,385 events were analyzed. Using moment magnitude 4.5 as the lower bound threshold for inclusion in the database, 870 were assigned to an SCR, 124 were found to be transitional to an SCR, and 391 were examined, but rejected. We then performed a seismotectonic analysis to determine what distinguishes seismic activity in SCRs from other types of crust, such as active plate margins or active continental regions. General observations are: (1) SCRs comprise nearly two-thirds of all continental crust of which 25% is considered to be extended (i.e., rifted); (2) the majority of seismic energy release and the largest earthquakes in SCRs have occurred in extended crust; and (3) active plate margins release seismic energy at a rate per unit area approximately 7,000 times the average for non-extended SCRs. Finally, results of a statistical examination of distributions of historical maximum earthquakes between different crustal domain types indicated that additional information is needed in order to adequately constrain estimates of maximum earthquakes for any given region. Thus, a Bayesian approach was developed in which statistical constraints from the database were used to develop a prior distribution, which may then be combined with source-specific information to constrain maximum magnitude assessments for use in probabilistic seismic hazard analyses

  8. Active faults, paleoseismology, and historical fault rupture in northern Wairarapa, North Island, New Zealand

    International Nuclear Information System (INIS)

    Schermer, E.R.; Van Dissen, R.; Berryman, K.R.; Kelsey, H.M.; Cashman, S.M.

    2004-01-01

    Active faulting in the upper plate of the Hikurangi subduction zone, North Island, New Zealand, represents a significant seismic hazard that is not yet well understood. In northern Wairarapa, the geometry and kinematics of active faults, and the Quaternary and historical surface-rupture record, have not previously been studied in detail. We present the results of mapping and paleoseismicity studies on faults in the northern Wairarapa region to document the characteristics of active faults and the timing of earthquakes. We focus on evidence for surface rupture in the 1855 Wairarapa (M w 8.2) and 1934 Pahiatua (M w 7.4) earthquakes, two of New Zealand's largest historical earthquakes. The Dreyers Rock, Alfredton, Saunders Road, Waitawhiti, and Waipukaka faults form a northeast-trending, east-stepping array of faults. Detailed mapping of offset geomorphic features shows the rupture lengths vary from c. 7 to 20 km and single-event displacements range from 3 to 7 m, suggesting the faults are capable of generating M >7 earthquakes. Trenching results show that two earthquakes have occurred on the Alfredton Fault since c. 2900 cal. BP. The most recent event probably occurred during the 1855 Wairarapa earthquake as slip propagated northward from the Wairarapa Fault and across a 6 km wide step. Waipukaka Fault trenches show that at least three surface-rupturing earthquakes have occurred since 8290-7880 cal. BP. Analysis of stratigraphic and historical evidence suggests the most recent rupture occurred during the 1934 Pahiatua earthquake. Estimates of slip rates provided by these data suggest that a larger component of strike slip than previously suspected is occurring within the upper plate and that the faults accommodate a significant proportion of the dextral component of oblique subduction. Assessment of seismic hazard is difficult because the known fault scarp lengths appear too short to have accommodated the estimated single-event displacements. Faults in the region are

  9. Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean

    Science.gov (United States)

    Yolsal-Çevikbilen, Seda; Taymaz, Tuncay

    2012-04-01

    values (Δσ < 30 bars) for all earthquakes implying typically interplate seismic activity in the region. Further, results of numerical simulations verified that damaging historical tsunamis along the Hellenic subduction zone are able to threaten especially the coastal plains of Crete and Rhodes islands, SW Turkey, Cyprus, Levantine, and Nile Delta-Egypt regions. Thus, we tentatively recommend that special care should be considered in the evaluation of the tsunami risk assessment of the Eastern Mediterranean region for future studies.

  10. 2nd International Conference on Historic Earthquake-Resistant Timber Frames in the Mediterranean Area

    CERN Document Server

    Machado, José; Costa, Alfredo; Candeias, Paulo; Ruggieri, Nicola; Catarino, José

    2016-01-01

    This book presents a selection of the best papers from the HEaRT 2015 conference, held in Lisbon, Portugal, which provided a valuable forum for engineers and architects, researchers and educators to exchange views and findings concerning the technological history, construction features and seismic behavior of historical timber-framed walls in the Mediterranean countries. The topics covered are wide ranging and include historical aspects and examples of the use of timber-framed construction systems in response to earthquakes, such as the gaiola system in Portugal and the Bourbon system in southern Italy; interpretation of the response of timber-framed walls to seismic actions based on calculations and experimental tests; assessment of the effectiveness of repair and strengthening techniques, e.g., using aramid fiber wires or sheets; and modelling analyses. In addition, on the basis of case studies, a methodology is presented that is applicable to diagnosis, strengthening and improvement of seismic performance ...

  11. Relocation and Seismogenic Structure of the 1998 Zhangbei-Shangyi Earthquake Sequence

    Science.gov (United States)

    Yang, Z.

    2002-05-01

    An earthquake of magnitude 6.2 occurred in the Zhangbei-Shangyi region in the northern China on January 10, 1998. The earthquake was about 180km to the northwest of the Beijing City and was felt at Beijing. This earthquake is the largest event since the 1976 great Tangshan earthquake of magnitude 7.8 in the northern China. Historically seismicity in the Zhangbei-Shangyi region was very low. In the epicentral area no active fault constituting the seismogenic geological features capable of generating moderate earthquakes like this earthquake has been found before the earthquake. Nor surface faulting has been observed after the earthquake. Field geological investigation after the earthquake found two conjugate surface features trending NNE-NE and NNW-WNW. Because of the geometry of the seismic network the hypocentral distribution of the Zhangbei-Shangyi earthquake sequence given by routine location exhibited no any preferable orientation feature. In this study the Zhangbei-Shangyi earthquake and its aftershocks with magnitude equal or lager than 3.0 were relocated using both the master event relative relocation algorithm and the double-difference earthquake relocation algorithm (Waldhauser, 2000). Both algorithms gave consistent results within accuracy limits. The epicenter of the main shock was 41.15­aN and 114.46­aE, which was located 4km apart from the macro-epicenter of this event. The focal depth of the main shock was 15 km. The epicenters of aftershocks of this earthquake sequence distribute in a nearly vertical plane and its vicinity with orientation N20­aE. The results of relocation for the Zhangbei-Shangyi earthquake sequence clearly indicate that the seismogenic structure of this event is a N20­aE striking fault with right-lateral reverse slip, and that the occurrence of the Zhangbei-Shangyi earthquake is tectonically driven by the horizontal and oriented ENE compression stress, same as that of the stress field in northern China.

  12. Constraining the Long-Term Average of Earthquake Recurrence Intervals From Paleo- and Historic Earthquakes by Assimilating Information From Instrumental Seismicity

    Science.gov (United States)

    Zoeller, G.

    2017-12-01

    Paleo- and historic earthquakes are the most important source of information for the estimationof long-term recurrence intervals in fault zones, because sequences of paleoearthquakes cover more than one seismic cycle. On the other hand, these events are often rare, dating uncertainties are enormous and the problem of missing or misinterpreted events leads to additional problems. Taking these shortcomings into account, long-term recurrence intervals are usually unstable as long as no additional information are included. In the present study, we assume that the time to the next major earthquake depends on the rate of small and intermediate events between the large ones in terms of a ``clock-change'' model that leads to a Brownian Passage Time distribution for recurrence intervals. We take advantage of an earlier finding that the aperiodicity of this distribution can be related to the Gutenberg-Richter-b-value, which is usually around one and can be estimated easily from instrumental seismicity in the region under consideration. This allows to reduce the uncertainties in the estimation of the mean recurrence interval significantly, especially for short paleoearthquake sequences and high dating uncertainties. We present illustrative case studies from Southern California and compare the method with the commonly used approach of exponentially distributed recurrence times assuming a stationary Poisson process.

  13. Constraining the magnitude of the largest event in a foreshock-main shock-aftershock sequence

    Science.gov (United States)

    Shcherbakov, Robert; Zhuang, Jiancang; Ogata, Yosihiko

    2018-01-01

    Extreme value statistics and Bayesian methods are used to constrain the magnitudes of the largest expected earthquakes in a sequence governed by the parametric time-dependent occurrence rate and frequency-magnitude statistics. The Bayesian predictive distribution for the magnitude of the largest event in a sequence is derived. Two types of sequences are considered, that is, the classical aftershock sequences generated by large main shocks and the aftershocks generated by large foreshocks preceding a main shock. For the former sequences, the early aftershocks during a training time interval are used to constrain the magnitude of the future extreme event during the forecasting time interval. For the latter sequences, the earthquakes preceding the main shock are used to constrain the magnitudes of the subsequent extreme events including the main shock. The analysis is applied retrospectively to past prominent earthquake sequences.

  14. Modified Mercalli intensities for some recent California earthquakes and historic San Francisco Bay Region earthquakes

    Science.gov (United States)

    Bakun, William H.

    1998-01-01

    Modified Mercalli Intensity (MMI) data for recent California earthquakes were used by Bakun and Wentworth (1997) to develop a strategy for bounding the location and moment magnitude M of earthquakes from MMI observations only. Bakun (Bull. Seismol. Soc. Amer., submitted) used the Bakun and Wentworth (1997) strategy to analyze 19th century and early 20th century San Francisco Bay Region earthquakes. The MMI data and site corrections used in these studies are listed in this Open-file Report. 

  15. Precisely locating the Klamath Falls, Oregon, earthquakes

    Science.gov (United States)

    Qamar, A.; Meagher, K.L.

    1993-01-01

    The Klamath Falls earthquakes on September 20, 1993, were the largest earthquakes centered in Oregon in more than 50 yrs. Only the magnitude 5.75 Milton-Freewater earthquake in 1936, which was centered near the Oregon-Washington border and felt in an area of about 190,000 sq km, compares in size with the recent Klamath Falls earthquakes. Although the 1993 earthquakes surprised many local residents, geologists have long recognized that strong earthquakes may occur along potentially active faults that pass through the Klamath Falls area. These faults are geologically related to similar faults in Oregon, Idaho, and Nevada that occasionally spawn strong earthquakes

  16. Geodetic Finite-Fault-based Earthquake Early Warning Performance for Great Earthquakes Worldwide

    Science.gov (United States)

    Ruhl, C. J.; Melgar, D.; Grapenthin, R.; Allen, R. M.

    2017-12-01

    GNSS-based earthquake early warning (EEW) algorithms estimate fault-finiteness and unsaturated moment magnitude for the largest, most damaging earthquakes. Because large events are infrequent, algorithms are not regularly exercised and insufficiently tested on few available datasets. The Geodetic Alarm System (G-larmS) is a GNSS-based finite-fault algorithm developed as part of the ShakeAlert EEW system in the western US. Performance evaluations using synthetic earthquakes offshore Cascadia showed that G-larmS satisfactorily recovers magnitude and fault length, providing useful alerts 30-40 s after origin time and timely warnings of ground motion for onshore urban areas. An end-to-end test of the ShakeAlert system demonstrated the need for GNSS data to accurately estimate ground motions in real-time. We replay real data from several subduction-zone earthquakes worldwide to demonstrate the value of GNSS-based EEW for the largest, most damaging events. We compare predicted ground acceleration (PGA) from first-alert-solutions with those recorded in major urban areas. In addition, where applicable, we compare observed tsunami heights to those predicted from the G-larmS solutions. We show that finite-fault inversion based on GNSS-data is essential to achieving the goals of EEW.

  17. The Philippine historical earthquakecatalog: its development, current stateand future directions

    OpenAIRE

    Bautista, M. L. P.; Bautista, B. C.

    2004-01-01

    This report will trace the development of the historical earthquake catalog of the Philippines, assess its present state and recommend future research directions. The current Philippine historical earthquake catalog is culled from various catalogs, both global and local, that were developed since the first Philippine catalog by Perrey was published in 1860. While early global catalogs gave simple mention of earthquakes in the Philippines, more focused earthquake catalogs about the Philippines...

  18. Listening to the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake

    Science.gov (United States)

    Peng, Zhigang; Aiken, Chastity; Kilb, Debi; Shelly, David R.; Enescu, Bogdan

    2012-01-01

    The magnitude 9.0 Tohoku-Oki, Japan, earthquake on 11 March 2011 is the largest earthquake to date in Japan’s modern history and is ranked as the fourth largest earthquake in the world since 1900. This earthquake occurred within the northeast Japan subduction zone (Figure 1), where the Pacific plate is subducting beneath the Okhotsk plate at rate of ∼8–9 cm/yr (DeMets et al. 2010). This type of extremely large earthquake within a subduction zone is generally termed a “megathrust” earthquake. Strong shaking from this magnitude 9 earthquake engulfed the entire Japanese Islands, reaching a maximum acceleration ∼3 times that of gravity (3 g). Two days prior to the main event, a foreshock sequence occurred, including one earthquake of magnitude 7.2. Following the main event, numerous aftershocks occurred around the main slip region; the largest of these was magnitude 7.9. The entire foreshocks-mainshock-aftershocks sequence was well recorded by thousands of sensitive seismometers and geodetic instruments across Japan, resulting in the best-recorded megathrust earthquake in history. This devastating earthquake resulted in significant damage and high death tolls caused primarily by the associated large tsunami. This tsunami reached heights of more than 30 m, and inundation propagated inland more than 5 km from the Pacific coast, which also caused a nuclear crisis that is still affecting people’s lives in certain regions of Japan.

  19. Interseismic Coupling-Based Earthquake and Tsunami Scenarios for the Nankai Trough

    Science.gov (United States)

    Baranes, H.; Woodruff, J. D.; Loveless, J. P.; Hyodo, M.

    2018-04-01

    Theoretical modeling and investigations of recent subduction zone earthquakes show that geodetic estimates of interseismic coupling and the spatial distribution of coseismic rupture are correlated. However, the utility of contemporary coupling in guiding construction of rupture scenarios has not been evaluated on the world's most hazardous faults. Here we demonstrate methods for scaling coupling to slip to create rupture models for southwestern Japan's Nankai Trough. Results show that coupling-based models produce distributions of ground surface deformation and tsunami inundation that are similar to historical and geologic records of the largest known Nankai earthquake in CE 1707 and to an independent, quasi-dynamic rupture model. Notably, these models and records all support focused subsidence around western Shikoku that makes the region particularly vulnerable to flooding. Results imply that contemporary coupling mirrors the slip distribution of a full-margin, 1707-type rupture, and Global Positioning System measurements of surface motion are connected with the trough's physical characteristics.

  20. The Pocatello Valley, Idaho, earthquake

    Science.gov (United States)

    Rogers, A. M.; Langer, C.J.; Bucknam, R.C.

    1975-01-01

    A Richter magnitude 6.3 earthquake occurred at 8:31 p.m mountain daylight time on March 27, 1975, near the Utah-Idaho border in Pocatello Valley. The epicenter of the main shock was located at 42.094° N, 112.478° W, and had a focal depth of 5.5 km. This earthquake was the largest in the continental United States since the destructive San Fernando earthquake of February 1971. The main shock was preceded by a magnitude 4.5 foreshock on March 26. 

  1. New geological perspectives on earthquake recurrence models

    International Nuclear Information System (INIS)

    Schwartz, D.P.

    1997-01-01

    In most areas of the world the record of historical seismicity is too short or uncertain to accurately characterize the future distribution of earthquakes of different sizes in time and space. Most faults have not ruptured once, let alone repeatedly. Ultimately, the ability to correctly forecast the magnitude, location, and probability of future earthquakes depends on how well one can quantify the past behavior of earthquake sources. Paleoseismological trenching of active faults, historical surface ruptures, liquefaction features, and shaking-induced ground deformation structures provides fundamental information on the past behavior of earthquake sources. These studies quantify (a) the timing of individual past earthquakes and fault slip rates, which lead to estimates of recurrence intervals and the development of recurrence models and (b) the amount of displacement during individual events, which allows estimates of the sizes of past earthquakes on a fault. When timing and slip per event are combined with information on fault zone geometry and structure, models that define individual rupture segments can be developed. Paleoseismicity data, in the form of timing and size of past events, provide a window into the driving mechanism of the earthquake engine--the cycle of stress build-up and release

  2. Coulomb Failure Stress Accumulation in Nepal After the 2015 Mw 7.8 Gorkha Earthquake: Testing Earthquake Triggering Hypothesis and Evaluating Seismic Hazards

    Science.gov (United States)

    Xiong, N.; Niu, F.

    2017-12-01

    A Mw 7.8 earthquake struck Gorkha, Nepal, on April 5, 2015, resulting in more than 8000 deaths and 3.5 million homeless. The earthquake initiated 70km west of Kathmandu and propagated eastward, rupturing an area of approximately 150km by 60km in size. However, the earthquake failed to fully rupture the locked fault beneath the Himalaya, suggesting that the region south of Kathmandu and west of the current rupture are still locked and a much more powerful earthquake might occur in future. Therefore, the seismic hazard of the unruptured region is of great concern. In this study, we investigated the Coulomb failure stress (CFS) accumulation on the unruptured fault transferred by the Gorkha earthquake and some nearby historical great earthquakes. First, we calculated the co-seismic CFS changes of the Gorkha earthquake on the nodal planes of 16 large aftershocks to quantitatively examine whether they were brought closer to failure by the mainshock. It is shown that at least 12 of the 16 aftershocks were encouraged by an increase of CFS of 0.1-3 MPa. The correspondence between the distribution of off-fault aftershocks and the increased CFS pattern also validates the applicability of the earthquake triggering hypothesis in the thrust regime of Nepal. With the validation as confidence, we calculated the co-seismic CFS change on the locked region imparted by the Gorkha earthquake and historical great earthquakes. A newly proposed ramp-flat-ramp-flat fault geometry model was employed, and the source parameters of historical earthquakes were computed with the empirical scaling relationship. A broad region south of the Kathmandu and west of the current rupture were shown to be positively stressed with CFS change roughly ranging between 0.01 and 0.5 MPa. The maximum of CFS increase (>1MPa) was found in the updip segment south of the current rupture, implying a high seismic hazard. Since the locked region may be additionally stressed by the post-seismic relaxation of the lower

  3. STSHV a teleinformatic system for historic seismology in Venezuela

    Science.gov (United States)

    Choy, J. E.; Palme, C.; Altez, R.; Aranguren, R.; Guada, C.; Silva, J.

    2013-05-01

    From 1997 on, when the first "Jornadas Venezolanas de Sismicidad Historica" took place, a big interest awoke in Venezuela to organize the available information related to historic earthquakes. At that moment only existed one published historic earthquake catalogue, that from Centeno Grau published the first time in 1949. That catalogue had no references about the sources of information. Other catalogues existed but they were internal reports for the petroleum companies and therefore difficult to access. In 2000 Grases et al reedited the Centeno-Grau catalogue, it ended up in a new, very complete catalogue with all the sources well referenced and updated. The next step to organize historic seismicity data was, from 2004 to 2008, the creation of the STSHV (Sistema de teleinformacion de Sismologia Historica Venezolana, http://sismicidad.hacer.ula.ve ). The idea was to bring together all information about destructive historic earthquakes in Venezuela in one place in the internet so it could be accessed easily by a widespread public. There are two ways to access the system. The first one, selecting an earthquake or a list of earthquakes, and the second one, selecting an information source or a list of sources. For each earthquake there is a summary of general information and additional materials: a list with the source parameters published by different authors, a list with intensities assessed by different authors, a list of information sources, a short text summarizing the historic situation at the time of the earthquake and a list of pictures if available. There are searching facilities for the seismic events and dynamic maps can be created. The information sources are classified in: books, handwritten documents, transcription of handwritten documents, documents published in books, journals and congress memories, newspapers, seismologic catalogues and electronic sources. There are facilities to find specific documents or lists of documents with common characteristics

  4. Post-earthquake building safety inspection: Lessons from the Canterbury, New Zealand, earthquakes

    Science.gov (United States)

    Marshall, J.; Jaiswal, Kishor; Gould, N.; Turner, F.; Lizundia, B.; Barnes, J.

    2013-01-01

    The authors discuss some of the unique aspects and lessons of the New Zealand post-earthquake building safety inspection program that was implemented following the Canterbury earthquake sequence of 2010–2011. The post-event safety assessment program was one of the largest and longest programs undertaken in recent times anywhere in the world. The effort engaged hundreds of engineering professionals throughout the country, and also sought expertise from outside, to perform post-earthquake structural safety inspections of more than 100,000 buildings in the city of Christchurch and the surrounding suburbs. While the building safety inspection procedure implemented was analogous to the ATC 20 program in the United States, many modifications were proposed and implemented in order to assess the large number of buildings that were subjected to strong and variable shaking during a period of two years. This note discusses some of the key aspects of the post-earthquake building safety inspection program and summarizes important lessons that can improve future earthquake response.

  5. Modeling of a historical earthquake in Erzincan, Turkey (Ms 7.8, in 1939) using regional seismological information obtained from a recent event

    Science.gov (United States)

    Karimzadeh, Shaghayegh; Askan, Aysegul

    2018-04-01

    Located within a basin structure, at the conjunction of North East Anatolian, North Anatolian and Ovacik Faults, Erzincan city center (Turkey) is one of the most hazardous regions in the world. Combination of the seismotectonic and geological settings of the region has resulted in series of significant seismic activities including the 1939 (Ms 7.8) as well as the 1992 (Mw = 6.6) earthquakes. The devastative 1939 earthquake occurred in the pre-instrumental era in the region with no available local seismograms. Thus, a limited number of studies exist on that earthquake. However, the 1992 event, despite the sparse local network at that time, has been studied extensively. This study aims to simulate the 1939 Erzincan earthquake using available regional seismic and geological parameters. Despite several uncertainties involved, such an effort to quantitatively model the 1939 earthquake is promising, given the historical reports of extensive damage and fatalities in the area. The results of this study are expressed in terms of anticipated acceleration time histories at certain locations, spatial distribution of selected ground motion parameters and felt intensity maps in the region. Simulated motions are first compared against empirical ground motion prediction equations derived with both local and global datasets. Next, anticipated intensity maps of the 1939 earthquake are obtained using local correlations between peak ground motion parameters and felt intensity values. Comparisons of the estimated intensity distributions with the corresponding observed intensities indicate a reasonable modeling of the 1939 earthquake.

  6. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    Science.gov (United States)

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  7. Multi-Directional Seismic Assessment of Historical Masonry Buildings by Means of Macro-Element Modelling: Application to a Building Damaged during the L’Aquila Earthquake (Italy

    Directory of Open Access Journals (Sweden)

    Francesco Cannizzaro

    2017-11-01

    Full Text Available The experience of the recent earthquakes in Italy caused a shocking impact in terms of loss of human life and damage in buildings. In particular, when it comes to ancient constructions, their cultural and historical value overlaps with the economic and social one. Among the historical structures, churches have been the object of several studies which identified the main characteristics of the seismic response and the most probable collapse mechanisms. More rarely, academic studies have been devoted to ancient palaces, since they often exhibit irregular and complicated arrangement of the resisting elements, which makes their response very difficult to predict. In this paper, a palace located in L’Aquila, severely damaged by the seismic event of 2009 is the object of an accurate study. A historical reconstruction of the past strengthening interventions as well as a detailed geometric relief is performed to implement detailed numerical models of the structure. Both global and local models are considered and static nonlinear analyses are performed considering the influence of the input direction on the seismic vulnerability of the building. The damage pattern predicted by the numerical models is compared with that observed after the earthquake. The seismic vulnerability assessments are performed in terms of ultimate peak ground acceleration (PGA using capacity curves and the Italian code spectrum. The results are compared in terms of ultimate ductility demand evaluated performing nonlinear dynamic analyses considering the actual registered seismic input of L’Aquila earthquake.

  8. The 1976 Tangshan earthquake

    Science.gov (United States)

    Fang, Wang

    1979-01-01

    The Tangshan earthquake of 1976 was one of the largest earthquakes in recent years. It occurred on July 28 at 3:42 a.m, Beijing (Peking) local time, and had magnitude 7.8, focal depth of 15 kilometers, and an epicentral intensity of XI on the New Chinese Seismic Intensity Scale; it caused serious damage and loss of life in this densely populated industrial city. Now, with the help of people from all over China, the city of Tangshan is being rebuild. 

  9. Understanding Earthquakes

    Science.gov (United States)

    Davis, Amanda; Gray, Ron

    2018-01-01

    December 26, 2004 was one of the deadliest days in modern history, when a 9.3 magnitude earthquake--the third largest ever recorded--struck off the coast of Sumatra in Indonesia (National Centers for Environmental Information 2014). The massive quake lasted at least 10 minutes and devastated the Indian Ocean. The quake displaced an estimated…

  10. Initiation process of the Mw 6.2 central Tottori, Japan, earthquake on October 21, 2016: Stress transfer due to its largest foreshock of Mw 4.1

    Science.gov (United States)

    Noda, S.; Ellsworth, W. L.

    2017-12-01

    On October 21, 2016, a strike-slip earthquake with Mw 6.2 occurred in the central Tottori prefecture, Japan. It was preceded by a foreshock sequence that began with a Mw 4.1 event, the largest earthquake for the sequence, and lasted about two hours. According to the JMA catalog, the largest foreshock had a similar focal mechanism as the mainshock and was located in the immediate vicinity of the mainshock hypocenter. The goal of this study is to understand the relationship between the foreshock and the initial rupture of the mainshock. We first determine the relative hypocenter distance between the foreshock and mainshock using the P-wave onsets on Hi-net station records. The initiation points of the two events are likely about 100 m apart according to the current results, but could be closer. Within the location uncertainty, they might either be coplanar or on subparallel planes. Next, we obtain the slip-history models from a kinematic inversion method using empirical Green's functions derived from other foreshocks with M 2.2 - 2.4. The Mw 4.1 foreshock and Mw 6.2 mainshock started in a similar way until approximately 0.2 s after their onsets. For the foreshock, the rapid growth stage completed by 0.2 s even though the rupture propagation continued for 0.4 - 0.5 s longer (note that 0.2 s is significantly shorter than the typical source duration of a Mw 4.1 earthquake). On the other hand, the mainshock rupture continued to grow rapidly after 0.2 s. The comparison between the relative hypocenter locations and the slip models shows that the mainshock nucleated within the area strongly effected by both static and dynamic stress changes created by the foreshock. We also find that the mainshock initially propagated away from the foreshock hypocenter. We consider that the stress transfer process is a key to understand the mainshock nucleation as well as its rupture growth process.

  11. Introduction to thematic collection “Historical and geological studies of earthquakes”

    Directory of Open Access Journals (Sweden)

    Kenji Satake

    2017-11-01

    Full Text Available Abstract This thematic collection contains eight papers mostly presented at the 2016 AOGS meeting in Beijing. Four papers describe historical earthquake studies in Europe, Japan, and China; one paper uses modern instrumental data to examine the effect of giant earthquakes on the seismicity rate; and three papers describe paleoseismological studies using tsunami deposit in Japan, marine terraces in Philippines, and active faults in Himalayas. Hammerl (Geosci Lett 4:7, 2017 introduced historical seismological studies in Austria, starting from methodology which is state of the art in most European countries, followed by a case study for an earthquake of July 17, 1670 in Tyrol. Albini and Rovida (Geosci Lett 3:30, 2016 examined 114 historical records for the earthquake on April 6, 1667 on the east coast of the Adriatic Sea, compiled 37 Macroseismic Data Points, and estimated the epicenter and the size of the earthquake. Matsu’ura (Geosci Lett 4:3, 2017 summarized historical earthquake studies in Japan which resulted in about 8700 Intensity Data Points, assigned epicenters for 214 earthquakes between AD 599 and 1872, and estimated focal depth and magnitudes for 134 events. Wang et al. (Geosci Lett 4:4, 2017 introduced historical seismology in China, where historical earthquake archives include about 15,000 sources, and parametric catalogs include about 1000 historical earthquakes between 2300 BC and AD 1911. Ishibe et al. (Geosci Lett 4:5, 2017 tested the Coulomb stress triggering hypothesis for three giant (M~9 earthquakes that occurred in recent years, and found that at least the 2004 Sumatra–Andaman and 2011 Tohoku earthquakes caused the seismicity rate change. Ishimura (2017 re-estimated the ages of 11 tsunami deposits in the last 4000 years along the Sanriku coast of northern Japan and found that the average recurrence interval of those tsunamis as 350–390 years. Ramos et al. (2017 studied ~ 1000-year-old marine terraces on the west

  12. Correlation between Earthquakes and AE Monitoring of Historical Buildings in Seismic Areas

    Directory of Open Access Journals (Sweden)

    Giuseppe Lacidogna

    2015-12-01

    Full Text Available In this contribution a new method for evaluating seismic risk in regional areas based on the acoustic emission (AE technique is proposed. Most earthquakes have precursors, i.e., phenomena of changes in the Earth’s physical-chemical properties that take place prior to an earthquake. Acoustic emissions in materials and earthquakes in the Earth’s crust, despite the fact that they take place on very different scales, are very similar phenomena; both are caused by a release of elastic energy from a source located in a medium. For the AE monitoring, two important constructions of Italian cultural heritage are considered: the chapel of the “Sacred Mountain of Varallo” and the “Asinelli Tower” of Bologna. They were monitored during earthquake sequences in their relative areas. By using the Grassberger-Procaccia algorithm, a statistical method of analysis was developed that detects AEs as earthquake precursors or aftershocks. Under certain conditions it was observed that AEs precede earthquakes. These considerations reinforce the idea that the AE monitoring can be considered an effective tool for earthquake risk evaluation.

  13. Refining age estimates for three historic ground rupturing earthquakes in the Santa Cruz Mountains: 14C Wiggle-matching and Non-Native Pollen as age indicators (or not!)

    Science.gov (United States)

    Streig, A. R.; Weldon, R. J.; Dawson, T. E.; Guilderson, T.; Gavin, D. G.; Reidy, L.

    2013-12-01

    The Hazel Dell site provides the first definitive paleoseismic evidence of two pre-1906 19th century events on the Santa Cruz Mountains section based on the presence of anthropogenic artifacts. Hundreds of pieces of cut redwood chips were found in a stratigraphic horizon just below the ante-penultimate (E3) earthquake surface, suggesting that redwood trees at the site were cut down right before earthquake E3. We correlate our paleoseismic findings with the historic record and the onset of redwood logging in the area by determining the felling date of a buried redwood tree stump at the site and the age of the woodchips. We wiggle match 14 radiocarbon dates sampled from annual growth rings taken from the stump and the known interval between growth rings, with the intercepts of the INTCAL04 terrestrial 14C calibration curve. Pending 13C measurements, we find that the youngest ring we have identified in the tree is A.D. 1800. We also wiggle match 2 radiocarbon dates from inner and outer growth rings from two wood chips (with bark); their ages are consistent with the tree and the youngest woodchip ring is dated to 1813 A.D. There are no known ethnographic or historical accounts of pre-contact native people felling large trees in the way that European colonists did. The first record of European land use was for pasture in 1803. The property became a Spanish land grant in 1827, soon after which a whip-saw lumber mill is documented to have begun operation in the upper Corralitos area. We combine these paleoseismic results with historical earthquake accounts for the area and conclude that the San Andreas fault ruptured in 1838, 1890 and 1906. The Hazel Dell results are in contrast with findings from earlier paleoseismic studies in the Santa Cruz Mountains. The Grizzly Flat site, 6 km to the north, found evidence of 1906 and one 17th century earthquake. Two historic earthquakes were observed at the Mill Canyon site 8 km to the south and at the Arano Flat site 9.5 km south of

  14. Has El Salvador Fault Zone produced M ≥ 7.0 earthquakes? The 1719 El Salvador earthquake

    Science.gov (United States)

    Canora, C.; Martínez-Díaz, J.; Álvarez-Gómez, J.; Villamor, P.; Ínsua-Arévalo, J.; Alonso-Henar, J.; Capote, R.

    2013-05-01

    Historically, large earthquakes, Mw ≥ 7.0, in the Εl Salvador area have been attributed to activity in the Cocos-Caribbean subduction zone. Τhis is correct for most of the earthquakes of magnitude greater than 6.5. However, recent paleoseismic evidence points to the existence of large earthquakes associated with rupture of the Εl Salvador Fault Ζone, an Ε-W oriented strike slip fault system that extends for 150 km through central Εl Salvador. Τo calibrate our results from paleoseismic studies, we have analyzed the historical seismicity of the area. In particular, we suggest that the 1719 earthquake can be associated with paleoseismic activity evidenced in the Εl Salvador Fault Ζone. Α reinterpreted isoseismal map for this event suggests that the damage reported could have been a consequence of the rupture of Εl Salvador Fault Ζone, rather than rupture of the subduction zone. Τhe isoseismal is not different to other upper crustal earthquakes in similar tectonovolcanic environments. We thus challenge the traditional assumption that only the subduction zone is capable of generating earthquakes of magnitude greater than 7.0 in this region. Τhis result has broad implications for future risk management in the region. Τhe potential occurrence of strong ground motion, significantly higher and closer to the Salvadorian populations that those assumed to date, must be considered in seismic hazard assessment studies in this area.

  15. The Alaska earthquake, March 27, 1964: effects on communities

    Science.gov (United States)

    Hansen, Wallace R.; Kachadoorian, Reuben; Coulter, Henry W.; Migliaccio, Ralph R.; Waller, Roger M.; Stanley, Kirk W.; Lemke, Richard W.; Plafker, George; Eckel, Edwin B.; Mayo, Lawrence R.

    1969-01-01

    This is the second in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S. since 1700. Professional Paper 542, in 7 parts, describes the effects of the earthquake on Alaskan communities.

  16. Retrospective analysis of the Spitak earthquake

    Directory of Open Access Journals (Sweden)

    A. K. Tovmassian

    1995-06-01

    Full Text Available Based on the retrospective analysis of numerous data and studies of the Spitak earthquake the present work at- tempts to shed light on different aspects of that catastrophic seismic event which occurred in Northern Arme- nia on December 7, 1988. The authors follow a chronological order of presentation, namely: changes in geo- sphere, atmosphere, biosphere during the preparation of the Spitak earthquake, foreshocks, main shock, after- shocks, focal mechanisms, historical seismicity; seismotectonic position of the source, strong motion records, site effects; the macroseismic effect, collapse of buildings and structures; rescue activities; earthquake conse- quences; and the lessons of the Spitak earthquake.

  17. Protracted fluvial recovery from medieval earthquakes, Pokhara, Nepal

    Science.gov (United States)

    Stolle, Amelie; Bernhardt, Anne; Schwanghart, Wolfgang; Andermann, Christoff; Schönfeldt, Elisabeth; Seidemann, Jan; Adhikari, Basanta R.; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-04-01

    River response to strong earthquake shaking in mountainous terrain often entails the flushing of sediments delivered by widespread co-seismic landsliding. Detailed mass-balance studies following major earthquakes in China, Taiwan, and New Zealand suggest fluvial recovery times ranging from several years to decades. We report a detailed chronology of earthquake-induced valley fills in the Pokhara region of western-central Nepal, and demonstrate that rivers continue to adjust to several large medieval earthquakes to the present day, thus challenging the notion of transient fluvial response to seismic disturbance. The Pokhara valley features one of the largest and most extensively dated sedimentary records of earthquake-triggered sedimentation in the Himalayas, and independently augments paleo-seismological archives obtained mainly from fault trenches and historic documents. New radiocarbon dates from the catastrophically deposited Pokhara Formation document multiple phases of extremely high geomorphic activity between ˜700 and ˜1700 AD, preserved in thick sequences of alternating fluvial conglomerates, massive mud and silt beds, and cohesive debris-flow deposits. These dated fan-marginal slackwater sediments indicate pronounced sediment pulses in the wake of at least three large medieval earthquakes in ˜1100, 1255, and 1344 AD. We combine these dates with digital elevation models, geological maps, differential GPS data, and sediment logs to estimate the extent of these three pulses that are characterized by sedimentation rates of ˜200 mm yr-1 and peak rates as high as 1,000 mm yr-1. Some 5.5 to 9 km3 of material infilled the pre-existing topography, and is now prone to ongoing fluvial dissection along major canyons. Contemporary river incision into the Pokhara Formation is rapid (120-170 mm yr-1), triggering widespread bank erosion, channel changes, and very high sediment yields of the order of 103 to 105 t km-2 yr-1, that by far outweigh bedrock denudation rates

  18. The 1964 Great Alaska Earthquake and tsunamis: a modern perspective and enduring legacies

    Science.gov (United States)

    Brocher, Thomas M.; Filson, John R.; Fuis, Gary S.; Haeussler, Peter J.; Holzer, Thomas L.; Plafker, George; Blair, J. Luke

    2014-01-01

    The magnitude 9.2 Great Alaska Earthquake that struck south-central Alaska at 5:36 p.m. on Friday, March 27, 1964, is the largest recorded earthquake in U.S. history and the second-largest earthquake recorded with modern instruments. The earthquake was felt throughout most of mainland Alaska, as far west as Dutch Harbor in the Aleutian Islands some 480 miles away, and at Seattle, Washington, more than 1,200 miles to the southeast of the fault rupture, where the Space Needle swayed perceptibly. The earthquake caused rivers, lakes, and other waterways to slosh as far away as the coasts of Texas and Louisiana. Water-level recorders in 47 states—the entire Nation except for Connecticut, Delaware, and Rhode Island— registered the earthquake. It was so large that it caused the entire Earth to ring like a bell: vibrations that were among the first of their kind ever recorded by modern instruments. The Great Alaska Earthquake spawned thousands of lesser aftershocks and hundreds of damaging landslides, submarine slumps, and other ground failures. Alaska’s largest city, Anchorage, located west of the fault rupture, sustained heavy property damage. Tsunamis produced by the earthquake resulted in deaths and damage as far away as Oregon and California. Altogether the earthquake and subsequent tsunamis caused 129 fatalities and an estimated $2.3 billion in property losses (in 2013 dollars). Most of the population of Alaska and its major transportation routes, ports, and infrastructure lie near the eastern segment of the Aleutian Trench that ruptured in the 1964 earthquake. Although the Great Alaska Earthquake was tragic because of the loss of life and property, it provided a wealth of data about subductionzone earthquakes and the hazards they pose. The leap in scientific understanding that followed the 1964 earthquake has led to major breakthroughs in earth science research worldwide over the past half century. This fact sheet commemorates Great Alaska Earthquake and

  19. Understanding Great Earthquakes in Japan's Kanto Region

    Science.gov (United States)

    Kobayashi, Reiji; Curewitz, Daniel

    2008-10-01

    Third International Workshop on the Kanto Asperity Project; Chiba, Japan, 16-19 February 2008; The 1703 (Genroku) and 1923 (Taisho) earthquakes in Japan's Kanto region (M 8.2 and M 7.9, respectively) caused severe damage in the Tokyo metropolitan area. These great earthquakes occurred along the Sagami Trough, where the Philippine Sea slab is subducting beneath Japan. Historical records, paleoseismological research, and geophysical/geodetic monitoring in the region indicate that such great earthquakes will repeat in the future.

  20. Testing Event Discrimination over Broad Regions using the Historical Borovoye Observatory Explosion Dataset

    Science.gov (United States)

    Pasyanos, Michael E.; Ford, Sean R.; Walter, William R.

    2014-03-01

    We test the performance of high-frequency regional P/S discriminants to differentiate between earthquakes and explosions at test sites and over broad regions using a historical dataset of explosions recorded at the Borovoye Observatory in Kazakhstan. We compare these explosions to modern recordings of earthquakes at the same location. We then evaluate the separation of the two types of events using the raw measurements and those where the amplitudes are corrected for 1-D and 2-D attenuation structure. We find that high-frequency P/S amplitudes can reliably identify earthquakes and explosions, and that the discriminant is applicable over broad regions as long as propagation effects are properly accounted for. Lateral attenuation corrections provide the largest improvement in the 2-4 Hz band, the use of which may successfully enable the identification of smaller, distant events that have lower signal-to-noise at higher frequencies. We also find variations in P/S ratios among the three main nuclear testing locations within the Semipalatinsk Test Site which, due to their nearly identical paths to BRVK, must be a function of differing geology and emplacement conditions.

  1. A Decade of Giant Earthquakes - What does it mean?

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry C. Jr. [Los Alamos National Laboratory

    2012-07-16

    On December 26, 2004 the largest earthquake since 1964 occurred near Ache, Indonesia. The magnitude 9.2 earthquake and subsequent tsunami killed a quarter of million people; it also marked the being of a period of extraordinary seismicity. Since the Ache earthquake there have been 16 magnitude 8 earthquakes globally, including 2 this last April. For the 100 years previous to 2004 there was an average of 1 magnitude 8 earthquake every 2.2 years; since 2004 there has been 2 per year. Since magnitude 8 earthquakes dominate global seismic energy release, this period of seismicity has seismologist rethinking what they understand about plate tectonics and the connectivity between giant earthquakes. This talk will explore this remarkable period of time and its possible implications.

  2. A Poisson method application to the assessment of the earthquake hazard in the North Anatolian Fault Zone, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Türker, Tuğba, E-mail: tturker@ktu.edu.tr [Karadeniz Technical University, Department of Geophysics, Trabzon/Turkey (Turkey); Bayrak, Yusuf, E-mail: ybayrak@agri.edu.tr [Ağrı İbrahim Çeçen University, Ağrı/Turkey (Turkey)

    2016-04-18

    North Anatolian Fault (NAF) is one from the most important strike-slip fault zones in the world and located among regions in the highest seismic activity. The NAFZ observed very large earthquakes from the past to present. The aim of this study; the important parameters of Gutenberg-Richter relationship (a and b values) estimated and this parameters taking into account, earthquakes were examined in the between years 1900-2015 for 10 different seismic source regions in the NAFZ. After that estimated occurrence probabilities and return periods of occurring earthquakes in fault zone in the next years, and is being assessed with Poisson method the earthquake hazard of the NAFZ. The Region 2 were observed the largest earthquakes for the only historical period and hasn’t been observed large earthquake for the instrumental period in this region. Two historical earthquakes (1766, M{sub S}=7.3 and 1897, M{sub S}=7.0) are included for Region 2 (Marmara Region) where a large earthquake is expected in the next years. The 10 different seismic source regions are determined the relationships between the cumulative number-magnitude which estimated a and b parameters with the equation of LogN=a-bM in the Gutenberg-Richter. A homogenous earthquake catalog for M{sub S} magnitude which is equal or larger than 4.0 is used for the time period between 1900 and 2015. The database of catalog used in the study has been created from International Seismological Center (ISC) and Boğazici University Kandilli observation and earthquake research institute (KOERI). The earthquake data were obtained until from 1900 to 1974 from KOERI and ISC until from 1974 to 2015 from KOERI. The probabilities of the earthquake occurring are estimated for the next 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 years in the 10 different seismic source regions. The highest earthquake occur probabilities in 10 different seismic source regions in the next years estimated that the region Tokat-Erzincan (Region 9) %99

  3. A Poisson method application to the assessment of the earthquake hazard in the North Anatolian Fault Zone, Turkey

    International Nuclear Information System (INIS)

    Türker, Tuğba; Bayrak, Yusuf

    2016-01-01

    North Anatolian Fault (NAF) is one from the most important strike-slip fault zones in the world and located among regions in the highest seismic activity. The NAFZ observed very large earthquakes from the past to present. The aim of this study; the important parameters of Gutenberg-Richter relationship (a and b values) estimated and this parameters taking into account, earthquakes were examined in the between years 1900-2015 for 10 different seismic source regions in the NAFZ. After that estimated occurrence probabilities and return periods of occurring earthquakes in fault zone in the next years, and is being assessed with Poisson method the earthquake hazard of the NAFZ. The Region 2 were observed the largest earthquakes for the only historical period and hasn’t been observed large earthquake for the instrumental period in this region. Two historical earthquakes (1766, M_S=7.3 and 1897, M_S=7.0) are included for Region 2 (Marmara Region) where a large earthquake is expected in the next years. The 10 different seismic source regions are determined the relationships between the cumulative number-magnitude which estimated a and b parameters with the equation of LogN=a-bM in the Gutenberg-Richter. A homogenous earthquake catalog for M_S magnitude which is equal or larger than 4.0 is used for the time period between 1900 and 2015. The database of catalog used in the study has been created from International Seismological Center (ISC) and Boğazici University Kandilli observation and earthquake research institute (KOERI). The earthquake data were obtained until from 1900 to 1974 from KOERI and ISC until from 1974 to 2015 from KOERI. The probabilities of the earthquake occurring are estimated for the next 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 years in the 10 different seismic source regions. The highest earthquake occur probabilities in 10 different seismic source regions in the next years estimated that the region Tokat-Erzincan (Region 9) %99 with an earthquake

  4. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    Science.gov (United States)

    Dong, Zhi-hui; Yang, Zhi-gang; Chen, Tian-wu; Chu, Zhi-gang; Deng, Wen; Shao, Heng

    2011-01-01

    PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; pchest (45/143 vs. 11/66 patients, RR = 1.9; ptraumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries. PMID:21789386

  5. Simulation analysis of earthquake response of nuclear power plant to the 2003 Miyagi-Oki earthquake

    International Nuclear Information System (INIS)

    Yoshihiro Ogata; Kiyoshi Hirotani; Masayuki Higuchi; Shingo Nakayama

    2005-01-01

    On May 26, 2003 an earthquake of magnitude scale 7.1 (Japan Meteorological Agency) occurred just offshore of Miyagi Prefecture. This was the largest earthquake ever experienced by the nuclear power plant of Tohoku Electric Power Co. in Onagawa (hereafter the Onagawa Nuclear Power Plant) during the 19 years since it had started operations in 1984. In this report, we review the vibration characteristics of the reactor building of the Onagawa Nuclear Power Plant Unit 1 based on acceleration records observed at the building, and give an account of a simulation analysis of the earthquake response carried out to ascertain the appropriateness of design procedure and a seismic safety of the building. (authors)

  6. U.S. Geological Survey (USGS) Earthquake Web Applications

    Science.gov (United States)

    Fee, J.; Martinez, E.

    2015-12-01

    USGS Earthquake web applications provide access to earthquake information from USGS and other Advanced National Seismic System (ANSS) contributors. One of the primary goals of these applications is to provide a consistent experience for accessing both near-real time information as soon as it is available and historic information after it is thoroughly reviewed. Millions of people use these applications every month including people who feel an earthquake, emergency responders looking for the latest information about a recent event, and scientists researching historic earthquakes and their effects. Information from multiple catalogs and contributors is combined by the ANSS Comprehensive Catalog into one composite catalog, identifying the most preferred information from any source for each event. A web service and near-real time feeds provide access to all contributed data, and are used by a number of users and software packages. The Latest Earthquakes application displays summaries of many events, either near-real time feeds or custom searches, and the Event Page application shows detailed information for each event. Because all data is accessed through the web service, it can also be downloaded by users. The applications are maintained as open source projects on github, and use mobile-first and responsive-web-design approaches to work well on both mobile devices and desktop computers. http://earthquake.usgs.gov/earthquakes/map/

  7. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    Science.gov (United States)

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  8. Mexican Earthquakes and Tsunamis Catalog Reviewed

    Science.gov (United States)

    Ramirez-Herrera, M. T.; Castillo-Aja, R.

    2015-12-01

    Today the availability of information on the internet makes online catalogs very easy to access by both scholars and the public in general. The catalog in the "Significant Earthquake Database", managed by the National Center for Environmental Information (NCEI formerly NCDC), NOAA, allows access by deploying tabular and cartographic data related to earthquakes and tsunamis contained in the database. The NCEI catalog is the product of compiling previously existing catalogs, historical sources, newspapers, and scientific articles. Because NCEI catalog has a global coverage the information is not homogeneous. Existence of historical information depends on the presence of people in places where the disaster occurred, and that the permanence of the description is preserved in documents and oral tradition. In the case of instrumental data, their availability depends on the distribution and quality of seismic stations. Therefore, the availability of information for the first half of 20th century can be improved by careful analysis of the available information and by searching and resolving inconsistencies. This study shows the advances we made in upgrading and refining data for the earthquake and tsunami catalog of Mexico since 1500 CE until today, presented in the format of table and map. Data analysis allowed us to identify the following sources of error in the location of the epicenters in existing catalogs: • Incorrect coordinate entry • Place name erroneous or mistaken • Too general data that makes difficult to locate the epicenter, mainly for older earthquakes • Inconsistency of earthquakes and the tsunami occurrence: earthquake's epicenter located too far inland reported as tsunamigenic. The process of completing the catalogs directly depends on the availability of information; as new archives are opened for inspection, there are more opportunities to complete the history of large earthquakes and tsunamis in Mexico. Here, we also present new earthquake and

  9. Long-term Postseismic Deformation Following the 1964 Alaska Earthquake

    Science.gov (United States)

    Freymueller, J. T.; Cohen, S. C.; Hreinsdöttir, S.; Suito, H.

    2003-12-01

    Geodetic data provide a rich data set describing the postseismic deformation that followed the 1964 Alaska earthquake (Mw 9.2). This is particularly true for vertical deformation, since tide gauges and leveling surveys provide extensive spatial coverage. Leveling was carried out over all of the major roads of Alaska in 1964-65, and over the last several years we have resurveyed an extensive data set using GPS. Along Turnagain Arm of Cook Inlet, south of Anchorage, a trench-normal profile was surveyed repeatedly over the first decade after the earthquake, and many of these sites have been surveyed with GPS. After using a geoid model to correct for the difference between geometric and orthometric heights, the leveling+GPS surveys reveal up to 1.25 meters of uplift since 1964. The largest uplifts are concentrated in the northern part of the Kenai Peninsula, SW of Turnagain Arm. In some places, steep gradients in the cumulative uplift measurements point to a very shallow source for the deformation. The average 1964-late 1990s uplift rates were substantially higher than the present-day uplift rates, which rarely exceed 10 mm/yr. Both leveling and tide gauge data document a decay in uplift rate over time as the postseismic signal decreases. However, even today the postseismic deformation represents a substantial portion of the total observe deformation signal, illustrating that very long-lived postseismic deformation is an important element of the subduction zone earthquake cycle for the very largest earthquakes. This is in contrast to much smaller events, such as M~8 earthquakes, for which postseismic deformation in many cases decays within a few years. This suggests that the very largest earthquakes may excite different processes than smaller events.

  10. GPS Analyses of the Sumatra-Andaman Earthquake

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Gudmundsson, Ólafur

    2005-01-01

    The Sumatra, Indonesia, earthquake on 26 December 2004 was one of the most devastating earthquakes in history. With a magnitude of M w = 9.3 (revised based on normal-mode amplitudes by Stein and Okal, http://www.earth.northwestern.edu/people/seth/research/sumatra.html), it is the second largest...... earthquake recorded since 1900. It occurred about 100 km off the west coast of northern Sumatra, where the relatively dense Indo-Australian plate moves beneath the lighter Burma plate, resulting in stress accumulation. The average relative velocity of the two plates is about 6 cm/yr. On 26 December 2004...

  11. Exceptional Ground Accelerations and Velocities Caused by Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, John

    2008-01-17

    This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of this vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.

  12. Antioptimization of earthquake exitation and response

    Directory of Open Access Journals (Sweden)

    G. Zuccaro

    1998-01-01

    Full Text Available The paper presents a novel approach to predict the response of earthquake-excited structures. The earthquake excitation is expanded in terms of series of deterministic functions. The coefficients of the series are represented as a point in N-dimensional space. Each available ccelerogram at a certain site is then represented as a point in the above space, modeling the available fragmentary historical data. The minimum volume ellipsoid, containing all points, is constructed. The ellipsoidal models of uncertainty, pertinent to earthquake excitation, are developed. The maximum response of a structure, subjected to the earthquake excitation, within ellipsoidal modeling of the latter, is determined. This procedure of determining least favorable response was termed in the literature (Elishakoff, 1991 as an antioptimization. It appears that under inherent uncertainty of earthquake excitation, antioptimization analysis is a viable alternative to stochastic approach.

  13. Earthquakes and plague during Byzantine times: can lessons from the past improve epidemic preparedness.

    Science.gov (United States)

    Tsiamis, Costas; Poulakou-Rebelakou, Effie; Marketos, Spyros

    2013-01-01

    Natural disasters have always been followed by a fear of infectious diseases. This raised historical debate about one of the most feared scenarios: the outbreak of bubonic plague caused by Yersinia pestis. One such event was recorded in the Indian state Maharashtra in 1994 after an earthquake. In multidisciplinary historical approach to the evolution of plague, many experts ignore the possibility of natural foci and their activation. This article presents historical records from the Byzantine Empire about outbreaks of the Plague of Justinian occurring months or even up to a year after high-magnitude earthquakes. Historical records of plague outbreaks can be used to document existence of natural foci all over the world. Knowledge of these historical records and the contemporary examples of plague support the assumption that, in terms of organising humanitarian aid, poor monitoring of natural foci could lead to unpredictable epidemiological consequences after high-magnitude earthquakes.

  14. The disastrous Calabro-Messinese 1908 earthquake: the 100-year anniversary

    Czech Academy of Sciences Publication Activity Database

    Kozák, Jan

    2008-01-01

    Roč. 50, č. 3 (2008), s. 170-175 ISSN 1392-110X Institutional research plan: CEZ:AV0Z30120515 Keywords : significant historical earthquakes * 1908 Calabrian earthquake * seismicity of the Messina Strait Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  15. Elastic energy release in great earthquakes and eruptions

    Directory of Open Access Journals (Sweden)

    Agust eGudmundsson

    2014-05-01

    Full Text Available The sizes of earthquakes are measured using well-defined, measurable quantities such as seismic moment and released (transformed elastic energy. No similar measures exist for the sizes of volcanic eruptions, making it difficult to compare the energies released in earthquakes and eruptions. Here I provide a new measure of the elastic energy (the potential mechanical energy associated with magma chamber rupture and contraction (shrinkage during an eruption. For earthquakes and eruptions, elastic energy derives from two sources: (1 the strain energy stored in the volcano/fault zone before rupture, and (2 the external applied load (force, pressure, stress, displacement on the volcano/fault zone. From thermodynamic considerations it follows that the elastic energy released or transformed (dU during an eruption is directly proportional to the excess pressure (pe in the magma chamber at the time of rupture multiplied by the volume decrease (-dVc of the chamber, so that . This formula can be used as a basis for a new eruption magnitude scale, based on elastic energy released, which can be related to the moment-magnitude scale for earthquakes. For very large eruptions (>100 km3, the volume of the feeder-dike is negligible, so that the decrease in chamber volume during an eruption corresponds roughly to the associated volume of erupted materials , so that the elastic energy is . Using a typical excess pressures of 5 MPa, it is shown that the largest known eruptions on Earth, such as the explosive La Garita Caldera eruption (27-28 million years ago and largest single (effusive Colombia River basalt lava flows (15-16 million years ago, both of which have estimated volumes of about 5000 km3, released elastic energy of the order of 10EJ. For comparison, the seismic moment of the largest earthquake ever recorded, the M9.5 1960 Chile earthquake, is estimated at 100 ZJ and the associated elastic energy release at 10EJ.

  16. Estimating economic losses from earthquakes using an empirical approach

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.

    2013-01-01

    We extended the U.S. Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER) empirical fatality estimation methodology proposed by Jaiswal et al. (2009) to rapidly estimate economic losses after significant earthquakes worldwide. The requisite model inputs are shaking intensity estimates made by the ShakeMap system, the spatial distribution of population available from the LandScan database, modern and historic country or sub-country population and Gross Domestic Product (GDP) data, and economic loss data from Munich Re's historical earthquakes catalog. We developed a strategy to approximately scale GDP-based economic exposure for historical and recent earthquakes in order to estimate economic losses. The process consists of using a country-specific multiplicative factor to accommodate the disparity between economic exposure and the annual per capita GDP, and it has proven successful in hindcast-ing past losses. Although loss, population, shaking estimates, and economic data used in the calibration process are uncertain, approximate ranges of losses can be estimated for the primary purpose of gauging the overall scope of the disaster and coordinating response. The proposed methodology is both indirect and approximate and is thus best suited as a rapid loss estimation model for applications like the PAGER system.

  17. Is earthquake rate in south Iceland modified by seasonal loading?

    Science.gov (United States)

    Jonsson, S.; Aoki, Y.; Drouin, V.

    2017-12-01

    Several temporarily varying processes have the potential of modifying the rate of earthquakes in the south Iceland seismic zone, one of the two most active seismic zones in Iceland. These include solid earth tides, seasonal meteorological effects and influence from passing weather systems, and variations in snow and glacier loads. In this study we investigate the influence these processes may have on crustal stresses and stressing rates in the seismic zone and assess whether they appear to be influencing the earthquake rate. While historical earthquakes in the south Iceland have preferentially occurred in early summer, this tendency is less clear for small earthquakes. The local earthquake catalogue (going back to 1991, magnitude of completeness M6+ earthquakes, which occurred in June 2000 and May 2008. Standard Reasenberg earthquake declustering or more involved model independent stochastic declustering algorithms are not capable of fully eliminating the aftershocks from the catalogue. We therefore inspected the catalogue for the time period before 2000 and it shows limited seasonal tendency in earthquake occurrence. Our preliminary results show no clear correlation between earthquake rates and short-term stressing variations induced from solid earth tides or passing storms. Seasonal meteorological effects also appear to be too small to influence the earthquake activity. Snow and glacier load variations induce significant vertical motions in the area with peak loading occurring in Spring (April-May) and maximum unloading in Fall (Sept.-Oct.). Early summer occurrence of historical earthquakes therefore correlates with early unloading rather than with the peak unloading or unloading rate, which appears to indicate limited influence of this seasonal process on the earthquake activity.

  18. 2017 Valparaíso earthquake sequence and the megathrust patchwork of central Chile

    NARCIS (Netherlands)

    Nealy, Jennifer L.; Herman, Matthew W.; Moore, Ginevra L.; Hayes, Gavin P.; Benz, Harley M.; Bergman, Eric A.; Barrientos, Sergio E.

    2017-01-01

    In April 2017, a sequence of earthquakes offshore Valparaíso, Chile, raised concerns of a potential megathrust earthquake in the near future. The largest event in the 2017 sequence was a M6.9 on 24 April, seemingly colocated with the last great-sized earthquake in the region—a M8.0 in March 1985.

  19. Plan for 3-D full-scale earthquake testing facility

    International Nuclear Information System (INIS)

    Ohtani, K.

    2001-01-01

    Based on the lessons learnt from the Great Hanshin-Awaji Earthquake, National Research Institute for Earth Science and Disaster Prevention plan to construct the 3-D Full-Scale Earthquake Testing Facility. This will be the world's largest and strongest shaking table facility. This paper describes the outline of the project for this facility. This facility will be completed in early 2005. (author)

  20. Parallelization of the Coupled Earthquake Model

    Science.gov (United States)

    Block, Gary; Li, P. Peggy; Song, Yuhe T.

    2007-01-01

    This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.

  1. Digital Recording and Non-Destructive Techniques for the Understanding of Structural Performance for Rehabilitating Historic Structures at the Kathmandu Valley after Gorkha Earthquake 2015

    Science.gov (United States)

    Shrestha, S.; Reina Ortiz, M.; Gutland, M.; Napolitano, R.; Morris, I. M.; Santana Quintero, M.; Erochko, J.; Kawan, S.; Shrestha, R. G.; Awal, P.; Suwal, S.; Duwal, S.; Maharjan, D. K.

    2017-08-01

    On 25 April 2015, the Gorkha earthquake of magnitude 7.8, severely damaged the cultural heritage sites of Nepal. In particular, the seven monument zones of the Kathmandu Valley World Heritage Site suffered extensive damage. Out of 195 surveyed monuments, 38 have completely collapsed and 157 partially damaged (DoA, 2015). In particular, the world historic city of Bhaktapur was heavily affected by the earthquake. There is, in general, a lack of knowledge regarding the traditional construction technology used in many of the most important temple monuments in Bhaktapur. To address this limitation and to assist in reconstruction and rehabilitation of the area, this study documents the existing condition of different historic structures in the Kathmandu Valley. In particular, the Nyatapola Temple is studied in detail. To record and document the condition of this temple, a combination of laser scanning and terrestrial and aerial photogrammetry are used. By also including evaluation of the temple and its supporting plinth structure using non-destructive evaluation techniques like geo-radar and micro-tremor dynamic analysis, this study will form the basis of a structural analysis study to assess the anticipated future seismic performance of the Nyatapola Temple.

  2. Identification of the seismogenic source of the 1875 Cucuta earthquake on the basis of a combination of neotectonic, paleoseismologic and historic seismicity studies

    Science.gov (United States)

    Rodríguez, Luz; Diederix, Hans; Torres, Eliana; Audemard, Franck; Hernández, Catalina; Singer, André; Bohórquez, Olga; Yepez, Santiago

    2018-03-01

    An interesting variety of field evidence that collectively cover the three branches of Earthquake Geology: Neotectonics, Paleoseismology and Historical seismicity, has been collected in the border area between Venezuela and Colombia, near the town of San José de Cúcuta, as part of a study aimed at establishing the seismic source of the great Cucuta Earthquake, that occurred on May 18th, 1875, and that caused heavy losses of life and destruction on both sides of the border, between the Department of Norte de Santander in Colombia and Táchira state in Venezuela. This region is affected by the activity of several cross-border fault systems that converge in the zone of the so-called Pamplona Indenter. Among these seismic sources, the potential candidates of this destructive seismic event in 1875 are those related to the Boconó Fault System, of the northwestern foothills of the Mérida Andes and in particular it's most northwestern expression, the Aguas Calientes Fault System, as suggested by previous research carried out by FUNVISIS for the Venezuelan oil industry in the late 80s. In order to confirm whether this was the responsible system for the earthquake or not, the following studies were carried out: 1) In Neotectonics, a detailed binational surface mapping of the active faults of this system was carried out. This system consists of three branches referred to in this paper as: the North, Central and South branch respectively; 2) In Paleoseismology, two trenches were excavated. The first trench was excavated across the South branch and the second one across the North branch, which confirmed fault activity during the Holocene epoch; 3) In historical seismicity the direct coseismic surface effects that occurred in the epicentral area of the earthquake were assessed. All evidence collected and integrated in these three lines of research, made it possible to conclude that the Central branch of the Aguas Calientes fault system is the most likely candidate to have

  3. Earthquake related dynamic groundwater pressure changes observed at the Kamaishi Mine

    International Nuclear Information System (INIS)

    Sasaki, Shunji; Yasuike, Shinji; Komada, Hiroya; Kobayashi, Yoshimasa; Kawamura, Makoto; Aoki, Kazuhiro

    1999-01-01

    From 342 seismic records observed at the Kamaishi Mine form 1990 to 1998, a total of 92 data whose acceleration is greater than 1 gal or ground water pressure is greater than 1 kPa were selected and dynamic ground water pressure changes associated with earthquakes were studied. The results obtained are as follows: (1) A total of 27 earthquakes accompanied by static ground water pressure changes were observed. Earthquake-related static ground water pressure changes are smaller than 1/10 of the annual range of ground water pressure changes. There is also a tendency that the ground water pressure changes recovers to its original trend in several weeks after earthquakes. (2) Dynamic ground water pressure changes associated with earthquakes occur when P-waves arrive. However, the largest dynamic ground water pressure changes occur on S-wave part arrivals where the amplitude of seismic wave is the largest. A positive correlation is recognized between the maximum value of velocity wave form and that of dynamic ground water pressure changes. (3) The characteristic of dynamic change in ground water pressure due to earthquakes can be explained qualitatively by mechanism in which the P-wave converted from an incident SV wave propagates along the borehole. (author)

  4. Megathrust earthquakes in Central Chile: What is next after the Maule 2010 earthquake?

    Science.gov (United States)

    Madariaga, R.

    2013-05-01

    The 27 February 2010 Maule earthquake occurred in a well identified gap in the Chilean subduction zone. The event has now been studied in detail using both far-field, near field seismic and geodetic data, we will review this information gathered so far. The event broke a region that was much longer along strike than the gap left over from the 1835 Concepcion earthquake, sometimes called the Darwin earthquake because he was in the area when the earthquake occurred and made many observations. Recent studies of contemporary documents by Udias et al indicate that the area broken by the Maule earthquake in 2010 had previously broken by a similar earthquake in 1751, but several events in the magnitude 8 range occurred in the area principally in 1835 already mentioned and, more recently on 1 December 1928 to the North and on 21 May 1960 (1 1/2 days before the big Chilean earthquake of 1960). Currently the area of the 2010 earthquake and the region immediately to the North is undergoing a very large increase in seismicity with numerous clusters of seismicity that move along the plate interface. Examination of the seismicity of Chile of the 18th and 19th century show that the region immediately to the North of the 2010 earthquake broke in a very large megathrust event in July 1730. this is the largest known earthquake in central Chile. The region where this event occurred has broken in many occasions with M 8 range earthquakes in 1822, 1880, 1906, 1971 and 1985. Is it preparing for a new very large megathrust event? The 1906 earthquake of Mw 8.3 filled the central part of the gap but it has broken again on several occasions in 1971, 1973 and 1985. The main question is whether the 1906 earthquake relieved enough stresses from the 1730 rupture zone. Geodetic data shows that most of the region that broke in 1730 is currently almost fully locked from the northern end of the Maule earthquake at 34.5°S to 30°S, near the southern end of the of the Mw 8.5 Atacama earthquake of 11

  5. A 'new generation' earthquake catalogue

    Directory of Open Access Journals (Sweden)

    E. Boschi

    2000-06-01

    Full Text Available In 1995, we published the first release of the Catalogo dei Forti Terremoti in Italia, 461 a.C. - 1980, in Italian (Boschi et al., 1995. Two years later this was followed by a second release, again in Italian, that included more earthquakes, more accurate research and a longer time span (461 B.C. to 1990 (Boschi et al., 1997. Aware that the record of Italian historical seismicity is probably the most extensive of the whole world, and hence that our catalogue could be of interest for a wider interna-tional readership, Italian was clearly not the appropriate language to share this experience with colleagues from foreign countries. Three years after publication of the second release therefore, and after much additional research and fine tuning of methodologies and algorithms, I am proud to introduce this third release in English. All the tools and accessories have been translated along with the texts describing the development of the underlying research strategies and current contents. The English title is Catalogue of Strong Italian Earthquakes, 461 B.C. to 1997. This Preface briefly describes the scientific context within which the Catalogue of Strong Italian Earthquakes was conceived and progressively developed. The catalogue is perhaps the most impor-tant outcome of a well-established joint project between the Istituto Nazionale di Geofisica, the leading Italian institute for basic and applied research in seismology and solid earth geophysics, and SGA (Storia Geofisica Ambiente, a private firm specialising in the historical investigation and systematisation of natural phenomena. In her contribution "Method of investigation, typology and taxonomy of the basic data: navigating between seismic effects and historical contexts", Emanuela Guidoboni outlines the general framework of modern historical seismology, its complex relation with instrumental seismology on the one hand and historical research on the other. This presentation also highlights

  6. The Alaska earthquake, March 27, 1964: effects on hydrologic regimen

    Science.gov (United States)

    Waller, Roger M.; Coble, R.W.; Post, Austin; McGarr, Arthur; Vorhis, Robert C.

    1966-01-01

    This is the fourth in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S. since 1700. Professional Paper 544, in 5 parts, describes the effects on hydrologic regimen.

  7. OMG Earthquake! Can Twitter improve earthquake response?

    Science.gov (United States)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  8. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed

  9. Critical behavior in earthquake energy dissipation

    Science.gov (United States)

    Wanliss, James; Muñoz, Víctor; Pastén, Denisse; Toledo, Benjamín; Valdivia, Juan Alejandro

    2017-09-01

    We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially "scale-free", displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.

  10. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.; Amos, C. B.; Zielke, Olaf; Jayko, A. S.; Burgmann, R.

    2016-01-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  11. Surface slip during large Owens Valley earthquakes

    Science.gov (United States)

    Haddon, E.K.; Amos, C.B.; Zielke, O.; Jayko, Angela S.; Burgmann, R.

    2016-01-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from ∼1.0 to 6.0 m and average 3.3 ± 1.1 m (2σ). Vertical offsets are predominantly east-down between ∼0.1 and 2.4 m, with a mean of 0.8 ± 0.5 m. The average lateral-to-vertical ratio compiled at specific sites is ∼6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7–11 m and net average of 4.4 ± 1.5 m, corresponding to a geologic Mw ∼7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.1 ± 2.0 m, 12.8 ± 1.5 m, and 16.6 ± 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between ∼0.6 and 1.6 mm/yr (1σ) over the late Quaternary.

  12. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.

    2016-01-10

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  13. Analysis of earthquake clustering and source spectra in the Salton Sea Geothermal Field

    Science.gov (United States)

    Cheng, Y.; Chen, X.

    2015-12-01

    The Salton Sea Geothermal field is located within the tectonic step-over between San Andreas Fault and Imperial Fault. Since the 1980s, geothermal energy exploration has resulted with step-like increase of microearthquake activities, which mirror the expansion of geothermal field. Distinguishing naturally occurred and induced seismicity, and their corresponding characteristics (e.g., energy release) is important for hazard assessment. Between 2008 and 2014, seismic data recorded by a local borehole array were provided public access from CalEnergy through SCEC data center; and the high quality local recording of over 7000 microearthquakes provides unique opportunity to sort out characteristics of induced versus natural activities. We obtain high-resolution earthquake location using improved S-wave picks, waveform cross-correlation and a new 3D velocity model. We then develop method to identify spatial-temporally isolated earthquake clusters. These clusters are classified into aftershock-type, swarm-type, and mixed-type (aftershock-like, with low skew, low magnitude and shorter duration), based on the relative timing of largest earthquakes and moment-release. The mixed-type clusters are mostly located at 3 - 4 km depth near injection well; while aftershock-type clusters and swarm-type clusters also occur further from injection well. By counting number of aftershocks within 1day following mainshock in each cluster, we find that the mixed-type clusters have much higher aftershock productivity compared with other types and historic M4 earthquakes. We analyze detailed spatial variation of 'b-value'. We find that the mixed-type clusters are mostly located within high b-value patches, while large (M>3) earthquakes and other types of clusters are located within low b-value patches. We are currently processing P and S-wave spectra to analyze the spatial-temporal correlation of earthquake stress parameter and seismicity characteristics. Preliminary results suggest that the

  14. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  15. The Mw6.0 24 August 2014 South Napa earthquake

    Science.gov (United States)

    Brocher, Thomas M.; Baltay, Annemarie S.; Hardebeck, Jeanne L.; Pollitz, Fred F.; Murray, Jessica R.; Llenos, Andrea L.; Schwartz, David P.; Blair, James Luke; Ponti, Daniel J.; Lienkaemper, James J.; Langenheim, V.E.; Dawson, Timothy E.; Hudnut, Kenneth W.; Shelly, David R.; Dreger, Douglas S.; Boatwright, John; Aagaard, Brad T.; Wald, David J.; Allen, Richard M.; Barnhart, William D.; Knudsen, Keith L.; Brooks, Benjamin A.; Scharer, Katherine M.

    2015-01-01

    The Mw 6.0 South Napa earthquake, which occurred at 10:20 UTC 24 August 2014 was the largest earthquake to strike the greater San Francisco Bay area since the Mw 6.9 1989 Loma Prieta earthquake. The rupture from this right‐lateral earthquake propagated mostly unilaterally to the north and up‐dip, directing the strongest shaking toward the city of Napa, where peak ground accelerations (PGAs) between 45%g and 61%g were recorded and modified Mercalli intensities (MMIs) of VII–VIII were reported. Tectonic surface rupture with dextral slip of up to 46 cm was observed on a 12.5 km long segment, some of which was along a previously mapped strand of the West Napa fault system, although the rupture extended to the north of the mapped Quaternary strand. Modeling of seismic and geodetic data suggests an average coseismic slip of 50 cm, with a maximum slip of about 1 m at depths of 10–11 km. We observed up to 35 cm of afterslip along the surface trace in the week following the mainshock, primarily along the southern half of the surface rupture that experienced relatively little coseismic offset. Relocation of the sparse aftershock sequence suggests en echelon southwest‐ and northeast‐dipping fault planes, reflective of the complex fault geometry in this region. The Napa basin and historic and late Holocene alluvial flood deposits in downtown Napa amplified the ground motions there. Few ground failures were mapped, reflecting the dry season (as well as a persistent drought that had lowered the groundwater table) and the short duration of strong shaking in the epicentral area.

  16. State-of-the-art of the historical seismology in Colombia

    Directory of Open Access Journals (Sweden)

    E. J. Salcedo Hurtado

    2004-06-01

    Full Text Available In Colombia are available a discreet number of historical seismology investigations, dating back 50 years. This paper reviews basic information about earthquakes studies in Colombia, such as primary sources, compilation of descriptive catalogues and parametric catalogues. Father Jesús Emilio Ramírez made the main systematic study before 1975. During the last 20 years, great earthquakes hit Colombia and, as consequence, historical seismology investigation was developed in the frame of seismic hazard projects.

  17. Induced seismicity provides insight into why earthquake ruptures stop

    KAUST Repository

    Galis, Martin

    2017-12-21

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures.

  18. Prediction and evaluation of nonlinear site response with potentially liquefiable layers in the area of Nafplion (Peloponnesus, Greece for a repeat of historical earthquakes

    Directory of Open Access Journals (Sweden)

    V. K. Karastathis

    2010-11-01

    Full Text Available We examine the possible non-linear behaviour of potentially liquefiable layers at selected sites located within the expansion area of the town of Nafplion, East Peloponnese, Greece. Input motion is computed for three scenario earthquakes, selected on the basis of historical seismicity data, using a stochastic strong ground motion simulation technique, which takes into account the finite dimensions of the earthquake sources. Site-specific ground acceleration synthetics and soil profiles are then used to evaluate the liquefaction potential at the sites of interest. The activation scenario of the Iria fault, which is the closest one to Nafplion (M=6.4, is found to be the most hazardous in terms of liquefaction initiation. In this scenario almost all the examined sites exhibit liquefaction features at depths of 6–12 m. For scenario earthquakes at two more distant seismic sources (Epidaurus fault – M6.3; Xylokastro fault – M6.7 strong ground motion amplification phenomena by the shallow soft soil layer are expected to be observed.

  19. Near-real-time and scenario earthquake loss estimates for Mexico

    Science.gov (United States)

    Wyss, M.; Zuñiga, R.

    2017-12-01

    The large earthquakes of 8 September 2017, M8.1, and 19 September 2017, M7.1 have focused attention on the dangers of Mexican seismicity. The near-real-time alerts by QLARM estimated 10 to 300 fatalities and 0 to 200 fatalities, respectively. At the time of this submission the reported death tolls are 96 and 226, respectively. These alerts were issued within 96 and 57 minutes of the occurrence times. For the M8.1 earthquake the losses due to a line model could be calculated. The line with length L=110 km extended from the initial epicenter to the NE, where the USGS had reported aftershocks. On September 19, no aftershocks were available in near-real-time, so a point source had to be used for the quick calculation of likely casualties. In both cases, the casualties were at least an order of magnitude smaller than what they could have been because on 8 September the source was relatively far offshore and on 19 September the hypocenter was relatively deep. The largest historic earthquake in Mexico occurred on 28 March 1787 and likely had a rupture length of 450 km and M8.6. Based on this event, and after verifying our tool for Mexico, we estimated the order of magnitude of a disaster, given the current population, in a maximum credible earthquake along the Pacific coast. In the countryside along the coast we expect approximately 27,000 fatalities and 480,000 injured. In the special case of Mexico City the casualties in a worst possible earthquake along the Pacific plate boundary would likely be counted as five digit numbers. The large agglomerate of the capital with its lake bed soil attracts most attention. Nevertheless, one should pay attention to the fact that the poor, rural segment of society, living in buildings of weak resistance to shaking, are likely to sustain a mortality rate about 20% larger than the population in cities on average soil.

  20. The 1448 earthquake in Catalonia. Some effects and local reactions

    Directory of Open Access Journals (Sweden)

    R. Salicrù i Lluch

    1995-06-01

    Full Text Available The May 1448 earthquake. the last destructive one that took place in Catalonia in the Middle Ages, was known chiefly from several chronistic and narrative medieval sources. To these sources I add new previously unknown data proceeding Eroin documentary archival sources in Barcelona, and other data that up to now have been wrongly considered as a consequence of the weak quake recorded in September 1450. They allow us to locate the epicentre in the Vall&s Oriental, around Llinars, to deny the existence of two almost simultaneous earthquakes, and to extend the range of the earthquake damage. to pinpoint them better and to suppose that the effects of the 1448 earthquake were more important than we had previously thought. All this information leads to several reflections on compulsory critical analysis of historical seismic documentary sources in order for them to be useful to historical seismicity. Finally. by the opposition of the three lands of documentary sources that refer to the damage caused by the earthquake in the township of Mataro. I show how natural catastrophes could be manipulated, and the skill of a society in exploiting them to deal with an adverse situation.

  1. The April 16th 2016 Pedernales Earthquake and Instituto Geofisico efforts for improving seismic monitoring in Ecuador

    Science.gov (United States)

    Ruiz, M. C.; Alvarado, A. P.; Hernandez, S.; Singaucho, J. C.; Gabriela, P.; Landeureau, A.; Perrault, M.; Acero, W.; Viracucha, C.; Plain, M.; Yepes, H. A.; Palacios, P.; Aguilar, J.; Mothes, P. A.; Segovia, M.; Pacheco, D. A.; Vaca, S.

    2016-12-01

    On April 16th, 2016, Ecuador's coastal provinces were struck by a devastating earthquake with 7.8 Mw magnitude. This event caused the earthquake-related largest dead toll in Ecuador (663 fatalities) since 1987 inland event. It provoked also a widespread destruction of houses, hotels, hospitals, affecting economic activities. Damaged was very worthy in the city of Pedernales, one of the nearest localities to the epicenter. Rupture area extended about a 100 km from the southern limit marked by the aftershock area of the 1998, 7.1 Mw earthquake to its northern limit controlled by the Punta Galera-Mompiche seismic zone, which is one of the several elongated swarms oriented perpendicular to the trench that occurred since 2007. Historical accounts of the Ecuador Colombia subduction zone have few mentions of felt earthquakes in the XVIII and XIX century likely related to poor communication and urban settlements in this area. A cycle of noticeable earthquakes began in 1896, including the 1906 8.8 Mw event and three earthquakes with magnitudes larger than 7.7 in the period 1942-1979, that preceded the 2016 earthquake. The Instituto Geofiísico of the Escuela Politécnica Nacional (IGEPN) has been monitoring the coastal area through the National Seismic Network (RENSIG) since 30 years back and recently enhanced through SENASCYT and SENPLADES supported projects. International collaboration from Japanese JICA and French IRD also contributed to expand the network and implement research projects in the area. Nowadays, the RENSIG has 135 seismic stations including 105 broadband and 5 strong motion velocimeters. Processing performed by Seiscomp3 software allows an automatic distribution of seismic parameters. A joint cooperation between IGEPN, the Navy Oceanographic Institute and the National Department for Risk Management is in charge of tsunami monitoring.

  2. <> earthquakes: a growing contribution to the Catalogue of Strong Italian Earthquakes

    Directory of Open Access Journals (Sweden)

    E. Guidoboni

    2000-06-01

    Full Text Available The particular structure of the research into historical seismology found in this catalogue has allowed a lot of information about unknown seismic events to be traced. This new contribution to seismologic knowledge mainly consists in: i the retrieval and organisation within a coherent framework of documentary evidence of earthquakes that took place between the Middle Ages and the sixteenth century; ii the improved knowledge of seismic events, even destructive events, which in the past had been "obscured" by large earthquakes; iii the identification of earthquakes in "silent" seismic areas. The complex elements to be taken into account when dealing with unknown seismic events have been outlined; much "new" information often falls into one of the following categories: simple chronological errors relative to other well-known events; descriptions of other natural phenomena, though defined in texts as "earthquakes" (landslides, hurricanes, tornadoes, etc.; unknown tremors belonging to known seismic periods; tremors that may be connected with events which have been catalogued under incorrect dates and with very approximate estimates of location and intensity. This proves that this was not a real seismic "silence" but a research vacuum.

  3. Maximum credible earthquake (MCE) magnitude of structures affecting the Ujung Lemahabang site

    International Nuclear Information System (INIS)

    Soerjodibroto, M.

    1997-01-01

    This report analyse the geological structures in/around Muria Peninsula that might originating potential earthquake hazard toward the selected site for NPP, Ujung Lemahabang (ULA). Analysis was focused on the Lasem fault and AF-1/AF-4 offshore faults that are considered as the determinant structures affecting the seismicity of ULA (Nira, 1979, Newjec, 1994). Methods for estimating the MCE of the structures include maximum historical earthquake, and relationship between the length of the fault and the magnitude of earthquake originating from the known structure (Tocher, Iida, Matsuda, Wells and Coopersmith). The MCE magnitude estimating by these method for earthquake originating along the Lasem and AF-1/AF-4 faults vary from 2,1M to 7,0M. Comparison between the result of historical data and fault-magnitude relationship, however, suggest a MCE magnitude of Ms=7,0M for both fault zones. (author)

  4. Maximum credible earthquake (MCE) magnitude of structures affecting the Ujung Lemahabang site

    Energy Technology Data Exchange (ETDEWEB)

    Soerjodibroto, M [National Atomic Energy Agency, Jakarta (Indonesia)

    1997-03-01

    This report analyse the geological structures in/around Muria Peninsula that might originating potential earthquake hazard toward the selected site for NPP, Ujung Lemahabang (ULA). Analysis was focused on the Lasem fault and AF-1/AF-4 offshore faults that are considered as the determinant structures affecting the seismicity of ULA (Nira, 1979, Newjec, 1994). Methods for estimating the MCE of the structures include maximum historical earthquake, and relationship between the length of the fault and the magnitude of earthquake originating from the known structure (Tocher, Iida, Matsuda, Wells and Coopersmith). The MCE magnitude estimating by these method for earthquake originating along the Lasem and AF-1/AF-4 faults vary from 2,1M to 7,0M. Comparison between the result of historical data and fault-magnitude relationship, however, suggest a MCE magnitude of Ms=7,0M for both fault zones. (author)

  5. Lessons learned from the 1994 Northridge Earthquake

    International Nuclear Information System (INIS)

    Eli, M.W.; Sommer, S.C.

    1995-01-01

    Southern California has a history of major earthquakes and also has one of the largest metropolitan areas in the United States. The 1994 Northridge Earthquake challenged the industrial facilities and lifetime infrastructure in the northern Los Angeles (LA) area. Lawrence Livermore National Laboratory (LLNL) sent a team of engineers to conduct an earthquake damage investigation in the Northridge area, on a project funded jointly by the United States Nuclear Regulatory Commission (USNRC) and the United States Department of Energy (USDOE). Many of the structures, systems, and components (SSCs) and lifelines that suffered damage are similar to those found in nuclear power plants and in USDOE facilities. Lessons learned from these experiences can have some applicability at commercial nuclear power plants

  6. Tsunami evacuation plans for future megathrust earthquakes in Padang, Indonesia, considering stochastic earthquake scenarios

    Directory of Open Access Journals (Sweden)

    A. Muhammad

    2017-12-01

    Full Text Available This study develops tsunami evacuation plans in Padang, Indonesia, using a stochastic tsunami simulation method. The stochastic results are based on multiple earthquake scenarios for different magnitudes (Mw 8.5, 8.75, and 9.0 that reflect asperity characteristics of the 1797 historical event in the same region. The generation of the earthquake scenarios involves probabilistic models of earthquake source parameters and stochastic synthesis of earthquake slip distributions. In total, 300 source models are generated to produce comprehensive tsunami evacuation plans in Padang. The tsunami hazard assessment results show that Padang may face significant tsunamis causing the maximum tsunami inundation height and depth of 15 and 10 m, respectively. A comprehensive tsunami evacuation plan – including horizontal evacuation area maps, assessment of temporary shelters considering the impact due to ground shaking and tsunami, and integrated horizontal–vertical evacuation time maps – has been developed based on the stochastic tsunami simulation results. The developed evacuation plans highlight that comprehensive mitigation policies can be produced from the stochastic tsunami simulation for future tsunamigenic events.

  7. Overestimation of the earthquake hazard along the Himalaya: constraints in bracketing of medieval earthquakes from paleoseismic studies

    Science.gov (United States)

    Arora, Shreya; Malik, Javed N.

    2017-12-01

    The Himalaya is one of the most seismically active regions of the world. The occurrence of several large magnitude earthquakes viz. 1905 Kangra earthquake (Mw 7.8), 1934 Bihar-Nepal earthquake (Mw 8.2), 1950 Assam earthquake (Mw 8.4), 2005 Kashmir (Mw 7.6), and 2015 Gorkha (Mw 7.8) are the testimony to ongoing tectonic activity. In the last few decades, tremendous efforts have been made along the Himalayan arc to understand the patterns of earthquake occurrences, size, extent, and return periods. Some of the large magnitude earthquakes produced surface rupture, while some remained blind. Furthermore, due to the incompleteness of the earthquake catalogue, a very few events can be correlated with medieval earthquakes. Based on the existing paleoseismic data certainly, there exists a complexity to precisely determine the extent of surface rupture of these earthquakes and also for those events, which occurred during historic times. In this paper, we have compiled the paleo-seismological data and recalibrated the radiocarbon ages from the trenches excavated by previous workers along the entire Himalaya and compared earthquake scenario with the past. Our studies suggest that there were multiple earthquake events with overlapping surface ruptures in small patches with an average rupture length of 300 km limiting Mw 7.8-8.0 for the Himalayan arc, rather than two or three giant earthquakes rupturing the whole front. It has been identified that the large magnitude Himalayan earthquakes, such as 1905 Kangra, 1934 Bihar-Nepal, and 1950 Assam, that have occurred within a time frame of 45 years. Now, if these events are dated, there is a high possibility that within the range of ±50 years, they may be considered as the remnant of one giant earthquake rupturing the entire Himalayan arc. Therefore, leading to an overestimation of seismic hazard scenario in Himalaya.

  8. Last millennium gravity reworking processes in the western Gulf of Corinth: correlations with historical seismicity and indication of earthquake clusters

    Science.gov (United States)

    Beckers, Arnaud; Beck, Christian; Hubert-Ferrari, Aurélia; Papatheodorou, George; Reyss, Jean-Louis

    2016-04-01

    The western tip of the Corinth Rift is considered as the most active within this major extensional structure, as evidenced by: seismicity, GPS kinematics, and INSAR data (Bernard et al., 2006). Within the frame of a multidisciplinary project dedicated to seismic hazards assessment for this region, two offshore surveys - high resolution seismic reflection and gravity coring - were conducted in this area. They were dedicated to the Late Quaternary sedimentary fill as the latter was expected to record both long term deformation (Beckers et al., 2015) and sedimentary "events" related to major earthquakes and/or tsunamis. Seismic reflection imaging displays the time and geographical distributions of large submarine landslides (MTDs) during the last 100 kyr. Based on a morpho-sedimentary map and the active fault pattern, up to 2 m-long cores were selected to detect and characterize the possible impact of historical events. The chronological control is based on AMS 14C dating and four detailed 210Pb and 137Cs profiles. Sedimentation (components, sources, transport and settling mechanisms) was analysed through textural, chemical, and mineralogical parameters. Turbidites could be clearly separated from the hemipelagic deposits. Our attempt to correlate identified sedimentary "events" with historical data greatly benefited from a recently elaborated catalog (Albini et al., 2014) with precisely re-located epicentral areas. Cable breaks were also taken into account. Attenuation models (Papazachos & Papaioannou's, 1997) were used to discuss paleo-intensities vs. distance form epicentral areas. From the whole set of cores, the following results may be underlined: - the correlations between cores from the different sites are not complete, including for a few neighbouring sites belonging to the same morpho-sedimentary unit; we relate these discrepancies to the complex bottom morphology and/or to bottom currents responsible for local erosion; - for several well

  9. Earthquake Strong Ground Motion Scenario at the 2008 Olympic Games Sites, Beijing, China

    Science.gov (United States)

    Liu, L.; Rohrbach, E. A.; Chen, Q.; Chen, Y.

    2006-12-01

    Historic earthquake record indicates mediate to strong earthquakes have been frequently hit greater Beijing metropolitan area where is going to host the 2008 summer Olympic Games. For the readiness preparation of emergency response to the earthquake shaking for a mega event in a mega city like Beijing in summer 2008, this paper tries to construct the strong ground motion scenario at a number of gymnasium sites for the 2008 Olympic Games. During the last 500 years (the Ming and Qing Dynasties) in which the historic earthquake record are thorough and complete, there are at least 12 earthquake events with the maximum intensity of VI or greater occurred within 100 km radius centered at the Tiananmen Square, the center of Beijing City. Numerical simulation of the seismic wave propagation and surface strong ground motion is carried out by the pseudospectral time domain methods with viscoelastic material properties. To improve the modeling efficiency and accuracy, a multi-scale approach is adapted: the seismic wave propagation originated from an earthquake rupture source is first simulated by a model with larger physical domain with coarser grids. Then the wavefield at a given plane is taken as the source input for the small-scale, fine grid model for the strong ground motion study at the sites. The earthquake source rupture scenario is based on two particular historic earthquake events: One is the Great 1679 Sanhe-Pinggu Earthquake (M~8, Maximum Intensity XI at the epicenter and Intensity VIII in city center)) whose epicenter is about 60 km ENE of the city center. The other one is the 1730 Haidian Earthquake (M~6, Maximum Intensity IX at the epicenter and Intensity VIII in city center) with the epicentral distance less than 20 km away from the city center in the NW Haidian District. The exist of the thick Tertiary-Quaternary sediments (maximum thickness ~ 2 km) in Beijing area plays a critical role on estimating the surface ground motion at the Olympic Games sites, which

  10. Ionospheric GPS TEC Anomalies and M >= 5.9 Earthquakes in Indonesia during 1993 - 2002

    Directory of Open Access Journals (Sweden)

    Sarmoko Saroso

    2008-01-01

    Full Text Available Indonesia is one of the most seismically active regions in the world, containing numerous active volcanoes and subject to frequent earthquakes with epicenters distributed along the same regions as volcanoes. In this paper, a case study is carried out to investigate pre-earthquake ionospheric anomalies in total electron content (TEC during the Sulawesi earthquakes of 1993 - 2002, and the Sumatra-Andaman earthquake of 26 December 2004, the largest earthquake in the world since 1964. It is found that the ionospheric TECs remarkably decrease within 2 - 7 days before the earthquakes, and for the very powerful Sumatra-Andaman earthquake, the anomalies extend up to about 1600 km from the epicenter.

  11. Links Between Earthquake Characteristics and Subducting Plate Heterogeneity in the 2016 Pedernales Ecuador Earthquake Rupture Zone

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2016-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  12. An Earthquake Information Service with Free and Open Source Tools

    Science.gov (United States)

    Schroeder, M.; Stender, V.; Jüngling, S.

    2015-12-01

    At the GFZ German Research Centre for Geosciences in Potsdam, the working group Earthquakes and Volcano Physics examines the spatiotemporal behavior of earthquakes. In this context also the hazards of volcanic eruptions and tsunamis are explored. The aim is to collect related information after the occurrence of such extreme event and make them available for science and partly to the public as quickly as possible. However, the overall objective of this research is to reduce the geological risks that emanate from such natural hazards. In order to meet the stated objectives and to get a quick overview about the seismicity of a particular region and to compare the situation to historical events, a comprehensive visualization was desired. Based on the web-accessible data from the famous GFZ GEOFON network a user-friendly web mapping application was realized. Further, this web service integrates historical and current earthquake information from the USGS earthquake database, and more historical events from various other catalogues like Pacheco, International Seismological Centre (ISC) and more. This compilation of sources is unique in Earth sciences. Additionally, information about historical and current occurrences of volcanic eruptions and tsunamis are also retrievable. Another special feature in the application is the containment of times via a time shifting tool. Users can interactively vary the visualization by moving the time slider. Furthermore, the application was realized by using the newest JavaScript libraries which enables the application to run in all sizes of displays and devices. Our contribution will present the making of, the architecture behind, and few examples of the look and feel of this application.

  13. Earthquake Loss Scenarios: Warnings about the Extent of Disasters

    Science.gov (United States)

    Wyss, M.; Tolis, S.; Rosset, P.

    2016-12-01

    It is imperative that losses expected due to future earthquakes be estimated. Officials and the public need to be aware of what disaster is likely in store for them in order to reduce the fatalities and efficiently help the injured. Scenarios for earthquake parameters can be constructed to a reasonable accuracy in highly active earthquake belts, based on knowledge of seismotectonics and history. Because of the inherent uncertainties of loss estimates however, it would be desirable that more than one group calculate an estimate for the same area. By discussing these estimates, one may find a consensus of the range of the potential disasters and persuade officials and residents of the reality of the earthquake threat. To model a scenario and estimate earthquake losses requires data sets that are sufficiently accurate of the number of people present, the built environment, and if possible the transmission of seismic waves. As examples we use loss estimates for possible repeats of historic earthquakes in Greece that occurred between -464 and 700. We model future large Greek earthquakes as having M6.8 and rupture lengths of 60 km. In four locations where historic earthquakes with serious losses have occurred, we estimate that 1,000 to 1,500 people might perish, with an additional factor of four people injured. Defining the area of influence of these earthquakes as that with shaking intensities larger and equal to V, we estimate that 1.0 to 2.2 million people in about 2,000 settlements may be affected. We calibrate the QLARM tool for calculating intensities and losses in Greece, using the M6, 1999 Athens earthquake and matching the isoseismal information for six earthquakes, which occurred in Greece during the last 140 years. Comparing fatality numbers that would occur theoretically today with the numbers reported, and correcting for the increase in population, we estimate that the improvement of the building stock has reduced the mortality and injury rate in Greek

  14. The Manchester earthquake swarm of October 2002

    Science.gov (United States)

    Baptie, B.; Ottemoeller, L.

    2003-04-01

    An earthquake sequence started in the Greater Manchester area of the United Kingdom on October 19, 2002. This has continued to the time of writing and has consisted of more than 100 discrete earthquakes. Three temporary seismograph stations were installed to supplement existing permanent stations and to better understand the relationship between the seismicity and local geology. Due to the urban location, these were experienced by a large number of people. The largest event on October 21 had a magnitude ML 3.9. The activity appears to be an earthquake swarm, since there is no clear distinction between a main shock and aftershocks. However, most of the energy during the sequence was actually released in two earthquakes separated by a few seconds in time, on October 21 at 11:42. Other examples of swarm activity in the UK include Comrie (1788-1801, 1839-46), Glenalmond (1970-72), Doune (1997) and Blackford (1997-98, 2000-01) in central Scotland, Constantine (1981, 1986, 1992-4) in Cornwall, and Johnstonbridge (mid1980s) and Dumfries (1991,1999). The clustering of these events in time and space does suggest that there is a causal relationship between the events of the sequence. Joint hypocenter determination was used to simultaneously locate the swarm earthquakes, determine station corrections and improve the relative locations. It seems likely that all events in the sequence originate from a relatively small source volume. This is supported by the similarities in source mechanism and waveform signals between the various events. Focal depths were found to be very shallow and of the order of about 2-3 km. Source mechanisms determined for the largest of the events show strike-slip solutions along either northeast-southwest or northwest-southeast striking fault planes. The surface expression of faults in the epicentral area is generally northwest-southeast, suggesting that this is the more likely fault plane.

  15. Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland

    DEFF Research Database (Denmark)

    Nettles, M.; Larsen, T. B.; Elósegui, P.

    2008-01-01

    Geodetic observations show several large, sudden increases in flow speed at Helheim Glacier, one of Greenland's largest outlet glaciers, during summer, 2007. These step-like accelerations, detected along the length of the glacier, coincide with teleseismically detected glacial earthquakes and major...... iceberg calving events. No coseismic offset in the position of the glacier surface is observed; instead, modest tsunamis associated with the glacial earthquakes implicate glacier calving in the seismogenic process. Our results link changes in glacier velocity directly to calving-front behavior...... at Greenland's largest outlet glaciers, on timescales as short as minutes to hours, and clarify the mechanism by which glacial earthquakes occur. Citation: Nettles, M., et al. (2008), Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland....

  16. Some more earthquakes from medieval Kashmir

    Science.gov (United States)

    Ahmad, Bashir; Shafi, Muzamil

    2014-07-01

    Kashmir has the peculiarity of having written history of almost 5,000 years. However, the description of earthquakes in the archival contents is patchy prior to 1500 a.d. Moreover, recent search shows that there exist certain time gaps in the catalogs presently in use especially at medieval level (1128-1586 a.d.). The presence of different ruling elites in association with socioeconomic and political conditions has in many ways confused the historical context of the medieval sources. However, by a meticulous review of the Sanskrit sources (between the twelfth and sixteenth century), it has been possible to identify unspecified but fair number (eight seismic events) of earthquakes that do not exist in published catalogs of Kashmir or whose dates are very difficult to establish. Moreover, historical sources reveal that except for events which occurred during Sultan Skinder's rule (1389-1413) and during the reign of King Zain-ul-Abidin (1420-1470), all the rediscovered seismic events went into oblivion, due mainly to the fact that the sources available dedicated their interests to the military events, which often tended to overshadow/superimpose over and even concealed natural events like earthquakes, resulting in fragmentary accounts and rendering them of little value for macroseismic intensity evaluation necessary for more efficient seismic hazard assessment.

  17. Induced seismicity provides insight into why earthquake ruptures stop

    KAUST Repository

    Galis, Martin; Ampuero, Jean Paul; Mai, Paul Martin; Cappa, Fré dé ric

    2017-01-01

    the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes

  18. The Pacific Tsunami Warning Center's Response to the Tohoku Earthquake and Tsunami

    Science.gov (United States)

    Weinstein, S. A.; Becker, N. C.; Shiro, B.; Koyanagi, K. K.; Sardina, V.; Walsh, D.; Wang, D.; McCreery, C. S.; Fryer, G. J.; Cessaro, R. K.; Hirshorn, B. F.; Hsu, V.

    2011-12-01

    The largest Pacific basin earthquake in 47 years, and also the largest magnitude earthquake since the Sumatra 2004 earthquake, struck off of the east coast of the Tohoku region of Honshu, Japan at 5:46 UTC on 11 March 2011. The Tohoku earthquake (Mw 9.0) generated a massive tsunami with runups of up to 40m along the Tohoku coast. The tsunami waves crossed the Pacific Ocean causing significant damage as far away as Hawaii, California, and Chile, thereby becoming the largest, most destructive tsunami in the Pacific Basin since 1960. Triggers on the seismic stations at Erimo, Hokkaido (ERM) and Matsushiro, Honshu (MAJO), alerted Pacific Tsunami Warning Center (PTWC) scientists 90 seconds after the earthquake began. Four minutes after its origin, and about one minute after the earthquake's rupture ended, PTWC issued an observatory message reporting a preliminary magnitude of 7.5. Eight minutes after origin time, the Japan Meteorological Agency (JMA) issued its first international tsunami message in its capacity as the Northwest Pacific Tsunami Advisory Center. In accordance with international tsunami warning system protocols, PTWC then followed with its first international tsunami warning message using JMA's earthquake parameters, including an Mw of 7.8. Additional Mwp, mantle wave, and W-phase magnitude estimations based on the analysis of later-arriving seismic data at PTWC revealed that the earthquake magnitude reached at least 8.8, and that a destructive tsunami would likely be crossing the Pacific Ocean. The earthquake damaged the nearest coastal sea-level station located 90 km from the epicenter in Ofunato, Japan. The NOAA DART sensor situated 600 km off the coast of Sendai, Japan, at a depth of 5.6 km recorded a tsunami wave amplitude of nearly two meters, making it by far the largest tsunami wave ever recorded by a DART sensor. Thirty minutes later, a coastal sea-level station at Hanasaki, Japan, 600 km from the epicenter, recorded a tsunami wave amplitude of

  19. The role of post-earthquake structural safety in pre-earthquake retrof in decision: guidelines and applications

    International Nuclear Information System (INIS)

    Bazzurro, P.; Telleen, K.; Maffei, J.; Yin, J.; Cornell, C.A.

    2009-01-01

    Critical structures such as hospitals, police stations, local administrative office buildings, and critical lifeline facilities, are expected to be operational immediately after earthquakes. Any rational decision about whether these structures are strong enough to meet this goal or whether pre-empitive retrofitting is needed cannot be made without an explicit consideration of post-earthquake safety and functionality with respect to aftershocks. Advanced Seismic Assessment Guidelines offer improvement over previous methods for seismic evaluation of buildings where post-earthquake safety and usability is a concern. This new method allows engineers to evaluate the like hood that a structure may have restricted access or no access after an earthquake. The building performance is measured in terms of the post-earthquake occupancy classifications Green Tag, Yellow Tag, and Red Tag, defining these performance levels quantitatively, based on the structure's remaining capacity to withstand aftershocks. These color-coded placards that constitute an established practice in US could be replaced by the standard results of inspections (A to E) performed by the Italian Dept. of Civil Protection after an event. The article also shows some applications of these Guidelines to buildings of the largest utility company in California, Pacific Gas and Electric Company (PGE). [it

  20. Crustal stress evolution of last 700 years in North China and earthquake occurrences

    Science.gov (United States)

    Wan, Y.; Shen, Z.; Gan, W.; Li, T.; Zeng, Y.

    2004-12-01

    We simulate the evolution process of cumulative Coulomb failure stress change (Δ CFS) in North China since 1303, manifested by secular tectonic stress loading and occurrence of large earthquakes. Secular tectonic stress loading is averaged from crustal strain rates derived from GPS. Fault rupture parameters of historical earthquakes are estimated as follows: the earthquake rupture length and the amount of slip are derived based on their statistical relationships with the earthquake intensity distribution and magnitude, calibrated using parameters of instrumental measured contemporary earthquakes. The earthquake rake angle is derived based on geologically determined fault setting parameters and seismically estimated orientation of regional tectonic stresses. Assuming a layered visco-elastic medium, we calculate stress evolution resulted from secular tectonic loading and coseismic and postseismic deformation. 49 M¡Y6.5 earthquakes occurred in North China since 1303. Statistics shows that 39 out of the 48 subsequent events were triggered by positive Δ CFS, yielding a triggering rate of 81.3%. The triggering rate for M¡Y5 earthquakes after the 1976 Tangshan earthquake is 82.1%. The triggering rate is up to 90% if corrections are made for some aftershocks which were wrongly identified as occurred in stress shadow zones because of errors in parameter estimates of historical earthquakes. Our study shows very high correlation between positive Δ CFS and earthquake occurrences. Relatively high Δ CFS in North China at present time is concentrated around the Bohai Sea, the west segment of the Northern Qinling fault, western end of the Zhangjiakou-Bohai seismic zone, and the Taiyuan basin in Shanxi rift zone, suggesting relatively higher earthquake potential in these areas.

  1. Geoengineering and seismological aspects of the Niigata-Ken Chuetsu-Oki earthquake of 16 July 2007

    Science.gov (United States)

    Kayen, R.; Brandenberg, S.J.; CoIlins, B.D.; Dickenson, S.; Ashford, S.; Kawamata, Y.; Tanaka, Y.; Koumoto, H.; Abrahamson, N.; Cluff, L.; Tokimatsu, K.

    2009-01-01

    The M6.6 Niigata-Ken Chuetsu-Oki earthquake of 16 July 2007 occurred off the west coast of Japan with a focal depth of 10 km, immediately west of Kashiwazaki City and Kariwa Village in southern Niigata Prefecture. Peak horizontal ground accelerations of 0.68 g were measured in Kashiwazaki City, as well as at the reactor floor level of the world's largest nuclear reactor, located on the coast at Kariwa Village. Liquefaction of historic and modern river deposits, aeolian dune sand, and manmade fill was widespread in the coastal region nearest the epicenter and caused ground deformations that damaged bridges, embankments, roadways, buildings, ports, railways and utilities. Landslides along the coast of southern Niigata Prefecture and in mountainous regions inland of Kashiwazaki were also widespread affecting transportation infrastructure. Liquefaction and a landslide also damaged the nuclear power plant sites. This paper, along with a companion digital map database available at http://walrus.wr.usgs.gOv/infobank/n/nii07jp/html/n-ii-07-jp.sites.kmz, describes the seismological and geo-engineering aspects of the event. ?? 2009, Earthquake Engineering Research Institute.

  2. Spatial Distribution of the Coefficient of Variation for the Paleo-Earthquakes in Japan

    Science.gov (United States)

    Nomura, S.; Ogata, Y.

    2015-12-01

    Renewal processes, point prccesses in which intervals between consecutive events are independently and identically distributed, are frequently used to describe this repeating earthquake mechanism and forecast the next earthquakes. However, one of the difficulties in applying recurrent earthquake models is the scarcity of the historical data. Most studied fault segments have few, or only one observed earthquake that often have poorly constrained historic and/or radiocarbon ages. The maximum likelihood estimate from such a small data set can have a large bias and error, which tends to yield high probability for the next event in a very short time span when the recurrence intervals have similar lengths. On the other hand, recurrence intervals at a fault depend on the long-term slip rate caused by the tectonic motion in average. In addition, recurrence times are also fluctuated by nearby earthquakes or fault activities which encourage or discourage surrounding seismicity. These factors have spatial trends due to the heterogeneity of tectonic motion and seismicity. Thus, this paper introduces a spatial structure on the key parameters of renewal processes for recurrent earthquakes and estimates it by using spatial statistics. Spatial variation of mean and variance parameters of recurrence times are estimated in Bayesian framework and the next earthquakes are forecasted by Bayesian predictive distributions. The proposal model is applied for recurrent earthquake catalog in Japan and its result is compared with the current forecast adopted by the Earthquake Research Committee of Japan.

  3. Where was the 1898 Mare Island Earthquake? Insights from the 2014 South Napa Earthquake

    Science.gov (United States)

    Hough, S. E.

    2014-12-01

    The 2014 South Napa earthquake provides an opportunity to reconsider the Mare Island earthquake of 31 March 1898, which caused severe damage to buildings at a Navy yard on the island. Revising archival accounts of the 1898 earthquake, I estimate a lower intensity magnitude, 5.8, than the value in the current Uniform California Earthquake Rupture Forecast (UCERF) catalog (6.4). However, I note that intensity magnitude can differ from Mw by upwards of half a unit depending on stress drop, which for a historical earthquake is unknowable. In the aftermath of the 2014 earthquake, there has been speculation that apparently severe effects on Mare Island in 1898 were due to the vulnerability of local structures. No surface rupture has ever been identified from the 1898 event, which is commonly associated with the Hayward-Rodgers Creek fault system, some 10 km west of Mare Island (e.g., Parsons et al., 2003). Reconsideration of detailed archival accounts of the 1898 earthquake, together with a comparison of the intensity distributions for the two earthquakes, points to genuinely severe, likely near-field ground motions on Mare Island. The 2014 earthquake did cause significant damage to older brick buildings on Mare Island, but the level of damage does not match the severity of documented damage in 1898. The high intensity files for the two earthquakes are more over spatially shifted, with the centroid of the 2014 distribution near the town of Napa and that of the 1898 distribution near Mare Island, east of the Hayward-Rodgers Creek system. I conclude that the 1898 Mare Island earthquake was centered on or near Mare Island, possibly involving rupture of one or both strands of the Franklin fault, a low-slip-rate fault sub-parallel to the Rodgers Creek fault to the west and the West Napa fault to the east. I estimate Mw5.8 assuming an average stress drop; data are also consistent with Mw6.4 if stress drop was a factor of ≈3 lower than average for California earthquakes. I

  4. Our response to the earthquake at Onagawa Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirakawa, Tomoshi

    2008-01-01

    When the Miyagi Offshore earthquake occurred on August 16, 2005, all three units at the Onagawa NPS were shut down automatically according to the Strong Seismic Acceleration' signal. Our inspection after the earthquake confirmed there was no damage to the equipment of the nuclear power plants, but the analysis of the response spectrum observed at the bedrock showed the earthquake had exceeded the 'design-basis earthquake', at certain periods, so that we implemented a review of the seismic safety of plant facilities. In the review, the ground motion of Miyagi Offshore Earthquake which are predicted to occur in the near future were reexamined based on the observation data, and then 'The Ground Motion for Safety Check' surpassing the supposed ground motion of the largest earthquake was established. The seismic safety of plant facilities, important for safety, was assured. At present, No.1 to No.3 units at Onagawa NPS have returned to normal operation. (author)

  5. Source processes of strong earthquakes in the North Tien-Shan region

    Science.gov (United States)

    Kulikova, G.; Krueger, F.

    2013-12-01

    Tien-Shan region attracts attention of scientists worldwide due to its complexity and tectonic uniqueness. A series of very strong destructive earthquakes occurred in Tien-Shan at the turn of XIX and XX centuries. Such large intraplate earthquakes are rare in seismology, which increases the interest in the Tien-Shan region. The presented study focuses on the source processes of large earthquakes in Tien-Shan. The amount of seismic data is limited for those early times. In 1889, when a major earthquake has occurred in Tien-Shan, seismic instruments were installed in very few locations in the world and these analog records did not survive till nowadays. Although around a hundred seismic stations were operating at the beginning of XIX century worldwide, it is not always possible to get high quality analog seismograms. Digitizing seismograms is a very important step in the work with analog seismic records. While working with historical seismic records one has to take into account all the aspects and uncertainties of manual digitizing and the lack of accurate timing and instrument characteristics. In this study, we develop an easy-to-handle and fast digitization program on the basis of already existing software which allows to speed up digitizing process and to account for all the recoding system uncertainties. Owing to the lack of absolute timing for the historical earthquakes (due to the absence of a universal clock at that time), we used time differences between P and S phases to relocate the earthquakes in North Tien-Shan and the body-wave amplitudes to estimate their magnitudes. Combining our results with geological data, five earthquakes in North Tien-Shan were precisely relocated. The digitizing of records can introduce steps into the seismograms which makes restitution (removal of instrument response) undesirable. To avoid the restitution, we simulated historic seismograph recordings with given values for damping and free period of the respective instrument and

  6. Paleoseismic evidence of earthquakes and tsunamis along the southern part of the Japan Trench

    Science.gov (United States)

    Pilarczyk, Jessica; Sawai, Yuki; Horton, Ben; Namegaya, Yuichi; Shinozaki, Tetsuya; Tanigawa, Koichiro; Matsumoto, Dan; Dura, Tina; Fujiwara, Osamu; Shishikura, Masanobu

    2016-04-01

    The northern part of the Japan Trench has frequently generated tsunamigenic-earthquakes with magnitudes up to ~M 8.0. In contrast, the middle and southern parts of the Japan Trench were considered relatively inactive until the 2011 Tohoku (M 9.0) event generated one of the largest tsunamis in recorded history. Geologic evidence from the Sendai plain revealed an event in CE 869 that could have forecast the severity of the Tohoku tsunami in 2011. Seismic models indicate that the Tohoku earthquake may have transferred stress southwards down the fault to the potentially locked southern part of the Japan Trench. This transfer of stress towards a locked section of the trench could produce an earthquake in the near future that would be comparable in magnitude to the Tohoku event. Reconstructing the history of individual great earthquakes and accompanying tsunamis using geological records from the coastal zone adjacent to the southern part of the Japan Trench provides an assessment of the seismic hazard for metropolitan areas in east-central Japan. We have found two anomalous marine sand layers intercalated with muddy peat, which can be traced 3.8 km inland and 5.5 km along the present Kujukuri coastline, approximately 50 km east of Tokyo. Both sand layers have features consistent with tsunami deposits, such as a distinct erosional base, rip-up clasts, normal grading, a mud drape, and marine foraminifera. Results of radiocarbon dating constrain the age of the upper sand to 337 - 299 cal. yrs. BP, which likely corresponds to the only known southern Japan Trench rupture ever recorded, the Empo tsunami of CE 1677. The age of the lower sand is 979 - 903 cal. yrs. BP; marking an event for which there is no historical documentation at present. Preliminary tsunami simulation models indicate that a middle trench (Tohoku-style) rupture is not responsible for significant inundation of the Kujukuri coastline and would likely not have been capable of depositing either sand layer

  7. Assessment of earthquake-induced landslides hazard in El Salvador after the 2001 earthquakes using macroseismic analysis

    Science.gov (United States)

    Esposito, Eliana; Violante, Crescenzo; Giunta, Giuseppe; Ángel Hernández, Miguel

    2016-04-01

    Two strong earthquakes and a number of smaller aftershocks struck El Salvador in the year 2001. The January 13 2001 earthquake, Mw 7.7, occurred along the Cocos plate, 40 km off El Salvador southern coast. It resulted in about 1300 deaths and widespread damage, mainly due to massive landsliding. Two of the largest earthquake-induced landslides, Las Barioleras and Las Colinas (about 2x105 m3) produced major damage to buildings and infrastructures and 500 fatalities. A neighborhood in Santa Tecla, west of San Salvador, was destroyed. The February 13 2001 earthquake, Mw 6.5, occurred 40 km east-southeast of San Salvador. This earthquake caused over 300 fatalities and triggered several landslides over an area of 2,500 km2 mostly in poorly consolidated volcaniclastic deposits. The La Leona landslide (5-7x105 m3) caused 12 fatalities and extensive damage to the Panamerican Highway. Two very large landslides of 1.5 km3 and 12 km3 produced hazardous barrier lakes at Rio El Desague and Rio Jiboa, respectively. More than 16.000 landslides occurred throughout the country after both quakes; most of them occurred in pyroclastic deposits, with a volume less than 1x103m3. The present work aims to define the relationship between the above described earthquake intensity, size and areal distribution of induced landslides, as well as to refine the earthquake intensity in sparsely populated zones by using landslide effects. Landslides triggered by the 2001 seismic sequences provided useful indication for a realistic seismic hazard assessment, providing a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides.

  8. A Virtual Tour of the 1868 Hayward Earthquake in Google EarthTM

    Science.gov (United States)

    Lackey, H. G.; Blair, J. L.; Boatwright, J.; Brocher, T.

    2007-12-01

    The 1868 Hayward earthquake has been overshadowed by the subsequent 1906 San Francisco earthquake that destroyed much of San Francisco. Nonetheless, a modern recurrence of the 1868 earthquake would cause widespread damage to the densely populated Bay Area, particularly in the east Bay communities that have grown up virtually on top of the Hayward fault. Our concern is heightened by paleoseismic studies suggesting that the recurrence interval for the past five earthquakes on the southern Hayward fault is 140 to 170 years. Our objective is to build an educational web site that illustrates the cause and effect of the 1868 earthquake drawing on scientific and historic information. We will use Google EarthTM software to visually illustrate complex scientific concepts in a way that is understandable to a non-scientific audience. This web site will lead the viewer from a regional summary of the plate tectonics and faulting system of western North America, to more specific information about the 1868 Hayward earthquake itself. Text and Google EarthTM layers will include modeled shaking of the earthquake, relocations of historic photographs, reconstruction of damaged buildings as 3-D models, and additional scientific data that may come from the many scientific studies conducted for the 140th anniversary of the event. Earthquake engineering concerns will be stressed, including population density, vulnerable infrastructure, and lifelines. We will also present detailed maps of the Hayward fault, measurements of fault creep, and geologic evidence of its recurrence. Understanding the science behind earthquake hazards is an important step in preparing for the next significant earthquake. We hope to communicate to the public and students of all ages, through visualizations, not only the cause and effect of the 1868 earthquake, but also modern seismic hazards of the San Francisco Bay region.

  9. Aftereffects of Subduction-Zone Earthquakes: Potential Tsunami Hazards along the Japan Sea Coast.

    Science.gov (United States)

    Minoura, Koji; Sugawara, Daisuke; Yamanoi, Tohru; Yamada, Tsutomu

    2015-10-01

    The 2011 Tohoku-Oki Earthquake is a typical subduction-zone earthquake and is the 4th largest earthquake after the beginning of instrumental observation of earthquakes in the 19th century. In fact, the 2011 Tohoku-Oki Earthquake displaced the northeast Japan island arc horizontally and vertically. The displacement largely changed the tectonic situation of the arc from compressive to tensile. The 9th century in Japan was a period of natural hazards caused by frequent large-scale earthquakes. The aseismic tsunamis that inflicted damage on the Japan Sea coast in the 11th century were related to the occurrence of massive earthquakes that represented the final stage of a period of high seismic activity. Anti-compressive tectonics triggered by the subduction-zone earthquakes induced gravitational instability, which resulted in the generation of tsunamis caused by slope failing at the arc-back-arc boundary. The crustal displacement after the 2011 earthquake infers an increased risk of unexpected local tsunami flooding in the Japan Sea coastal areas.

  10. The maximum earthquake in future T years: Checking by a real catalog

    International Nuclear Information System (INIS)

    Pisarenko, V.F.; Rodkin, M.V.

    2015-01-01

    The studies of disaster statistics are being largely carried out in recent decades. Some recent achievements in the field can be found in Pisarenko and Rodkin (2010). An important aspect in the seismic risk assessment is the using historical earthquake catalogs and the combining historical data with instrumental ones since historical catalogs cover very long time periods and can improve seismic statistics in the higher magnitude domain considerably. We suggest the new statistical technique for this purpose and apply it to two historical Japan catalogs and the instrumental JMA catalog. The main focus of these approaches is on the occurrence of disasters of extreme sizes as the most important ones from practical point of view. Our method of statistical analysis of the size distribution in the uppermost range of extremely rare events was suggested, based on maximum size M max (τ) (e.g. earthquake energy, ground acceleration caused by earthquake, victims and economic losses from natural catastrophes, etc.) that will occur in a prescribed time interval τ. A new approach to the problem discrete data that we called “the magnitude spreading” is suggested. This method reduces discrete random value to continuous ones by addition a small uniformly distributed random components. We analyze this method in details and apply it to verification of parameters derived from two historical catalogs: the Usami earthquake catalog (599–1884) and the Utsu catalog (1885–1925). We compare their parameters with ones derived from the instrumental JMA catalog (1926–2014). The results of this verification are following: The Usami catalog is incompatible with the instrumental one, whereas parameters estimated from the Utsu catalog are statistically compatible in the higher magnitude domain with sample of M max (τ) derived from the JMA catalog

  11. RETROFITTING DENIZ PALACE HISTORIC BUILDING FOR REUSING

    Directory of Open Access Journals (Sweden)

    Ezgi KORKMAZ

    2013-01-01

    Full Text Available There is a big stock of historic structures in Turkey. Many of those structures continue to serve by changing their functions which brings new loads to the building. During their long life, historic structures have experienced many actions occurred over long periods of time and endured long term deteriorating effects and earthquake loads, besides these effects changing of the function affects the load bearing capacity of the building. This study is focused on restoration and retrofitting of historic multi storey masonry building named Deniz Palace Building which is located in Istanbul where the whole city is seismic prone area itself. Earthquake resistance is the main purpose of decision for retrofitting and strengthening of the building. In this sense walls are sheathed by concrete, floors are strengthened by steel I profiles and concrete, and foundations are reconstructed. During the restoration, interventions are made based on prevention of historic values. Static calculations are done particularly. For this purpose, foundation retrofitting is made primarily and some critical walls are sheathed by concrete. Fire protection system is designed and according to the evacuation plan some additions such as elevator shaft are constructed.

  12. Geological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough, Japan

    Science.gov (United States)

    Garrett, Ed; Fujiwara, Osamu; Garrett, Philip; Heyvaert, Vanessa M. A.; Shishikura, Masanobu; Yokoyama, Yusuke; Hubert-Ferrari, Aurélia; Brückner, Helmut; Nakamura, Atsunori; De Batist, Marc

    2016-04-01

    The Nankai-Suruga Trough, lying immediately south of Japan's densely populated and highly industrialised southern coastline, generates devastating great earthquakes (magnitude > 8). Intense shaking, crustal deformation and tsunami generation accompany these ruptures. Forecasting the hazards associated with future earthquakes along this >700 km long fault requires a comprehensive understanding of past fault behaviour. While the region benefits from a long and detailed historical record, palaeoseismology has the potential to provide a longer-term perspective and additional insights. Here, we summarise the current state of knowledge regarding geological evidence for past earthquakes and tsunamis, incorporating literature originally published in both Japanese and English. This evidence comes from a wide variety of sources, including uplifted marine terraces and biota, marine and lacustrine turbidites, liquefaction features, subsided marshes and tsunami deposits in coastal lakes and lowlands. We enhance available results with new age modelling approaches. While publications describe proposed evidence from > 70 sites, only a limited number provide compelling, well-dated evidence. The best available records allow us to map the most likely rupture zones of eleven earthquakes occurring during the historical period. Our spatiotemporal compilation suggests the AD 1707 earthquake ruptured almost the full length of the subduction zone and that earthquakes in AD 1361 and 684 were predecessors of similar magnitude. Intervening earthquakes were of lesser magnitude, highlighting variability in rupture mode. Recurrence intervals for ruptures of the a single seismic segment range from less than 100 to more than 450 years during the historical period. Over longer timescales, palaeoseismic evidence suggests intervals ranging from 100 to 700 years. However, these figures reflect thresholds of evidence creation and preservation as well as genuine recurrence intervals. At present, we have

  13. Inter-Disciplinary Validation of Pre Earthquake Signals. Case Study for Major Earthquakes in Asia (2004-2010) and for 2011 Tohoku Earthquake

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Hattori, K.; Liu, J.-Y.; Yang. T. Y.; Parrot, M.; Kafatos, M.; Taylor, P.

    2012-01-01

    We carried out multi-sensors observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several physical and environmental parameters, which we found, associated with the earthquake processes: thermal infrared radiation, temperature and concentration of electrons in the ionosphere, radon/ion activities, and air temperature/humidity in the atmosphere. We used satellite and ground observations and interpreted them with the Lithosphere-Atmosphere- Ionosphere Coupling (LAIC) model, one of possible paradigms we study and support. We made two independent continues hind-cast investigations in Taiwan and Japan for total of 102 earthquakes (M>6) occurring from 2004-2011. We analyzed: (1) ionospheric electromagnetic radiation, plasma and energetic electron measurements from DEMETER (2) emitted long-wavelength radiation (OLR) from NOAA/AVHRR and NASA/EOS; (3) radon/ion variations (in situ data); and 4) GPS Total Electron Content (TEC) measurements collected from space and ground based observations. This joint analysis of ground and satellite data has shown that one to six (or more) days prior to the largest earthquakes there were anomalies in all of the analyzed physical observations. For the latest March 11 , 2011 Tohoku earthquake, our analysis shows again the same relationship between several independent observations characterizing the lithosphere /atmosphere coupling. On March 7th we found a rapid increase of emitted infrared radiation observed from satellite data and subsequently an anomaly developed near the epicenter. The GPS/TEC data indicated an increase and variation in electron density reaching a maximum value on March 8. Beginning from this day we confirmed an abnormal TEC variation over the epicenter in the lower ionosphere. These findings revealed the existence of atmospheric and ionospheric phenomena occurring prior to the 2011 Tohoku earthquake, which indicated new evidence of a distinct

  14. Between Sunda subduction and Himalayan collision: fertility, people and earthquakes on the Ganges-Brahmaputra Delta

    Science.gov (United States)

    Seeber, L.; Steckler, M. S.; Akhter, S. H.; Goodbred, S. L., Jr.; Gale, J.; McHugh, C. M.; Ferguson, E. K.; Mondal, D. R.; Paola, C.; Reitz, M. D.; Wilson, C.

    2014-12-01

    A foreland (Ganges) and a suture (Brahmaputra) river, which both drain the Himalaya, have coalesced to form Ganges-Brahmaputra Delta (GBD), the world's largest. The GBD progrades along the continental margin, coupled with an advancing subduction to collision transition, deforming the delta as it grows. A better understanding of this time-transgressive system is urgent now that humans are increasing their forcing of the system and exposure to environmental hazards. Among these, earthquake risk is rapidly growing as people move from rural settings into expanding cities, creating unprecedented exposure. The megathrust 1950 M8.7 earthquake in Assam occurred during the monsoon and released 10x the annual sediment load, causing progradation at the coast and a pulse of river widening that propagated downstream. The 1762 M8.8(?) along the Arakan coast extended into the shelf of the delta where coastal tsunami deposits have been identified recently. These events bracket a segment with no credible historic megathrust earthquakes, but could affect far more people. Geodetic and geologic data along this 300 km boundary facing the GBD show oblique contraction. The subaerial accretionary prism (Burma Ranges) is up to 250 km wide with a blind thrust front that reaches ½ way across the delta. The GPS convergence rate of 14 mm/y is consistent with large displacements and long interseismic times, which can account for lack of historic ruptures, but also the potential for catastrophic events. Active folds and shallow thrust earthquakes point to an additional threat from upper-plate seismicity. Much of the current seismicity is in the lower-plate and reaches as far west as Dhaka; it may pose an immediate threat. The folds, and the uplift and subsidence patterns also influence the courses of the rivers. North of the delta, the Shillong plateau is a huge basement cored anticline bounded by the north-dipping Dauki thrust fault. 7 mm/y of N-S shortening and 5 km of structural relief here

  15. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania

    Directory of Open Access Journals (Sweden)

    Oros Eugen

    2015-03-01

    Full Text Available The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania and the historical seismicity of the region (Mw≥4.0. Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of Timisoara (January 2012 and March 2013 and the fourth within Hateg Basin, South Carpathians (October 2013. These sequences occurred within the epicentral areas of some strong historical earthquakes (Mw≥5.0. The main events had some macroseismic effects on people up to some few kilometers from the epicenters. Our results update the Romanian earthquakes catalogue and bring new information along the local seismic hazard sources models and seismotectonics.

  16. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    Science.gov (United States)

    McNamara, D. E.; Yeck, W. L.; Barnhart, W. D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, A.; Hough, S. E.; Benz, H. M.; Earle, P. S.

    2017-09-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard. Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  17. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    Directory of Open Access Journals (Sweden)

    Zhi-hui Dong

    2011-01-01

    Full Text Available PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT. METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR = 2.2; p<0.001. Among these patients, those with more than 3 fractured ribs (106/143 vs. 41/66 patients, RR=1.2; p<0.05 or flail chest (45/143 vs. 11/66 patients, RR=1.9; p<0.05 were more frequently seen in the earthquake cohort. Earthquake-related crush injuries more frequently resulted in bilateral rib fractures (66/143 vs. 18/66 patients, RR= 1.7; p<0.01. Additionally, the incidence of non-rib fracture was higher in the earthquake cohort (85 vs. 60 patients, RR= 1.4; p<0.01. Pulmonary parenchymal and pleural injuries were more frequently seen in earthquake-related crush injuries (117 vs. 80 patients, RR=1.5 for parenchymal and 146 vs. 74 patients, RR = 2.0 for pleural injuries; p<0.001. Non-rib fractures, pulmonary parenchymal and pleural injuries had significant positive correlation with rib fractures in these two cohorts. CONCLUSIONS: Thoracic crush traumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries.

  18. Structural performance of the DOE's Idaho National Engineering Laboratory during the 1983 Borah Peak Earthquake

    International Nuclear Information System (INIS)

    Guenzler, R.C.; Gorman, V.W.

    1985-01-01

    The 1983 Borah Peak Earthquake (7.3 Richter magnitude) was the largest earthquake ever experienced by the DOE's Idaho National Engineering Laboratory (INEL). Reactor and plant facilities are generally located about 90 to 110 km (60 miles) from the epicenter. Several reactors were operating normally at the time of the earthquake. Based on detailed inspections, comparisons of measured accelerations with design levels, and instrumental seismograph information, it was concluded that the 1983 Borah Peak Earthquake created no safety problems for INEL reactors or other facilities. 10 references, 16 figures, 2 tables

  19. From Multi-Sensors Observations Towards Cross-Disciplinary Study of Pre-Earthquake Signals. What have We Learned from the Tohoku Earthquake?

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hayakawa, M.; Mogi, K.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons we have learned from the Great Tohoku EQ (Japan, 2011) how this knowledge will affect our future observation and analysis is the main focus of this presentation.We present multi-sensors observations and multidisciplinary research in our investigation of phenomena preceding major earthquakes. These observations revealed the existence of atmospheric and ionospheric phenomena occurring prior to theM9.0 Tohoku earthquake of March 11, 2011, which indicates s new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere, as related to underlying tectonic activity. Similar results have been reported before the catastrophic events in Chile (M8.8, 2010), Italy (M6.3, 2009) and Sumatra (M9.3, 2004). For the Tohoku earthquake, our analysis shows a synergy between several independent observations characterizing the state of the lithosphere /atmosphere coupling several days before the onset of the earthquakes, namely: (i) Foreshock sequence change (rate, space and time); (ii) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; and (iii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations. We are presenting a cross-disciplinary analysis of the observed pre-earthquake anomalies and will discuss current research in the detection of these signals in Japan. We expect that our analysis will shed light on the underlying physics of pre-earthquake signals associated with some of the largest earthquake events

  20. Earthquake Forecasting Methodology Catalogue - A collection and comparison of the state-of-the-art in earthquake forecasting and prediction methodologies

    Science.gov (United States)

    Schaefer, Andreas; Daniell, James; Wenzel, Friedemann

    2015-04-01

    Earthquake forecasting and prediction has been one of the key struggles of modern geosciences for the last few decades. A large number of approaches for various time periods have been developed for different locations around the world. A categorization and review of more than 20 of new and old methods was undertaken to develop a state-of-the-art catalogue in forecasting algorithms and methodologies. The different methods have been categorised into time-independent, time-dependent and hybrid methods, from which the last group represents methods where additional data than just historical earthquake statistics have been used. It is necessary to categorize in such a way between pure statistical approaches where historical earthquake data represents the only direct data source and also between algorithms which incorporate further information e.g. spatial data of fault distributions or which incorporate physical models like static triggering to indicate future earthquakes. Furthermore, the location of application has been taken into account to identify methods which can be applied e.g. in active tectonic regions like California or in less active continental regions. In general, most of the methods cover well-known high-seismicity regions like Italy, Japan or California. Many more elements have been reviewed, including the application of established theories and methods e.g. for the determination of the completeness magnitude or whether the modified Omori law was used or not. Target temporal scales are identified as well as the publication history. All these different aspects have been reviewed and catalogued to provide an easy-to-use tool for the development of earthquake forecasting algorithms and to get an overview in the state-of-the-art.

  1. The 2011 Mineral, VA M5.8 Earthquake Ground Motions and Stress Drop: An Important Contribution to the NGA East Ground Motion Database

    Science.gov (United States)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2011-12-01

    The M5.8 Mineral, Virginia earthquake of August 23, 2011 is the largest instrumentally recorded earthquake in eastern North America since the 1988 M5.9 Saguenay, Canada earthquake. Historically, a similar magnitude earthquake occurred on May 31, 1897 at 18:58 UCT in western Virginia west of Roanoke. Paleoseismic evidence for larger magnitude earthquakes has also been found in the central Virginia region. The Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), is ongoing at the Pacific Earthquake Engineering Research Center funded by the U.S. Nuclear Regulatory Commission, the U.S. Geological Survey, the Electric Power Research Institute, and the U.S. Department of Energy. The available recordings from the M5.8 Virginia are being added to the NGA East ground motion database. Close in (less than 100 km) strong motion recordings are particularly interesting for both ground motion and stress drop estimates as most close-in broadband seismometers clipped on the mainshock. A preliminary estimate for earthquake corner frequency for the M5.8 Virginia earthquake of ~0.7 Hz has been obtained from a strong motion record 57 km from the mainshock epicenter. For a M5.8 earthquake this suggests a Brune stress drop of ~300 bars for the Virginia event. Very preliminary comparisons using accelerometer data suggest the ground motions from the M5.8 Virginia earthquake agree well with current ENA ground motion prediction equations (GMPEs) at short periods (PGA, 0.2 s) and are below the GMPEs at longer periods (1.0 s), which is the same relationship seen from other recent M5 ENA earthquakes. We will present observed versus GMPE ground motion comparisons for all the ground motion observations and stress drop estimates from strong motion recordings at distances less than 100 km. A review of the completed NGA East ENA ground motion database will also be provided.

  2. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    Science.gov (United States)

    Chen, Q.; Wang, K.

    2009-12-01

    damage than those that did not. However, the progress in practice was very far behind the progress in knowledge and regulations; more strict enforcement of seismic design provisions and wiser selection of construction sites would have saved many more lives in the Wenchuan area. The Wenchuan earthquake has started a new era. Confidence in prediction has dropped to a historical low despite a strong sentimental attachment to it, and practical mitigation management has firmly gained its priority position.

  3. Geomorphic legacy of medieval Himalayan earthquakes in the Pokhara Valley

    Science.gov (United States)

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R.; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-04-01

    The Himalayas and their foreland belong to the world's most earthquake-prone regions. With millions of people at risk from severe ground shaking and associated damages, reliable data on the spatial and temporal occurrence of past major earthquakes is urgently needed to inform seismic risk analysis. Beyond the instrumental record such information has been largely based on historical accounts and trench studies. Written records provide evidence for damages and fatalities, yet are difficult to interpret when derived from the far-field. Trench studies, in turn, offer information on rupture histories, lengths and displacements along faults but involve high chronological uncertainties and fail to record earthquakes that do not rupture the surface. Thus, additional and independent information is required for developing reliable earthquake histories. Here, we present exceptionally well-dated evidence of catastrophic valley infill in the Pokhara Valley, Nepal. Bayesian calibration of radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments yields a robust age distribution that matches the timing of nearby M>8 earthquakes in ~1100, 1255, and 1344 AD. The upstream dip of tributary valley fills and X-ray fluorescence spectrometry of their provenance rule out local sediment sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from the Annapurna Massif >60 km away. The landscape-changing consequences of past large Himalayan earthquakes have so far been elusive. Catastrophic aggradation in the wake of two historically documented medieval earthquakes and one inferred from trench studies underscores that Himalayan valley fills should be considered as potential archives of past earthquakes. Such valley fills are pervasive in the Lesser Himalaya though high erosion rates reduce

  4. Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?

    Science.gov (United States)

    Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L.

    2018-02-01

    The objective of this paper is to analyze the temporal clustering of large global earthquakes with respect to natural time, or interevent count, as opposed to regular clock time. To do this, we use two techniques: (1) nowcasting, a new method of statistically classifying seismicity and seismic risk, and (2) time series analysis of interevent counts. We chose the sequences of M_{λ } ≥ 7.0 and M_{λ } ≥ 8.0 earthquakes from the global centroid moment tensor (CMT) catalog from 2004 to 2016 for analysis. A significant number of these earthquakes will be aftershocks of the largest events, but no satisfactory method of declustering the aftershocks in clock time is available. A major advantage of using natural time is that it eliminates the need for declustering aftershocks. The event count we utilize is the number of small earthquakes that occur between large earthquakes. The small earthquake magnitude is chosen to be as small as possible, such that the catalog is still complete based on the Gutenberg-Richter statistics. For the CMT catalog, starting in 2004, we found the completeness magnitude to be M_{σ } ≥ 5.1. For the nowcasting method, the cumulative probability distribution of these interevent counts is obtained. We quantify the distribution using the exponent, β, of the best fitting Weibull distribution; β = 1 for a random (exponential) distribution. We considered 197 earthquakes with M_{λ } ≥ 7.0 and found β = 0.83 ± 0.08. We considered 15 earthquakes with M_{λ } ≥ 8.0, but this number was considered too small to generate a meaningful distribution. For comparison, we generated synthetic catalogs of earthquakes that occur randomly with the Gutenberg-Richter frequency-magnitude statistics. We considered a synthetic catalog of 1.97 × 10^5 M_{λ } ≥ 7.0 earthquakes and found β = 0.99 ± 0.01. The random catalog converted to natural time was also random. We then generated 1.5 × 10^4 synthetic catalogs with 197 M_{λ } ≥ 7.0 in each catalog and

  5. Earthquake activity along the Himalayan orogenic belt

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2017-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  6. Earthquake induced liquefaction hazard, probability and risk assessment in the city of Kolkata, India: its historical perspective and deterministic scenario

    Science.gov (United States)

    Nath, Sankar Kumar; Srivastava, Nishtha; Ghatak, Chitralekha; Adhikari, Manik Das; Ghosh, Ambarish; Sinha Ray, S. P.

    2018-01-01

    synthesized bedrock ground motion for both the 1897 and 1934 earthquakes on non-linear analysis of local site conditions through DEEPSOIL Geotechnical analysis package present surface level peak ground acceleration of the order of 0.05-0.14 g for the 1934 Bihar-Nepal earthquake while for the 1897 Shillong earthquake it is found to be in the range of 0.03-0.11 g. The factor of safety (FOS) against liquefaction, the probability of liquefaction ( P L), the liquefaction potential index (LPI), and the liquefaction risk index are estimated under the influence of these two earthquakes wherein the city is classified into severe (LPI > 15), high (5 65% comprising of coarse-grained sediments of sand, silty sand, and clayey silty sand in mostly the deltaic plain geomorphologic unit with 39.1% sites depicting severe liquefaction hazard with a median LPI of 28.3. A non-linear regression analysis on both the historical and deterministic liquefaction scenarios in P L versus LPI domain with ± 1 standard deviation confidence bound generated a cubic polynomial relationship between the two liquefaction hazard proxies. This study considered a bench mark for other cities in the country and elsewhere forms an integral part of the mega-seismic microzonation endeavors undertaken in all the earthquake-prone counties in the world.

  7. The deadly Morelos-Puebla, Mexico Intraslab Earthquake of 19 September 2017 (Mw7.1): Was the Earthquake Unexpected and Were the Ground Motions and Damage Pattern in Mexico City Abnormal?

    Science.gov (United States)

    Perez-Campos, X.; Singh, S. K.; Arroyo, D.; Cruz-Atienza, V. M.; Ordaz, M.; Hjorleifsdottir, V.; Iglesias, A.

    2017-12-01

    On 19 September 2017, thirty two years after the 1985 Michoacan interplate earthquake (Mw8.0), the city was once again devastated but this time by a Mw7.1 intraslab earthquake. The 2017 earthquake was located near the border of the states of Morelos and Puebla (18.410N, -98.710E; H=57 km), to SSE of Mexico City, at a hypocentral distance of about 127 km. It caused great panic in Mexico City, collapse of 44 buildings, and severely damaged many others. More than 200 persons were killed in the city. It was the second most destructive earthquake in the history of Mexico City, next only to the 1985 earthquake. A strong-motion station at CU located on basalt lava flows on main campus UNAM has been in continuous operation since 1964. PGA of 59 gal at CU during the 2017 earthquake is the largest ever, two times greater than that recorded during the 1985 earthquake (29 gal). The 2017 earthquake raised questions that are critical in fathoming the seismic vulnerability of the city and in its reconstruction. Was such an intraslab earthquake (Mw 7 at a hypocentral distance of 127 km) unexpected? Were the recorded ground motions in the city unusually high for such an earthquake? Why did the damage pattern during the earthquake differ from that observed during the 1985 earthquake? The earthquake was the closest M>5 intraslab earthquake to Mexico City ever recorded. However, Mw 5.9 events have occurred in recent years in the vicinity of the 2017 earthquake (R 145 km). Three Mw≥6.9 earthquakes have occurred since 1964 in the distance range 184-225 km. Thus, Mw and R of the earthquake was not surprising. However, a comparison of Fourier acceleration spectra at CU of 10 intraslab earthquakes with largest PGA, reduced to a common distance of R=127 km, shows that the amplitudes of the 2017 events were abnormally high in 1-2s range. Spectra of intraslab events at CU are enriched at higher frequencies relative to interplate ones because of closer distance, greater depth and higher

  8. A remote sensing assessment of the impact of the 2010 Maule, Chile earthquake (Mw 8.8) on the volcanoes of the southern Andes

    Science.gov (United States)

    Pritchard, M. E.; Welch, M.; Jay, J.; Button, N.

    2011-12-01

    There are tantalizing, but controversial, indications that great earthquakes affect arc-wide volcanic activity. For example, analysis of historic eruptions at volcanoes of the southern Andes has shown that 3-4 eruptions were likely seismically triggered by Mw > 8 earthquakes in the Chile subduction zone -- particularly the 1906 and 1960 earthquakes (e.g., Watt et al., 2009). However, the 27 February 2010 Mw 8.8 Maule, Chile earthquake that ruptured the subduction zone between the 1960 and 1906 earthquakes does not appear to have triggered 3-4 volcanic eruptions in the same area in the 12 months after the event. In an effort to understand the relation between a large earthquake and volcanic unrest, we use a variety of satellite instruments to look for more subtle (i.e., not leading to eruption), but detectable change in thermal or deformation activity at the volcanoes of the southern Andes after the Maule earthquake and its aftershocks. For all of the volcanoes in the catalog of the Smithsonian Institution (approximately 80), we use nighttime MODIS and ASTER data to assess the thermal activity and ALOS InSAR data to characterize the surface deformation before and after the earthquake. The ALOS InSAR data are not ideal for detecting changes in deformation before and after the earthquake because of the small number of acquisitions in austral summer as well as ionospheric and tropospheric artifacts. We estimate that we could detect deformation > 5 cm/year. Similarly, the ASTER and MODIS data suffer respectively from poor temporal and spatial resolution of thermal anomalies. We update previous InSAR work that identified at least 8 areas of volcanic deformation in the southern Andes related to eruptive processes, subsidence of past lava flows, or surface uplift not associated with an eruption (Fournier et al., 2010). Of greatest interest are the two volcanic areas with the largest deformation signals between 2007-2008 (both > 15 cm/yr in the radar line of sight): Laguna

  9. Relocalizing a historical earthquake using recent methods: The 10 November 1935 Earthquake near Montserrat, Lesser Antilles

    Science.gov (United States)

    Niemz, P.; Amorèse, D.

    2016-03-01

    This study investigates the hypothesis of Feuillet et al. (2011) that the hypocenter of the seismic event on November 10, 1935 near Montserrat, Lesser Antilles (MS 6 1/4) (Gutenberg and Richter, 1954) was mislocated by other authors and is actually located in the Montserrat-Havers fault zone. While this proposal was based both on a Ground Motion Prediction Equation and on the assumption that earthquakes in this region are bound to prominent fault systems, our study relies on earthquake localization methods using arrival times of the International Seismological Summary (ISS). Results of our methodology suggest that the hypocenter was really located at 16.90° N, 62.53° W. This solution is about 25 km north-west of the location proposed by Feuillet et al. (2011) within the Redonda fault system, northward of the Montserrat-Havers fault zone. As depth phases that contribute valuable insights to the focal depth are not included in the ISS data set and the reassociation of these phases is difficult, the error in depth is high. Taking into account tectonic constraints and the vertical extend of NonLinLoc's uncertainty area of the preferred solution we assume that the focus is most probably in the lower crust between 20 km and the Moho. Our approach shows that the information of the ISS can lead to a reliable solution even without an exhaustive search for seismograms and station bulletins. This is encouraging for a better assessment of seismic and tsunami hazard in the Caribbean, Mexico, South and Central America, where many moderate to large earthquakes occurred in the first half of the 20th century. The limitations during this early phase of seismology which complicate such relocations are described in detail in this study.

  10. The seismic cycles of large Romanian earthquake: The physical foundation, and the next large earthquake in Vrancea

    International Nuclear Information System (INIS)

    Purcaru, G.

    2002-01-01

    The occurrence patterns of large/great earthquakes at subduction zone interface and in-slab are complex in the space-time dynamics, and make even long-term forecasts very difficult. For some favourable cases where a predictive (empirical) law was found successful predictions were possible (eg. Aleutians, Kuriles, etc). For the large Romanian events (M > 6.7), occurring in the Vrancea seismic slab below 60 km, Purcaru (1974) first found the law of the occurrence time and magnitude: the law of 'quasicycles' and 'supercycles', for large and largest events (M > 7.25), respectively. The quantitative model of Purcaru with these seismic cycles has three time-bands (periods of large earthquakes)/century, discovered using the earthquake history (1100-1973) (however incomplete) of large Vrancea earthquakes for which M was initially estimated (Purcaru, 1974, 1979). Our long-term prediction model is essentially quasideterministic, it predicts uniquely the time and magnitude; since is not strict deterministic the forecasting is interval valued. It predicted the next large earthquake in 1980 in the 3rd time-band (1970-1990), and which occurred in 1977 (M7.1, M w 7.5). The prediction was successful, in long-term sense. We discuss the unpredicted events in 1986 and 1990. Since the laws are phenomenological, we give their physical foundation based on the large scale of rupture zone (RZ) and subscale of the rupture process (RP). First results show that: (1) the 1940 event (h=122 km) ruptured the lower part of the oceanic slab entirely along strike, and down dip, and similarly for 1977 but its upper part, (2) the RZ of 1977 and 1990 events overlap and the first asperity of 1977 event was rebroken in 1990. This shows the size of the events strongly depends on RZ, asperity size/strength and, thus on the failure stress level (FSL), but not on depth, (3) when FSL of high strength (HS) larger zones is critical largest events (eg. 1802, 1940) occur, thus explaining the supercyles (the 1940

  11. Earthquakes Versus Surface Deformation: Qualitative and Quantitative Relationships From The Aegean

    Science.gov (United States)

    Pavlides, S.; Caputo, R.

    Historical seismicity of the Aegean Region has been revised in order to associate major earthquakes to specific seismogenic structures. Only earthquakes associated to normal faulting have been considered. All available historical and seismotectonic data relative to co-seismic surface faulting have been collected in order to evaluate the surface rup- ture length (SRL) and the maximum displacement (MD). In order to perform Seismic Hazard analyses, empirical relationships between these parameters and the magnitude have been inferred and the best fitting regression functions have been calculated. Both co-seismic fault rupture lengths and maximum displacements show a logarithmic re- lationships, but our data from the Aegean Region have systematically lower values than the same parameters world-wide though they are similar to those of the East- ern Mediterranean-Middle East region. The upper envelopes of our diagrams (SRL vs Mw and MD vs Mw) have been also estimated and discussed, because they give useful information of the wort-case scenarios; these curces will be also discussed. Further- more, geological and morphological criteria have been used to recognise the tectonic structures along which historical earthquakes occurred in order to define the geolog- ical fault length (GFL). Accordingly, the SRL/GFL ratio seems to have a bimodal distribution with a major peak about 0.8-1.0, indicating that several earthquakes break through almost the entire geological fault length, and a second peak around 0.5, re- lated to the possible segmentation of these major neotectonic faults. In contrast, no relationships can be depicted between the SRL/GFL ratio and the magnitude of the corresponding events.

  12. A case for historic joint rupture of the San Andreas and San Jacinto faults

    OpenAIRE

    Lozos, Julian C.

    2016-01-01

    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data...

  13. Predictors of psychological resilience amongst medical students following major earthquakes.

    Science.gov (United States)

    Carter, Frances; Bell, Caroline; Ali, Anthony; McKenzie, Janice; Boden, Joseph M; Wilkinson, Timothy; Bell, Caroline

    2016-05-06

    To identify predictors of self-reported psychological resilience amongst medical students following major earthquakes in Canterbury in 2010 and 2011. Two hundred and fifty-three medical students from the Christchurch campus, University of Otago, were invited to participate in an electronic survey seven months following the most severe earthquake. Students completed the Connor-Davidson Resilience Scale, the Depression, Anxiety and Stress Scale, the Post-traumatic Disorder Checklist, the Work and Adjustment Scale, and the Eysenck Personality Questionnaire. Likert scales and other questions were also used to assess a range of variables including demographic and historical variables (eg, self-rated resilience prior to the earthquakes), plus the impacts of the earthquakes. The response rate was 78%. Univariate analyses identified multiple variables that were significantly associated with higher resilience. Multiple linear regression analyses produced a fitted model that was able to explain 35% of the variance in resilience scores. The best predictors of higher resilience were: retrospectively-rated personality prior to the earthquakes (higher extroversion and lower neuroticism); higher self-rated resilience prior to the earthquakes; not being exposed to the most severe earthquake; and less psychological distress following the earthquakes. Psychological resilience amongst medical students following major earthquakes was able to be predicted to a moderate extent.

  14. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    Science.gov (United States)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic risk to earthquakes are increasing steadily as urbanization and development occupy more areas that a prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The earthquake scenarios are intended as a basic input for developing detailed earthquake damage scenarios for the cities and can be used in earthquake-safe town and infrastructure planning. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia area that is the most populated (the population is of more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=9-10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK). Almost a century later (95 years) an earthquake of moment magnitude 5.6 (I0=7-8 MSK) hit the city of Sofia, on May 22nd, 2012. In the present study as a deterministic scenario event is considered a damaging earthquake with higher probability of occurrence that could affect the city with intensity less than or equal to VIII

  15. The Kresna earthquake of 1904 in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Ambraseys, N. [Imperial College of Science, London (United Kingdom). Technology and Medicine, Dept. of Civil Engineering

    2001-02-01

    The Kresna earthquake in 1904 in Bulgaria is one of the largest shallow 20th century events on land in the Balkans. This event, which was preceded by a large foreshock, has hitherto been assigned a range of magnitudes up to M{sub s} = 7.8 but the reappraisal of instrumental data yields as much smaller value of M{sub s} = 7.2 and a re-assesment of the intensity distribution suggests 7.1. Thus both instrumental and macroseismic data appear consistent with a magnitude which is also compatible with the fault segmentation and local morphology of the region which cannot accommodate shallow events much larger than about 7.0. The relatively large size of the main shock suggests surface faulting but the available field evidence is insufficient to establish the dimensions, attitude and amount of dislocation, except perhaps in the vicinity of Krupnik. This down sizing of the Kresna earthquake has important consequences for tectonics and earthquake hazard estimates in the Balkans.

  16. The Kresna earthquake of 1904 in Bulgaria

    Directory of Open Access Journals (Sweden)

    N. N. Ambraseys

    2001-06-01

    Full Text Available The Kresna earthquake in 1904 in Bulgaria is one of the largest shallow 20th century events on land in the Balkans. This event, which was preceded by a large foreshock, has hitherto been assigned a range of magnitudes up to M S = 7.8 but the reappraisal of instrumental data yields a much smaller value of M S = 7.2 and a re-assement of the intensity distribution suggests 7.1. Thus both instrumental and macroseismic data appear consistent with a magnitude which is also compatible with the fault segmentation and local morphology of the region which cannot accommodate shallow events much larger than about 7.0. The relatively large size of the main shock suggests surface faulting but the available field evidence is insufficient to establish the dimensions, attitude andamount of dislocation, except perhaps in the vicinity of Krupnik. This downsizing of the Kresna earthquake has important consequences for tectonics and earthquake hazard estimates in the Balkans.

  17. A global outer-rise/outer-trench-slope (OR/OTS) earthquake study

    Science.gov (United States)

    Wartman, J. M.; Kita, S.; Kirby, S. H.; Choy, G. L.

    2009-12-01

    Using improved seismic, bathymetric, satellite gravity and other geophysical data, we investigated the seismicity patterns and focal mechanisms of earthquakes in oceanic lithosphere off the trenches of the world that are large enough to be well recorded at teleseismic distances. A number of prominent trends are apparent, some of which have been previously recognized based on more limited data [1], and some of which are largely new [2-5]: (1) The largest events and the highest seismicity rates tend to occur where Mesozoic incoming plates are subducting at high rates (e.g., those in the western Pacific and the Banda segment of Indonesia). The largest events are predominantly shallow normal faulting (SNF) earthquakes. Less common are reverse-faulting (RF) events that tend to be deeper and to be present along with SNF events where nearby seamounts, seamount chains and other volcanic features are subducting [Seno and Yamanaka, 1996]. Blooms of SNF OR/OTS events usually occur just after and seaward of great interplate thrust (IPT) earthquakes but are far less common after smaller IPT events. (2) Plates subducting at slow rates (Chile, the Ninety East Ridge in Sumatra, and the D’Entrecastaux Ridge in Vanuatu).

  18. Fault Rupture Model of the 2016 Gyeongju, South Korea, Earthquake and Its Implication for the Underground Fault System

    Science.gov (United States)

    Uchide, Takahiko; Song, Seok Goo

    2018-03-01

    The 2016 Gyeongju earthquake (ML 5.8) was the largest instrumentally recorded inland event in South Korea. It occurred in the southeast of the Korean Peninsula and was preceded by a large ML 5.1 foreshock. The aftershock seismicity data indicate that these earthquakes occurred on two closely collocated parallel faults that are oblique to the surface trace of the Yangsan fault. We investigate the rupture properties of these earthquakes using finite-fault slip inversion analyses. The obtained models indicate that the ruptures propagated NNE-ward and SSW-ward for the main shock and the large foreshock, respectively. This indicates that these earthquakes occurred on right-step faults and were initiated around a fault jog. The stress drops were up to 62 and 43 MPa for the main shock and the largest foreshock, respectively. These high stress drops imply high strength excess, which may be overcome by the stress concentration around the fault jog.

  19. Earthquake risk assessment of Alexandria, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Gaber, Hanan; Ibrahim, Hamza

    2015-01-01

    Throughout historical and recent times, Alexandria has suffered great damage due to earthquakes from both near- and far-field sources. Sometimes, the sources of such damages are not well known. During the twentieth century, the city was shaken by several earthquakes generated from inland dislocations (e.g., 29 Apr. 1974, 12 Oct. 1992, and 28 Dec. 1999) and the African continental margin (e.g., 12 Sept. 1955 and 28 May 1998). Therefore, this study estimates the earthquake ground shaking and the consequent impacts in Alexandria on the basis of two earthquake scenarios. The simulation results show that Alexandria affected by both earthquakes scenarios relatively in the same manner despite the number of casualties during the first scenario (inland dislocation) is twice larger than the second one (African continental margin). An expected percentage of 2.27 from Alexandria's total constructions (12.9 millions, 2006 Census) will be affected, 0.19 % injuries and 0.01 % deaths of the total population (4.1 millions, 2006 Census) estimated by running the first scenario. The earthquake risk profile reveals that three districts (Al-Montazah, Al-Amriya, and Shark) lie in high seismic risks, two districts (Gharb and Wasat) are in moderate, and two districts (Al-Gomrok and Burg El-Arab) are in low seismic risk level. Moreover, the building damage estimations reflect that Al-Montazah is the highest vulnerable district whereas 73 % of expected damages were reported there. The undertaken analysis shows that the Alexandria urban area faces high risk. Informal areas and deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated earthquake risks (buildings damages) are concentrated at the most densely populated (Al-Montazah, Al-Amriya, and Shark) districts. Moreover, about 75 % of casualties are in the same districts.

  20. Earthquake measurements in southern Sweden Oct 1, 1986 - Mar 31, 1987

    International Nuclear Information System (INIS)

    Slunga, R.; Nordgren, L.

    1987-12-01

    A network of four stations covering southeastern Sweden has been operated for the period Oct 1, 1986 - Mar 31, 1987. Three events were aftershocks to the strong Skoevde event, 860714, ML=4.5. This made it necessary to include the Skoevde main event together with a couple of earlier aftershocks in the analysis presented in this report. Thus the present study gives 10 new earthquake mechanisms. Three of these events are in the range ML=3.5-4.5. Of the earlier about 170 earthquake mechanisms available for southern Sweden the largest is ML=3.2. The earthquakes of the present study thus give significant new information about Swedish seismic activity. (orig./DG)

  1. Combination of High Rate, Real-time GNSS and Accelerometer Observations - Preliminary Results Using a Shake Table and Historic Earthquake Events.

    Science.gov (United States)

    Jackson, Michael; Passmore, Paul; Zimakov, Leonid; Raczka, Jared

    2014-05-01

    conducted with the 160-09SG Recorder is focused on the characteristics of GNSS and seismic sensors in high dynamic environments, including historic earthquakes replicated on a shake table, over a range of displacements and frequencies. The main goals of the field tests are to explore the optimum integration of these sensors from a filtering perspective including simple harmonic impulses over varying frequencies and amplitudes and under the dynamic conditions of various earthquake scenarios.

  2. The 2006-2007 Kuril Islands great earthquake sequence

    Science.gov (United States)

    Lay, T.; Kanamori, H.; Ammon, C.J.; Hutko, Alexander R.; Furlong, K.; Rivera, L.

    2009-01-01

    The southwestern half of a ???500 km long seismic gap in the central Kuril Island arc subduction zone experienced two great earthquakes with extensive preshock and aftershock sequences in late 2006 to early 2007. The nature of seismic coupling in the gap had been uncertain due to the limited historical record of prior large events and the presence of distinctive upper plate, trench and outer rise structures relative to adjacent regions along the arc that have experienced repeated great interplate earthquakes in the last few centuries. The intraplate region seaward of the seismic gap had several shallow compressional events during the preceding decades (notably an MS 7.2 event on 16 March 1963), leading to speculation that the interplate fault was seismically coupled. This issue was partly resolved by failure of the shallow portion of the interplate megathrust in an MW = 8.3 thrust event on 15 November 2006. This event ruptured ???250 km along the seismic gap, just northeast of the great 1963 Kuril Island (Mw = 8.5) earthquake rupture zone. Within minutes of the thrust event, intense earthquake activity commenced beneath the outer wall of the trench seaward of the interplate rupture, with the larger events having normal-faulting mechanisms. An unusual double band of interplate and intraplate aftershocks developed. On 13 January 2007, an MW = 8.1 extensional earthquake ruptured within the Pacific plate beneath the seaward edge of the Kuril trench. This event is the third largest normal-faulting earthquake seaward of a subduction zone on record, and its rupture zone extended to at least 33 km depth and paralleled most of the length of the 2006 rupture. The 13 January 2007 event produced stronger shaking in Japan than the larger thrust event, as a consequence of higher short-period energy radiation from the source. The great event aftershock sequences were dominated by the expected faulting geometries; thrust faulting for the 2006 rupture zone, and normal faulting for

  3. Is Your Class a Natural Disaster? It can be... The Real Time Earthquake Education (RTEE) System

    Science.gov (United States)

    Whitlock, J. S.; Furlong, K.

    2003-12-01

    In cooperation with the U.S. Geological Survey (USGS) and its National Earthquake Information Center (NEIC) in Golden, Colorado, we have implemented an autonomous version of the NEIC's real-time earthquake database management and earthquake alert system (Earthworm). This is the same system used professionally by the USGS in its earthquake response operations. Utilizing this system, Penn State University students participating in natural hazard classes receive real-time alerts of worldwide earthquake events on cell phones distributed to the class. The students are then responsible for reacting to actual earthquake events, in real-time, with the same data (or lack thereof) as earthquake professionals. The project was first implemented in Spring 2002, and although it had an initial high intrigue and "coolness" factor, the interest of the students waned with time. Through student feedback, we observed that scientific data presented on its own without an educational context does not foster student learning. In order to maximize the impact of real-time data and the accompanying e-media, the students need to become personally involved. Therefore, in collaboration with the Incorporated Research Institutes of Seismology (IRIS), we have begun to develop an online infrastructure that will help teachers and faculty effectively use real-time earthquake information. The Real-Time Earthquake Education (RTEE) website promotes student learning by integrating inquiry-based education modules with real-time earthquake data. The first module guides the students through an exploration of real-time and historic earthquake datasets to model the most important criteria for determining the potential impact of an earthquake. Having provided the students with content knowledge in the first module, the second module presents a more authentic, open-ended educational experience by setting up an earthquake role-play situation. Through the Earthworm system, we have the ability to "set off

  4. Palaeoseismological evidence for the 1570 Ferrara earthquake, Italy

    Science.gov (United States)

    Caputo, R.; Poli, M. E.; Minarelli, L.; Rapti, D.; Sboras, S.; Stefani, M.; Zanferrari, A.

    2016-06-01

    In May 2012, two earthquakes (Mw 6.1 and 5.9) affected the Po Plain, Italy. The strongest shock produced extensive secondary effects associated with liquefaction phenomena. Few weeks after the earthquakes, an exploratory trench was excavated across a levee of the palaeo-Reno reach, where a system of aligned ground ruptures was observed. The investigated site well preserves the geomorphic expression of a fluvial body that mainly formed in the fifteenth to sixteenth centuries as historical sources and radiometric data testify. In the trench several features pinpointed the occurrence of past liquefaction events: (i) dikes filled with overpressured injected sand and associated with vertical displacements have no correspondence with the fractures mapped at the surface; (ii) thick dikes are buried by the plowed level or even by fluvial deposits; (iii) although some of the 2012 ground fractures characterized by vertical displacement and opening occurred in correspondence of thick dikes observed in the trench, sand and water ejection did not occur; (iv) some seismites (load casts) were observed in the trench well above the 2012 water level. The results strongly suggest that shaking has locally occurred in the past producing a sufficient ground motion capable of triggering liquefaction phenomena prior to, and likely stronger than, the May 2012 earthquake. Historical seismicity documents three seismic events that might have been able to generate liquefaction in the broader investigated area. Based on the analysis of their macroseismic fields, the 17 November 1570 Ferrara earthquake is the most likely causative event of the observed palaeoliquefactions.

  5. Failures and suggestions in Earthquake forecasting and prediction

    Science.gov (United States)

    Sacks, S. I.

    2013-12-01

    Seismologists have had poor success in earthquake prediction. However, wide ranging observations from earlier great earthquakes show that precursory data can exist. In particular, two aspects seem promising. In agreement with simple physical modeling, b-values decrease in highly loaded fault zones for years before failure. Potentially more usefully, in high stress regions, breakdown of dilatant patches leading to failure can yield expelled water-related observations. The volume increase (dilatancy) caused by high shear stresses decreases the pore pressure. Eventually, water flows back in restoring the pore pressure, promoting failure and expelling the extra water. Of course, in a generally stressed region there may be many small patches that fail, such as observed before the 1975 Haicheng earthquake. Only a few days before the major event will most of the dilatancy breakdown occur in the fault zone itself such as for the Tangshan, 1976 destructive event. Observations of 'water release' effects have been observed before the 1923 great Kanto earthquake, the 1984 Yamasaki event, the 1975 Haicheng and the 1976 Tangshan earthquakes and also the 1995 Kobe earthquake. While there are obvious difficulties in water release observations, not least because there is currently no observational network anywhere, historical data does suggest some promise if we broaden our approach to this difficult subject.

  6. Does paleoseismology forecast the historic rates of large earthquakes on the San Andreas fault system?

    Science.gov (United States)

    Biasi, Glenn; Scharer, Katherine M.; Weldon, Ray; Dawson, Timothy E.

    2016-01-01

    The 98-year open interval since the most recent ground-rupturing earthquake in the greater San Andreas boundary fault system would not be predicted by the quasi-periodic recurrence statistics from paleoseismic data. We examine whether the current hiatus could be explained by uncertainties in earthquake dating. Using seven independent paleoseismic records, 100 year intervals may have occurred circa 1150, 1400, and 1700 AD, but they occur in a third or less of sample records drawn at random. A second method sampling from dates conditioned on the existence of a gap of varying length suggests century-long gaps occur 3-10% of the time. A combined record with more sites would lead to lower probabilities. Systematic data over-interpretation is considered an unlikely explanation. Instead some form of non-stationary behaviour seems required, perhaps through long-range fault interaction. Earthquake occurrence since 1000 AD is not inconsistent with long-term cyclicity suggested from long runs of earthquake simulators.

  7. Global risk of big earthquakes has not recently increased.

    Science.gov (United States)

    Shearer, Peter M; Stark, Philip B

    2012-01-17

    The recent elevated rate of large earthquakes has fueled concern that the underlying global rate of earthquake activity has increased, which would have important implications for assessments of seismic hazard and our understanding of how faults interact. We examine the timing of large (magnitude M≥7) earthquakes from 1900 to the present, after removing local clustering related to aftershocks. The global rate of M≥8 earthquakes has been at a record high roughly since 2004, but rates have been almost as high before, and the rate of smaller earthquakes is close to its historical average. Some features of the global catalog are improbable in retrospect, but so are some features of most random sequences--if the features are selected after looking at the data. For a variety of magnitude cutoffs and three statistical tests, the global catalog, with local clusters removed, is not distinguishable from a homogeneous Poisson process. Moreover, no plausible physical mechanism predicts real changes in the underlying global rate of large events. Together these facts suggest that the global risk of large earthquakes is no higher today than it has been in the past.

  8. Triggered surface slips in the Coachella Valley area associated with the 1992 Joshua Tree and Landers, California, Earthquakes

    Science.gov (United States)

    Rymer, M.J.

    2000-01-01

    The Coachella Valley area was strongly shaken by the 1992 Joshua Tree (23 April) and Landers (28 June) earthquakes, and both events caused triggered slip on active faults within the area. Triggered slip associated with the Joshua Tree earthquake was on a newly recognized fault, the East Wide Canyon fault, near the southwestern edge of the Little San Bernardino Mountains. Slip associated with the Landers earthquake formed along the San Andreas fault in the southeastern Coachella Valley. Surface fractures formed along the East Wide Canyon fault in association with the Joshua Tree earthquake. The fractures extended discontinuously over a 1.5-km stretch of the fault, near its southern end. Sense of slip was consistently right-oblique, west side down, similar to the long-term style of faulting. Measured offset values were small, with right-lateral and vertical components of slip ranging from 1 to 6 mm and 1 to 4 mm, respectively. This is the first documented historic slip on the East Wide Canyon fault, which was first mapped only months before the Joshua Tree earthquake. Surface slip associated with the Joshua Tree earthquake most likely developed as triggered slip given its 5 km distance from the Joshua Tree epicenter and aftershocks. As revealed in a trench investigation, slip formed in an area with only a thin (Salton Trough. A paleoseismic trench study in an area of 1992 surface slip revealed evidence of two and possibly three surface faulting events on the East Wide Canyon fault during the late Quaternary, probably latest Pleistocene (first event) and mid- to late Holocene (second two events). About two months after the Joshua Tree earthquake, the Landers earthquake then triggered slip on many faults, including the San Andreas fault in the southeastern Coachella Valley. Surface fractures associated with this event formed discontinuous breaks over a 54-km-long stretch of the fault, from the Indio Hills southeastward to Durmid Hill. Sense of slip was right

  9. What we have learned from the 2008 Wenchuan Earthquake and its aftermath: A decade of research and challenges

    NARCIS (Netherlands)

    Fan, Xuanmei; Juang, Hsein; Wasowski, Janusz; Huang, Runqiu; Xu, Qiang; Scaringi, Gianvito; van Westen, C.J.; Havenith, Hans-Balder

    2018-01-01

    The 2008 Mw 7.9 Wenchuan Earthquake (Sichuan, China) was possibly the largest and most destructive recent earthquake as far as the geo-hazards are concerned. Of the nearly 200,000 landslides triggered originally, many remobilized within a few years after the initial event by rainfall, which often

  10. Earthquake ethics through scientific knowledge, historical memory and societal awareness: the experience of direct internet information.

    Science.gov (United States)

    de Rubeis, Valerio; Sbarra, Paola; Sebaste, Beppe; Tosi, Patrizia

    2013-04-01

    The experience of collection of data on earthquake effects and diffusion of information to people, carried on through the site "haisentitoilterremoto.it" (didyoufeelit) managed by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), has evidenced a constantly growing interest by Italian citizens. Started in 2007, the site has collected more than 520,000 compiled intensity questionnaires, producing intensity maps of almost 6,000 earthquakes. One of the most peculiar feature of this experience is constituted by a bi-directional information exchange. Every person can record observed effects of the earthquake and, at the same time, look at the generated maps. Seismologists, on the other side, can find each earthquake described in real time through its effects on the whole territory. In this way people, giving punctual information, receive global information from the community, mediated and interpreted by seismological knowledge. The relationship amongst seismologists, mass media and civil society is, thus, deep and rich. The presence of almost 20,000 permanent subscribers distributed on the whole Italian territory, alerted in case of earthquake, has reinforced the participation: the subscriber is constantly informed by the seismologists, through e-mail, about events occurred in his-her area, even if with very small magnitude. The "alert" service provides the possibility to remember that earthquakes are a phenomenon continuously present, on the other hand it shows that high magnitude events are very rare. This kind of information is helpful as it is fully complementary to that one given by media. We analyze the effects of our activity on society and mass media. The knowledge of seismic phenomena is present in each person, having roots on fear, idea of death and destruction, often with the deep belief of very rare occurrence. This position feeds refusal and repression. When a strong earthquake occurs, surprise immediately changes into shock and desperation. A

  11. The Lushan earthquake and the giant panda: impacts and conservation.

    Science.gov (United States)

    Zhang, Zejun; Yuan, Shibin; Qi, Dunwu; Zhang, Mingchun

    2014-06-01

    Earthquakes not only result in a great loss of human life and property, but also have profound effects on the Earth's biodiversity. The Lushan earthquake occurred on 20 Apr 2013, with a magnitude of 7.0 and an intensity of 9.0 degrees. A distance of 17.0 km from its epicenter to the nearest distribution site of giant pandas recorded in the Third National Survey was determined. Making use of research on the Wenchuan earthquake (with a magnitude of 8.0), which occurred approximately 5 years ago, we briefly analyze the impacts of the Lushan earthquake on giant pandas and their habitat. An earthquake may interrupt ongoing behaviors of giant pandas and may also cause injury or death. In addition, an earthquake can damage conservation facilities for pandas, and result in further habitat fragmentation and degradation. However, from a historical point of view, the impacts of human activities on giant pandas and their habitat may, in fact, far outweigh those of natural disasters such as earthquakes. Measures taken to promote habitat restoration and conservation network reconstruction in earthquake-affected areas should be based on requirements of giant pandas, not those of humans. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  12. An instrumental earthquake catalogue for northeastern Italy since 1900

    International Nuclear Information System (INIS)

    Margottini, C.; Martini, G.; Slejko, D.

    1991-01-01

    An earthquake catalogue of instrumental data for northeastern Italy since 1900 is presented. The different types of magnitude, which are the main parameters of the present study, have been evaluated so as to be as homogeneous as possible. Comparisons of the different magnitude values show linear dependence, at least in the medium magnitude range represented by the available data set. Correlations between the magnitude most significant for this region and chosen macroseismic data indicate a methodology for assessing the macroseismic magnitude of historical earthquakes which seems to be stable. (author)

  13. Development of fragility functions to estimate homelessness after an earthquake

    Science.gov (United States)

    Brink, Susan A.; Daniell, James; Khazai, Bijan; Wenzel, Friedemann

    2014-05-01

    Immediately after an earthquake, many stakeholders need to make decisions about their response. These decisions often need to be made in a data poor environment as accurate information on the impact can take months or even years to be collected and publicized. Social fragility functions have been developed and applied to provide an estimate of the impact in terms of building damage, deaths and injuries in near real time. These rough estimates can help governments and response agencies determine what aid may be required which can improve their emergency response and facilitate planning for longer term response. Due to building damage, lifeline outages, fear of aftershocks, or other causes, people may become displaced or homeless after an earthquake. Especially in cold and dangerous locations, the rapid provision of safe emergency shelter can be a lifesaving necessity. However, immediately after an event there is little information available about the number of homeless, their locations and whether they require public shelter to aid the response agencies in decision making. In this research, we analyze homelessness after historic earthquakes using the CATDAT Damaging Earthquakes Database. CATDAT includes information on the hazard as well as the physical and social impact of over 7200 damaging earthquakes from 1900-2013 (Daniell et al. 2011). We explore the relationship of both earthquake characteristics and area characteristics with homelessness after the earthquake. We consider modelled variables such as population density, HDI, year, measures of ground motion intensity developed in Daniell (2014) over the time period from 1900-2013 as well as temperature. Using a base methodology based on that used for PAGER fatality fragility curves developed by Jaiswal and Wald (2010), but using regression through time using the socioeconomic parameters developed in Daniell et al. (2012) for "socioeconomic fragility functions", we develop a set of fragility curves that can be

  14. Hydrothermal response to a volcano-tectonic earthquake swarm, Lassen, California

    Science.gov (United States)

    Ingebritsen, Steven E.; Shelly, David R.; Hsieh, Paul A.; Clor, Laura; P.H. Seward,; Evans, William C.

    2015-01-01

    The increasing capability of seismic, geodetic, and hydrothermal observation networks allows recognition of volcanic unrest that could previously have gone undetected, creating an imperative to diagnose and interpret unrest episodes. A November 2014 earthquake swarm near Lassen Volcanic National Park, California, which included the largest earthquake in the area in more than 60 years, was accompanied by a rarely observed outburst of hydrothermal fluids. Although the earthquake swarm likely reflects upward migration of endogenous H2O-CO2 fluids in the source region, there is no evidence that such fluids emerged at the surface. Instead, shaking from the modest sized (moment magnitude 3.85) but proximal earthquake caused near-vent permeability increases that triggered increased outflow of hydrothermal fluids already present and equilibrated in a local hydrothermal aquifer. Long-term, multiparametric monitoring at Lassen and other well-instrumented volcanoes enhances interpretation of unrest and can provide a basis for detailed physical modeling.

  15. Paleoseismological evidence for historical surface faulting in São Miguel island (Azores

    Directory of Open Access Journals (Sweden)

    Rita Carmo

    2014-02-01

    Full Text Available The Azores archipelago is located at the triple junction between the Eurasian, Nubian and North American lithospheric plates, whose boundaries are the Mid-Atlantic Ridge and the Azores-Gibraltar Fault Zone. São Miguel is the largest island of the archipelago and is located on the eastern part of the western segment of the Azores-Gibraltar Fault Zone. The Achada das Furnas plateau, located in the central part of the island, between Fogo and Furnas central volcanoes, is dominated by several WNW-ESE and E-W trending alignments of basaltic cinder cones. Two E-W trending scarps were identified by aerial photo interpretation. Transect trenches exposed two active normal faults-the Altiprado Faults – confirming the tectonic nature of the scarps. Several paleoearthquakes were deduced, most of which in historical times, producing 1.38 m and 0.48 m of cumulative displacement. Maximum expected magnitudes (MW determined from slip per event range from 5.7 to 6.7. One of the events probably corresponds to the historical earthquake of October 22nd, 1522, the deadliest in the archipelago. Radiocarbon ages are in agreement with this interpretation.

  16. Extending the ISC-GEM Global Earthquake Instrumental Catalogue

    Science.gov (United States)

    Di Giacomo, Domenico; Engdhal, Bob; Storchak, Dmitry; Villaseñor, Antonio; Harris, James

    2015-04-01

    After a 27-month project funded by the GEM Foundation (www.globalquakemodel.org), in January 2013 we released the ISC-GEM Global Instrumental Earthquake Catalogue (1900 2009) (www.isc.ac.uk/iscgem/index.php) as a special product to use for seismic hazard studies. The new catalogue was necessary as improved seismic hazard studies necessitate that earthquake catalogues are homogeneous (to the largest extent possible) over time in their fundamental parameters, such as location and magnitude. Due to time and resource limitation, the ISC-GEM catalogue (1900-2009) included earthquakes selected according to the following time-variable cut-off magnitudes: Ms=7.5 for earthquakes occurring before 1918; Ms=6.25 between 1918 and 1963; and Ms=5.5 from 1964 onwards. Because of the importance of having a reliable seismic input for seismic hazard studies, funding from GEM and two commercial companies in the US and UK allowed us to start working on the extension of the ISC-GEM catalogue both for earthquakes that occurred beyond 2009 and for earthquakes listed in the International Seismological Summary (ISS) which fell below the cut-off magnitude of 6.25. This extension is part of a four-year program that aims at including in the ISC-GEM catalogue large global earthquakes that occurred before the beginning of the ISC Bulletin in 1964. In this contribution we present the updated ISC GEM catalogue, which will include over 1000 more earthquakes that occurred in 2010 2011 and several hundreds more between 1950 and 1959. The catalogue extension between 1935 and 1949 is currently underway. The extension of the ISC-GEM catalogue will also be helpful for regional cross border seismic hazard studies as the ISC-GEM catalogue should be used as basis for cross-checking the consistency in location and magnitude of those earthquakes listed both in the ISC GEM global catalogue and regional catalogues.

  17. A seismological study of shallow weak earthquakes in the urban area of Hamburg city, Germany, and its possible relation to salt dissolution

    Science.gov (United States)

    Dahm, Torsten; Heimann, Sebastian; Bialowons, Wilhelm

    2010-05-01

    In the night from 8/9 April 2009, shortly after midnight on Maundy Thursday before Easter, several people in Gross-Flottbek, Hamburg, felt unusual strong ground shocks so that some of them left their houses in fear of earthquake shaking. Police and Fire Brigade received phone calls of worried residents, and few days later Internet pages were published where people reported their observations. On 21 April 2009 at about 8 p.m. local time a second micro-earthquake was felt. Damage to buildings or infrastructure did not occur to our knowledge. The Institute of Geophysics, University of Hamburg, installed from 22 April to 17 May 2009 three temporal seismic stations in the epicentral area. Seismological data from two close-by stations at the Deutsches Elektron-Synchrotron (DESY) in about 1 km and the Geophysical Institute in about 7 km distance were collected and integrated to the temporal network. The events occurred above the roof of the shallow Othmarschen Langenfelde salt diapir (OLD), in an area known for active sinkhole formation and previous historic ground shaking events. The analysis of the seismological data recovers that three shallow micro-earthquakes occurred from 8 to 21 April at a depth of about 100m, the largest one with a moment magnitude of about MW 0.6. Depth location of such shallow events is difficult with standard methods, and is here constrained by waveform modeling of surface waves. Earthquakes occurring in soft sediments within the uppermost 100 m are a rare phenomena and cannot be explained by standard models. Rupture process in soft sediments differ from those on faults in more competent rock. We discuss the rupture and source mechanism of the earthquakes in the context of previous historic shocks and existing sinkhole and deformation data. Although the event was so weak, the rupture duration was unusual long and possibly 0.3 s. Three possible models for the generation of repeated micro-earthquakes in Gross Flottbek are developed and discussed

  18. Standard concerning the design of nuclear power stations in earthquake-prone districts

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Anbriashivili, Y.K.; Suvilova, A.V.

    1980-01-01

    The measures of security assurance against the effect of radioactive contamination has become more and more complex due to the construction of nuclear power stations of diverse types. The aseismatic measures for the nuclear power stations built in the districts where earthquakes of different intensity occur are important problems. All main machinery and equipments and emergency systems in power stations must be protected from earthquakes, and this makes the solution of problems difficult. At present in USSR, the provisional standard concerning the design of atomic energy facilities built in earthquake-prone districts is completed. The basic philosophy of the standard is to decide the general requirements as the conditions for the design of nuclear power stations built in earthquake-prone districts. The lowest earthquake activity in the construction districts is considered as magnitude 4, and in the districts where earthquake activity is magnitude 9 or more, the construction of nuclear power stations is prohibited. Two levels of earthquake action are specified for the design: design earthquake and the largest design earthquake. The construction sites of nuclear power stations must be 15 to 150 km distant from the potential sources of earthquakes. Nuclear power stations are regarded as the aseismatically guaranteed type when the safety of reactors is secured under the application of the standard. The buildings and installations are classified into three classes regarding the aseismatic properties. (Kako, I.)

  19. The link between great earthquakes and the subduction of oceanic fracture zones

    Directory of Open Access Journals (Sweden)

    R. D. Müller

    2012-12-01

    Full Text Available Giant subduction earthquakes are known to occur in areas not previously identified as prone to high seismic risk. This highlights the need to better identify subduction zone segments potentially dominated by relatively long (up to 1000 yr and more recurrence times of giant earthquakes. We construct a model for the geometry of subduction coupling zones and combine it with global geophysical data sets to demonstrate that the occurrence of great (magnitude ≥ 8 subduction earthquakes is strongly biased towards regions associated with intersections of oceanic fracture zones and subduction zones. We use a computational recommendation technology, a type of information filtering system technique widely used in searching, sorting, classifying, and filtering very large, statistically skewed data sets on the Internet, to demonstrate a robust association and rule out a random effect. Fracture zone–subduction zone intersection regions, representing only 25% of the global subduction coupling zone, are linked with 13 of the 15 largest (magnitude Mw ≥ 8.6 and half of the 50 largest (magnitude Mw ≥ 8.4 earthquakes. In contrast, subducting volcanic ridges and chains are only biased towards smaller earthquakes (magnitude < 8. The associations captured by our statistical analysis can be conceptually related to physical differences between subducting fracture zones and volcanic chains/ridges. Fracture zones are characterised by laterally continuous, uplifted ridges that represent normal ocean crust with a high degree of structural integrity, causing strong, persistent coupling in the subduction interface. Smaller volcanic ridges and chains have a relatively fragile heterogeneous internal structure and are separated from the underlying ocean crust by a detachment interface, resulting in weak coupling and relatively small earthquakes, providing a conceptual basis for the observed dichotomy.

  20. The 1997 Kronotsky earthquake and tsunami and their predecessors, Kamchatka, Russia

    Science.gov (United States)

    Bourgeois, Joanne; Pinegina, Tatiana K.

    2018-01-01

    The northern part of the Kamchatka subduction zone (KSZ) experienced three tsunamigenic earthquakes in the 20th century - February 1923, April 1923, December 1997 - events that help us better understand the behavior of this segment. A particular focus of this study is the nature and location of the 5 December 1997 Kronotsky rupture (Mw ˜ 7.8) as elucidated by tsunami runup north of Kronotsky Peninsula in southern to central Kamchatsky Bay. Some studies have characterized the subduction zone off Kronotsky Peninsula as either more locked or more smoothly slipping than surrounding areas and have placed the 1997 rupture south of this promontory. However, 1997 tsunami runup north of the peninsula, as evidenced by our mapping of tsunami deposits, requires the rupture to extend farther north. Previously reported runup (1997 tsunami) on Kronotsky Peninsula was no more than 2-3 m, but our studies indicate tsunami heights for at least 50 km north of Kronotsky Peninsula in Kamchatsky Bay, ranging from 3.4 to 9.5 m (average 6.1 m), exceeding beach ridge heights of 5.3 to 8.3 m (average 7.1 m). For the two 1923 tsunamis, we cannot distinguish among their deposits in southern to central Kamchatsky Bay, but the deposits are more extensive than the 1997 deposit. A reevaluation of the April 1923 historical tsunami suggests that its moment magnitude could be revised upward, and that the 1997 earthquake filled a gap between the two 1923 earthquake ruptures. Characterizing these historical earthquakes and tsunamis in turn contributes to interpreting the prehistoric record, which is necessary to evaluate recurrence intervals for such events. Deeper in time, the prehistoric record back to ˜ AD 300 in southern to central Kamchatsky Bay indicates that during this interval, there were no local events significantly larger than those of the 20th century. Together, the historic and prehistoric tsunami record suggests a more northerly location of the 1997 rupture compared to most other

  1. The 1997 Kronotsky earthquake and tsunami and their predecessors, Kamchatka, Russia

    Directory of Open Access Journals (Sweden)

    J. Bourgeois

    2018-01-01

    Full Text Available The northern part of the Kamchatka subduction zone (KSZ experienced three tsunamigenic earthquakes in the 20th century – February 1923, April 1923, December 1997 – events that help us better understand the behavior of this segment. A particular focus of this study is the nature and location of the 5 December 1997 Kronotsky rupture (Mw ∼ 7.8 as elucidated by tsunami runup north of Kronotsky Peninsula in southern to central Kamchatsky Bay. Some studies have characterized the subduction zone off Kronotsky Peninsula as either more locked or more smoothly slipping than surrounding areas and have placed the 1997 rupture south of this promontory. However, 1997 tsunami runup north of the peninsula, as evidenced by our mapping of tsunami deposits, requires the rupture to extend farther north. Previously reported runup (1997 tsunami on Kronotsky Peninsula was no more than 2–3 m, but our studies indicate tsunami heights for at least 50 km north of Kronotsky Peninsula in Kamchatsky Bay, ranging from 3.4 to 9.5 m (average 6.1 m, exceeding beach ridge heights of 5.3 to 8.3 m (average 7.1 m. For the two 1923 tsunamis, we cannot distinguish among their deposits in southern to central Kamchatsky Bay, but the deposits are more extensive than the 1997 deposit. A reevaluation of the April 1923 historical tsunami suggests that its moment magnitude could be revised upward, and that the 1997 earthquake filled a gap between the two 1923 earthquake ruptures. Characterizing these historical earthquakes and tsunamis in turn contributes to interpreting the prehistoric record, which is necessary to evaluate recurrence intervals for such events. Deeper in time, the prehistoric record back to ∼ AD 300 in southern to central Kamchatsky Bay indicates that during this interval, there were no local events significantly larger than those of the 20th century. Together, the historic and prehistoric tsunami record suggests a more northerly location of

  2. Analyses of surface motions caused by the magnitude 9.0 2004 Sumatra earthquake

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Gudmundsson, Ó.

    The Sumatra, Indonesia, earthquake on December 26th was one of the most devastating earthquakes in history. With a magnitude of Mw = 9.0 it is the forth largest earthquake recorded since 1900. It occurred about one hundred kilometers off the west coast of northern Sumatra, where the relatively thin...... of years. The result was a devastating tsunami hitting coastlines across the Indian Ocean killing more than 225,000 people in Sri Lanka, India, Indonesia, Thailand and Malaysia. An earthquake of this magnitude is expected to involve a displacement on the fault on the order of 10 meters. But, what...... was the actual amplitude of the surface motions that triggered the tsunami? This can be constrained using the amplitudes of elastic waves radiated from the earthquake, or by direct measurements of deformation. Here we present estimates of the deformation based on continuous Global Positioning System (GPS...

  3. An interdisciplinary approach to study Pre-Earthquake processes

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S. A.; Hattori, K.; Taylor, P. T.

    2017-12-01

    We will summarize a multi-year research effort on wide-ranging observations of pre-earthquake processes. Based on space and ground data we present some new results relevant to the existence of pre-earthquake signals. Over the past 15-20 years there has been a major revival of interest in pre-earthquake studies in Japan, Russia, China, EU, Taiwan and elsewhere. Recent large magnitude earthquakes in Asia and Europe have shown the importance of these various studies in the search for earthquake precursors either for forecasting or predictions. Some new results were obtained from modeling of the atmosphere-ionosphere connection and analyses of seismic records (foreshocks /aftershocks), geochemical, electromagnetic, and thermodynamic processes related to stress changes in the lithosphere, along with their statistical and physical validation. This cross - disciplinary approach could make an impact on our further understanding of the physics of earthquakes and the phenomena that precedes their energy release. We also present the potential impact of these interdisciplinary studies to earthquake predictability. A detail summary of our approach and that of several international researchers will be part of this session and will be subsequently published in a new AGU/Wiley volume. This book is part of the Geophysical Monograph series and is intended to show the variety of parameters seismic, atmospheric, geochemical and historical involved is this important field of research and will bring this knowledge and awareness to a broader geosciences community.

  4. A case for historic joint rupture of the San Andreas and San Jacinto faults.

    Science.gov (United States)

    Lozos, Julian C

    2016-03-01

    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data and historic observations for the ~M7.5 earthquake of 8 December 1812 are best explained by a rupture that begins on the San Jacinto fault and propagates onto the San Andreas fault. This precedent carries the implications that similar joint ruptures are possible in the future and that the San Jacinto fault plays a more significant role in seismic hazard in southern California than previously considered. My work also shows how physics-based modeling can be used for interpreting paleoseismic data sets and understanding prehistoric fault behavior.

  5. A case for historic joint rupture of the San Andreas and San Jacinto faults

    Science.gov (United States)

    Lozos, Julian C.

    2016-01-01

    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data and historic observations for the ~M7.5 earthquake of 8 December 1812 are best explained by a rupture that begins on the San Jacinto fault and propagates onto the San Andreas fault. This precedent carries the implications that similar joint ruptures are possible in the future and that the San Jacinto fault plays a more significant role in seismic hazard in southern California than previously considered. My work also shows how physics-based modeling can be used for interpreting paleoseismic data sets and understanding prehistoric fault behavior. PMID:27034977

  6. Earthquake statistics, spatiotemporal distribution of foci and source mechanisms - a key to understanding of the West Bohemia/Vogtland earthquake swarms

    Science.gov (United States)

    Horálek, Josef; Čermáková, Hana; Fischer, Tomáš

    2016-04-01

    Earthquake swarms are sequences of numerous events closely clustered in space and time and do not have a single dominant mainshock. A few of the largest events in a swarm reach similar magnitudes and usually occur throughout the course of the earthquake sequence. These attributes differentiate earthquake swarms from ordinary mainshock-aftershock sequences. Earthquake swarms occur worldwide, in diverse geological units. The swarms typically accompany volcanic activity at margins of the tectonic plate but also occur in intracontinental areas where strain from tectonic-plate movement is small. The origin of earthquake swarms is still unclear. The swarms typically occur at the plate margins but also in intracontinental areas. West Bohemia-Vogtland represents one of the most active intraplate earthquake-swarm areas in Europe. It is characterised by a frequent reoccurrence of ML 2.8 swarm events are located in a few dense clusters which implies step by step rupturing of one or a few asperities during the individual swarms. The source mechanism patters (moment-tensor description, MT) of the individual swarms indicate several families of the mechanisms, which fit well geometry of respective fault segments. MTs of the most events signify pure shears except for the 1997-swarm events the MTs of which indicates a combine sources including both shear and tensile components. The origin of earthquake swarms is still unclear. Nevertheless, we infer that the individual earthquake swarms in West Bohemia-Vogtland are mixture of the mainshock-aftershock sequences which correspond to step by step rupturing of one or a few asperities. The swarms occur on short fault segments with heterogeneous stress and strength, which may be affected by pressurized crustal fluids reducing normal component of the tectonic stress and lower friction. This way critically loaded faults are brought to failure and the swarm activity is driven by the differential local stress.

  7. Do I Really Sound Like That? Communicating Earthquake Science Following Significant Earthquakes at the NEIC

    Science.gov (United States)

    Hayes, G. P.; Earle, P. S.; Benz, H.; Wald, D. J.; Yeck, W. L.

    2017-12-01

    The U.S. Geological Survey's National Earthquake Information Center (NEIC) responds to about 160 magnitude 6.0 and larger earthquakes every year and is regularly inundated with information requests following earthquakes that cause significant impact. These requests often start within minutes after the shaking occurs and come from a wide user base including the general public, media, emergency managers, and government officials. Over the past several years, the NEIC's earthquake response has evolved its communications strategy to meet the changing needs of users and the evolving media landscape. The NEIC produces a cascade of products starting with basic hypocentral parameters and culminating with estimates of fatalities and economic loss. We speed the delivery of content by prepositioning and automatically generating products such as, aftershock plots, regional tectonic summaries, maps of historical seismicity, and event summary posters. Our goal is to have information immediately available so we can quickly address the response needs of a particular event or sequence. This information is distributed to hundreds of thousands of users through social media, email alerts, programmatic data feeds, and webpages. Many of our products are included in event summary posters that can be downloaded and printed for local display. After significant earthquakes, keeping up with direct inquiries and interview requests from TV, radio, and print reports is always challenging. The NEIC works with the USGS Office of Communications and the USGS Science Information Services to organize and respond to these requests. Written executive summaries reports are produced and distributed to USGS personnel and collaborators throughout the country. These reports are updated during the response to keep our message consistent and information up to date. This presentation will focus on communications during NEIC's rapid earthquake response but will also touch on the broader USGS traditional and

  8. The historical seismicity in Spain. Analysis. Incidence over the nuclear sites

    International Nuclear Information System (INIS)

    Lopez Marinas, J.M.

    1985-01-01

    The lack of good instrumental registers till very recently and the great documental richness existing in Spain emphasize the importance of the historical seismicity. In the present report, the Spanish catalogues of earthquakes and the necessity of their revision are analyzed showing several examples. Finally the incidence of a historical seismicity datum over a nuclear site is discussed. (author)

  9. Three Millennia of Seemingly Time-Predictable Earthquakes, Tell Ateret

    Science.gov (United States)

    Agnon, Amotz; Marco, Shmuel; Ellenblum, Ronnie

    2014-05-01

    Among various idealized recurrence models of large earthquakes, the "time-predictable" model has a straightforward mechanical interpretation, consistent with simple friction laws. On a time-predictable fault, the time interval between an earthquake and its predecessor is proportional to the slip during the predecessor. The alternative "slip-predictable" model states that the slip during earthquake rupture is proportional to the preceding time interval. Verifying these models requires extended records of high precision data for both timing and amount of slip. The precision of paleoearthquake data can rarely confirm or rule out predictability, and recent papers argue for either time- or slip-predictable behavior. The Ateret site, on the trace of the Dead Sea fault at the Jordan Gorge segment, offers unique precision for determining space-time patterns. Five consecutive slip events, each associated with deformed and offset sets of walls, are correlated with historical earthquakes. Two correlations are based on detailed archaeological, historical, and numismatic evidence. The other three are tentative. The offsets of three of the events are determined with high precision; the other two are not as certain. Accepting all five correlations, the fault exhibits a striking time-predictable behavior, with a long term slip rate of 3 mm/yr. However, the 30 October 1759 ~0.5 m rupture predicts a subsequent rupture along the Jordan Gorge toward the end of the last century. We speculate that earthquakres on secondary faults (the 25 November 1759 on the Rachaya branch and the 1 January 1837 on the Roum branch, both M≥7) have disrupted the 3 kyr time-predictable pattern.

  10. Historical seismicity in Morocco: methodological aspects and cases of multidisciplinary evaluation

    International Nuclear Information System (INIS)

    Elmrabet, T.; Ramdani, M.; Tadili, B.

    1989-05-01

    Within the framework of a cooperative agreement between Sofratome and the Office National d'Electricite of Morocco, the Centre National de la Recherche of Rabat, with the collaboration of the French Institut de Protection et de Surete Nucleaire, was put in charge of compiling a revised catalogue of the historical seismicity of Morocco. The method adopted calls for the participation of several different disciplines in view of situating each earthquake in its own geographical and historical context. The approach entails, during the first stage involving primarily the historian, gathering together the original sources of data and subjecting them to a critical analysis in order to assess their reliability. The second stage consists in interpreting the information so as to define those earthquake characteristics that are requisite to seismic hazard studies. This latter evaluation must be the fruit of a multidisciplinary effort. This is particularly true for earthquakes of past centuries, the observations of which are frequently incompatible or biased and accordingly need to be substantiated by referring to information of a varying nature and, wherever possible, calibrated using accurate data from recent events. In a number of instances, duplications are encountered, or lumped effects for distinct events due to calendar misreckonings, erroneous copying, or misconceptions relative to the geological or historical context. A particularly significant example of the interference of these diverse aspects is afforded by the assessment of the destructive effects in Morocco of the 1755 'Lisbon' earthquake: a method is proposed for calibrating its intensities by comparing them with those of the recent 1969 event of similar origin

  11. The large earthquake on 29 June 1170 (Syria, Lebanon, and central southern Turkey)

    Science.gov (United States)

    Guidoboni, Emanuela; Bernardini, Filippo; Comastri, Alberto; Boschi, Enzo

    2004-07-01

    On 29 June 1170 a large earthquake hit a vast area in the Near Eastern Mediterranean, comprising the present-day territories of western Syria, central southern Turkey, and Lebanon. Although this was one of the strongest seismic events ever to hit Syria, so far no in-depth or specific studies have been available. Furthermore, the seismological literature (from 1979 until 2000) only elaborated a partial summary of it, mainly based solely on Arabic sources. The major effects area was very partial, making the derived seismic parameters unreliable. This earthquake is in actual fact one of the most highly documented events of the medieval Mediterranean. This is due to both the particular historical period in which it had occurred (between the second and the third Crusades) and the presence of the Latin states in the territory of Syria. Some 50 historical sources, written in eight different languages, have been analyzed: Latin (major contributions), Arabic, Syriac, Armenian, Greek, Hebrew, Vulgar French, and Italian. A critical analysis of this extraordinary body of historical information has allowed us to obtain data on the effects of the earthquake at 29 locations, 16 of which were unknown in the previous scientific literature. As regards the seismic dynamics, this study has set itself the question of whether there was just one or more than one strong earthquake. In the former case, the parameters (Me 7.7 ± 0.22, epicenter, and fault length 126.2 km) were calculated. Some hypotheses are outlined concerning the seismogenic zones involved.

  12. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  13. Multivariate statistical analysis to investigate the subduction zone parameters favoring the occurrence of giant megathrust earthquakes

    Science.gov (United States)

    Brizzi, S.; Sandri, L.; Funiciello, F.; Corbi, F.; Piromallo, C.; Heuret, A.

    2018-03-01

    The observed maximum magnitude of subduction megathrust earthquakes is highly variable worldwide. One key question is which conditions, if any, favor the occurrence of giant earthquakes (Mw ≥ 8.5). Here we carry out a multivariate statistical study in order to investigate the factors affecting the maximum magnitude of subduction megathrust earthquakes. We find that the trench-parallel extent of subduction zones and the thickness of trench sediments provide the largest discriminating capability between subduction zones that have experienced giant earthquakes and those having significantly lower maximum magnitude. Monte Carlo simulations show that the observed spatial distribution of giant earthquakes cannot be explained by pure chance to a statistically significant level. We suggest that the combination of a long subduction zone with thick trench sediments likely promotes a great lateral rupture propagation, characteristic of almost all giant earthquakes.

  14. Estimation of slip scenarios of mega-thrust earthquakes and strong motion simulations for Central Andes, Peru

    Science.gov (United States)

    Pulido, N.; Tavera, H.; Aguilar, Z.; Chlieh, M.; Calderon, D.; Sekiguchi, T.; Nakai, S.; Yamazaki, F.

    2012-12-01

    We have developed a methodology for the estimation of slip scenarios for megathrust earthquakes based on a model of interseismic coupling (ISC) distribution in subduction margins obtained from geodetic data, as well as information of recurrence of historical earthquakes. This geodetic slip model (GSM) delineates the long wavelength asperities within the megathrust. For the simulation of strong ground motion it becomes necessary to introduce short wavelength heterogeneities to the source slip to be able to efficiently simulate high frequency ground motions. To achieve this purpose we elaborate "broadband" source models constructed by combining the GSM with several short wavelength slip distributions obtained from a Von Karman PSD function with random phases. Our application of the method to Central Andes in Peru, show that this region has presently the potential of generating an earthquake with moment magnitude of 8.9, with a peak slip of 17 m and a source area of approximately 500 km along strike and 165 km along dip. For the strong motion simulations we constructed 12 broadband slip models, and consider 9 possible hypocenter locations for each model. We performed strong motion simulations for the whole central Andes region (Peru), spanning an area from the Nazca ridge (16^o S) to the Mendana fracture (9^o S). For this purpose we use the hybrid strong motion simulation method of Pulido et al. (2004), improved to handle a general slip distribution. Our simulated PGA and PGV distributions indicate that a region of at least 500 km along the coast of central Andes is subjected to a MMI intensity of approximately 8, for the slip model that yielded the largest ground motions among the 12 slip models considered, averaged for all assumed hypocenter locations. This result is in agreement with the macroseismic intensity distribution estimated for the great 1746 earthquake (M~9) in central Andes (Dorbath et al. 1990). Our results indicate that the simulated PGA and PGV for

  15. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  16. Maximum Historical Seismic Intensity Map of S. Miguel Island (azores)

    Science.gov (United States)

    Silveira, D.; Gaspar, J. L.; Ferreira, T.; Queiroz, G.

    The Azores archipelago is situated in the Atlantic Ocean where the American, African and Eurasian lithospheric plates meet. The so-called Azores Triple Junction located in the area where the Terceira Rift, a NW-SE to WNW-ESE fault system with a dextral component, intersects the Mid-Atlantic Ridge, with an approximate N-S direction, dominates its geological setting. S. Miguel Island is located in the eastern segment of the Terceira Rift, showing a high diversity of volcanic and tectonic structures. It is the largest Azorean island and includes three active trachytic central volcanoes with caldera (Sete Cidades, Fogo and Furnas) placed in the intersection of the NW-SE Ter- ceira Rift regional faults with an E-W deep fault system thought to be a relic of a Mid-Atlantic Ridge transform fault. N-S and NE-SW faults also occur in this con- text. Basaltic cinder cones emplaced along NW-SE fractures link that major volcanic structures. The easternmost part of the island comprises an inactive trachytic central volcano (Povoação) and an old basaltic volcanic complex (Nordeste). Since the settle- ment of the island, early in the XV century, several destructive earthquakes occurred in the Azores region. At least 11 events hit S. Miguel Island with high intensity, some of which caused several deaths and significant damages. The analysis of historical documents allowed reconstructing the history and the impact of all those earthquakes and new intensity maps using the 1998 European Macrosseismic Scale were produced for each event. The data was then integrated in order to obtain the maximum historical seismic intensity map of S. Miguel. This tool is regarded as an important document for hazard assessment and risk mitigation taking in account that indicates the location of dangerous seismogenic zones and provides a comprehensive set of data to be applied in land-use planning, emergency planning and building construction.

  17. Foreshocks and aftershocks of the Great 1857 California earthquake

    Science.gov (United States)

    Meltzner, A.J.; Wald, D.J.

    1999-01-01

    The San Andreas fault is the longest fault in California and one of the longest strike-slip faults anywhere in the world, yet we know little about many aspects of its behavior before, during, and after large earthquakes. We conducted a study to locate and to estimate magnitudes for the largest foreshocks and aftershocks of the 1857 M 7.9 Fort Tejon earthquake on the central and southern segments of the fault. We began by searching archived first-hand accounts from 1857 through 1862, by grouping felt reports temporally, and by assigning modified Mercalli intensities to each site. We then used a modified form of the grid-search algorithm of Bakum and Wentworth, derived from empirical analysis of modern earthquakes, to find the location and magnitude most consistent with the assigned intensities for each of the largest events. The result confirms a conclusion of Sieh that at least two foreshocks ('dawn' and 'sunrise') located on or near the Parkfield segment of the San Andreas fault preceded the mainshock. We estimate their magnitudes to be M ~ 6.1 and M ~ 5.6, respectively. The aftershock rate was below average but within one standard deviation of the number of aftershocks expected based on statistics of modern southern California mainshock-aftershock sequences. The aftershocks included two significant events during the first eight days of the sequence, with magnitudes M ~ 6.25 and M ~ 6.7, near the southern half of the rupture; later aftershocks included a M ~ 6 event near San Bernardino in December 1858 and a M ~ 6.3 event near the Parkfield segment in April 1860. From earthquake logs at Fort Tejon, we conclude that the aftershock sequence lasted a minimum of 3.75 years.

  18. Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya

    Science.gov (United States)

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R.; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-01-01

    Geomorphic footprints of past large Himalayan earthquakes are elusive, although they are urgently needed for gauging and predicting recovery times of seismically perturbed mountain landscapes. We present evidence of catastrophic valley infill following at least three medieval earthquakes in the Nepal Himalaya. Radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments near Pokhara, Nepal’s second-largest city, match the timing of nearby M > 8 earthquakes in ~1100, 1255, and 1344 C.E. The upstream dip of tributary valley fills and x-ray fluorescence spectrometry of their provenance rule out local sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from a Higher Himalayan source >60 kilometers away.

  19. ON THE RELATION BETWEEN EARTHQUAKE AND ATMOSPHERIC ELECTRICITY

    Directory of Open Access Journals (Sweden)

    Kuznetsov V.V.

    2017-07-01

    Full Text Available The change in the magnitude of the atmospheric electric field (AEF before the earthquake and immediately after it, according to our model, is due to the fact that the protons of water atmospheric complexes turn out to be quantum-entangled to protons of hydrogen bonds (HB in lithosphere material. After the establishment of the quantum entanglement regime in the system, a decoherence follows. It manifests itself in AEF change, and then there is a recoherence, during which the quantum entanglement of the largest possible number of elements in the system with HB which ends with a new decoherence, is again tuned in the system. It is during this process that a shock wave or an earthquake entailing the change of AEF magnitude is generated.

  20. The studies of historical seismicity in France

    International Nuclear Information System (INIS)

    Levret, A.

    1987-11-01

    Since 1975 in order to be in conformity with the requirements of the French nuclear program, a review of historical seismicity was undertaken in France. The method adopted for reviewing historical earthquakes who entails a systematic consultation of the original sources and their critical analysis in order to obtain a new interpretation, led to compile a computer file covering a period of time of about a millenary. The abundant contributions result of continuous researches involve annualy up-date of the file where macroseismic data each one assigned with a degree of reliability are recorded [fr

  1. Long-period effects of the Denali earthquake on water bodies in the Puget Lowland: Observations and modeling

    Science.gov (United States)

    Barberopoulou, A.; Qamar, A.; Pratt, T.L.; Steele, W.P.

    2006-01-01

    Analysis of strong-motion instrument recordings in Seattle, Washington, resulting from the 2002 Mw 7.9 Denali, Alaska, earthquake reveals that amplification in the 0.2-to 1.0-Hz frequency band is largely governed by the shallow sediments both inside and outside the sedimentary basins beneath the Puget Lowland. Sites above the deep sedimentary strata show additional seismic-wave amplification in the 0.04- to 0.2-Hz frequency range. Surface waves generated by the Mw 7.9 Denali, Alaska, earthquake of 3 November 2002 produced pronounced water waves across Washington state. The largest water waves coincided with the area of largest seismic-wave amplification underlain by the Seattle basin. In the current work, we present reports that show Lakes Union and Washington, both located on the Seattle basin, are susceptible to large water waves generated by large local earthquakes and teleseisms. A simple model of a water body is adopted to explain the generation of waves in water basins. This model provides reasonable estimates for the water-wave amplitudes in swimming pools during the Denali earthquake but appears to underestimate the waves observed in Lake Union.

  2. Permanently enhanced dynamic triggering probabilities as evidenced by two M ≥ 7.5 earthquakes

    Science.gov (United States)

    Gomberg, Joan S.

    2013-01-01

    The 2012 M7.7 Haida Gwaii earthquake radiated waves that likely dynamically triggered the 2013M7.5 Craig earthquake, setting two precedents. First, the triggered earthquake is the largest dynamically triggered shear failure event documented to date. Second, the events highlight a connection between geologic structure, sedimentary troughs that act as waveguides, and triggering probability. The Haida Gwaii earthquake excited extraordinarily large waves within and beyond the Queen Charlotte Trough, which propagated well into mainland Alaska and likely triggering the Craig earthquake along the way. Previously, focusing and associated dynamic triggering have been attributed to unpredictable source effects. This case suggests that elevated dynamic triggering probabilities may exist along the many structures where sedimentary troughs overlie major faults, such as subduction zones’ accretionary prisms and transform faults’ axial valleys. Although data are sparse, I find no evidence of accelerating seismic activity in the vicinity of the Craig rupture between it and the Haida Gwaii earthquake.

  3. COMPARATIVE EVALUATION OF THE INFLUENCING EFFECTS OF GEOMAGNETIC SOLAR STORMS ON EARTHQUAKES IN ANATOLIAN PENINSULA

    Directory of Open Access Journals (Sweden)

    Yesugey Sadik Cengiz

    2009-07-01

    Full Text Available Earthquakes are tectonic events that take place within the fractures of the earth's crust, namely faults. Above certain scale, earthquakes can result in widespread fatalities and substantial financial loss. In addition to the movement of tectonic plates relative to each other, it is widely discussed that there are other external influences originate outside earth that can trigger earthquakes. These influences are called "triggering effects". The purpose of this article is to present a statistical view to elaborate if the solar geomagnetic storms trigger earthquakes.As a model, the research focuses on the Anatolian peninsula, presenting 41 years of historical data on magnetic storms and earthquakes collated from national and international resources. As a result of the comparative assessment of the data, it is concluded that the geomagnetic storms do not trigger earthquakes.

  4. Numerical experiment on tsunami deposit distribution process by using tsunami sediment transport model in historical tsunami event of megathrust Nankai trough earthquake

    Science.gov (United States)

    Imai, K.; Sugawara, D.; Takahashi, T.

    2017-12-01

    A large flow caused by tsunami transports sediments from beach and forms tsunami deposits in land and coastal lakes. A tsunami deposit has been found in their undisturbed on coastal lakes especially. Okamura & Matsuoka (2012) found some tsunami deposits in the field survey of coastal lakes facing to the Nankai trough, and tsunami deposits due to the past eight Nankai Trough megathrust earthquakes they identified. The environment in coastal lakes is stably calm and suitable for tsunami deposits preservation compared to other topographical conditions such as plains. Therefore, there is a possibility that the recurrence interval of megathrust earthquakes and tsunamis will be discussed with high resolution. In addition, it has been pointed out that small events that cannot be detected in plains could be separated finely (Sawai, 2012). Various aspects of past tsunami is expected to be elucidated, in consideration of topographical conditions of coastal lakes by using the relationship between the erosion-and-sedimentation process of the lake bottom and the external force of tsunami. In this research, numerical examination based on tsunami sediment transport model (Takahashi et al., 1999) was carried out on the site Ryujin-ike pond of Ohita, Japan where tsunami deposit was identified, and deposit migration analysis was conducted on the tsunami deposit distribution process of historical Nankai Trough earthquakes. Furthermore, examination of tsunami source conditions is possibly investigated by comparison studies of the observed data and the computation of tsunami deposit distribution. It is difficult to clarify details of tsunami source from indistinct information of paleogeographical conditions. However, this result shows that it can be used as a constraint condition of the tsunami source scale by combining tsunami deposit distribution in lakes with computation data.

  5. Study on tsunami due to offshore earthquakes for Korea coast. Literature survey and numerical simulation on earthquake and tsunami in the Japan Sea and the East China Sea

    International Nuclear Information System (INIS)

    Matsuyama, Masafumi; Aoyagi, Yasuhira; Inoue, Daiei; Choi, Weon-Hack; Kang, Keum-Seok

    2008-01-01

    In Korea, there has been a concern on tsumami risks for the Nuclear Power Plants since the 1983 Nihonkai-Chubu earthquake tsunami. The maximum run-up height reached 4 m to north of the Ulchin nuclear power plant site. The east coast of Korea was also attacked by a few meters high tsunami generated by the 1993 Hokkaido Nansei-Oki earthquake. Both source areas of them were in the areas western off Hokkaido to the eastern margin of the Japan Sea, which remains another tsunami potential. Therefore it is necessary to study tsunami risks for coast of Korea by means of geological investigation and numerical simulation. Historical records of earthquake and tsunami in the Japan Sea were re-compiled to evaluate tsunami potential. A database of marine active faults in the Japan Sea was compiled to decide a regional potential of tsunami. Many developed reverse faults are found in the areas western off Hokkaido to the eastern margin of the Japan Sea. The authors have found no historical earthquake in the East China Sea which caused tunami observed at coast of Korea. Therefore five fault models were determined on the basis of the analysis results of historical records and recent research results of fault parameter and tunami. Tsunami heights were estimated by numerical simulation of nonlinear dispersion wave theory. The results of the simulations indicate that the tsunami heights in these cases are less than 0.25 m along the coast of Korea, and the tsunami risk by these assumed faults does not lead to severe impact. It is concluded that tsunami occurred in the areas western off Hokkaido to the eastern margin of the Japan Sea leads the most significant impact to Korea consequently. (author)

  6. The Landers earthquake; preliminary instrumental results

    Science.gov (United States)

    Jones, L.; Mori, J.; Hauksson, E.

    1992-01-01

    Early on the morning of June 28, 1992, millions of people in southern California were awakened by the largest earthquake to occur in the western United States in the past 40 yrs. At 4:58 a.m PDT (local time), faulting associated with the magnitude 7.3 earthquake broke through to earth's surface near the town of Landers, California. the surface rupture then propagated 70km (45 mi) to the north and northwest along a band of faults passing through the middle of the Mojave Desert. Fortunately, the strongest shaking occurred in uninhabited regions of the Mojave Desert. Still one child was killed in Yucca Valley, and about 400 people were injured in the surrounding area. the desert communities of Landers, Yucca Valley, and Joshua Tree in San Bernardino Country suffered considerable damage to buildings and roads. Damage to water and power lines caused problems in many areas. 

  7. Aftershocks of the India Republic Day Earthquake: the MAEC/ISTAR Temporary Seismograph Network

    Science.gov (United States)

    Bodin, P.; Horton, S.; Johnston, A.; Patterson, G.; Bollwerk, J.; Rydelek, P.; Steiner, G.; McGoldrick, C.; Budhbhatti, K. P.; Shah, R.; Macwan, N.

    2001-05-01

    The MW=7.7 Republic Day (26 January, 2001) earthquake on the Kachchh in western India initiated a strong sequence of small aftershocks. Seventeen days following the mainshock, we deployed a network of portable digital event recorders as a cooperative project of the Mid America Earthquake Center in the US and the Institute for Scientific and Technological Advanced Research. Our network consisted of 8 event-triggered Kinemetrics K2 seismographs with 6 data channels (3 accelerometer, 3 Mark L-28/3d seismometer) sampled at 200 Hz, and one continuously-recording Guralp CMG40TD broad-band seismometer sampled at 220 Hz. This network was in place for 18 days. Underlying our network deployment was the notion that because of its tectonic and geologic setting the Republic Day earthquake and its aftershocks might have source and/or propagation characteristics common to earthquakes in stable continental plate-interiors rather than those on plate boundaries or within continental mobile belts. Thus, our goals were to provide data that could be used to compare the Republic Day earthquake with other earthquakes. In particular, the objectives of our network deployment were: (1) to characterize the spatial distribution and occurrence rates of aftershocks, (2) to examine source characteristics of the aftershocks (stress-drops, focal mechanisms), (3) to study the effect of deep unconsolidated sediment on wave propagation, and (4) to determine if other faults (notably the Allah Bundh) were simultaneously active. Most of our sites were on Jurassic bedrock, and all were either free-field, or on the floor of light structures built on rock or with a thin soil cover. However, one of our stations was on a section of unconsolidated sediments hundreds of meters thick adjacent to a site that was subjected to shaking-induced sediment liquefaction during the mainshock. The largest aftershock reported by global networks was an MW=5.9 event on January 28, prior to our deployment. The largest

  8. Earthquake imprints on a lacustrine deltaic system: The Kürk Delta along the East Anatolian Fault (Turkey)

    KAUST Repository

    Hubert-Ferrari, Auré lia; El-Ouahabi, Meriam; Garcia-Moreno, David; Avsar, Ulas; Altınok, Sevgi; Schmidt, Sabine; Fagel, Nathalie; Ç ağatay, Namık

    2017-01-01

    Deltas contain sedimentary records that are not only indicative of water-level changes, but also particularly sensitive to earthquake shaking typically resulting in soft-sediment-deformation structures. The Kürk lacustrine delta lies at the south-western extremity of Lake Hazar in eastern Turkey and is adjacent to the seismogenic East Anatolian Fault, which has generated earthquakes of magnitude 7. This study re-evaluates water-level changes and earthquake shaking that have affected the Kürk Delta, combining geophysical data (seismic-reflection profiles and side-scan sonar), remote sensing images, historical data, onland outcrops and offshore coring. The history of water-level changes provides a temporal framework for the depositional record. In addition to the common soft-sediment deformation documented previously, onland outcrops reveal a record of deformation (fracturing, tilt and clastic dykes) linked to large earthquake-induced liquefactions and lateral spreading. The recurrent liquefaction structures can be used to obtain a palaeoseismological record. Five event horizons were identified that could be linked to historical earthquakes occurring in the last 1000 years along the East Anatolian Fault. Sedimentary cores sampling the most recent subaqueous sedimentation revealed the occurrence of another type of earthquake indicator. Based on radionuclide dating (Cs and Pb), two major sedimentary events were attributed to the ad 1874 to 1875 East Anatolian Fault earthquake sequence. Their sedimentological characteristics were determined by X-ray imagery, X-ray diffraction, loss-on-ignition, grain-size distribution and geophysical measurements. The events are interpreted to be hyperpycnal deposits linked to post-seismic sediment reworking of earthquake-triggered landslides.

  9. Earthquake imprints on a lacustrine deltaic system: The Kürk Delta along the East Anatolian Fault (Turkey)

    KAUST Repository

    Hubert-Ferrari, Aurélia

    2017-01-05

    Deltas contain sedimentary records that are not only indicative of water-level changes, but also particularly sensitive to earthquake shaking typically resulting in soft-sediment-deformation structures. The Kürk lacustrine delta lies at the south-western extremity of Lake Hazar in eastern Turkey and is adjacent to the seismogenic East Anatolian Fault, which has generated earthquakes of magnitude 7. This study re-evaluates water-level changes and earthquake shaking that have affected the Kürk Delta, combining geophysical data (seismic-reflection profiles and side-scan sonar), remote sensing images, historical data, onland outcrops and offshore coring. The history of water-level changes provides a temporal framework for the depositional record. In addition to the common soft-sediment deformation documented previously, onland outcrops reveal a record of deformation (fracturing, tilt and clastic dykes) linked to large earthquake-induced liquefactions and lateral spreading. The recurrent liquefaction structures can be used to obtain a palaeoseismological record. Five event horizons were identified that could be linked to historical earthquakes occurring in the last 1000 years along the East Anatolian Fault. Sedimentary cores sampling the most recent subaqueous sedimentation revealed the occurrence of another type of earthquake indicator. Based on radionuclide dating (Cs and Pb), two major sedimentary events were attributed to the ad 1874 to 1875 East Anatolian Fault earthquake sequence. Their sedimentological characteristics were determined by X-ray imagery, X-ray diffraction, loss-on-ignition, grain-size distribution and geophysical measurements. The events are interpreted to be hyperpycnal deposits linked to post-seismic sediment reworking of earthquake-triggered landslides.

  10. An Atlas of ShakeMaps and population exposure catalog for earthquake loss modeling

    Science.gov (United States)

    Allen, T.I.; Wald, D.J.; Earle, P.S.; Marano, K.D.; Hotovec, A.J.; Lin, K.; Hearne, M.G.

    2009-01-01

    We present an Atlas of ShakeMaps and a catalog of human population exposures to moderate-to-strong ground shaking (EXPO-CAT) for recent historical earthquakes (1973-2007). The common purpose of the Atlas and exposure catalog is to calibrate earthquake loss models to be used in the US Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER). The full ShakeMap Atlas currently comprises over 5,600 earthquakes from January 1973 through December 2007, with almost 500 of these maps constrained-to varying degrees-by instrumental ground motions, macroseismic intensity data, community internet intensity observations, and published earthquake rupture models. The catalog of human exposures is derived using current PAGER methodologies. Exposure to discrete levels of shaking intensity is obtained by correlating Atlas ShakeMaps with a global population database. Combining this population exposure dataset with historical earthquake loss data, such as PAGER-CAT, provides a useful resource for calibrating loss methodologies against a systematically-derived set of ShakeMap hazard outputs. We illustrate two example uses for EXPO-CAT; (1) simple objective ranking of country vulnerability to earthquakes, and; (2) the influence of time-of-day on earthquake mortality. In general, we observe that countries in similar geographic regions with similar construction practices tend to cluster spatially in terms of relative vulnerability. We also find little quantitative evidence to suggest that time-of-day is a significant factor in earthquake mortality. Moreover, earthquake mortality appears to be more systematically linked to the population exposed to severe ground shaking (Modified Mercalli Intensity VIII+). Finally, equipped with the full Atlas of ShakeMaps, we merge each of these maps and find the maximum estimated peak ground acceleration at any grid point in the world for the past 35 years. We subsequently compare this "composite ShakeMap" with existing global

  11. Historical evidence of faulting in Eastern Anatolia and Northern Syria

    Directory of Open Access Journals (Sweden)

    C. P. Melville

    1995-06-01

    Full Text Available Historical data show that like the North Anatolian fault zone, which was delineated by a series of earthquakes during this century from east to west, so was the conjugate Eastern Anatolian fault zone delineated from the northeast to the southwest by a succession of large earthquakes in earlier times, with a major event at its junction with the Dead Sea fault system. This event was associated with surface faulting and occurred in a region seismically quiescent for nearly two centuries.

  12. The HayWired Earthquake Scenario—Earthquake Hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  13. Use of cartography in historical seismicity analysis: a reliable tool to better apprehend the contextualization of the historical documents

    Science.gov (United States)

    Thibault, Fradet; Grégory, Quenet; Kevin, Manchuel

    2014-05-01

    Historical studies, including historical seismicity analysis, deal with historical documents. Numerous factors, such as culture, social condition, demography, political situations and opinions or religious ones influence the way the events are transcribed in the archives. As a consequence, it is crucial to contextualize and compare the historical documents reporting on a given event in order to reduce the uncertainties affecting their analysis and interpretation. When studying historical seismic events it is often tricky to have a global view of all the information provided by the historical documents. It is also difficult to extract cross-correlated information from the documents and draw a precise historical context. Use of cartographic and geographic tools in GIS software is the best tool for the synthesis, interpretation and contextualization of the historical material. The main goal is to produce the most complete dataset of available information, in order to take into account all the components of the historical context and consequently improve the macroseismic analysis. The Entre-Deux-Mers earthquake (1759, Iepc= VII-VIII) [SISFRANCE 2013 - EDF-IRSN-BRGM] is well documented but has never benefited from a cross-analysis of historical documents and historical context elements. The map of available intensity data from SISFRANCE highlights a gap in macroseismic information within the estimated epicentral area. The aim of this study is to understand the origin of this gap by making a cartographic compilation of both, archive information and historical context elements. The results support the hypothesis that the lack of documents and macroseismic data in the epicentral area is related to a low human activity rather than low seismic effects in this zone. Topographic features, geographical position, flood hazard, roads and pathways locations, vineyards distribution and the forester coverage, mentioned in the archives and reported on the Cassini's map confirm this

  14. Uncovering the 2010 Haiti earthquake death toll

    Science.gov (United States)

    Daniell, J. E.; Khazai, B.; Wenzel, F.

    2013-05-01

    Casualties are estimated for the 12 January 2010 earthquake in Haiti using various reports calibrated by observed building damage states from satellite imagery and reconnaissance reports on the ground. By investigating various damage reports, casualty estimates and burial figures, for a one year period from 12 January 2010 until 12 January 2011, there is also strong evidence that the official government figures of 316 000 total dead and missing, reported to have been caused by the earthquake, are significantly overestimated. The authors have examined damage and casualties report to arrive at their estimation that the median death toll is less than half of this value (±137 000). The authors show through a study of historical earthquake death tolls, that overestimates of earthquake death tolls occur in many cases, and is not unique to Haiti. As death toll is one of the key elements for determining the amount of aid and reconstruction funds that will be mobilized, scientific means to estimate death tolls should be applied. Studies of international aid in recent natural disasters reveal that large distributions of aid which do not match the respective needs may cause oversupply of help, aggravate corruption and social disruption rather than reduce them, and lead to distrust within the donor community.

  15. The Mw6.7 October 12, 2013 western Hellenic Arc earthquake and seismotectonic implications for the descending slab

    Science.gov (United States)

    Karakostas, Vassilios; Papadimitriou, Eleftheria; Vallianatos, Filippos

    2015-04-01

    The 2013 earthquake is the largest that occurred in the last four decades along the western part of the Hellenic subduction zone, causing light damage in western Crete. Since rupture dimensions and properties of subduction events are in general more difficult to estimate due to their position in relation with seismological networks geometry, its occurrence provides an opportunity to investigate its rupture characteristics as in detail as possible, and consequently to shed more light in the geometry of the descending slab. The western almost rectilinear part of the convergent front accommodated the great 365 AD Mw8.3 earthquake, the largest event ever reported in the Mediterranean region, generating a tsunami that affected almost its entire eastern part. The oceanic plate of eastern Mediterranean, the front part of the northward moving African lithospheric plate, is subducting northeasterly beneath the Aegean microplate, the southern portion of Eurasian lithospheric plate in this area, at a rate of 4.5 cm/yr, frequently accommodating large destructive earthquakes with magnitudes M>6.5 along the main thrust zone. Historical and instrumental information reveals that strong (M>6.0) earthquakes, both shallow and intermediate ones are frequent in the area, although there is not any reference to any other such strong event. Plate motion is far above the manifestation of seismicity, probably due to the fact that the seismic coupling coefficient at this plate boundary has been estimated at approximately 10% or less. The main shock is associated with a fault patch onto the coupled part of the overriding and descending plates, with the compression axis being oriented in the direction of plate convergence. The first 10-days relocated seismicity shows activation of the upper part of the descending slab, with most activity being concentrated between 10 and 30 km, with the main shock being located at the bottom of the activated segment. Cross sectional views of the relocated

  16. Irregular recurrence of large earthquakes along the san andreas fault: evidence from trees.

    Science.gov (United States)

    Jacoby, G C; Sheppard, P R; Sieh, K E

    1988-07-08

    Old trees growing along the San Andreas fault near Wrightwood, California, record in their annual ring-width patterns the effects of a major earthquake in the fall or winter of 1812 to 1813. Paleoseismic data and historical information indicate that this event was the "San Juan Capistrano" earthquake of 8 December 1812, with a magnitude of 7.5. The discovery that at least 12 kilometers of the Mojave segment of the San Andreas fault ruptured in 1812, only 44 years before the great January 1857 rupture, demonstrates that intervals between large earthquakes on this part of the fault are highly variable. This variability increases the uncertainty of forecasting destructive earthquakes on the basis of past behavior and accentuates the need for a more fundamental knowledge of San Andreas fault dynamics.

  17. Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya.

    Science.gov (United States)

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-01-08

    Geomorphic footprints of past large Himalayan earthquakes are elusive, although they are urgently needed for gauging and predicting recovery times of seismically perturbed mountain landscapes. We present evidence of catastrophic valley infill following at least three medieval earthquakes in the Nepal Himalaya. Radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments near Pokhara, Nepal's second-largest city, match the timing of nearby M > 8 earthquakes in ~1100, 1255, and 1344 C.E. The upstream dip of tributary valley fills and x-ray fluorescence spectrometry of their provenance rule out local sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from a Higher Himalayan source >60 kilometers away. Copyright © 2016, American Association for the Advancement of Science.

  18. On the footprints of a major Brazilian Amazon earthquake

    Directory of Open Access Journals (Sweden)

    ALBERTO V. VELOSO

    2014-09-01

    Full Text Available Combining historical accounts and seismological studies, three hundred years of dormant information emerged as a source of the largest known seismic event that rocked Brazil since the beginning of our colonization. The probable epicenter location of the 1690 tremor lies on the left bank of the Amazon River, about 45 km downstream from the modern day Manaus. A year later, while passing this area, a missionary met witnesses of the tremor and observed remarkable changes in the topography and vegetation along the margin of the river. By 1692 another priest confirmed this event and the occurrence of large waves in the river, which led to the flooding of the Native Indians' terrains. The tremor spread seismic waves throughout the forest and shook indigenous constructions as far as one thousand kilometers away. A calculation of the seismic parameters shows an estimated magnitude of 7, a maximum intensity of IX MM and a felt area of about 2 million km2. Due to the long recurrence period for this type of tremor, the discovery of one of these events is valuable for seismic global intraplate studies. As for Brazil, it unravels the myth that the country was never hit by severe earthquakes.

  19. Adaptively smoothed seismicity earthquake forecasts for Italy

    Directory of Open Access Journals (Sweden)

    Yan Y. Kagan

    2010-11-01

    Full Text Available We present a model for estimation of the probabilities of future earthquakes of magnitudes m ≥ 4.95 in Italy. This model is a modified version of that proposed for California, USA, by Helmstetter et al. [2007] and Werner et al. [2010a], and it approximates seismicity using a spatially heterogeneous, temporally homogeneous Poisson point process. The temporal, spatial and magnitude dimensions are entirely decoupled. Magnitudes are independently and identically distributed according to a tapered Gutenberg-Richter magnitude distribution. We have estimated the spatial distribution of future seismicity by smoothing the locations of past earthquakes listed in two Italian catalogs: a short instrumental catalog, and a longer instrumental and historic catalog. The bandwidth of the adaptive spatial kernel is estimated by optimizing the predictive power of the kernel estimate of the spatial earthquake density in retrospective forecasts. When available and reliable, we used small earthquakes of m ≥ 2.95 to reveal active fault structures and 29 probable future epicenters. By calibrating the model with these two catalogs of different durations to create two forecasts, we intend to quantify the loss (or gain of predictability incurred when only a short, but recent, data record is available. Both forecasts were scaled to five and ten years, and have been submitted to the Italian prospective forecasting experiment of the global Collaboratory for the Study of Earthquake Predictability (CSEP. An earlier forecast from the model was submitted by Helmstetter et al. [2007] to the Regional Earthquake Likelihood Model (RELM experiment in California, and with more than half of the five-year experimental period over, the forecast has performed better than the others.

  20. Source characteristics of the Fairview, OK, earthquake sequence and its relationship to industrial activities

    Science.gov (United States)

    Yeck, W. L.; Weingarten, M.; Benz, H.; McNamara, D. E.; Herrmann, R. B.; Rubinstein, J. L.; Earle, P. S.; Bergman, E.

    2016-12-01

    We characterize the spatio-temporal patterns of seismicity surrounding the February 13, 2016, Mw 5.1 Fairview, Oklahoma earthquake. This earthquake sequence accounts for the largest moment release in the central and eastern US since the November 06, 2011 Mw 5.6 Prague, OK earthquake sequence. To improve the location accuracy of the sequence and measure near-source ground motions, the United States Geological Survey (USGS) deployed eight seismometers and accelerometers in the epicentral region. With the added depth control from these stations, we show that earthquakes primarily occur in the Precambrian basement, at depths of 6-10 km below sea level. The Mw 5.1 mainshock, the largest event in the cluster, locates near the base of the seismicity. Relocated aftershocks delineate a partially unmapped, 14-km-long fault segment that strikes approximately N40°E, partially bridging the gap between previously mapped basement faults to the southwest and northeast. Gas production and hydraulic fracking data from the region show no evidence that either of these activities correlates spatio-temporally with the Fairview sequence. Instead, we suggest that a series of high-rate, Arbuckle injection wells (> 300,000 bbls/month) 8-25 km northeast of this sequence pressurized the reservoir in the far field. Regional injection into the Arbuckle formation increased 7-fold in the 24 months before the initiation of the sequence with some wells operating at rates greater than 1 million barrels per month. Seismicity in the proximity of the high-rate wells is diffuse whilst the energetic Fairview sequence occurs more than 15 km from this region. Our observations point to the critical role pre-existing geologic structures play in the occurrence of large induced earthquakes. This study demonstrates the need for a better understanding of the role of far-field pressurization. High-quality data sets such as this facilitate the USGS mission to improve earthquake hazard identification, especially

  1. Characteristics of Gyeongju earthquake, moment magnitude 5.5 and relative relocations of aftershocks

    Science.gov (United States)

    Cho, ChangSoo; Son, Minkyung

    2017-04-01

    There is low seismicity in the korea peninsula. According historical record in the historic book, There were several strong earthquake in the korea peninsula. Especially in Gyeongju of capital city of the Silla dynasty, few strong earthquakes caused the fatalities of several hundreds people 1,300 years ago and damaged the houses and make the wall of castles collapsed. Moderate strong earthquake of moment magnitude 5.5 hit the city in September 12, 2016. Over 1000 aftershocks were detected. The numbers of occurrences of aftershock over time follows omori's law well. The distribution of relative locations of 561 events using clustering aftershocks by cross-correlation between P and S waveform of the events showed the strike NNE 25 30 o and dip 68 74o of fault plane to cause the earthquake matched with the fault plane solution of moment tensor inversion well. The depth of range of the events is from 11km to 16km. The width of distribution of event locations is about 5km length. The direction of maximum horizontal stress by inversion of stress for the moment solutions of main event and large aftershocks is similar to the known maximum horizontal stress direction of the korea peninsula. The relation curves between moment magnitude and local magnitude of aftershocks shows that the moment magnitude increases slightly more for events of size less than 2.0

  2. Positive emotions in earthquake survivors in El Salvador (2001).

    Science.gov (United States)

    Vázquez, Carmelo; Cervellón, Priscilla; Pérez-Sales, Pau; Vidales, Diana; Gaborit, Mauricio

    2005-01-01

    The purpose of this study was to analyze, within a more extensive intervention program, the existence of positive emotions and positive coping in the refugees at the two largest shelters created after the earthquakes of El Salvador in January, 2001. One hundred and fifteen survivors were interviewed in the shelters about different aspects related to positive cognitions and emotions experienced during their sojourn at the camps, as well as their perception of aspects of posttraumatic growth. The results show that most of the people affected by the earthquake revealed a consistent pattern of positive reactions and emotions. The potential implications of these results in the individual sphere, as buffering elements to protect people from the effects of a traumatic experience receive comment.

  3. THE GREAT SOUTHERN CALIFORNIA SHAKEOUT: Earthquake Science for 22 Million People

    Science.gov (United States)

    Jones, L.; Cox, D.; Perry, S.; Hudnut, K.; Benthien, M.; Bwarie, J.; Vinci, M.; Buchanan, M.; Long, K.; Sinha, S.; Collins, L.

    2008-12-01

    Earthquake science is being communicated to and used by the 22 million residents of southern California to improve resiliency to future earthquakes through the Great Southern California ShakeOut. The ShakeOut began when the USGS partnered with the California Geological Survey, Southern California Earthquake Center and many other organizations to bring 300 scientists and engineers together to formulate a comprehensive description of a plausible major earthquake, released in May 2008, as the ShakeOut Scenario, a description of the impacts and consequences of a M7.8 earthquake on the Southern San Andreas Fault (USGS OFR2008-1150). The Great Southern California ShakeOut was a week of special events featuring the largest earthquake drill in United States history. The ShakeOut drill occurred in houses, businesses, and public spaces throughout southern California at 10AM on November 13, 2008, when southern Californians were asked to pretend that the M7.8 scenario earthquake had occurred and to practice actions that could reduce the impact on their lives. Residents, organizations, schools and businesses registered to participate in the drill through www.shakeout.org where they could get accessible information about the scenario earthquake and share ideas for better reparation. As of September 8, 2008, over 2.7 million confirmed participants had been registered. The primary message of the ShakeOut is that what we do now, before a big earthquake, will determine what our lives will be like after. The goal of the ShakeOut has been to change the culture of earthquake preparedness in southern California, making earthquakes a reality that are regularly discussed. This implements the sociological finding that 'milling,' discussing a problem with loved ones, is a prerequisite to taking action. ShakeOut milling is taking place at all levels from individuals and families, to corporations and governments. Actions taken as a result of the ShakeOut include the adoption of earthquake

  4. Performance of underground coal mines during the 1976 Tangshan earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.F.

    1987-01-01

    The Tangshan earthquake of 1976 costs 242 000 lives and was responsible for 164 000 serious injuries and structural damage of immense proportion. The area has eight coal mines, which together form the largest underground coal mining operation in China. Approximately 10 000 miners were working underground at the time of the earthquake. With few exceptions they survived and returned safely to the surface, only to find their families and belongings largely destroyed. Based on a comprehensive survey of the miners' observations, subsurface intensity profiles were drawn up. The profiles clearly indicated that seismic damage in the underground mines was far less severe than at the surface. 16 refs., 4 figs., 2 tabs.

  5. Interaction of the san jacinto and san andreas fault zones, southern california: triggered earthquake migration and coupled recurrence intervals.

    Science.gov (United States)

    Sanders, C O

    1993-05-14

    Two lines of evidence suggest that large earthquakes that occur on either the San Jacinto fault zone (SJFZ) or the San Andreas fault zone (SAFZ) may be triggered by large earthquakes that occur on the other. First, the great 1857 Fort Tejon earthquake in the SAFZ seems to have triggered a progressive sequence of earthquakes in the SJFZ. These earthquakes occurred at times and locations that are consistent with triggering by a strain pulse that propagated southeastward at a rate of 1.7 kilometers per year along the SJFZ after the 1857 earthquake. Second, the similarity in average recurrence intervals in the SJFZ (about 150 years) and in the Mojave segment of the SAFZ (132 years) suggests that large earthquakes in the northern SJFZ may stimulate the relatively frequent major earthquakes on the Mojave segment. Analysis of historic earthquake occurrence in the SJFZ suggests little likelihood of extended quiescence between earthquake sequences.

  6. Long-period Ground Motion Characteristics Inside and Outside of the Osaka Basin during the 2011 Great Tohoku Earthquake and Its Largest Aftershock

    Science.gov (United States)

    Sato, K.; Iwata, T.; Asano, K.; Kubo, H.; Aoi, S.

    2013-12-01

    The 2011 great Tohoku earthquake (Mw 9.0) occurred on March 11, 2011, and the largest aftershock (Mw 7.7) at the region adjacent to south boundary of the mainshock's source region. Long-period ground motions (1-10s) of large amplitude were observed in the Osaka sedimentary basin about 550-800km away from the source regions during both events. We studied propagation and site characteristics of these ground motions, and found some common features between these two events in the Osaka basin. (1) The amplitude of horizontal components of the ground motion at the site-specific period is amplified at each sedimentary station. The predominant period is around 7s in the bayside area where the largest pSv were observed. (2) The velocity Fourier spectra have their peak values around 7s at the bedrock sites surrounding the Osaka basin. (3) Two remarkable wave packets separated by 30s propagating from stations around the Nobi plain to the bedrock sites near the Osaka basin were seen in the pasted-up velocity waveforms from the source regions to the Osaka basin for both events (Sato et al., 2012). Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. Firstly, we simulate ground motions due to the largest aftershock using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). The reason we focus on the largest aftershock is that this event has a relatively small rupture area and simple rupture process compared to the mainshock. The source model is based on the model estimated by Kubo et al. (2013). The velocity structure model is a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (Koketsu et al., 2012) and the layer of Vs 350m/s in this model is replaced with one of Vs 500m/s. The minimum effective period in this computation is 3s. Then, we compare synthetic waveforms with observed ones. At CHBH14, the nearest station to the source and 60km away from the

  7. Long-term perspectives on giant earthquakes and tsunamis at subduction zones

    Science.gov (United States)

    Satake, K.; Atwater, B.F.; ,

    2007-01-01

    Histories of earthquakes and tsunamis, inferred from geological evidence, aid in anticipating future catastrophes. This natural warning system now influences building codes and tsunami planning in the United States, Canada, and Japan, particularly where geology demonstrates the past occurrence of earthquakes and tsunamis larger than those known from written and instrumental records. Under favorable circumstances, paleoseismology can thus provide long-term advisories of unusually large tsunamis. The extraordinary Indian Ocean tsunami of 2004 resulted from a fault rupture more than 1000 km in length that included and dwarfed fault patches that had broken historically during lesser shocks. Such variation in rupture mode, known from written history at a few subduction zones, is also characteristic of earthquake histories inferred from geology on the Pacific Rim. Copyright ?? 2007 by Annual Reviews. All rights reserved.

  8. Fluid flows due to earthquakes with reference to Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Davies, J.B.

    1993-01-01

    Yucca Mountain geohydrology is dominated by a deep water table in volcanic tuffa beds which are cut by numerous faults. Certain zones in these tuffas and most of the fault apertures are filled with a fine-grained calcitic cement. Earthquakes have occured in this region with the most recent being of magnitude 5.6 and at a distance of about 20 km. Earthquakes in western U.S.A. have been observed to cause fluid flows through and out of the crust of the Earth. These flows are concentrated along the faults with normal faulting producing the largest flows. An earthquake produces rapid pressure changes at and below the ground surface, thereby forcing flows of gas, water, slurries and dissolved salts. In order to examine the properties of flows produced by earthquakes, we simulate the phenomena using computer-based modeling. We investigate the effects of adults and high permeability zones on the pattern of flows induced by the earthquake. We demonstrate that faults act as conduits to the surface and that the higher the permeability of a zone, the more the flows will concentrate there. Numerical estimates of flow rates from these simulations compare favorably with data from observed flows due to earthquakes. Simple volumetric arguments demonstrate the ease with which fluids from the deep water table can reach the surface along fault conduits

  9. Evaluation of Damage to a Historic Masonry Building in Nepal through Comparison of Dynamic Characteristics before and after the 2015 Gorkha Earthquake

    Directory of Open Access Journals (Sweden)

    Aiko Furukawa

    2017-10-01

    Full Text Available On April 25, 2015, a Mw 7.8 earthquake struck the Gorkha district of Kathmandu, Nepal. In Patan, vibrational characteristics of a 300-year-old two-story masonry building near Patan Durbar Square had been measured prior the Gorkha earthquake. In the inspection of the building after the Gorkha earthquake, several new cracks were found. The vibrational characteristics of the building were measured again, and it was found that the natural frequencies after the earthquake were smaller than those before the earthquake, indicating the reduction of the stiffness. Finite element models of the structure representing pre- and post-earthquake conditions are established so that the natural frequencies match the pre- and post-earthquake measurements and the structural damage is identified based on the stiffness reduction. Finally, the dynamic analysis of the finite element model of the building in the pre-earthquake condition using the observed ground motion record during the Gorkha earthquake as the input is conducted, and the structural response of the building during the Gorkha earthquake is discussed.

  10. The 2016 south Alboran earthquake (Mw = 6.4): A reactivation of the Ibero-Maghrebian region?

    Science.gov (United States)

    Buforn, E.; Pro, C.; Sanz de Galdeano, C.; Cantavella, J. V.; Cesca, S.; Caldeira, B.; Udías, A.; Mattesini, M.

    2017-08-01

    On 25 January 2016, an earthquake of magnitude Mw = 6.4 occurred at the southern part of the Alboran Sea, between southern Spain and northern Morocco. This shock was preceded by a foreshock (Mw = 5.1) and followed by a long aftershock sequence. Focal mechanism of main shock has been estimated from slip inversion of body waves at teleseismic distances. Solution corresponds to left-lateral strike-slip motion, showing a complex bilateral rupture, formed by two sub-events, with most energy propagating along a plane oriented N30°E plane dipping to the NW. Relocation of larger events of the aftershock series, show two alignments of epicentres in NE-SW and NNE-SSW direction that intersect at the epicentre of the main shock. We have estimated the focal mechanisms of the largest aftershocks from moment tensor inversion at regional distances. We have obtained two families of focal mechanisms corresponding to strike slip for the NNE-SSW alignment and thrusting motion for the NE-SW alignment. Among the faults present in the area the Al Idrisi fault (or fault zone) may be a good candidate for the source of this earthquake. The study of Coulomb Failure Stress shows that it is possible that the 2016 earthquake was triggered by the previous nearby earthquakes of 1994 (Mw = 5.8) and 2004 (Mw = 6.3). The possible seismic reactivation of the central part of the Ibero-Maghrebian region is an open question, but it is clear that the occurrence of the 2016 earthquake confirms that from 1994 the seismicity of central part of IMR is increasing and that focal mechanism of largest earthquakes in this central part correspond to complex ruptures (or zone of fault).

  11. Quantitative Earthquake Prediction on Global and Regional Scales

    International Nuclear Information System (INIS)

    Kossobokov, Vladimir G.

    2006-01-01

    The Earth is a hierarchy of volumes of different size. Driven by planetary convection these volumes are involved into joint and relative movement. The movement is controlled by a wide variety of processes on and around the fractal mesh of boundary zones, and does produce earthquakes. This hierarchy of movable volumes composes a large non-linear dynamical system. Prediction of such a system in a sense of extrapolation of trajectory into the future is futile. However, upon coarse-graining the integral empirical regularities emerge opening possibilities of prediction in a sense of the commonly accepted consensus definition worked out in 1976 by the US National Research Council. Implications of the understanding hierarchical nature of lithosphere and its dynamics based on systematic monitoring and evidence of its unified space-energy similarity at different scales help avoiding basic errors in earthquake prediction claims. They suggest rules and recipes of adequate earthquake prediction classification, comparison and optimization. The approach has already led to the design of reproducible intermediate-term middle-range earthquake prediction technique. Its real-time testing aimed at prediction of the largest earthquakes worldwide has proved beyond any reasonable doubt the effectiveness of practical earthquake forecasting. In the first approximation, the accuracy is about 1-5 years and 5-10 times the anticipated source dimension. Further analysis allows reducing spatial uncertainty down to 1-3 source dimensions, although at a cost of additional failures-to-predict. Despite of limited accuracy a considerable damage could be prevented by timely knowledgeable use of the existing predictions and earthquake prediction strategies. The December 26, 2004 Indian Ocean Disaster seems to be the first indication that the methodology, designed for prediction of M8.0+ earthquakes can be rescaled for prediction of both smaller magnitude earthquakes (e.g., down to M5.5+ in Italy) and

  12. Quantitative Earthquake Prediction on Global and Regional Scales

    Science.gov (United States)

    Kossobokov, Vladimir G.

    2006-03-01

    The Earth is a hierarchy of volumes of different size. Driven by planetary convection these volumes are involved into joint and relative movement. The movement is controlled by a wide variety of processes on and around the fractal mesh of boundary zones, and does produce earthquakes. This hierarchy of movable volumes composes a large non-linear dynamical system. Prediction of such a system in a sense of extrapolation of trajectory into the future is futile. However, upon coarse-graining the integral empirical regularities emerge opening possibilities of prediction in a sense of the commonly accepted consensus definition worked out in 1976 by the US National Research Council. Implications of the understanding hierarchical nature of lithosphere and its dynamics based on systematic monitoring and evidence of its unified space-energy similarity at different scales help avoiding basic errors in earthquake prediction claims. They suggest rules and recipes of adequate earthquake prediction classification, comparison and optimization. The approach has already led to the design of reproducible intermediate-term middle-range earthquake prediction technique. Its real-time testing aimed at prediction of the largest earthquakes worldwide has proved beyond any reasonable doubt the effectiveness of practical earthquake forecasting. In the first approximation, the accuracy is about 1-5 years and 5-10 times the anticipated source dimension. Further analysis allows reducing spatial uncertainty down to 1-3 source dimensions, although at a cost of additional failures-to-predict. Despite of limited accuracy a considerable damage could be prevented by timely knowledgeable use of the existing predictions and earthquake prediction strategies. The December 26, 2004 Indian Ocean Disaster seems to be the first indication that the methodology, designed for prediction of M8.0+ earthquakes can be rescaled for prediction of both smaller magnitude earthquakes (e.g., down to M5.5+ in Italy) and

  13. A study on generation of simulated earthquake ground motion for seismic design of nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Matsumoto, Takuji; Kitada, Yoshio; Osaki, Yorihiko; Kanda, Jun; Masao, Toru.

    1985-01-01

    The aseismatic design of nuclear power generation facilities carried out in Japan at present must conform to the ''Guideline for aseismatic design examination regarding power reactor facilities'' decided by the Atomic Energy Commission in 1978. In this guideline, the earthquake motion used for the analysis of dynamic earthquake response is to be given in the form of the magnitude determined on the basis of the investigation of historical earthquakes and active faults around construction sites and the response spectra corresponding to the distance from epicenters. Accordingly when the analysis of dynamic earthquake response is actually carried out, the simulated earthquake motion made in conformity with these set up response spectra is used as the input earthquake motion for the design. For the purpose of establishing the techniques making simulated earthquake motion which is more appropriate and rational from engineering viewpoint, the research was carried out, and the results are summarized in this paper. The techniques for making simulated earthquake motion, the response of buildings and the response spectra of floors are described. (Kako, I.)

  14. Earthquake Drill using the Earthquake Early Warning System at an Elementary School

    Science.gov (United States)

    Oki, Satoko; Yazaki, Yoshiaki; Koketsu, Kazuki

    2010-05-01

    economic repercussion. We provide the school kids with the "World Seismicity Map" to let them realize that earthquake disasters take place unequally. Then we let the kids jump in front of the seismometer with projecting the real-time data to the wall. Grouped kids contest the largest amplitude by carefully considering how to jump high but nail the landing with their teammates. Their jumps are printed out via portable printer and compared with the real earthquake which occurred even 600km away but still huge when printed out in the same scale. Actually, a magnitude 7 earthquake recorded 600km away needs an A0 paper when scaled with a jump of 10 kids printed in an A4 paper. They've got to understand what to do not to be killed with the great big energy. We also offer earthquake drills using the Earthquake Early Warning System (EEW System). An EEW System is officially introduced in 2007 by JMA (Japan Meteorological Agency) to issue prompt alerts to provide several to several ten seconds before S-wave arrives. When hearing the alarm, school kids think fast to find a place to protect themselves. It is not always when they are in their classrooms but in the chemical lab, music room which does not have any desks to protect them, or in the PE class. Then in the science class, we demonstrate how the EEW System works. A 8m long wave propagation device made with spindles connected with springs is used to visualize the P- and S-waves. In the presentation, we would like to show the paper materials and sufficient movies.

  15. The April 2017 M6.7 Botswana Earthquake: Implications for African Intraplate Seismicity.

    Science.gov (United States)

    Gardonio, B.; Calais, E.; Jolivet, R.

    2017-12-01

    The last decades have seen a rapidly increasing number of studies of interplate seismicity, revealing for instance the fundamental relationship between seismic and aseismic slip along plate boundary faults. To the contrary, intraplate earthquakes, occurring far from plate boundaries are still misunderstood and by far less studied. Key questions are the mechanisms through which elastic strain builds up and is released in the seismogenic crust in such contexts, in the absence of (yet) measurable intraplate strain rates. The April 2017 M6.7 Botswana earthquake was a surprise in many ways. This is the largest recorded event that struck this ordinarily seismically quiet region, West to the East-African Rift system where most of the usual southern seismicity occurs. It may also be the largest intraplate event recorded since the 1988 Tennant Creek earthquake in central Australia. No active structure can be mapped at the surface. Active extension related to the east African rifting may occur several hundreds of kilometers to the north-east with low rates of a few mm per year. Closer to the event, the Okavango delta, located at 20° of latitude and 23° of longitude is considered by some as an incipient rift with very low deformation rates, similar to a large part of the southern African continent. Interestingly, seismic activity in the area of the recent Botswana earthquake is more important than the world average intraplate activity, potentially due to rifting to the east and/or large stresses induced by lateral gradients in gravitational potential energy (this part of the world has an altitude of 1000 to 2000 m.). The aim of this study is to better constrain the tectonic setting and the dynamics of the Botswana earthquake area. To do so, we analyze a Sentinel 1 interferogram of the event to constrain the strike, dip, depth, magnitude and location of the earthquake. We also analyze continuous teleseismic signals during two months centered on the mainshock using a template

  16. Lessons Learned from Data Management Activities after the Great East Japan Earthquake in March 2011

    Directory of Open Access Journals (Sweden)

    A Kitamoto

    2013-02-01

    Full Text Available This paper summarizes our effort towards managing the multi-disciplinary disaster-related data from the Great East Japan Earthquake, which happened on March 11, 2011 off the coast of Northeast Japan. This earthquake caused the largest tsunami in the recorded history of Japan, killed many people along the coast, and caused a nuclear disaster in Fukushima, which continues to affect a large area of Japan. Just after the earthquake, we started crisis response data management activities to provide useful information for supporting disaster response and recovery. This paper introduces the various types of datasets we made from the viewpoint of data management processing and draws lessons from our post-disaster activities.

  17. Applications of modelling historical catastrophic events with implications for catastrophe risk management

    Science.gov (United States)

    Sorby, A.; Grossi, P.; Pomonis, A.; Williams, C.; Nyst, M.; Onur, T.; Seneviratna, P.; Baca, A.

    2009-04-01

    The management of catastrophe risk is concerned with the quantification of financial losses, and their associated probabilities, for potential future catastrophes that might impact a region. Modelling of historical catastrophe events and, in particular, the potential consequences if a similar event were to occur at the present day can provide insight to help bridge the gap between what we know can happen from historical experience and what potential losses might be out there in the "universe" of potential catastrophes. The 1908 Messina Earthquake (and accompanying local tsunami) was one of the most destructive earthquakes to have occurred in Europe and by most accounts remains Europe's most fatal with over 70,000 casualties estimated. However, what would the potential consequences be, in terms of financial and human losses, if a similar earthquake were to occur at the present day? Exposures, building stock and populations can change over time and, therefore, the consequences of a similar earthquake at the present day may sensibly differ from those observed in 1908. The city of Messina has been reconstructed several times in its history, including following the 1908 earthquake and again following the Second World War. The 1908 earthquake prompted the introduction of the first seismic design regulations in Italy and since 1909 parts of the Messina and Calabria regions have been in the zones of highest seismic coefficient. Utilizing commercial catastrophe loss modelling technology - which combines the modelling of hazard, vulnerability, and financial losses on a database of property exposures - a modelled earthquake scenario of M7.2 in the Messina Straits region of Southern Italy is considered. This modelled earthquake is used to assess the potential consequences in terms of financial losses that an earthquake similar to the 1908 earthquake might have if it were to occur at the present day. Loss results are discussed in the context of applications for the financial

  18. Present Status of Historical Seismicity Studies in Colombia and Venezuela

    Science.gov (United States)

    Sarabia, A.; Cifuentes, H.; Altez Ortega, R.; Palme, C.; Dimate, C.

    2013-05-01

    After the publication of the SISRA (CERESIS-1985) regional project, a unified catalog of seismic parameters and intensities for South America, researchers in historical seismicity have continued advancing on different scales in the area of this study of seismic hazard. The most important initiatives carried out in this area in Colombia and Venezuela can be grouped as follows: a) Reviews of destructive earthquakes in national and international historic archives, principally by Altez and FUNVISIS in Venezuela and Espinosa, Salcedo, and Sarabia et al in Colombia, leading to the preparation of seismologic catalogues, scientific and dissemination articles, reports, books, among others. b) Organization and systematization of historic information to develop public domain data bases and information, specifically the Historic Seismologic Teleinformation System in Venezuela, carried out between 2004 and 2008 under the coordination of Christl Palme and accessible on-line: http://sismicidad.ciens.ula.ve. As well, the "Historia Sísmica de Colombia 1550-1830" (Seismic History in Colombia 1550-1830) data base, in CD-ROM, by Espinosa Baquero (2003) and the historic seismicity information system of Colombia (Servicio Geológico Colombiano-Universidad Nacional de Colombia), published on the internet in 2012: http://agata.ingeominas.gov.co:9090/SismicidadHistorica/. c) Macroseismic studies for the development of intensity attenuation equations and the quantification and revaluation of basic historic earthquake parameters using isoseismal maps (Rengifo et al., Palme et al., Salcedo et al., among others) and procedures such as Boxer and Bakun & Wentworth (Palme et al., Dimaté, among others), which have produced significant changes in the parameters of some of the large earthquakes. d) Symposiums of researchers to promote interest and development in the discipline, including Jornadas Venezolanas de Sismología Histórica (Venezuelan Congress of Historical Seismology), held

  19. Earthquake Early Warning ShakeAlert System: Testing and certification platform

    Science.gov (United States)

    Cochran, Elizabeth S.; Kohler, Monica D.; Given, Douglas; Guiwits, Stephen; Andrews, Jennifer; Meier, Men-Andrin; Ahmad, Mohammad; Henson, Ivan; Hartog, Renate; Smith, Deborah

    2017-01-01

    Earthquake early warning systems provide warnings to end users of incoming moderate to strong ground shaking from earthquakes. An earthquake early warning system, ShakeAlert, is providing alerts to beta end users in the western United States, specifically California, Oregon, and Washington. An essential aspect of the earthquake early warning system is the development of a framework to test modifications to code to ensure functionality and assess performance. In 2016, a Testing and Certification Platform (TCP) was included in the development of the Production Prototype version of ShakeAlert. The purpose of the TCP is to evaluate the robustness of candidate code that is proposed for deployment on ShakeAlert Production Prototype servers. TCP consists of two main components: a real‐time in situ test that replicates the real‐time production system and an offline playback system to replay test suites. The real‐time tests of system performance assess code optimization and stability. The offline tests comprise a stress test of candidate code to assess if the code is production ready. The test suite includes over 120 events including local, regional, and teleseismic historic earthquakes, recentering and calibration events, and other anomalous and potentially problematic signals. Two assessments of alert performance are conducted. First, point‐source assessments are undertaken to compare magnitude, epicentral location, and origin time with the Advanced National Seismic System Comprehensive Catalog, as well as to evaluate alert latency. Second, we describe assessment of the quality of ground‐motion predictions at end‐user sites by comparing predicted shaking intensities to ShakeMaps for historic events and implement a threshold‐based approach that assesses how often end users initiate the appropriate action, based on their ground‐shaking threshold. TCP has been developed to be a convenient streamlined procedure for objectively testing algorithms, and it has

  20. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng; Hainzl, Sebastian; Mai, Paul Martin

    2015-01-01

    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  1. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng

    2015-11-11

    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  2. Deterministic Earthquake Hazard Assessment by Public Agencies in California

    Science.gov (United States)

    Mualchin, L.

    2005-12-01

    Even in its short recorded history, California has experienced a number of damaging earthquakes that have resulted in new codes and other legislation for public safety. In particular, the 1971 San Fernando earthquake produced some of the most lasting results such as the Hospital Safety Act, the Strong Motion Instrumentation Program, the Alquist-Priolo Special Studies Zone Act, and the California Department of Transportation (Caltrans') fault-based deterministic seismic hazard (DSH) map. The latter product provides values for earthquake ground motions based on Maximum Credible Earthquakes (MCEs), defined as the largest earthquakes that can reasonably be expected on faults in the current tectonic regime. For surface fault rupture displacement hazards, detailed study of the same faults apply. Originally, hospital, dam, and other critical facilities used seismic design criteria based on deterministic seismic hazard analyses (DSHA). However, probabilistic methods grew and took hold by introducing earthquake design criteria based on time factors and quantifying "uncertainties", by procedures such as logic trees. These probabilistic seismic hazard analyses (PSHA) ignored the DSH approach. Some agencies were influenced to adopt only the PSHA method. However, deficiencies in the PSHA method are becoming recognized, and the use of the method is now becoming a focus of strong debate. Caltrans is in the process of producing the fourth edition of its DSH map. The reason for preferring the DSH method is that Caltrans believes it is more realistic than the probabilistic method for assessing earthquake hazards that may affect critical facilities, and is the best available method for insuring public safety. Its time-invariant values help to produce robust design criteria that are soundly based on physical evidence. And it is the method for which there is the least opportunity for unwelcome surprises.

  3. The 2007 Mentawai earthquake sequence on the Sumatra megathrust

    Science.gov (United States)

    Konca, A.; Avouac, J.; Sladen, A.; Meltzner, A. J.; Kositsky, A. P.; Sieh, K.; Fang, P.; Li, Z.; Galetzka, J.; Genrich, J.; Chlieh, M.; Natawidjaja, D. H.; Bock, Y.; Fielding, E. J.; Helmberger, D. V.

    2008-12-01

    The Sumatra Megathrust has recently produced a flurry of large interplate earthquakes starting with the giant Mw 9.15, Aceh earthquake of 2004. All of these earthquakes occurred within the area monitored by the Sumatra Geodetic Array (SuGAr), which provided exceptional records of near-field co-seismic and postseismic ground displacements. The most recent of these major earthquakes, an Mw 8.4 earthquake and an Mw 7.9 earthquake twelve hours later, occurred in the Mentawai islands area where devastating historical earthquakes had happened in 1797 and 1833. The 2007 earthquake sequence provides an exceptional opportunity to understand the variability of the earthquakes along megathrusts and their relation to interseismic coupling. The InSAR, GPS and teleseismic modeling shows that 2007 earthquakes ruptured a fraction of the strongly coupled Mentawai patch of the megathrust, which is also only a fraction of the 1833 rupture area. It also released a much smaller moment than the one released in 1833, or than the deficit of moment that has accumulated since. Both earthquakes of 2007 consist of 2 sub-events which are 50 to 100 km apart from each other. On the other hand, the northernmost slip patch of 8.4 and southern slip patch of 7.9 earthquakes abut each other, but they ruptured 12 hours apart. Sunda megathrust earthquakes of recent years include a rupture of a strongly coupled patch that closely mimics a prior rupture of that patch and which is well correlated with the interseismic coupling pattern (Nias-Simeulue section), as well as a rupture sequence of a strongly coupled patch that differs substantially in the details from its most recent predecessors (Mentawai section). We conclude that (1) seismic asperities are probably persistent features which arise form heterogeneous strain build up in the interseismic period; and (2) the same portion of a megathrust can rupture in different ways depending on whether asperities break as isolated events or cooperate to produce

  4. Global assessment of human losses due to earthquakes

    Science.gov (United States)

    Silva, Vitor; Jaiswal, Kishor; Weatherill, Graeme; Crowley, Helen

    2014-01-01

    Current studies have demonstrated a sharp increase in human losses due to earthquakes. These alarming levels of casualties suggest the need for large-scale investment in seismic risk mitigation, which, in turn, requires an adequate understanding of the extent of the losses, and location of the most affected regions. Recent developments in global and uniform datasets such as instrumental and historical earthquake catalogues, population spatial distribution and country-based vulnerability functions, have opened an unprecedented possibility for a reliable assessment of earthquake consequences at a global scale. In this study, a uniform probabilistic seismic hazard assessment (PSHA) model was employed to derive a set of global seismic hazard curves, using the open-source software OpenQuake for seismic hazard and risk analysis. These results were combined with a collection of empirical fatality vulnerability functions and a population dataset to calculate average annual human losses at the country level. The results from this study highlight the regions/countries in the world with a higher seismic risk, and thus where risk reduction measures should be prioritized.

  5. The 2016 Mihoub (north-central Algeria) earthquake sequence: Seismological and tectonic aspects

    Science.gov (United States)

    Khelif, M. F.; Yelles-Chaouche, A.; Benaissa, Z.; Semmane, F.; Beldjoudi, H.; Haned, A.; Issaadi, A.; Chami, A.; Chimouni, R.; Harbi, A.; Maouche, S.; Dabbouz, G.; Aidi, C.; Kherroubi, A.

    2018-06-01

    On 28 May 2016 at 23:54 (UTC), an Mw5.4 earthquake occurred in Mihoub village, Algeria, 60 km southeast of Algiers. This earthquake was the largest event in a sequence recorded from 10 April to 15 July 2016. In addition to the permanent national network, a temporary network was installed in the epicentral region after this shock. Recorded event locations allow us to give a general overview of the sequence and reveal the existence of two main fault segments. The first segment, on which the first event in the sequence was located, is near-vertical and trends E-W. The second fault plane, on which the largest event of the sequence was located, dips to the southeast and strikes NE-SW. A total of 46 well-constrained focal mechanisms were calculated. The events located on the E-W-striking fault segment show mainly right-lateral strike-slip (strike N70°E, dip 77° to the SSE, rake 150°). The events located on the NE-SW-striking segment show mainly reverse faulting (strike N60°E, dip 70° to the SE, rake 130°). We calculated the static stress change caused by the first event (Md4.9) of the sequence; the result shows that the fault plane of the largest event in the sequence (Mw5.4) and most of the aftershocks occurred within an area of increased Coulomb stress. Moreover, using the focal mechanisms calculated in this work, we estimated the orientations of the main axes of the local stress tensor ellipsoid. The results confirm previous findings that the general stress field in this area shows orientations aligned NNW-SSE to NW-SE. The 2016 Mihoub earthquake sequence study thus improves our understanding of seismic hazard in north-central Algeria.

  6. Triggering of the Largest Deccan Eruptions by the Chicxulub Impact

    Science.gov (United States)

    Richards, M. A.; Alvarez, W.; Self, S.; Karlstrom, L.; Renne, P. R.; Manga, M.; Sprain, C. J.; Smit, J.; Vanderkluysen, L.; Gibson, S. A.

    2015-12-01

    Modern constraints on the timing of the Cretaceous-Paleogene (K-Pg) mass extinction and the Chicxulub impact, together with a particularly voluminous and apparently brief eruptive pulse toward the end of the "main-stage" eruptions of the Deccan continental flood basalt province, suggest that these three events may have occurred within less than about a hundred thousand years of each other. Partial melting induced by the Chicxulub event does not provide an energetically plausible explanation for this remarkable coincidence, and both geochronologic and magnetic-polarity data show that Deccan volcanism was underway well before Chicxulub/K-Pg time. However, historical data show that in some cases eruptions from existing volcanic systems are triggered by earthquakes. Seismic modeling of the ground motion due to the Chicxulub impact suggests that the resulting Mw~11 earthquake could have generated seismic energy densities of at least 0.1-1.0 J/m3 throughout the upper ~200 km of the Earth's mantle, sufficient to trigger volcanic eruptions worldwide based upon comparison with historical examples. Triggering may have been caused by a transient increase in the effective permeability of the existing deep magmatic system beneath the Deccan province, or mantle plume "head." We suggest that the Chicxulub impact triggered the enormous Poladpur, Ambenali, and Mahabaleshwar (Wai sub-group) lava flows that may account for >70% of the Deccan Traps main-stage eruptions. This hypothesis is consistent with independent stratigraphic, geochronologic, geochemical, and tectonic constraints, which combine to indicate that at approximately Chicxulub/K-Pg time a huge pulse of mantle plume-derived magma passed through the crust with little interaction, and erupted to form the most extensive and voluminous lava flows known on Earth. This impact-induced pulse of volcanism may have enhanced the K-Pg extinction event, and/or suppressed post-extinction biotic recovery. High-precision radioisotopic

  7. Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile

    Science.gov (United States)

    Dure, Tina; Cisternas, Marco; Horton, Benjamin; Ely, Lisa; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica

    2015-01-01

    The ∼500-year historical record of seismicity along the central Chile coast (30–34°S) is characterized by a series of ∼M 8.0–8.5 earthquakes followed by low tsunamis (tsunami (>10 m), but the frequency of such large events is unknown. We extend the seismic history of central Chile through a study of a lowland stratigraphic sequence along the metropolitan coast north of Valparaíso (33°S). At this site, higher relative sea level during the mid Holocene created a tidal marsh and the accommodation space necessary for sediment that preserves earthquake and tsunami evidence. Within this 2600-yr-long sequence, we traced six laterally continuous sand beds probably deposited by high tsunamis. Plant remains that underlie the sand beds were radiocarbon dated to 6200, 5600, 5000, 4400, 3800, and 3700 cal yr BP. Sediment properties and diatom assemblages of the sand beds—for example, anomalous marine planktonic diatoms and upward fining of silt-sized diatom valves—point to a marine sediment source and high-energy deposition. Grain-size analysis shows a strong similarity between inferred tsunami deposits and modern coastal sediment. Upward fining sequences characteristic of suspension deposition are present in five of the six sand beds. Despite the lack of significant lithologic changes between the sedimentary units under- and overlying tsunami deposits, we infer that the increase in freshwater siliceous microfossils in overlying units records coseismic uplift concurrent with the deposition of five of the sand beds. During our mid-Holocene window of evidence preservation, the mean recurrence interval of earthquakes and tsunamis is ∼500 years. Our findings imply that the frequency of historical earthquakes in central Chile is not representative of the greatest earthquakes and tsunamis that the central Chilean subduction zone has produced.

  8. Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile

    Science.gov (United States)

    Dure, Tina; Cisternas, Marco; Horton, Benjamin; Ely, Lisa; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica

    2015-01-01

    The ∼500-year historical record of seismicity along the central Chile coast (30–34°S) is characterized by a series of ∼M 8.0–8.5 earthquakes followed by low tsunamis (10 m), but the frequency of such large events is unknown. We extend the seismic history of central Chile through a study of a lowland stratigraphic sequence along the metropolitan coast north of Valparaíso (33°S). At this site, higher relative sea level during the mid Holocene created a tidal marsh and the accommodation space necessary for sediment that preserves earthquake and tsunami evidence. Within this 2600-yr-long sequence, we traced six laterally continuous sand beds probably deposited by high tsunamis. Plant remains that underlie the sand beds were radiocarbon dated to 6200, 5600, 5000, 4400, 3800, and 3700 cal yr BP. Sediment properties and diatom assemblages of the sand beds—for example, anomalous marine planktonic diatoms and upward fining of silt-sized diatom valves—point to a marine sediment source and high-energy deposition. Grain-size analysis shows a strong similarity between inferred tsunami deposits and modern coastal sediment. Upward fining sequences characteristic of suspension deposition are present in five of the six sand beds. Despite the lack of significant lithologic changes between the sedimentary units under- and overlying tsunami deposits, we infer that the increase in freshwater siliceous microfossils in overlying units records coseismic uplift concurrent with the deposition of five of the sand beds. During our mid-Holocene window of evidence preservation, the mean recurrence interval of earthquakes and tsunamis is ∼500 years. Our findings imply that the frequency of historical earthquakes in central Chile is not representative of the greatest earthquakes and tsunamis that the central Chilean subduction zone has produced.

  9. The 4 January 2016 Manipur earthquake in the Indo-Burmese wedge, an intra-slab event

    Directory of Open Access Journals (Sweden)

    V. K. Gahalaut

    2016-09-01

    Full Text Available Earthquakes in the Indo-Burmese wedge occur due to India-Sunda plate motion. These earthquakes generally occur at depth between 25 and 150 km and define an eastward gently dipping seismicity trend surface that coincides with the Indian slab. Although this feature mimics the subduction zone, the relative motion of Indian plate predominantly towards north, earthquake focal mechanisms suggest that these earthquakes are of intra-slab type which occur on steep plane within the Indian plate. The relative motion between the India and Sunda plates is accommodated at the Churachandpur-Mao fault (CMF and Sagaing Fault. The 4 January 2016 Manipur earthquake (M 6.7 is one such earthquake which occurred 20 km west of the CMF at ∼60 km depth. Fortunately, this earthquake occurred in a very sparse population region with very traditional wooden frame houses and hence, the damage caused by the earthquake in the source region was very minimal. However, in the neighbouring Imphal valley, it caused some damage to the buildings and loss of eight lives. The damage in Imphal valley due to this and historical earthquakes in the region emphasizes the role of local site effect in the Imphal valley.

  10. Earthquake ground motion simulation at Zoser pyramid using the stochastic method: A step toward the preservation of an ancient Egyptian heritage

    Directory of Open Access Journals (Sweden)

    Amin E. Khalil

    2017-06-01

    Full Text Available Strong ground shaking during earthquakes can greatly affect the ancient monuments and subsequently demolish the human heritage. On October 12th 1992, a moderate earthquake (Ms = 5.8 shocked the greater Cairo area causing widespread damages. Unfortunately, the focus of that earthquake is located about 14 km to the south of Zoser pyramid. After the earthquake, the Egyptian Supreme council of antiquities issued an alarm that Zoser pyramid is partially collapsed and international and national efforts are exerted to restore this important human heritage that was built about 4000 years ago. Engineering and geophysical work is thus needed for the restoration process. The definition of the strong motion parameters is one of the required studies since seismically active zone is recorded in its near vicinity. The present study adopted the stochastic method to determine the peak ground motion (acceleration, velocity and displacement for the three largest earthquakes recorded in the Egypt’s seismological history. These earthquakes are Shedwan earthquake with magnitude Ms = 6.9, Aqaba earthquake with magnitude Mw = 7.2 and Cairo (Dahshour earthquake with magnitude Ms = 5.8. The former two major earthquakes took place few hundred kilometers away. It is logic to have the predominant effects from the epicentral location of the Cairo earthquake; however, the authors wanted to test also the long period effects of the large distance earthquakes expected from the other two earthquakes under consideration. In addition, the dynamic site response was studied using the Horizontal to vertical spectral ratio (HVSR technique. HVSR can provide information about the fundamental frequency successfully; however, the amplification estimation is not accepted. The result represented as either peak ground motion parameters or response spectra indicates that the effects from Cairo earthquake epicenter are the largest for all periods considered in the present study. The

  11. Earthquake ground motion simulation at Zoser pyramid using the stochastic method: A step toward the preservation of an ancient Egyptian heritage

    Science.gov (United States)

    Khalil, Amin E.; Abdel Hafiez, H. E.; Girgis, Milad; Taha, M. A.

    2017-06-01

    Strong ground shaking during earthquakes can greatly affect the ancient monuments and subsequently demolish the human heritage. On October 12th 1992, a moderate earthquake (Ms = 5.8) shocked the greater Cairo area causing widespread damages. Unfortunately, the focus of that earthquake is located about 14 km to the south of Zoser pyramid. After the earthquake, the Egyptian Supreme council of antiquities issued an alarm that Zoser pyramid is partially collapsed and international and national efforts are exerted to restore this important human heritage that was built about 4000 years ago. Engineering and geophysical work is thus needed for the restoration process. The definition of the strong motion parameters is one of the required studies since seismically active zone is recorded in its near vicinity. The present study adopted the stochastic method to determine the peak ground motion (acceleration, velocity and displacement) for the three largest earthquakes recorded in the Egypt's seismological history. These earthquakes are Shedwan earthquake with magnitude Ms = 6.9, Aqaba earthquake with magnitude Mw = 7.2 and Cairo (Dahshour earthquake) with magnitude Ms = 5.8. The former two major earthquakes took place few hundred kilometers away. It is logic to have the predominant effects from the epicentral location of the Cairo earthquake; however, the authors wanted to test also the long period effects of the large distance earthquakes expected from the other two earthquakes under consideration. In addition, the dynamic site response was studied using the Horizontal to vertical spectral ratio (HVSR) technique. HVSR can provide information about the fundamental frequency successfully; however, the amplification estimation is not accepted. The result represented as either peak ground motion parameters or response spectra indicates that the effects from Cairo earthquake epicenter are the largest for all periods considered in the present study. The level of strong motion as

  12. Probabilistic earthquake hazard analysis for Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2016-04-01

    Cairo is the capital of Egypt and the largest city in the Arab world and Africa, and the sixteenth largest metropolitan area in the world. It was founded in the tenth century (969 ad) and is 1046 years old. It has long been a center of the region's political and cultural life. Therefore, the earthquake risk assessment for Cairo has a great importance. The present work aims to analysis the earthquake hazard of Cairo as a key input's element for the risk assessment. The regional seismotectonics setting shows that Cairo could be affected by both far- and near-field seismic sources. The seismic hazard of Cairo has been estimated using the probabilistic seismic hazard approach. The logic tree frame work was used during the calculations. Epistemic uncertainties were considered into account by using alternative seismotectonics models and alternative ground motion prediction equations. Seismic hazard values have been estimated within a grid of 0.1° × 0.1 ° spacing for all of Cairo's districts at different spectral periods and four return periods (224, 615, 1230, and 4745 years). Moreover, the uniform hazard spectra have been calculated at the same return periods. The pattern of the contour maps show that the highest values of the peak ground acceleration is concentrated in the eastern zone's districts (e.g., El Nozha) and the lowest values at the northern and western zone's districts (e.g., El Sharabiya and El Khalifa).

  13. Landslides triggered by the 1946 Ancash earthquake, Peru

    Science.gov (United States)

    Kampherm, T. S.; Evans, S. G.; Valderrama Murillo, P.

    2009-04-01

    The 1946 M7.3 Ancash Earthquake triggered a large number of landslides in an epicentral area that straddled the Continental Divide of South America in the Andes of Peru. A small number of landslides were described in reconnaissance reports by E. Silgado and Arnold Heim published shortly after the earthquake, but further details of the landslides triggered by the earthquake have not been reported since. Utilising field traverses, aerial photograph interpretation and GIS, our study mapped 45 landslides inferred to have been triggered by the event. 83% were rock avalanches involving Cretaceous limestones interbedded with shales. The five largest rock/debris avalanches occurred at Rio Llama (est. vol. 37 M m3), Suytucocha (est. vol., 13.5 Mm3), Quiches (est. vol. 10.5 Mm3 ), Pelagatos (est. vol. 8 Mm3), and Shundoy (est. vol. 8 Mm3). The Suytucocha, Quiches, and Pelagatos landslides were reported by Silgado and Heim. Rock slope failure was most common on slopes with a southwest aspect, an orientation corresponding to the regional dip direction of major planar structures in the Andean foreland belt (bedding planes and thrust faults). In valleys oriented transverse to the NW-SE structural grain of the epicentral area, south-westerly dipping bedding planes combined with orthogonal joint sets to form numerous wedge failures. Many initial rock slope failures were transformed into rock/debris avalanches by the entrainment of colluvium in their path. At Acobamba, a rock avalanche that transformed into a debris avalanche (est. vol. 4.3 Mm3) overwhelmed a village resulting in the deaths of 217 people. The cumulative volume-frequency plot shows a strong power law relation below a marked rollover, similar in form to that derived for landslides triggered by the 1994 Northridge Earthquake. The total volume of the 45 landslides is approximately 93 Mm3. The data point for the Ancash Earthquake plots near the regression line calculated by Keefer (1994), and modified by Malamud et al

  14. Calibration and validation of earthquake catastrophe models. Case study: Impact Forecasting Earthquake Model for Algeria

    Science.gov (United States)

    Trendafiloski, G.; Gaspa Rebull, O.; Ewing, C.; Podlaha, A.; Magee, B.

    2012-04-01

    Calibration and validation are crucial steps in the production of the catastrophe models for the insurance industry in order to assure the model's reliability and to quantify its uncertainty. Calibration is needed in all components of model development including hazard and vulnerability. Validation is required to ensure that the losses calculated by the model match those observed in past events and which could happen in future. Impact Forecasting, the catastrophe modelling development centre of excellence within Aon Benfield, has recently launched its earthquake model for Algeria as a part of the earthquake model for the Maghreb region. The earthquake model went through a detailed calibration process including: (1) the seismic intensity attenuation model by use of macroseismic observations and maps from past earthquakes in Algeria; (2) calculation of the country-specific vulnerability modifiers by use of past damage observations in the country. The use of Benouar, 1994 ground motion prediction relationship was proven as the most appropriate for our model. Calculation of the regional vulnerability modifiers for the country led to 10% to 40% larger vulnerability indexes for different building types compared to average European indexes. The country specific damage models also included aggregate damage models for residential, commercial and industrial properties considering the description of the buildings stock given by World Housing Encyclopaedia and the local rebuilding cost factors equal to 10% for damage grade 1, 20% for damage grade 2, 35% for damage grade 3, 75% for damage grade 4 and 100% for damage grade 5. The damage grades comply with the European Macroseismic Scale (EMS-1998). The model was validated by use of "as-if" historical scenario simulations of three past earthquake events in Algeria M6.8 2003 Boumerdes, M7.3 1980 El-Asnam and M7.3 1856 Djidjelli earthquake. The calculated return periods of the losses for client market portfolio align with the

  15. Earthquake Loss Scenarios in the Himalayas

    Science.gov (United States)

    Wyss, M.; Gupta, S.; Rosset, P.; Chamlagain, D.

    2017-12-01

    We estimate quantitatively that in repeats of the 1555 and 1505 great Himalayan earthquakes the fatalities may range from 51K to 549K, the injured from 157K to 1,700K and the strongly affected population (Intensity≥VI) from 15 to 75 million, depending on the details of the assumed earthquake parameters. For up-dip ruptures in the stressed segments of the M7.8 Gorkha 2015, the M7.9 Subansiri 1947 and the M7.8 Kangra 1905 earthquakes, we estimate 62K, 100K and 200K fatalities, respectively. The numbers of strongly affected people we estimate as 8, 12, 33 million, in these cases respectively. These loss calculations are based on verifications of the QLARM algorithms and data set in the cases of the M7.8 Gorkha 2015, the M7.8 Kashmir 2005, the M6.6 Chamoli 1999, the M6.8 Uttarkashi 1991 and the M7.8 Kangra 1905 earthquakes. The requirement of verification that was fulfilled in these test cases was that the reported intensity field and the fatality count had to match approximately, using the known parameters of the earthquakes. The apparent attenuation factor was a free parameter and ranged within acceptable values. Numbers for population were adjusted for the years in question from the latest census. The hour of day was assumed to be at night with maximum occupation. The assumption that the upper half of the Main Frontal Thrust (MFT) will rupture in companion earthquakes to historic earthquakes in the down-dip half is based on the observations of several meters of displacement in trenches across the MFT outcrop. Among mitigation measures awareness with training and adherence to construction codes rank highest. Retrofitting of schools and hospitals would save lives and prevent injuries. Preparation plans for helping millions of strongly affected people should be put in place. These mitigation efforts should focus on an approximately 7 km wide strip along the MFT on the up-thrown side because the strong motions are likely to be doubled. We emphasize that our estimates

  16. Earthquake Probability Assessment for the Active Faults in Central Taiwan: A Case Study

    Directory of Open Access Journals (Sweden)

    Yi-Rui Lee

    2016-06-01

    Full Text Available Frequent high seismic activities occur in Taiwan due to fast plate motions. According to the historical records the most destructive earthquakes in Taiwan were caused mainly by inland active faults. The Central Geological Survey (CGS of Taiwan has published active fault maps in Taiwan since 1998. There are 33 active faults noted in the 2012 active fault map. After the Chi-Chi earthquake, CGS launched a series of projects to investigate the details to better understand each active fault in Taiwan. This article collected this data to develop active fault parameters and referred to certain experiences from Japan and the United States to establish a methodology for earthquake probability assessment via active faults. We consider the active faults in Central Taiwan as a good example to present the earthquake probability assessment process and results. The appropriate “probability model” was used to estimate the conditional probability where M ≥ 6.5 and M ≥ 7.0 earthquakes. Our result shows that the highest earthquake probability for M ≥ 6.5 earthquake occurring in 30, 50, and 100 years in Central Taiwan is the Tachia-Changhua fault system. Conversely, the lowest earthquake probability is the Chelungpu fault. The goal of our research is to calculate the earthquake probability of the 33 active faults in Taiwan. The active fault parameters are important information that can be applied in the following seismic hazard analysis and seismic simulation.

  17. Induced earthquakes. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection.

    Science.gov (United States)

    Keranen, K M; Weingarten, M; Abers, G A; Bekins, B A; Ge, S

    2014-07-25

    Unconventional oil and gas production provides a rapidly growing energy source; however, high-production states in the United States, such as Oklahoma, face sharply rising numbers of earthquakes. Subsurface pressure data required to unequivocally link earthquakes to wastewater injection are rarely accessible. Here we use seismicity and hydrogeological models to show that fluid migration from high-rate disposal wells in Oklahoma is potentially responsible for the largest swarm. Earthquake hypocenters occur within disposal formations and upper basement, between 2- and 5-kilometer depth. The modeled fluid pressure perturbation propagates throughout the same depth range and tracks earthquakes to distances of 35 kilometers, with a triggering threshold of ~0.07 megapascals. Although thousands of disposal wells operate aseismically, four of the highest-rate wells are capable of inducing 20% of 2008 to 2013 central U.S. seismicity. Copyright © 2014, American Association for the Advancement of Science.

  18. Investigating the March 28th 1875 and the September 20th 1920 earthquakes/tsunamis of the Southern Vanuatu arc, offshore Loyalty Islands, New Caledonia

    Science.gov (United States)

    Ioualalen, Mansour; Pelletier, Bernard; Solis Gordillo, Gabriela

    2017-07-01

    New Caledonia's Loyalty Islands are located in the southwest region of the Pacific ocean in the highly seismogenic southern Vanuatu subduction zone and therefore may be subject to devastating local tsunamis. Over the past 150 years, two large tsunamis were triggered by major earthquakes on March 28th 1875 and September 20th 1920. In this study, we use historical observations of these tsunamis (mostly in the form of testimonials), earthquake scenarios, and tsunami modeling to derive the magnitudes of these earthquakes, as well as tsunami runup and inundation maps. Assuming that these earthquakes were located on the interplate megathrust zone, the 1875 earthquake's magnitude was Mw8.1-8.2 and the 1920 event's magnitude was Mw7.5-7.8. The tsunami damage inflicted on the Lifou and Maré islands was approximately proportional to these magnitudes, with Maré being less impacted due to favorable wave directivity. Damage at Ouvéa island may have varied irregularly with the magnitude due to the effects of resonance. This study demonstrates that the quantitative characteristics of historical tsunamigenic earthquakes may be derived from qualitative estimates of tsunami runup.

  19. Contributions to the Chile’s Seismic History: the Case of the Great Earthquake of 1730

    Directory of Open Access Journals (Sweden)

    María X. Urbina Carrasco

    2016-12-01

    Full Text Available According to the new and previously known documents it is concluded the earthquake of Chile in 1730 was composed by two independent earthquakes, each associated to a tsunami. Considering the latitudinal extension of the damage and the size of the tsunamis, it can be taken as the largest seismic event occurred in the history of Metropolitan or Central Chile. These conclusions allow to know better the seismic sequence of Central Chile, the Seismic History of the country, and contribute to the knowledge of the colonial history of the kingdom of Chile.

  20. Mauna Loa--history, hazards and risk of living with the world's largest volcano

    Science.gov (United States)

    Trusdell, Frank A.

    2012-01-01

    Mauna Loa on the Island Hawaiʻi is the world’s largest volcano. People residing on its flanks face many hazards that come with living on or near an active volcano, including lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and local tsunami (giant seawaves). The County of Hawaiʻi (Island of Hawaiʻi) is the fastest growing County in the State of Hawaii. Its expanding population and increasing development mean that risk from volcano hazards will continue to grow. U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory (HVO) closely monitor and study Mauna Loa Volcano to enable timely warning of hazardous activity and help protect lives and property.

  1. Strong motions observed by K-NET and KiK-net during the 2016 Kumamoto earthquake sequence

    Science.gov (United States)

    Suzuki, Wataru; Aoi, Shin; Kunugi, Takashi; Kubo, Hisahiko; Morikawa, Nobuyuki; Nakamura, Hiromitsu; Kimura, Takeshi; Fujiwara, Hiroyuki

    2017-01-01

    The nationwide strong-motion seismograph network of K-NET and KiK-net in Japan successfully recorded the strong ground motions of the 2016 Kumamoto earthquake sequence, which show the several notable characteristics. For the first large earthquake with a JMA magnitude of 6.5 (21:26, April 14, 2016, JST), the large strong motions are concentrated near the epicenter and the strong-motion attenuations are well predicted by the empirical relation for crustal earthquakes with a moment magnitude of 6.1. For the largest earthquake of the sequence with a JMA magnitude of 7.3 (01:25, April 16, 2016, JST), the large peak ground accelerations and velocities extend from the epicentral area to the northeast direction. The attenuation feature of peak ground accelerations generally follows the empirical relation, whereas that for velocities deviates from the empirical relation for stations with the epicentral distance of greater than 200 km, which can be attributed to the large Love wave having a dominant period around 10 s. The large accelerations were observed at stations even in Oita region, more than 70 km northeast from the epicenter. They are attributed to the local induced earthquake in Oita region, whose moment magnitude is estimated to be 5.5 by matching the amplitudes of the corresponding phases with the empirical attenuation relation. The real-time strong-motion observation has a potential for contributing to the mitigation of the ongoing earthquake disasters. We test a methodology to forecast the regions to be exposed to the large shaking in real time, which has been developed based on the fact that the neighboring stations are already shaken, for the largest event of the Kumamoto earthquakes, and demonstrate that it is simple but effective to quickly make warning. We also shows that the interpolation of the strong motions in real time is feasible, which will be utilized for the real-time forecast of ground motions based on the observed shakings.[Figure not available

  2. Potentially induced earthquakes during the early twentieth century in the Los Angeles Basin

    Science.gov (United States)

    Hough, Susan E.; Page, Morgan T.

    2016-01-01

    Recent studies have presented evidence that early to mid‐twentieth‐century earthquakes in Oklahoma and Texas were likely induced by fossil fuel production and/or injection of wastewater (Hough and Page, 2015; Frohlich et al., 2016). Considering seismicity from 1935 onward, Hauksson et al. (2015) concluded that there is no evidence for significant induced activity in the greater Los Angeles region between 1935 and the present. To explore a possible association between earthquakes prior to 1935 and oil and gas production, we first revisit the historical catalog and then review contemporary oil industry activities. Although early industry activities did not induce large numbers of earthquakes, we present evidence for an association between the initial oil boom in the greater Los Angeles area and earthquakes between 1915 and 1932, including the damaging 22 June 1920 Inglewood and 8 July 1929 Whittier earthquakes. We further consider whether the 1933 Mw 6.4 Long Beach earthquake might have been induced, and show some evidence that points to a causative relationship between the earthquake and activities in the Huntington Beach oil field. The hypothesis that the Long Beach earthquake was either induced or triggered by an foreshock cannot be ruled out. Our results suggest that significant earthquakes in southern California during the early twentieth century might have been associated with industry practices that are no longer employed (i.e., production without water reinjection), and do not necessarily imply a high likelihood of induced earthquakes at the present time.

  3. Rupture Propagation through the Big Bend of the San Andreas Fault: A Dynamic Modeling Case Study of the Great Earthquake of 1857

    Science.gov (United States)

    Lozos, J.

    2017-12-01

    The great San Andreas Fault (SAF) earthquake of 9 January 1857, estimated at M7.9, was one of California's largest historic earthquakes. Its 360 km rupture trace follows the Carrizo and Mojave segments of the SAF, including the 30° compressional Big Bend in the fault. If 1857 were a characteristic rupture, the hazard implications for southern California would be dire, especially given the inferred 150 year recurrence interval for this section of the fault. However, recent paleoseismic studies in this region suggest that 1857-type events occur less frequently than single-segment Carrizo or Mojave ruptures, and that the hinge of the Big Bend is a barrier to through-going rupture. Here, I use 3D dynamic rupture modeling to attempt to reproduce the rupture length and surface slip distribution of the 1857 earthquake, to determine which physical conditions allow rupture to negotiate the Big Bend of the SAF. These models incorporate the nonplanar geometry of the SAF, an observation-based heterogeneous regional velocity structure (SCEC CVM), and a regional stress field from seismicity literature. Under regional stress conditions, I am unable to produce model events that both match the observed surface slip on the Carrizo and Mojave segments of the SAF and include rupture through the hinge of the Big Bend. I suggest that accumulated stresses at the bend hinge from multiple smaller Carrizo or Mojave ruptures may be required to allow rupture through the bend — a concept consistent with paleoseismic observations. This study may contribute to understanding the cyclicity of hazard associated with the southern-central SAF.

  4. Earthquakes

    Science.gov (United States)

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  5. Remotely triggered seismicity in north China following the 2008 M w 7.9 Wenchuan earthquake

    Science.gov (United States)

    Peng, Zhigang; Wang, Weijun; Chen, Qi-Fu; Jiang, Tao

    2010-11-01

    We conduct a systematic survey of remote triggering of earthquakes in north China following the 2008 M w 7.9 Wenchuan earthquake. We identify triggered earthquakes as impulsive seismic energies with clear P and S arrivals on 5 Hz high-pass-filtered three-component velocity seismograms during and immediately after the passage of teleseismic waves. We find clearly triggered seismic activity near the Babaoshan and Huangzhuang-Gaoliying faults southwest of Beijing, and near the aftershock zone of the 1976 M W 7.6 Tangshan earthquake. While several earthquakes occur during and immediately after the teleseismic waves in the aftershock zone of the 1975 M w 7.0 Haicheng earthquake, the change of seismicity is not significant enough to establish the direct triggering relationship. Our results suggest that intraplate regions with active faults associated with major earthquakes during historic or recent times are susceptible to remote triggering. We note that this does not always guarantee the triggering to occur, indicating that other conditions are needed. Since none of these regions is associated with any active geothermal or volcanic activity, we infer that dynamic triggering could be ubiquitous and occur in a wide range of tectonic environments.

  6. Modeling Seismic Cycles of Great Megathrust Earthquakes Across the Scales With Focus at Postseismic Phase

    Science.gov (United States)

    Sobolev, Stephan V.; Muldashev, Iskander A.

    2017-12-01

    Subduction is substantially multiscale process where the stresses are built by long-term tectonic motions, modified by sudden jerky deformations during earthquakes, and then restored by following multiple relaxation processes. Here we develop a cross-scale thermomechanical model aimed to simulate the subduction process from 1 min to million years' time scale. The model employs elasticity, nonlinear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences and by using an adaptive time step algorithm, recreates the deformation process as observed naturally during the seismic cycle and multiple seismic cycles. The model predicts that viscosity in the mantle wedge drops by more than three orders of magnitude during the great earthquake with a magnitude above 9. As a result, the surface velocities just an hour or day after the earthquake are controlled by viscoelastic relaxation in the several hundred km of mantle landward of the trench and not by the afterslip localized at the fault as is currently believed. Our model replicates centuries-long seismic cycles exhibited by the greatest earthquakes and is consistent with the postseismic surface displacements recorded after the Great Tohoku Earthquake. We demonstrate that there is no contradiction between extremely low mechanical coupling at the subduction megathrust in South Chile inferred from long-term geodynamic models and appearance of the largest earthquakes, like the Great Chile 1960 Earthquake.

  7. Structural damages of L'Aquila (Italy earthquake

    Directory of Open Access Journals (Sweden)

    H. Kaplan

    2010-03-01

    Full Text Available On 6 April 2009 an earthquake of magnitude 6.3 occurred in L'Aquila city, Italy. In the city center and surrounding villages many masonry and reinforced concrete (RC buildings were heavily damaged or collapsed. After the earthquake, the inspection carried out in the region provided relevant results concerning the quality of the materials, method of construction and the performance of the structures. The region was initially inhabited in the 13th century and has many historic structures. The main structural materials are unreinforced masonry (URM composed of rubble stone, brick, and hollow clay tile. Masonry units suffered the worst damage. Wood flooring systems and corrugated steel roofs are common in URM buildings. Moreover, unconfined gable walls, excessive wall thicknesses without connection with each other are among the most common deficiencies of poorly constructed masonry structures. These walls caused an increase in earthquake loads. The quality of the materials and the construction were not in accordance with the standards. On the other hand, several modern, non-ductile concrete frame buildings have collapsed. Poor concrete quality and poor reinforcement detailing caused damage in reinforced concrete structures. Furthermore, many structural deficiencies such as non-ductile detailing, strong beams-weak columns and were commonly observed. In this paper, reasons why the buildings were damaged in the 6 April 2009 earthquake in L'Aquila, Italy are given. Some suggestions are made to prevent such disasters in the future.

  8. The July 11, 1995 Myanmar-China earthquake: A representative event in the bookshelf faulting system of southeastern Asia observed from JERS-1 SAR images

    Science.gov (United States)

    Ji, Lingyun; Wang, Qingliang; Xu, Jing; Ji, Cunwei

    2017-03-01

    On July 11, 1995, an Mw 6.8 earthquake struck eastern Myanmar near the Chinese border; hereafter referred to as the 1995 Myanmar-China earthquake. Coseismic surface displacements associated with this event are identified from JERS-1 (Japanese Earth Resources Satellite-1) SAR (Synthetic Aperture Radar) images. The largest relative displacement reached 60 cm in the line-of-sight direction. We speculate that a previously unrecognized dextral strike-slip subvertical fault striking NW-SE was responsible for this event. The coseismic slip distribution on the fault planes is inverted based on the InSAR-derived deformation. The results indicate that the fault slip was confined to two lobes. The maximum slip reached approximately 2.5 m at a depth of 5 km in the northwestern part of the focal region. The inverted geodetic moment was approximately Mw = 6.69, which is consistent with seismological results. The 1995 Myanmar-China earthquake is one of the largest recorded earthquakes that has occurred around the "bookshelf faulting" system between the Sagaing fault in Myanmar and the Red River fault in southwestern China.

  9. Expectable Earthquakes and their ground motions in the Van Norman Reservoirs Area

    Science.gov (United States)

    Wesson, R.L.; Page, R.A.; Boore, D.M.; Yerkes, R.F.

    1974-01-01

    and lower Van Norman dams, rupturing of the ground surface by faulting along parts of the zone of old faults that extends easterly through the reservoir area and across the northern part of the valley, folding or arching of the ground surface, and differential horizontal displacement of the terrane north and south of the fault zone. Although a zone of old faults extends through the reservoir area, the 1971 surface ruptures apparently did not; however, arching and horizontal displacements caused small relative displacements of the abutment areas of each of the three damsites. The 1971 arching coincided with preexisting topographic highs, and the surface ruptures coincided with eroded fault scarps and a buried ground-water impediment formed by pre-1971 faulting in young valley fill. This coincidence with evidence of past deformation indicates that the 1971 deformations were the result of a continuing geologic process that is expected to produce similar deformations during future events. The 1971 San Fernando earthquake probably was not the largest that has occurred in this area during the last approximately 200 years, as indicated by a buried fault like scarp about 200 years old that is higher than, and aligned with, 1971 fault scarps. In addition, the San Fernando zone of 1971 ruptures is part of a regional tectonic system that includes the San Andreas and associated faults; one of these, the White Wolf fault north of the San Andreas, is symmetrical in structural attitude with the San Fernando zone and ruptured the ground surface during the 1952 Kern County earthquake (M 7.7). Other large earthquakes associated with surface rupturing on faults of this system include the 1857 Fort Tejon earthquake (M 8+) and possibly the 1852 Big Pine earthquake. Several other historic earthquakes in this general area are not known to be associated with surface ruptures, but were large enough to cause damage in the northern San Fernando Valley. The Van Norman rese

  10. Selected Images of the Effects of the October 15, 2006, Kiholo Bay-Mahukona, Hawai'i, Earthquakes and Recovery Efforts

    Science.gov (United States)

    Takahashi, Taeko Jane; Ikeda, Nancy A.; Okubo, Paul G.; Sako, Maurice K.; Dow, David C.; Priester, Anna M.; Steiner, Nolan A.

    2011-01-01

    Early on the morning of October 15, 2006, two moderate earthquakes—the largest in decades—struck the Island of Hawai‘i. The first of these, which occurred at 7:07 a.m., HST (1707 UTC), was a magnitude (M) 6.7 earthquake, centered beneath Kīholo Bay on the northwestern coast of the island (19.878°N, 155.935°W), at a depth of 39 km. The second earthquake, which struck 6 minutes, 24 seconds later, at 7:14 a.m., HST (1714 UTC), was located 28 km to the north-northwest of Kīholo Bay (20.129°N, 155.983°W), centered at a depth of 19 km. This M6.0 earthquake has since been referred to as the Māhukona earthquake. Losses from the combined effects of these earthquakes are estimated to be $200 million—the most costly events, by far, in Hawai‘i’s earthquake history.

  11. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    International Nuclear Information System (INIS)

    Saragoni, G. Rodolfo

    2008-01-01

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand

  12. Overview of the 2010 Haiti earthquake

    Science.gov (United States)

    DesRoches, Reginald; Comerio, Mary; Eberhard, Marc; Mooney, Walter; Rix, Glenn R.

    2011-01-01

    The 12 January 2010 Mw 7.0 earthquake in the Republic of Haiti caused an estimated 300,000 deaths, displaced more than a million people, and damaged nearly half of all structures in the epicentral area. We provide an overview of the historical, seismological, geotechnical, structural, lifeline-related, and socioeconomic factors that contributed to the catastrophe. We also describe some of the many challenges that must be overcome to enable Haiti to recover from this event. Detailed analyses of these issues are presented in other papers in this volume.

  13. The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks.

    Science.gov (United States)

    Chen, Xiaowei; Nakata, Nori; Pennington, Colin; Haffener, Jackson; Chang, Jefferson C; He, Xiaohui; Zhan, Zhongwen; Ni, Sidao; Walter, Jacob I

    2017-07-10

    The Pawnee M5.8 earthquake is the largest event in Oklahoma instrument recorded history. It occurred near the edge of active seismic zones, similar to other M5+ earthquakes since 2011. It ruptured a previously unmapped fault and triggered aftershocks along a complex conjugate fault system. With a high-resolution earthquake catalog, we observe propagating foreshocks leading to the mainshock within 0.5 km distance, suggesting existence of precursory aseismic slip. At approximately 100 days before the mainshock, two M ≥ 3.5 earthquakes occurred along a mapped fault that is conjugate to the mainshock fault. At about 40 days before, two earthquakes clusters started, with one M3 earthquake occurred two days before the mainshock. The three M ≥ 3 foreshocks all produced positive Coulomb stress at the mainshock hypocenter. These foreshock activities within the conjugate fault system are near-instantaneously responding to variations in injection rates at 95% confidence. The short time delay between injection and seismicity differs from both the hypothetical expected time scale of diffusion process and the long time delay observed in this region prior to 2016, suggesting a possible role of elastic stress transfer and critical stress state of the fault. Our results suggest that the Pawnee earthquake is a result of interplay among injection, tectonic faults, and foreshocks.

  14. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    Science.gov (United States)

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  15. Seismic hazard in Hawaii: High rate of large earthquakes and probabilistics ground-motion maps

    Science.gov (United States)

    Klein, F.W.; Frankel, A.D.; Mueller, C.S.; Wesson, R.L.; Okubo, P.G.

    2001-01-01

    The seismic hazard and earthquake occurrence rates in Hawaii are locally as high as that near the most hazardous faults elsewhere in the United States. We have generated maps of peak ground acceleration (PGA) and spectral acceleration (SA) (at 0.2, 0.3 and 1.0 sec, 5% critical damping) at 2% and 10% exceedance probabilities in 50 years. The highest hazard is on the south side of Hawaii Island, as indicated by the MI 7.0, MS 7.2, and MI 7.9 earthquakes, which occurred there since 1868. Probabilistic values of horizontal PGA (2% in 50 years) on Hawaii's south coast exceed 1.75g. Because some large earthquake aftershock zones and the geometry of flank blocks slipping on subhorizontal decollement faults are known, we use a combination of spatially uniform sources in active flank blocks and smoothed seismicity in other areas to model seismicity. Rates of earthquakes are derived from magnitude distributions of the modem (1959-1997) catalog of the Hawaiian Volcano Observatory's seismic network supplemented by the historic (1868-1959) catalog. Modern magnitudes are ML measured on a Wood-Anderson seismograph or MS. Historic magnitudes may add ML measured on a Milne-Shaw or Bosch-Omori seismograph or MI derived from calibrated areas of MM intensities. Active flank areas, which by far account for the highest hazard, are characterized by distributions with b slopes of about 1.0 below M 5.0 and about 0.6 above M 5.0. The kinked distribution means that large earthquake rates would be grossly under-estimated by extrapolating small earthquake rates, and that longer catalogs are essential for estimating or verifying the rates of large earthquakes. Flank earthquakes thus follow a semicharacteristic model, which is a combination of background seismicity and an excess number of large earthquakes. Flank earthquakes are geometrically confined to rupture zones on the volcano flanks by barriers such as rift zones and the seaward edge of the volcano, which may be expressed by a magnitude

  16. The typical seismic behavior in the vicinity of a large earthquake

    Science.gov (United States)

    Rodkin, M. V.; Tikhonov, I. N.

    2016-10-01

    The Global Centroid Moment Tensor catalog (GCMT) was used to construct the spatio-temporal generalized vicinity of a large earthquake (GVLE) and to investigate the behavior of seismicity in GVLE. The vicinity is made of earthquakes falling into the zone of influence of a large number (100, 300, or 1000) of largest earthquakes. The GVLE construction aims at enlarging the available statistics, diminishing a strong random component, and revealing typical features of pre- and post-shock seismic activity in more detail. As a result of the GVLE construction, the character of fore- and aftershock cascades was examined in more detail than was possible without of the use of the GVLE approach. As well, several anomalies in the behavior exhibited by a variety of earthquake parameters were identified. The amplitudes of all these anomalies increase with the approaching time of the generalized large earthquake (GLE) as the logarithm of the time interval from the GLE occurrence. Most of the discussed anomalies agree with common features well expected in the evolution of instability. In addition to these common type precursors, one earthquake-specific precursor was found. The decrease in mean earthquake depth presumably occurring in a smaller GVLE probably provides evidence of a deep fluid being involved in the process. The typical features in the evolution of shear instability as revealed in GVLE agree with results obtained in laboratory studies of acoustic emission (AE). The majority of the anomalies in earthquake parameters appear to have a secondary character, largely connected with an increase in mean magnitude and decreasing fraction of moderate size events (mw5.0-6.0) in the immediate GLE vicinity. This deficit of moderate size events could hardly be caused entirely by their incomplete reporting and can presumably reflect some features in the evolution of seismic instability.

  17. Relations between source parameters for large Persian earthquakes

    Directory of Open Access Journals (Sweden)

    Majid Nemati

    2015-11-01

    Full Text Available Empirical relationships for magnitude scales and fault parameters were produced using 436 Iranian intraplate earthquakes of recently regional databases since the continental events represent a large portion of total seismicity of Iran. The relations between different source parameters of the earthquakes were derived using input information which has usefully been provided from the databases after 1900. Suggested equations for magnitude scales relate the body-wave, surface-wave as well as local magnitude scales to scalar moment of the earthquakes. Also, dependence of source parameters as surface and subsurface rupture length and maximum surface displacement on the moment magnitude for some well documented earthquakes was investigated. For meeting this aim, ordinary linear regression procedures were employed for all relations. Our evaluations reveal a fair agreement between obtained relations and equations described in other worldwide and regional works in literature. The M0-mb and M0-MS equations are correlated well to the worldwide relations. Also, both M0-MS and M0-ML relations have a good agreement with regional studies in Taiwan. The equations derived from this study mainly confirm the results of the global investigations about rupture length of historical and instrumental events. However, some relations like MW-MN and MN-ML which are remarkably unlike to available regional works (e.g., American and Canadian were also found.

  18. Guidelines for earthquake ground motion definition for the Eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors

  19. Earthquake history of the Republic of Ragusa (today Dubrovnik, Croatia) (Invited)

    Science.gov (United States)

    Albini, P.; Rovida, A.; Locati, M.

    2009-12-01

    Among the towns constellating the Dalmatian coast, Ragusa (today Dubrovnik, Croatia), stands out, both because of its location in the middle of the Eastern Adriatic coast and its long-lasting, independent history of a Modern Age town and its small coastal territory. An important intelligence crossroads, squeezed as it was in between powerful and influential neighbours, such as the Ottoman Empire and the Republic of Venice, in its history (1358-1808) the Republic of Ragusa did experience heavily damaging earthquakes. We narrate the story of these earthquakes, which were recorded in the historical documentation of the Republic (today stored at the State Archives of Dubrovnik - Drzavni arhiv u Dubrovniku) as well as in documents from officers of other Mediterranean countries and letters of individuals. Of special note is the 6 April 1667 earthquake, which inflicted a permanent scar on the Republic. The earthquake's direct effects and their consequences caused a serious financial crisis, so critical that it took over 50 years for Ragusa to recover. This large earthquake is reappraised on the basis of newly investigated sources, and effects of the damage within the city walls are detailed. A seismic history of Ragusa is finally proposed, supported by full-text coeval records.

  20. Defence against earthquakes: a red thread of history

    International Nuclear Information System (INIS)

    Guidoboni, Emanuela

    2015-01-01

    This note gives a short overview from the ancient world down to the end of the eighteenth century (before engineering began as a science, that is) on the idea of “housing safety” and earthquakes. The idea varies, but persists throughout the cultural and economic contexts of history’s changing societies, and in relation to class and lifestyle. Historical research into earthquakes in Italy from the ancient world to the twentieth century has shown how variable the idea actually is, as emerges from theoretical treatises, practical wisdom and projects drawn up in the wake of destructive events. In the seventeenth century the theoretical interpretation of earthquakes began to swing towards a mechanistic view of the Earth, affecting how the effects and propagation of earthquakes were observed. Strong earthquakes continued to occur and cause damage, and after yet another seismic disaster – Umbria 1751 – new building techniques were advocated. The attempt was to make house walls bind more solidly by special linking of the wooden structure of floors and roof beams. Following the massive seismic crisis of February-March 1783, which left central and southern Calabria in ruins, a new house was proposed, called 'baraccata': it was a wooden structure filled in with light materials. This was actually already to be founding the ancient Mediterranean basin (including Pompei); but only at that time was it perfected, proposed by engineers and circulated as an important building innovation. At the end of the eighteenth century town planners came to the fore in the search for safe housing. They suggested new regular shapes, broad grid-plan streets with a specific view to achieving housing safety and ensuring an escape route in case of earthquake. Such rules and regulations were then abandoned or lost, proving that it is not enough to try out [it

  1. Relaxation of the south flank after the 7.2-magnitude Kalapana earthquake, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Dvorak, John J.; Klein, Fred W.; Swanson, Donald A.

    1994-01-01

    An M = 7.2 earthquake on 29 November 1975 caused the south flank of Kilauea Volcano, Hawaii, to move seaward several meters: a catastrophic release of compression of the south flank caused by earlier injections of magma into the adjacent segment of a rift zone. The focal mechanisms of the mainshock, the largest foreshock, and the largest aftershock suggest seaward movement of the upper block. The rate of aftershocks decreased in a familiar hyperbolic decay, reaching the pre-1975 rate of seismicity by the mid-1980s. Repeated rift-zone intrusions and eruptions after 1975, which occurred within 25 km of the summit area, compressed the adjacent portion of the south flank, apparently masking continued seaward displacement of the south flank. This is evident along a trilateration line that continued to extend, suggesting seaward displacement, immediately after the M = 7.2 earthquake, but then was compressed during a series of intrusions and eruptions that began in September 1977. Farther to the east, trilateration measurements show that the portion of the south flank above the aftershock zone, but beyond the area of compression caused by the rift-zone intrusions and eruptions, continued to move seaward at a decreasing rate until the mid-1980s, mimicking the decay in aftershock rate. Along the same portion of the south flank, the pattern of vertical surface displacements can be explained by continued seaward movement of the south flank and development of two eruptive fissures along the east rift zone, each of which extended from a depth of ∼3 km to the surface. The aftershock rate and continued seaward movement of the south flank are reminiscent of crustal response to other large earthquakes, such as the 1966 M = 6 Parkfield earthquake and the 1983 M = 6.5 Coalinga earthquake.

  2. Surface rupturing earthquakes repeated in the 300 years along the ISTL active fault system, central Japan

    Science.gov (United States)

    Katsube, Aya; Kondo, Hisao; Kurosawa, Hideki

    2017-06-01

    Surface rupturing earthquakes produced by intraplate active faults generally have long recurrence intervals of a few thousands to tens of thousands of years. We here report the first evidence for an extremely short recurrence interval of 300 years for surface rupturing earthquakes on an intraplate system in Japan. The Kamishiro fault of the Itoigawa-Shizuoka Tectonic Line (ISTL) active fault system generated a Mw 6.2 earthquake in 2014. A paleoseismic trench excavation across the 2014 surface rupture showed the evidence for the 2014 event and two prior paleoearthquakes. The slip of the penultimate earthquake was similar to that of 2014 earthquake, and its timing was constrained to be after A.D. 1645. Judging from the timing, the damaged area, and the amount of slip, the penultimate earthquake most probably corresponds to a historical earthquake in A.D. 1714. The recurrence interval of the two most recent earthquakes is thus extremely short compared with intervals on other active faults known globally. Furthermore, the slip repetition during the last three earthquakes is in accordance with the time-predictable recurrence model rather than the characteristic earthquake model. In addition, the spatial extent of the 2014 surface rupture accords with the distribution of a serpentinite block, suggesting that the relatively low coefficient of friction may account for the unusually frequent earthquakes. These findings would affect long-term forecast of earthquake probability and seismic hazard assessment on active faults.

  3. APPLICATION OF MOBILE LIDAR MAPPING FOR DAMAGE SURVEY AFTER GREAT EAST JAPAN EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    E. Ariyasu

    2012-07-01

    Full Text Available A massive earthquake of magnitude 9.0 hit off Tohoku region, the east coast of the Japanese main land, on 11 March, 2011. It was one of the historically powerful earthquakes in the world. The earthquake triggered powerful tsunami and broad-scale subsidence, so that, residential areas and infrastructures were catastrophically damaged. After that, it is necessary to renew a new map for reconstruction, such as cadastral map. In the critical situation, Mobile LiDAR Mapping system is efficient to rapidly collect fine data at once and capture more details of terrain features than data from airborne. In this paper, we would like to introduce procured instruments in our company and implemented survey several areas after the event, and suggest how to survey for cadastral map by Mobile LiDAR Mapping System.

  4. Geological evidence of recurrent great Kanto earthquakes at the Miura Peninsula, Japan

    Science.gov (United States)

    Shimazaki, K.; Kim, H. Y.; Chiba, T.; Satake, K.

    2011-12-01

    The Tokyo metropolitan area's well-documented earthquake history is dominated by the 1703 and 1923 great Kanto earthquakes produced by slip on the boundary between the subducting Philippine Sea plate and the overlying plate. Both earthquakes caused ˜1.5 m of uplift at the Miura Peninsula directly above the inferred fault rupture, and both were followed by tsunamis with heights of ˜5 m. We examined cores ˜2 m long from 8 tidal flat sites at the head of a small bay on the peninsula. The cores penetrated two to four layers of shelly gravel, as much as 0.5 m thick, with abundant shell fragments and mud clasts. The presence of gravel indicates strong tractive currents. Muddy bay deposits that bound the gravel layers show vertical changes in grain size and diatom assemblages consistent with abrupt shoaling at the times of the currents. The changes may further suggest gradual deepening of the bay during the intervals between the strong currents. We infer, based on 137Cs, 14C, and 210Pb dating, that the top two shelly gravel layers represent tsunamis associated with the 1703 and 1923 great Kanto earthquakes, and that the third layer was deposited by a tsunami during an earlier earthquake. The age range of this layer, AD 1060-1400, includes the time of an earthquake that occurred in 1293 according to a historical document. If so, the recurrence interval before the 1703 earthquake was almost twice as long as the interval between the 1703 and 1923 earthquakes.

  5. Earthquake of Saint-Hilaire-de-Voust (Vendee) from February 12, 2018 (3h08 TU), Magnitude = 4,8 (Local Magnitude - CEA)

    International Nuclear Information System (INIS)

    Cushing, Edward; Provost, Ludmila

    2018-01-01

    A 3.9-4.0 magnitude superficial earthquake occurred at Saint-Hilaire-de-Voust (Vendee, France) on February 12, 2018 (3h08 TU). This brief note reviews, first, the historical and present day seismicity of the Armorican region, and then analyses the earthquake impact on the closest nuclear facilities (Pouzauges industrial irradiation facility, Chinon and Civaux NPPs)

  6. The Chiloé Mw 7.6 earthquake of 2016 December 25 in Southern Chile and its relation to the Mw 9.5 1960 Valdivia earthquake

    Science.gov (United States)

    Lange, Dietrich; Ruiz, Javier; Carrasco, Sebastián; Manríquez, Paula

    2018-04-01

    On 2016 December 25, an Mw 7.6 earthquake broke a portion of the Southern Chilean subduction zone south of Chiloé Island, located in the central part of the Mw 9.5 1960 Valdivia earthquake. This region is characterized by repeated earthquakes in 1960 and historical times with very sparse interseismic activity due to the subduction of a young (˜15 Ma), and therefore hot, oceanic plate. We estimate the coseismic slip distribution based on a kinematic finite-fault source model, and through joint inversion of teleseismic body waves and strong motion data. The coseismic slip model yields a total seismic moment of 3.94 × 1020 N.m that occurred over ˜30 s, with the rupture propagating mainly downdip, reaching a peak slip of ˜4.2 m. Regional moment tensor inversion of stronger aftershocks reveals thrust type faulting at depths of the plate interface. The fore- and aftershock seismicity is mostly related to the subduction interface with sparse seismicity in the overriding crust. The 2016 Chiloé event broke a region with increased locking and most likely broke an asperity of the 1960 earthquake. The updip limit of the main event, aftershocks, foreshocks and interseismic activity are spatially similar, located ˜15 km offshore and parallel to Chiloé Islands west coast. The coseismic slip model of the 2016 Chiloé earthquake suggests a peak slip of 4.2 m that locally exceeds the 3.38 m slip deficit that has accumulated since 1960. Therefore, the 2016 Chiloé earthquake possibly released strain that has built up prior to the 1960 Valdivia earthquake.

  7. Importance of historical seismicity in the evaluation of large return period hazards

    International Nuclear Information System (INIS)

    Oliveira, C.S.

    1983-01-01

    This paper reports the results from an historical investigation on earthquake activity in Portugal based on data collected from original sources. A detailed revision of earthquake catalogues in what concerns date of occurrence, isosseismal maps, epicentral location, magnitude and duration of vibration was made for most of the 260 events identified in the period 1000 to 1900. Introducing this new piece of information which exhibits a much higher degree of quality into standard hazard models, uncertainties on final estimates for the zones of large return periods, RP, (RP > 200 years) are greatly reduced

  8. Stress Interactions Between the 1976 Magnitude 7.8 Tangshan Earthquake and Adjacent Fault Systems in Northern China

    Science.gov (United States)

    Zhang, Z.; Lin, J.; Chen, Y. J.

    2004-12-01

    The 28 July 1976 ML = 7.8 Tangshan earthquake struck a highly populated metropolitan center in northern China and was one of the most devastating earthquakes in modern history. Its occurrence has significantly changed the Coulomb stresses on a complex network of strike-slip, normal, and thrust faults in the region, potentially heightened the odds of future earthquakes on some of these fault segments. We have conducted a detailed analysis of the 3D stress effects of the Tangshan earthquake on its neighboring faults, the relationship between stress transfer and aftershock locations, and the implications for future seismic hazard in the region. Available seismic and geodetic data, although limited, indicate that the Tangshan main shock sequence is composed of complex rupture on 2-3 fault segments. The dominant rupture mode is right-lateral strike-slip on two adjoining sub-segments that strike N5¡aE and N35¡aE, respectively. We calculated that the Tangshan main shock sequence has increased the Coulomb failure stress by more than 1 bar in the vicinity of the Lunanxian district to the east, where the largest aftershock (ML = 7.1) occurred 15 hours after the Tangshan main event. The second largest aftershock (ML = 6.8) occurred on the Ninghe fault to the southwest of the main rupture, in a transitional region between the calculated Coulomb stress increase and decrease. The majority of the ML > 5.0 aftershocks also occurred in areas of calculated Coulomb stress increase. Our analyses further indicate that the Coulomb stress on portions of other fault segments, including the Leting and Lulong fault to the east and Yejito fault to the north, may also have been increased. Thus it is critical to obtain estimates of earthquake repeat times on these and other tectonic faults and to acquire continuous GPS and space geodetic measurements. Investigation of stress interaction and earthquake triggering in northern China is not only highly societal relevant but also important for

  9. Earthquake prediction

    International Nuclear Information System (INIS)

    Ward, P.L.

    1978-01-01

    The state of the art of earthquake prediction is summarized, the possible responses to such prediction are examined, and some needs in the present prediction program and in research related to use of this new technology are reviewed. Three basic aspects of earthquake prediction are discussed: location of the areas where large earthquakes are most likely to occur, observation within these areas of measurable changes (earthquake precursors) and determination of the area and time over which the earthquake will occur, and development of models of the earthquake source in order to interpret the precursors reliably. 6 figures

  10. Historical floods in flood frequency analysis: Is this game worth the candle?

    Science.gov (United States)

    Strupczewski, Witold G.; Kochanek, Krzysztof; Bogdanowicz, Ewa

    2017-11-01

    In flood frequency analysis (FFA) the profit from inclusion of historical information on the largest historical pre-instrumental floods depends primarily on reliability of the information, i.e. the accuracy of magnitude and return period of floods. This study is focused on possible theoretical maximum gain in accuracy of estimates of upper quantiles, that can be obtained by incorporating the largest historical floods of known return periods into the FFA. We assumed a simple case: N years of systematic records of annual maximum flows and either one largest (XM1) or two largest (XM1 and XM2) flood peak flows in a historical M-year long period. The problem is explored by Monte Carlo simulations with the maximum likelihood (ML) method. Both correct and false distributional assumptions are considered. In the first case the two-parameter extreme value models (Gumbel, log-Gumbel, Weibull) with various coefficients of variation serve as parent distributions. In the case of unknown parent distribution, the Weibull distribution was assumed as estimating model and the truncated Gumbel as parent distribution. The return periods of XM1 and XM2 are determined from the parent distribution. The results are then compared with the case, when return periods of XM1 and XM2 are defined by their plotting positions. The results are presented in terms of bias, root mean square error and the probability of overestimation of the quantile with 100-year return period. The results of the research indicate that the maximal profit of inclusion of pre-instrumental foods in the FFA may prove smaller than the cost of reconstruction of historical hydrological information.

  11. Seismic Evaluation of A Historical Structure In Kastamonu - Turkey

    Science.gov (United States)

    Pınar, USTA; Işıl ÇARHOĞLU, Asuman; EVCİ, Ahmet

    2018-01-01

    The Kastomonu province is a seismically active zone. the city has many historical buildings made of stone-masonry. In case of any probable future earthquakes, existing buildings may suffer substantial or heavy damages. In the present study, one of the historical traditional house located in Kastamonu were structurally investigated through probabilistic seismic risk assessment methodology. In the study, the building was modeled by using the Finite Element Modeling (FEM) software, SAP2000. Time history analyses were carried out using 10 different ground motion data on the FEM models. Displacements were interpreted, and the results were displayed graphically and discussed.

  12. Structure of the subducted Cocos Plate from locations of intermediate-depth earthquakes

    Science.gov (United States)

    Lomnitz, C.; Rodríguez-Padilla, L. D.; Castaños, H.

    2013-05-01

    Locations of 3,000 earthquakes of 40 to 300 km depth are used to define the 3-D structure of the subducted Cocos Plate under central and southern Mexico. Discrepancies between deep-seated lineaments and surface tectonics are described. Features of particular interest include: (1) a belt of moderate activity at 40 to 80 km depth that parallels the southern boundary of the Mexican Volcanic Plateau; (2) an offset of 150 km across the Isthmus of Tehuantepec where all seismic activity is displaced toward the northeast; (3) three nests of frequent, deep-seated events (80 to 300 km depth) under southern Veracruz, Chiapas and the coast of Mexico-Guatemala. The active subduction process is sharply delimited along a NW-SE lineament from the Yucatan Peninsula, of insignificant earthquake activity. The focal distribution of intermediate-depth earthquakes in south-central Mexico provides evidence of stepwise deepening of the subduction angle along the Trench, starting at 15 degrees under Michoacan-Guerrero to 45 degrees under NW Guatemala. Historical evidence suggests that the hazard to Mexico City from large intermediate-depth earthquakes may have been underestimated.

  13. Validating of Atmospheric Signals Associated with some of the Major Earthquakes in Asia (2003-2009)

    Science.gov (United States)

    Ouzounov, D. P.; Pulinets, S.; Liu, J. Y.; Hattori, K.; Oarritm N,; Taylor, P. T.

    2010-01-01

    The recent catastrophic earthquake in Haiti (January 2010) has provided and renewed interest in the important question of the existence of precursory signals related to strong earthquakes. Latest studies (VESTO workshop in Japan 2009) have shown that there were precursory atmospheric signals observed on the ground and in space associated with several recent earthquakes. The major question, still widely debated in the scientific community is whether such signals systematically precede major earthquakes. To address this problem we have started to validate the anomalous atmospheric signals during the occurrence of large earthquakes. Our approach is based on integration analysis of several physical and environmental parameters (thermal infrared radiation, electron concentration in the ionosphere, Radon/ion activities, air temperature and seismicity) that were found to be associated with earthquakes. We performed hind-cast detection over three different regions with high seismicity Taiwan, Japan and Kamchatka for the period of 2003-2009. We are using existing thermal satellite data (Aqua and POES); in situ atmospheric data (NOAA/NCEP); and ionospheric variability data (GPS/TEC and DEMETER). The first part of this validation included 42 major earthquakes (M greater than 5.9): 10 events in Taiwan, 15 events in Japan, 15 events in Kamchatka and four most recent events for M8.0 Wenchuan earthquake (May 2008) in China and M7.9 Samoa earthquakes (Sep 2009). Our initial results suggest a systematic appearance of atmospheric anomalies near the epicentral area, 1 to 5 days prior to the largest earthquakes, that could be explained by a coupling process between the observed physical parameters, and the earthquake preparation processes.

  14. Static stress transfer during the 2002 Nenana Mountain-Denali Fault, Alaska, earthquake sequence

    Science.gov (United States)

    Anderson, G.; Ji, C.

    2003-01-01

    On 23 October 2002, the Mw 6.7 Nenana Mountain earthquake occurred in central Alaska. It was followed on 3 November 2002 by the Mw 7.9 Denali Fault mainshock, the largest strike-slip earthquake to occur in North America during the past 150 years. We have modeled static Coulomb stress transfer effects during this sequence. We find that the Nenana Mountain foreshock transferred 30-50 kPa of Coulomb stress to the hypocentral region of the Denali Fault mainshock, encouraging its occurrence. We also find that the two main earthquakes together transferred more than 400 kPa of Coulomb stress to the Cross Creek segment of the Totschunda fault system and to the Denali fault southeast of the mainshock rupture, and up to 80 kPa to the Denali fault west of the Nenana Mountain rupture. Other major faults in the region experienced much smaller static Coulomb stress changes.

  15. Urban Landslides Induced by the 2004 Niigata-Chuetsu Earthquake

    Science.gov (United States)

    Kamai, T.; Trandafir, A. C.; Sidle, R. C.

    2005-05-01

    Landslides triggered by the Chuetsu earthquake occurred in artificial slopes of some new developments in suburban Nagaoka, the largest city in the affected area. The landslides occurred in hilly terrain of the eastern part of Nagaoka between the alluvial plain and Tertiary folded mountains of Yamakoshi. Although the extent of landslides in urban Nagaoka was small compared with landslides on natural slopes (especially near Yamakoshi), they represent an important case study for urban landslide disasters. Slope instabilities in urban residential areas were classified as: A) landslides in steep embankments; B) landslides in gently sloping artificial valley fills; C) re-activation of old landslides; and D) liquefaction in deep artificial valley fills. All these failures occurred in relatively uniform suburban landscapes, which were significantly modified from the original landforms. Recent destructive earthquakes in Japan caused similar types of slope failures in urban regions, suggesting that lessons from past earthquakes were not implemented. The greatest damage due to type-A failures occurred in the 25-yr old Takamachi residential area, where about 70 of 522 homes were judged to be uninhabitable. Before development, this area was an isolated hill (90 m elevation) with an adjacent terrace (60 m elevation) consisting of gravel, sand, and silt of the lower to middle Pleistocene deposits. Development earthworks removed the hill crest and created a wide plateau (70 m elevation); excavated soil was placed on the perimeter as an embankment. During the earthquake, the embankment slope collapsed, including retaining walls, perimeter road, and homes. The most serious damage occurred in five places around the margin of the plateau corresponding to shallow valley fills (5 to 8 m thick). Earthquake response analyses using an equivalent linear model indicated the amplification of seismic waves at the surface of embankment slopes, and the peak earthquake acceleration exceeded 1 G

  16. Tohoku's earthquake of Friday March 11, 2011 (5:46 UT), magnitude 9.0, off Honshu island (Japan)

    International Nuclear Information System (INIS)

    2011-01-01

    On Friday March 11, 2011, at 5:46 UT (2:46 PM local time), a magnitude 9.0 earthquake took place at 80 km east of Honshu island (Japan). The earthquake generated a tsunami which led to the loss of the cooling systems of the Fukushima Dai-ichi and Fukushima Daini power plants. This paper describes the seismo-tectonic and historical seismic context of the Japan archipelago and the first analyses of the Tohoku earthquake impact: magnitudes of first shock and of aftershocks, impact on nuclear facilities (maximum acceleration values detected with respect to design basis values, subsidence of coastal areas and submersion of power plant platforms). (J.S.)

  17. Quasi real-time estimation of the moment magnitude of large earthquake from static strain changes

    Science.gov (United States)

    Itaba, S.

    2016-12-01

    The 2011 Tohoku-Oki (off the Pacific coast of Tohoku) earthquake, of moment magnitude 9.0, was accompanied by large static strain changes (10-7), as measured by borehole strainmeters operated by the Geological Survey of Japan in the Tokai, Kii Peninsula, and Shikoku regions. A fault model for the earthquake on the boundary between the Pacific and North American plates, based on these borehole strainmeter data, yielded a moment magnitude of 8.7. On the other hand, based on the seismic wave, the prompt report of the magnitude which the Japan Meteorological Agency (JMA) announced just after earthquake occurrence was 7.9. Such geodetic moment magnitudes, derived from static strain changes, can be estimated almost as rapidly as determinations using seismic waves. I have to verify the validity of this method in some cases. In the case of this earthquake's largest aftershock, which occurred 29 minutes after the mainshock. The prompt report issued by JMA assigned this aftershock a magnitude of 7.3, whereas the moment magnitude derived from borehole strain data is 7.6, which is much closer to the actual moment magnitude of 7.7. In order to grasp the magnitude of a great earthquake earlier, several methods are now being suggested to reduce the earthquake disasters including tsunami. Our simple method of using static strain changes is one of the strong methods for rapid estimation of the magnitude of large earthquakes, and useful to improve the accuracy of Earthquake Early Warning.

  18. Seismicity and earthquake risk in western Sicily

    Directory of Open Access Journals (Sweden)

    P. COSENTINO

    1978-06-01

    Full Text Available The seismicity and the earthquake risk in Western Sicily are here
    evaluated on the basis of the experimental data referring to the historical
    and instrumentally recorded earthquakes in this area (from 1248
    up to 1968, which have been thoroughly collected, analyzed, tested and
    normalized in order to assure the quasi-stationarity of the series of
    events.
    The approximated magnitude values — obtained by means of a compared
    analysis of the magnitude and epicentral intensity values of the
    latest events — have allowed to study the parameters of the frequency-
    magnitude relation with both the classical exponential model and
    the truncated exponential one previously proposed by the author.
    So, the basic parameters, including the maximum possible regional
    magnitude, have been estimated by means of different procedures, and
    their behaviours have been studied as functions of the threshold magnitude.

  19. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake

    Science.gov (United States)

    Ito, Yoshihiro; Hino, Ryota; Kido, Motoyuki; Fujimoto, Hiromi; Osada, Yukihito; Inazu, Daisuke; Ohta, Yusaku; Iinuma, Takeshi; Ohzono, Mako; Miura, Satoshi; Mishina, Masaaki; Suzuki, Kensuke; Tsuji, Takeshi; Ashi, Juichiro

    2013-07-01

    We describe two transient slow slip events that occurred before the 2011 Tohoku-Oki earthquake. The first transient crustal deformation, which occurred over a period of a week in November 2008, was recorded simultaneously using ocean-bottom pressure gauges and an on-shore volumetric strainmeter; this deformation has been interpreted as being an M6.8 episodic slow slip event. The second had a duration exceeding 1 month and was observed in February 2011, just before the 2011 Tohoku-Oki earthquake; the moment magnitude of this event reached 7.0. The two events preceded interplate earthquakes of magnitudes M6.1 (December 2008) and M7.3 (March 9, 2011), respectively; the latter is the largest foreshock of the 2011 Tohoku-Oki earthquake. Our findings indicate that these slow slip events induced increases in shear stress, which in turn triggered the interplate earthquakes. The slow slip event source area on the fault is also located within the downdip portion of the huge-coseismic-slip area of the 2011 earthquake. This demonstrates episodic slow slip and seismic behavior occurring on the same portions of the megathrust fault, suggesting that the faults undergo slip in slow slip events can also rupture seismically.

  20. Tsunamigenic earthquakes in the Gulf of Cadiz: fault model and recurrence

    Directory of Open Access Journals (Sweden)

    L. M. Matias

    2013-01-01

    Full Text Available The Gulf of Cadiz, as part of the Azores-Gibraltar plate boundary, is recognized as a potential source of big earthquakes and tsunamis that may affect the bordering countries, as occurred on 1 November 1755. Preparing for the future, Portugal is establishing a national tsunami warning system in which the threat caused by any large-magnitude earthquake in the area is estimated from a comprehensive database of scenarios. In this paper we summarize the knowledge about the active tectonics in the Gulf of Cadiz and integrate the available seismological information in order to propose the generation model of destructive tsunamis to be applied in tsunami warnings. The fault model derived is then used to estimate the recurrence of large earthquakes using the fault slip rates obtained by Cunha et al. (2012 from thin-sheet neotectonic modelling. Finally we evaluate the consistency of seismicity rates derived from historical and instrumental catalogues with the convergence rates between Eurasia and Nubia given by plate kinematic models.

  1. Crisis management of tohoku; Japan earthquake and tsunami, 11 march 2011.

    Science.gov (United States)

    Zaré, M; Afrouz, S Ghaychi

    2012-01-01

    The huge earthquake in 11 March 2012 which followed by a destructive tsunami in Japan was largest recorded earthquake in the history. Japan is pioneer in disaster management, especially earthquakes. How this developed country faced this disaster, which had significant worldwide effects? The humanitarian behavior of the Japanese people amazingly wondered the word's media, meanwhile the management of government and authorities showed some deficiencies. The impact of the disaster is followed up after the event and the different impacts are tried to be analyzed in different sectors. The situation one year after Japan 2011 earthquake and Tsunami is overviewed. The reason of Japanese plans failure was the scale of tsunami, having higher waves than what was assumed, especially in the design of the Nuclear Power Plant. Japanese authorities considered economic benefits more than safety and moral factors exacerbate the situation. Major lessons to be learnt are 1) the effectiveness of disaster management should be restudied in all hazardous countries; 2) the importance of the high-Tech early-warning systems in reducing risk; 3) Reconsidering of extreme values expected/possible hazard and risk levels is necessary; 4) Morality and might be taken as an important factor in disaster management; 5) Sustainable development should be taken as the basis for reconstruction after disaster.

  2. Active Thrusting Offshore Mount Lebanon: Source of the Tsunamigenic A.D. 551 Beirut-Tripoli Earthquake

    Science.gov (United States)

    Tapponnier, P.; Elias, A.; Singh, S.; King, G.; Briais, A.; Daeron, M.; Carton, H.; Sursock, A.; Jacques, E.; Jomaa, R.; Klinger, Y.

    2007-12-01

    On July 9, AD 551, a large earthquake, followed by a tsunami destroyed most of the coastal cities of Phoenicia (modern-day Lebanon). This was arguably one of the most devastating historical submarine earthquakes in the eastern Mediterranean. Geophysical data from the Shalimar survey unveils the source of this Mw=7.5 event: rupture of the offshore, hitherto unknown, 100?150 km-long, active, east-dipping Mount Lebanon Thrust (MLT). Deep-towed sonar swaths along the base of prominent bathymetric escarpments reveal fresh, west facing seismic scarps that cut the sediment-smoothed seafloor. The MLT trace comes closest (~ 8 km) to the coast between Beirut and Enfeh, where as 13 radiocarbon-calibrated ages indicate, a shoreline-fringing Vermetid bench suddenly emerged by ~ 80 cm in the 6th century AD. At Tabarja, the regular vertical separation (~ 1 m) of higher fossil benches, suggests uplift by 3 more comparable-size earthquakes since the Holocene sea-level reached a maximum ca. 7-6 ka, implying a 1500?1750 yr recurrence time. Unabated thrusting on the MLT likely orchestrated the growth of Mt. Lebanon since the late Miocene. The newly discovered MLT has been the missing piece in the Dead Sea Transform and eastern Mediterranean tectonic scheme. Identifying the source of the AD 551 event thus ends a complete reassessment of the sources of the major historical earthquakes on the various faults of the Lebanese Restraining Bend of the Levant Fault System (or Dead Sea Transform).

  3. Pennsylvania seismic monitoring network and related tectonic studies

    International Nuclear Information System (INIS)

    Alexander, S.S.

    1991-06-01

    This report summarizes the results of the operation of the Pennsylvania Seismic Monitoring Network during the interval May 1, 1983--March 31, 1985 to monitor seismic activity in Pennsylvania and surrounding areas, to characterize the earthquake activity in terms of controlling tectonic structures and related tectonic stress conditions in the crust, and to obtain improved crustal velocity models for hypocentral determinations. Most of the earthquake activity was concentrated in the Lancaster, PA area. The magnitude 4.2 mainshock that occurred there on April 23, 1984 was the largest ever recorded instrumentally and its intensity of VI places it among the largest in the historic record for that area. Other activity during the monitoring interval of this report was confined to eastern Pennsylvania. The very large number of quarry explosions that occur regularly in Pennsylvania account for most of the seismic events recorded and they provide important crustal velocity data that are needed to obtain accurate hypocenter estimates. In general the earthquakes that occurred are located in areas of past historic seismicity. Block-tectonic structures resulting from pre-Ordovician tectonic displacements appear to influence the distribution of contemporary seismicity in Pennsylvania and surrounding areas. 17 refs., 5 figs

  4. A global earthquake discrimination scheme to optimize ground-motion prediction equation selection

    Science.gov (United States)

    Garcia, Daniel; Wald, David J.; Hearne, Michael

    2012-01-01

    We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.

  5. Injuries and Traumatic Psychological Exposures Associated with the South Napa Earthquake - California, 2014.

    Science.gov (United States)

    Attfield, Kathleen R; Dobson, Christine B; Henn, Jennifer B; Acosta, Meileen; Smorodinsky, Svetlana; Wilken, Jason A; Barreau, Tracy; Schreiber, Merritt; Windham, Gayle C; Materna, Barbara L; Roisman, Rachel

    2015-09-11

    On August 24, 2014, at 3:20 a.m., a magnitude 6.0 earthquake struck California, with its epicenter in Napa County (1). The earthquake was the largest to affect the San Francisco Bay area in 25 years and caused significant damage in Napa and Solano counties, including widespread power outages, five residential fires, and damage to roadways, waterlines, and 1,600 buildings (2). Two deaths resulted (2). On August 25, Napa County Public Health asked the California Department of Public Health (CDPH) for assistance in assessing postdisaster health effects, including earthquake-related injuries and effects on mental health. On September 23, Solano County Public Health requested similar assistance. A household-level Community Assessment for Public Health Emergency Response (CASPER) was conducted for these counties in two cities (Napa, 3 weeks after the earthquake, and Vallejo, 6 weeks after the earthquake). Among households reporting injuries, a substantial proportion (48% in Napa and 37% in western Vallejo) reported that the injuries occurred during the cleanup period, suggesting that increased messaging on safety precautions after a disaster might be needed. One fifth of respondents overall (27% in Napa and 9% in western Vallejo) reported one or more traumatic psychological exposures in their households. These findings were used by Napa County Mental Health to guide immediate-term mental health resource allocations and to conduct public training sessions and education campaigns to support persons with mental health risks following the earthquake. In addition, to promote community resilience and future earthquake preparedness, Napa County Public Health subsequently conducted community events on the earthquake anniversary and provided outreach workers with psychological first aid training.

  6. The analysis of historical seismograms: an important tool for seismic hazard assessment. Case histories from French and Italian earthquakes; L'analyse des sismogrammes historiques: un outil important pour l'evaluation de l'alea sismique. Etudes de cas de tremblements de terre en France et en Italie

    Energy Technology Data Exchange (ETDEWEB)

    Pino, N.A. [Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Via Diocleziano 328, 80124 Napoli (Italy)

    2011-06-15

    Seismic hazard assessment relies on the knowledge of the source characteristics of past earthquakes. Unfortunately, seismic waveform analysis, representing the most powerful tool for the investigation of earthquake source parameters, is only possible for events occurred in the last 100-120 years, i.e., since seismographs with known response function were developed. Nevertheless, during this time significant earthquakes have been recorded by such instruments and today, also thanks to technological progress, these data can be recovered and analysed by means of modern techniques. In this paper, aiming at giving a general sketch of possible analyses and attainable results in historical seismogram studies, I briefly describe the major difficulties in processing the original waveforms and present a review of the results that I obtained from previous seismogram analysis of selected significant historical earthquakes occurred during the first decades of the 20. century, including (A) the December 28, 1908, Messina straits (southern Italy), (B) the June 11, 1909, Lambesc (southern France) - both of which are the strongest ever recorded instrumentally in their respective countries - and (C) the July 13, 1930, Irpinia (southern Italy) events. For these earthquakes, the major achievements are represented by the assessment of the seismic moment (A, B, C), the geometry and kinematics of faulting (B, C), the fault length and an approximate slip distribution (A, C). The source characteristics of the studied events have also been interpreted in the frame of the tectonic environment active in the respective region of interest. In spite of the difficulties inherent to the investigation of old seismic data, these results demonstrate the invaluable and irreplaceable role of historical seismogram analysis in defining the local seismo-genic potential and, ultimately, for assessing the seismic hazard. The retrieved information is crucial in areas where important civil engineering works

  7. Identifying Active Faults by Improving Earthquake Locations with InSAR Data and Bayesian Estimation: The 2004 Tabuk (Saudi Arabia) Earthquake Sequence

    KAUST Repository

    Xu, Wenbin

    2015-02-03

    A sequence of shallow earthquakes of magnitudes ≤5.1 took place in 2004 on the eastern flank of the Red Sea rift, near the city of Tabuk in northwestern Saudi Arabia. The earthquakes could not be well located due to the sparse distribution of seismic stations in the region, making it difficult to associate the activity with one of the many mapped faults in the area and thus to improve the assessment of seismic hazard in the region. We used Interferometric Synthetic Aperture Radar (InSAR) data from the European Space Agency’s Envisat and ERS‐2 satellites to improve the location and source parameters of the largest event of the sequence (Mw 5.1), which occurred on 22 June 2004. The mainshock caused a small but distinct ∼2.7  cm displacement signal in the InSAR data, which reveals where the earthquake took place and shows that seismic reports mislocated it by 3–16 km. With Bayesian estimation, we modeled the InSAR data using a finite‐fault model in a homogeneous elastic half‐space and found the mainshock activated a normal fault, roughly 70 km southeast of the city of Tabuk. The southwest‐dipping fault has a strike that is roughly parallel to the Red Sea rift, and we estimate the centroid depth of the earthquake to be ∼3.2  km. Projection of the fault model uncertainties to the surface indicates that one of the west‐dipping normal faults located in the area and oriented parallel to the Red Sea is a likely source for the mainshock. The results demonstrate how InSAR can be used to improve locations of moderate‐size earthquakes and thus to identify currently active faults.

  8. Identifying Active Faults by Improving Earthquake Locations with InSAR Data and Bayesian Estimation: The 2004 Tabuk (Saudi Arabia) Earthquake Sequence

    KAUST Repository

    Xu, Wenbin; Dutta, Rishabh; Jonsson, Sigurjon

    2015-01-01

    A sequence of shallow earthquakes of magnitudes ≤5.1 took place in 2004 on the eastern flank of the Red Sea rift, near the city of Tabuk in northwestern Saudi Arabia. The earthquakes could not be well located due to the sparse distribution of seismic stations in the region, making it difficult to associate the activity with one of the many mapped faults in the area and thus to improve the assessment of seismic hazard in the region. We used Interferometric Synthetic Aperture Radar (InSAR) data from the European Space Agency’s Envisat and ERS‐2 satellites to improve the location and source parameters of the largest event of the sequence (Mw 5.1), which occurred on 22 June 2004. The mainshock caused a small but distinct ∼2.7  cm displacement signal in the InSAR data, which reveals where the earthquake took place and shows that seismic reports mislocated it by 3–16 km. With Bayesian estimation, we modeled the InSAR data using a finite‐fault model in a homogeneous elastic half‐space and found the mainshock activated a normal fault, roughly 70 km southeast of the city of Tabuk. The southwest‐dipping fault has a strike that is roughly parallel to the Red Sea rift, and we estimate the centroid depth of the earthquake to be ∼3.2  km. Projection of the fault model uncertainties to the surface indicates that one of the west‐dipping normal faults located in the area and oriented parallel to the Red Sea is a likely source for the mainshock. The results demonstrate how InSAR can be used to improve locations of moderate‐size earthquakes and thus to identify currently active faults.

  9. Potential of future seismogenesis in Hebei Province (NE China) due to stress interactions between strong earthquakes

    Science.gov (United States)

    Karakostas, Vassilios; Papadimitriou, Eleftheria; Jin, Xueshen; Liu, Zhihui; Paradisopoulou, Parthena; He, Zhang

    2013-10-01

    Northeast China, a densely populated area, is affected by intense seismic activity, which includes large events that caused extensive disaster and tremendous loss of life. For contributing to the continuous efforts for seismic hazard assessment, the earthquake potential from the active faults near the cities of Zhangjiakou and Langfang in Hebei Province is examined. We estimate the effect of the coseismic stress changes of strong (M ⩾ 5.0) earthquakes on the major regional active faults, and mapped Coulomb stress change onto these target faults. More importantly our calculations reveal that positive stress changes caused by the largest events of the 1976 Tangshan sequence make the Xiadian and part of Daxing fault, thus considered the most likely sites of the next strong earthquake in the study area. The accumulated static stress changes that reached a value of up to 0.4 bar onto these faults, were subsequently incorporated in earthquake probability estimates for the next 30 years.

  10. Mountain rivers may need centuries to adjust to earthquake-triggered sediment pulses, Pokhara, Nepal

    Science.gov (United States)

    Stolle, Amelie; Korup, Oliver; Schwanghart, Wolfgang; Bernhardt, Anne; Adhikari, Basanta Raj; Andermann, Christoff; Wittmann, Hella; Merchel, Silke

    2017-04-01

    Mountain rivers respond to strong earthquakes by not only adjusting to changes in local base level, but also by rapidly aggrading to accommodate excess sediment delivered by co- and post-seismic landslides. A growing number of detailed sediment budgets suggests that it takes rivers several years to decades to recover from such seismic disturbances, depending on how recovery is defined. We test this notion and study how rivers adjusted to catastrophic sedimentation triggered by at least three medieval earthquakes in the central Nepal Himalaya. In the vicinity of Pokhara, the nation's second largest city, rapid aggradation formed a large fan covering 150 km2 of mountainous terrain over a length of some 70 km. The fan prograded into several tributary valleys, rapidly infilling their lower reaches with several tens of meters of sediment from a major point source tens of kilometers away. A robust radiocarbon chronology of these valley fills provides an ideal framework for gauging average rates of fluvial incision and adjustment. We use high-resolution digital elevation data, geodetic field surveys, aerial photos documenting historic channel changes, and several re-exhumed tree trunks in growth position to define dated geomorphic marker surfaces. We compare various methods of computing the volumes lost from these surfaces to arrive at net sediment yields averaged over decades to centuries. We find that contemporary rates of river incision into the medieval earthquake debris are between 160 and 220 mm yr-1, with corresponding sediment yields of 103 to 105 t km-2 yr-1, several hundred years after the last traceable seismic disturbance. These rates greatly exceed the density-adjusted background rates of catchment-wide denudation inferred from concentrations of cosmogenic 10Be in river sands sampled in different tributaries. The lithological composition of active channel-bed load differs largely from local bedrock and confirms that rivers are still busy with excavating

  11. Preliminary earthquake locations in the Kenai Peninsula recorded by the MOOS Array and their relationship to structure in the 1964 great earthquake zone

    Science.gov (United States)

    Li, J.; Abers, G. A.; Christensen, D. H.; Kim, Y.; Calkins, J. A.

    2011-12-01

    Earthquakes in subduction zones are mostly generated at the interface between the subducting and overlying plates. In 2006-2009, the MOOS (Multidisciplinary Observations Of Subduction) seismic array was deployed around the Kenai Peninsula, Alaska, consisting of 34 broadband seismometers recording for 1-3 years. This region spans the eastern end of the Aleutian megathrust that ruptured in the 1964 Mw 9.2 great earthquake, the second largest recorded earthquake, and ongoing seismicity is abundant. Here, we report an initial analysis of seismicity recorded by MOOS, in the context of preliminary imaging. There were 16,462 events detected in one year from initial STA/LTA signal detections and subsequent event associations from the MOOS Array. We manually reviewed them to eliminate distant earthquakes and noise, leaving 11,879 local earthquakes. To refine this catalog, an adaptive auto-regressive onset estimation algorithm was applied, doubling the original dataset and producing 20,659 P picks and 22,999 S picks for one month (September 2007). Inspection shows that this approach lead to almost negligible false alarms and many more events than hand picking. Within the well-sampled part of the array, roughly 200 km by 300 km, we locate 250% more earthquakes for one month than the permanent network catalog, or 10 earthquakes per day on this patch of the megathrust. Although the preliminary locations of earthquakes still show some scatter, we can see a concentration of events in a ~20-km-wide belt, part of which can be interpreted as seismogenic thrust zone. In conjunction with the seismicity study, we are imaging the plate interface with receiver functions. The main seismicity zone corresponds to the top of a low-velocity layer imaged in receiver functions, nominally attributed to the top of the downgoing plate. As we refine velocity models and apply relative relocation algorithms, we expect to improve the precision of the locations substantially. When combined with image

  12. Earthquake and nuclear explosion location using the global seismic network

    International Nuclear Information System (INIS)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30 0 distances, the largest deviation being around 10 seconds at 13-18 0 . At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations

  13. Earthquake and nuclear explosion location using the global seismic network

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30/sup 0/ distances, the largest deviation being around 10 seconds at 13-18/sup 0/. At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations.

  14. Guidelines for earthquake ground motion definition for the eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., 2 figs., 1 tab

  15. Complex rupture during the 12 January 2010 Haiti earthquake

    Science.gov (United States)

    Hayes, G.P.; Briggs, R.W.; Sladen, A.; Fielding, E.J.; Prentice, C.; Hudnut, K.; Mann, P.; Taylor, F.W.; Crone, A.J.; Gold, R.; Ito, T.; Simons, M.

    2010-01-01

    Initially, the devastating Mw 7.0, 12 January 2010 Haiti earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillog-Plantain Garden fault zone. Here, we combine seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process may have involved slip on multiple faults. Primary surface deformation was driven by rupture on blind thrust faults with only minor, deep, lateral slip along or near the main Enriquillog-Plantain Garden fault zone; thus the event only partially relieved centuries of accumulated left-lateral strain on a small part of the plate-boundary system. Together with the predominance of shallow off-fault thrusting, the lack of surface deformation implies that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the Enriquillog-Plantain Garden fault zone, as occurred in inferred Holocene and probable historic events. We suggest that the geological signature of this earthquakeg-broad warping and coastal deformation rather than surface rupture along the main fault zoneg-will not be easily recognized by standard palaeoseismic studies. We conclude that similarly complex earthquakes in tectonic environments that accommodate both translation and convergenceg-such as the San Andreas fault through the Transverse Ranges of Californiag-may be missing from the prehistoric earthquake record. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  16. Reading a 400,000-year record of earthquake frequency for an intraplate fault.

    Science.gov (United States)

    Williams, Randolph T; Goodwin, Laurel B; Sharp, Warren D; Mozley, Peter S

    2017-05-09

    Our understanding of the frequency of large earthquakes at timescales longer than instrumental and historical records is based mostly on paleoseismic studies of fast-moving plate-boundary faults. Similar study of intraplate faults has been limited until now, because intraplate earthquake recurrence intervals are generally long (10s to 100s of thousands of years) relative to conventional paleoseismic records determined by trenching. Long-term variations in the earthquake recurrence intervals of intraplate faults therefore are poorly understood. Longer paleoseismic records for intraplate faults are required both to better quantify their earthquake recurrence intervals and to test competing models of earthquake frequency (e.g., time-dependent, time-independent, and clustered). We present the results of U-Th dating of calcite veins in the Loma Blanca normal fault zone, Rio Grande rift, New Mexico, United States, that constrain earthquake recurrence intervals over much of the past ∼550 ka-the longest direct record of seismic frequency documented for any fault to date. The 13 distinct seismic events delineated by this effort demonstrate that for >400 ka, the Loma Blanca fault produced periodic large earthquakes, consistent with a time-dependent model of earthquake recurrence. However, this time-dependent series was interrupted by a cluster of earthquakes at ∼430 ka. The carbon isotope composition of calcite formed during this seismic cluster records rapid degassing of CO 2 , suggesting an interval of anomalous fluid source. In concert with U-Th dates recording decreased recurrence intervals, we infer seismicity during this interval records fault-valve behavior. These data provide insight into the long-term seismic behavior of the Loma Blanca fault and, by inference, other intraplate faults.

  17. Reading a 400,000-year record of earthquake frequency for an intraplate fault

    Science.gov (United States)

    Williams, Randolph T.; Goodwin, Laurel B.; Sharp, Warren D.; Mozley, Peter S.

    2017-05-01

    Our understanding of the frequency of large earthquakes at timescales longer than instrumental and historical records is based mostly on paleoseismic studies of fast-moving plate-boundary faults. Similar study of intraplate faults has been limited until now, because intraplate earthquake recurrence intervals are generally long (10s to 100s of thousands of years) relative to conventional paleoseismic records determined by trenching. Long-term variations in the earthquake recurrence intervals of intraplate faults therefore are poorly understood. Longer paleoseismic records for intraplate faults are required both to better quantify their earthquake recurrence intervals and to test competing models of earthquake frequency (e.g., time-dependent, time-independent, and clustered). We present the results of U-Th dating of calcite veins in the Loma Blanca normal fault zone, Rio Grande rift, New Mexico, United States, that constrain earthquake recurrence intervals over much of the past ˜550 ka—the longest direct record of seismic frequency documented for any fault to date. The 13 distinct seismic events delineated by this effort demonstrate that for >400 ka, the Loma Blanca fault produced periodic large earthquakes, consistent with a time-dependent model of earthquake recurrence. However, this time-dependent series was interrupted by a cluster of earthquakes at ˜430 ka. The carbon isotope composition of calcite formed during this seismic cluster records rapid degassing of CO2, suggesting an interval of anomalous fluid source. In concert with U-Th dates recording decreased recurrence intervals, we infer seismicity during this interval records fault-valve behavior. These data provide insight into the long-term seismic behavior of the Loma Blanca fault and, by inference, other intraplate faults.

  18. The epidemiological characteristics and genetic diversity of dengue virus during the third largest historical outbreak of dengue in Guangdong, China, in 2014.

    Science.gov (United States)

    Sun, Jiufeng; Wu, De; Zhou, Huiqiong; Zhang, Huan; Guan, Dawei; He, Xiang; Cai, Songwu; Ke, Changwen; Lin, Jinyan

    2016-01-01

    The third largest historical outbreak of dengue occurred during July to December 2014, in 20 of 21 cities of Guangdong, China. The epidemiological and molecular characteristics of the introduction, expansion and phylogeny of the DENV isolates involved in this outbreak were investigated. A combination analyses of epidemiological characteristics and genetic diversity of dengue virus was performed in this study. In total, 45,236 cases and 6 fatalities were reported. Unemployed individuals, retirees and retailers were the most affected populations. A total of 6024 cases were verified to have DENV infections by nucleic acid detection, of which 5947, 74 and 3 were confirmed to have DENV-1, -2, and -3 infections, respectively. Phylogenetic analyses of DENV-1 isolates were assigned into three genotypes (I, IV, and V). Genotype V was the predominant genotype that likely originated from Singapore. The DENV-2 isolates were assigned to the Cosmopolitan and Asian I genotypes. A unique DENV-3 isolate (genotype III) shared high similarity with isolates obtained from Guangdong in 2013. A combination analyses demonstrated the multiple geographical origins of this outbreak, and highlight the importance of early detection, the case management and vector surveillance for preventing further dengue epidemics in Guangdong. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  19. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania)

    OpenAIRE

    Oros Eugen; Diaconescu Mihai

    2015-01-01

    The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania) and the historical seismicity of the region (Mw≥4.0). Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of...

  20. Statistics of the largest sunspot and facular areas per solar cycle

    International Nuclear Information System (INIS)

    Willis, D.M.; Kabasakal Tulunay, Y.

    1979-01-01

    The statistics of extreme values is used to investigate the statistical properties of the largest areas sunspots and photospheric faculae per solar cycle. The largest values of the synodic-solar-rotation mean areas of umbrae, whole spots and faculae, which have been recorded for nine solar cycles, are each shown to comply with the general form of the extreme value probability function. Empirical expressions are derived for the three extreme value populations from which the characteristic statistical parameters, namely the mode, median, mean and standard deviation, can be calculated for each population. These three extreme value populations are also used to find the expected ranges of the extreme areas in a group of solar cycles as a function of the number of cycles in the group. The extreme areas of umbrae and whole spots have a dispersion comparable to that found by Siscoe for the extreme values of sunspot number, whereas the extreme areas of faculae have a smaller dispersion which is comparable to that found by Siscoe for the largest geomagnetic storm per solar cycle. The expected range of the largest sunspot area per solar cycle for a group of one hundred cycles appears to be inconsistent with the existence of the prolonged periods of sunspot minima that have been inferred from the historical information on solar variability. This inconsistency supports the contention that there are temporal changes of solar-cycle statistics during protracted periods of sunspot minima (or maxima). Indeed, without such temporal changes, photospheric faculae should have been continually observable throughout the lifetime of the Sun. (orig.)

  1. History of ancient megathrust earthquakes beneath metropolitan Tokyo inferred from coastal lowland deposits

    Science.gov (United States)

    Mannen, Kazutaka; Yoong, Kim Haeng; Suzuki, Shigeru; Matsushima, Yoshiaki; Ota, Yuki; Kain, Claire L.; Goff, James

    2018-02-01

    Metropolitan Tokyo is located directly above a subduction zone that has generated two megathrust earthquakes in the past 300 years. However, the timing of older megathrusts on this margin is poorly understood. In this study, we aim to constrain the timings of past megathrust earthquakes, using coastal stratigraphy, paleoecology, radiocarbon dating and archaeological records from coastal lowlands. An investigation of 13 boreholes in the southern coastal area of metropolitan Tokyo found evidence for 4 m of uplift in a 6000-year period. However, we found that net vertical displacement in the last 1000 years is approximately zero. Results suggest that preservation of usually ephemeral lagoon sediments occurred on three occasions in the past 1000 years, and radiocarbon dating results show that the timings of these preservation episodes are close to that of major historical earthquakes. We thus attribute the intermittent preservation of the ephemeral lagoon deposits to coseismic uplift caused by the megathrust earthquakes. The candidates of the megathrust earthquakes are events that took place in 1703 CE, the 13th century, and 878 CE. Since these events produced no net vertical displacement due to inter-seismic subsidence, we propose that earthquakes responsible for long-term uplift of this region took place prior to the 9th century. This research also demonstrates the value of preserved intertidal sediments as paleoseismological archives where net tectonic displacement is neutral.

  2. The Provence earthquake 11 June 1909. Macro seismie observations

    International Nuclear Information System (INIS)

    Levret, A.; Goula, X.

    1988-03-01

    Since 1975 in order to be in conformity with the requirements of the French nuclear program, a review of historical seismicity was undertaken in France. The assessment of seismic hazard for the safety of nuclear plants is in fact based upon a seismotectonic approach which needs to take into account the macroseismic data of the reference earthquake. The discovery of an unpublished document (SPIESS 1914) containing a very detailed description of the effects of the 11th june 1909 Provence earthquake at 809 points in the epicentral area (geological and topographical characteristics, description of the buildings and the damage incurred, as well as the description of each seismic shock felt and the direction of ground motion), has made it possible, among other things, to draw up an isoseismal map and to correlate local variations in intensity with the geological and topographical features [fr

  3. What happened at Fukushima Daiichi Nuclear Power Plants. Verification of effects of earthquake and resulting tsunami

    International Nuclear Information System (INIS)

    Yamazaki, Tatsuhiro

    2012-01-01

    At 14:46 on March 11, 2011, the Tohoku District-off the Pacific Ocean Earthquake occurred. The magnitude of this earthquake was 9.0, the largest in Japan's recorded history, and afterwards enormous tsunami struck the Pacific coast of Tohoku District. This great earthquake and resulting tsunami struck the Fukushima Daiichi Nuclear Power Plants (NPPs) of Tokyo Electric Power Co. (TEPCO), whose cooling function was lost and suffered a severe nuclear accident. This article described the mechanism and safety measure of BWR type NPPs and verified how the great earthquake and resulting tsunami affected NPPs. Progression of the accident at Fukushima Daiichi NPPs was outlined. Damage by the earthquake could not be fully inspected but might not be significant to safety systems. However, the earthquake of longer duration time as much as about 250 sec caused failure of breaker or lightening arrester and also damage on electric facility such as transmission line insulator. Tsunami or inundation height was as high as O.P. (Onahama Pile) +11.5-15.5 m for Unit 1-4 reactor area while designed as O.P. +5.7 m, which caused blackout (power outage) and a reactor core meltdown at Fukushima Daiichi NPPs. (T. Tanaka)

  4. Source inversion of the 1570 Ferrara earthquake and definitive diversion of the Po River (Italy)

    Science.gov (United States)

    Sirovich, L.; Pettenati, F.

    2015-08-01

    An 11-parameter, kinematic-function (KF) model was used to retrieve the approximate geometrical and kinematic characteristics of the fault source of the 1570 Mw 5.8 Ferrara earthquake in the Po Plain, including the double-couple orientation (strike angle 127 ± 16°, dip 28 ± 7°, and rake 77 ± 16°). These results are compatible with either the outermost thrust fronts of the northern Apennines, which are buried beneath the Po Plain's alluvial deposits, or the blind crustal-scale thrust. The 1570 event developed to the ENE of the two main shocks on 20 May 2012 (M 6.1) and 29 May 2012 (M 5.9). The three earthquakes had similar kinematics and are found 20-30 km from each other en echelon in the buried chain. Geomorphological and historical evidence exist which suggest the following: (i) the long-lasting uplift of the buried Apenninic front shifted the central part of the course of the Po River approximately 20 km northward in historical times and (ii) the 1570 earthquake marked the definitive diversion of the final part of the Po River away from Ferrara and the closure of the Po delta 40 km south of its present position.

  5. Earthquake Culture: A Significant Element in Earthquake Disaster Risk Assessment and Earthquake Disaster Risk Management

    OpenAIRE

    Ibrion, Mihaela

    2018-01-01

    This book chapter brings to attention the dramatic impact of large earthquake disasters on local communities and society and highlights the necessity of building and enhancing the earthquake culture. Iran was considered as a research case study and fifteen large earthquake disasters in Iran were investigated and analyzed over more than a century-time period. It was found that the earthquake culture in Iran was and is still conditioned by many factors or parameters which are not integrated and...

  6. Long-term earthquake forecasts based on the epidemic-type aftershock sequence (ETAS model for short-term clustering

    Directory of Open Access Journals (Sweden)

    Jiancang Zhuang

    2012-07-01

    Full Text Available Based on the ETAS (epidemic-type aftershock sequence model, which is used for describing the features of short-term clustering of earthquake occurrence, this paper presents some theories and techniques related to evaluating the probability distribution of the maximum magnitude in a given space-time window, where the Gutenberg-Richter law for earthquake magnitude distribution cannot be directly applied. It is seen that the distribution of the maximum magnitude in a given space-time volume is determined in the longterm by the background seismicity rate and the magnitude distribution of the largest events in each earthquake cluster. The techniques introduced were applied to the seismicity in the Japan region in the period from 1926 to 2009. It was found that the regions most likely to have big earthquakes are along the Tohoku (northeastern Japan Arc and the Kuril Arc, both with much higher probabilities than the offshore Nankai and Tokai regions.

  7. The 2011 Mineral, Virginia, earthquake and its significance for seismic hazards in eastern North America: overview and synthesis

    Science.gov (United States)

    Horton, J. Wright; Chapman, Martin C.; Green, Russell A.

    2015-01-01

    The 23 August 2011 Mw (moment magnitude) 5.7 ± 0.1, Mineral, Virginia, earthquake was the largest and most damaging in the central and eastern United States since the 1886 Mw 6.8–7.0, Charleston, South Carolina, earthquake. Seismic data indicate that the earthquake rupture occurred on a southeast-dipping reverse fault and consisted of three subevents that progressed northeastward and updip. U.S. Geological Survey (USGS) "Did You Feel It?" intensity reports from across the eastern United States and southeastern Canada, rockfalls triggered at distances to 245 km, and regional groundwater-level changes are all consistent with efficient propagation of high-frequency seismic waves (∼1 Hz and higher) in eastern North America due to low attenuation.

  8. A comparison among observations and earthquake simulator results for the allcal2 California fault model

    Science.gov (United States)

    Tullis, Terry. E.; Richards-Dinger, Keith B.; Barall, Michael; Dieterich, James H.; Field, Edward H.; Heien, Eric M.; Kellogg, Louise; Pollitz, Fred F.; Rundle, John B.; Sachs, Michael K.; Turcotte, Donald L.; Ward, Steven N.; Yikilmaz, M. Burak

    2012-01-01

    In order to understand earthquake hazards we would ideally have a statistical description of earthquakes for tens of thousands of years. Unfortunately the ∼100‐year instrumental, several 100‐year historical, and few 1000‐year paleoseismological records are woefully inadequate to provide a statistically significant record. Physics‐based earthquake simulators can generate arbitrarily long histories of earthquakes; thus they can provide a statistically meaningful history of simulated earthquakes. The question is, how realistic are these simulated histories? This purpose of this paper is to begin to answer that question. We compare the results between different simulators and with information that is known from the limited instrumental, historic, and paleoseismological data.As expected, the results from all the simulators show that the observational record is too short to properly represent the system behavior; therefore, although tests of the simulators against the limited observations are necessary, they are not a sufficient test of the simulators’ realism. The simulators appear to pass this necessary test. In addition, the physics‐based simulators show similar behavior even though there are large differences in the methodology. This suggests that they represent realistic behavior. Different assumptions concerning the constitutive properties of the faults do result in enhanced capabilities of some simulators. However, it appears that the similar behavior of the different simulators may result from the fault‐system geometry, slip rates, and assumed strength drops, along with the shared physics of stress transfer.This paper describes the results of running four earthquake simulators that are described elsewhere in this issue of Seismological Research Letters. The simulators ALLCAL (Ward, 2012), VIRTCAL (Sachs et al., 2012), RSQSim (Richards‐Dinger and Dieterich, 2012), and ViscoSim (Pollitz, 2012) were run on our most recent all‐California fault

  9. An improvement of the Earthworm Based Earthquake Alarm Reporting system in Taiwan

    Science.gov (United States)

    Chen, D. Y.; Hsiao, N. C.; Yih-Min, W.

    2017-12-01

    The Central Weather Bureau of Taiwan (CWB) has operated the Earthworm Based Earthquake Alarm Reporting (eBEAR) system for the purpose of earthquake early warning (EEW). The system has been used to report EEW messages to the general public since 2016 through text message from the mobile phones and the television programs. The system for inland earthquakes is able to provide accurate and fast warnings. The average epicenter error is about 5 km and the processing time is about 15 seconds. The epicenter error is defined as the distance between the epicenter estimated by the EEW system and the epicenter estimated by man. The processing time is defined as the time difference between the time earthquakes occurred and the time the system issued warning. The CWB seismic network consist about 200 seismic stations. In some area of Taiwan the distance between each seismic station is about 10 km. It means that when an earthquake occurred the seismic P wave is able to propagate through 6 stations, which is the minimum number of required stations in the EEW system, within 20 km. If the latency of data transmitting is about 1 sec, the P-wave velocity is about 6 km per sec and we take 3-sec length time window to estimate earthquake magnitude, then the processing should be around 8 sec. In fact, however, the average processing time is larger than this figure. Because some outliers of P-wave onset picks may exist in the beginning of the earthquake occurrence, the Geiger's method we used in the EEW system for earthquake location is not stable. It usually takes more time to wait for enough number of good picks. In this study we used grid search method to improve the estimations of earthquake location. The MAXEL algorithm (Sheen et al., 2015, 2016) was tested in the EEW system by simulating historical earthquakes occurred in Taiwan. The results show the processing time can be reduced and the location accuracy is acceptable for EEW purpose.

  10. Earthquakes and Earthquake Engineering. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    An earthquake is a shaking of the ground resulting from a disturbance in the earth's interior. Seismology is the (1) study of earthquakes; (2) origin, propagation, and energy of seismic phenomena; (3) prediction of these phenomena; and (4) investigation of the structure of the earth. Earthquake engineering or engineering seismology includes the…

  11. Empirical relations between instrumental and seismic parameters of some strong earthquakes of Colombia

    International Nuclear Information System (INIS)

    Marin Arias, Juan Pablo; Salcedo Hurtado, Elkin de Jesus; Castillo Gonzalez, Hardany

    2008-01-01

    In order to establish the relationships between macroseismic and instrumental parameters, macroseismic field of 28 historical earthquakes that produced great effects in the Colombian territory were studied. The integration of the parameters was made by using the methodology of Kaussel and Ramirez (1992), for great Chilean earthquakes; Kanamori and Anderson (1975) and Coppersmith and Well (1994) for world-wide earthquakes. Once determined the macroseismic and instrumental parameters it was come to establish the model of the source of each earthquake, with which the data base of these parameters was completed. For each earthquake parameters related to the local and normal macroseismic epicenter were complemented, depth of the local and normal center, horizontal extension of both centers, vertical extension of the normal center, model of the source, area of rupture. The obtained empirical relations from linear equations, even show behaviors very similar to the found ones by other authors for other regions of the world and to world-wide level. The results of this work allow establishing that certain mutual non compatibility exists between the area of rupture and the length of rupture determined by the macroseismic methods, with parameters found with instrumental data like seismic moment, Ms magnitude and Mw magnitude.

  12. Earthquake source studies and seismic imaging in Alaska

    Science.gov (United States)

    Tape, C.; Silwal, V.

    2015-12-01

    Alaska is one of the world's most seismically and tectonically active regions. Its enhanced seismicity, including slab seismicity down to 180 km, provides opportunities (1) to characterize pervasive crustal faulting and slab deformation through the estimation of moment tensors and (2) to image subsurface structures to help understand the tectonic evolution of Alaska. Most previous studies of earthquakes and seismic imaging in Alaska have emphasized earthquake locations and body-wave travel-time tomography. In the past decade, catalogs of seismic moment tensors have been established, while seismic surface waves, active-source data, and potential field data have been used to improve models of seismic structure. We have developed moment tensor catalogs in the regions of two of the largest sedimentary basins in Alaska: Cook Inlet forearc basin, west of Anchorage, and Nenana basin, west of Fairbanks. Our moment tensor solutions near Nenana basin suggest a transtensional tectonic setting, with the basin developing in a stepover of a left-lateral strike-slip fault system. We explore the effects of seismic wave propagation from point-source and finite-source earthquake models by performing three-dimensional wavefield simulations using seismic velocity models that include major sedimentary basins. We will use our catalog of moment tensors within an adjoint-based, iterative inversion to improve the three-dimensional tomographic model of Alaska.

  13. Detection of Repeating Earthquakes within the Cascadia Subduction Zone Using 2013-2014 Cascadia Initiative Amphibious Network Data

    Science.gov (United States)

    Kenefic, L.; Morton, E.; Bilek, S.

    2017-12-01

    It is well known that subduction zones create the largest earthquakes in the world, like the magnitude 9.5 Chile earthquake in 1960, or the more recent 9.1 magnitude Japan earthquake in 2011, both of which are in the top five largest earthquakes ever recorded. However, off the coast of the Pacific Northwest region of the U.S., the Cascadia subduction zone (CSZ) remains relatively quiet and modern seismic instruments have not recorded earthquakes of this size in the CSZ. The last great earthquake, a magnitude 8.7-9.2, occurred in 1700 and is constrained by written reports of the resultant tsunami in Japan and dating a drowned forest in the U.S. Previous studies have suggested the margin is most likely segmented along-strike. However, variations in frictional conditions in the CSZ fault zone are not well known. Geodetic modeling indicates that the locked seismogenic zone is likely completely offshore, which may be too far from land seismometers to adequately detect related seismicity. Ocean bottom seismometers, as part of the Cascadia Initiative Amphibious Network, were installed directly above the inferred seismogenic zone, which we use to better detect small interplate seismicity. Using the subspace detection method, this study looks to find new seismogenic zone earthquakes. This subspace detection method uses multiple previously known event templates concurrently to scan through continuous seismic data. Template events that make up the subspace are chosen from events in existing catalogs that likely occurred along the plate interface. Corresponding waveforms are windowed on the nearby Cascadia Initiative ocean bottom seismometers and coastal land seismometers for scanning. Detections that are found by the scan are similar to the template waveforms based upon a predefined threshold. Detections are then visually examined to determine if an event is present. The presence of repeating event clusters can indicate persistent seismic patches, likely corresponding to

  14. Source mechanism inversion and ground motion modeling of induced earthquakes in Kuwait - A Bayesian approach

    Science.gov (United States)

    Gu, C.; Toksoz, M. N.; Marzouk, Y.; Al-Enezi, A.; Al-Jeri, F.; Buyukozturk, O.

    2016-12-01

    The increasing seismic activity in the regions of oil/gas fields due to fluid injection/extraction and hydraulic fracturing has drawn new attention in both academia and industry. Source mechanism and triggering stress of these induced earthquakes are of great importance for understanding the physics of the seismic processes in reservoirs, and predicting ground motion in the vicinity of oil/gas fields. The induced seismicity data in our study are from Kuwait National Seismic Network (KNSN). Historically, Kuwait has low local seismicity; however, in recent years the KNSN has monitored more and more local earthquakes. Since 1997, the KNSN has recorded more than 1000 earthquakes (Mw Institutions for Seismology (IRIS) and KNSN, and widely felt by people in Kuwait. These earthquakes happen repeatedly in the same locations close to the oil/gas fields in Kuwait (see the uploaded image). The earthquakes are generally small (Mw stress of these earthquakes was calculated based on the source mechanisms results. In addition, we modeled the ground motion in Kuwait due to these local earthquakes. Our results show that most likely these local earthquakes occurred on pre-existing faults and were triggered by oil field activities. These events are generally smaller than Mw 5; however, these events, occurring in the reservoirs, are very shallow with focal depths less than about 4 km. As a result, in Kuwait, where oil fields are close to populated areas, these induced earthquakes could produce ground accelerations high enough to cause damage to local structures without using seismic design criteria.

  15. Analog earthquakes

    International Nuclear Information System (INIS)

    Hofmann, R.B.

    1995-01-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository

  16. The 2016 Central Italy Earthquake: an Overview

    Science.gov (United States)

    Amato, A.

    2016-12-01

    citizens and media, through interviews, social media, participation to radio and TV programs; a press conference was organized on the same day of the earthquake; the INGVterremoti social media platform released tens of articles on the seismicity, historical events, seismic hazard, updates on the ongoing research, with a positive feedback from media and citizens.

  17. Seismic safety reexaminations to NPPs in Taiwan. Lessons learned from 20061226 Taiwan Hengchun and 20070716 Japan Niigata-Chuetsu oki earthquakes

    International Nuclear Information System (INIS)

    Chow Ting; Wu Yuanchieh; Gau Yunchau

    2008-01-01

    On December 26 2006, a strong earthquake with a local magnitude M L of 7.0 hit the most southern part of Taiwan, Hengchun village, where the Maanshan Nuclear Power Station is located. This is a historic high earthquake ever been experienced to Taiwan's existing nuclear power units, and it raised high public concerns about the seismic safety of the nuclear power plants operation. More recently on July 16 2007, in Japan, where the earthquake focal mechanisms are very similar to those in Taiwan, all 7 nuclear power units in Kashiwazaki-Kariwa site were struck by a more devastating earthquake and as the result, the design earthquakes for all the nuclear units have been exceeded. Therefore, the assurance of good seismic design and the appropriateness of associated post-earthquake actions to the nuclear power units in Taiwan become very urgent topics. Based on the experiences learned from the above mentioned two earthquakes, this paper will focus on the seismic safety reexamination of Taiwan's existing nuclear power plants of the following aspects: (1) current US orientated seismic designs/regulations from earthquake probabilistic risk point of view, (2) earthquake shut-down criterion, especially the CAV parameter and its threshold value, and (3) current post earthquake actions. (author)

  18. Using Earthquake Analysis to Expand the Oklahoma Fault Database

    Science.gov (United States)

    Chang, J. C.; Evans, S. C.; Walter, J. I.

    2017-12-01

    The Oklahoma Geological Survey (OGS) is compiling a comprehensive Oklahoma Fault Database (OFD), which includes faults mapped in OGS publications, university thesis maps, and industry-contributed shapefiles. The OFD includes nearly 20,000 fault segments, but the work is far from complete. The OGS plans on incorporating other sources of data into the OFD, such as new faults from earthquake sequence analyses, geologic field mapping, active-source seismic surveys, and potential fields modeling. A comparison of Oklahoma seismicity and the OFD reveals that earthquakes in the state appear to nucleate on mostly unmapped or unknown faults. Here, we present faults derived from earthquake sequence analyses. From 2015 to present, there has been a five-fold increase in realtime seismic stations in Oklahoma, which has greatly expanded and densified the state's seismic network. The current seismic network not only improves our threshold for locating weaker earthquakes, but also allows us to better constrain focal plane solutions (FPS) from first motion analyses. Using nodal planes from the FPS, HypoDD relocation, and historic seismic data, we can elucidate these previously unmapped seismogenic faults. As the OFD is a primary resource for various scientific investigations, the inclusion of seismogenic faults improves further derivative studies, particularly with respect to seismic hazards. Our primal focus is on four areas of interest, which have had M5+ earthquakes in recent Oklahoma history: Pawnee (M5.8), Prague (M5.7), Fairview (M5.1), and Cushing (M5.0). Subsequent areas of interest will include seismically active data-rich areas, such as the central and northcentral parts of the state.

  19. Scientists Examine Challenges and Lessons From Japan's Earthquake and Tsunami

    Science.gov (United States)

    Showstack, Randy

    2011-03-01

    A week after the magnitude 9.0 great Tohoku earthquake and the resulting tragic and damaging tsunami of 11 March struck Japan, the ramifications continued, with a series of major aftershocks (as Eos went to press, there had been about 4 dozen with magnitudes greater than 6); the grim search for missing people—the death toll was expected to approximate 10,000; the urgent assistance needed for the more than 400,000 homeless and the 1 million people without water; and the frantic efforts to avert an environmental catastrophe at Japan's damaged Fukushima Daiichi Nuclear Power Station, about 225 kilometers northeast of Tokyo, where radiation was leaking. The earthquake offshore of Honshu in northeastern Japan (see Figure 1) was a plate boundary rupture along the Japan Trench subduction zone, with the source area of the earthquake estimated at 400-500 kilometers long with a maximum slip of 20 meters, determined through various means including Global Positioning System (GPS) and seismographic data, according to Kenji Satake, professor at the Earthquake Research Institute of the University of Tokyo. In some places the tsunami may have topped 7 meters—the maximum instrumental measurement at many coastal tide gauges—and some parts of the coastline may have been inundated more than 5 kilometers inland, Satake indicated. The International Tsunami Information Center (ITIC) noted that eyewitnesses reported that the highest tsunami waves were 13 meters high. Satake also noted that continuous GPS stations indicate that the coast near Sendai—which is 130 kilometers west of the earthquake and is the largest city in the Tohoku region of Honshu—moved more than 4 meters horizontally and subsided about 0.8 meter.

  20. Long Aftershock Sequences within Continents and Implications for Earthquake Hazard Assessment

    Science.gov (United States)

    Stein, S. A.; Liu, M.

    2014-12-01

    Recent seismicity in the Tangshan region in North China has prompted concern about a repetition of the 1976 M7.8 earthquake that destroyed the city, killing more than 242,000 people. However, the decay of seismicity there implies that the recent earthquakes are probably aftershocks of the 1976 event. This 37-year sequence is an example of the phenomenon that aftershock sequences within continents are often significantly longer than the typical 10 years at plate boundaries. The long sequence of aftershocks in continents is consistent with a simple friction-based model predicting that the length of aftershock sequences varies inversely with the rate at which faults are loaded. Hence the slowly-deforming continents tend to have aftershock sequences significantly longer than at rapidly-loaded plate boundaries. This effect has two consequences for hazard assessment. First, within the heavily populated continents that are typically within plate interiors, assessments of earthquake hazards rely significantly on the assumption that the locations of small earthquakes shown by the short historical record reflect continuing deformation that will cause future large earthquakes. This assumption would lead to overestimation of the hazard in presently active areas and underestimation elsewhere, if some of these small events are aftershocks. Second, successful attempts to remove aftershocks from catalogs used for hazard assessment would underestimate the hazard, because much of the hazard is due to the aftershocks, and the declustering algorithms implicitly assume short aftershock sequences and thus do not remove long-duration ones.

  1. 2016-2017 Update of Hydraulic Fracturing Induced Earthquakes near Fox Creek, Alberta

    Science.gov (United States)

    Wang, R.; Gu, Y. J.; Zhang, M.

    2017-12-01

    With a reported Richter magnitude (ML) of 4.8, the January 12, 2016 earthquake near Fox Creek is the largest event in Alberta during the past decade. This event led to the suspension of a nearby hydraulic fracturing well, in compliance with the provincial "traffic-light" protocol. In previous study, we examine the hypocenter location and focal mechanism of this earthquake, and the results support an anthropogenic origin. Since then (until August 2017), no event reached ML=4, while several ML>3 events occurred in the Fox Creek area. Their focal mechanisms are consistent with the ones from previous events that were induced by hydraulic fracturing, suggesting a strike-slip mechanism with either N-S or E-W trending fault. In 2017, the near-source station (distance Fox Creek region.

  2. Rapid Estimates of Rupture Extent for Large Earthquakes Using Aftershocks

    Science.gov (United States)

    Polet, J.; Thio, H. K.; Kremer, M.

    2009-12-01

    The spatial distribution of aftershocks is closely linked to the rupture extent of the mainshock that preceded them and a rapid analysis of aftershock patterns therefore has potential for use in near real-time estimates of earthquake impact. The correlation between aftershocks and slip distribution has frequently been used to estimate the fault dimensions of large historic earthquakes for which no, or insufficient, waveform data is available. With the advent of earthquake inversions that use seismic waveforms and geodetic data to constrain the slip distribution, the study of aftershocks has recently been largely focused on enhancing our understanding of the underlying mechanisms in a broader earthquake mechanics/dynamics framework. However, in a near real-time earthquake monitoring environment, in which aftershocks of large earthquakes are routinely detected and located, these data may also be effective in determining a fast estimate of the mainshock rupture area, which would aid in the rapid assessment of the impact of the earthquake. We have analyzed a considerable number of large recent earthquakes and their aftershock sequences and have developed an effective algorithm that determines the rupture extent of a mainshock from its aftershock distribution, in a fully automatic manner. The algorithm automatically removes outliers by spatial binning, and subsequently determines the best fitting “strike” of the rupture and its length by projecting the aftershock epicenters onto a set of lines that cross the mainshock epicenter with incremental azimuths. For strike-slip or large dip-slip events, for which the surface projection of the rupture is recti-linear, the calculated strike correlates well with the strike of the fault and the corresponding length, determined from the distribution of aftershocks projected onto the line, agrees well with the rupture length. In the case of a smaller dip-slip rupture with an aspect ratio closer to 1, the procedure gives a measure

  3. Tectonic setting of the Wooded Island earthquake swarm, eastern Washington

    Science.gov (United States)

    Blakely, Richard J.; Sherrod, Brian L.; Weaver, Craig S.; Rohay, Alan C.; Wells, Ray E.

    2012-01-01

    Magnetic anomalies provide insights into the tectonic implications of a swarm of ~1500 shallow (~1 km deep) earthquakes that occurred in 2009 on the Hanford site,Washington. Epicenters were concentrated in a 2 km2 area nearWooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ~50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Group (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.

  4. Earthquakes in southern Dalmatia and coastal Montenegro before the large 6 April 1667 event

    Science.gov (United States)

    Albini, Paola; Rovida, Andrea

    2018-05-01

    The fourteenth to seventeenth century seismicity of southern Dalmatia (Croatia) and coastal Montenegro deserved to be fully reappraised because of the ascertained imperfect knowledge offered by modern seismological studies and of the awareness of the smokescreen effect due to the large 6 April 1667 M 6.4 earthquake that impacted exactly the area of study. The investigation consisted of (i) a reconsideration of earthquake records made available by previous studies and (ii) a systematic analysis of historical sources contemporary to the earthquakes, especially those not yet taken into account in seismological studies. The 168 contemporary and independent records collected cast a different light on more than 300 years of seismicity of this area. Records are reckoned to be unevenly distributed among the 39 studied earthquakes, out of which 15 still rely upon a single testimony. Each record has been reevaluated with respect to its content and attributed a level of reliability, which for those reporting other 14 events was so low to prevent us from confirming their real occurrence. Completely unreliable records have been identified and discussed, to conclude that they are at the root of five fake earthquakes. Altogether, 34 intensity values in EMS-98 were assessed related to 15 moderate and five damaging earthquakes. Existing and newly obtained data contributed to putting the pre-1667 seismicity of southern Dalmatia and coastal Montenegro into a substantially different perspective.

  5. Five centuries of tsunamis and land-level changes in the overlapping rupture area of the 1960 and 2010 Chilean earthquakes

    Science.gov (United States)

    Ely, Lisa L.; Cisternas, Marco; Wesson, Robert L.; Dura, Tina

    2014-01-01

    A combination of geological and historical records from south-central Chile provides a means to address general questions about the stability of megathrust rupture patches and the range of variation expected among earthquakes and tsunamis along a particular stretch of a subduction zone. The Tirúa River estuary (38.3°S) records four large tsunamis and coseismic land-level changes over the past 450 years within the overlapping rupture zones of the great subduction-zone earthquakes of A.D. 1960 (Mw9.5) and 2010 (Mw 8.8). Sand layers 2 km up the Tirúa River represent the 2010 and 1960 tsunamis and two historical tsunamis, most likely in A.D. 1751 and 1575. Differing land-level changes during these earthquakes likely denote differences in the spatial distribution of slip on the megathrust in both the strike and dip directions within the overlapping rupture zone, with the uplift at Tirúa in 1751 and 2010 probably caused by slip extending farther landward and to greater depth than in 1575 and 1960, which showed subsidence or little change.

  6. Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm

    Science.gov (United States)

    Shelly, David R.; Taira, Taka’aki; Prejean, Stephanie; Hill, David P.; Dreger, Douglas S.

    2015-01-01

    Faulting and fluid transport in the subsurface are highly coupled processes, which may manifest seismically as earthquake swarms. A swarm in February 2014 beneath densely monitored Mammoth Mountain, California, provides an opportunity to witness these interactions in high resolution. Toward this goal, we employ massive waveform-correlation-based event detection and relative relocation, which quadruples the swarm catalog to more than 6000 earthquakes and produces high-precision locations even for very small events. The swarm's main seismic zone forms a distributed fracture mesh, with individual faults activated in short earthquake bursts. The largest event of the sequence, M 3.1, apparently acted as a fault valve and was followed by a distinct wave of earthquakes propagating ~1 km westward from the updip edge of rupture, 1–2 h later. Late in the swarm, multiple small, shallower subsidiary faults activated with pronounced hypocenter migration, suggesting that a broader fluid pressure pulse propagated through the subsurface.

  7. Space-borne Observations of Atmospheric Pre-Earthquake Signals in Seismically Active Areas: Case Study for Greece 2008-2009

    Science.gov (United States)

    Ouzounov, D. P.; Pulinets, S. A.; Davidenko, D. A.; Kafatos, M.; Taylor, P. T.

    2013-01-01

    We are conducting theoretical studies and practical validation of atm osphere/ionosphere phenomena preceding major earthquakes. Our approach is based on monitoring of two physical parameters from space: outgoi ng long-wavelength radiation (OLR) on the top of the atmosphere and e lectron and electron density variations in the ionosphere via GPS Tot al Electron Content (GPS/TEC). We retrospectively analyzed the temporal and spatial variations of OLR an GPS/TEC parameters characterizing the state of the atmosphere and ionosphere several days before four m ajor earthquakes (M>6) in Greece for 2008-2009: M6.9 of 02.12.08, M6. 2 02.20.08; M6.4 of 06.08.08 and M6.4 of 07.01.09.We found anomalous behavior before all of these events (over land and sea) over regions o f maximum stress. We expect that our analysis reveal the underlying p hysics of pre-earthquake signals associated with some of the largest earthquakes in Greece.

  8. Global Earthquake and Volcanic Eruption Economic losses and costs from 1900-2014: 115 years of the CATDAT database - Trends, Normalisation and Visualisation

    Science.gov (United States)

    Daniell, James; Skapski, Jens-Udo; Vervaeck, Armand; Wenzel, Friedemann; Schaefer, Andreas

    2015-04-01

    Over the past 12 years, an in-depth database has been constructed for socio-economic losses from earthquakes and volcanoes. The effects of earthquakes and volcanic eruptions have been documented in many databases, however, many errors and incorrect details are often encountered. To combat this, the database was formed with socioeconomic checks of GDP, capital stock, population and other elements, as well as providing upper and lower bounds to each available event loss. The definition of economic losses within the CATDAT Damaging Earthquakes Database (Daniell et al., 2011a) as of v6.1 has now been redefined to provide three options of natural disaster loss pricing, including reconstruction cost, replacement cost and actual loss, in order to better define the impact of historical disasters. Similarly for volcanoes as for earthquakes, a reassessment has been undertaken looking at the historical net and gross capital stock and GDP at the time of the event, including the depreciated stock, in order to calculate the actual loss. A normalisation has then been undertaken using updated population, GDP and capital stock. The difference between depreciated and gross capital can be removed from the historical loss estimates which have been all calculated without taking depreciation of the building stock into account. The culmination of time series from 1900-2014 of net and gross capital stock, GDP, direct economic loss data, use of detailed studies of infrastructure age, and existing damage surveys, has allowed the first estimate of this nature. The death tolls in earthquakes from 1900-2014 are presented in various forms, showing around 2.32 million deaths due to earthquakes (with a range of 2.18 to 2.63 million) and around 59% due to masonry buildings and 28% from secondary effects. For the death tolls from the volcanic eruption database, 98000 deaths with a range from around 83000 to 107000 is seen from 1900-2014. The application of VSL life costing from death and injury

  9. Swedish National Seismic Network (SNSN). A short report on recorded earthquakes during the fourth quarter of the year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Boedvarsson, Reynir (Uppsala Univ. (Sweden), Dept. of Earth Sciences)

    2011-01-15

    According to an agreement with Swedish Nuclear Fuel and Waste Management Company (SKB) and Uppsala Univ., the Dept. of Earth Sciences has continued to carry out observations of seismic events at seismic stations within the Swedish National Seismic Network (SNSN). This short report gives brief information about the recorded seismicity during October through December 2010. The Swedish National Seismic Network consists of 62 stations. During October through December, 2,241 events were located whereof 158 are estimated as real earthquakes, 1,457 are estimated as explosions, 444 are induced earthquakes in the vicinity of the mines in Kiruna and Malmberget and 182 events are still considered as uncertain but these are most likely explosions and are mainly located outside the network. One earthquake had a magnitude above M{sub L} = 2.0 during the period. In November one earthquake was located 13 km SW of Haernoesand with a magnitude of M{sub L} = 2.1. The largest earthquake in October had a magnitude of M{sub L} = 1.7 and was located 12 km NE of Eksjoe and in December an earthquake with a magnitude of M{sub L} = 1.8 was located 19 km north of Motala

  10. Refinements on the inferred causative faults of the great 2012 Indian Ocean earthquakes

    Science.gov (United States)

    Revathy, P. M.; Rajendran, K.

    2014-12-01

    As the largest known intra-plate strike-slip events, the pair of 2012 earthquakes in the Wharton Basin is a rarity. Separated in time by 2 hours these events rouse interest also because of their short inter-event duration, complex rupture mechanism, and spatial-temporal proximity to the great 2004 Sumatra plate boundary earthquake. Reactivation of fossil ridge-transform pairs is a favoured mechanism for large oceanic plate earthquakes and their inherent geometry triggers earthquakes on conjugate fault systems, as observed previously in the Wharton Basin. The current debate is whether the ruptures occurred on the WNW-ESE paleo ridges or the NNE-SSW paleo transforms. Back-projection models give a complex rupture pattern that favours the WNW-ESE fault [1]. However, the static stress changes due to the 2004 Sumatra earthquake and 2005 Nias earthquake favour the N15°E fault [2]. We use the Teleseismic Body-Wave Inversion Program [3] and waveform data from Global Seismic Network, to obtain the best fit solutions using P and S-wave synthetic modelling. The preliminary P-wave analysis of both earthquakes gives source parameters that are consistent with the Harvard CMT solutions. The obtained slip distribution complies with the NNE-SSW transforms. Both these earthquakes triggered small tsunamis which appear as two distinctive pulses on 13 Indian Ocean tide gauges and buoys. Frequency spectra of the tsunami recordings from various azimuths provide additional constraint for the choice of the causative faults. References: [1] Yue, H., T. Lay, and K. D. Koper (2012), En echelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes, Nature, 490, 245-249, doi:10.1038/nature11492 [2] Delescluse, M., N. Chamot-Rooke, R. Cattin, L. Fleitout, O. Trubienko and C. Vigny April 2012 intra-oceanic seismicity off Sumatra boosted by the Banda-Aceh megathrust, Nature, 490(2012), pp. 240-244, doi:10.1038/nature11520 [3] M. Kikuchi and H. Kanamori, Note on

  11. Turkish Compulsory Earthquake Insurance and "Istanbul Earthquake

    Science.gov (United States)

    Durukal, E.; Sesetyan, K.; Erdik, M.

    2009-04-01

    The city of Istanbul will likely experience substantial direct and indirect losses as a result of a future large (M=7+) earthquake with an annual probability of occurrence of about 2%. This paper dwells on the expected building losses in terms of probable maximum and average annualized losses and discusses the results from the perspective of the compulsory earthquake insurance scheme operational in the country. The TCIP system is essentially designed to operate in Turkey with sufficient penetration to enable the accumulation of funds in the pool. Today, with only 20% national penetration, and about approximately one-half of all policies in highly earthquake prone areas (one-third in Istanbul) the system exhibits signs of adverse selection, inadequate premium structure and insufficient funding. Our findings indicate that the national compulsory earthquake insurance pool in Turkey will face difficulties in covering incurring building losses in Istanbul in the occurrence of a large earthquake. The annualized earthquake losses in Istanbul are between 140-300 million. Even if we assume that the deductible is raised to 15%, the earthquake losses that need to be paid after a large earthquake in Istanbul will be at about 2.5 Billion, somewhat above the current capacity of the TCIP. Thus, a modification to the system for the insured in Istanbul (or Marmara region) is necessary. This may mean an increase in the premia and deductible rates, purchase of larger re-insurance covers and development of a claim processing system. Also, to avoid adverse selection, the penetration rates elsewhere in Turkey need to be increased substantially. A better model would be introduction of parametric insurance for Istanbul. By such a model the losses will not be indemnified, however will be directly calculated on the basis of indexed ground motion levels and damages. The immediate improvement of a parametric insurance model over the existing one will be the elimination of the claim processing

  12. Reassessment of 50 years of seismicity in Simav-Gediz grabens (Western Turkey), based on earthquake relocations

    Science.gov (United States)

    Karasozen, E.; Nissen, E.; Bergman, E. A.; Walters, R. J.

    2013-12-01

    Western Turkey is a rapidly deforming region with a long history of high-magnitude normal faulting earthquakes. However, the locations and slip rates of the responsible faults are poorly constrained. Here, we reassess a series of large instrumental earthquakes in the Simav-Gediz region, an area exhibiting a strong E-W gradient in N-S extension rates, from low rates bordering the Anatolian Plateau to much higher rates in the west. We start with investigating a recent Mw 5.9 earthquake at Simav (19 May 2011) using InSAR, teleseismic body-wave modeling and field observations. Next, we exploit the small but clear InSAR signal to relocate a series of older, larger earthquakes, using a calibrated earthquake relocation method which is based on the hypocentroidial decomposition (HDC) method for multiple event relocation. These improved locations in turn provide an opportunity to reassess the regional style of deformation. One interesting aspect of these earthquakes is that the largest (the Mw 7.2 Gediz earthquake, March 1970) occurred in an area of slow extension and indistinct surface faulting, whilst the well-defined and more rapidly extending Simav graben has ruptured in several smaller, Mw 6 events. However, our relocations highlight the existence of a significant gap in instrumental earthquakes along the central Simav graben, which, if it ruptured in a single event, could equal ~Mw 7. We were unable to identify fault scarps along this section due to dense vegetation and human modification, and we suggest that acquiring LiDAR data in this area should be a high priority in order to properly investigate earthquake hazard in the Simav graben.

  13. Feasibility Study of Earthquake Early Warning in Hawai`i For the Mauna Kea Thirty Meter Telescope

    Science.gov (United States)

    Okubo, P.; Hotovec-Ellis, A. J.; Thelen, W. A.; Bodin, P.; Vidale, J. E.

    2014-12-01

    Earthquakes, including large damaging events, are as central to the geologic evolution of the Island of Hawai`i as its more famous volcanic eruptions and lava flows. Increasing and expanding development of facilities and infrastructure on the island continues to increase exposure and risk associated with strong ground shaking resulting from future large local earthquakes. Damaging earthquakes over the last fifty years have shaken the most heavily developed areas and critical infrastructure of the island to levels corresponding to at least Modified Mercalli Intensity VII. Hawai`i's most recent damaging earthquakes, the M6.7 Kiholo Bay and M6.0 Mahukona earthquakes, struck within seven minutes of one another off of the northwest coast of the island in October 2006. These earthquakes resulted in damage at all thirteen of the telescopes near the summit of Mauna Kea that led to gaps in telescope operations ranging from days up to four months. With the experiences of 2006 and Hawai`i's history of damaging earthquakes, we have begun a study to explore the feasibility of implementing earthquake early warning systems to provide advanced warnings to the Thirty Meter Telescope of imminent strong ground shaking from future local earthquakes. One of the major challenges for earthquake early warning in Hawai`i is the variety of earthquake sources, from shallow crustal faults to deeper mantle sources, including the basal decollement separating the volcanic pile from the ancient oceanic crust. Infrastructure on the Island of Hawai`i may only be tens of kilometers from these sources, allowing warning times of only 20 s or less. We assess the capability of the current seismic network to produce alerts for major historic earthquakes, and we will provide recommendations for upgrades to improve performance.

  14. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  15. Revisiting the November 27, 1945 Makran (Mw=8.2) interplate earthquake

    Science.gov (United States)

    Zarifi, Z.; Raeesi, M.

    2012-04-01

    Makran Subduction Zone (MSZ) in southern Iran and southwestern Pakistan is a zone of convergence, where the remnant oceanic crust of Arabian plate is subducting beneath the Eurasian plate with a rate of less than 30 mm/yr. The November 27, 1945 earthquake (Mw=8.2) in eastern section of Makran followed by a tsunami, at some points 15 meters high. More than 4000 victims and widespread devastation along the coastal area of Pakistan, Iran, Oman and India are reported for this earthquake. We have collected the old seismograms of the 1945 earthquake and its largest following earthquake (August 5, 1947, Mw=7.3) from a number of stations around the globe. Using ISS data, we relocated these two events. We used the teleseismic body-waveform inversion code of Kikuchi and Kanamori to determine the slip distribution of these two earthquakes for the first time. The results show that the extent of rupture of the 1945 earthquake is larger than what previously had been approximated in other studies. The slip distribution suggests two distinct sets of asperities with different behavior in the west close to Pasni and in the east close to Ormara. The highest slip was obtained for an area between these two cities which shows geological evidence of rapid uplift. To associate this behavior with the structure of slab interface we studied the TPGA (Trench Parallel Free-air Gravity Anomaly) and TPBA (Trench Parallel Bouguer Anomaly) in MSZ. The results of TPGA does not show the expected phenomenon, which is the correlation of asperities with the area of highly negative TPGA. However, TPBA can make correlation between the observed slip distribution and the structure of slab interface. Using the topography and gravity profiles perpendicular to trench and along the MSZ, we could observe the segmentation in the slab interface. This confirms that we barely expect that the whole interface releases energy in one single megathrust earthquake. Current seismicity in MSZ, although sparse, can fairly

  16. Characterising large scenario earthquakes and their influence on NDSHA maps

    Science.gov (United States)

    Magrin, Andrea; Peresan, Antonella; Panza, Giuliano F.

    2016-04-01

    The neo-deterministic approach to seismic zoning, NDSHA, relies on physically sound modelling of ground shaking from a large set of credible scenario earthquakes, which can be defined based on seismic history and seismotectonics, as well as incorporating information from a wide set of geological and geophysical data (e.g. morphostructural features and present day deformation processes identified by Earth observations). NDSHA is based on the calculation of complete synthetic seismograms; hence it does not make use of empirical attenuation models (i.e. ground motion prediction equations). From the set of synthetic seismograms, maps of seismic hazard that describe the maximum of different ground shaking parameters at the bedrock can be produced. As a rule, the NDSHA, defines the hazard as the envelope ground shaking at the site, computed from all of the defined seismic sources; accordingly, the simplest outcome of this method is a map where the maximum of a given seismic parameter is associated to each site. In this way, the standard NDSHA maps permit to account for the largest observed or credible earthquake sources identified in the region in a quite straightforward manner. This study aims to assess the influence of unavoidable uncertainties in the characterisation of large scenario earthquakes on the NDSHA estimates. The treatment of uncertainties is performed by sensitivity analyses for key modelling parameters and accounts for the uncertainty in the prediction of fault radiation and in the use of Green's function for a given medium. Results from sensitivity analyses with respect to the definition of possible seismic sources are discussed. A key parameter is the magnitude of seismic sources used in the simulation, which is based on information from earthquake catalogue, seismogenic zones and seismogenic nodes. The largest part of the existing Italian catalogues is based on macroseismic intensities, a rough estimate of the error in peak values of ground motion can

  17. The 1985 México earthquake The 1985 México earthquake

    Directory of Open Access Journals (Sweden)

    Moreno Murillo Juan Manuel

    1995-10-01

    Full Text Available

    This paper includes a bibliographic review with the description of the various aspects about the (Ms = 8.1 Michoacan, Mexico earthquake, which comprised of three events. The main shock of the September 19, 1985 earthquake occurred on Thursday at 7h. 17m. 46.6s. local time in Mexico City, and had (Ms = 8.1. The focus of the event was a depth of approximately 18 km. A second shock occurred on Friday evening 21 September at 7h. 38m. p.m. local time. The last aftershock occurred on 30 April of 1986 (Ms = 7.0. A prior event occurred to the September 1985 earthquake, occurred on 28 May, 1985 (mb = 5.2 and is described too. This event, was a terrible natural disaster for that country, at least 9,500 people were killed, about 30,000 were injured, more that 100,000 were left homeless and severe damage occurred in many parts of Mexico City and several states of central Mexico. According to some sources, It is estimated that the earthquake seriously affected an area of approximately 825,000 square kilometers. This paper describes a summary of the global tectonic setting, genesis and location of the epicenter, an interpretation of the source mechanism and a analyses at these results from some stations that recorded this earthquake and at the same time, a comparison between the two largest earthquake of 1985. Moreover, this paper describes the principal damage resulting and a description of effects from tsunami produced from earthquake. The 1985 Mexico earthquake occurred as a result of slipping in the subduction process between the Cocos and American plates. This was a shallow interplate thrust type event which occurred in the intersection of the Orozco fracture with the Middle American trench.

  18. Predicting the Maximum Earthquake Magnitude from Seismic Data in Israel and Its Neighboring Countries.

    Science.gov (United States)

    Last, Mark; Rabinowitz, Nitzan; Leonard, Gideon

    2016-01-01

    This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each region (referring to the years 2006-2010) are kept for testing while using the previous annual records for training. The predictive features are based on the Gutenberg-Richter Ratio as well as on some new seismic indicators based on the moving averages of the number of earthquakes in each area. The new predictive features prove to be much more useful than the indicators traditionally used in the earthquake prediction literature. The most accurate result (AUC = 0.698) is reached by the Multi-Objective Info-Fuzzy Network (M-IFN) algorithm, which takes into account the association between two target variables: the number of earthquakes and the maximum earthquake magnitude during the same year.

  19. Seismic wave triggering of nonvolcanic tremor, episodic tremor and slip, and earthquakes on Vancouver Island

    Science.gov (United States)

    Rubinstein, Justin L.; Gomberg, Joan; Vidale, John E.; Wech, Aaron G.; Kao, Honn; Creager, Kenneth C.; Rogers, Garry

    2009-02-01

    We explore the physical conditions that enable triggering of nonvolcanic tremor and earthquakes by considering local seismic activity on Vancouver Island, British Columbia during and immediately after the arrival of large-amplitude seismic waves from 30 teleseismic and 17 regional or local earthquakes. We identify tremor triggered by four of the teleseismic earthquakes. The close temporal and spatial proximity of triggered tremor to ambient tremor and aseismic slip indicates that when a fault is close to or undergoing failure, it is particularly susceptible to triggering of further events. The amplitude of the triggering waves also influences the likelihood of triggering both tremor and earthquakes such that large amplitude waves triggered tremor in the absence of detectable aseismic slip or ambient tremor. Tremor and energy radiated from regional/local earthquakes share the same frequency passband so that tremor cannot be identified during these smaller, more frequent events. We confidently identify triggered local earthquakes following only one teleseism, that with the largest amplitude, and four regional or local events that generated vigorous aftershock sequences in their immediate vicinity. Earthquakes tend to be triggered in regions different from tremor and with high ambient seismicity rates. We also note an interesting possible correlation between large teleseismic events and episodic tremor and slip (ETS) episodes, whereby ETS events that are "late" and have built up more stress than normal are susceptible to triggering by the slight nudge of the shaking from a large, distant event, while ETS events that are "early" or "on time" are not.

  20. Foreshock patterns preceding large earthquakes in the subduction zone of Chile

    Science.gov (United States)

    Minadakis, George; Papadopoulos, Gerassimos A.

    2016-04-01

    Some of the largest earthquakes in the globe occur in the subduction zone of Chile. Therefore, it is of particular interest to investigate foreshock patterns preceding such earthquakes. Foreshocks in Chile were recognized as early as 1960. In fact, the giant (Mw9.5) earthquake of 22 May 1960, which was the largest ever instrumentally recorded, was preceded by 45 foreshocks in a time period of 33h before the mainshock, while 250 aftershocks were recorded in a 33h time period after the mainshock. Four foreshocks were bigger than magnitude 7.0, including a magnitude 7.9 on May 21 that caused severe damage in the Concepcion area. More recently, Brodsky and Lay (2014) and Bedford et al. (2015) reported on foreshock activity before the 1 April 2014 large earthquake (Mw8.2). However, 3-D foreshock patterns in space, time and size were not studied in depth so far. Since such studies require for good seismic catalogues to be available, we have investigated 3-D foreshock patterns only before the recent, very large mainshocks occurring on 27 February 2010 (Mw 8.8), 1 April 2014 (Mw8.2) and 16 September 2015 (Mw8.4). Although our analysis does not depend on a priori definition of short-term foreshocks, our interest focuses in the short-term time frame, that is in the last 5-6 months before the mainshock. The analysis of the 2014 event showed an excellent foreshock sequence consisting by an early-weak foreshock stage lasting for about 1.8 months and by a main-strong precursory foreshock stage that was evolved in the last 18 days before the mainshock. During the strong foreshock period the seismicity concentrated around the mainshock epicenter in a critical area of about 65 km mainly along the trench domain to the south of the mainshock epicenter. At the same time, the activity rate increased dramatically, the b-value dropped and the mean magnitude increased significantly, while the level of seismic energy released also increased. In view of these highly significant seismicity

  1. Investigations On Historic Centers In Seismic Areas: Guidelines For The Diagnosis

    International Nuclear Information System (INIS)

    Binda, Luigia; Cardani, Giuliana; Modena, Claudio; Valluzzi, Maria Rosa; Saisi, Antonella

    2008-01-01

    After the earthquake that hit central Italy in 1979, many small historic centers were restored. A subsequent seismic event occurred in 1997 in Umbria-Marche regions revealed that some techniques used in the previous interventions were not successful due to low durability of new materials and/or incompatibility between the new and the existing materials and structures. An extensive investigation on four small typical historic centers in Umbria was carried out. The objectives of the research were: (i) to define a methodology for the vulnerability analysis of historic buildings at the level of the historic centre, (ii) to collect information on the effectiveness of the repair techniques both traditional and new, (iii) to set up Databases storing the information useful to prepare rescue plans, (iv) to use the collected knowledge for the implementation of reliable models for the vulnerability analysis, (v) to prepare guidelines for investigation and vulnerability analysis

  2. Explosion Generated Seismic Waves and P/S Methods of Discrimination from Earthquakes with Insights from the Nevada Source Physics Experiments

    Science.gov (United States)

    Walter, W. R.; Ford, S. R.; Pitarka, A.; Pyle, M. L.; Pasyanos, M.; Mellors, R. J.; Dodge, D. A.

    2017-12-01

    The relative amplitudes of seismic P-waves to S-waves are effective at identifying underground explosions among a background of natural earthquakes. These P/S methods appear to work best at frequencies above 2 Hz and at regional distances ( >200 km). We illustrate this with a variety of historic nuclear explosion data as well as with the recent DPRK nuclear tests. However, the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of path, frequency and event properties such as size, depth, and geology, remains incompletely understood. A goal of current research, such as the Source Physics Experiments (SPE), is to improve our physical understanding of the mechanisms of explosion S-wave generation and advance our ability to numerically model and predict them. The SPE conducted six chemical explosions between 2011 and 2016 in the same borehole in granite in southern Nevada. The explosions were at a variety of depths and sizes, ranging from 0.1 to 5 tons TNT equivalent yield. The largest were observed at near regional distances, with P/S ratios comparable to much larger historic nuclear tests. If we control for material property effects, the explosions have very similar P/S ratios independent of yield or magnitude. These results are consistent with explosion S-waves coming mainly from conversion of P- and surface waves, and are inconsistent with source-size based models. A dense sensor deployment for the largest SPE explosion allowed this conversion to be mapped in detail. This is good news for P/S explosion identification, which can work well for very small explosions and may be ultimately limited by S-wave detection thresholds. The SPE also showed explosion P-wave source models need to be updated for small and/or deeply buried cases. We are developing new P- and S-wave explosion models that better match all the empirical data. Historic nuclear explosion seismic data shows that the media in which

  3. Multi-Sensors Observations of Pre-Earthquake Signals. What We Learned from the Great Tohoku Earthquake?

    Science.gov (United States)

    Ouzonounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons learned from the Great Tohoku EQ (Japan, 2011) will affect our future observations and an analysis is the main focus of this presentation. Multi-sensors observations and multidisciplinary research is presented in our study of the phenomena preceding major earthquakes Our approach is based on a systematic analysis of several physical and environmental parameters, which been reported by others in connections with earthquake processes: thermal infrared radiation; temperature; concentration of electrons in the ionosphere; radon/ion activities; and atmospheric temperature/humidity [Ouzounov et al, 2011]. We used the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model, one of several possible paradigms [Pulinets and Ouzounov, 2011] to interpret our observations. We retrospectively analyzed the temporal and spatial variations of three different physical parameters characterizing the state of the atmosphere, ionosphere the ground surface several days before the March 11, 2011 M9 Tohoku earthquake Namely: (i) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; (ii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations; and (iii) The change in the foreshock sequence (rate, space and time); Our results show that on March 8th, 2011 a rapid increase of emitted infrared radiation was observed and an anomaly developed near the epicenter with largest value occurring on March 11 at 07.30 LT. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting from this day in the lower ionosphere there was also observed an abnormal TEC variation over the epicenter. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. We use the Japanese GPS network stations and method of Radio Tomography to study the spatiotemporal structure of ionospheric

  4. Ocean bottom pressure observations near the source of the 2011 Tohoku earthquake

    Science.gov (United States)

    Inazu, D.; Hino, R.; Suzuki, S.; Osada, Y.; Ohta, Y.; Iinuma, T.; Tsushima, H.; Ito, Y.; Kido, M.; Fujimoto, H.

    2011-12-01

    A Mw9.0 earthquake occurred off Miyagi, northeast Japan, on 11 March 2011 (hereafter mainshock). An earthquake of M7.3, considered to be the largest foreshock of the mainshock, occurred on 9 March 2011 near the mainshock hypocenter. A suite of seismic and geodetic variations related to these earthquakes was observed by autonomous, ocean bottom pressure (OBP) gauges at multiple sites (4 sites at present) near the sources within a distance of about 100 km. This paper presents the OBP records with a focus on the earthquakes. Thanks to correcting tides, instrumental drifts, and non-tidal oceanic variations, we can detect OBP signals of tsunamis and vertical seafloor deformation of the order of centimeters with timescales of less than months. In the following we review the detected signals and how to correct the OBP data. The coseismic seafloor displacement and the tsunami accompanied by the mainshock were of the order of meters and large enough to be distinctly identified (Ito et al., 2011, GRL). Co- and post-seismic seafloor displacement and tsunami accompanied by the foreshock were of the order of centimeters which is difficult to be identified from the raw OBP records. The first evident pulses of these tsunamis in the deep sea have durations (periods) of ~20 minutes and ~10 minutes, for the mainshock and the foreshock, respectively. Amounts of seafloor vertical displacement due to post-mainshock deformation reached a few tens of centimeters in two months. It is worth noting that elevation and depression of seafloor were detected at rates of a couple of centimeters in a day after the largest foreshock. The seafloor displacement of centimeters between the largest foreshock and the mainshock can be reasonably identified after correcting non-tidal oceanic variations. The oceanic variations are simulated by a barotropic ocean model driven by atmospheric disturbances (Inazu et al., 2011, Ann. Rep. Earth Simulator Center 2011). The model enables residual OBP time series of

  5. The 1998 Mw 5.7 Zhangbei-Shangyi (China) earthquake revisited: A buried thrust fault revealed with interferometric synthetic aperture radar

    Science.gov (United States)

    Li, Zhenhong; Feng, Wanpeng; Xu, Zhonghuai; Cross, Paul; Zhang, Jingfa

    2008-04-01

    The 1998 Mw 5.7 Zhangbei-Shangyi (China) earthquake is the largest to have occurred in northern China since the large 1976 Ms 7.8 Tangshan earthquake. Due to its proximity to Beijing, the capital of China, it has therefore gained a lot of attention. A great number of studies have been conducted using seismic and geodetic data, but few are able to identify conclusively the orientation of the primary fault plane for this earthquake. In this paper, two independent ERS synthetic aperture radar interferograms are used to determine precisely the location and magnitude of coseismic surface displacements (˜11 cm in the radar line of sight). Modeling the event as dislocation in an elastic half-space suggests that the earthquake is associated with a buried shallow NNE-SSW oriented thrust fault with a limited amount of lateral displacement, which is consistent with seismic intensity distribution and aftershock locations.

  6. Estimating shaking-induced casualties and building damage for global earthquake events: a proposed modelling approach

    Science.gov (United States)

    So, Emily; Spence, Robin

    2013-01-01

    Recent earthquakes such as the Haiti earthquake of 12 January 2010 and the Qinghai earthquake on 14 April 2010 have highlighted the importance of rapid estimation of casualties after the event for humanitarian response. Both of these events resulted in surprisingly high death tolls, casualties and survivors made homeless. In the Mw = 7.0 Haiti earthquake, over 200,000 people perished with more than 300,000 reported injuries and 2 million made homeless. The Mw = 6.9 earthquake in Qinghai resulted in over 2,000 deaths with a further 11,000 people with serious or moderate injuries and 100,000 people have been left homeless in this mountainous region of China. In such events relief efforts can be significantly benefitted by the availability of rapid estimation and mapping of expected casualties. This paper contributes to ongoing global efforts to estimate probable earthquake casualties very rapidly after an earthquake has taken place. The analysis uses the assembled empirical damage and casualty data in the Cambridge Earthquake Impacts Database (CEQID) and explores data by event and across events to test the relationships of building and fatality distributions to the main explanatory variables of building type, building damage level and earthquake intensity. The prototype global casualty estimation model described here uses a semi-empirical approach that estimates damage rates for different classes of buildings present in the local building stock, and then relates fatality rates to the damage rates of each class of buildings. This approach accounts for the effect of the very different types of buildings (by climatic zone, urban or rural location, culture, income level etc), on casualties. The resulting casualty parameters were tested against the overall casualty data from several historical earthquakes in CEQID; a reasonable fit was found.

  7. Earthquake Early Warning Systems

    OpenAIRE

    Pei-Yang Lin

    2011-01-01

    Because of Taiwan’s unique geographical environment, earthquake disasters occur frequently in Taiwan. The Central Weather Bureau collated earthquake data from between 1901 and 2006 (Central Weather Bureau, 2007) and found that 97 earthquakes had occurred, of which, 52 resulted in casualties. The 921 Chichi Earthquake had the most profound impact. Because earthquakes have instant destructive power and current scientific technologies cannot provide precise early warnings in advance, earthquake ...

  8. Comparison of the November 2002 Denali and November 2001 Kunlun Earthquakes

    Science.gov (United States)

    Bufe, C. G.

    2002-12-01

    Major earthquakes occurred in Tibet on the central Kunlun fault (M 7.8) on November 14, 2001 (Lin and others, 2002) and in Alaska on the central Denali fault (M 7.9) on November 3, 2002. Both earthquakes generated large surface waves (Kunlun Ms 8.0 (USGS) and Denali Ms 8.5). Each event occurred on east-west-trending strike-slip faults and exhibited nearly unilateral rupture propagating several hundred kilometers from west to east. Surface rupture length estimates were about 400 km for Kunlun, 300 km for Denali. Maximum surface faulting and moment release were observed far to the east of the points of rupture initiation. Harvard moment centroids were located east of USGS epicenters by 182 km (Kunlun) and by 126 km (Denali). Maximum surface faulting was observed near 240 km (Kunlun, 16 m left lateral) and near 175 km (Denali, 9 m right lateral) east of the USGS epicenters. Significant thrust components were observed in the initiation of the Denali event (ERI analysis and mapped thrust) and in the termination of the Kunlun rupture, as evidenced by thrust mechanisms of the largest aftershocks which occurred near the eastern part of the Kunlun rupture. In each sequence the largest aftershock was about 2 orders of magnitude smaller than the mainshock. Moment release along the ruptured segments was examined for the 25-year periods preceding the main shocks. The Denali zone shows precursory accelerating moment release with the dominant events occurring on October 22, 1996 (M 5.8) and October 23, 2002 (M 6.7). The Kunlun zone shows nearly constant moment release over time with the last significant event before the main shock occurring on November 26, 2000 (M 5.4). Moment release data are consistent with previous observations of annual periodicity preceding major earthquakes, possibly due to the evolution of a critical state with seasonal and tidal triggering (Varnes and Bufe, 2001). Annual periodicity is also evident for the larger events in the greater San Francisco Bay

  9. Tsunamigenic Ratio of the Pacific Ocean earthquakes and a proposal for a Tsunami Index

    Directory of Open Access Journals (Sweden)

    A. Suppasri

    2012-01-01

    Full Text Available The Pacific Ocean is the location where two-thirds of tsunamis have occurred, resulting in a great number of casualties. Once information on an earthquake has been issued, it is important to understand if there is a tsunami generation risk in relation with a specific earthquake magnitude or focal depth. This study proposes a Tsunamigenic Ratio (TR that is defined as the ratio between the number of earthquake-generated tsunamis and the total number of earthquakes. Earthquake and tsunami data used in this study were selected from a database containing tsunamigenic earthquakes from prior 1900 to 2011. The TR is calculated from earthquake events with a magnitude greater than 5.0, a focal depth shallower than 200 km and a sea depth less than 7 km. The results suggest that a great earthquake magnitude and a shallow focal depth have a high potential to generate tsunamis with a large tsunami height. The average TR in the Pacific Ocean is 0.4, whereas the TR for specific regions of the Pacific Ocean varies from 0.3 to 0.7. The TR calculated for each region shows the relationship between three influential parameters: earthquake magnitude, focal depth and sea depth. The three parameters were combined and proposed as a dimensionless parameter called the Tsunami Index (TI. TI can express better relationship with the TR and with maximum tsunami height, while the three parameters mentioned above cannot. The results show that recent submarine earthquakes had a higher potential to generate a tsunami with a larger tsunami height than during the last century. A tsunami is definitely generated if the TI is larger than 7.0. The proposed TR and TI will help ascertain the tsunami generation risk of each earthquake event based on a statistical analysis of the historical data and could be an important decision support tool during the early tsunami warning stage.

  10. Relationship between large slip area and static stress drop of aftershocks of inland earthquake :Example of the 2007 Noto Hanto earthquake

    Science.gov (United States)

    Urano, S.; Hiramatsu, Y.; Yamada, T.

    2013-12-01

    The 2007 Noto Hanto earthquake (MJMA 6.9; hereafter referred to the main shock) occurred at 0:41(UTC) on March 25, 2007 at a depth of 11km beneath the west coast of Noto Peninsula, central Japan. The dominant slip of the main shock was on a reverse fault with a right-lateral slip and the large slip area was distributed from hypocenter to the shallow part on the fault plane (Horikawa, 2008). The aftershocks are distributed not only in the small slip area but also in the large slip area (Hiramatsu et al., 2011). In this study, we estimate static stress drops of aftershocks on the fault plane of the main shock. We discuss the relationship between the static stress drops of the aftershocks and the large slip area of the main shock by investigating spatial pattern of the values of the static stress drops. We use the waveform data obtained by the group for the joint aftershock observations of the 2007 Noto Hanto Earthquake (Sakai et al., 2007). The sampling frequency of the waveform data is 100 Hz or 200 Hz. Focusing on similar aftershocks reported by Hiramatsu et al. (2011), we analyze static stress drops by using the method of empirical Green's function (EGF) (Hough, 1997) as follows. The smallest earthquake (MJMA≥2.0) of each group of similar earthquakes is set to the EGF earthquake, and the largest earthquake (MJMA≥2.5) is set to the target earthquake. We then deconvolve the waveform of an interested earthquake with that of the EGF earthquake at each station and obtain the spectral ratio of the sources that cancels the propagation effects (path and site effects). Following the procedure of Yamada et al. (2010), we finally estimate static stress drops for P- and S-waves from corner frequencies of the spectral ratio by using a model of Madariaga (1976). The estimated average value of static stress drop is 8.2×1.3 MPa (8.6×2.2 MPa for P-wave and 7.8×1.3 MPa for S-wave). These values are coincident approximately with the static stress drop of aftershocks of other

  11. A detailed analysis of some local earthquakes at Somma-Vesuvius

    Directory of Open Access Journals (Sweden)

    C. Troise

    1999-06-01

    Full Text Available In this paper, we analyze local earthquakes which occurred at Somma-Vesuvius during two episodes of intense seismic swarms, in 1989 and 1995 respectively. For the selected earthquakes we have computed accurate hypocentral locations, focal mechanisms and spectral parameters. We have also studied the ground acceleration produced by the largest events of the sequences (ML 3.0, at various digital stations installed in the area during the periods of higher seismic activity. The main result is that seismicity during the two swarm episodes presents similar features in both locations and focal mechanisms. Strong site dependent effects are evidenced in the seismic radiation and strong amplifications in the frequency band 10-15 Hz are evident at stations located on the younger Vesuvius structure, with respect to one located on the ancient Somma structure. Furthermore, seismic stations show peak accelerations for the same events of more than one order of magnitude apart.

  12. Disaster response under One Health in the aftermath of Nepal earthquake, 2015.

    Science.gov (United States)

    Asokan, G V; Vanitha, A

    2017-03-01

    Until now, an estimate quotes that 1100 healthcare facilities were damaged and over 100,000 livestock lost in the two earthquakes that occurred in April and May of 2015 in Nepal. Threats of infectious diseases, mostly zoonoses, could affect Nepal's economy, trade, and tourism, and reaching the targets of the United Nations Millennium Development Goals. Historically, outbreaks of infectious diseases, including zoonoses, were largely associated with the aftereffects of the earthquakes. It has been documented that zoonoses constitute 61% of all known infectious diseases. Therefore, the purpose of this communication was to examine the infectious disease outbreaks after earthquakes around the world and explore the risk assessment of the zoonoses threats reported in Nepal and highlight adopting One Health. Our summaries on reported zoonoses in Nepal have shown that parasitic zoonoses were predominant, but other infectious disease outbreaks can occur. The fragile public health infrastructure and inadequately trained public health personnel can accelerate the transmission of infections, mostly zoonoses, in the post impact phase of the earthquake in Nepal. Therefore, we believe that with the support of aid agencies, veterinarians and health professionals can team up to resolve the crisis under One Health. Copyright © 2016 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  13. On seismic intensities of questionnaires for 1996 earthquake near Akita-Miyagi prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Nogoshi, M; Sasaki, N [Akita University, Akita (Japan). College of Education; Nakamura, M [Nippon Geophysical Prospecting Co. Ltd., Tokyo (Japan)

    1997-05-27

    The earthquake occurred in 1996 near the border of Akita and Miyagi Prefectures was a seismic activity in mountainous area with low population density. However, since a necessity was felt to make a seismic intensity survey, a questionnaire investigation was carried out. The investigation placed a focus on the following points: (1) to learn seismic intensity distribution in the vicinity of the epicenter by using replies to the questionnaire and (2) to learn what evacuation activities the residents have taken to avoid disasters from the earthquake, which is an inland local earthquake occurred first since the Hyogoken-nanbu earthquake in 1995. Because the main shock has occurred in the Akita prefecture side, the shocks were concentrated at Akinomiya, Takamatsu, Sugawa and Koyasu areas where the intensities were 4.0 to 4.5 in most cases. The largest aftershocks were concentrated to the Miyagi prefecture side, with an intensity of 6.0 felt most, followed by 5.5. The questionnaire on evacuation actions revealed a result of about 37% of the reply saying, ``I have jumped out of my house before I knew what has happened`` and ``I remember nothing about what I did because I was acting totally instinctively``. The answers show how intense the experience was. This result indicates how to make the unconscious actions turned into conscious actions is an important issue in preventing disasters. 11 figs.

  14. Twitter earthquake detection: Earthquake monitoring in a social world

    Science.gov (United States)

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  15. Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence

    Science.gov (United States)

    Meng, Lingsen; Huang, Hui; Bürgmann, Roland; Ampuero, Jean Paul; Strader, Anne

    2015-02-01

    The transition between seismic rupture and aseismic creep is of central interest to better understand the mechanics of subduction processes. A Mw 8.2 earthquake occurred on April 1st, 2014 in the Iquique seismic gap of northern Chile. This event was preceded by a long foreshock sequence including a 2-week-long migration of seismicity initiated by a Mw 6.7 earthquake. Repeating earthquakes were found among the foreshock sequence that migrated towards the mainshock hypocenter, suggesting a large-scale slow-slip event on the megathrust preceding the mainshock. The variations of the recurrence times of the repeating earthquakes highlight the diverse seismic and aseismic slip behaviors on different megathrust segments. The repeaters that were active only before the mainshock recurred more often and were distributed in areas of substantial coseismic slip, while repeaters that occurred both before and after the mainshock were in the area complementary to the mainshock rupture. The spatiotemporal distribution of the repeating earthquakes illustrates the essential role of propagating aseismic slip leading up to the mainshock and illuminates the distribution of postseismic afterslip. Various finite fault models indicate that the largest coseismic slip generally occurred down-dip from the foreshock activity and the mainshock hypocenter. Source imaging by teleseismic back-projection indicates an initial down-dip propagation stage followed by a rupture-expansion stage. In the first stage, the finite fault models show an emergent onset of moment rate at low frequency ( 0.5 Hz). This indicates frequency-dependent manifestations of seismic radiation in the low-stress foreshock region. In the second stage, the rupture expands in rich bursts along the rim of a semi-elliptical region with episodes of re-ruptures, suggesting delayed failure of asperities. The high-frequency rupture remains within an area of local high trench-parallel gravity anomaly (TPGA), suggesting the presence of

  16. Long Period Earthquakes Beneath California's Young and Restless Volcanoes

    Science.gov (United States)

    Pitt, A. M.; Dawson, P. B.; Shelly, D. R.; Hill, D. P.; Mangan, M.

    2013-12-01

    The newly established USGS California Volcano Observatory has the broad responsibility of monitoring and assessing hazards at California's potentially threatening volcanoes, most notably Mount Shasta, Medicine Lake, Clear Lake Volcanic Field, and Lassen Volcanic Center in northern California; and Long Valley Caldera, Mammoth Mountain, and Mono-Inyo Craters in east-central California. Volcanic eruptions occur in California about as frequently as the largest San Andreas Fault Zone earthquakes-more than ten eruptions have occurred in the last 1,000 years, most recently at Lassen Peak (1666 C.E. and 1914-1917 C.E.) and Mono-Inyo Craters (c. 1700 C.E.). The Long Valley region (Long Valley caldera and Mammoth Mountain) underwent several episodes of heightened unrest over the last three decades, including intense swarms of volcano-tectonic (VT) earthquakes, rapid caldera uplift, and hazardous CO2 emissions. Both Medicine Lake and Lassen are subsiding at appreciable rates, and along with Clear Lake, Long Valley Caldera, and Mammoth Mountain, sporadically experience long period (LP) earthquakes related to migration of magmatic or hydrothermal fluids. Worldwide, the last two decades have shown the importance of tracking LP earthquakes beneath young volcanic systems, as they often provide indication of impending unrest or eruption. Herein we document the occurrence of LP earthquakes at several of California's young volcanoes, updating a previous study published in Pitt et al., 2002, SRL. All events were detected and located using data from stations within the Northern California Seismic Network (NCSN). Event detection was spatially and temporally uneven across the NCSN in the 1980s and 1990s, but additional stations, adoption of the Earthworm processing system, and heightened vigilance by seismologists have improved the catalog over the last decade. LP earthquakes are now relatively well-recorded under Lassen (~150 events since 2000), Clear Lake (~60 events), Mammoth Mountain

  17. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  18. Unified scaling law for earthquakes in Crimea and Northern Caucasus

    Science.gov (United States)

    Nekrasova, A. K.; Kossobokov, V. G.

    2016-10-01

    This study continues detailed investigations on the construction of regional charts of the parameters of the generalized Guttenberg-Richter Law, which takes into account the properties of the spatiotemporal seismic energy scaling. We analyzed the parameters of the law in the vicinity of the intersections of morphostructural lineaments in Crimea and Greater Caucasus. It was shown that ignoring the fractal character of the spatial distribution of earthquakes in the southern part of the Russian Federation can lead to significant underestimation of the seismic hazard in the largest cities of the region.

  19. Long-term versus short-term deformation of the meizoseismal area of the 2008 Achaia-Elia (MW 6.4) earthquake in NW Peloponnese, Greece: Evidence from historical triangulation and morphotectonic data

    Science.gov (United States)

    Stiros, Stathis; Moschas, Fanis; Feng, Lujia; Newman, Andrew

    2013-04-01

    The deformation of the meizoseismal area of the 2008 Achaia-Elia (MW 6.4) earthquake in NW Peloponnese, of the first significant strike slip earthquake in continental Greece, was examined in two time scales; of 102 years, based on the analysis of high-accuracy historical triangulation data describing shear, and of 105-106 years, based on the analysis of the hydrographic network of the area for signs of streams offset by faulting. Our study revealed pre-seismic accumulation of shear strain of the order of 0.2 μrad/year in the study area, consistent with recent GPS evidence, but no signs of significant strike slip-induced offsets in the hydrographic network. These results confirm the hypothesis that the 2008 fault, which did not reached the surface and was not associated with significant seismic ground deformation, probably because of a surface flysch layer filtering high-strain events, was associated with an immature or a dormant, recently activated fault. This fault, about 150 km long and discordant to the morphotectonic trends of the area, seems first, to contain segments which have progressively reactivated in a specific direction in the last 20 years, reminiscent of the North Anatolian Fault, and second, to limit an 150 km wide (recent?) shear zone in the internal part of the arc, in a region mostly dominated by thrust faulting and strong destructive earthquakes. Deformation of the first main strike slip fault in continental Greece analyzed. Triangulation data show preseismic shear, hydrographic net no previous faulting. Surface shear deformation only in low strain rates. Immature or reactivated dormant strike slip fault, with gradual oriented rupturing. Interplay between shear and thrusting along the arc.

  20. Leveraging geodetic data to reduce losses from earthquakes

    Science.gov (United States)

    Murray, Jessica R.; Roeloffs, Evelyn A.; Brooks, Benjamin A.; Langbein, John O.; Leith, William S.; Minson, Sarah E.; Svarc, Jerry L.; Thatcher, Wayne R.

    2018-04-23

    event response products and by expanded use of geodetic imaging data to assess fault rupture and source parameters.Uncertainties in the NSHM, and in regional earthquake models, are reduced by fully incorporating geodetic data into earthquake probability calculations.Geodetic networks and data are integrated into the operations and earthquake information products of the Advanced National Seismic System (ANSS).Earthquake early warnings are improved by more rapidly assessing ground displacement and the dynamic faulting process for the largest earthquakes using real-time geodetic data.Methodology for probabilistic earthquake forecasting is refined by including geodetic data when calculating evolving moment release during aftershock sequences and by better understanding the implications of transient deformation for earthquake likelihood.A geodesy program that encompasses a balanced mix of activities to sustain missioncritical capabilities, grows new competencies through the continuum of fundamental to applied research, and ensures sufficient resources for these endeavors provides a foundation by which the EHP can be a leader in the application of geodesy to earthquake science. With this in mind the following objectives provide a framework to guide EHP efforts:Fully utilize geodetic information to improve key products, such as the NSHM and EEW, and to address new ventures like the USGS Subduction Zone Science Plan.Expand the variety, accuracy, and timeliness of post-earthquake information products, such as PAGER (Prompt Assessment of Global Earthquakes for Response), through incorporation of geodetic observations.Determine if geodetic measurements of transient deformation can significantly improve estimates of earthquake probability.Maintain an observational strategy aligned with the target outcomes of this document that includes continuous monitoring, recording of ephemeral observations, focused data collection for use in research, and application-driven data processing and

  1. Insights into earthquake hazard map performance from shaking history simulations

    Science.gov (United States)

    Stein, S.; Vanneste, K.; Camelbeeck, T.; Vleminckx, B.

    2017-12-01

    Why recent large earthquakes caused shaking stronger than predicted by earthquake hazard maps is under debate. This issue has two parts. Verification involves how well maps implement probabilistic seismic hazard analysis (PSHA) ("have we built the map right?"). Validation asks how well maps forecast shaking ("have we built the right map?"). We explore how well a map can ideally perform by simulating an area's shaking history and comparing "observed" shaking to that predicted by a map generated for the same parameters. The simulations yield shaking distributions whose mean is consistent with the map, but individual shaking histories show large scatter. Infrequent large earthquakes cause shaking much stronger than mapped, as observed. Hence, PSHA seems internally consistent and can be regarded as verified. Validation is harder because an earthquake history can yield shaking higher or lower than that predicted while being consistent with the hazard map. The scatter decreases for longer observation times because the largest earthquakes and resulting shaking are increasingly likely to have occurred. For the same reason, scatter is much less for the more active plate boundary than for a continental interior. For a continental interior, where the mapped hazard is low, even an M4 event produces exceedances at some sites. Larger earthquakes produce exceedances at more sites. Thus many exceedances result from small earthquakes, but infrequent large ones may cause very large exceedances. However, for a plate boundary, an M6 event produces exceedance at only a few sites, and an M7 produces them in a larger, but still relatively small, portion of the study area. As reality gives only one history, and a real map involves assumptions about more complicated source geometries and occurrence rates, which are unlikely to be exactly correct and thus will contribute additional scatter, it is hard to assess whether misfit between actual shaking and a map — notably higher

  2. Interevent times in a new alarm-based earthquake forecasting model

    Science.gov (United States)

    Talbi, Abdelhak; Nanjo, Kazuyoshi; Zhuang, Jiancang; Satake, Kenji; Hamdache, Mohamed

    2013-09-01

    This study introduces a new earthquake forecasting model that uses the moment ratio (MR) of the first to second order moments of earthquake interevent times as a precursory alarm index to forecast large earthquake events. This MR model is based on the idea that the MR is associated with anomalous long-term changes in background seismicity prior to large earthquake events. In a given region, the MR statistic is defined as the inverse of the index of dispersion or Fano factor, with MR values (or scores) providing a biased estimate of the relative regional frequency of background events, here termed the background fraction. To test the forecasting performance of this proposed MR model, a composite Japan-wide earthquake catalogue for the years between 679 and 2012 was compiled using the Japan Meteorological Agency catalogue for the period between 1923 and 2012, and the Utsu historical seismicity records between 679 and 1922. MR values were estimated by sampling interevent times from events with magnitude M ≥ 6 using an earthquake random sampling (ERS) algorithm developed during previous research. Three retrospective tests of M ≥ 7 target earthquakes were undertaken to evaluate the long-, intermediate- and short-term performance of MR forecasting, using mainly Molchan diagrams and optimal spatial maps obtained by minimizing forecasting error defined by miss and alarm rate addition. This testing indicates that the MR forecasting technique performs well at long-, intermediate- and short-term. The MR maps produced during long-term testing indicate significant alarm levels before 15 of the 18 shallow earthquakes within the testing region during the past two decades, with an alarm region covering about 20 per cent (alarm rate) of the testing region. The number of shallow events missed by forecasting was reduced by about 60 per cent after using the MR method instead of the relative intensity (RI) forecasting method. At short term, our model succeeded in forecasting the

  3. Coseismic deformation of the 2001 El Salvador and 2002 Denali fault earthquakes from GPS geodetic measurements

    Science.gov (United States)

    Hreinsdottir, Sigrun

    2005-07-01

    GPS geodetic measurements are used to study two major earthquakes, the 2001 MW 7.7 El Salvador and 2002 MW 7.9 Denali Fault earthquakes. The 2001 MW 7.7 earthquake was a normal fault event in the subducting Cocos plate offshore El Salvador. Coseismic displacements of up to 15 mm were measured at permanent GPS stations in Central America. The GPS data were used to constrain the location of and slip on the normal fault. One month later a MW 6.6 strike-slip earthquake occurred in the overriding Caribbean plate. Coulomb stress changes estimated from the M W 7.7 earthquake suggest that it triggered the MW 6.6 earthquake. Coseismic displacement from the MW 6.6 earthquake, about 40 mm at a GPS station in El Salvador, indicates that the earthquake triggered additional slip on a fault close to the GPS station. The MW 6.6 earthquake further changed the stress field in the overriding Caribbean plate, with triggered seismic activity occurring west and possibly also to the east of the rupture in the days to months following the earthquake. The MW 7.9 Denali Fault earthquake ruptured three faults in the interior of Alaska. It initiated with a thrust motion on the Susitna Glacier fault but then ruptured the Denali and Totschunda faults with predominantly right-lateral strike-slip motion unilaterally from west to east. GPS data measured in the two weeks following the earthquake suggest a complex coseismic rupture along the faults with two main regions of moment release along the Denali fault. A large amount of additional data were collected in the year following the earthquake which greatly improved the resolution on the fault, revealing more details of the slip distribution. We estimate a total moment release of 6.81 x 1020 Nm in the earthquake with a M W 7.2 thrust subevent on Susitna Glacier fault. The slip on the Denali fault is highly variable, with 4 main pulses of moment release. The largest moment pulse corresponds to a MW 7.5 subevent, about 40 km west of the Denali

  4. Seismic quiescence before the 2016 Mw 6.0 Amatrice earthquake, central Italy

    Science.gov (United States)

    Di Giovambattista, R.; Gentili, S.; Peresan, A.

    2017-12-01

    Seismic quiescence before major worldwide earthquakes has been reported by many authors. We have analyzed the seismicity preceding the last damaging 2016-2017 seismic sequence occurred in central Italy, and we have characterized the temporal and spatial extension of the foregoing seismic quiescence. The multiple mainshock sequence (24/08/2016, Mw 6.0; 26/10/2016 Mw 5.4 and 5.9; 30/10/2016, Mw 6.5), which occurred in central Italy, caused the death of nearly 300 people and widespread destruction of entire villages. The Mw 6.5 earthquake was the most powerful recorded in Italy since the 1980 M 6.9 Irpinia earthquake. The Region-Time-Length (RTL) method has been used to quantitatively analyze the seismic quiescence preceding the first Mw 6.0 Amatrice mainshock. This analysis was performed using the earthquake catalogue maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) declustered using a novel statistical approach, which is based on the "nearest-neighbor" distances between pairs of earthquakes in the space-time-energy domain. A well-evident quiescence that preceded the sequence was detected. The quiescence extended throughout a broad region north of the epicenter. The largest event of the sequence and its aftershocks covered most of the quiescence region, except for a small area to the west. The quiescence started from the beginning of September 2015 and lasted for approximately 1 year, up to the Amatrice mainshock. The results obtained have been compared with those of previous seismic sequences occurred in Italy. A similar analysis applied to the 1997-1998, Mw 5.7 Umbria-Marche earthquakes located at the northern termination of the Amatrice sequence, showed a decrease in RTL corresponding to a seismic quiescence, followed by a foreshock activation in the epicentral area before the occurrence of the mainshock.

  5. An interactive program on digitizing historical seismograms

    Science.gov (United States)

    Xu, Yihe; Xu, Tao

    2014-02-01

    Retrieving information from analog seismograms is of great importance since they are considered as the unique sources that provide quantitative information of historical earthquakes. We present an algorithm for automatic digitization of the seismograms as an inversion problem that forms an interactive program using Matlab® GUI. The program integrates automatic digitization with manual digitization and users can easily switch between the two modalities and carry out different combinations for the optimal results. Several examples about applying the interactive program are given to illustrate the merits of the method.

  6. Creating a Global Building Inventory for Earthquake Loss Assessment and Risk Management

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.

    2008-01-01

    contribution of building stock, its relative vulnerability, and distribution are vital components for determining the extent of casualties during an earthquake. It is evident from large deadly historical earthquakes that the distribution of vulnerable structures and their occupancy level during an earthquake control the severity of human losses. For example, though the number of strong earthquakes in California is comparable to that of Iran, the total earthquake-related casualties in California during the last 100 years are dramatically lower than the casualties from several individual Iranian earthquakes. The relatively low casualties count in California is attributed mainly to the fact that more than 90 percent of the building stock in California is made of wood and is designed to withstand moderate to large earthquakes (Kircher, Seligson and others, 2006). In contrast, the 80 percent adobe and or non-engineered masonry building stock with poor lateral load resisting systems in Iran succumbs even for moderate levels of ground shaking. Consequently, the heavy death toll for the 2003 Bam, Iran earthquake, which claimed 31,828 lives (Ghafory-Ashtiany and Mousavi, 2005), is directly attributable to such poorly resistant construction, and future events will produce comparable losses unless practices change. Similarly, multistory, precast-concrete framed buildings caused heavy casualties in the 1988 Spitak, Armenia earthquake (Bertero, 1989); weaker masonry and reinforced-concrete framed construction designed for gravity loads with soft first stories dominated losses in the Bhuj, India earthquake of 2001 (Madabhushi and Haigh, 2005); and adobe and weak masonry dwellings in Peru controlled the death toll in the Peru earthquake of 2007 (Taucer, J. and others, 2007). Spence (2007) after conducting a brief survey of most lethal earthquakes since 1960 found that building collapses remains a major cause of earthquake mortality and unreinforced masonry buildings are one of the mos

  7. CISN ShakeAlert Earthquake Early Warning System Monitoring Tools

    Science.gov (United States)

    Henson, I. H.; Allen, R. M.; Neuhauser, D. S.

    2015-12-01

    CISN ShakeAlert is a prototype earthquake early warning system being developed and tested by the California Integrated Seismic Network. The system has recently been expanded to support redundant data processing and communications. It now runs on six machines at three locations with ten Apache ActiveMQ message brokers linking together 18 waveform processors, 12 event association processes and 4 Decision Module alert processes. The system ingests waveform data from about 500 stations and generates many thousands of triggers per day, from which a small portion produce earthquake alerts. We have developed interactive web browser system-monitoring tools that display near real time state-of-health and performance information. This includes station availability, trigger statistics, communication and alert latencies. Connections to regional earthquake catalogs provide a rapid assessment of the Decision Module hypocenter accuracy. Historical performance can be evaluated, including statistics for hypocenter and origin time accuracy and alert time latencies for different time periods, magnitude ranges and geographic regions. For the ElarmS event associator, individual earthquake processing histories can be examined, including details of the transmission and processing latencies associated with individual P-wave triggers. Individual station trigger and latency statistics are available. Detailed information about the ElarmS trigger association process for both alerted events and rejected events is also available. The Google Web Toolkit and Map API have been used to develop interactive web pages that link tabular and geographic information. Statistical analysis is provided by the R-Statistics System linked to a PostgreSQL database.

  8. Catalogue of European earthquakes with intensities higher than 4

    International Nuclear Information System (INIS)

    Van Gils, J.M.; Leydecker, G.

    1991-01-01

    The catalogue of European earthquakes with intensities higher than 4 contains some 20 000 seismic events that happened in member countries of the European Communities, Switzerland and Austria. It was prepared on the basis of already existing national catalogues and includes historical data as well as present-day data. All historical data are harmonized as far as possible to the same intensity scale (MSK-scale) to make them suitable for computerization. Present-day data include instrumental and macroseismic data. Instrumental data are expressed in terms of magnitude (Richter scale) while macroseismic data are given in intensities. Compilation of seismic data can provide a basis for statistically supported studies of site selection procedures and the qualitative assessment of seismic risks. Three groups of seismic maps illustrate the content of the catalogue for different time periods and different intensities

  9. Practical Application of Site-Specific Earthquake Early Warning (EEW) System

    International Nuclear Information System (INIS)

    Kanda, Katsuhisa

    2014-01-01

    The development of an on-site warning system was reported. This system improves the timing of warnings and reduces the number of false alarms by improving the method of estimating the JMA seismic intensity using earthquake early warning system information based on site-specific data. Moreover, the development of an application for practical use in a construction company and an integrated system for realizing system shutdown was also reported. The concept of this system is based on the following. Seismic intensity is not distributed concentrically, and the attenuation relationship cannot explain the distribution of seismic intensity precisely. The standard method of seismic intensity prediction is construed as 'attenuation relationship + soil amplification factor', but this may be improved in the reformulation 'original attenuation relationship for each site + correction factors dependent on the epicenter location and depth' using a seismic intensity database that includes data on recent and historical earthquakes. (authors)

  10. Synthetic seismicity for the San Andreas fault

    Directory of Open Access Journals (Sweden)

    S. N. Ward

    1994-06-01

    Full Text Available Because historical catalogs generally span only a few repetition intervals of major earthquakes, they do not provide much constraint on how regularly earthquakes recur. In order to obtain better recurrence statistics and long-term probability estimates for events M ? 6 on the San Andreas fault, we apply a seismicity model to this fault. The model is based on the concept of fault segmentation and the physics of static dislocations which allow for stress transfer between segments. Constraints are provided by geological and seismological observations of segment lengths, characteristic magnitudes and long-term slip rates. Segment parameters slightly modified from the Working Group on California Earthquake Probabilities allow us to reproduce observed seismicity over four orders of magnitude. The model yields quite irregular earthquake recurrence patterns. Only the largest events (M ? 7.5 are quasi-periodic; small events cluster. Both the average recurrence time and the aperiodicity are also a function of position along the fault. The model results are consistent with paleoseismic data for the San Andreas fault as well as a global set of historical and paleoseismic recurrence data. Thus irregular earthquake recurrence resulting from segment interaction is consistent with a large range of observations.

  11. Triggered surface slips in southern California associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, earthquake

    Science.gov (United States)

    Rymer, Michael J.; Treiman, Jerome A.; Kendrick, Katherine J.; Lienkaemper, James J.; Weldon, Ray J.; Bilham, Roger; Wei, Meng; Fielding, Eric J.; Hernandez, Janis L.; Olson, Brian P.E.; Irvine, Pamela J.; Knepprath, Nichole; Sickler, Robert R.; Tong, Xiaopeng; Siem, Martin E.

    2011-01-01

    The April 4, 2010 (Mw7.2), El Mayor-Cucapah, Baja California, Mexico, earthquake is the strongest earthquake to shake the Salton Trough area since the 1992 (Mw7.3) Landers earthquake. Similar to the Landers event, ground-surface fracturing occurred on multiple faults in the trough. However, the 2010 event triggered surface slip on more faults in the central Salton Trough than previous earthquakes, including multiple faults in the Yuha Desert area, the southwestern section of the Salton Trough. In the central Salton Trough, surface fracturing occurred along the southern San Andreas, Coyote Creek, Superstition Hills, Wienert, Kalin, and Imperial Faults and along the Brawley Fault Zone, all of which are known to have slipped in historical time, either in primary (tectonic) slip and/or in triggered slip. Surface slip in association with the El Mayor-Cucapah earthquake is at least the eighth time in the past 42 years that a local or regional earthquake has triggered slip along faults in the central Salton Trough. In the southwestern part of the Salton Trough, surface fractures (triggered slip) occurred in a broad area of the Yuha Desert. This is the first time that triggered slip has been observed in the southwestern Salton Trough.

  12. [Comment on “Should Memphis build for California's earthquakes?”] from S.E. Hough

    Science.gov (United States)

    Hough, Susan E.

    The recent article by Seth Stein, Joseph Tomasello, and Andrew Newman raised thought-provoking questions about one of the most vexing open issues in hazard assessment in the United States: the hazard posed by ostensibly infrequent, large, mid-continental earthquakes. Many of the technical issues raised by this article are addressed by A. D. Frankel in the accompanying comment. I concur with this, and will only address and/or elaborate on a few additional issues here: (1) Detailed paleoseismic investigations have shown that the New Madrid region experienced sequences of large earthquakes around 900 and 1450 A.D.in addition to the historic events in 1811-1812. With a repeat time on the order of 400-500 years, these cannot be considered infrequent events. Paleoseismic investigations also reveal evidence that the prehistoric “events” were also sequences of two to three large earthquakes with a similar overall distribution of liquefaction in the greater New Madrid region as produced by the 1811-1812 sequence [Tuttle et al., 2002]. And if, as evidence suggests, the zone produces characteristic earthquakes, one will not see a commensurate rate of moderate events, as would be the case if seismicity followed the Gutenburg-Richter distribution.

  13. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    Science.gov (United States)

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  14. Reassessment of the historical seismic activity with major impact on S. Miguel Island (Azores

    Directory of Open Access Journals (Sweden)

    D. Silveira

    2003-01-01

    Full Text Available On account of its tectonic setting, both seismic and volcanic events are frequent in the Azores archipelago. During the historical period earthquakes and seismic swarms of tectonic and/or volcanic origin have struck S. Miguel Island causing a significant number of casualties and severe damages. The information present in historical records made possible a new macroseismic analysis of these major events using the European Macroseismic Scale-1998 (EMS-98. Among the strongest earthquakes of tectonic origin that affected S. Miguel Island, six events were selected for this study. The isoseismal maps drawn for these events enabled the identification of areas characterized by anomalous values of seismic intensity, either positive or negative, to constrain epicentre locations and to identify some new seismogenic areas. Regarding seismic activity associated with volcanic phenomena six cases were also selected. For each of the studied cases cumulative intensity values were assessed for each locality. The distribution of local intensity values shows that the effects are not homogeneous within a certain distance from the eruptive centre, the area of major impacts relates with the eruptive style and damages equivalent to high intensities may occur in Furnas and Sete Cidades calderas. Combining all the historical macroseismic data, a maximum intensity map was produced for S. Miguel Island.

  15. Seismogenic structures of the 2006 ML4.0 Dangan Island earthquake offshore Hong Kong

    Science.gov (United States)

    Xia, Shaohong; Cao, Jinghe; Sun, Jinlong; Lv, Jinshui; Xu, Huilong; Zhang, Xiang; Wan, Kuiyuan; Fan, Chaoyan; Zhou, Pengxiang

    2018-02-01

    The northern margin of the South China Sea, as a typical extensional continental margin, has relatively strong intraplate seismicity. Compared with the active zones of Nanao Island, Yangjiang, and Heyuan, seismicity in the Pearl River Estuary is relatively low. However, a ML4.0 earthquake in 2006 occurred near Dangan Island (DI) offshore Hong Kong, and this site was adjacent to the source of the historical M5.8 earthquake in 1874. To reveal the seismogenic mechanism of intraplate earthquakes in DI, we systematically analyzed the structural characteristics in the source area of the 2006 DI earthquake using integrated 24-channel seismic profiles, onshore-offshore wide-angle seismic tomography, and natural earthquake parameters. We ascertained the locations of NW- and NE-trending faults in the DI sea and found that the NE-trending DI fault mainly dipped southeast at a high angle and cut through the crust with an obvious low-velocity anomaly. The NW-trending fault dipped southwest with a similar high angle. The 2006 DI earthquake was adjacent to the intersection of the NE- and NW-trending faults, which suggested that the intersection of the two faults with different strikes could provide a favorable condition for the generation and triggering of intraplate earthquakes. Crustal velocity model showed that the high-velocity anomaly was imaged in the west of DI, but a distinct entity with low-velocity anomaly in the upper crust and high-velocity anomaly in the lower crust was found in the south of DI. Both the 1874 and 2006 DI earthquakes occurred along the edge of the distinct entity. Two vertical cross-sections nearly perpendicular to the strikes of the intersecting faults revealed good spatial correlations between the 2006 DI earthquake and the low to high speed transition in the distinct entity. This result indicated that the transitional zone might be a weakly structural body that can store strain energy and release it as a brittle failure, resulting in an earthquake

  16. Seismicity in the block mountains between Halle and Leipzig, Central Germany: centroid moment tensors, ground motion simulation, and felt intensities of two M ≈ 3 earthquakes in 2015 and 2017

    Science.gov (United States)

    Dahm, Torsten; Heimann, Sebastian; Funke, Sigward; Wendt, Siegfried; Rappsilber, Ivo; Bindi, Dino; Plenefisch, Thomas; Cotton, Fabrice

    2018-05-01

    On April 29, 2017 at 0:56 UTC (2:56 local time), an M W = 2.8 earthquake struck the metropolitan area between Leipzig and Halle, Germany, near the small town of Markranstädt. The earthquake was felt within 50 km from the epicenter and reached a local intensity of I 0 = IV. Already in 2015 and only 15 km northwest of the epicenter, a M W = 3.2 earthquake struck the area with a similar large felt radius and I 0 = IV. More than 1.1 million people live in the region, and the unusual occurrence of the two earthquakes led to public attention, because the tectonic activity is unclear and induced earthquakes have occurred in neighboring regions. Historical earthquakes south of Leipzig had estimated magnitudes up to M W ≈ 5 and coincide with NW-SE striking crustal basement faults. We use different seismological methods to analyze the two recent earthquakes and discuss them in the context of the known tectonic structures and historical seismicity. Novel stochastic full waveform simulation and inversion approaches are adapted for the application to weak, local earthquakes, to analyze mechanisms and ground motions and their relation to observed intensities. We find NW-SE striking normal faulting mechanisms for both earthquakes and centroid depths of 26 and 29 km. The earthquakes are located where faults with large vertical offsets of several hundred meters and Hercynian strike have developed since the Mesozoic. We use a stochastic full waveform simulation to explain the local peak ground velocities and calibrate the method to simulate intensities. Since the area is densely populated and has sensitive infrastructure, we simulate scenarios assuming that a 12-km long fault segment between the two recent earthquakes is ruptured and study the impact of rupture parameters on ground motions and expected damage.

  17. Earthquake forecasting and warning

    Energy Technology Data Exchange (ETDEWEB)

    Rikitake, T.

    1983-01-01

    This review briefly describes two other books on the same subject either written or partially written by Rikitake. In this book, the status of earthquake prediction efforts in Japan, China, the Soviet Union, and the United States are updated. An overview of some of the organizational, legal, and societal aspects of earthquake prediction in these countries is presented, and scientific findings of precursory phenomena are included. A summary of circumstances surrounding the 1975 Haicheng earthquake, the 1978 Tangshan earthquake, and the 1976 Songpan-Pingwu earthquake (all magnitudes = 7.0) in China and the 1978 Izu-Oshima earthquake in Japan is presented. This book fails to comprehensively summarize recent advances in earthquake prediction research.

  18. How citizen seismology is transforming rapid public earthquake information and interactions between seismologists and society

    Science.gov (United States)

    Bossu, Rémy; Steed, Robert; Mazet-Roux, Gilles; Roussel, Fréderic; Caroline, Etivant

    2015-04-01

    Historical earthquakes are only known to us through written recollections and so seismologists have a long experience of interpreting the reports of eyewitnesses, explaining probably why seismology has been a pioneer in crowdsourcing and citizen science. Today, Internet has been transforming this situation; It can be considered as the digital nervous system comprising of digital veins and intertwined sensors that capture the pulse of our planet in near real-time. How can both seismology and public could benefit from this new monitoring system? This paper will present the strategy implemented at Euro-Mediterranean Seismological Centre (EMSC) to leverage this new nervous system to detect and diagnose the impact of earthquakes within minutes rather than hours and how it transformed information systems and interactions with the public. We will show how social network monitoring and flashcrowds (massive website traffic increases on EMSC website) are used to automatically detect felt earthquakes before seismic detections, how damaged areas can me mapped through concomitant loss of Internet sessions (visitors being disconnected) and the benefit of collecting felt reports and geolocated pictures to further constrain rapid impact assessment of global earthquakes. We will also describe how public expectations within tens of seconds of ground shaking are at the basis of improved diversified information tools which integrate this user generated contents. A special attention will be given to LastQuake, the most complex and sophisticated Twitter QuakeBot, smartphone application and browser add-on, which deals with the only earthquakes that matter for the public: the felt and damaging earthquakes. In conclusion we will demonstrate that eyewitnesses are today real time earthquake sensors and active actors of rapid earthquake information.

  19. Imaging and Understanding Foreshock and Aftershock Behavior Around the 2014 Iquique, Northern Chile, Earthquake

    Science.gov (United States)

    Yang, H.; Meng, X.; Peng, Z.; Newman, A. V.; Hu, S.; Williamson, A.

    2014-12-01

    On April 1st, 2014, a moment magnitude (MW) 8.2 earthquake occurred offshore Iquique, Northern Chile. There were numerous smaller earthquakes preceding and following the mainshock, making it an ideal case to study the spatio-temporal relation among these events and their association with the mainshock. We applied a matched-filter technique to detect previously missing foreshocks and aftershocks of the 2014 Iquique earthquake. Using more than 900 template events recorded by 19 broadband seismic stations (network code CX) operated by the GEOFON Program of GFZ Potsdam, we found 4392 earthquakes between March 1st and April 3rd, 2014, including more than 30 earthquakes with magnitude larger than 4 that were previously missed in the catalog from the Chile National Seismological Center. Additionally, we found numerous small earthquakes with magnitudes between 1 and 2 preceding the largest foreshock, an MW 6.7 event occurring on March 16th, approximately 2 weeks before the Iquique mainshock. We observed that the foreshocks migrated northward at a speed of approximately 6 km/day. Using a finite fault slip model of the mainshock determined from teleseismic waveform inversion (Hayes, 2014), we calculated the Coulomb stress changes in the nearby regions of the mainshock. We found that there was ~200% increase in seismicity in the areas with increased Coulomb stress. Our next step is to evaluate the Coulomb stress changes associated with earlier foreshocks and their roles in triggering later foreshocks, and possibly the mainshock. For this, we plan to create a fault model of the temporal evolution of the Coulomb behavior along the interface with time, assuming Wells and Coppersmith (1994) type fault parameters. These results will be compared with double-difference relocations (using HypoDD), presenting a more accurate understanding of the spatial-temporal evolution of foreshocks and aftershocks of the 2014 Iquique earthquake.

  20. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  1. THE POTENTIAL OF TSUNAMI GENERATION ALONG THE MAKRAN SUBDUCTION ZONE IN THE NORTHERN ARABIAN SEA. CASE STUDY: THE EARTHQUAKE AND TSUNAMI OF NOVEMBER 28, 1945

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2006-01-01

    Full Text Available Although large earthquakes along the Makran Subduction Zone are infrequent, the potential for the generation of destructive tsunamis in the Northern Arabian Sea cannot be overlooked. It is quite possible that historical tsunamis in this region have not been properly reported or documented. Such past tsunamis must have affected Southern Pakistan, India, Iran, Oman, the Maldives and other countries bordering the Indian Ocean.The best known of the historical tsunamis in the region is the one generated by the great earthquake of November 28, 1945 off Pakistan's Makran Coast (Balochistan in the Northern Arabian Sea. The destructive tsunami killed more than 4,000 people in Southern Pakistan but also caused great loss of life and devastation along the coasts of Western India, Iran, Oman and possibly elsewhere.The seismotectonics of the Makran subduction zone, historical earthquakes in the region, the recent earthquake of October 8, 2005 in Northern Pakistan, and the great tsunamigenic earthquakes of December 26, 2004 and March 28, 2005, are indicative of the active tectonic collision process that is taking place along the entire southern and southeastern boundary of the Eurasian plate as it collides with the Indian plate and adjacent microplates. Tectonic stress transference to other, stress loaded tectonic regions could trigger tsunamigenic earthquakes in the Northern Arabian Sea in the future.The northward movement and subduction of the Oman oceanic lithosphere beneath the Iranian micro-plate at a very shallow angle and at the high rate is responsible for active orogenesis and uplift that has created a belt of highly folded and densely faulted coastal mountain ridges along the coastal region of Makran, in both the Balochistan and Sindh provinces. The same tectonic collision process has created offshore thrust faults. As in the past, large destructive tsunamigenic earthquakes can occur along major faults in the east Makran region, near Karachi, as

  2. An Account of Preliminary Landslide Damage and Losses Resulting from the February 28, 2001, Nisqually, Washington, Earthquake

    Science.gov (United States)

    Highland, Lynn M.

    2003-01-01

    The February 28, 2001, Nisqually, Washington, earthquake (Mw = 6.8) damaged an area of the northwestern United States that previously experienced two major historical earthquakes, in 1949 and in 1965. Preliminary estimates of direct monetary losses from damage due to earthquake-induced landslides is approximately $34.3 million. However, this figure does not include costs from damages to the elevated portion of the Alaskan Way Viaduct, a major highway through downtown Seattle, Washington that will be repaired or rebuilt, depending on the future decision of local and state authorities. There is much debate as to the cause of the damage to this viaduct with evaluations of cause ranging from earthquake shaking and liquefaction to lateral spreading to a combination of these effects. If the viaduct is included in the costs, the losses increase to $500+ million (if it is repaired) or to more than $1+ billion (if it is replaced). Preliminary estimate of losses due to all causes of earthquake damage is approximately $2 billion, which includes temporary repairs to the Alaskan Way Viaduct. These preliminary dollar figures will no doubt increase when plans and decisions regarding the Viaduct are completed.

  3. The 2008 Wells, Nevada earthquake sequence: Source constraints using calibrated multiple event relocation and InSAR

    Science.gov (United States)

    Nealy, Jennifer; Benz, Harley M.; Hayes, Gavin; Berman, Eric; Barnhart, William

    2017-01-01

    The 2008 Wells, NV earthquake represents the largest domestic event in the conterminous U.S. outside of California since the October 1983 Borah Peak earthquake in southern Idaho. We present an improved catalog, magnitude complete to 1.6, of the foreshock-aftershock sequence, supplementing the current U.S. Geological Survey (USGS) Preliminary Determination of Epicenters (PDE) catalog with 1,928 well-located events. In order to create this catalog, both subspace and kurtosis detectors are used to obtain an initial set of earthquakes and associated locations. The latter are then calibrated through the implementation of the hypocentroidal decomposition method and relocated using the BayesLoc relocation technique. We additionally perform a finite fault slip analysis of the mainshock using InSAR observations. By combining the relocated sequence with the finite fault analysis, we show that the aftershocks occur primarily updip and along the southwestern edge of the zone of maximum slip. The aftershock locations illuminate areas of post-mainshock strain increase; aftershock depths, ranging from 5 to 16 km, are consistent with InSAR imaging, which shows that the Wells earthquake was a buried source with no observable near-surface offset.

  4. Evaluation of earthquake vibration on aseismic design of nuclear power plant judging from recent earthquakes

    International Nuclear Information System (INIS)

    Dan, Kazuo

    2006-01-01

    The Regulatory Guide for Aseismic Design of Nuclear Reactor Facilities was revised on 19 th September, 2006. Six factors for evaluation of earthquake vibration are considered on the basis of the recent earthquakes. They are 1) evaluation of earthquake vibration by method using fault model, 2) investigation and approval of active fault, 3) direct hit earthquake, 4) assumption of the short active fault as the hypocentral fault, 5) locality of the earthquake and the earthquake vibration and 6) remaining risk. A guiding principle of revision required new evaluation method of earthquake vibration using fault model, and evaluation of probability of earthquake vibration. The remaining risk means the facilities and people get into danger when stronger earthquake than the design occurred, accordingly, the scattering has to be considered at evaluation of earthquake vibration. The earthquake belt of Hyogo-Nanbu earthquake and strong vibration pulse in 1995, relation between length of surface earthquake fault and hypocentral fault, and distribution of seismic intensity of off Kushiro in 1993 are shown. (S.Y.)

  5. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    Science.gov (United States)

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  6. Vrancea earthquakes. Specific actions to mitigate seismic risk

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru

    2005-01-01

    Earthquakes have been known in Romania since Roman times, when Trajan's legionnaires began the colonization of the rich plains stretching from the Carpathian Mountains to the Danube River. Since readings from seismographic stations became available, after 1940, it has been established that the most frequent largest earthquakes arise from deep Vrancea sources at the bend of the Carpathians Earthquakes in the Carpathian-Pannonian region are confined to the crust, except for the Vrancea zone, where earthquakes with focal depth down to 200 km occur. For example, the ruptured area migrated in depth from 150 km to 180 km (November 10, 1940, M w =7.7), from 90 to 110 km (March 4, 1977, M w =7.4), from 130 to 150 km (August 30, 1986, M w =7.1), and from 70 to 90 km (May 30, 1990, M w =6.9). The depth interval between 110 km and 130 km has remained unruptured since 1802, October 26, when the strongest known earthquake occurred in this part of Central Europe. The magnitude is assumed to have been M w =7.9 - 8.0, and this depth interval is a natural candidate for the next strong Vrancea event. The maximum intensity for strong deep Vrancea earthquakes is quite distant from the actual epicenter and greater than the epicentral intensity. For the 1977 strong earthquake (M w =7.4), the estimated intensity at its Vrancea region epicenter was only VII (MMI scale), while some 170 km away, in the capital city of Bucharest, the estimated maximum intensity was IX1/2 -X (MMI). The intensely deforming Vrancea zone shows a quite enigmatic seismic pattern (peak ground accelerations/intensity one, characteristic response spectra with large periods of 1.5 seconds, no significant attenuations on Romanian territory, large amplifications away, etc.). While no country in the world is entirely safe, the lack of capacity to limit the impact of seismic hazards remains a major burden for all countries and while the world has witnessed an exponential increase in human and material losses due to

  7. Preliminary Results on Earthquake Recurrence Intervals, Rupture Segmentation, and Potential Earthquake Moment Magnitudes along the Tahoe-Sierra Frontal Fault Zone, Lake Tahoe, California

    Science.gov (United States)

    Howle, J.; Bawden, G. W.; Schweickert, R. A.; Hunter, L. E.; Rose, R.

    2012-12-01

    frequency. Utilizing regressions of earthquake moment-magnitude (MW) and surface-rupture length from well-characterized historic normal faults by Wells and Coppersmith (1994), coseismic rupture of the range-front sections of the Echo Peak and Mt. Tallac segments would potentially generate an earthquake with Mw ranging from 6.5±0.25 and 6.7±0.25. If the entire mapped length of the Rubicon Peak segment were to rupture, Mw could range from 6.6±0.25 to 6.9±0.25. In a worst-case scenario, where the entire length of the Rubicon Peak fault ruptures coseismically with the Mt. Tallac fault, the potential Mw could range from 6.8±0.25 to 7.0±0.25. Fault scarps along the Mt. Tallac and Rubicon Peak segments differ in morphology, indicating that the Rubicon Peak segment probably did not rupture coseismically during the last ground-rupturing earthquake along the Mt. Tallac segment. On the basis of this qualitative comparison, the estimated timing of the most recent earthquake along the Mt. Tallac segment (4.3±0.7 ka), and the maximum estimate of earthquake recurrence intervals for the Rubicon Peak segment (2.8±1.0x103 years), we believe that the Rubicon Peak segment of the TSFFZ is overdue for a ground-rupturing earthquake

  8. Identification and impacts of earthquakes on the Roman Town of Patras- Archaeological evidence

    Science.gov (United States)

    Stamati, Alexandra-Venetia; Stiros, Stathis

    2015-04-01

    In this paper we examine the interactions between earthquakes and inhabitation history of the town of Patras (NW Peloponnese, Greece), flourishing during the Roman period. Instrumental seismicity data and the seismic history of the last two centuries indicate that the wider area is among the most seismically active parts of Europe. But surprisingly, for older periods no historical evidence of ancient earthquakes exists. If this absence of evidence of ancient earthquakes is indicative of a real absence of earthquakes, this may be important for different disciplines. For Seismology, it may perhaps indicate clusters of seismicity separated by intervals of quiescence, each at least several thousand years long. It may also indicate that the inhabitation history of Patras town was not interrupted by major natural catastrophic events, and some destruction observed in ancient remains can be assigned to anthropogenic effects. In order to contribute in the solution of this problem, we made a systematic Archaeoseismological investigation of Patras and examined for the first time several hundreds of reports of archaeological excavations that have been made during period of reconstruction of the city (1972-2004). Among these, about 100 reports provide evidence of destruction layers, some of which satisfy the criteria for identification of earthquakes from archaeological data. A further correlation of this evidence in space and time was made, and permitted to identify with certainty a few major seismic events which marked the history of Roman Patras (1st-6th century AD). In spite of their catastrophic effects, these earthquakes have not led to the abandonment of the ancient town (inhabitation hiatus), but have certainly left their marks in the urban and perhaps social and economic history of this Roman town. Some certain uniformity in the frequency of earthquakes in Patras was also inferred.

  9. Imaging the 2017 MW 8.2 Tehuantepec intermediate-depth earthquake using Teleseismic P Waves

    Science.gov (United States)

    Brudzinski, M.; Zhang, H.; Koper, K. D.; Pankow, K. L.

    2017-12-01

    The September 8, 2017 MW 8.1 Tehuantepec, Mexico earthquakes in the middle American subduction zone is one of the largest intermediate-depth earthquake ever recorded and could provide an unprecedented opportunity for understanding the mechanism of intermediate-depth earthquakes. While the hypocenter and centroid depths for this earthquake are shallower than typically considered for intermediate depth earthquakes, the normal faulting mechanism consistent with down-dip extension and location within the subducting plate align with properties of intermediate depth earthquakes. Back-projection of high-frequency teleseismic P-waves from two regional arrays for this earthquake shows unilateral rupture on a southeast-northwest striking fault that extends north of the Tehuantepec fracture zone (TFZ), with an average horizontal rupture speed of 3.0 km/s and total duration of 60 s. Guided by these back-projection results, 47 globally distributed low-frequency P-waves were inverted for a finite-fault model (FFM) of slip for both nodal planes. The FFM shows a slip deficit in proximity to the extension of the TFZ, as well as the minor rupture beyond the TFZ (confirmed by the synthetic tests), which indicates that the TFZ acted as a barrier for this earthquake. Analysis of waveform misfit leads to the preference of a subvertical plane as the causative fault. The FFM shows that the majority of the rupture is above the focal depth and consists of two large slip patches: the first one is near the hypocenter ( 55 km depth) and the second larger one near 30 km depth. The distribution of the two patches spatially agrees with seismicity that defines the upper and lower zones of a double Benioff zone (DBZ). It appears there was single fault rupture across the two depth zones of the DBZ. This is uncommon because a stark aseismic zone is typically observed between the upper and lower zones of the DBZ. This finding indicates that the mechanism for intraslab earthquakes must allow for

  10. Twitter earthquake detection: earthquake monitoring in a social world

    Directory of Open Access Journals (Sweden)

    Daniel C. Bowden

    2011-06-01

    Full Text Available The U.S. Geological Survey (USGS is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word “earthquake” clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  11. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    Science.gov (United States)

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  12. Earthquakes, September-October 1986

    Science.gov (United States)

    Person, W.J.

    1987-01-01

    There was one great earthquake (8.0 and above) during this reporting period in the South Pacific in the Kermadec Islands. There were no major earthquakes (7.0-7.9) but earthquake-related deaths were reported in Greece and in El Salvador. There were no destrcutive earthquakes in the United States.

  13. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  14. Historical and paleo-tsunami deposits on Kamchatka, Russia: long-term chronologies and long-distance correlations

    Directory of Open Access Journals (Sweden)

    T. K. Pinegina

    2001-01-01

    Full Text Available Along the eastern coast of Kamchatka, at a number of localities, we have identified and attempted to assign ages to deposits of both historic and prehistoric (paleo- tsunamis. These deposits are dated and correlated using tephrochronology from Holocene marker tephra and local volcanic ash layers. Because the historical record of earthquakes and tsunamis on Kamchatka is so short, these investigations can make important contributions to evaluating tsunami hazards. Moreover, because even the historical record is spotty, our work helps add to and evaluate tsunami catalogues for Kamchatka. Furthermore, tsunami deposits provide a proxy record for large earthquakes and thus are important paleoseismological tools. The combined, preserved record of tsunami deposits and of numerous marker tephra on Kamchatka offers an unprecedented opportunity to study tsunami frequency. Using combined stratigraphic sections, we can examine both the average frequency of events for each locality, and also changes in frequency through time. Moreover, using key marker tephra as time lines, we can compare tsunami frequency and intensity records along the Kamchatka subduction zone. Preliminary results suggest real variations in frequency on a millennial time scale, with the period from about 0 to 1000 A.D. being particularly active at some localities.

  15. What caused a large number of fatalities in the Tohoku earthquake?

    Science.gov (United States)

    Ando, M.; Ishida, M.; Nishikawa, Y.; Mizuki, C.; Hayashi, Y.

    2012-04-01

    The Mw9.0 earthquake caused 20,000 deaths and missing persons in northeastern Japan. 115 years prior to this event, there were three historical tsunamis that struck the region, one of which is a "tsunami earthquake" resulted with a death toll of 22,000. Since then, numerous breakwaters were constructed along the entire northeastern coasts and tsunami evacuation drills were carried out and hazard maps were distributed to local residents on numerous communities. However, despite the constructions and preparedness efforts, the March 11 Tohoku earthquake caused numerous fatalities. The strong shaking lasted three minutes or longer, thus all residents recognized that this is the strongest and longest earthquake that they had been ever experienced in their lives. The tsunami inundated an enormous area at about 560km2 over 35 cities along the coast of northeast Japan. To find out the reasons behind the high number of fatalities due to the March 11 tsunami, we interviewed 150 tsunami survivors at public evacuation shelters in 7 cities mainly in Iwate prefecture in mid-April and early June 2011. Interviews were done for about 30min or longer focused on their evacuation behaviors and those that they had observed. On the basis of the interviews, we found that residents' decisions not to evacuate immediately were partly due to or influenced by earthquake science results. Below are some of the factors that affected residents' decisions. 1. Earthquake hazard assessments turned out to be incorrect. Expected earthquake magnitudes and resultant hazards in northeastern Japan assessed and publicized by the government were significantly smaller than the actual Tohoku earthquake. 2. Many residents did not receive accurate tsunami warnings. The first tsunami warning were too small compared with the actual tsunami heights. 3. The previous frequent warnings with overestimated tsunami height influenced the behavior of the residents. 4. Many local residents above 55 years old experienced

  16. Structural factors controlling inter-plate coupling and earthquake rupture process

    Science.gov (United States)

    Kodaira, S.

    2007-05-01

    Recent availability of a large number of ocean bottom seismographs (OBSs), a large volume of air-gun array and a long streamer cable for academics provide several new findings of lithospheric scale structures in subduction seismogenic zones. JAMSTEC has acquired long-offset seismic data using a super-densely deploy OBS (i.e. 1 - 5 km spacing OBSs along 100 - 500 km long profiles) in the Nankai seismogeinc zone, SW. Japan, since 1999. Long-offset multichannel seismic (MCS) data by a two-ship experiment, as well as conventional 2D MCS data, have been also acquired at a part of the profiles. Some of those profiles have been designed as combined onshore - offshore profiles for imaging a land-ocean transition zone. One of the most striking findings is an image of several scales of subducted seamounts/ridges in the Nankai trough seismogenic zone. We detected the subducted seamount/ridges, which are 50 - 100 km wide, distributing from near trough axis to ~ 40 km deep beneath the Japanese island. From a point of seismogenic process, an important aspect is that those structures are strongly correlated with slip zones of magnitude 8-class earthquakes, i.e.; subducted seamounts/ridge control the rupture propagations. Moreover, the most recent seismic study crossing the segmentation boundary between M=8 class earthquakes detected a high seismic velocity body forming a strongly coupled patch at the segmentation boundary. The numerical simulation incorporating all those structures explained the historic rupture patterns, and shows the occurrence of a giant earthquake along the entire Nankai trough, a distance of over 600 km long (Mw=8.7). The growth processes of a rupture revealed from the simulation are; 1) prior to the giant earthquake, a small slow event (or earthquake) occurs near the segmentation boundary, 2) this accelerates a very slow slip (slower than the plate convergent rate), at the strong patch, which reduces a degree of coupling, 3) then a rupture easily propagates

  17. Catastrophic valley fills record large Himalayan earthquakes, Pokhara, Nepal

    Science.gov (United States)

    Stolle, Amelie; Bernhardt, Anne; Schwanghart, Wolfgang; Hoelzmann, Philipp; Adhikari, Basanta R.; Fort, Monique; Korup, Oliver

    2017-12-01

    Uncertain timing and magnitudes of past mega-earthquakes continue to confound seismic risk appraisals in the Himalayas. Telltale traces of surface ruptures are rare, while fault trenches document several events at best, so that additional proxies of strong ground motion are needed to complement the paleoseismological record. We study Nepal's Pokhara basin, which has the largest and most extensively dated archive of earthquake-triggered valley fills in the Himalayas. These sediments form a 148-km2 fan that issues from the steep Seti Khola gorge in the Annapurna Massif, invading and plugging 15 tributary valleys with tens of meters of debris, and impounding several lakes. Nearly a dozen new radiocarbon ages corroborate at least three episodes of catastrophic sedimentation on the fan between ∼700 and ∼1700 AD, coinciding with great earthquakes in ∼1100, 1255, and 1344 AD, and emplacing roughly >5 km3 of debris that forms the Pokhara Formation. We offer a first systematic sedimentological study of this formation, revealing four lithofacies characterized by thick sequences of mid-fan fluvial conglomerates, debris-flow beds, and fan-marginal slackwater deposits. New geochemical provenance analyses reveal that these upstream dipping deposits of Higher Himalayan origin contain lenses of locally derived river clasts that mark time gaps between at least three major sediment pulses that buried different parts of the fan. The spatial pattern of 14C dates across the fan and the provenance data are key to distinguishing these individual sediment pulses, as these are not evident from their sedimentology alone. Our study demonstrates how geomorphic and sedimentary evidence of catastrophic valley infill can help to independently verify and augment paleoseismological fault-trench records of great Himalayan earthquakes, while offering unparalleled insights into their long-term geomorphic impacts on major drainage basins.

  18. Ethical Guidelines for Structural Interventions to Small-Scale Historic Stone Masonry Buildings.

    Science.gov (United States)

    Hurol, Yonca; Yüceer, Hülya; Başarır, Hacer

    2015-12-01

    Structural interventions to historic stone masonry buildings require that both structural and heritage values be considered simultaneously. The absence of one of these value systems in implementation can be regarded as an unethical professional action. The research objective of this article is to prepare a guideline for ensuring ethical structural interventions to small-scale stone historic masonry buildings in the conservation areas of Northern Cyprus. The methodology covers an analysis of internationally accepted conservation documents and national laws related to the conservation of historic buildings, an analysis of building codes, especially Turkish building codes, which have been used in Northern Cyprus, and an analysis of the structural interventions introduced to a significant historic building in a semi-intact state in the walled city of Famagusta. This guideline covers issues related to whether buildings are intact or ruined, the presence of earthquake risk, the types of structural decisions in an architectural conservation project, and the values to consider during the decision making phase.

  19. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics

    2000-06-01

    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  20. Method of investigation, typologyand taxonomy of the basic data: navigating between seismic effects and historical contexts

    Directory of Open Access Journals (Sweden)

    E. Guidoboni

    2000-06-01

    Full Text Available This contribution presents the methods of research and filing of the historical data which are at the basis of the Catalogue of Strong Italian Earthquakes (CFTI3. Seen from the point of view of historical research, this is the first research carried out in Italy with continuous methods and objectives exceeding 15 years. Here the basic, historical and scientific sources that were used are presented, considering the peculiarity of these sources in relation to the testimonies of the seismic effects. In total, there are 25 780 recorded and analysed bibliographical entries, which have disclosed and located 33 150 seismic effects from the ancient world till 1997. The basic work has not only consisted of a meticulous indexing of the sources and texts, but also of a new outlining of the particular historical and cultural contexts, in which 605 analysed strong earthquakes occurred. Moreover, a small historical guide is presented to help orientate the user of the CFTI3. The complex history of the present-day Italian territory (which has passed for centuries under very different dominations and institutional structures has demanded a non-superficial analysis of these contexts in order to better trace and interpret the testimonies of the seismic effects on buildings as well as on the natural environment. The work, carried out with groups of specialised researchers, has also led to the compiling of a database capable of dynamically managing the interpreted information. The open structure of this work allows for the continuous data updating and expansion.

  1. Effects in Morocco of the Lisboa earthquake 1 November 1755

    International Nuclear Information System (INIS)

    Levret, A.

    1988-05-01

    Within the framework of a cooperative agreement Sofratome/Office National d'Electricite of Morocco and Sofratome/Electricidade de Portugal, a study has been conducted as to the effects of the November 1, 1755 Lisbon earthquake in Morocco. This event, the effects of which have been described at length in Portugal, was likewise strongly felt in Morocco, especially on the Atlantic coast, which was laid waste not only through the direct agency of seismic waves, but also through that of a formidable tsunami. In old texts, the descriptions of these conjugate effects has been rendered with varying degrees of overstatement. The procedure adopted in order to arrive at a precise identification of the effects and their origin and an evaluation of intensity involves three stages: a) an assessment of the reliability of the documents used; b) a thoroughgoing analysis of the descriptions with the object of discriminating between the direct effects of the earthquake and those ascribable to the action of the tidal wave: c) a readjustment of the intensities by analysis of the global effects of the earthquake not only in Morocco but also in Portugal and Spain. Then a comparison of these with the well- documented effects of the recent, February 28, 1969 earthquake, originating at the same source. Extrapolated isoseismals for the effects in Morocco of the 1755 event derived from this study are then assigned. In the light of current knowledge concerning the historical seismicity of the Iberian African collision zone, an outline of the maximum observed intensities is proposed [fr

  2. The Wenchuan, China M8.0 Earthquake: A Lesson and Implication for Seismic Hazard Mitigation

    Science.gov (United States)

    Wang, Z.

    2008-12-01

    The Wenchuan, China M8.0 earthquake caused great damage and huge casualty. 69,197 people were killed, 374,176 people were injured, and 18,341 people are still missing. The estimated direct economic loss is about 126 billion U.S. dollar. The Wenchuan earthquake again demonstrated that earthquake does not kill people, but the built environments and induced hazards, landslides in particular, do. Therefore, it is critical to strengthen the built environments, such buildings and bridges, and to mitigate the induced hazards in order to avoid such disaster. As a part of the so-called North-South Seismic Zone in China, the Wenchuan earthquake occurred along the Longmen Shan thrust belt which forms a boundary between the Qinghai-Tibet Plateau and the Sichuan basin, and there is a long history (~4,000 years) of seismicity in the area. The historical records show that the area experienced high intensity (i.e., greater than IX) in the past several thousand years. In other words, the area is well-known to have high seismic hazard because of its tectonic setting and seismicity. However, only intensity VII (0.1 to 0.15g PGA) has been considered for seismic design for the built environments in the area. This was one of the main reasons that so many building collapses, particularly the school buildings, during the Wenchuan earthquake. It is clear that the seismic design (i.e., the design ground motion or intensity) is not adequate in the Wenchuan earthquake stricken area. A lesson can be learned from the Wenchuan earthquake on the seismic hazard and risk assessment. A lesson can also be learned from this earthquake on seismic hazard mitigation and/or seismic risk reduction.

  3. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Science.gov (United States)

    Gao, Meng-Tan; Jin, Xue-Shen; An, Wei-Ping; Lü, Xiao-Jian

    2004-07-01

    The geography information system of the 1303 Hongton M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studies. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  4. Earthquakes, November-December 1977

    Science.gov (United States)

    Person, W.J.

    1978-01-01

    Two major earthquakes occurred in the last 2 months of the year. A magnitude 7.0 earthquake struck San Juan Province, Argentina, on November 23, causing fatalities and damage. The second major earthquake was a magnitude 7.0 in the Bonin Islands region, an unpopulated area. On December 19, Iran experienced a destructive earthquake, which killed over 500.

  5. Architectural layout and vulnerability to earthquakes of housing buildings of the Modernism

    Science.gov (United States)

    Bostenaru, M.

    2009-04-01

    Bucharest, the capital of Romania, lays in a high seismic risk zone, being affected about three times a century by strong earthquakes. These occur in the mountainous region of Vrancea, at about 150 km from Bucharest, but given the fact that Bucharest is situated on alluvial soil deposits the effect of the earthquakes is stronger than in other regions of the country. In the 20th century damaging earthquakes occurred in 1940 and 1977. In both of them mostly affected were the interwar buildings, built 1920-1940 in the style of Romanian Modernism. There is little data about the 1940 earthquake, but the effects of the 1977 earthquake were extensively studied and last year 30 years since this earthquake passed. Scope of this contribution is to examine the architectural characteristics of the buildings of Modernism which lead to this high vulnerability, more precisely the criterion of zoning in the layout of the plans. This is the scope of a research project funded 2007-2010 by the European Commission with a Marie Curie Reintegration Grant; contract MERG-CT-2007-200636. Not only the buildings from Bucharest will be considered, but also from Athens, Greece and from Milan, Italy. Both Greece and Italy are countries with high seismic risk; however, Athens did not experience such damaging earthquakes until 1999 and Milan ever. The buildings of Romanian Modernism are characterised by a highly irregular shape in plan in both the overall contour as well as in the distribution of columns and beams. This is due to the following the architectural layout as well as to a lacking local seismic culture to apply at high rise buildings. It will be explained that Vrancea earthquakes, with their specific vibration periods, affect high rise buildings, and previously the style of living in Romania was the single family house, low rise, and thus less affected. Strong earthquakes used to affect slender high constructions, like the towers of churches, for example, and this is where the local

  6. Protecting your family from earthquakes: The seven steps to earthquake safety

    Science.gov (United States)

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here because of the importance of preparing for earthquakes before they happen. Experts say it is very likely there will be a damaging San Francisco Bay Area earthquake in the next 30 years and that it will strike without warning. It may be hard to find the supplies and services we need after this earthquake. For example, hospitals may have more patients than they can treat, and grocery stores may be closed for weeks. You will need to provide for your family until help arrives. To keep our loved ones and our community safe, we must prepare now. Some of us come from places where earthquakes are also common. However, the dangers of earthquakes in our homelands may be very different than in the Bay Area. For example, many people in Asian countries die in major earthquakes when buildings collapse or from big sea waves called tsunami. In the Bay Area, the main danger is from objects inside buildings falling on people. Take action now to make sure your family will be safe in an earthquake. The first step is to read this book carefully and follow its advice. By making your home safer, you help make our community safer. Preparing for earthquakes is important, and together we can make sure our families and community are ready. English version p. 3-13 Chinese version p. 14-24 Vietnamese version p. 25-36 Korean version p. 37-48

  7. Sources of Increased Spring and Streamflow Caused by the 2014 South Napa Earthquake

    Science.gov (United States)

    Rytuba, J. J.; Holzer, T. L.

    2014-12-01

    Seasonally dry springs and creeks began flowing over a broad region in the hills around Napa following the M6.0 South Napa earthquake on August 24, 2014. Flows in hillside creek beds, which were dry before the earthquake, were reported from 19 km west, to 6 km east, and 18 km north of Napa and the epicenter, an area that shook at MMI≥VI. The exact timing of the increased flow is unknown because the earthquake occurred at 3:20 AM PDT. A gaging station on the Napa River, which is downstream from several tributaries that began flowing after the earthquake, showed a sudden increase of flow rate within 45 minutes following the earthquake. The sudden increase at the gaging station suggests flows initiated either contemporaneously with or very soon after the strong shaking. This timing is consistent with eyewitness accounts of other streams and springs at daylight, a few hours after the earthquake. One of the largest increases of streamflow was in Green Valley, where a streamflow rate of about 100 cubic hectometers per day was measured in Wild Horse Creek. Two types of waters are being discharged in the Wild Horse Creek drainage: 1) water with low iron concentration that has exchanged with rhyolitic flows and tuffs in the upper part of the drainage; and 2) high iron concentration water that has exchanged with basaltic andesite in the middle part of drainage (vertical interval of about 75 meters). The high iron waters are depositing FeOOH other iron phases. Mixing of the two water types results in water with pH 6.9 and conductivity of 0.197 mS. This water is used by the Vallejo Water District for domestic purposes after it is mixed with recent surface water runoff stored in Lake Frey reservoir in order to improve its quality. Other drainages that have increased flow since the earthquake have water chemistry consistent with exchange with rhyolitic flows and tuffs that are the dominant rock type in these drainages.

  8. The Accidental Spokesperson - Science Communication during the 2010-2011 Christchurch, NZ Earthquake Sequence

    Science.gov (United States)

    Furlong, K. P.

    2015-12-01

    Beginning September 4, 2010, with a Mw 7.1 earthquake, a multi-year earthquake sequence changed life in Canterbury NZ. Information communicated by a core group of university-based earthquake scientists provided accessible information to the general public, the press, and policy makers. Although at the start of this prolonged sequence, no one anticipated its longevity nor its impact, this initial (and largest) event did catalyze a demand from the public and policy makers for information and led to some important lessons in how to communicate science to a broad audience as an event unfolds and when it is personally important to the general public. Earthquakes are neither new nor rare to New Zealand, but the Christchurch area was seen as likely suffering only from the far-field effects of a major earthquake on the Alpine Fault or Marlborough fault system. Policy makers had planned and expected that another city such as Wellington would be where they would need to respond. As a visiting faculty at the University of Canterbury, with expertise in earthquake science, I was entrained and engaged in the response - both the scientific and communication aspects. It soon became clear that formal press releases and statements from government ministries and agencies did little to address the questions and uncertainties that the public, the press, and even the policy makers had. Rather, a series of public lectures, broad ranging discussions with the media (both print and radio/television), and OpEd pieces provided by this small group of earthquake focused faculty at the University of Canterbury provided the background information, best estimates of what could occur in the future, and why Earth was acting as it was. This filled a critical gap in science information going to the public, and helped build a level of trust in the public that became critically needed after the situation escalated with subsequent damaging events through early-mid 2011, and onward.

  9. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    Science.gov (United States)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  10. Catalogue of European earthquakes and an atlas of European seismic maps

    International Nuclear Information System (INIS)

    Van Gils, J.M.

    1988-01-01

    The Catalogue of European earthquakes and an atlas of European seismic maps has been prepared in the framework of the activities of the CEC Working Group on the safety of ligh-water reactors. Seismic hazards are considered to be an important element of possible external accidents to be taken into account in the design, construction, and operation of nuclear power plants. The report relies on the data base available, the historical as well as the present-day data. After a short historical review, actually-used intensity scales are discussed. The scale applied in European countries and the one proposed in the United States of America are compared. The different seismic maps of interest are explained and a mathematical procedure presented which allows, under certain conditions, to draw seismic maps by computer facilities

  11. It's Our Fault: better defining earthquake risk in Wellington, New Zealand

    Science.gov (United States)

    Van Dissen, R.; Brackley, H. L.; Francois-Holden, C.

    2012-12-01

    The Wellington region, home of New Zealand's capital city, is cut by a number of major right-lateral strike slip faults, and is underlain by the currently locked west-dipping subduction interface between the down going Pacific Plate, and the over-riding Australian Plate. In its short historic period (ca. 160 years), the region has been impacted by large earthquakes on the strike-slip faults, but has yet to bear the brunt of a subduction interface rupture directly beneath the capital city. It's Our Fault is a comprehensive study of Wellington's earthquake risk. Its objective is to position the capital city of New Zealand to become more resilient through an encompassing study of the likelihood of large earthquakes, and the effects and impacts of these earthquakes on humans and the built environment. It's Our Fault is jointly funded by New Zealand's Earthquake Commission, Accident Compensation Corporation, Wellington City Council, Wellington Region Emergency Management Group, Greater Wellington Regional Council, and Natural Hazards Research Platform. The programme has been running for six years, and key results to date include better definition and constraints on: 1) location, size, timing, and likelihood of large earthquakes on the active faults closest to Wellington; 2) earthquake size and ground shaking characterization of a representative suite of subduction interface rupture scenarios under Wellington; 3) stress interactions between these faults; 4) geological, geotechnical, and geophysical parameterisation of the near-surface sediments and basin geometry in Wellington City and the Hutt Valley; and 5) characterisation of earthquake ground shaking behaviour in these two urban areas in terms of subsoil classes specified in the NZ Structural Design Standard. The above investigations are already supporting measures aimed at risk reduction, and collectively they will facilitate identification of additional actions that will have the greatest benefit towards further

  12. When it happens again: impact of future San Francisco Bay area earthquakes

    Science.gov (United States)

    Zoback, M.; Boatwright, J.; Kornfield, L.; Scawthorn, C.; Rojahn, C.

    2005-12-01

    San Francisco Bay area earthquakes, like major floods and hurricanes, have the potential for massive damage to dense urban population centers concentrated in vulnerable zones-along active faults, in coastal regions, and along major river arteries. The recent destruction of Hurricane Katrina does have precedent in the destruction following the 1906 "San Francisco" earthquake and fire in which more than 3000 people were killed and 225,000 were left homeless in San Francisco alone, a city of 400,000 at the time. Analysis of a comprehensive set of damage reports from the magnitude (M) 7.9 1906 earthquake indicates a region of ~ 18,000 km2 was subjected to shaking of Modified Mercalli Intensity of VIII or more - motions capable of damaging even modern, well-built structures; more than 60,000 km2 was subjected to shaking of Intensity VII or greater - the threshold for damage to masonry and poorly designed structures. By comparison, Katrina's hurricane force winds and intense rainfall impacted an area of ~100,000 km2 on the Gulf Coast. Thus, the anticipated effects of a future major Bay Area quake to lives, property, and infrastructure are comparable in scale to Katrina. Secondary hazards (levee failure and flooding in the case of Katrina and fire following the 1906 earthquake) greatly compounded the devastation in both disasters. A recent USGS-led study concluded there is a 62% chance of one or more damaging (M6.7 or greater) earthquakes striking the greater San Francisco Bay area over the next 30 years. The USGS prepared HAZUS loss estimates for the 10 most likely forecast earthquakes which range in size from a M6.7 event on a blind thrust to the largest anticipated event, a M7.9 repeat of the 1906 earthquake. The largest economic loss is expected for a repeat of the 1906 quake. Losses in the Bay region for this event are nearly double those predicted for a M6.9 rupture of the entire Hayward Fault in the East Bay. However, because of high density of population along the

  13. Evolution of the Earthquake Catalog in Central America

    Science.gov (United States)

    Rojas, W.; Camacho, E. I.; Marroquín, G.; Molina, E.; Talavera, E.; Benito, M. B.; Lindholm, C.

    2013-05-01

    Central America (CA) is known as a seismically active region in which several historic destructive earthquakes have occurred. This fact has promoved the development of seismic hazard studies that provide necessary estimates for decision making and risk assessment efforts, requiring a complete and standardized seismic catalog. With this aim, several authors have contributed to the study of the historical seismicity of Central America (e.g. Grases, Feldaman; White y Harlow, 1993; White et al. 2004; Ambraseys y Adams, 2001; Peraldo y Montero, 1999), who complied historical data. A first catalogue was developed by Rojas (1993) that comprises the 1522 to 1993 period. This information was integrated in 2007, together with data from the International Seismological Centre (CASC) and the national catalogs of CA countries in a new regional catalogue. Since 2007 a continuous effort has been done in order to complete and update this CA earthquake catalog. In particular, two workshops were held in 2008 and 2011 in the Universidad Politécnica de Madrid (Spain), joining experts from the different CA countries who worked each one in its own catalogue covering the entire region and the border with northwestern Colombia and southern Mexico. These national catalogues were later integrated in a common regional catalogue in SEISAN format. At this aim it was necessary to solve some problems, like to avoid duplicity of events, specially close to the boundaries, to consider the different scales of magnitude adopted by different countries, to take into account the completeness by the different national networks, etc. Some solutions were adopted for obtaining a homogenized catalogue to Mw, containing historical and instrumental events with Mw > 3.5 from 1522 up to 2011. The catalogue updated to December 2007 was the basis for the first regional hazard study carried out by Benito et al., (2011) as part of the collaborative RESIS II project under coordination of NORSAR. The ones updated to

  14. Båth's law and its relation to the tectonic environment: A case study for earthquakes in Mexico

    Science.gov (United States)

    Rodríguez-Pérez, Q.; Zúñiga, F. R.

    2016-09-01

    We studied 66 mainshocks and their largest aftershocks in the Mexican subduction zone and in the Gulf of California with magnitudes in the range of 5.2 worldwide studies supporting the observation of mechanism dependence of radiated seismic energy. The statistical tests indicate that the only significant difference is for shallow thrust and strike-slip events for these parameters. The statistical comparison of stress drop of shallow thrust versus that of inslab events shows a strongly significant difference with a confidence better than 99%. The comparison of stress drop of shallow thrust events with that of strike-slip events, also indicates a strongly significant difference. We see no dependence of stress drop with magnitude, which is strong evidence of earthquake self-similarity. We do not observe a systematic depth dependence of stress drop. The results also reveal differences in the earthquake rupture among the events. The magnitude difference between the mainshock and the largest aftershock for inslab events is larger than interplate and strike-slip events suggesting focal mechanism dependence of Båth's law. For the case of this parameter, only that for inslab and strike-slip events present a significant difference with 95% confidence.

  15. Source Parameters from Full Moment Tensor Inversions of Potentially Induced Earthquakes in Western Canada

    Science.gov (United States)

    Wang, R.; Gu, Y. J.; Schultz, R.; Kim, A.; Chen, Y.

    2015-12-01

    During the past four years, the number of earthquakes with magnitudes greater than three has substantially increased in the southern section of Western Canada Sedimentary Basin (WCSB). While some of these events are likely associated with tectonic forces, especially along the foothills of the Canadian Rockies, a significant fraction occurred in previously quiescent regions and has been linked to waste water disposal or hydraulic fracturing. A proper assessment of the origin and source properties of these 'induced earthquakes' requires careful analyses and modeling of regional broadband data, which steadily improved during the past 8 years due to recent establishments of regional broadband seismic networks such as CRANE, RAVEN and TD. Several earthquakes, especially those close to fracking activities (e.g. Fox creek town, Alberta) are analyzed. Our preliminary full moment tensor inversion results show maximum horizontal compressional orientations (P-axis) along the northeast-southwest orientation, which agree with the regional stress directions from borehole breakout data and the P-axis of historical events. The decomposition of those moment tensors shows evidence of strike-slip mechanism with near vertical fault plane solutions, which are comparable to the focal mechanisms of injection induced earthquakes in Oklahoma. Minimal isotropic components have been observed, while a modest percentage of compensated-linear-vector-dipole (CLVD) components, which have been linked to fluid migraition, may be required to match the waveforms. To further evaluate the non-double-couple components, we compare the outcomes of full, deviatoric and pure double couple (DC) inversions using multiple frequency ranges and phases. Improved location and depth information from a novel grid search greatly assists the identification and classification of earthquakes in potential connection with fluid injection or extraction. Overall, a systematic comparison of the source attributes of

  16. Distribution of the largest aftershocks in branching models of triggered seismicity: Theory of the universal Baath law

    International Nuclear Information System (INIS)

    Saichev, A.; Sornette, D.

    2005-01-01

    Using the epidemic-type aftershock sequence (ETAS) branching model of triggered seismicity, we apply the formalism of generating probability functions to calculate exactly the average difference between the magnitude of a mainshock and the magnitude of its largest aftershock over all generations. This average magnitude difference is found empirically to be independent of the mainshock magnitude and equal to 1.2, a universal behavior known as Baath's law. Our theory shows that Baath's law holds only sufficiently close to the critical regime of the ETAS branching process. Allowing for error bars ±0.1 for Baath's constant value around 1.2, our exact analytical treatment of Baath's law provides new constraints on the productivity exponent α and the branching ratio n: 0.9 < or approx. α≤1 and 0.8 < or approx. n≤1. We propose a method for measuring α based on the predicted renormalization of the Gutenberg-Richter distribution of the magnitudes of the largest aftershock. We also introduce the 'second Baath law for foreshocks': the probability that a main earthquake turns out to be the foreshock does not depend on its magnitude ρ

  17. Tremors behind the power outlet - where earthquakes appear on our monthly bill

    Science.gov (United States)

    Baisch, Stefan

    2013-04-01

    The world's appetite for energy has significantly increased over the last decades, not least due to the rapid growth of Asian economies. In parallel, the Fukushima shock raised widespread concerns against nuclear power generation and an increasing desire for clean energy technologies. To solve the conflict of higher demands, limited resources and a growing level of green consciousness, both up-scaling of conventional and development of renewable energy technologies are required. This is where the phenomenon of man-made earthquakes appears on the radar screen. Several of our energy production technologies have the potential to cause small, moderate, or sometimes even larger magnitude earthquakes. There is a general awareness that coal mining activities can produce moderate sized earthquakes. Similarly, long-term production from hydrocarbon reservoirs can lead to subsurface deformations accompanied by even larger magnitude earthquakes. Even the "renewables" are not necessarily earthquake-free. Several of the largest man-made earthquakes have been caused by water impoundment for hydropower plants. On a much smaller scale, micro earthquakes can occur in enhanced geothermal systems (EGS). Although still in its infancy, the EGS technology has an enormous potential to supply base load electricity, and its technical feasibility for a large scale application is currently being investigated in about a dozen pilot projects. The principal concept of heat extraction by circulating water through a subsurface reservoir is fairly simple, the technical implementation of EGS, however, exhibits several challenges not all of which are yet being solved. As the hydraulic conductivity at depth is usually extremely low at EGS sites, a technical stimulation of hydraulic pathways is required for creating an artificial heat exchanger. By injecting fluid under high pressure into the subsurface, tectonic stress on existing fractures can be released and the associated shearing of the fractures

  18. Identification and characterization of earthquake clusters: a comparative analysis for selected sequences in Italy

    Science.gov (United States)

    Peresan, Antonella; Gentili, Stefania

    2017-04-01

    Identification and statistical characterization of seismic clusters may provide useful insights about the features of seismic energy release and their relation to physical properties of the crust within a given region. Moreover, a number of studies based on spatio-temporal analysis of main-shocks occurrence require preliminary declustering of the earthquake catalogs. Since various methods, relying on different physical/statistical assumptions, may lead to diverse classifications of earthquakes into main events and related events, we aim to investigate the classification differences among different declustering techniques. Accordingly, a formal selection and comparative analysis of earthquake clusters is carried out for the most relevant earthquakes in North-Eastern Italy, as reported in the local OGS-CRS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. The comparison is then extended to selected earthquake sequences associated with a different seismotectonic setting, namely to events that occurred in the region struck by the recent Central Italy destructive earthquakes, making use of INGV data. Various techniques, ranging from classical space-time windows methods to ad hoc manual identification of aftershocks, are applied for detection of earthquake clusters. In particular, a statistical method based on nearest-neighbor distances of events in space-time-energy domain, is considered. Results from clusters identification by the nearest-neighbor method turn out quite robust with respect to the time span of the input catalogue, as well as to minimum magnitude cutoff. The identified clusters for the largest events reported in North-Eastern Italy since 1977 are well consistent with those reported in earlier studies, which were aimed at detailed manual aftershocks identification. The study shows that the data-driven approach, based on the nearest-neighbor distances, can be satisfactorily applied to decompose the seismic

  19. The rupture process of the Manjil, Iran earthquake of 20 june 1990 and implications for intraplate strike-slip earthquakes

    Science.gov (United States)

    Choy, G.L.; Zednik, J.

    1997-01-01

    In terms of seismically radiated energy or moment release, the earthquake of 20 January 1990 in the Manjil Basin-Alborz Mountain region of Iran is the second largest strike-slip earthquake to have occurred in an intracontinental setting in the past decade. It caused enormous loss of life and the virtual destruction of several cities. Despite a very large meizoseismal area, the identification of the causative faults has been hampered by the lack of reliable earthquake locations and conflicting field reports of surface displacement. Using broadband data from global networks of digitally recording seismographs, we analyse broadband seismic waveforms to derive characteristics of the rupture process. Complexities in waveforms generated by the earthquake indicate that the main shock consisted of a tiny precursory subevent followed in the next 20 seconds by a series of four major subevents with depths ranging from 10 to 15 km. The focal mechanisms of the major subevents, which are predominantly strike-slip, have a common nodal plane striking about 285??-295??. Based on the coincidence of this strike with the dominant tectonic fabric of the region we presume that the EW striking planes are the fault planes. The first major subevent nucleated slightly south of the initial precursor. The second subevent occurred northwest of the initial precursor. The last two subevents moved progressively southeastward of the first subevent in a direction collinear with the predominant strike of the fault planes. The offsets in the relative locations and the temporal delays of the rupture subevents indicate heterogeneous distribution of fracture strength and the involvement of multiple faults. The spatial distribution of teleseismic aftershocks, which at first appears uncorrelated with meizoseismal contours, can be decomposed into stages. The initial activity, being within and on the periphery of the rupture zone, correlates in shape and length with meizoseismal lines. In the second stage

  20. Post-traumatic stress disorder status in a rescue group after the Wenchuan earthquake relief.

    Science.gov (United States)

    Huang, Junhua; Liu, Qunying; Li, Jinliang; Li, Xuejiang; You, Jin; Zhang, Liang; Tian, Changfu; Luan, Rongsheng

    2013-07-15

    Previous studies have suggested that the incidence of post-traumatic stress disorder in earthquake rescue workers is relatively high. Risk factors for this disorder include demographic characteristics, earthquake-related high-risk factors, risk factors in the rescue process, personality, social support and coping style. This study examined the current status of a unit of 1 040 rescue workers who participated in earthquake relief for the Wenchuan earthquake that occurred on May 12(th), 2008. Post-traumatic stress disorder was diagnosed primarily using the Clinician-Administered Post-traumatic Stress Disorder Scale during structured interviews. Univariate and multivariate statistical analyses were used to examine major risk factors that contributed to the incidence of post-traumatic stress disorder. Results revealed that the incidence of this disorder in the rescue group was 5.96%. The impact factors in univariate analysis included death of family members, contact with corpses or witnessing of the deceased or seriously injured, near-death experience, severe injury or mental trauma in the rescue process and working at the epicenter of the earthquake. Correlation analysis suggested that post-traumatic stress disorder was positively correlated with psychotic and neurotic personalities, negative coping and low social support. Impact factors in multivariate logistic regression analysis included near-death experience, severe injury or mental trauma, working in the epicenter of the rescue, neurotic personality, negative coping and low social support, among which low social support had the largest odds ratio of 20.42. Findings showed that the occurrence of post-traumatic stress disorder was the result of the interaction of multiple factors.