WorldWideScience

Sample records for larger atomic edm

  1. Nucleon Edm from Atomic Systems and Constraints on Supersymmetry Parameters

    OpenAIRE

    Oshima, Sachiko; Nihei, Takeshi; Fujita, Takehisa

    2005-01-01

    The nucleon EDM is shown to be directly related to the EDM of atomic systems. From the observed EDM values of the atomic Hg system, the neutron EDM can be extracted, which gives a very stringent constraint on the supersymmetry parameters. It is also shown that the measurement of Nitrogen and Thallium atomic systems should provide important information on the flavor dependence of the quark EDM. We perform numerical analyses on the EDM of neutron, proton and electron in the minimal supersymmetr...

  2. Nucleon EDM from atomic systems and constraints on supersymmetry parameters

    International Nuclear Information System (INIS)

    Oshima, Sachiko; Nihei, Takeshi; Fujita, Takehisa

    2005-01-01

    The nucleon EDM is shown to be directly related to the EDM of atomic systems. From the observed EDM values of the atomic Hg system, the neutron EDM can be extracted, which gives a very stringent constraint on the supersymmetry parameters. It is also shown that the measurement of Nitrogen and Thallium atomic systems should provide important information on the flavor dependence of the quark EDM. We perform numerical analyses on the EDM of neutron, proton and electron in the minimal supersymmetric standard model with CP-violating phases. We demonstrate that the new limit on the neutron EDM extracted from atomic systems excludes a wide parameter region of supersymmetry breaking masses above 1 TeV, while the old limit excludes only a small mass region below 1 TeV. (author)

  3. Search for permanent EDM using laser cooled Fr atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hirokazu, E-mail: kawamura@cyric.tohoku.ac.jp [Tohoku University, Cyclotron and Radioisotope Center (Japan); Aoki, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Arikawa, H.; Ezure, S. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Harada, K. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Hatanaka, K. [Osaka University, Research Center for Nuclear Physics (Japan); Hayamizu, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Imai, K. [Japan Atomic Energy Agency, Advanced Science Research Center (Japan); Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Murakami, T. [Kyoto University, Department of Physics (Japan); Nataraj, H. S.; Sato, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Shimizu, Y. [Tohoku University, Department of Physics (Japan); Wakasa, T. [Kyushu University, Department of Physics (Japan); Yoshida, H. P. [Osaka University, Research Center for Nuclear Physics (Japan); and others

    2013-03-15

    The existence of a non-zero electric dipole moment (EDM) implies the violation of time reversal symmetry. As the time-reversal symmetry violation predicted by the Standard Model (SM) for the electron EDM is too small to be observed with current experimental techniques and any a non-zero EDM would indicate new physics beyond the SM. The tiny signal from the electron EDM is enhanced in the heavy atoms such as francium (Fr). We are constructing the laser-cooled Fr factory to search for the electron EDM.

  4. Search for a permanent EDM using laser cooled radioactive atom

    International Nuclear Information System (INIS)

    Sakemi, Y; Harada, K; Hayamizu, T; Itoh, M; Kawamura, H; Liu, S; Nataraj, H S; Oikawa, A; Saito, M; Sato, T; Yoshida, H P; Aoki, T; Hatakeyama, A; Murakami, T; Imai, K; Hatanaka, K; Wakasa, T; Shimizu, Y; Uchida, M

    2011-01-01

    An Electric Dipole Moment (EDM) of the elementary particle is a good prove to observe the phenomena beyond the Standard Model. A non-zero EDM shows the violation of the time reversal symmetry, and under the CPT invariance it means the CP violation. In paramagnetic atoms, an electron EDM results in an atomic EDM enhanced by the factor of the 3rd power of the charge of the nucleus due the relativistic effects. A heaviest alkali element francium (Fr), which is the radioactive atom, has the largest enhancement factor K ∼ 895. Then, we are developing a high intensity laser cooled Fr factory at Cyclotron and Radioisotope Center (CYRIC), Tohoku University to perform the search for the EDM of Fr with the accuracy of 10 -29 e · cm. The important points to overcome the current accuracy limit of the EDM are to realize the high intensity Fr source and to reduce the systematic error due to the motional magnetic field and inhomogeneous applied field. To reduce the dominant component of the systematic errors mentioned above, we will confine the Fr atoms in the small region with the Magneto-Optical Trap and optical lattice using the laser cooling and trapping techniques. The construction of the experimental apparatus is making progress, and the new thermal ionizer already produces the Fr of ∼10 6 ions/s with the primary beam intensity 200 nA. The developments of the laser system and optical equipments are in progress, and the present status and future plan of the experimental project is reported.

  5. A new search for the atomic EDM of {sup 129}Xe at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Kuchler, F., E-mail: florian.kuchler@tum.de [Excellence Cluster Universe and Technische Universität München (Germany); Babcock, E. [Juelich Center for Neutron Science (Germany); Burghoff, M. [Physikalisch-Technische Bundesanstalt (Germany); Chupp, T.; Degenkolb, S. [University of Michigan (United States); Fan, I. [Physikalisch-Technische Bundesanstalt (Germany); Fierlinger, P. [Excellence Cluster Universe and Technische Universität München (Germany); Gong, F. [University of Michigan (United States); Kraegeloh, E. [Excellence Cluster Universe and Technische Universität München (Germany); Kilian, W.; Knappe-Grüneberg, S. [Physikalisch-Technische Bundesanstalt (Germany); Lins, T.; Marino, M.; Meinel, J.; Niessen, B. [Excellence Cluster Universe and Technische Universität München (Germany); Sachdeva, N. [University of Michigan (United States); Salhi, Z. [Juelich Center for Neutron Science (Germany); Schnabel, A.; Seifert, F. [Physikalisch-Technische Bundesanstalt (Germany); Singh, J. [Michigan State University and NSCL (United States); and others

    2016-12-15

    Permanent electric dipole moments (EDMs) arise due to the breaking of time-reversal or, equivalently, CP-symmetry. Although EDM searches have so far only set upper limits, which are many orders of magnitude larger than Standard Model (SM) predictions, the motivation for more sensitive searches is stronger than ever. A new effort at FRM-II incorporating {sup 129}Xe and {sup 3}He as a co-magnetometer can potentially improve the current limit. The noble gas mixture of {sup 129}Xe and {sup 3}He is simultanously polarized by spin-exchange optical pumping and then transferred into a high-performance magnetically shielded room. Inside, both species can freely precess in the presence of applied magnetic and electric fields. The precession signals are detected by LTc SQUID sensors. In EDM cells with silicon electrodes we observed spin lifetimes in excess of 2500 s without and with high-voltage applied. This meets one requirement to achieve our goal of improving the EDM limit on {sup 129}Xe by several orders of magnitude.

  6. Muon and deuteron EDM experiments

    NARCIS (Netherlands)

    Onderwater, CJG

    Permanent electric dipole moments (EDMs) violate parity and time-reversal symmetry, and are therefore practically zero in the Standard Model (SM). Many extensions of the SM predict much larger EDMs, which are therefore an excellent probe for the existence of new physics. Until recently it was

  7. Effect of multiple autoclave cycles on the surface roughness of HyFlex CM and HyFlex EDM files: an atomic force microscopy study.

    Science.gov (United States)

    Yılmaz, K; Uslu, G; Özyürek, T

    2018-02-13

    To compare the effect of autoclave cycles on the surface topography and roughness of HyFlex CM and HyFlex EDM instruments using atomic force microscopy (AFM) analysis. Eight new files of each brand were subdivided into four subgroups (n = 2/each subgroup). One group was allocated as the control group and not subjected to autoclave sterilization. The other three groups were subjected to different numbers (1, 5, and 10) of autoclave sterilization cycles. After the cycle instruments were subjected to AFM analysis. Roughness average (Ra) and the root mean square (RMS) values were chosen to investigate the surface features of endodontic files. The data was analyzed using one-way ANOVA and post hoc Tamhane tests at 5% significant level. The lowest Ra and RMS values were observed in the HyFlex EDM files that served as the control and in those subjected to a single cycle of autoclave sterilization (P cycles of autoclave sterilization (P cycles, whereas those of the HyFlex EDM group exhibited a significant change after five autoclave cycles (P cycles of autoclave sterilization. In contrast, the surface roughness values of the HyFlex CM files did not increase until 10 cycles of autoclave sterilization. Present study indicated that autoclave sterilization negatively affected the surface roughness of the tested NiTi files.

  8. Muon and Deuteron EDM Experiments

    International Nuclear Information System (INIS)

    Onderwater, C.J.G.

    2006-01-01

    Permanent electric dipole moments (EDMs) violate parity and time-reversal symmetry, and are therefore practically zero in the Standard Model (SM). Many extensions of the SM predict much larger EDMs, which are therefore an excellent probe for the existence of new physics. Until recently it was believed that only electrically neutral systems could be used for sensitive search of EDMs. The search on charged systems has become feasible with the introduction of a novel experimental method. This method makes use of the strong motional electric fields that a relativistic charged particle experiences in a magnetic field. It provides direct access to the very interesting realm of light nuclei and other charged particles, which so far have not been examined for EDMs. The features of this method and its possibilities are discussed

  9. Search for EDMs using Storage Rings

    International Nuclear Information System (INIS)

    Onderwater, C J G

    2011-01-01

    Permanent electric dipole moments (EDMs) violate parity and time-reversal symmetry. Within the Standard Model (SM), they require CP violation and are many orders of magnitude below present experimental sensitivity. Many extensions of the SM predict much larger EDMs, which are therefore an excellent probe for the existence of new physics. Until recently it was believed that only electrically neutral systems could be used for sensitive searches of EDMs. With the introduction of a novel experimental method, high precision for charged systems will be within reach as well. The features of this method and its possibilities and status are discussed.

  10. Introducing the new EDMS

    CERN Multimedia

    The EDMS Team

    2014-01-01

    We are very pleased to announce the arrival of a brand new EDMS: EDMS 6. The CERN Engineering and Equipment Data Management Service just got better than ever! EDMS is the de facto interface for all engineering related data and more. Currently there are more than 1.2 million documents and nearly 2 million files stored in EDMS.   What’s new? The first thing you will notice is the look and feel of EDMS 6; the new design not only makes it more modern but also more intuitive, so that the system is easier to use, regardless of your experience with EDMS. Whilst we have kept the key concepts, we have introduced more functionality and improved navigation within the interface, allowing for better performance to help you in your daily work. We have also added a personal slant to EDMS 6 so that you can now customise your list of favourite objects. Modifying data in EDMS is much simpler, allowing you to view all object data in a single window.  More functionality will be added in the ...

  11. Light ion EDM search in magnetic storage rings

    International Nuclear Information System (INIS)

    Onderwater, C. J. G.

    2006-01-01

    Permanent electric dipole moments (EDMs) violate parity and time-reversal symmetry. Within the Standard Model (SM), they require CP violation and are many orders of magnitude below present experimental sensitivity. Many extensions of the SM predict much larger EDMs, which are therefore an excellent probe for the existence of 'new physics.' So far only electrically neutral systems were used for sensitive searches of EDMs. Several techniques, based on storing fast particles in a magnetic storage ring, are being developed to probe charged particles for an EDM. With the introduction of these novel experimental methods, high sensitivity for charged systems, in particular light nuclei, is within reach.

  12. Light ion EDM search in magnetic storage rings

    NARCIS (Netherlands)

    Onderwater, C. J. G.

    Permanent electric dipole moments (EDMs) violate parity and time-reversal symmetry. Within the Standard Model (SM), they require CP violation and are many orders of magnitude below present experimental sensitivity. Many extensions of the SM predict much larger EDMs, which are therefore an excellent

  13. Possible Suppression of Neutron EDM

    OpenAIRE

    ASAGA, Tomoko; Fujita, Takehisa

    2002-01-01

    Employing generalized Schiff's transformation on electric dipole moments (EDM) in quantum field theory, we show that the chromoelectric EDM lagrangian density is transformed into the electric EDM term with a new coefficient. Under the new constraint on the EDM operators, the neutron EDM can be described by a unique combination of electric EDM $d_f$ and chromoelectric EDM ${\\tilde d}_f $ of quarks. If the special relation of $\\displaystyle{d_f={e_f\\over{2g_s}}{\\tilde d}_f}$ holds, then the neu...

  14. EDM forum supplement overview.

    Science.gov (United States)

    Calonge, Ned

    2012-07-01

    The Agency for Health Research and Quality funded the Electronic Data Methods Forum (EDM Forum) to share the experiences and learnings from 11 research teams funded through three different grant programs, each of which involve the use of electronic clinical data in Comparative Effectiveness Research and Patient-Centered Outcomes Research. This overview is meant to describe the context in which the EDM forum was created and to introduce the set of papers in this supplement to Medical Care that describe the challenges and approaches to the use of electronic clinical data in the three key areas of analytic methods, clinical informatics and data governance. The participants in the EDM Forum are providing innovative approaches to generate information that can support the building of a "learning health care system." The compilation of papers presented in this supplement should serve as a resource to others working to develop the infrastructure for collecting, validating and using electronic data for research.

  15. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  16. Making EDM Electrodes By Stereolithography

    Science.gov (United States)

    Barlas, Philip A.

    1988-01-01

    Stereolithography is computer-aided manufacturing technique. Used to make models and molds of electrodes for electrical-discharge machining (EDM). Eliminates intermediate steps in fabrication of plastic model of object used in making EDM electrode to manufacture object or mold for object.

  17. EDMS - Reaching the Million Mark

    CERN Multimedia

    2009-01-01

    When Christophe Seith from the company Cegelec sat down to work on 14 May 2009 at 10:09 a.m. to create the EDMS document entitled "Rapport tournée PH semaine 20", little did he know that he would be the proud creator of the millionth EDMS document and the happy prize winner of a celebratory bottle of champagne to mark the occasion. In the run up to the creation of the millionth EDMS document the EDMS team had been closely monitoring the steady rise in the EDMS number generator, so as to ensure the switch from the six figured i.d. to seven figures would run smoothly and of course, to be able to congratulate the creator of the millionth EDMS document. From left to right: Stephan Petit (GS-ASE- EDS Section Leader), Christophe Delamare (GS- ASE Group Leader), Christophe Seith, creator of the millionth EDMS document, David Widegren, (GS-ASE- EPS Section Leader). The millionth EDMS document. For t...

  18. Searching for the electron EDM in a storage ring

    International Nuclear Information System (INIS)

    Kawall, D

    2011-01-01

    Searches for permanent electric dipole moments (EDM) of fundamental particles have been underway for more than 50 years with null results. Still, such searches are of great interest because EDMs arise from radiative corrections involving processes that violate parity and time-reversal symmetries, and through the CPT theorem, are sensitive to CP-violation. New models of physics beyond the standard model predict new sources of CP-violation leading to dramatically enhanced EDMs possibly within the reach of a new generation of experiments. We describe a new approach to electron EDM searches using molecular ions stored in a tabletop electrostatic storage ring. Molecular ions with long-lived paramagnetic states such as tungsten nitride WN + can be injected and stored in larger numbers and with longer coherence times than competing experiments, leading to high sensitivity to an electron EDM. Systematic effects mimicking an EDM such as those due to motional magnetic fields and geometric phases are found not to limit the approach in the short term, and sensitivities of δ|d e | ∼ 10 -30 e·cm/day appear possible under conservative conditions.

  19. Intrinsic electric dipole moments of paramagnetic atoms : Rubidium and cesium

    NARCIS (Netherlands)

    Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2008-01-01

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar-pseudoscalar (S-PS) electron-nucleus interaction. The electron EDM and the S-PS contributions to the EDMs of these atoms scale as approximate to

  20. Improved experimental limit on the EDM of 225Ra

    Science.gov (United States)

    Bishof, Michael; Bailey, Kevin; Dietrich, Matthew R.; Greene, John P.; Holt, Roy J.; Kalita, Mukut R.; Korsch, Wolfgang; Lemke, Nathan D.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Tom P.; Parker, Richard H.; Rabga, Tenzin; Singh, Jaideep T.

    2015-10-01

    Searches for permanent electric dipole moments (EDMs) in fundamental and composite particles are sensitive probes of beyond-standard-model symmetry violation that could explain the dominance of matter over anti-matter. The 225Ra (t1/2 = 15d, I = 1/2) atom is a particularly attractive system to use for an EDM measurement because its large nuclear octupole deformation, closely spaced ground-state parity doublet, and large atomic mass make 225Ra uniquely sensitive to symmetry-violating interactions in the nuclear medium. We have developed an experiment to measure the EDM of 225Ra and demonstrated the first ``proof-of-principle'' measurement, giving a 95% confidence upper limit of 5E-22 e-cm. After implementing a vacuum upgrade, we have observed nuclear spin coherence after 20 s of free evolution - a factor of ten improvement over our earlier results - and have lowered the 225Ra EDM limit by over an order of magnitude. Upcoming experimental upgrades have the potential to further improve our EDM sensitivity by many orders of magnitude, allowing us to test symmetry violation at an unprecedented level. This work is supported by U.S. DOE, Office of Science, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.

  1. Present status of the {sup 129}Xe comagnetometer development for neutron EDM measurement

    Energy Technology Data Exchange (ETDEWEB)

    Mihara, M., E-mail: mihara@vg.phys.sci.osaka-u.ac.jp [Osaka University, Department of Physics (Japan); Masuda, Y. [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK) (Japan); Matsuta, K. [Osaka University, Department of Physics (Japan); Kawasaki, S.; Watanabe, Y. [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK) (Japan); Hatanaka, K.; Matsumiya, R. [Osaka University, Research Center for Nuclear Physics (RCNP) (Japan)

    2016-12-15

    A {sup 129}Xe comagnetometer designed for the measurement of neutron electric dipole moment (nEDM) as precisely as 1 × 10{sup −27}e cm is presented. Highly nuclear spin polarized {sup 129}Xe are introduced into an EDM cell where the {sup 129}Xe spin precession is detected by means of the two-photon transition. The geometric phase effect (GPE) which generates the false nEDM was quantitatively discussed and the systematic error of nEDM from the GPE was estimated considering the buffer-gas suppression due to Xe atomic collisions. Research and development are in progress to construct the {sup 129}Xe comagnetometer with a field sensitivity of 0.3 fT. At present, about 70 % nuclear spin polarized {sup 129}Xe atoms have been obtained in a spin exchange opitial pumping cell, that are in the process of being transferred into the EDM cell via a cold trap.

  2. Computing nucleon EDM on a lattice

    Science.gov (United States)

    Abramczyk, Michael; Aoki, Sinya; Blum, Tom; Izubuchi, Taku; Ohki, Hiroshi; Syritsyn, Sergey

    2018-03-01

    I will discuss briefly recent changes in the methodology of computing the baryon EDM on a lattice. The associated correction substantially reduces presently existing lattice values for the proton and neutron theta-induced EDMs, so that even the most precise previous lattice results become consistent with zero. On one hand, this change removes previous disagreements between these lattice results and the phenomenological estimates of the nucleon EDM. On the other hand, the nucleon EDM becomes much harder to compute on a lattice. In addition, I will review the progress in computing quark chromo-EDM-induced nucleon EDM using chiral quark action.

  3. Computing nucleon EDM on a lattice

    Energy Technology Data Exchange (ETDEWEB)

    Abramczyk, Michael; Izubuchi, Taku

    2017-06-18

    I will discuss briefly recent changes in the methodology of computing the baryon EDM on a lattice. The associated correction substantially reduces presently existing lattice values for the proton and neutron theta-induced EDMs, so that even the most precise previous lattice results become consistent with zero. On one hand, this change removes previous disagreements between these lattice results and the phenomenological estimates of the nucleon EDM. On the other hand, the nucleon EDM becomes much harder to compute on a lattice. In addition, I will review the progress in computing quark chromo-EDM-induced nucleon EDM using chiral quark action.

  4. Bacillus subtilis EdmS (formerly PgsE) participates in the maintenance of episomes.

    Science.gov (United States)

    Ashiuchi, Makoto; Yamashiro, Daisuke; Yamamoto, Kento

    2013-09-01

    Extrachromosomal DNA maintenance (EDM) is an important process in molecular breeding and for various applications in the construction of genetically engineered microbes. Here we describe a novel Bacillus subtilis gene involved in EDM function called edmS (formerly pgsE). Functional gene regions were identified using molecular genetics techniques. We found that EdmS is a membrane-associated protein that is crucial for EDM. We also determined that EdmS can change a plasmid vector with an unstable replicon and worse-than-random segregation into one with better-than-random segregation, suggesting that the protein functions in the declustering and/or partitioning of episomes. EdmS has two distinct domains: an N-terminal membrane-anchoring domain and a C-terminal assembly accelerator-like structure, and mutational analysis of edmS revealed that both domains are essential for EDM. Further studies using cells of Bacillus megaterium and itsedmS (formerly capE) gene implied that EdmS has potential as a molecular probe for exploring novel EDM systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. EDMS 6: modern and intuitive

    CERN Multimedia

    Anaïs Schaeffer

    2014-01-01

    As announced in Bulletin No. 14-15/2014 (see here), a new version of the system used to manage technical data and data concerning CERN equipment (EDMS, Engineering and Equipment Data Management Service) is now available.   A unique interface for all data linked to CERN’s engineering work, EDMS currently stores more than 1.2 million documents containing almost 2 million files, guaranteeing the transfer of protected information and knowledge to future generations of engineers and scientists at CERN, be it the design data and documentation for a specific object (technical specifications, test procedures, non-conformities, drawings, etc.) or technical information about the Laboratory’s infrastructure and scientific equipment. In a few months, the new EDMS 6 system will replace the current system definitively, offering its 13,000 users a more modern and intuitive interface that meets their expectations. “We've been working in close collaboration with some of ...

  6. The Evolution of CERN EDMS

    Science.gov (United States)

    Wardzinska, Aleksandra; Petit, Stephan; Bray, Rachel; Delamare, Christophe; Garcia Arza, Griselda; Krastev, Tsvetelin; Pater, Krzysztof; Suwalska, Anna; Widegren, David

    2015-12-01

    Large-scale long-term projects such as the LHC require the ability to store, manage, organize and distribute large amounts of engineering information, covering a wide spectrum of fields. This information is a living material, evolving in time, following specific lifecycles. It has to reach the next generations of engineers so they understand how their predecessors designed, crafted, operated and maintained the most complex machines ever built. This is the role of CERN EDMS. The Engineering and Equipment Data Management Service has served the High Energy Physics Community for over 15 years. It is CERN's official PLM (Product Lifecycle Management), supporting engineering communities in their collaborations inside and outside the laboratory. EDMS is integrated with the CAD (Computer-aided Design) and CMMS (Computerized Maintenance Management) systems used at CERN providing tools for engineers who work in different domains and who are not PLM specialists. Over the years, human collaborations and machines grew in size and complexity. So did EDMS: it is currently home to more than 2 million files and documents, and has over 6 thousand active users. In April 2014 we released a new major version of EDMS, featuring a complete makeover of the web interface, improved responsiveness and enhanced functionality. Following the results of user surveys and building upon feedback received from key users group, we brought what we think is a system that is more attractive and makes it easy to perform complex tasks. In this paper we will describe the main functions and the architecture of EDMS. We will discuss the available integration options, which enable further evolution and automation of engineering data management. We will also present our plans for the future development of EDMS.

  7. Testing EDM of Total Stations

    Directory of Open Access Journals (Sweden)

    Cirbus Ján

    2001-03-01

    Full Text Available The paper is devoted to testing electrooptical distance measuring devices (EDM built in total stations, than can be used for various tasks in the contemporary geodetic works. A rich market offer and availability of these universal measuring systems with satisfying distance range, excellent accuracy and other parameters, make total stations as dominant terrestrial geodetic instruments.For succesfully applying these instruments, above all for relliable distance measurements, the stability of the modulation frequency is the most important pre-condition. In the article, therefore, there are given some methods to verify the modulation frequency stability. In addition, some ways for determining the EDM distance constant and periodical corrections of the phase measuring unit are introduced for 4 types of EDM : LEICA 1700L, TOPCON GTS6A, TOPCON GTS2, C.ZEISS ELTA50. It were also investigated their possibilities for precise distance survey. Values of the determined constants and periodical corrections are presented in Tab. 2.Based on the investigation results of the 4 EDM types and using the values m obtained for different distances S, equations of the a posteriori standard deviations in form : m = (a+b.S were derived too.

  8. The Evolution of CERN EDMS

    CERN Document Server

    Wardzinska, Aleksandra; Bray, Rachel; Delamare, Christophe; Arza, Griselda Garcia; Krastev, Tsvetelin; Pater, Krzysztof; Suwalska, Anna; Widegren, David

    2015-01-01

    Large-scale long-term projects such as the LHC require the ability to store, manage, organize and distribute large amounts of engineering information, covering a wide spectrum of fields. This information is a living material, evolving in time, following specific lifecycles. It has to reach the next generations of engineers so they understand how their predecessors designed, crafted, operated and maintained the most complex machines ever built.This is the role of CERN EDMS. The Engineering and Equipment Data Management Service has served the High Energy Physics Community for over 15 years. It is CERN's official PLM (Product Lifecycle Management), supporting engineering communities in their collaborations inside and outside the laboratory. EDMS is integrated with the CAD (Computer-aided Design) and CMMS (Computerized Maintenance Management) systems used at CERN providing tools for engineers who work in different domains and who are not PLM specialists.Over the years, human collaborations and machines grew in si...

  9. Investigation of near dry EDM compared with wet and dry EDM processes

    International Nuclear Information System (INIS)

    Gholipoor, Ahad; Baseri, Hamid; Shabgard, Mohammad Reza

    2015-01-01

    Material removal rate (MRR), tool wear ratio (TWR) and surface roughness (SR) obtained by near-dry EDM process were compared with wet and dry EDM at three levels of discharge energy in drilling of SPK steel. Surface integrity machined by this process was studied and compared with wet and dry EDM processes, by scanning electron microscopy (SEM). The results showed that at high level of discharge energy, wet EDM has the most MRR, TWR and SR, and dry EDM has the least MRR, TWR and SR, while at low discharge energy levels, near-dry EDM process has the most MRR and the least SR. SEM micrographs showed that the quality of surface obtained by near-dry EDM process is better than others and the machined surfaces by near-dry EDM process have lower micro-cracks and craters, relatively.

  10. Investigation of near dry EDM compared with wet and dry EDM processes

    Energy Technology Data Exchange (ETDEWEB)

    Gholipoor, Ahad [Islamic Azad University of Tabriz, Tabriz (Iran, Islamic Republic of); Baseri, Hamid [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shabgard, Mohammad Reza [University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-05-15

    Material removal rate (MRR), tool wear ratio (TWR) and surface roughness (SR) obtained by near-dry EDM process were compared with wet and dry EDM at three levels of discharge energy in drilling of SPK steel. Surface integrity machined by this process was studied and compared with wet and dry EDM processes, by scanning electron microscopy (SEM). The results showed that at high level of discharge energy, wet EDM has the most MRR, TWR and SR, and dry EDM has the least MRR, TWR and SR, while at low discharge energy levels, near-dry EDM process has the most MRR and the least SR. SEM micrographs showed that the quality of surface obtained by near-dry EDM process is better than others and the machined surfaces by near-dry EDM process have lower micro-cracks and craters, relatively.

  11. Electrical Discharge Machining (EDM: A Review

    Directory of Open Access Journals (Sweden)

    Asfana Banu

    2016-09-01

    Full Text Available Electro discharge machining (EDM process is a non-conventional and non-contact machining operation which is used in industry for high precision products. EDM is known for machining hard and brittle conductivematerials since it can melt any electrically conductive material regardless of its hardness. The workpiece machined by EDM depends on thermal conductivity, electrical resistivity, and melting points of the materials. The tool and the workpiece are adequately both immersed in a dielectric medium, such as, kerosene, deionised water or any other suitable fluid. This paper is reviewed comprehensively on types of EDM operation. A brief discussion is also done on the machining responses and mathematical modelling.

  12. Lorentz-violating contributions to the nuclear Schiff moment and nuclear EDM

    Science.gov (United States)

    Araujo, Jonas B.; Casana, Rodolfo; Ferreira, Manoel M.

    2018-03-01

    In the context of an atom endowed with nuclear electric dipole moments (EDM), we consider the effects on the Schiff moment of C P T -even Lorentz-violating (LV) terms that modify the Coulomb potential. First, we study the modifications on the Schiff moment when the nucleus interacts with the electronic cloud by means of a Coulomb potential altered only by the P -even LV components. Next, by supposing the existence of an additional intrinsic LV EDM generated by other LV sources, we assess the corrections to the Schiff moment when the interaction nucleus-electrons runs mediated by a Coulomb potential modified by both the P -odd and P -even LV components. We then use known estimates and EDM measurements to discuss upper bounds on the new Schiff moment components and the possibility of a nuclear EDM component ascribed to LV effects.

  13. Storage ring proton EDM experiment

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    sensitivity of 10^-29 e-cm.  The strength of the method originates from the fact that there are high intensity polarized proton beams available and the fact that the so-called geometric phase systematic error background cancels with clock-wise and counter-clock-wise storage possible in electric rings. The ultimate sensitivity of the method is 10^-30 e-cm. At this level it will either detect a non-zero EDM or it will eliminate electro-weak baryogenesis.

  14. Intrinsic Electric Dipole Moments of Paramagnetic Atoms: Rubidium and Cesium

    OpenAIRE

    Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2008-01-01

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar--pseudo-scalar (S-PS) electron-nucleus interactions. The electron EDM and the S-PS EDM contribution to atomic EDM scales as Z^3. Thus, the heavy paramagnetic atomic systems will exhibit large enhancement factors. However, the nature of the coupling is so small that it becomes an interest of high precision atomic experiments. In this work, we...

  15. Search for an Electric Dipole Moment (EDM) of 199Hg

    Science.gov (United States)

    Heckel, Blayne

    2017-04-01

    The observation of a non-zero EDM of an atom or elementary particle, at current levels of experimental sensitivity, would imply CP violation beyond the CKM matrix of the standard model of particle physics. Additional sources of CP violation have been proposed to help explain the excess of matter over anti-matter in our universe and the magnitude of ΘQCD, the strength of CP violation in the strong interaction, remains unknown. We have recently completed a set of measurements on the EDM of 199Hg, sensitive to both new sources of CP violation and ΘQCD. The experiment compares the phase accumulated by precessing Hg spins in vapor cells with electric fields parallel and anti-parallel to a common magnetic field. Our new result represents a factor of 5 improvement over previous results. A description of the EDM experiment, data, systematic error considerations will be presented. This work was supported by NSF Grant No. 1306743 and by the DOE Office of Nuclear Physics under Award No. DE-FG02-97ER41020.

  16. Development of an operations evaluation system for sinking EDM

    NARCIS (Netherlands)

    Lauwers, B.; Oosterling, J.A.J.; Vanderauwera, W.

    2010-01-01

    This paper describes the development and validation of an operations evaluation system for sinking EDM operations. Based on a given workpiece geometry (e.g. mould), regions to be EDM'ed are automatically indentified. For a given electrode configuration, consisting of one or more regions, EDM

  17. Machine Vision System for Characterizing the Electric Field for the 225 Ra EDM Experiment

    Science.gov (United States)

    Sanchez, Andrew

    2017-09-01

    If an atom or fundamental particle possesses an electric dipole moment (EDM), that would imply time-reversal violation. At our current capability, if an EDM is detected in such a particle, that would suggest the discovery of beyond the standard model (BSM) physics. The unique structure of 225 Ra makes its atomic EDM favorable in the BSM search. An upgraded Ra-EDM apparatus will increase experimental sensitivity and the target electric field of 150 kV/cm will more than double the electric field used in previous experiments. To determine the electric field, the potential difference and electrode separation distance must be known. The optical method I have developed is a high-precision, non-invasive technique to measure electrode separation without making contact with the sensitive electrode surfaces. A digital camera utilizes a bi-telecentric lens to reduce parallax error and produce constant magnification throughout the optical system, regardless of object distance. A monochrome LED backlight enhances sharpness of the electrode profile, reducing uncertainty in edge determination and gap width. A program utilizing an edge detection algorithm allows precise, repeatable measurement of the gap width to within 1% and measurement of the relative angle of the electrodes. This work (SAM, Ra EDM) is supported by Michigan State University. This work (REU Program) is supported by U.S. National Science Foundation under Grant Number #1559866.

  18. Neutron-electron EDM correlations in supersymmetry and prospects for EDM searches

    International Nuclear Information System (INIS)

    Abel, Steven A.; Lebedev, Oleg

    2006-01-01

    Motivated by recent progress in experimental techniques of electric dipole moment (EDM) measurements, we study correlations between the neutron and electron EDMs in common supersymmetric models. These include minimal supergravity (mSUGRA) with small CP phases, mSUGRA with a heavy SUSY spectrum, the decoupling scenario and split SUSY. In most cases, the electron and neutron EDMs are found to be observable in the next round of EDM experiments. They exhibit certain correlation patterns. For example, if d n ∼ 10 -27 e cm is found, d e is predicted to lie in the range 10 -28 -10 -29 e cm

  19. Neutron-electron EDM correlations in supersymmetry and prospects for EDM searches

    International Nuclear Information System (INIS)

    Abel, S.A.

    2005-08-01

    Motivated by recent progress in experimental techniques of electric dipole moment (EDM) measurements, we study correlations between the neutron and electron EDMs in common supersymmetric models. These include minimal supergravity (mSUGRA) with small CP phases, mSUGRA with a heavy SUSY spectrum, the decoupling scenario and split SUSY. In most cases, the electron and neutron EDMs are found to be observable in the next round of EDM experiments. They exhibit certain correlation patterns. For example, if d n ∝ 10 -27 e cm is found, d e is predicted to lie in the range 10 -28 - 10 -29 e cm. (orig.)

  20. A powerful search for EDMS 6

    CERN Multimedia

    2015-01-01

    Since the end of May, EDMS 6 has featured a brand new search solution. You might have already noticed the changes if you have run the search recently. We have integrated EDMS with the central CERN Search service, allowing EDMS to benefit from the central engine for queries and CERN search from EDMS public data, which can now be found directly via the CERN Search portal. The integration is a result of a very successful collaboration between the EDMS and the CERN Search teams.   What’s new in EDMS search The most important advantage of the new search is enabling searches in the files. While in the old search you could query only the document metadata, now the search also scans the content of the files attached to the documents. This allows for more relevant results, as the hit may be found both in the metadata or in the file. The result is displayed in the Documents & Files tab and the small icon indicates whether the object in which the queried terms were found is a file or a docume...

  1. New Year, new interface for EDMS!

    CERN Multimedia

    2015-01-01

    Some of you may already have made the leap to the new EDMS6 interface and be benefitting from the additional functionality and new design it has to offer. But for those who haven’t, you will be able to do so as of Wednesday 28 January when EDMS6 becomes the default interface.    EDMS is the de facto interface for all engineering related data and more. There are currently more than 1.5 million documents and over 2 million files stored there. What’s new in EDMS6? While we have kept the key concepts, we have introduced more functionality and improved navigation within the interface, allowing for better performance to help you in your daily work. We have also added a personal slant to EDMS6 so that you can now customise your list of favourite objects. Modifying data in EDMS is much simpler, allowing you to view all object data in a single window. For example, files can be added to documents with a simple drag and drop and you can now request access to documents...

  2. Progress of the nEDM experiment at the Paul Scherrer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kasprzak, Małgorzata, E-mail: malgorzata.kasprzak@fys.kuleuven.be [University of Leuven, Institute for Nuclear and Radiation Physics (Belgium)

    2016-12-15

    Advances in experimental searches for a neutron Electric Dipole Moment (nEDM, d{sub n}) are motivated by the potential discovery of a new source of CP violation beyond the Standard Model of particle physics. The nEDM experiment at the Paul Scherrer Institute (PSI), which with accumulated sensitivity of 1.09 × 10{sup −26}e⋅cm (September 2016) is currently the most sensitive nEDM experiment worldwide, uses the Ramsey technique of separated oscillatory fields applied to stored ultracold neutrons. The nEDM measurements depend upon precise information about the magnetic field, which is monitored by a {sup 199}Hg co-magnetometer and an array of {sup 133}Cs magnetometers. The principle of the magnetic field measurement is based on the optical detection of the Larmor precession frequency of atoms polarized by optical pumping. In this article we present the recent progress of the nEDM experiment as well as details of a magnetic field measurements with special focus on the laser-operated array of high-sensitivity {sup 133}Cs magnetometers.

  3. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    International Nuclear Information System (INIS)

    Guu, Y.H.

    2005-01-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM

  4. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    Science.gov (United States)

    Guu, Y. H.

    2005-04-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.

  5. Effect of machining parameters on surface textures in EDM of Fe-Mn-Al alloy

    International Nuclear Information System (INIS)

    Guu, Y.H.; Hou, Max Ti-Kuang

    2007-01-01

    In this work, the surface characteristics caused by EDM were analyzed by means of the atomic force microscopy (AFM) technique. An empirical model of Fe-Mn-Al alloy was proposed based on the experimental data. A qualitative energy dispersive spectroscopic analyzer was used to measure the chemical composition of the specimen. Surface hardness was determined with a microhardness tester. Experimental results indicate that the EDM process causes a ridged surface and induces machining damage in the surface layer, and increases the surface roughness. The depth of micro-cracks, micro-voids and machined damage increase with an increase in the amount of pulsed current and pulse-on duration. The effect of the magnitude of the pulse-on duration on the surface texture of the specimen is more significant than the pulsed current. Furthermore, the AFM method reveals the 3D surface textures of the EDM specimen with a nanometer scale

  6. CP violation in atoms

    International Nuclear Information System (INIS)

    Barr, S.M.

    1992-01-01

    Electric dipole moments of large atoms are an excellent tool to search for CP violation beyond the Standard Model. These tell us about the electron EDM but also about CP-violating electron-nucleon dimension-6 operators that arise from Higgs-exchange. Rapid strides are being made in searches for atomic EDMs. Limits on the electron EDM approaching the values which would be expected from Higgs-exchange mediated CP violation have been achieved. It is pointed out that in this same kind of model if tan β is large the effects in atoms of the dimension-6 e - n operators may outweigh the effect of the electron EDM. (author) 21 refs

  7. EDM: Neutron electric dipole moment measurement

    Directory of Open Access Journals (Sweden)

    Peter Fierlinger

    2016-02-01

    Full Text Available An electric dipole moment (EDM of the neutron would be a clear sign of new physics beyond the standard model of particle physics. The search for this phenomenon is considered one of the most important experiments in fundamental physics and could provide key information on the excess of matter versus antimatter in the universe. With high measurement precision, this experiment aims to ultimately achieve a sensitivity of 10-28 ecm, a 100-fold improvement in the sensitivity compared to the state-of-the-art. The EDM instrument is operated by an international collaboration based at the Technische Universität München.

  8. Advances in the EDM-DEDM procedure.

    Science.gov (United States)

    Caliandro, Rocco; Carrozzini, Benedetta; Cascarano, Giovanni Luca; Giacovazzo, Carmelo; Mazzone, Anna Maria; Siliqi, Dritan

    2009-03-01

    The DEDM (difference electron-density modification) algorithm has been described in a recent paper [Caliandro et al. (2008), Acta Cryst. A64, 519-528]: it breaks down the collinearity between model structure phases and difference structure phase estimates. The new difference electron-density produced by DEDM, summed to the calculated Fourier maps, is expected to provide a representation of the full structure that is more accurate than that obtained by the observed Fourier synthesis. In the same paper, the DEDM algorithm was combined with the EDM (electron-density modification) approach to give the EDM-DEDM procedure which, when applied to practical molecular-replacement cases, was able to improve the model structures. In this paper, it is shown that EDM-DEDM suffers from some critical points that did not allow cyclical application of the procedure. These points are identified and modifications are made to allow iteration of the procedure. The applications indicate that EDM-DEDM may become a fundamental tool in protein crystallography.

  9. EDMS based workflow for Printing Industry

    Directory of Open Access Journals (Sweden)

    Prathap Nayak

    2013-04-01

    Full Text Available Information is indispensable factor of any enterprise. It can be a record or a document generated for every transaction that is made, which is either a paper based or in electronic format for future reference. A Printing Industry is one such industry in which managing information of various formats, with latest workflows and technologies, could be a nightmare and a challenge for any operator or an user when each process from the least bit of information to a printed product are always dependendent on each other. Hence the information has to be harmonized artistically in order to avoid production downtime or employees pointing fingers at each other. This paper analyses how the implementation of Electronic Document Management System (EDMS could contribute to the Printing Industry for immediate access to stored documents within and across departments irrespective of geographical boundaries. The paper outlines initially with a brief history, contemporary EDMS system and some illustrated examples with a study done by choosing Library as a pilot area for evaluating EDMS. The paper ends with an imitative proposal that maps several document management based activities for implementation of EDMS for a Printing Industry.

  10. Ultrasonic Abrasive Removal Of EDM Recast

    Science.gov (United States)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  11. Tracking studies towards EDM measurements at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Marcel [Institut fuer Kernphysik, Forschungszentrum Juelich, Juelich (Germany); Physikalisches Institut III B, RWTH Aachen, Aachen (Germany)

    2015-07-01

    Electric Dipole Moments (EDMs) violate parity and time reversal symmetries. Therefore, direct measurements of charged particles' EDMs would be a strong hint for physics beyond the Standard Model. The JEDI collaboration investigates the feasibility of such measurements for protons, deuterons, and Helium3 in storage rings. Precursor studies are performed at the existing conventional Cooler Synchtrotron COSY in Juelich. A measurement time of about 1000 seconds is proposed. This requires a setup providing a long spin coherence time in the plane perpendicular to the invariant spin axis. During the measurement run, it is planned to use radiofrequency devices to create an EDM related signal. The contribution of imperfections, which could mimic such a signal, is explored in beam and spin dynamics simulations. The software framework COSY INFINITY is used to calculate transfer maps of the magnets and performs long term tracking studies. Recent efforts extend the code by the EDM contribution to spin motion and by the calculation of timedependent maps required for tracking in nonstatic fields. These enhancements are benchmarked with analytical predictions and with test measurements at COSY.

  12. The permanent electric dipole moment of the neutron and atomic 129Xe

    International Nuclear Information System (INIS)

    Heckel, B.

    1984-01-01

    Recently the Seattle group has measured the permanent edm of atomic 129 Xe to be d /sub Xe/ = (-0.3 + or - 1.1) x 10 -26 cm. This measurement provides an improvement by a factor of 10 4 over the best previous measurement of an atomic edm. The edm of Xe is most sensitive to a T-violating electron-nucleon interaction, but can also be generated by an intrinsic electron edm or an edm of the Xe nucleus. In the second half of this presentation, each of these mechanisms will be briefly discussed and a description of the experiment will be given

  13. Extra-chromosomal DNA maintenance in Bacillus subtilis, dependence on flagellation factor FliF and moonlighting mediator EdmS.

    Science.gov (United States)

    Hakumai, Yuichi; Shimomoto, Kouko; Ashiuchi, Makoto

    2015-05-15

    Extra-chromosomal DNA maintenance (EDM) as an important process in the propagation and genetic engineering of microbes. Bacillus subtilis EdmS (formerly PgsE), a protein comprising 55 amino acids, is a mediator of the EDM process. In this study, the effect of mutation of global regulators on B. subtilis EDM was examined. Mutation of the swrA gene abolished EdmS-mediated EDM. It is known that swrA predominantly regulates expression of the fla/che operon in B. subtilis. We therefore performed EDM analysis using fla/che-deletion mutants and identified an EDM-mediated EDM cooperator in the flgB-fliL region. Further genetic investigation identified the flagellation factor FliF is a crucial EDM cooperator. To our knowledge, this is the first observation of the moonlighting function of FliF in DNA maintenance. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Hadronic EDM constraints on orbifold GUTs

    International Nuclear Information System (INIS)

    Hisano, Junji; Kakizaki, Mitsuru; Nagai, Minoru

    2005-01-01

    We point out that the null results of the hadronic electric dipole moment (EDM) searches constrain orbifold grand unified theories (GUTs), where the GUT symmetry and supersymmetry (SUSY) are both broken by boundary conditions in extra dimensions and it leads to rich fermion and sfermion flavor structures. A marginal chromoelectric dipole moment (CEDM) of the up quark is induced by the misalignment between the CP violating left- and right-handed up-type squark mixings, in contrast to the conventional four-dimensional SUSY GUTs. The up quark CEDM constraint is found to be as strong as those from charged lepton flavor violation (LFV) searches. The interplay between future EDM and LFV experiments will probe the structures of the GUTs and the SUSY breaking mediation mechanism

  15. The Storage Ring Proton EDM Experiment

    Science.gov (United States)

    Semertzidis, Yannis; Storage Ring Proton EDM Collaboration

    2014-09-01

    The storage ring pEDM experiment utilizes an all-electric storage ring to store ~1011 longitudinally polarized protons simultaneously in clock-wise and counter-clock-wise directions for 103 seconds. The radial E-field acts on the proton EDM for the duration of the storage time to precess its spin in the vertical plane. The ring lattice is optimized to reduce intra-beam scattering, increase the statistical sensitivity and reduce the systematic errors of the method. The main systematic error is a net radial B-field integrated around the ring causing an EDM-like vertical spin precession. The counter-rotating beams sense this integrated field and are vertically shifted by an amount, which depends on the strength of the vertical focusing in the ring, thus creating a radial B-field. Modulating the vertical focusing at 10 kHz makes possible the detection of this radial B-field by a SQUID-magnetometer (SQUID-based BPM). For a total number of n SQUID-based BPMs distributed around the ring the effectiveness of the method is limited to the N = n /2 harmonic of the background radial B-field due to the Nyquist sampling theorem limit. This limitation establishes the requirement to reduce the maximum radial B-field to 0.1-1 nT everywhere around the ring by layers of mu-metal and aluminum vacuum tube. The metho's sensitivity is 10-29 e .cm , more than three orders of magnitude better than the present neutron EDM experimental limit, making it sensitive to SUSY-like new physics mass scale up to 300 TeV.

  16. Parity and time-reversal violation in nuclei and atoms

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1986-01-01

    Two topics are briefly reviewed: the parity (P)-violating NN interaction and the time-reversal (T) and P-violating electric moments (EDM's) of atoms. The ΔI = 1 P-violating NN amplitude dominated by weak π +- exchange is found to be appreciably smaller than bag-model predictions. This may be a dynamical symmetry of flavor-conserving hadronic weak processes reminiscent of the ΔI = 1/2 rule in flavor-changing decays. General principles of experimental searches for atomic EDM's are discussed. Atomic EDM's are sensitive to electronic or nuclear EDM's and to a P-and-T-violating electron-quark interaction. Even though the experimental precision is still ∼10 4 times worse than counting statistics, the recent results have reached a sensitivity to nuclear EDM's which rivals that of the neutron EDM data. Further significant improvements can be expected

  17. Synthesis of Aluminium Nanoparticles in A Water/Polyethylene Glycol Mixed Solvent using μ-EDM

    Science.gov (United States)

    Sahu, R. K.; Hiremath, Somashekhar S.

    2017-08-01

    Nanoparticles present a practical way of retaining the results of the property at the atomic or molecular level. Due to the recent use of nanoparticles in scientific, industrial and medical applications, synthesis of nanoparticles and their characterization have become considerably important. Currently, aluminium nanoparticles have attracted significant research attention because of their reasonable cost, unique properties and interdisciplinary emerging applications. The present paper reports the synthesis of aluminium nanoparticles in the mixture of Deionized water (DI water) and Polyethylene Glycol (PEG) using a developed micro-Electrical Discharge Machining (μ-EDM) method. PEG was used as a stabilizer to prevent nanoparticles from agglomeration produced during the μ -EDM process. The synthesized aluminium nanoparticles were examined by Transmission Electron Microscopy (TEM), Energy Dispersive Analysis by X-rays (EDAX) and Selected Area Electron Diffraction (SAED) pattern to determine their size, shape, chemical nature and crystal structure. The average size of the polyhedral aluminium nanoparticles is found to be 196 nm.

  18. Electrical measurements in µ-EDM

    International Nuclear Information System (INIS)

    Ferri, Carlo; Ivanov, Atanas; Petrelli, Antoine

    2008-01-01

    The phenomena occurring between the electrodes in electric discharge machining when manufacturing features on the micro-metre scale (µ-EDM) is not fully understood. Poor quantitative knowledge of the sources of variability affecting this process hinders the identification of its natural tolerance limits. Moreover, improvements in measuring systems contribute to the acquisition of new information that often conflicts with existent theoretical models of this process. The prime objective of this paper is to advance the experimental knowledge of µ-EDM by providing a measurement framework for the electrical discharges. The effects of the electrodes metallic materials (Ag, Ni, Ti, W) on the electrical measurements defined in the proposed framework are analysed. Linear mixed-effects models are fitted to the experimental data using the restricted maximum likelihood method (REML). The main conclusion drawn is that the discharge current and voltage as defined and measured in this framework do significantly depend on the electrode material even when keeping all the other machining conditions unchanged

  19. Investigation of the removing process of cathode material in micro-EDM using an atomistic-continuum model

    International Nuclear Information System (INIS)

    Guo, Jianwen; Zhang, Guojun; Huang, Yu; Ming, Wuyi; Liu, Min; Huang, Hao

    2014-01-01

    Highlights: • An atomistic-continuum computational simulation model for single-discharge micro-EDM process of Cu cathode is constructed. • Cathode material is removed mainly in the form of single atoms or small clusters in micro-EDM. • Electric action leads to the formation of peaks on the surface of crater. • Removing process of cathode material under the hybrid action combining the thermal action and the electric action is studied, and the strength of either action needed for material to remove is much reduced. - Abstract: In micro-electrical discharge machining (micro-EDM), the discharge duration is ultra-short, and both the electric action and the thermal action by the discharge channel play important roles in the removing process of cathode material. However, in most researches on the machining mechanism of micro-EDM, only the thermal action is concerned. In this article, a combined atomistic-continuum modeling method in which the two-temperature model and the molecular dynamics simulation model are integrated is used to construct the simulation model for cathode in single-discharge micro-EDM process. With this simulation model, removing processes of Cu cathode material in micro-EDM under pure thermal action, pure electric action and the combination of them are investigated in a simulative way. By analyzing evolutions of temperature, stress and micro-structure of material as well as the dynamical behaviors of material in the removing process, mechanisms of the cathode material removal and crater formation are revealed. In addition, the removing process of cathode material under the combination of pure thermal action and pure electric action is compared with those under the two pure actions respectively to analyze the interactive effect between the thermal action and the electric action

  20. Multiresponse Optimization of Edm Process with Nanofluids Using Topsis Method and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Prabhu S.

    2016-03-01

    Full Text Available Electrical Discharge Machining (EDM process with copper tool electrode is used to investigate the machining characteristics of AISI D2 tool steel material. The multi-wall carbon nanotube is mixed with dielectric fluids and its end characteristics like surface roughness, fractal dimension and metal removal rate (MRR are analysed. In this EDM process, regression model is developed to predict surface roughness. The collection of experimental data is by using L9 Orthogonal Array. This study investigates the optimization of EDM machining parameters for AISI D2 Tool steel using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS method. Analysis of variance (ANOVA and F-test are used to check the validity of the regression model and to determine the significant parameter affecting the surface roughness. Atomic Force Microscope (AFM is used to capture the machined image at micro size and using spectroscopy software the surface roughness and fractal dimensions are analysed. Later, the parameters are optimized using MINITAB 15 software, and regression equation is compared with the actual measurements of machining process parameters. The developed mathematical model is further coupled with Genetic Algorithm (GA to determine the optimum conditions leading to the minimum surface roughness value of the workpiece.

  1. The neutron EDM in the SM: a review

    International Nuclear Information System (INIS)

    Dar, Shahida

    2000-08-01

    We review the status of the electric dipole moment (EDM) of neutron in the Standard Model (SM). The contributions of the strong and electroweak interactions are discussed separately. In each case the structure of Lagrangian and the sources of CP violation are specified, and subsequently calculational details are given. These two contributions to the neutron EDM exist in any extension of the SM including supersymmetry, two-doublet models as well as models with more than three generations of fermions. We briefly discuss the status of the neutron EDM in such extensions and give the relevant literature. (author)

  2. Multi responses optimization of wire EDM process parameters using ...

    African Journals Online (AJOL)

    Taguchi approach coupled with principal component analysis methodology .... Wire EDM to perform trails; (2) Selection of material according to importance and .... manufacturing of oil and gases pipeline, springs, construction, automobiles and ...

  3. EDM-DEDM and protein crystal structure solution.

    Science.gov (United States)

    Caliandro, Rocco; Carrozzini, Benedetta; Cascarano, Giovanni Luca; Giacovazzo, Carmelo; Mazzone, Anna Maria; Siliqi, Dritan

    2009-05-01

    Electron-density modification (EDM) procedures are the classical tool for driving model phases closer to those of the target structure. They are often combined with automated model-building programs to provide a correct protein model. The task is not always performed, mostly because of the large initial phase error. A recently proposed procedure combined EDM with DEDM (difference electron-density modification); the method was applied to the refinement of phases obtained by molecular replacement, ab initio or SAD phasing [Caliandro, Carrozzini, Cascarano, Giacovazzo, Mazzone & Siliqi (2009), Acta Cryst. D65, 249-256] and was more effective in improving phases than EDM alone. In this paper, a novel fully automated protocol for protein structure refinement based on the iterative application of automated model-building programs combined with the additional power derived from the EDM-DEDM algorithm is presented. The cyclic procedure was successfully tested on challenging cases for which all other approaches had failed.

  4. Polarimetry concepts for the EDM precursor experiment at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Maanen, Paul [III. Physikalisches Institut B, RWTH Aachen (Germany); Collaboration: JEDI-Collaboration

    2015-07-01

    The CP violation in the Standard Model is not sufficient to explain the dominance of matter over antimatter in the universe. New CP violating sources could manifest as permanent electric dipole moments (EDM). So far, no direct measurement of a charged particle's EDM has been achieved. The goal of the JEDI (Juelich Electric Dipole moment Investigations) collaboration is to measure the EDM of light nuclei (p,d,{sup 3}He). In the chosen method, an EDM manifests as a small buildup of the vertical polarization of a stored hadron beam. Because the effect is very small, great care has to be taken designing the polarimeter. This talk gives an overview of the planned detector concept and discusses first results of simulations and experiments.

  5. Fabrication of high aspect ratio micro electrode by using EDM

    International Nuclear Information System (INIS)

    Elsiti, Nagwa Mejid; Noordin, M.Y.; Alkali, Adam Umar

    2016-01-01

    The electrical discharge machining (EDM) process inherits characteristics that make it a promising micro-machining technique. Micro electrical discharge machining (micro- EDM) is a derived form of EDM, which is commonly used to manufacture micro and miniature parts and components by using the conventional electrical discharge machining fundamentals. Moving block electro discharge grinding (Moving BEDG) is one of the processes that can be used to fabricate micro-electrode. In this study, a conventional die sinker EDM machine was used to fabricate the micro-electrode. Modifications are made to the moving BEDG, which include changing the direction of movements and control gap in one electrode. Consequently current was controlled due to the use of roughing, semi-finishing and finishing parameters. Finally, a high aspect ratio micro-electrode with a diameter of 110.49μm and length of 6000μm was fabricated. (paper)

  6. Lif Spectroscopy of ThF and the Preparation of ThF^{+} for the Jila eEDM Experiment

    Science.gov (United States)

    Ng, Kia Boon; Zhou, Yan; Gresh, Dan; Cairncross, William; Roussy, Tanya; Shagam, Yuval; Cheng, Lan; Ye, Jun; Cornell, Eric

    2017-06-01

    ThF^{+} is a promising candidate for a second-generation molecular ion-based measurement of the permanent electric dipole moment of the electron (eEDM). Compared to the current HfF^{+} eEDM experiment, ThF^{+} has several advantages: (i) the eEDM-sensitive ^{3}Δ_1 electronic state is the ground state, which facilitates a long measurement coherence time; (ii) its effective electric field (38 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces a greater flexibility for rotational state-selective photoionization via core-nonpenetrating Rydberg states. We use laser-induced fluorescence (LIF) spectroscopy to find suitable intermediate states required for the state selective ionization process. We present the results of our LIF spectroscopy of ThF, and our current progress on efficient ThF ionization and on ThF^{+} dissociation.

  7. Structural analysis of HyFlex EDM instruments.

    Science.gov (United States)

    Iacono, F; Pirani, C; Generali, L; Bolelli, G; Sassatelli, P; Lusvarghi, L; Gandolfi, M G; Giorgini, L; Prati, C

    2017-03-01

    To compare the phase transformation behaviour, the microstructure, the nano-hardness and the surface chemistry of electro-discharge machined HyFlex EDM instruments with conventionally manufactured HyFlex CM. New and laboratory used HyFlex EDM were examined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Nano-hardness and modulus of elasticity were also investigated using a maximum load of 20 mN with a minimum of 40 significant indentations for each sample. Raman spectroscopy and field emission-scanning electron microscope (FE-SEM) were used to assess the surface chemistry of HyFlex EDM. HyFlex CM were subjected to the same investigations and used as a comparison. Nano-indentation data were statistically analysed using the Student's t-test. XRD analysis on HyFlex EDM revealed the presence of martensite and rhombohedral R-phase, while a mixture of martensite and austenite structure was identified in HyFlex CM. DSC analysis also disclosed higher austenite finish (Af) temperatures for electro-discharge machining (EDM) instruments. Significant differences in nano-hardness and modulus of elasticity were found between EDM and CM files (P EDM and CM files were covered by an oxide layer. Micro-Raman spectroscopy assessed the presence of rutile-TiO 2 . HyFlex EDM revealed peculiar structural properties, such as increased phase transformation temperatures and hardness. Present results corroborated previous findings and shed light on the enhanced mechanical behaviour of these instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  9. LYSO crystal testing for an EDM polarimeter

    Science.gov (United States)

    Müller, F.; Keshelashvili, I.; Mchedlishvili, D.; JEDI Collaboration

    2017-11-01

    Four detector modules, built from three different LYSO crystals and two different types of light sensors (PMTs and SiPM arrays), have been tested with a deuteron beam from 100 MeV - 270 MeV at the COSY accelerator facility for the srEDM project at the Forschungszentrum Jülich in Germany. The detector modules were arranged in a cluster hand mounted on a positioning table. The deuteron beam was targeted at the center of each individual crystal for data analysis. The signals were digitized using a 14 bit, 250 MS/s flash ADC. Further, the energy spectra were calibrated using the known beam energies from the accelerator. From the calibrated spectra, the energy resolution was calculated. A resolution of 3% for the low energies and down to 1% for the high energy of 270 MeV was achieved. A deuteron reconstruction efficiency of almost 100% for low energies and around 70% for high energies was achieved. The SiPM light sensor showed a very good performance and will be used for the next generation of detector modules.

  10. Multitechnique characterization of CPTi surfaces after electro discharge machining (EDM).

    Science.gov (United States)

    Zinelis, Spiros; Al Jabbari, Youssef S; Thomas, Andrew; Silikas, Nick; Eliades, George

    2014-01-01

    The aim of this study was to comparatively assess the surface roughness parameters, the hardness, and the elemental and molecular alterations induced on CPTi surfaces after conventional finishing and finishing with electro discharge machining (EDM). A completed cast model of an arch that received four implants was used for the preparation of two grade II CPTi castings. One framework was conventionally finished (CF), whereas the other was subjected to EDM finishing. The surface morphology was imaged employing SEM. 3D surface parameters (S a, S q, S z, S ds, S dr, and S ci) were calculated by optical profilometry. The elemental composition of the treated surfaces was determined by energy dispersive X-ray analysis, whereas the elemental and chemical states of the outmost layer were investigated by X-ray photoelectron spectrometry. Surface hardness was also tested with a Knoop indenter. The results of surface roughness parameters, elemental analysis, and hardness were compared using unpaired t test (a = 0.05). The EDM group demonstrated a rougher surface, with a significant uptake of C and Cu. The CF surface mainly consisted of TiO2. On EDM surface though, Ti was probed in different chemicals states (TiO2, Ti2O3, TiC and metallic Ti) and Cu was traced as Cu2O and CuO. Hardness after EDM was almost ten times higher than CF. EDM significantly affected surface roughness, chemical state, and hardness properties of grade II CPTi castings in comparison with CF. The morphological and elemental alterations of EDM-treated CPTi surfaces may strongly contribute to the reduced corrosion resistance documented for this procedure. The degradation of electrochemical properties may have further biological implications through ionic release in the oral environment.

  11. Knowledge management and electronic publishing for the CNAO with EDMS

    International Nuclear Information System (INIS)

    Gerardi, F.; Rademakers-Di Rosa, O.; Rossi, S.

    2001-01-01

    The Italian Government has recently approved the construction of a National Center for Oncological Hadrontherapy (CNAO). TERA (Foundation for Oncological Hadrontherapy) will lead the high technology projects of the CNAO, whose machine design is a spin-off to the medical world of the collaboration with CERN. The CERN EDMS (Engineering Data Management System) was initially launched at CERN to support the LHC project but has since become a general service available for all divisions and recognized experiments. As TERA is closely associated to CERN, TERA decided to profit from EDMS and to use it to support the ambitious Quality Assurance plan for the CNAO project. With this EDMS project TERA transfers know-how that has been developed in the HEP Community to a social sector of major importance that also has high-density information management needs. The features available in the CERN EDMS system provide the tools for managing the complete lifecycle of any technical document including a distributed approval process and a controlled distributed collaborative work environment using the World Wide Web. The system allows management of structures representing projects and relative documents including drawings within working contexts and with a customisable release procedure. TERA is customizing CERN EDMS to document the CNAO project activities, to ensure that the medical accelerator and its auxiliary installations can be properly managed throughout its lifecycle, from design to maintenance and possibly dismantling. The technical performance requirements of EDMS are identical to those for LHC and CERN in general. The authors will describe what they have learned about how to set-up an EDMS project, and how it benefits a challenging initiative like the CNAO Project of the TERA collaboration. The knowledge managed by the system will facilitate later installations of similar centers (planned for Lyon and Stockholm) and will allow the reuse of experience gained in Italy

  12. Experimental search for the electron electric dipole moment with laser cooled francium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, T., E-mail: inoue-t@cyric.tohoku.ac.jp [Tohoku University, Frontier Research Institute of Interdisciplinary Sciences (Japan); Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Aoki, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Hatanaka, K. [Osaka University, Research Center for Nuclear Physics (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Murakami, T. [Kyoto University, Department of Physics (Japan); Nataraj, H. S. [Indian Institute of Technology Roorkee (India); and others

    2015-04-15

    A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.

  13. Hybrid micromachining using a nanosecond pulsed laser and micro EDM

    International Nuclear Information System (INIS)

    Kim, Sanha; Chung, Do Kwan; Shin, Hong Shik; Chu, Chong Nam; Kim, Bo Hyun

    2010-01-01

    Micro electrical discharge machining (micro EDM) is a well-known precise machining process that achieves micro structures of excellent quality for any conductive material. However, the slow machining speed and high tool wear are main drawbacks of this process. Though the use of deionized water instead of kerosene as a dielectric fluid can reduce the tool wear and increase the machine speed, the material removal rate (MRR) is still low. In contrast, laser ablation using a nanosecond pulsed laser is a fast and non-wear machining process but achieves micro figures of rather low quality. Therefore, the integration of these two processes can overcome the respective disadvantages. This paper reports a hybrid process of a nanosecond pulsed laser and micro EDM for micromachining. A novel hybrid micromachining system that combines the two discrete machining processes is introduced. Then, the feasibility and characteristics of the hybrid machining process are investigated compared to conventional EDM and laser ablation. It is verified experimentally that the machining time can be effectively reduced in both EDM drilling and milling by rapid laser pre-machining prior to micro EDM. Finally, some examples of complicated 3D micro structures fabricated by the hybrid process are shown

  14. Statistical precision in charged particle EDM search in storage rings

    Science.gov (United States)

    Aksentev, A. E.; Senichev, Y. V.

    2017-12-01

    Currently, the “Jülich Electric Dipole moment Investigations” (JEDI) collaboration, together with present EDM experiments at the COSY ring, is developing the conceptual design of a ring specifically for the search for the deuteron electric dipole moment (dEDM). One of the main problems in the EDM study is the spin precession in the vertical plane caused by the non-ideal positioning of accelerator elements through the magnetic dipole moment (MDM). The idea of how to separate the EDM from MDM is based on measuring the spin tune in different processes and comparing the results. The high precision of the spin tune measurement is achieved by collecting huge amounts of data. The JEDI collaboration aims at detecting the EDM at a level better than 10-29 e · cm, for which one requires a precision in the frequency estimate ˜ 10-9 rad/sec. An estimate’s statistical precision is conditional on the following factors: the total measurement time, determining the independent variable spread; measurement error; temporal modulation and spacing of sample points. In this paper we analyze the interplay between these factors, and estimate the best achievable precision under given conditions.

  15. Experimental Investigations during Dry EDM of Inconel - 718

    International Nuclear Information System (INIS)

    BHANDARE, A S; DABADE, U A

    2016-01-01

    Dry EDM is a modification of the conventional EDM process in which the liquid dielectric is replaced by a gaseous medium. Tubular tool electrodes are used and as the tool rotates, high velocity gas is supplied through it into the discharge gap. The flow of high velocity gas into the gap facilitates removal of debris and prevents excessive heating of the tool and work piece at the discharge spots. It is now known that apart from being an environment- friendly process, other advantages of the dry EDM process are low tool wear, lower discharge gap, lower residual stresses, smaller white layer and smaller heat affected zone. Keeping literature review into consideration, in this paper, an attempt has been made by selecting compressed air as a dielectric medium, with Inconel - 718 as a work piece material and copper as a tool electrode. Experiments are performed using Taguchi DoE orthogonal array to observe and analyze the effects of different process parameters to optimize the response variables such as material removal rate (MRR), surface roughness (Ra) and tool wear rate (TWR). In the current work, a unit has been developed to implement dry EDM process on existing oil based EDM machine. (paper)

  16. Machining of Molybdenum by EDM-EP and EDC Processes

    Science.gov (United States)

    Wu, K. L.; Chen, H. J.; Lee, H. M.; Lo, J. S.

    2017-12-01

    Molybdenum metal (Mo) can be machined with conventional tools and equipment, however, its refractory propertytends to chip when being machined. In this study, the nonconventional processes of electrical discharge machining (EDM) and electro-polishing (EP) have been conducted to investigate the machining of Mo metal and fabrication of Mo grid. Satisfactory surface quality was obtained using appropriate EDM parameters of Ip ≦ 3A and Ton EDMed Mo metal. Experimental results proved that the appropriate parameters of Ip = 5A and Ton = 50μs at Toff = 10μs can obtain the deposit with about 60μm thickness. The major phase of deposit on machined Mo surface was SiC ceramic, while the minor phases included MoSi2 and/or SiO2 with the presence of free Si due to improper discharging parameters and the use of silicone oil as the dielectric fluid.

  17. Spin tracking for a deuteron EDM storage ring

    Science.gov (United States)

    Skawran, A.; Lehrach, A.

    2017-07-01

    The aim of the Jülich Electric Dipole moment Investigations (JEDI) collaboration is the measurement of the Electric Dipole Moment (EDM) of charged particles like protons or deuterons. There are two possible concepts under consideration for the realization of EDM measurement with deuterons; the Frozen Spin (FS) and Quasi-Frozen Spin (QFS) method. Both approaches are discussed and compared in this paper. Detailed spin- and beam dynamics simulations are performed to investigate the effect of various misalignments of ring elements and systematic effects. Furthermore, the utilization of counter rotating beams is studied and checked for its validity.

  18. Spin tracking for a deuteron EDM storage ring

    International Nuclear Information System (INIS)

    Skawran, A; Lehrach, A

    2017-01-01

    The aim of the Jülich Electric Dipole moment Investigations (JEDI) collaboration is the measurement of the Electric Dipole Moment (EDM) of charged particles like protons or deuterons. There are two possible concepts under consideration for the realization of EDM measurement with deuterons; the Frozen Spin (FS) and Quasi-Frozen Spin (QFS) method. Both approaches are discussed and compared in this paper. Detailed spin- and beam dynamics simulations are performed to investigate the effect of various misalignments of ring elements and systematic effects. Furthermore, the utilization of counter rotating beams is studied and checked for its validity. (paper)

  19. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  20. CMS Proposal for the Engineering Data Management System (EDMS) Pilot Project with Matrix & Report

    CERN Document Server

    Kuipers, Jos

    1997-01-01

    The CMS Working Group for Engineering and Integration ( WOGEI) has been involved in the Engineering Data Management System ( EDMS) Task Force. This Task Force has started in 1995 with definition and selection procedure for an EDMS. The aim is to find out whether an EDMS is useful for CERN and the LHC experiments and which product is most suited. The CMS-WOGEI has proposed and carried out a pilot project with Matrix, the EDMS selected by the EDMS task force. In this technical note the pilot project is described and the experience gained with this is summarised.

  1. Multi-Responses Optimization Of Edm Sinking Process Of Aisi D2 Tool Steel Using Taguchi Grey–Fuzzy Method

    Directory of Open Access Journals (Sweden)

    Bobby Oedy Pramoedyo Soepangkat

    2014-12-01

    Full Text Available Rough machining with Electro Discharge Machining (EDM process gives a large Material Removal Rate (MRR and high Surface Roughness (SR, while finish machining gives low SR and very slow MRR. In this study, Taguchi method coupled with Grey Relational Analysis (GRA and fuzzy logic has been applied for optimization of multiple performance characteristics. The EDM machining parameters (gap voltage, pulse current, on time and duty factor are optimized with considerations of multiple performance characteristics, i.e., MRR and SR. The quality characteristic of MRR is larger-is-better, while the quality characteristic of SR is smaller-is-better. Based on Taguchi method, an L18 mixed-orthogonal array is selected for the experiments. By using the combination of GRA and fuzzy logic, the optimization of complicated multiple performance characteristics was transformed into the optimization of a single response performance index. The most significant machining parameters which affect the multiple performance characteristics were gapvoltage and pulse current. Experimental results have also shown that machining performance characteristics of EDM process can be improved effectively through the combination of Taguchi method, GRA and fuzzy logic.

  2. Search for a permanent electric-dipole moment using atomic indium

    International Nuclear Information System (INIS)

    Sahoo, B. K.; Pandey, R.; Das, B. P.

    2011-01-01

    We propose indium (In) as a possible candidate for observing the permanent electric dipole moment (EDM) arising from violations of parity (P) and time-reversal (T) symmetries. This atom has been laser cooled and therefore the measurement of its EDM has the potential of improving on the current best EDM limit for a paramagnetic atom, which comes from thallium. We report the results of our calculations of the EDM enhancement factor due to the electron EDM and the ratio of the atomic EDM to the electron-nucleus scalar-pseudoscalar (S-PS) interaction coupling constant in In within the framework of the relativistic coupled cluster theory. It might be possible to get new limits for the electron EDM and the S-PS CP-violating coupling constant by combining the results of our calculations with the measured value of the EDM of In when it is available. These limits could have important implications for the standard model (SM) of particle physics.

  3. Atomic T-violation: A biased history

    International Nuclear Information System (INIS)

    Sandars, P.G.H.

    1991-01-01

    This article reviews the history of atomic T-violation from a personal point of view. Considerable emphasis is put on the early edm work which was much encouraged by the interest shown by Art Rich. The present generation of beautiful experiments is described more briefly. We end with a short introduction to the new topic of T not P violation in atoms

  4. Energy Data Management (EDM) in a liberalised energy market

    International Nuclear Information System (INIS)

    Ulbricht, R.

    2004-01-01

    This article discusses the role of Energy Data Management (EDM) in a liberalised Swiss energy market in the light of increasing international dynamics in this area. The requirements placed on such EDM systems are reviewed and the changes necessary in the structures and processes of electricity supply organisations are discussed. A possible design for future software systems is presented. Such systems have to be flexible enough to cover various structural possibilities as Swiss legislation on the subject has not yet been passed. The handling of data on energy-flow balances when third-party power is transferred in shared mains systems is discussed and scheduling aspects of power generation and transmission are looked at. The billing of power to customers with a free choice of supplier is looked at, as is the situation involving utilities that supply not only electricity but gas, district heating and water too

  5. The Contribution of Novel CP Violating Operators to the nEDM using Lattice QCD

    Directory of Open Access Journals (Sweden)

    Gupta Rajan

    2017-01-01

    Full Text Available In this talk, we motivate the calculation of the matrix elements of novel CP violating operators, the quark EDM and the quark chromo EDM operators, within the nucleon state using lattice QCD. These matrix elements, combined with the bound on the neutron EDM, would provide stringent constraints on beyond the standard model physics, especially as the next generation of neutron EDM experiments reduce the current bound. We then present our lattice strategy for the calculation of these matrix elements, in particular we describe the use of the Schrodinger source method to reduce the calculation of the 4-point to 3-point functions needed to evaluate the quark chromo EDM contribution. We end with a status report on the quality of the signal obtained in the lattice calculations of the connected contributions to the quark chromo EDM operator and the pseudoscalar operator it mixes with under renormalization.

  6. Why have microsaccades become larger?

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Nyström, Marcus; Andersson, Richard

    2014-01-01

    -trackers compared to the systems used in the classical studies, in combination with the lack of a systematic algorithmic treatment of the overshoot. We hope that awareness of these discrepancies in microsaccade dynamics across eye structures will lead to more generally accepted definitions of microsaccades....... experts. The main reason was that the overshoots were not systematically detected by the algorithm and therefore not accurately accounted for. We conclude that one reason to why the reported size of microsaccades has increased is due to the larger overshoots produced by the modern pupil-based eye...

  7. Collision cascades and sputtering induced by larger cluster ions

    International Nuclear Information System (INIS)

    Sigmund, P.

    1988-01-01

    Recent experimental work on larger cluster impact on solid surfaces suggests large deviations from the standard case of additive sputter yields both in the nuclear and electronic stopping regime. The paper concentrates on elastic collision cascades. In addition to very pronounced spike effects, two phenomena are pointed out that are specific to cluster bombardment. Multiple hits of cluster atoms on one and the same target atom may result in recoil atoms that move faster than the maximum recoil speed for monomer bombardment at the same projectile speed. This effect is important when the atomic mass of a beam atom is less than that of a target atom, M 1 2 . In the opposite case, M 1 >> M 2 , collisions between beam particles may accelerate some beam particles and slow down others. Some consequences are mentioned. Remarks on the nuclear stopping power of larger clusters and on electronic sputtering by cluster bombardment conclude the paper. 38 refs., 2 figs

  8. An on-line monitoring system for a micro electrical discharge machining (micro-EDM) process

    International Nuclear Information System (INIS)

    Liao, Y S; Chang, T Y; Chuang, T J

    2008-01-01

    A pulse-type discriminating system to monitor the process of micro electrical discharge machining (micro-EDM) is developed and implemented. The specific features are extracted and the pulses from a RC-type power source are classified into normal, effective arc, transient short circuit and complex types. An approach to discriminate the pulse type according to three durations measured at three pre-determined voltage levels of a pulse is proposed. The developed system is verified by using simulated signals. Discrimination of the pulse trains in actual machining processes shows that the pulses are mainly the normal type for micro wire-EDM and micro-EDM milling. The pulse-type distribution varies during the micro-EDM drilling process. The percentage of complex-type pulse increases monotonically with the drilling depth. It starts to drop when the gap condition is seriously deteriorated. Accordingly, an on-line monitoring strategy for the micro-EDM drilling process is proposed

  9. Minimizing Environmental Magnetic Field Sources for nEDM

    Science.gov (United States)

    Brinson, Alex; Filippone, Bradley; Slutsky, Simon; Osthelder, Charles

    2017-09-01

    Measurement of the neutron's Electric Dipole Moment (nEDM) could potentially explain the Baryon Asymmetry Problem, and would suggest plausible extensions to the Standard Model. We will attempt to detect the nEDM by measuring the electric-field-dependent neutron precession frequency, which is highly sensitive to magnetic field gradients. In order to produce fields with sufficiently low gradients for our experiment, we eliminate environmental effects by offsetting the ambient field with a Field Compensation System (FCS), then magnetically shielding the reduced field with a Mu-Metal cylinder. We discovered that the strongest environmental effect in our lab came from iron rebar embedded in the floor beneath the proposed experiment location. The large extent and strength of the floor's magnetization made the effect too large to offset with the FCS, forcing us to relocate our apparatus. The floor's magnetic field was mapped with a Hall probe in order to determine the most viable experiment locations. A 3-axis Fluxgate magnetometer was then used to determine the floor field's drop-off and shape at these locations, and a final apparatus position was determined which minimized the floor's effect such that it could be effectively offset and shielded by our experiment. Caltech SFP Office.

  10. Nuclear electric dipole moment with relativistic effects in Xe and Hg atoms

    International Nuclear Information System (INIS)

    Oshima, Sachiko; Fujita, Takehisa; Asaga, Tomoko

    2007-01-01

    The atomic electric dipole moment (EDM) is evaluated by considering the relativistic effects as well as nuclear finite size effects in Xe and Hg atomic systems. Due to Schiff's theorem, the first order perturbation energy of EDM is canceled out by the second order perturbation energy for the point nucleus. The nuclear finite size effects arising from the intermediate atomic excitations may be finite for deformed nucleus but it is extremely small. The finite size contribution of the intermediate nuclear excitations in the second order perturbation energy is completely canceled by the third order perturbation energy. As the results, the finite contribution to the atomic EDM comes from the first order perturbation energy of relativistic effects, and it amounts to around 0.3 and 0.4 percents of the neutron EDM d n for Xe and Hg, respectively, though the calculations are carried out with a simplified single-particle nuclear model. From this relation in Hg atomic system, we can extract the neutron EDM which is found to be just comparable with the direct neutron EDM measurement

  11. When the proton becomes larger

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The TOTEM experiment at the LHC has just confirmed that, at high energy, protons behave as if they were becoming larger. In more technical terms, their total cross-section – a parameter linked to the proton-proton interaction probability – increases with energy. This phenomenon, expected from previous measurements performed at much lower energy, has now been confirmed for the first time at the LHC’s unprecedented energy.   One arm of a TOTEM T2 detector during its installation at interaction point 5. A composite particle like the proton is a complex system that in no way resembles a static Lego construction: sub-components move inside and interactions keep the whole thing together, but in a very dynamic way. This partly explains why even the very common proton can still be hiding secrets about its nature, decades after its discovery. One way of studying the inner properties of protons is to observe how they interact with each other, which, in technical terms, i...

  12. The Larger Linear N-Heteroacenes

    KAUST Repository

    Bunz, Uwe H. F.

    2015-01-01

    © 2015 American Chemical Society. ConspectusThe close structural and chemical relationship of N-heteroacenes to pentacene suggests their broad applicability in organic electronic devices, such as thin-film transistors. The superb materials science properties of azaacenes result from their improved resistance toward oxidation and their potential for electron transport, both of which have been demonstrated recently. The introduction of nitrogen atoms into the aromatic perimeter of acenes stabilizes their frontier molecular orbitals and increases their electron affinity. The HOMO-LUMO gaps in azaacenes in which the nitrogen atoms are symmetrically placed are similar to those of the acenes. The judiciously placed nitrogen atoms induce an "umpolung" of the electronic behavior of these pentacene-like molecules, i.e., instead of hole mobility in thin-film transistors, azaacenes are electron-transporting materials. The fundamental synthetic approaches toward larger azaacenes are described and discussed. Several synthetic methodologies have been exploited, and some have been newly developed to assemble substituted azaacenes. The oldest methods are condensation-based. Aromatic o-diamines are coupled with o-dihydroxyarenes in the melt without solvent. This method works well for unsubstituted azaacenes only. The attachment of substituents to the starting materials renders these "fire and sword" methods less useful. The starting materials decompose under these conditions. The direct condensation of substituted o-diamines with o-quinones proceeds well in some cases. Fluorinated benzene rings next to a pyrazine unit are introduced by nucleophilic aromatic substitution employing hexafluorobenzene. However, with these well-established synthetic methodologies, a number of azaacene topologies cannot be synthesized. The Pd-catalyzed coupling of aromatic halides and aromatic diamines has therefore emerged as versatile tool for azaacene synthesis. Now substituted diaza- and

  13. The Larger Linear N-Heteroacenes

    KAUST Repository

    Bunz, Uwe H. F.

    2015-06-16

    © 2015 American Chemical Society. ConspectusThe close structural and chemical relationship of N-heteroacenes to pentacene suggests their broad applicability in organic electronic devices, such as thin-film transistors. The superb materials science properties of azaacenes result from their improved resistance toward oxidation and their potential for electron transport, both of which have been demonstrated recently. The introduction of nitrogen atoms into the aromatic perimeter of acenes stabilizes their frontier molecular orbitals and increases their electron affinity. The HOMO-LUMO gaps in azaacenes in which the nitrogen atoms are symmetrically placed are similar to those of the acenes. The judiciously placed nitrogen atoms induce an "umpolung" of the electronic behavior of these pentacene-like molecules, i.e., instead of hole mobility in thin-film transistors, azaacenes are electron-transporting materials. The fundamental synthetic approaches toward larger azaacenes are described and discussed. Several synthetic methodologies have been exploited, and some have been newly developed to assemble substituted azaacenes. The oldest methods are condensation-based. Aromatic o-diamines are coupled with o-dihydroxyarenes in the melt without solvent. This method works well for unsubstituted azaacenes only. The attachment of substituents to the starting materials renders these "fire and sword" methods less useful. The starting materials decompose under these conditions. The direct condensation of substituted o-diamines with o-quinones proceeds well in some cases. Fluorinated benzene rings next to a pyrazine unit are introduced by nucleophilic aromatic substitution employing hexafluorobenzene. However, with these well-established synthetic methodologies, a number of azaacene topologies cannot be synthesized. The Pd-catalyzed coupling of aromatic halides and aromatic diamines has therefore emerged as versatile tool for azaacene synthesis. Now substituted diaza- and

  14. Evaluating the electrical discharge machining (EDM) parameters with using carbon nanotubes

    Science.gov (United States)

    Sari, M. M.; Noordin, M. Y.; Brusa, E.

    2012-09-01

    Electrical discharge machining (EDM) is one of the most accurate non traditional manufacturing processes available for creating tiny apertures, complex or simple shapes and geometries within parts and assemblies. Performance of the EDM process is usually evaluated in terms of surface roughness, existence of cracks, voids and recast layer on the surface of product, after machining. Unfortunately, the high heat generated on the electrically discharged material during the EDM process decreases the quality of products. Carbon nanotubes display unexpected strength and unique electrical and thermal properties. Multi-wall carbon nanotubes are therefore on purpose added to the dielectric used in the EDM process to improve its performance when machining the AISI H13 tool steel, by means of copper electrodes. Some EDM parameters such as material removal rate, electrode wear rate, surface roughness and recast layer are here first evaluated, then compared to the outcome of EDM performed without using nanotubes mixed to the dielectric. Independent variables investigated are pulse on time, peak current and interval time. Experimental evidences show that EDM process operated by mixing multi-wall carbon nanotubes within the dielectric looks more efficient, particularly if machining parameters are set at low pulse of energy.

  15. Evaluating the electrical discharge machining (EDM) parameters with using carbon nanotubes

    International Nuclear Information System (INIS)

    Sari, M M; Brusa, E; Noordin, M Y

    2012-01-01

    Electrical discharge machining (EDM) is one of the most accurate non traditional manufacturing processes available for creating tiny apertures, complex or simple shapes and geometries within parts and assemblies. Performance of the EDM process is usually evaluated in terms of surface roughness, existence of cracks, voids and recast layer on the surface of product, after machining. Unfortunately, the high heat generated on the electrically discharged material during the EDM process decreases the quality of products. Carbon nanotubes display unexpected strength and unique electrical and thermal properties. Multi-wall carbon nanotubes are therefore on purpose added to the dielectric used in the EDM process to improve its performance when machining the AISI H13 tool steel, by means of copper electrodes. Some EDM parameters such as material removal rate, electrode wear rate, surface roughness and recast layer are here first evaluated, then compared to the outcome of EDM performed without using nanotubes mixed to the dielectric. Independent variables investigated are pulse on time, peak current and interval time. Experimental evidences show that EDM process operated by mixing multi-wall carbon nanotubes within the dielectric looks more efficient, particularly if machining parameters are set at low pulse of energy.

  16. Effect of Torsional and Fatigue Preloading on HyFlex EDM Files.

    Science.gov (United States)

    Shen, Ya; Tra, Charles; Hieawy, Ahmed; Wang, Zhejun; Haapasalo, Markus

    2018-04-01

    The purpose of this study was to evaluate the effect of a low amount of torsional preloading on the fatigue life and different degrees of cyclic fatigue on torsional failure of HyFlex EDM (EDM; Coltene-Whaledent, Allstetten, Switzerland) and HyFlex CM (CM; Coltene-Whaledent) instruments. EDM and CM files were used. The fatigue resistance was examined in a 5-mm radius and 60° single curve, and the mean number of cycles to failure (N f ) was recorded. The torque and rotation angles at failure of the instruments were measured according to ISO 3630-1. New files were precycled to 0%, 50%, and 75% of the N f , and torsional tests were then performed. Other new files were preloaded at 5%, 15%, 25%, and 50% of the mean rotation angles before the fatigue test. The fracture surfaces of the fragments were examined under a scanning electron microscope. The fatigue resistance of EDM instruments was higher than that of CM instruments (P EDM at 15% preloading (P EDM files even with 50% torsional preloading was significantly higher than unused CM files (P EDM files. Moderate precycling (50%) of EDM files increased their torsional resistance. The fractographic patterns corresponded to the pattern defined by the last stage test. A low amount (15%) of torsional preloading reduced the fatigue resistance of EDM files, whereas even extensive (75%) precyclic fatigue was not detrimental to their torsional resistance. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Magnetic Field Design for the LANL nEDM Experiment

    Science.gov (United States)

    Dadisman, Ryan

    2017-09-01

    A recent UCN source upgrade at LANSCE makes possible an order of magnitude advancement in the measurement of the neutron electric dipole moment by use of the familiar Ramsey method of separated oscillatory fields. A highly uniform B0 magnetic field is required to achieve sufficiently long spin-relaxation times and to suppress the false EDM caused by the geometric phase effect. We identified a multi-gap solenoid as an ideal candidate to simultaneously achieve the uniformity requirements, via optimization of the gap lengths between and current within different sections, and provide plentiful access to the fiducial region. Results from initial tests of the coil when installed in the magnetic shield house enclosing the experiment will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC-0014622.

  18. Experimental issues at ultrasonically aided micro-EDM of CoCr alloys

    Directory of Open Access Journals (Sweden)

    Marinescu Niculae

    2017-01-01

    Full Text Available The paper deals with researches of microtopography obtained at different working modes at ultrasonically aided micro-electrical discharge machining (μEDM+US and pure micro-EDM, using both commanded and relaxation pulses. Images of machined surface taken with scanning electron microscope were analyzed in correlation with chemical composition of samples detected by X rays spectrometer. This led to some explanations of material removal mechanism, aiming at improvement of process modelling and performances increase of μEDM+US.

  19. EDM - A model for optimising the short-term power operation of a complex hydroelectric network

    International Nuclear Information System (INIS)

    Tremblay, M.; Guillaud, C.

    1996-01-01

    In order to optimize the short-term power operation of a complex hydroelectric network, a new model called EDM was added to PROSPER, a water management analysis system developed by SNC-Lavalin. PROSPER is now divided into three parts: an optimization model (DDDP), a simulation model (ESOLIN), and an economic dispatch model (EDM) for the short-term operation. The operation of the KSEB hydroelectric system (located in southern India) with PROSPER was described. The long-term analysis with monthly time steps is assisted by the DDDP, and the daily analysis with hourly or half-hourly time steps is performed with the EDM model. 3 figs

  20. Towards the effective tool wear control in micro-EDM milling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Valentincic, J.; Hansen, Hans Nørgaard

    2010-01-01

    The electrode wear in micro-electrical discharge milling (micro-EDM milling) is one of the main problems to be solved in order to improve machining accuracy. This paper presents an investigation on wear and material removal in micro-EDM milling for selected process parameter combinations typical...... of the accuracy of volume measurements on the electrode wear per discharge and on the material removal per discharge are discussed, and the issues limiting the applicability of real time wear sensing in micro-EDM milling are presented....

  1. Filler de grafito reciclado de EDM en pastas de yeso = EDM recycled graphite filler in gypsum pastes

    Directory of Open Access Journals (Sweden)

    Nelson Flores

    2017-08-01

    Full Text Available El grafito puede obtenerse de forma natural o sintética, pero este último se ha utilizado en carreteras debido a su dureza, así como en placas de cerámica fina. Se demuestran las posibilidades de la adición del polvo de grafito isostático procedente del fresado de moldes fabricados por Electroerosión de Penetración (EDM en compuestos a base de yeso. Para ello se prepararon mezclas de yeso industrial con adiciones en porcentajes diferentes de grafito EDM para evaluar las propiedades físicas y mecánicas, caracterizando previamente ambos materiales. El yeso fue sustituido por grafito en cinco fracciones diferentes, 5, 10, 15, 20 y 25%, en peso, en la preparación de las mezclas. En la designación Y-0.7G-0 y Y-0.6G-0 de las series de probetas prismáticas de 40x40x160mm, la letra Y se refiere al yeso y G significa grafito (G-0 probetas patrón sin grafito, con relaciones agua/yeso (a/y 0,7 y 0,6. Después del análisis de los resultados obtenidos, se realizó unas nuevas series con la adición de plastificante y también con mayor cantidad de grafito, 25 a 50% en peso y otras relaciones a/y basadas en su trabajabilidad, para verificar la incidencia en la resistencia a flexión y compresión. Abstract Graphite can be obtained naturally or synthetically, but the latter has been used on roads because of its hardness, as well as in thin ceramic plates. The possibilities of the addition of the isostatic graphite powder from the milling of molds made by EDM in gypsum-based compounds are demonstrated. For this purpose mixtures of industrial gypsum with additions in different percentages of EDM graphite were prepared to evaluate the physical and mechanical properties, previously characterizing both materials. The gypsum was replaced by graphite in five different fractions, 5, 10, 15, 20 and 25% by weight, in the preparation of the mixtures. In the designation Y-0.7G-0 and Y-0.6G-0 of the series of prismatic specimens of 40x40x160mm, the letter Y

  2. Measurement of Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    Science.gov (United States)

    Imig, Astrid; Stephenson, Edward

    2009-10-01

    The Storage Ring EDM Collaboration was using the Cooler Synchrotron (COSY) and the EDDA detector at the Forschungszentrum J"ulich to explore systematic errors in very sensitive storage-ring polarization measurements. Polarized deuterons of 235 MeV were used. The analyzer target was a block of 17 mm thick carbon placed close to the beam so that white noise applied to upstream electrostatic plates increases the vertical phase space of the beam, allowing deuterons to strike the front face of the block. For a detector acceptance that covers laboratory angles larger than 9 ^o, the efficiency for particles to scatter into the polarimeter detectors was about 0.1% (all directions) and the vector analyzing power was about 0.2. Measurements were made of the sensitivity of the polarization measurement to beam position and angle. Both vector and tensor asymmetries were measured using beams with both vector and tensor polarization. Effects were seen that depend upon both the beam geometry and the data rate in the detectors.

  3. Experiments with a laser cooled cloud of atoms

    International Nuclear Information System (INIS)

    Natarajan, Vasant; Banerjee, Ayan; Rapol, Umakant

    1999-01-01

    We discuss two experiments that can be performed using a cloud of laser-cooled and trapped atoms, namely Bose-Einstein condensation (BEC) and search for a permanent Electric Dipole Moment (EDM). BEC can be observed in Rb atoms in a magnetic trap by using forced evaporative cooling to continuously lower the temperature below the condensation limit. The cloud is cooled by preferentially ejecting the hottest atoms from a magnetic trap. The magnetic trap is loaded with laser-cooled atoms from a magneto-optic trap. The EDM experiment can be performed with a laser-cooled cloud of Yb atoms. The atoms are spin polarized and the precession of the spin is measured in the presence of a strong electric field applied perpendicular to the spin direction. The use of laser-cooled atoms should greatly enhance the sensitivity of the experiment. (author)

  4. Feasibility of wear compensation in micro EDM milling based on discharge counting and discharge population characterization

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; Tristo, G.

    2011-01-01

    This paper investigates the applicability of real time wear compensation in micro EDM milling based on discharge counting and discharge population characterization. Experiments were performed involving discharge counting and tool electrode wear measurement in a wide range of process parameters...

  5. Simulation of Fatigue Crack Initiation at Corrosion Pits With EDM Notches

    Science.gov (United States)

    Smith, Stephen W.; Newman, John A.; Piascik, Robert S.

    2003-01-01

    Uniaxial fatigue tests were conducted to compare the fatigue life of laboratory produced corrosion pits, similar to those observed in the shuttle main landing gear wheel bolt-hole, and an electro-discharged-machined (EDM) flaw. EDM Jaws are used to simulate corrosion pits during shuttle wheel (dynamometer) testing. The aluminum alloy, (AA 7050) laboratory fatigue tests were conducted to simulate the local stress level contained in the wheel bolt-hole. Under this high local stress condition, the EDM notch produced a fatigue life similar to test specimens containing corrosion pits of similar size. Based on the laboratory fatigue test results, the EDM Jaw (semi-circular disc shaped) produces a local stress state similar to corrosion pits and can be used to simulate a corrosion pit during the shuttle wheel dynamometer tests.

  6. Hadronic EDMs in SUSY SU(5) GUTs with right-handed neutrinos

    International Nuclear Information System (INIS)

    Hisano, Junji; Kakizaki, Mitsuru; Nagai, Minoru; Shimizu, Yasuhiro

    2004-01-01

    We discuss hadronic EDM constraints on the neutrino sector in the SUSY SU(5) GUT with the right-handed neutrinos. The hadronic EDMs are sensitive to the right-handed down-type squark mixings, especially between the second and third generations and between the first and third ones, compared with the other low-energy hadronic observables, and the flavor mixings are induced by the neutrino Yukawa interaction. The current experimental bound of the neutron EDM may imply that the right-handed tau neutrino mass is smaller than about 10 14 GeV in the minimal supergravity scenario, and it may be improved furthermore in future experiments, such as the deuteron EDM measurement

  7. Development of closed orbit diagnostics towards EDM measurements at COSY in Juelich

    Energy Technology Data Exchange (ETDEWEB)

    Hinder, Fabian [Forschungszentrum Juelich, Institut fuer Kernphysik IV (Germany); RWTH Aachen University, III. Physikalisches Institut B (Germany); Collaboration: JEDI-Collaboration

    2016-07-01

    Electric Dipole Moments (EDMs) violate parity and time reversal symmetries. Assuming the CPT-theorem, this leads to CP violation, which is needed to explain the matter over antimatter dominance in the Universe. Thus, a non-zero EDM is a hint to new physics beyond the Standard Model. The JEDI collaboration (Juelich Electric Dipole moment Investigations) has started investigations of a direct EDM measurement of protons and deuterons at a storage ring. To measure a tiny EDM signal with high precision, systematic effects have to be controlled to the same level. One major source of systematic uncertainties is a distortion of the closed orbit. To control and measure this effect, the orbit measurement system, including the readout electronics, the orbit correction system and the beam position monitor pick-ups are improved. All the mentioned developments are ongoing at the Cooler Synchrotron (COSY) at Juelich. The achievements in the mentioned fields are presented at the conference.

  8. Performance assessment of a new laser system for efficient spin exchange optical pumping in a spin maser measurement of 129Xe EDM

    International Nuclear Information System (INIS)

    Funayama, C.; Furukawa, T.; Sato, T.; Ichikawa, Y.; Ohtomo, Y.; Sakamoto, Y.; Kojima, S.; Suzuki, T.; Hirao, C.; Chikamori, M.; Hikota, E.; Tsuchiya, M.; Yoshimi, A.; Bidinosti, C. P.; Ino, T.; Ueno, H.; Matsuo, Y.; Fukuyama, T.; Asahi, K.

    2015-01-01

    We demonstrate spin-exchange optical pumping of 129 Xe atoms with our newly made laser system. The new laser system was prepared to provide higher laser power required for the stable operation of spin maser oscillations in the 129 Xe EDM experiment. We studied the optimum cell temperature and pumping laser power to improve the degree of 129 Xe spin polarization. The best performance was achieved at the cell temperature of 100 ∘ C with the presently available laser power of 1 W. The results show that a more intense laser is required for further improvement of the spin polarization at higher cell temperatures in our experiment

  9. Integration of micro milling highspeed spindle on a microEDM-milling machine set-up

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Hansen, Hans Nørgaard; Andolfatto, Loic

    2009-01-01

    In order to cope with repositioning errors and to combine the fast removal rate of micro milling with the precision and small feature size achievable with micro EDM milling, a hybrid micro-milling and micro-EDM milling centre was built and tested. The aim was to build an affordable set-up, easy...... by micro milling. Examples of test parts are shown and used as an experimental validation....

  10. Colliding or co-rotating ion beams in storage rings for EDM search

    International Nuclear Information System (INIS)

    Koop, I A

    2015-01-01

    A new approach to search for and measure the electric dipole moment (EDM) of the proton, deuteron and some other light nuclei is presented. The idea of the method is to store two ion beams, circulating with different velocities, in a storage ring with crossed electric and magnetic guiding fields. One beam is polarized and its EDM is measured using the so-called ‘frozen spin’ method. The second beam, which is unpolarized, is used as a co-magnetometer, sensitive to the radial component of the ring’s magnetic field. The particle’s magnetic dipole moment (MDM) couples to the radial magnetic field and mimics the EDM signal. Measuring the relative vertical orbit separation of the two beams, caused by the presence of the radial magnetic field, one can control the unwanted MDM spin precession. Examples of the parameters for EDM storage rings for protons and other species of ions are presented. The use of crossed electric and magnetic fields helps to reduce the size of the ring by a factor of 10–20. We show that the bending radius of such an EDM storage ring could be about 2–3 m. Finally, a new method of increasing the spin coherence time, the so-called ‘spin wheel’, is proposed and its applicability to the EDM search is discussed. (paper)

  11. Time reversal violating nuclear polarizability and atomic electric dipole moment

    International Nuclear Information System (INIS)

    Ginges, J.S.M.; Flambaum, V.V.; Mititelu, G.

    2000-01-01

    Full text: We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). The interaction of external electric E and magnetic H fields with nuclear electric and magnetic dipole moments, d and ,u, gives rise to an energy shift, U= -β ik E i H k , where β ik is the nuclear polarizability. Parity and time invariance violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability, whereψ 0 and ψ n are P,T-odd perturbed ground and excited nuclear states, respectively. In the case of a heavy spherical nucleus with a single unpaired nucleon, the perturbed wavefunctions are U = -β ik E i H k , where ξis a constant proportional to the strength of the nuclear P,T-odd interaction, σ is the nuclear spin operator, and ψ n is an unperturbed wavefunction. There are both scalar and tensor contributions to the nuclear P,T-odd polarizability. An atomic EDM is induced by the interaction of the fields of an unpaired electron in an atom with the P,T-odd perturbed atomic nucleus. An estimate for the value of this EDM has been made. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation

  12. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the ^{199}Hg Atom.

    Science.gov (United States)

    Sahoo, B K; Das, B P

    2018-05-18

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P,T-odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P,T-odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to ^{199}Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  13. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the 199Hg Atom

    Science.gov (United States)

    Sahoo, B. K.; Das, B. P.

    2018-05-01

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P ,T -odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P ,T -odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to 199Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  14. Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM).

    Science.gov (United States)

    Zinelis, Spiros

    2007-05-01

    To evaluate the surface and elemental alterations induced by electro discharge machining (EDM) on the surface of dental cast alloys used for the fabrication of implant retained meso- and super-structures. A completed cast model of an arch that received dental implants was used for the preparation of six wax patterns which were divided into three groups (Au, Co and Ti). The wax patterns of the Au and Co groups were invested with conventional phosphate-bonded silica-based investment material and the Ti group with magnesia-based investment material. The investment rings of the Au and Co groups were cast with an Au-Ag alloy (Stabilor G) and a Co-Cr base alloy (Okta C), respectively, while the investment rings of group Ti were cast with cp Ti (Biotan). One casting of each group was subjected to electro discharge machining (EDM); the other was conventionally ground and polished. The surface morphology and the elemental compositions of conventionally and EDM-finished surfaces were studied by SEM/X-ray EDS analysis. Six spectra were collected from each surface employing the area scan mode and the mean value of each element between conventionally and EDM-finished surfaces was statistically analyzed by t-test (a=0.05). Then the specimens of each group were cut perpendicular to their longitudinal axis and after metallographic grinding and polishing the cross-sections studied under the SEM. The EDM surfaces showed a significant increase in C due to the decomposition of the dielectric fluid during spark erosion. Moreover, a significant Cu uptake was noted on these surfaces from the decomposition of the Cu electrodes used for EDM. Cross-sectional analysis showed that all alloys developed a superficial zone (recast layer) varying from 2 microm for Au-Ag to 10 microm for Co-Cr alloy. The elemental composition of dental alloy surfaces is significantly altered after EDM treatment.

  15. Field Modeling, Symplectic Tracking, and Spin Decoherence for EDM and Muon $g\\textrm{-}2$ Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Valetov, Eremey Vladimirovich [Michigan State U.

    2017-01-01

    While the first particle accelerators were electrostatic machines, and several electrostatic storage rings were subsequently commissioned and operated, electrostatic storage rings pose a number of challenges. Unlike motion in the magnetic field, where particle energy remains constant, particle energy generally changes in electrostatic elements. Conservation of energy in an electrostatic element is, in practice, only approximate, and it requires careful and accurate design, manufacturing, installation, and operational use. Electrostatic deflectors require relatively high electrostatic fields, tend to introduce nonlinear aberrations of all orders, and are more challenging to manufacture than homogeneous magnetic dipoles. Accordingly, magnetic storage rings are overwhelmingly prevalent. The search for electric dipole moments (EDMs) of fundamental particles is of key importance in the study of C and CP violations and their sources. C and CP violations are part of the Sakharov conditions that explain the matter–antimatter asymmetry in the universe. Determining the source of CP violations would provide valuable empirical insight for beyond-Standard-Model physics. EDMs of fundamental particles have not to this date been experimentally observed. The search for fundamental particle EDMs has narrowed the target search region; however, an EDM signal is yet to be discovered. In 2008, Brookhaven National Laboratory (BNL) had proposed the frozen spin (FS) concept for the search of a deuteron EDM. The FS concept envisions launching deuterons through a storage ring with combined electrostatic and magnetic fields. The electrostatic and magnetic fields are in a proportion that would, without an EDM, freeze the deuteron’s spin along its momentum as the deuteron moves around the lattice. The radial electrostatic field would result in a torque on the spin vector, proportional to a deuteron EDM, rotating the spin vector out of the midplane.

  16. Effect of magnetic polarity on surface roughness during magnetic field assisted EDM of tool steel

    Science.gov (United States)

    Efendee, A. M.; Saifuldin, M.; Gebremariam, MA; Azhari, A.

    2018-04-01

    Electrical discharge machining (EDM) is one of the non-traditional machining techniques where the process offers wide range of parameters manipulation and machining applications. However, surface roughness, material removal rate, electrode wear and operation costs were among the topmost issue within this technique. Alteration of magnetic device around machining area offers exciting output to be investigated and the effects of magnetic polarity on EDM remain unacquainted. The aim of this research is to investigate the effect of magnetic polarity on surface roughness during magnetic field assisted electrical discharge machining (MFAEDM) on tool steel material (AISI 420 mod.) using graphite electrode. A Magnet with a force of 18 Tesla was applied to the EDM process at selected parameters. The sparks under magnetic field assisted EDM produced better surface finish than the normal conventional EDM process. At the presence of high magnetic field, the spark produced was squeezed and discharge craters generated on the machined surface was tiny and shallow. Correct magnetic polarity combination of MFAEDM process is highly useful to attain a high efficiency machining and improved quality of surface finish to meet the demand of modern industrial applications.

  17. The Relative Contribution to Small Finger Abduction of the Ulnar Versus Radial Slip of the EDM: Implications for Tendon Transfers.

    Science.gov (United States)

    Akinleye, Sheriff D; Culbertson, Maya Deza; Cappelleti, Giacomo; Garofolo, Garret; Choueka, Jack

    2017-09-01

    The extensor digiti minimi (EDM) tendon is commonly divided into a radial slip (EDM-R) and an ulnar slip (EDM-U). To our knowledge, the degree to which each EDM slip concomitantly abducts the small finger with active extension has not been formally tested. This study sought to characterize the comparative contributions of finger abduction inherent to each slip of the EDM to observe the sequelae of active small finger extension following transfer of the contralateral slip. Eighteen fresh-frozen cadaveric hands were used in this study. Starting with the hand in resting position, a controlled traction of 10 N was applied to each slip of the EDM tendon. The range of small finger abduction with respect to the fixed ring finger was recorded utilizing infrared reflective markers tracked through the range of motion using a digital video camera. The mean abduction of the small finger when the radial slip of the EDM tendon was tested was 13.33° (95% confidence interval [CI]: 10.10°-16.55°), which was significantly different ( P ≤ .001) than small finger abduction produced by the ulnar slip of the EDM, with a mean of 23.72° (95% CI: 19.40°-28.04°). Given the fact that the ulnar slip of the EDM tendon is shown to be the major contributor of aberrant abduction with active small finger extension, as traction on this slip produces almost twice as much abduction as the radial slip, the EDM-U is the ideal donor graft with respect to tendon transfers of the EDM.

  18. Effect of Graphite Electrode to Surface’s Characteristic of EDM

    Directory of Open Access Journals (Sweden)

    Muttamara Apiwat

    2016-01-01

    Full Text Available Electrical discharge machining process (EDM is a process for removing material by the thermal of electrical discharge. Some of the melted and all of the evaporated material is then quenched and flushed away by dielectric liquid and the remaining melt recast on the finished surface. The recast layer is called as white layer. Beneath the recast layer, a heat affected zone is formed. The quality of an EDM product is usually evaluated in terms of its surface integrity, which is characterized by the surface roughness, existence of surface cracks and residual stresses. This paper presents a study of surface’s characteristics by EDM in de-ionized water due to decarbonisation. The machining tests were conducted on mild steel JIS grade SS400 with copper and graphite electrodes. The workpiece surfaces are analyzed by scanning electron microscope and XRD technique. The carbon transfers from graphite electrode to the white layer relating to martensitic phrase of recast layer.

  19. C P -violation in the two Higgs doublet model: From the LHC to EDMs

    Science.gov (United States)

    Chen, Chien-Yi; Li, Hao-Lin; Ramsey-Musolf, Michael

    2018-01-01

    We study the prospective sensitivity to C P -violating two Higgs doublet models from the 14 TeV LHC and future electric dipole moment (EDM) experiments. We concentrate on the search for a resonant heavy Higgs that decays to a Z boson and a SM-like Higgs h , leading to the Z (ℓℓ)h (b b ¯ ) final state. The prospective LHC reach is analyzed using the Boosted Decision Tree method. We illustrate the complementarity between the LHC and low energy EDM measurements and study the dependence of the physics reach on the degree of deviation from the alignment limit. In all cases, we find that there exists a large part of parameter space that is sensitive to both EDMs and LHC searches.

  20. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    Energy Technology Data Exchange (ETDEWEB)

    Pragadish, N.; Kumar, M. Pradeep [Anna University, Chennai (China)

    2015-04-15

    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T{sub ON}), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  1. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    International Nuclear Information System (INIS)

    Pragadish, N.; Kumar, M. Pradeep

    2015-01-01

    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T ON ), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  2. Optimization of cryogenic cooled EDM process parameters using grey relational analysis

    International Nuclear Information System (INIS)

    Kumar, S Vinoth; Kumar, M Pradeep

    2014-01-01

    This paper presents an experimental investigation on cryogenic cooling of liquid nitrogen (LN 2 ) copper electrode in the electrical discharge machining (EDM) process. The optimization of the EDM process parameters, such as the electrode environment (conventional electrode and cryogenically cooled electrode in EDM), discharge current, pulse on time, gap voltage on material removal rate, electrode wear, and surface roughness on machining of AlSiCp metal matrix composite using multiple performance characteristics on grey relational analysis was investigated. The L 18 orthogonal array was utilized to examine the process parameters, and the optimal levels of the process parameters were identified through grey relational analysis. Experimental data were analyzed through analysis of variance. Scanning electron microscopy analysis was conducted to study the characteristics of the machined surface.

  3. Modeling and evaluation of the influence of micro-EDM sparking state settings on the tool electrode wear behavior

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    materials characterized by considerable wear ofthe tool used for material removal. This paper presents an investigation involving modeling and estimation of the effect of settings for generation of discharges in stable conditions of micro-EDM on the phenomenon of tool electrode wear. A stable sparking...... a condition for the minimum tool wear for this micro-EDM process configuration....

  4. Proceedings of the International Conference on Educational Data Mining (EDM) (5th, Chania, Greece, June 19-21, 2012)

    Science.gov (United States)

    International Educational Data Mining Society, 2012

    2012-01-01

    The 5th International Conference on Educational Data Mining (EDM 2012) is held in picturesque Chania on the beautiful Crete island in Greece, under the auspices of the International Educational Data Mining Society (IEDMS). The EDM 2012 conference is a leading international forum for high quality research that mines large data sets of educational…

  5. [Proceedings of the] International Conference on Educational Data Mining (EDM) (3rd, Pittsburgh, PA, July 11-13, 2010)

    Science.gov (United States)

    Baker, Ryan S. J. d., Ed.; Merceron, Agathe, Ed.; Pavlik, Philip I., Jr., Ed.

    2010-01-01

    The Third International Conference on Data Mining (EDM 2010) was held in Pittsburgh, PA, USA. It follows the second conference at the University of Cordoba, Spain, on July 1-3, 2009 and the first edition of the conference held in Montreal in 2008, and a series of workshops within the AAAI, AIED, EC-TEL, ICALT, ITS, and UM conferences. EDM 2011…

  6. Proceedings of the International Conference on Educational Data Mining (EDM) (2nd, Cordoba, Spain, July 1-3, 2009)

    Science.gov (United States)

    Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed.

    2009-01-01

    The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…

  7. Accuracy improvement of the modified EDM model for non-premixed turbulent combustion in gas turbine

    Directory of Open Access Journals (Sweden)

    Qiong Li

    2015-09-01

    Full Text Available Eight bluff body and swirl turbulent diffusion flames resembling the flow field and combustion inside gas turbine combustors are simulated and the simulation results are compared with experimental data. It is revealed that the original modified EDM model could not predict the temperature profile accurately. A more accurate model is developed and validated for gas turbine combustion application. However, this model under predicts the flame temperature for the regular round jet flames indicating that no universal form of the modified EDM model could be achieved for the combustion simulation of both gas furnaces and gas turbines.

  8. PNPI differential EDM spectrometer and latest results of measurements of the neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M. [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation); Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Geltenbort, P.; Ivanov, S. N.; Zimmer, O. [Institut Max von Laue–Paul Langevin (France)

    2015-12-15

    In this work, the double chamber magnetic resonance spectrometer of the Petersburg Nuclear Physics Institute (PNPI) designed to measure the neutron electric dipole moment (EDM) is briefly described. A method for long storage of polarized ultracold neutrons in a resonance space with a superposed electric field collinear to the leading magnetic field is used. The results of the measurements carried out on the ILL reactor (Grenoble, France) are interpreted as the upper limit of the value of neutron EDM vertical bar d{sub n} vertical bar < 5.5 × 10{sup –26}e cm at the 90% confidence level.

  9. Analysis of aerosol emission and hazard evaluation of electrical discharge machining (EDM) process.

    Science.gov (United States)

    Jose, Mathew; Sivapirakasam, S P; Surianarayanan, M

    2010-01-01

    The safety and environmental aspects of a manufacturing process are important due to increased environmental regulations and life quality. In this paper, the concentration of aerosols in the breathing zone of the operator of Electrical Discharge Machining (EDM), a commonly used non traditional manufacturing process is presented. The pattern of aerosol emissions from this process with varying process parameters such as peak current, pulse duration, dielectric flushing pressure and the level of dielectric was evaluated. Further, the HAZOP technique was employed to identify the inherent safety aspects and fire risk of the EDM process under different working conditions. The analysis of aerosol exposure showed that the concentration of aerosol was increased with increase in the peak current, pulse duration and dielectric level and was decreased with increase in the flushing pressure. It was also found that at higher values of peak current (7A) and pulse duration (520 micros), the concentration of aerosols at breathing zone of the operator was above the permissible exposure limit value for respirable particulates (5 mg/m(3)). HAZOP study of the EDM process showed that this process is vulnerable to fire and explosion hazards. A detailed discussion on preventing the fire and explosion hazard is presented in this paper. The emission and risk of fire of the EDM process can be minimized by selecting proper process parameters and employing appropriate control strategy.

  10. The Effect of High Frequency Pulse on the Discharge Probability in Micro EDM

    Science.gov (United States)

    Liu, Y.; Qu, Y.; Zhang, W.; Ma, F.; Sha, Z.; Wang, Y.; Rolfe, B.; Zhang, S.

    2017-12-01

    High frequency pulse improves the machining efficiency of micro electric discharge machining (micro EDM), while it also brings some changes in micro EDM process. This paper focuses on the influence of skin-effect under the high frequency pulse on energy distribution and transmission in micro EDM, based on which, the rules of discharge probability of electrode end face are also analysed. On the basis of the electrical discharge process under the condition of high frequency pulse in micro EDM, COMSOL Multiphysics software is used to establish energy transmission model in micro electrode. The discharge energy distribution and transmission within tool electrode under different pulse frequencies, electrical currents, and permeability situation are studied in order to get the distribution pattern of current density and electric field intensity in the electrode end face under the influence of electrical parameters change. The electric field intensity distribution is regarded as the influencing parameter of discharge probability on the electrode end. Finally, MATLAB is used to fit the curve and obtain the distribution of discharge probability of electrode end face.

  11. A novel power source for high-precision, highly efficient micro w-EDM

    International Nuclear Information System (INIS)

    Chen, Shun-Tong; Chen, Chi-Hung

    2015-01-01

    The study presents the development of a novel power source for high-precision, highly efficient machining of micropart microstructures using micro wire electrical discharge machining (w-EDM). A novel power source based on a pluri resistance–capacitance (pRC) circuit that can generate a high-frequency, high-peak current with a short pulse train is proposed and designed to enhance the performance of micro w-EDM processes. Switching between transistors is precisely controlled in the designed power source to create a high-frequency short-pulse train current. Various microslot cutting tests in both aluminum and copper alloys are conducted. Experimental results demonstrate that the pRC power source creates instant spark erosion resulting in markedly less material for removal, diminishing discharge crater size, and consequently an improved surface finish. A new evaluation approach for spark erosion ability (SEA) to assess the merits of micro EDM power sources is also proposed. In addition to increasing the speed of micro w-EDM by increasing wire feed rates by 1.6 times the original feed rate, the power source is more appropriate for machining micropart microstructures since there is less thermal breaking. Satisfactory cutting of an elaborate miniature hook-shaped structure and a high-aspect ratio microstructure with a squared-pillar array also reveal that the developed pRC power source is effective, and should be very useful in the manufacture of intricate microparts. (paper)

  12. Workshop on Educational Data Mining @ ICALT07 (EDM@ICALT07)

    NARCIS (Netherlands)

    Beck, J.E.; Calders, T.; Pechenizkiy, M.; Viola, S.R.; Spector, J.M.; Sampson, D.G.; Okamoto, T.; Cerri, S.A.; Ueno, M.; Kashihara, A.

    2007-01-01

    The educational data mining workshop1 held in conjunction with the 7 IEEE International Conference on Advanced Learning Technologies (ICALT) in Niigata, Japan on July 18-20, 2007. EDM@ICALT07 continues the series of Workshops organized by the International Working Group on Educational Data Mining

  13. The Electronic Data Methods (EDM) forum for comparative effectiveness research (CER).

    Science.gov (United States)

    Holve, Erin; Segal, Courtney; Lopez, Marianne Hamilton; Rein, Alison; Johnson, Beth H

    2012-07-01

    AcademyHealth convened the Electronic Data Methods (EDM) Forum to collect, synthesize, and share lessons from eleven projects that are building infrastructure and using electronic clinical data for comparative effectiveness research (CER) and patient-centered outcomes research (PCOR). This paper provides a brief review of participating projects and provides a framework of common challenges. EDM Forum staff conducted a text review of relevant grant programs' funding opportunity announcements; projects' research plans; and available information on projects' websites. Additional information was obtained from presentations provided by each project; phone calls with project principal investigators, affiliated partners, and staff from the Agency for Healthcare Research and Quality (AHRQ); and six site visits. Projects participating in the EDM Forum are building infrastructure and developing innovative strategies to address a set of methodological, and data and informatics challenges, here identified in a common framework. The eleven networks represent more than 20 states and include a range of partnership models. Projects vary substantially in size, from 11,000 to more than 7.5 million individuals. Nearly all of the AHRQ priority populations and conditions are addressed. In partnership with the projects, the EDM Forum is focused on identifying and sharing lessons learned to advance the national dialogue on the use of electronic clinical data to conduct CER and PCOR. These efforts have the shared goal of addressing challenges in traditional research studies and data sources, and aim to build infrastructure and generate evidence to support a learning health care system that can improve patient outcomes.

  14. Surface defects in PMD-EDM of titanium alloy, Ti-6246

    International Nuclear Information System (INIS)

    Sharif, S.; Rival; Noordin, M.Y.

    2007-01-01

    Titanium alloys which are categorized as lightweight materials, poses greater strength and toughness are usually known to create major challenges during machining. Electrical discharge machining (EDM) which is very prominent amongst the non-conventional machining methods is expected to be used quite extensively in machining titanium alloys. EDM process is known to cause surface damaged layers which consists of three types of surfaces; spattered, recast and heat affected zone. This project was undertaken to study the machining performance of EDM and powder mixed dielectric-electrical discharge machining (PMD E DM) in machining Ti-6246 with respect to the surface integrity of machined surface by using copper tungsten (CuW) electrode. The machining parameters considered are voltage (V), current (I), pulse on time(T on ), interval time (T off ) and concentration of the SiC powder (C) in dielectric fluid. The respected responses investigated include surface alteration and overcut. It was found that PMD-EDM process produced less damaging effect on the surface layer of the machined surface and widened the overcut. (author)

  15. Traveling wire electrode increases productivity of Electrical Discharge Machining /EDM/ equipment

    Science.gov (United States)

    Kotora, J., Jr.; Smith, S. V.

    1967-01-01

    Traveling wire electrode on electrical discharge machining /EDM/ equipment reduces the time requirements for precision cutting. This device enables cutting with a minimum of lost material and without inducing stress beyond that inherent in the material. The use of wire increases accuracy and enables tighter tolerances to be maintained.

  16. The effect of Electro Discharge Machining (EDM) on the corrosion resistance of dental alloys.

    Science.gov (United States)

    Ntasi, Argyro; Mueller, Wolf Dieter; Eliades, George; Zinelis, Spiros

    2010-12-01

    The aim of the present study was to evaluate the effect of Electro Discharge Machining (EDM) on the corrosion resistance of two types of dental alloys used for fabrication of implant retained superstructures. Two groups of specimens were prepared from a Co-Cr (Okta-C) and a grade II cpTi (Biotan) alloys respectively. Half of the specimens were subjected to EDM with Cu electrodes and the rest were conventionally finished (CF). The corrosion resistance of the alloys was evaluated by anodic polarization in Ringer's solution. Morphological and elemental alterations before and after corrosion testing were studied by SEM/EDX. Six regions were analyzed on each surface before and after corrosion testing and the results were statistically analyzed by paired t-test (a=0.05). EDM demonstrated inferior corrosion resistance compared to CF surfaces, the latter being passive in a wider range of potential demonstrating higher polarization resistance and lower I(corr) values. Morphological alterations were found before and after corrosion testing for both materials tested after SEM analysis. EDX showed a significant decrease in Mo, Cr, Co, Cu (Co-Cr) and Ti, Cu (cpTi) after electrochemical testing plus an increase in C. According to the results of this study the EDM procedure decreases the corrosion resistance of both the alloys tested, increasing thus the risk of possible adverse biological reactions. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Modeling the wire-EDM process parameters for EN-8 carbon steel ...

    African Journals Online (AJOL)

    Modeling the wire-EDM process parameters for EN-8 carbon steel using .... The neural networks has been developed with the help of MATLAB 8.1 (R13) package .... Now, Simulation and Prediction will be performed using the trained network.

  18. Investigations of Effect of Rotary EDM Electrode on Machining Performance of Al6061 Alloy

    Science.gov (United States)

    Robinson Smart, D. S.; Jenish Smart, Joses; Periasamy, C.; Ratna Kumar, P. S. Samuel

    2018-04-01

    Electric Discharge Machining is an essential process which is being used for machining desired shape using electrical discharges which creates sparks. There will be electrodes subjected to electric voltage and which are separated by a dielectric liquid. Removing of material will be due to the continuous and rapid current discharges between two electrodes.. The spark is very carefully controlled and localized so that it only affects the surface of the material. Usually in order to prevent the defects which are arising due to the conventional machining, the Electric Discharge Machining (EDM) machining is preferred. Also intricate and complicated shapes can be machined effectively by use of Electric Discharge Machining (EDM). The EDM process usually does not affect the heat treat below the surface. This research work focus on the design and fabrication of rotary EDM tool for machining Al6061alloy and investigation of effect of rotary tool on surface finish, material removal rate and tool wear rate. Also the effect of machining parameters of EDM such as pulse on & off time, current on material Removal Rate (MRR), Surface Roughness (SR) and Electrode wear rate (EWR) have studied. Al6061 alloy can be used for marine and offshore applications by reinforcing some other elements. The investigations have revealed that MRR (material removal rate), surface roughness (Ra) have been improved with the reduction in the tool wear rate (TWR) when the tool is rotating instead of stationary. It was clear that as rotary speed of the tool is increasing the material removal rate is increasing with the reduction of surface finish and tool wear rate.

  19. Is Parental Involvement Lower at Larger Schools?

    Science.gov (United States)

    Walsh, Patrick

    2010-01-01

    Parents who volunteer, or who lobby for improvements in school quality, are generally seen as providing a school-wide public good. If so, straightforward public-good theory predicts that free-riding will reduce average involvement at larger schools. This study uses longitudinal data to follow families over time, as their children move from middle…

  20. Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models

    International Nuclear Information System (INIS)

    Abe, Tomohiro; Hisano, Junji; Kitahara, Teppei; Tobioka, Kohsaku

    2014-01-01

    We calculate all gauge invariant Barr-Zee type contributions to fermionic electric dipole moments (EDMs) in the two-Higgs doublet models (2HDM) with softly broken Z 2 symmetry. We start by studying the tensor structure of h→VV′ part in the Barr-Zee diagrams, and we calculate the effective couplings in a gauge invariant way by using the pinch technique. Then we calculate all Barr-Zee diagrams relevant for electron and neutron EDMs. We make bounds on the parameter space in type-I, type-II, type-X, and type-Y 2HDMs. The electron and neutron EDMs are complementary to each other in discrimination of the 2HDMs. Type-II and type-X 2HDMs are strongly constrained by recent ACME experiment’s result, and future experiments of electron and neutron EDMs may search O(10) TeV physics

  1. Micro-EDM process modeling and machining approaches for minimum tool electrode wear for fabrication of biocompatible micro-components

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    Micro-electrical discharge machining (micro-EDM) is a potential non-contact method for fabrication of biocompatible micro devices. This paper presents an attempt to model the tool electrode wear in micro-EDM process using multiple linear regression analysis (MLRA) and artificial neural networks...... linear regression model was developed for prediction of TWR in ten steps at a significance level of 90%. The optimum architecture of the ANN was obtained with 7 hidden layers at an R-sq value of 0.98. The predicted values of TWR using ANN matched well with the practically measured and calculated values...... (ANN). The governing micro-EDM factors chosen for this investigation were: voltage (V), current (I), pulse on time (Ton) and pulse frequency (f). The proposed predictive models generate a functional correlation between the tool electrode wear rate (TWR) and the governing micro-EDM factors. A multiple...

  2. The effect of TWD estimation error on the geometry of machined surfaces in micro-EDM milling

    DEFF Research Database (Denmark)

    Puthumana, Govindan; Bissacco, Giuliano; Hansen, Hans Nørgaard

    In micro EDM (electrical discharge machining) milling, tool electrode wear must be effectively compensated in order to achieve high accuracy of machined features [1]. Tool wear compensation in micro-EDM milling can be based on off-line techniques with limited accuracy such as estimation...... and statistical characterization of the discharge population [3]. The TWD based approach permits the direct control of the position of the tool electrode front surface. However, TWD estimation errors will generate a self-amplifying error on the tool electrode axial depth during micro-EDM milling. Therefore....... The error propagation effect is demonstrated through a software simulation tool developed by the authors for determination of the correct TWD for subsequent use in compensation of electrode wear in EDM milling. The implemented model uses an initial arbitrary estimation of TWD and a single experiment...

  3. Post-cast EDM method for reducing the thickness of a turbine nozzle wall

    Science.gov (United States)

    Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin

    2002-01-01

    A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.

  4. Characterization of a gene from the EDM1-PSACH region of human chromosome 19p

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, G.G.; Giorgi, D.; Martin, J.R. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-09-01

    Genetic linkage mapping has indicated that both multiple epiphyseal dysplasia (EDM1), a dominantly inherited chondrodysplasia, and pseudoachondroplasia (PSACH), a skeletal disorder associated with dwarfism, map to a 2-3 Mb region of human chromosome 19p. We have isolated a partial cDNA from this region using hybrid selection, and report on progress towards the characterization of the genomic structure and transcription of the corresponding gene. Sequence analysis of the cDNA to date indicates that this gene is likely to be expressed within extracellular matrix tissues. Defects in this gene or neighboring gene family members may therefore lead to EDM1, PSACH, or other connective tissue and skeletal disorders.

  5. Prediction of multi performance characteristics of wire EDM process using grey ANFIS

    Science.gov (United States)

    Kumanan, Somasundaram; Nair, Anish

    2017-09-01

    Super alloys are used to fabricate components in ultra-supercritical power plants. These hard to machine materials are processed using non-traditional machining methods like Wire cut electrical discharge machining and needs attention. This paper details about multi performance optimization of wire EDM process using Grey ANFIS. Experiments are designed to establish the performance characteristics of wire EDM such as surface roughness, material removal rate, wire wear rate and geometric tolerances. The control parameters are pulse on time, pulse off time, current, voltage, flushing pressure, wire tension, table feed and wire speed. Grey relational analysis is employed to optimise the multi objectives. Analysis of variance of the grey grades is used to identify the critical parameters. A regression model is developed and used to generate datasets for the training of proposed adaptive neuro fuzzy inference system. The developed prediction model is tested for its prediction ability.

  6. Study on ultra-fine w-EDM with on-machine measurement-assisted

    International Nuclear Information System (INIS)

    Chen Shuntong; Yang Hongye

    2011-01-01

    The purpose of this study was to develop the on-machine measurement techniques so as to precisely fabricate micro intricate part using ultra-fine w-EDM. The measurement-assisted approach which employs an automatic optical inspection (AOI) is incorporated to ultra-fine w-EDM process to on-machine detect the machining error for next re-machining. The AOI acquires the image through a high resolution CCD device from the contour of the workpiece after roughing in order to further process and recognize the image for determining the residual. This facilitates the on-machine error detection and compensation re-machining. The micro workpiece and electrode are not repositioned during machining. A fabrication for a micro probe of 30-μm diameter is rapidly machined and verified successfully. Based on the proposed technique, on-machine measurement with AOI has been realized satisfactorily.

  7. A Case Study for Student Performance Analysis based on Educational Data Mining (EDM)

    OpenAIRE

    Daxa Kundariya; Prof. Vaseem Ghada

    2016-01-01

    Educational Data Mining (EDM) is a study methodology and an application of data mining techniques related to student’s data from academic database. Like other domain, educational domain also produce vast amount of studying data. To enhance the quality of education system student performance analysis plays an important role for decision support. This paper elaborates a study on various Educational data mining technique and how they could be used to educational system to analysis student perfor...

  8. Pengembangan Electronic Document Management System (EDMS) Sebagai Alternatif Pengarsipan Di Perguruan Tinggi

    OpenAIRE

    Amin, M. Miftakul

    2010-01-01

    The purpose of this paper is to develop an electronic document management system (EDMS). With a system is expected to be an alternative in the management of electronic documents in the college environment. Writing this using qualitative research approach with observation, document analysis, and interviews for data collection process. The system used a web-based system that is expected to reach the users of the system at large. This system has the functionality to store, archive, and retrieve...

  9. Study on Gap Flow Field Simulation in Small Hole Machining of Ultrasonic Assisted EDM

    Science.gov (United States)

    Liu, Yu; Chang, Hao; Zhang, Wenchao; Ma, Fujian; Sha, Zhihua; Zhang, Shengfang

    2017-12-01

    When machining a small hole with high aspect ratio in EDM, it is hard for the flushing liquid entering the bottom gap and the debris could hardly be removed, which results in the accumulation of debris and affects the machining efficiency and machining accuracy. The assisted ultrasonic vibration can improve the removal of debris in the gap. Based on dynamics simulation software Fluent, a 3D model of debris movement in the gap flow field of EDM small hole machining assisted with side flushing and ultrasonic vibration is established in this paper. When depth to ratio is 3, the laws of different amplitudes and frequencies on debris distribution and removal are quantitatively analysed. The research results show that periodic ultrasonic vibration can promote the movement of debris, which is beneficial to the removal of debris in the machining gap. Compared to traditional small hole machining in EDM, the debris in the machining gap is greatly reduced, which ensures the stability of machining process and improves the machining efficiency.

  10. Searching for a Cultural Home: Asian American Youth in the EDM Festival Scene

    Directory of Open Access Journals (Sweden)

    Judy Soojin Park

    2015-06-01

    Full Text Available This article investigates the recent proliferation of Asian American participants in Electronic Dance Music (EDM festivals with a particular focus on those organized by Insomniac Events in Southern California. As Insomniac’s events aim to propagate an ethos of PLUR—Peace, Love, Unity and Respect—reminiscent of historical rave culture, these events promise a space where anyone, regardless of race, class, gender or sexuality, is accepted. Using an interview-based methodology paired with participant observation, I argue that Asian American youth’s status as “perpetual foreigners” and subsequent desire for cultural belonging have motivated their participation in events promoted by Insomniac. Nevertheless, the Asian American participants I interviewed defined notions of belonging, authenticity and subcultural capital in the EDM festival scene in relation to suburban middle-class whiteness and in opposition to urban hip-hop blackness. My research provides a much-needed study of nonwhite participants and how they negotiate their subjectivities in relation to the contemporary EDM festival scene.

  11. Study on the Gap Flow Simulation in EDM Small Hole Machining with Ti Alloy

    Directory of Open Access Journals (Sweden)

    Shengfang Zhang

    2017-01-01

    Full Text Available In electrical discharge machining (EDM process, the debris removed from electrode material strongly affects the machining efficiency and accuracy, especially for the deep small hole machining process. In case of Ti alloy, the debris movement and removal process in gap flow between electrodes for small hole EDM process is studied in this paper. Based on the solid-liquid two-phase flow equation, the mathematical model on the gap flow field with flushing and self-adaptive disturbation is developed. In our 3D simulation process, the count of debris increases with number of EDM discharge cycles, and the disturbation generated by the movement of self-adaptive tool in the gap flow is considered. The methods of smoothing and remeshing are also applied in the modeling process to enable a movable tool. Under different depth, flushing velocity, and tool diameter, the distribution of velocity field, pressure field of gap flow, and debris movement are analyzed. The statistical study of debris distribution under different machining conditions is also carried out. Finally, a series of experiments are conducted on a self-made machine to verify the 3D simulation model. The experiment results show the burn mark at hole bottom and the tapered wall, which corresponds well with the simulating conclusion.

  12. An Ultracold Neutron Turntable Switcher for the LANL nEDM Experiment

    Science.gov (United States)

    Heise, Jackson; LANL nEDM Collaboration

    2017-09-01

    The goal of a new nEDM experiment at Los Alamos National Laboratory (LANL) is to measure the neutron's electric dipole moment (nEDM) with 1-sigma sensitivity 3 × 10-27 e × cm. The experiment will make use of the Ramsey method of separated oscillatory magnetic field pulses to determine the value of the neutron's precession frequency with a strong electric field applied parallel or antiparallel to the holding field. The change in this precession frequency can then be used to calculate the nEDM. In the experiment, ultra-cold neutrons (UCNs) travel from the LANL UCN source via guides into a chamber, where the Ramsey magnetic field pulses are applied. The chamber is then unloaded into a detector that measures the polarization of the neutrons. A turntable switcher was constructed to form connections between the source, Ramsey field chamber, and detector. Controlled by a rotary motor, the switcher turns to orient guide pipe sections, first connecting the source to the precession chamber inside a magnetically shielded room, and then to connect the precession chamber to the detector for spin analysis. Discussion of switcher assembly, as well as results of switcher configuration, will be presented.

  13. Optimization of machining parameters in dry EDM of EN31 steel

    Science.gov (United States)

    Brar, G. S.

    2018-03-01

    Dry electric discharge machining (Dry EDM) is one of the novel EDM technology in which gases namely helium, argon, oxygen, nitrogen etc. are used as a dielectric medium at high pressure instead of oil based liquid dielectric. The present study investigates dry electric discharge machining (with rotary tool) of EN-31 steel to achieve lower tool wear rate (TWR) and better surface roughness (Ra) by performing a set of exploratory experiments with oxygen gas as dielectric. The effect of polarity, discharge current, gas flow pressure, pulse-on time, R.P.M. and gap voltage on the MRR, TWR and surface roughness (Ra) in dry EDM was studied with copper as rotary tool. The significant factors affecting MRR are discharge current and pulse on time. The significant factors affecting TWR are gas flow pressure, pulse on time and R.P.M. TWR was found close to zero in most of the experiments. The significant factors affecting Ra are pulse on time, gas flow pressure and R.P.M. It was found that polarity has nearly zero effect on all the three output variables.

  14. Research on the EDM Technology for Micro-holes at Complex Spatial Locations

    Science.gov (United States)

    Y Liu, J.; Guo, J. M.; Sun, D. J.; Cai, Y. H.; Ding, L. T.; Jiang, H.

    2017-12-01

    For the demands on machining micro-holes at complex spatial location, several key technical problems are conquered such as micro-Electron Discharge Machining (micro-EDM) power supply system’s development, the host structure’s design and machining process technical. Through developing low-voltage power supply circuit, high-voltage circuit, micro and precision machining circuit and clearance detection system, the narrow pulse and high frequency six-axis EDM machining power supply system is developed to meet the demands on micro-hole discharging machining. With the method of combining the CAD structure design, CAE simulation analysis, modal test, ODS (Operational Deflection Shapes) test and theoretical analysis, the host construction and key axes of the machine tool are optimized to meet the position demands of the micro-holes. Through developing the special deionized water filtration system to make sure that the machining process is stable enough. To verify the machining equipment and processing technical developed in this paper through developing the micro-hole’s processing flow and test on the real machine tool. As shown in the final test results: the efficient micro-EDM machining pulse power supply system, machine tool host system, deionized filtration system and processing method developed in this paper meet the demands on machining micro-holes at complex spatial locations.

  15. More 'altruistic' punishment in larger societies.

    Science.gov (United States)

    Marlowe, Frank W; Berbesque, J Colette

    2008-03-07

    If individuals will cooperate with cooperators, and punish non-cooperators even at a cost to themselves, then this strong reciprocity could minimize the cheating that undermines cooperation. Based upon numerous economic experiments, some have proposed that human cooperation is explained by strong reciprocity and norm enforcement. Second-party punishment is when you punish someone who defected on you; third-party punishment is when you punish someone who defected on someone else. Third-party punishment is an effective way to enforce the norms of strong reciprocity and promote cooperation. Here we present new results that expand on a previous report from a large cross-cultural project. This project has already shown that there is considerable cross-cultural variation in punishment and cooperation. Here we test the hypothesis that population size (and complexity) predicts the level of third-party punishment. Our results show that people in larger, more complex societies engage in significantly more third-party punishment than people in small-scale societies.

  16. Real time power consumption monitoring for energy efficiency analysis in micro EDM milling

    DEFF Research Database (Denmark)

    Tristo, Gianluca; Bissacco, Giuliano; Lebar, Andrej

    2015-01-01

    for manufacturing sustainability. Electrical discharge machining (EDM) is considered an attractive solution for the manufacturing of microcomponents. In this paper, a low cost and modular data acquisition system, based on open-hardware and open-source software, for online energy consumption monitoring, is presented......Sustainability has become a major concern in many countries and is leading to strict regulations regarding the impact of products and services during their manufacturing, use, and disposal. Power consumption monitoring in manufacturing companies can lead to a reduction of machine tools energy...

  17. High-speed micro electrode tool fabrication by a twin-wire EDM system

    International Nuclear Information System (INIS)

    Sheu, Dong-Yea

    2008-01-01

    This paper describes a new machining process which combines twin-electro-wire together with two electro discharge circuits to rapidly fabricate micro electrode tools. The results show that transistor electro discharge and RC electro discharge circuits coexist to fabricate micro tools with rough and finish machining both on the same machine. Compared to conventional wire electro discharge grinding (WEDG) technology, a twin-wire EDM system that combines rough and finish machining into one process allows the efficient fabrication of micro tools. This high-speed micro tool fabrication process can be applied not only to micro electrode machining but also to micro punching tool and micro probing tips machining

  18. New approach to the Muon g-2 and EDM experiment at J-PARC

    International Nuclear Information System (INIS)

    Iinuma, Hiromi

    2011-01-01

    A new measurement of anomalous magnetic moment of the positive muon a μ down to the level of 0.01 ppm and the electric dipole moment EDM with the improved sensitivity better than order of magnitude is proposed. Novel techniques utilizing an ultra-cold muon beam accelerated to 300 MeV/c and a 66 cm diameter of super-precisely controlled magnetic storage ring are introduced. An unique beam injection and storage scheme to control the beam trajectory into such a compact storage ring are also discussed.

  19. Harmony search optimization in dimensional accuracy of die sinking EDM process using SS316L stainless steel

    Science.gov (United States)

    Deris, A. M.; Zain, A. M.; Sallehuddin, R.; Sharif, S.

    2017-09-01

    Electric discharge machine (EDM) is one of the widely used nonconventional machining processes for hard and difficult to machine materials. Due to the large number of machining parameters in EDM and its complicated structural, the selection of the optimal solution of machining parameters for obtaining minimum machining performance is remain as a challenging task to the researchers. This paper proposed experimental investigation and optimization of machining parameters for EDM process on stainless steel 316L work piece using Harmony Search (HS) algorithm. The mathematical model was developed based on regression approach with four input parameters which are pulse on time, peak current, servo voltage and servo speed to the output response which is dimensional accuracy (DA). The optimal result of HS approach was compared with regression analysis and it was found HS gave better result y giving the most minimum DA value compared with regression approach.

  20. Experimental Study on Influence of Process Variables on Crater Dimensions in Micro- EDM of γ-Titanium Aluminide

    International Nuclear Information System (INIS)

    Mitra, S.; Paul, G.; Sarkar, S.; Nagahanumaiah

    2011-01-01

    In the present work the effect of different dielectric mediums in micro-EDM of γ-Titanium Aluminide alloy have been investigated. Experiments were conducted both in the absence (dry conditions) and in presence of dielectric (EDM oil).Circular craters were produced both in the presence and absence of dielectric fluid using varying micro-EDM process variables i.e. open circuit voltage, discharge capacitance, pulse frequency and pulse-on-time. Over cut was measured from optical microscope images using Image Analyzer software. Influences of process variables and optimal conditions for minimum over cut on crater dimensions were investigated. ANOVA test which shows that capacitance of RC circuit contributes significantly in crater formation followed by pulse frequency. Optical photographs exhibit that over cut are less in air medium compared to oil medium.

  1. Quantum Dynamics in Atomic-Fountain Experiments for Measuring the Electric Dipole Moment of the Electron with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    B. J. Wundt

    2012-11-01

    Full Text Available An improved measurement of the electron electric dipole moment (EDM appears feasible using ground-state alkali atoms in an atomic fountain in which a strong electric field, which couples to a conceivable EDM, is applied perpendicular to the fountain axis. In a practical fountain, the ratio of the atomic tensor Stark shift to the Zeeman shift is a factor μ∼100. We expand the complete time-evolution operator in inverse powers of this ratio; complete results are presented for atoms of total spin F=3, 4, and 5. For a specific set of entangled hyperfine sublevels (coherent states, potential systematic errors enter only as even powers of 1/μ, making the expansion rapidly convergent. The remaining EDM-mimicking effects are further suppressed in a proposed double-differential setup, where the final state is interrogated in a differential laser configuration, and the direction of the strong electric field also is inverted. Estimates of the signal available at existing accelerator facilities indicate that the proposed apparatus offers the potential for a drastic improvement in EDM limits over existing measurements, and for constraining the parameter space of supersymmetric (SUSY extensions of the Standard Model.

  2. Investigation of radialization and rerouting of the extensor digiti minimi (EDM) in the abduction deformity of the little finger: a cadaver study.

    Science.gov (United States)

    van Aaken, Jan; Zhu, Jin; Fasel, Jean H D; Beaulieu, Jean-Yves

    2011-06-01

    One of several operations to correct abduction deformity of the little finger, (Wartenberg's sign) in ulnar nerve palsy, is a combined procedure that radializes the extensor digiti minimi (EDM) at the level of the fifth metacarpophalangeal (MCP) joint and reroutes it from the fifth to fourth extensor compartment. This cadaveric study was designed to investigate the impact of both elements on adduction. Anatomy of the little finger extensor apparatus was studied in 16 freshly frozen cadaver hands sectioned at mid forearm. We observed little finger motion after different modifications of the EDM. We tested the effect of a rerouting maneuver by pulling on the EDM, as well as radialization of the EDM alone and in combination with rerouting. The EDM was present in all cases. Little finger extensor digitorum communis (EDC(V)) was missing in two cadavers. In no case was adduction created by rerouting the EDM to the fourth compartment. Radialization of the EDM corrected the abduction deformity beyond the axis of abduction/adduction of the fifth MCP joint in 13 cases and only up to it in three cases. In one of the three with limited correction, a rerouting maneuver allowed for further adduction. The key to correct abduction deformity of the little finger is radialization of the EDM, which can be done through a solitary incision at the level of the MCP joint. Rerouting alone does not correct the abduction deformity, and in combination with radialization it does not predictably enhance the correction.

  3. Improved Limits on Axionlike-Particle-Mediated P , T -Violating Interactions between Electrons and Nucleons from Electric Dipole Moments of Atoms and Molecules

    Science.gov (United States)

    Stadnik, Y. V.; Dzuba, V. A.; Flambaum, V. V.

    2018-01-01

    In the presence of P , T -violating interactions, the exchange of axionlike particles between electrons and nucleons in atoms and molecules induces electric dipole moments (EDMs) of atoms and molecules. We perform calculations of such axion-exchange-induced atomic EDMs using the relativistic Hartree-Fock-Dirac method including electron core polarization corrections. We present analytical estimates to explain the dependence of these induced atomic EDMs on the axion mass and atomic parameters. From the experimental bounds on the EDMs of atoms and molecules, including Cs 133 , Tl 205 , Xe 129 , Hg 199 , Yb 171 F 19 , Hf 180 F+ 19 , and Th 232 O 16 , we constrain the P , T -violating scalar-pseudoscalar nucleon-electron and electron-electron interactions mediated by a generic axionlike particle of arbitrary mass. Our limits improve on existing laboratory bounds from other experiments by many orders of magnitude for ma≳10-2 eV . We also place constraints on C P violation in certain types of relaxion models.

  4. Constraints on T-odd and P-even hadronic interactions from nucleon, nuclear, and atomic electric dipole moments

    International Nuclear Information System (INIS)

    Haxton, W.C.; Hoering, A.; Musolf, M.J.; Old Dominion Univ., Norfolk, VA

    1994-01-01

    We deduce constraints on time-reversal-noninvariant (TRNI), parity-conserving (PC) hadronic interactions from nucleon, nuclear, and atomic electric dipole moment (edm) limits. Such interactions generate edm's through weak radiative corrections. We consider long-ranged mechanisms, i.e., those mediated by meson exchanges in contrast to short-range two-loop mechanisms. We find that the ratio of typical TRNI. PC nuclear matrix elements to those of the strong interaction are approx-lt 10 -5 , a limit about two orders of magnitude more stringent than those from direct detailed balance studies of such interactions

  5. Magnetic Field Monitoring in the SNS and LANL Neutron EDM Experiments

    Science.gov (United States)

    Aleksandrova, Alina; SNS nEDM Collaboration; LANL nEDM Collaboration

    2017-09-01

    The SNS neutron EDM experiment requires the ability to precisely control and monitor the magnetic field inside of the fiducial volume. However, it is not always practical (or even possible) to measure the field within the region of interest directly. To remedy this issue, we have designed a field monitoring system that will allow us to reconstruct the field inside of the fiducial volume using noninvasive measurements of the field components at discrete locations external to this volume. A prototype probe array (consisting of 12 single-axis fluxgate magnetometer sensors) was used to monitor the magnetic field within the fiducial volume of an in-house magnetic testing apparatus. In this talk, the design and results of this test will be presented, and the possible implementation of this field monitoring method may have in the room temperature LANL neutron EDM experiment will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC-0014622.

  6. Effect of Powder-Suspended Dielectric on the EDM Characteristics of Inconel 625

    Science.gov (United States)

    Talla, Gangadharudu; Gangopadhyay, S.; Biswas, C. K.

    2016-02-01

    The current work attempts to establish the criteria for powder material selection by investigating the influence of various powder-suspended dielectrics and machining parameters on various EDM characteristics of Inconel 625 (a nickel-based super alloy) which is nowadays regularly used in aerospace, chemical, and marine industries. The powders include aluminum (Al), graphite, and silicon (Si) that have significant variation in their thermo-physical characteristics. Results showed that powder properties like electrical conductivity, thermal conductivity, density, and hardness play a significant role in changing the machining performance and the quality of the machined surface. Among the three powders, highest material removal rate was observed for graphite powder due to its high electrical and thermal conductivities. Best surface finish and least radial overcut (ROC) were attained using Si powder. Maximum microhardness was found for Si due to its low thermal conductivity and high hardness. It is followed by graphite and aluminum powders. Addition of powder to the dielectric has increased the crater diameter due to expansion of plasma channel. Powder-mixed EDM (PMEDM) was also effective in lowering the density of surface cracks with least number of cracks obtained with graphite powder. X-ray diffraction analysis indicated possible formation of metal carbides along with grain growth phenomenon of Inconel 625 after PMEDM.

  7. EVALUASI MANAJEMEN RISIKO KEAMANAN INFORMASI DENGAN MENGGUNAKAN FRAMEWORK COBIT 5 SUBDOMAIN EDM03 (ENSURE RISK OPTIMISATION

    Directory of Open Access Journals (Sweden)

    Fransisca Tiarawati Riadi

    2018-04-01

    Full Text Available Pentingnya penggunaan Teknologi Informasi (TI tidak bisa dipisahkan dari risiko-risiko yang akan mungkin terjadi. Satuan organisasi XYZ sendiri telah menerapkan manajemen risiko keamanan informasi menggunakan standar ISO 31000:2009 untuk meminimalisir risiko-risiko tersebut. Penerapan manajemen risiko keamanan informasi dilakukan agar satuan organisasi XYZ dapat mengetahui optimasi risiko yang dikelola satuan organisasi XYZ sudah berjalan dengan baik dan memberikan dampak yang signifikan. Sehingga satuan organsasi XYZ perlu melakukan evaluasi untuk mengetahui tingkat kapabilitas dalam memastikan optimasi risiko yang telah dilaksanakan satuan organisasi terhadap layanan TI. Framework COBIT 5 digunakan untuk melakukan evaluasi manajemen risiko keamanan informasi dengan melakukan pengukuran tingkat kapabilitas yang memfokuskan pada subdomain EDM03 (Ensure Risk Optimisation. Hasil penelitian ini pada subdomain EDM03 memiliki tingkat kapabilitas pada level 1 performed process kategori largely achieved dengan nilai 78,29%. Pada level ini proses yang diimplementasikan organisasi mencapai tujuan prosesnya. Manfaat penelitian ini bagi satuan organisasi XYZ dapat membantu manajemen risiko keamanan informasi dan pengimplementasi framework ISO 31000 mencapai nilai optimal dalam mendukung layanan TIK di Lembaga ABC.

  8. Regression Modeling of EDM Process for AISI D2 Tool Steel with RSM

    Directory of Open Access Journals (Sweden)

    Shakir M. Mousa

    2018-01-01

    Full Text Available In this paper, Response Surface Method (RSM is utilized to carry out an investigation of the impact of input parameters: electrode type (E.T. [Gr, Cu and CuW], pulse duration of current (Ip, pulse duration on time (Ton, and pulse duration off time (Toff on the surface finish in EDM operation. To approximate and concentrate the suggested second- order regression model is generally accepted for Surface Roughness Ra, a Central Composite Design (CCD is utilized for evaluating the model constant coefficients of the input parameters on Surface Roughness (Ra. Examinations were performed on AISI D2 tool steel. The important coefficients are gotten by achieving successfully an Analysis of Variance (ANOVA at the 5 % confidence interval. The outcomes discover that Surface Roughness (Ra is much more impacted by E.T., Ton, Toff, Ip and little of their interactions action or influence. To predict the average Surface Roughness (Ra, a mathematical regression model was developed. Furthermore, for saving in time, the created model could be utilized for the choice of the high levels in the EDM procedure. The model adequacy was extremely agreeable as the constant Coefficient of Determination (R2 is observed to be 99.72% and adjusted R2-measurement (R2adj 99.60%.

  9. A search engine for the engineering and equipment data management system (EDMS) at CERN

    International Nuclear Information System (INIS)

    Tsyganov, A; Amerigo, S M; Petit, S; Pettersson, T; Suwalska, A

    2008-01-01

    CERN, the European Laboratory for Particle Physics, located in Geneva -Switzerland, is currently building the LHC (Large Hadron Collider), a 27 km particle accelerator. The equipment life-cycle management of this project is provided by the Engineering and Equipment Data Management System (EDMS) Service. Using an Oracle database, it supports the management and follow-up of different kinds of documentation through the whole life cycle of the LHC project: design, manufacturing, installation, commissioning data etc... The equipment data collection phase is now slowing down and the project is getting closer to the 'As-Built' phase: the phase of the project consuming and exploring the large volumes of data stored since 1996. Searching through millions of items of information (documents, equipment parts, operations...) multiplied by dozens of points of view (operators, maintainers...) requires an efficient and flexible search engine. This paper describes the process followed by the team to implement the search engine for the LHC As-built project in the EDMS Service. The emphasis is put on the design decision to decouple the search engine from any user interface, potentially enabling other systems to also use it. Projections, algorithms, and the planned implementation are described in this paper. The implementation of the first version started in early 2007

  10. Influence of wire EDM parameters on the damping behaviour of A356.2 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Dora Siva, E-mail: dorasivaprasad@gmail.com [Dept of Mechanical Engineering, GITAM University, Visakhapatnam, 530045 (India); Shoba, Chintada [Dept of Industrial Engineering, GITAM University, Visakhapatnam, 530045 (India); Varma, Kalidindi Rahul [Dept of Mechanical Engineering, RAGHU College of Engineering, Visakhapatnam (India); Khurshid, Abdul [M.Tech (CAD/CAM), Dept of Mechanical Engineering, GITAM University, Visakhapatnam, 530045 (India)

    2015-10-15

    The effect of different Wire electrical discharge machining (WEDM) process parameters on the damping behavior of A356.2 aluminum alloy is investigated. In the present investigation pulse on time (T{sub ON}), pulse off time (T{sub OFF}) and peak current (IP) which are considered to be the most significant process parameters from the previous studies are varied using one factor at a time approach, to study the effect on damping behavior of A356.2 aluminum alloy. Damping experiments are performed on a dynamic mechanical analyzer (DMA 8000) at constant strain under dual cantilever mode over a frequency range of 1–100 Hz at room temperature. The scanning electron microscope was used for characterization of the wire EDMed samples. Experimental results reveal that the damping behavior greatly depends on the wire EDM process parameters. The related mechanisms are presented. - Highlights: • Damping capacity increase with the increase in frequency. • Increasing pulse on time increases the damping capacity of aluminum alloy. • The damping capacity was found to decrease with the increase in pulse off time. • No significant change in damping capacity was noticed with varied peak current. • The formation of white layer plays an important role in the damping behavior.

  11. Electro-thermal modelling of anode and cathode in micro-EDM

    International Nuclear Information System (INIS)

    Yeo, S H; Kurnia, W; Tan, P C

    2007-01-01

    Micro-electrical discharge machining is an evolution of conventional EDM used for fabricating three-dimensional complex micro-components and microstructure with high precision capabilities. However, due to the stochastic nature of the process, it has not been fully understood. This paper proposes an analytical model based on electro-thermal theory to estimate the geometrical dimensions of micro-crater. The model incorporates voltage, current and pulse-on-time during material removal to predict the temperature distribution on the workpiece as a result of single discharges in micro-EDM. It is assumed that the entire superheated area is ejected from the workpiece surface while only a small fraction of the molten area is expelled. For verification purposes, single discharge experiments using RC pulse generator are performed with pure tungsten as the electrode and AISI 4140 alloy steel as the workpiece. For the pulse-on-time range up to 1000 ns, the experimental and theoretical results are found to be in close agreement with average volume approximation errors of 2.7% and 6.6% for the anode and cathode, respectively

  12. Electro-thermal modelling of anode and cathode in micro-EDM

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, S H; Kurnia, W; Tan, P C [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2007-04-21

    Micro-electrical discharge machining is an evolution of conventional EDM used for fabricating three-dimensional complex micro-components and microstructure with high precision capabilities. However, due to the stochastic nature of the process, it has not been fully understood. This paper proposes an analytical model based on electro-thermal theory to estimate the geometrical dimensions of micro-crater. The model incorporates voltage, current and pulse-on-time during material removal to predict the temperature distribution on the workpiece as a result of single discharges in micro-EDM. It is assumed that the entire superheated area is ejected from the workpiece surface while only a small fraction of the molten area is expelled. For verification purposes, single discharge experiments using RC pulse generator are performed with pure tungsten as the electrode and AISI 4140 alloy steel as the workpiece. For the pulse-on-time range up to 1000 ns, the experimental and theoretical results are found to be in close agreement with average volume approximation errors of 2.7% and 6.6% for the anode and cathode, respectively.

  13. Electro-thermal modelling of anode and cathode in micro-EDM

    Science.gov (United States)

    Yeo, S. H.; Kurnia, W.; Tan, P. C.

    2007-04-01

    Micro-electrical discharge machining is an evolution of conventional EDM used for fabricating three-dimensional complex micro-components and microstructure with high precision capabilities. However, due to the stochastic nature of the process, it has not been fully understood. This paper proposes an analytical model based on electro-thermal theory to estimate the geometrical dimensions of micro-crater. The model incorporates voltage, current and pulse-on-time during material removal to predict the temperature distribution on the workpiece as a result of single discharges in micro-EDM. It is assumed that the entire superheated area is ejected from the workpiece surface while only a small fraction of the molten area is expelled. For verification purposes, single discharge experiments using RC pulse generator are performed with pure tungsten as the electrode and AISI 4140 alloy steel as the workpiece. For the pulse-on-time range up to 1000 ns, the experimental and theoretical results are found to be in close agreement with average volume approximation errors of 2.7% and 6.6% for the anode and cathode, respectively.

  14. Improvement of MRR and surface roughness during electrical discharge machining (EDM) using aluminum oxide powder mixed dielectric fluid

    Science.gov (United States)

    Khan, A. A.; Mohiuddin, A. K. M.; Latif, M. A. A.

    2018-01-01

    This paper discusses the effect of aluminium oxide (Al203) addition to dielectric fluid during electrical discharge machining (EDM). Aluminium oxide was added to the dielectric used in the EDM process to improve its performance when machining the stainless steel AISI 304, while copper was used as the electrode. Effect of the concentration of Al203 (0.3 mg/L) in dielectric fluid was compared with EDM without any addition of Al203. Surface quality of stainless steel and the material removal rate were investigated. Design of the experiment (DOE) was used for the experimental plan. Statistical analysis was done using ANOVA and then appropriate model was designated. The experimental results show that with dispersing of aluminium oxide in dielectric fluid surface roughness was improved while the material removal rate (MRR) was increased to some extent. These indicate the improvement of EDM performance using aluminium oxide in dielectric fluid. It was also found that with increase in pulse on time both MRR and surface roughness increase sharply.

  15. Proceedings of the International Conference on Educational Data Mining (EDM) (4th, Eindhoven, the Netherlands, July 6-8, 2011)

    Science.gov (United States)

    Pechenizkiy, Mykola; Calders, Toon; Conati, Cristina; Ventura, Sebastian; Romero, Cristobal; Stamper, John

    2011-01-01

    The 4th International Conference on Educational Data Mining (EDM 2011) brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large datasets to answer educational research questions. The conference, held in Eindhoven, The Netherlands, July 6-9, 2011, follows the three previous editions…

  16. Proceedings of the International Conference on Educational Data Mining (EDM) (6th, Memphis, TN., USA, July 6-9, 2013)

    Science.gov (United States)

    D'Mello, S. K., Ed.; Calvo, R. A., Ed.; Olney, A., Ed.

    2013-01-01

    Since its inception in 2008, the Educational Data Mining (EDM) conference series has featured some of the most innovative and fascinating basic and applied research centered on data mining, education, and learning technologies. This tradition of exemplary interdisciplinary research has been kept alive in 2013 as evident through an imaginative,…

  17. Proceedings of the International Conference on Educational Data Mining (EDM) (8th, Madrid, Spain, June 26-29, 2015)

    Science.gov (United States)

    Santos, Olga Cristina, Ed.; Boticario, Jesus Gonzalez, Ed.; Romero, Cristobal, Ed.; Pechenizkiy, Mykola, Ed.; Merceron, Agathe, Ed.; Mitros, Piotr, Ed.; Luna, Jose Maria, Ed.; Mihaescu, Cristian, Ed.; Moreno, Pablo, Ed.; Hershkovitz, Arnon, Ed.; Ventura, Sebastian, Ed.; Desmarais, Michel, Ed.

    2015-01-01

    The 8th International Conference on Educational Data Mining (EDM 2015) is held under auspices of the International Educational Data Mining Society at UNED, the National University for Distance Education in Spain. The conference held in Madrid, Spain, July 26-29, 2015, follows the seven previous editions (London 2014, Memphis 2013, Chania 2012,…

  18. Applying a foil queue micro-electrode in micro-EDM to fabricate a 3D micro-structure

    Science.gov (United States)

    Xu, Bin; Guo, Kang; Wu, Xiao-yu; Lei, Jian-guo; Liang, Xiong; Guo, Deng-ji; Ma, Jiang; Cheng, Rong

    2018-05-01

    Applying a 3D micro-electrode in a micro electrical discharge machining (micro-EDM) can fabricate a 3D micro-structure with an up and down reciprocating method. However, this processing method has some shortcomings, such as a low success rate and a complex process for fabrication of 3D micro-electrodes. By focusing on these shortcomings, this paper proposed a novel 3D micro-EDM process based on the foil queue micro-electrode. Firstly, a 3D micro-electrode was discretized into several foil micro-electrodes and these foil micro-electrodes constituted a foil queue micro-electrode. Then, based on the planned process path, foil micro-electrodes were applied in micro-EDM sequentially and the micro-EDM results of each foil micro-electrode were able to superimpose the 3D micro-structure. However, the step effect will occur on the 3D micro-structure surface, which has an adverse effect on the 3D micro-structure. To tackle this problem, this paper proposes to reduce this adverse effect by rounded corner wear at the end of the foil micro-electrode and studies the impact of machining parameters on rounded corner wear and the step effect on the micro-structure surface. Finally, using a wire cutting voltage of 80 V, a current of 0.5 A and a pulse width modulation ratio of 1:4, the foil queue micro-electrode was fabricated by wire electrical discharge machining. Also, using a pulse width of 100 ns, a pulse interval of 200 ns, a voltage of 100 V and workpiece material of 304# stainless steel, the foil queue micro-electrode was applied in micro-EDM for processing of a 3D micro-structure with hemispherical features, which verified the feasibility of this process.

  19. Performance capabilities of EDM of high carbon high chromium steel with copper and brass electrodes

    Science.gov (United States)

    Surekha, B.; Swain, Sudiptha; Suleman, Abu Jafar; Choudhury, Suvan Dev

    2017-07-01

    The paper address the statistical modeling of input-output relationships of electric discharge machining. In the present work, peak current (I) pulse on time (T) and gap voltage of electric discharge machining (EDM) process are chosen as control parameters to analyze the performance of the process. The output characteristics, namely radial overcut, electrode wear rate (EWR) and metal removal rate (MRR) are treated as the responses. A full factorial design (FFD) of experiments has been used to conduct the experiments and linear regression models are developed for different process characteristics. While conducting the experiments, high carbon and high chromium steel is considered as work piece material and brass and copper are used as electrode material. It is important to note that the experimental conditions are kept similar while machining with the help of different electrode materials. The data obtained from the experiments has been used to develop the regression models for three process parameters for two electrode materials.

  20. Trim cut machining and surface integrity analysis of Nimonic 80A alloy using wire cut EDM

    Directory of Open Access Journals (Sweden)

    Amitesh Goswami

    2017-02-01

    Full Text Available This present work deals with the features of trim cut wire EDM machining of Nimonic 80A in terms of machining parameters, to predict material removal rate (MRR, surface roughness (Ra, wire wear ratio (WWR and microstructure analysis. Trim cut is performed after rough cut to remove the rough layer deposited after machining due to melting and re-solidification of the eroded metal from workpiece as well as from wire electrode. Taguchi’s design of experiments methodology has been used for planning and designing the experiments. The relative significance of various factors has also been evaluated and analyzed using ANOVA. The results clearly indicate trim cut potential for high surface finish compared to rough cut machining.

  1. A comparison of neural network architectures for the prediction of MRR in EDM

    Science.gov (United States)

    Jena, A. R.; Das, Raja

    2017-11-01

    The aim of the research work is to predict the material removal rate of a work-piece in electrical discharge machining (EDM). Here, an effort has been made to predict the material removal rate through back-propagation neural network (BPN) and radial basis function neural network (RBFN) for a work-piece of AISI D2 steel. The input parameters for the architecture are discharge-current (Ip), pulse-duration (Ton), and duty-cycle (τ) taken for consideration to obtained the output for material removal rate of the work-piece. In the architecture, it has been observed that radial basis function neural network is comparatively faster than back-propagation neural network but logically back-propagation neural network results more real value. Therefore BPN may consider as a better process in this architecture for consistent prediction to save time and money for conducting experiments.

  2. Modeling Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    Science.gov (United States)

    Stephenson, Edward; Imig, Astrid

    2009-10-01

    The Storage Ring EDM Collaboration has obtained a set of measurements detailing the sensitivity of a storage ring polarimeter for deuterons to small geometrical and rate changes. Various schemes, such as the calculation of the cross ratio [1], can cancel effects due to detector acceptance differences and luminosity differences for states of opposite polarization. Such schemes fail at second-order in the errors, becoming sensitive to geometrical changes, polarization magnitude differences between opposite polarization states, and changes to the detector response with changing data rates. An expansion of the polarimeter response in a Taylor series based on small errors about the polarimeter operating point can parametrize such effects, primarily in terms of the logarithmic derivatives of the cross section and analyzing power. A comparison will be made to measurements obtained with the EDDA detector at COSY-J"ulich. [4pt] [1] G.G. Ohlsen and P.W. Keaton, Jr., NIM 109, 41 (1973).

  3. Multi response optimization of wire-EDM process parameters of ballistic grade aluminium alloy

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2015-12-01

    Full Text Available In the current investigation, a multi response optimization technique based on Taguchi method coupled with Grey relational analysis is planned for wire-EDM operations on ballistic grade aluminium alloy for armour applications. Experiments have been performed with four machining variables: pulse-on time, pulse-off time, peak current and spark voltage. Experimentation has been planned as per Taguchi technique. Three performance characteristics namely material removal rate (MRR, surface roughness (SR and gap current (GC have been chosen for this study. Results showed that pulse-on time, peak current and spark voltage were significant variables to Grey relational grade. Variation of performance measures with process variables was modelled by using response surface method. The confirmation tests have also been performed to validate the results obtained by Grey relational analysis and found that great improvement with 6% error is achieved.

  4. Muonium production target for the muon g-2/EDM experiment at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Sohtaro

    2014-08-15

    There is more than three standard-deviations discrepancy between measurement and theoretical prediction of the muon anomalous magnetic moment. We are going to measure the precision value of muon g−2 and search for physics beyond standard model. In addition, we can search for muon EDM which violates CP symmetry. CP violation in charged lepton sector is currently not found. We are developing the “Ultra Cold Muon Beam” instead of tertiary muon beam with electric focusing. Ultra cold muon is realized by laser ionization of muonium (bound state of a muon and an electron) from the production target. Increase of muonium yield is essential for our experimental goal; 0.1ppm statistical precision. Muonium production experiment at J-PARC MLF MUSE is planned in 2012 autumn. In this paper, we discuss the development of muonium production target and positron detector for the study.

  5. The Ef fects of Technology Usabilitiy and Individual Technology Readiness on Utilization of Electronic Document Management System (EDMS: A Research on Employee of University Hospital

    Directory of Open Access Journals (Sweden)

    Asuman Atilla

    2015-06-01

    Full Text Available Electronic Document Management System (EDMS is software which is utilized for writing, sending and storing, briefly managing the processes and operations of the corporations and institutions. In this empirical research, the statistical differences are investigated between users’ concerns about usability of mentioned technology, users’ technological readiness levels and users’ utilization status of EDMS sample is formed by 189 administrative staff of a university hospital in Ankara. According to findings, significant statistical differences are found between some dimensions of technology usability (usability effectiveness, learnability,helpfulness satisfaction, some dimensions of technology readiness (discomfort and insecurity and the utilization status (user, nonuser of EDMS.

  6. Multi criteria decision making of machining parameters for Die Sinking EDM Process

    Directory of Open Access Journals (Sweden)

    G. K. Bose

    2015-04-01

    Full Text Available Electrical Discharge Machining (EDM is one of the most basic non-conventional machining processes for production of complex geometries and process of hard materials, which are difficult to machine by conventional process. It is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat-treated tool steels, composites, super alloys, ceramics, carbides, heat resistant steels etc. The present study is focusing on the die sinking electric discharge machining (EDM of AISI H 13, W.-Nr. 1.2344 Grade: Ovar Supreme for finding out the effect of machining parameters such as discharge current (GI, pulse on time (POT, pulse off time (POF and spark gap (SG on performance response like Material removal rate (MRR, Surface Roughness (Ra & Overcut (OC using Square-shaped Cu tool with Lateral flushing. A well-designed experimental scheme is used to reduce the total number of experiments. Parts of the experiment are conducted with the L9 orthogonal array based on the Taguchi methodology and significant process parameters are identified using Analysis of Variance (ANOVA. It is found that MRR is affected by gap current & Ra is affected by pulse on time. Moreover, the signal-to-noise ratios associated with the observed values in the experiments are determined by which factor is most affected by the responses of MRR, Ra and OC. These experimental data are further investigated using Grey Relational Analysis to optimize multiple performances in which different levels combination of the factors are ranked based on grey relational grade. The analysis reveals that substantial improvement in machining performance takes place following this technique.

  7. Larger men have larger prostates: Detection bias in epidemiologic studies of obesity and prostate cancer risk.

    Science.gov (United States)

    Rundle, Andrew; Wang, Yun; Sadasivan, Sudha; Chitale, Dhananjay A; Gupta, Nilesh S; Tang, Deliang; Rybicki, Benjamin A

    2017-06-01

    Obesity is associated with risk of aggressive prostate cancer (PCa), but not with over-all PCa risk. However, obese men have larger prostates which may lower biopsy accuracy and cause a systematic bias toward the null in epidemiologic studies of over-all risk. Within a cohort of 6692 men followed-up after a biopsy or transurethral resection of the prostate (TURP) with benign findings, a nested case-control study was conducted of 495 prostate cancer cases and controls matched on age, race, follow-up duration, biopsy versus TURP, and procedure date. Data on body mass index and prostate volume at the time of the initial procedure were abstracted from medical records. Prior to consideration of differences in prostate volume, overweight (OR = 1.41; 95%CI 1.01, 1.97), and obese status (OR = 1.59; 95%CI 1.09, 2.33) at the time of the original benign biopsy or TURP were associated with PCa incidence during follow-up. Prostate volume did not significantly moderate the association between body-size and PCa, however it did act as an inverse confounder; adjustment for prostate volume increased the effect size for overweight by 22% (adjusted OR = 1.52; 95%CI 1.08, 2.14) and for obese status by 23% (adjusted OR = 1.77; 95%CI 1.20, 2.62). Larger prostate volume at the time of the original benign biopsy or TURP was inversely associated with PCa incidence during follow-up (OR = 0.92 per 10 cc difference in volume; 95%CI 0.88, 0.97). In analyses that stratified case-control pairs by tumor aggressiveness of the case, prostate volume acted as an inverse confounder in analyses of non-aggressive PCa but not in analyses of aggressive PCa. In studies of obesity and PCa, differences in prostate volume cause a bias toward the null, particularly in analyses of non-aggressive PCa. A pervasive underestimation of the association between obesity and overall PCa risk may exist in the literature. © 2017 Wiley Periodicals, Inc.

  8. Characterizing the Effects of Micro Electrical Discharge Machining Parameters on Material Removal Rate during Micro EDM Drilling of Tungsten Carbide (WC-Co)

    Science.gov (United States)

    Hourmand, Mehdi; Sarhan, Ahmed A. D.; Sayuti, Mohd

    2017-10-01

    Micro-dies, molds and miniaturized products can be manufactured using micro EDM process. In this research, EDM machine and on-machine fabricated CuW micro-electrode were utilized to produce the micro holes in WC-16%Co. The effects of voltage, current, pulse ON time, pulse OFF time, capacitor and rotating speed on Material removal rate (MRR) during micro EDM drilling of WC-16% Co was analyzed using fractional factorial design method. ANOVA analysis shows that increasing current, rotating speed, capacitor and decreasing voltage and pulse ON time lead to the amplify in MRR. It was found that out of all the factors, current and capacitor had the most significant effect on MRR, while the effect of capacitor was more than current. Eventually, it can be concluded that micro holes can be produced using EDM machine.

  9. ɛ '/ ɛ anomaly and neutron EDM in SU(2) L × SU(2) R × U(1) B- L model with charge symmetry

    Science.gov (United States)

    Haba, Naoyuki; Umeeda, Hiroyuki; Yamada, Toshifumi

    2018-05-01

    The Standard Model prediction for ɛ '/ ɛ based on recent lattice QCD results exhibits a tension with the experimental data. We solve this tension through W R + gauge boson exchange in the SU(2) L × SU(2) R × U(1) B- L model with `charge symmetry', whose theoretical motivation is to attribute the chiral structure of the Standard Model to the spontaneous breaking of SU(2) R × U(1) B- L gauge group and charge symmetry. We show that {M_W}{_R}study a correlation between ɛ ' /ɛ and the neutron EDM. We confirm that the model can solve the ɛ ' /ɛ anomaly without conflicting the current bound on the neutron EDM, and further reveal that almost all parameter regions in which the ɛ ' /ɛ anomaly is explained will be covered by future neutron EDM searches, which leads us to anticipate the discovery of the neutron EDM.

  10. How the R factor changes as molecules become larger

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2000-01-01

    The R factors and the numbers of independent atoms for the entire set of molecular organic structures contained in the Cambridge Structural Database were retrieved and analysed. The average R factor for all structures containing the same number of independent atoms was plotted against the number...... of independent atoms. A clear correlation was observed. The plot is suggested to give a graphical overview of how values of the R factor for large-molecule structures with 200-1000 independent atoms increase as the number of independent atoms increases. (C) 2000 International Union of Crystallography Printed...

  11. Development of the Measurement System for the Search of an Electric Dipole Moment of the Electron with Laser-Cooled Francium Atoms

    Directory of Open Access Journals (Sweden)

    Inoue T.

    2014-03-01

    Full Text Available We plan to measure the permanent electric dipole moment (EDM of the electron, which has the sensitivity to the CP violation in theories beyond the standard model by using the laser-cooled francium (Fr atom. This paper reports the present status of the EDM measurement system. A high voltage application system was constructed in order to produce the strong electric field (100 kV/cm needed for the experiment. After conditioning, the leakage current was 10 pA when a high voltage of 43 kV was applied. Also, a drift of an environmental field was measured at the planned location of the Fr-EDM experiment. The drift is suppressed at present down to the level of 10 pT by installing a 4-layermagnetic shield. Improvements are still needed to reach the required field stability of 1 fT.

  12. Electron electric dipole moment experiment using electric-fieldquantized slow cesium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Jason M.; Munger Jr., Charles T.; Gould, Harvey.

    2007-04-05

    A proof-of-principle electron electric dipole moment (e-EDM)experiment using slow cesium atoms, nulled magnetic fields, and electricfield quantization has been performed. With the ambient magnetic fieldsseen by the atoms reduced to less than 200 pT, an electric field of 6MV/m lifts the degeneracy between states of unequal lbar mF rbar and,along with the low (approximately 3 m/s) velocity, suppresses thesystematic effect from the motional magnetic field. The low velocity andsmall residual magnetic field have made it possible to induce transitionsbetween states and to perform state preparation, analysis, and detectionin regions free of applied static magnetic and electric fields. Thisexperiment demonstrates techniques that may be used to improve the e-EDMlimit by two orders of magnitude, but it is not in itself a sensitivee-EDM search, mostly due to limitations of the laser system.

  13. Process parameter optimization during EDM of AISI 316 LN stainless steel by using fuzzy based multi-objective PSO

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, Arindam [National Institute of Technology Agartala, Tripura (India)

    2013-07-15

    The present contribution describes an application of a hybrid approach using fuzzy logic and particle swarm optimization (PSO) for optimizing the process parameters in the electric discharge machining (EDM) of AISI 316LN Stainless Steel. In this study, each experimentation was performed under different machining conditions of pulse current, pulse on-time, and pulse off-time. Machining performances such as MRR and EWR were evaluated. A Taguchi L9 orthogonal array was produced to plan the experimentation and the regression method was applied to model the relationship between the input factors and responses. A fuzzy model was employed to provide a fitness function to PSO by unifying the multiple responses. Finally, PSO was used to predict the optimal process parametric settings for the multi-performance optimization of the EDM operation. The experimental results confirm the feasibility of the strategy and are in good agreement with the predicted results over a wide range of machining conditions employed in the process.

  14. Some aspects of finite element modelling of ultrasonically aided micro-EDM of CoCr alloys

    Directory of Open Access Journals (Sweden)

    Ghiculescu Daniel

    2017-01-01

    Full Text Available The paper deals with finite element modelling of micromachining CoCr alloys by ultrasonically aided electrical discharge machining. This hybrid machining process has two components: a thermal one due to EDM, and a mechanical one to ultrasonic assistance. Both components were modelled using Thermal and Structural Mechanics time dependent modules of Comsol Multiphysics. The results were compared with the experimental data obtained in our laboratories, proving a good agreement and offering some solutions for machining optimization.

  15. High aspect ratio micro tool manufacturing for polymer replication using mu EDM of silicon, selective etching and electroforming

    DEFF Research Database (Denmark)

    Tosello, Guido; Bissacco, Giuliano; Tang, Peter Torben

    2008-01-01

    Mass fabrication of polymer micro components with high aspect ratio micro-structures requires high performance micro tools allowing the use of low cost replication processes such as micro injection moulding. In this regard an innovative process chain, based on a combination of micro electrical di...... discharge machining (mu EDM) of a silicon substrate, electroforming and selective etching was used for the manufacturing of a micro tool. The micro tool was employed for polymer replication by means of the injection moulding process....

  16. Feasibility of maintaining in-plane polarization for a storage ring EDM search

    Science.gov (United States)

    Stephenson, Edward; Storage Ring EDM Collaboration

    2014-09-01

    A search for an electric dipole moment (EDM) on charged particles using a storage ring requires beam polarization lifetimes approaching 1000 s for in-plane polarization. A feasibility study using beam bunching and sextupole field adjustment is underway with a 0.97-GeV/c vector-polarized deuteron beam at COSY. The polarimeter consists of a thick carbon target positioned at the edge of the beam and the EDDA scintillation detectors. The DAQ system assigns a clock time to each polarimeter event. Once calibrated against the RF-cavity, the clock time is used to select events associated with a maximal sideways polarization (precessing at 120 kHz). With this tool, the in-plane polarization magnitude is tracked versus time. Electron cooling reduces the depolarization from finite emittance and second-order momentum spread acting through synchrotron oscillations. Further lifetime improvement to the level of hundreds of seconds is achieved by adjusting sextupole fields located in the COSY ring arcs at places of large transverse beta functions and dispersion. The dependence of the reciprocal of the lifetime on sextupole field strength is nearly linear, permitting an easy location of the best field values. These typically occur near loci of zero chromaticity. A search for an electric dipole moment (EDM) on charged particles using a storage ring requires beam polarization lifetimes approaching 1000 s for in-plane polarization. A feasibility study using beam bunching and sextupole field adjustment is underway with a 0.97-GeV/c vector-polarized deuteron beam at COSY. The polarimeter consists of a thick carbon target positioned at the edge of the beam and the EDDA scintillation detectors. The DAQ system assigns a clock time to each polarimeter event. Once calibrated against the RF-cavity, the clock time is used to select events associated with a maximal sideways polarization (precessing at 120 kHz). With this tool, the in-plane polarization magnitude is tracked versus time. Electron

  17. A new affinity-HPLC packing for protein separation: Cibacron blue attached uniform porous poly(HEMA-co-EDM) beads.

    Science.gov (United States)

    Unsal, Ender; Durdu, Aysun; Elmas, Begum; Tuncel, Murvet; Tuncel, Ali

    2005-11-01

    In this study, a new affinity high-performance liquid chromatography (HPLC) stationary phase suitable for protein separation was synthesized. In the first stage of the synthesis, uniform porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate), poly(HEMA-co-EDM), beads 6.2 mum in size were obtained. Homogeneous distribution of hydroxyl groups in the bead interior was confirmed by confocal laser scanning microscopy. The plain poly(HEMA-co-EDM) particles gave very low non-specific protein adsorption with albumin. The selected dye ligand Cibacron blue F3G-A (CB F3G-A) was covalently linked onto the beads via hydroxyl groups. In the batch experiments, albumin adsorption up to 60 mg BSA/g particles was obtained with the CB F3G-A carrying poly(HEMA-co-EDM) beads. The affinity-HPLC of selected proteins (albumin and lysozyme) was investigated in a 25 mm x 4.0-mm inner diameter column packed with CB F3G-A carrying beads and both proteins were successfully resolved. By a single injection, 200 mug of protein was loaded and quantitatively eluted from the column. The protein recovery increased with increasing flow rate and salt concentration of the elution buffer and decreased with the increasing protein feed concentration. During the albumin elution, theoretical plate numbers up to 30,000 plates/m were achieved by increasing the salt concentration.

  18. Calculation of the atomic electric dipole moment of Pb2+ induced by nuclear Schiff moment

    Science.gov (United States)

    Ramachandran, S. M.; Latha, K. V. P.; Meenakshisundaram, N.

    2017-07-01

    We report the atomic electric dipole moment induced by the P, T violating interactions in the nuclear/sub-nuclear level, for 207Pb2+ and 207Pb, owing to the recent interest in the ferroelectric crystal PbTiO3 as one of the candidates for investigating macroscopic P, T-odd effects. In this paper, we calculate the atomic electric dipole moments of 207Pb and Pb2+, parametrized in terms of the P, T-odd coupling parameter, the nuclear Schiff moment (NSM), S, in the frame-work of the coupled-perturbed Hartree-Fock theory. We estimate the Schiff moment of Pb2+ using the experimental result of a system, which is electronically similar to the Pb2+ ion. We present the dominant contributions of the electric dipole moment (EDM) matrix elements and the important correlation effects contributing to the atomic EDM of Pb2+. Our results provide the first ever calculated EDM of the Pb2+ ion, and an estimate of its NSM from which the P, T-odd energy shift in a PbTiO3 crystal can be evaluated.

  19. Failure analysis of the Ringhals unit 3 EDM surfaces removed from the RPV outlet nozzle to safe end weld

    International Nuclear Information System (INIS)

    Efsing, Pal; Embring, Goeran; Forssgren, Bjoern; Kroes, Bert; Lundstroem, Roger

    2006-09-01

    During the 2000 RFO (Re-Fueling Outage) In-Service Inspection of the nozzle to safe end weld of the Hot Leg Reactor Pressure Vessel Nozzles in Ringhals 3 and 4, axially oriented defects in the Alloy 182 weld metal were detected. In the case of Ringhals 3, the defects were initially considered as being embedded and thus left for future consideration, whereas the defects in Ringhals 4 were judged as being surface breaking and removed by EDM (Electro Discharge Machining). During the RFO 2001, the defects in Ringhals 3 were also removed by EDM without applying any surface treatment subsequent to the sampling. The cavities were inspected using a standard ET technique for manufacturing control before the plant was allowed to return to service. After one cycle of operation, the cavities resulting from the boat sampling were inspected by ET and UT techniques and indications of renewed, shallow cracking were identified. The indications were pre-dominantly axially oriented, of limited depth and with surface breaking lengths varying from 4 to 18 mm. To investigate the cause of this cracking, it was decided to remove a second series of small boat samples from the areas with indications, prior to implementation of a permanent repair. To minimize the impact on the RFO schedule and the material loss that would have resulted from EDM boat sample removal, mini samples were removed manually, using a small axial grinder. The sampling was performed after nozzle decontamination and used a dry nozzle access system that had been specifically developed for the nozzle repair. The sample removal was completed in approximately two hours and a total of three samples were shipped to the Studsvik hot cell laboratories for failure analysis. The failure analysis revealed a typical surface morphology, resulting from the EDM process and confirmed that numerous micro-fissures may result from the process if it is utilized without proper optimization and care. On one of the boat samples, surface areas

  20. An integrated study of surface roughness in EDM process using regression analysis and GSO algorithm

    Science.gov (United States)

    Zainal, Nurezayana; Zain, Azlan Mohd; Sharif, Safian; Nuzly Abdull Hamed, Haza; Mohamad Yusuf, Suhaila

    2017-09-01

    The aim of this study is to develop an integrated study of surface roughness (Ra) in the die-sinking electrical discharge machining (EDM) process of Ti-6AL-4V titanium alloy with positive polarity of copper-tungsten (Cu-W) electrode. Regression analysis and glowworm swarm optimization (GSO) algorithm were considered for modelling and optimization process. Pulse on time (A), pulse off time (B), peak current (C) and servo voltage (D) were selected as the machining parameters with various levels. The experiments have been conducted based on the two levels of full factorial design with an added center point design of experiments (DOE). Moreover, mathematical models with linear and 2 factor interaction (2FI) effects of the parameters chosen were developed. The validity test of the fit and the adequacy of the developed mathematical models have been carried out by using analysis of variance (ANOVA) and F-test. The statistical analysis showed that the 2FI model outperformed with the most minimal value of Ra compared to the linear model and experimental result.

  1. A Fast Inspection of Tool Electrode and Drilling Depth in EDM Drilling by Detection Line Algorithm.

    Science.gov (United States)

    Huang, Kuo-Yi

    2008-08-21

    The purpose of this study was to develop a novel measurement method using a machine vision system. Besides using image processing techniques, the proposed system employs a detection line algorithm that detects the tool electrode length and drilling depth of a workpiece accurately and effectively. Different boundaries of areas on the tool electrode are defined: a baseline between base and normal areas, a ND-line between normal and drilling areas (accumulating carbon area), and a DD-line between drilling area and dielectric fluid droplet on the electrode tip. Accordingly, image processing techniques are employed to extract a tool electrode image, and the centroid, eigenvector, and principle axis of the tool electrode are determined. The developed detection line algorithm (DLA) is then used to detect the baseline, ND-line, and DD-line along the direction of the principle axis. Finally, the tool electrode length and drilling depth of the workpiece are estimated via detected baseline, ND-line, and DD-line. Experimental results show good accuracy and efficiency in estimation of the tool electrode length and drilling depth under different conditions. Hence, this research may provide a reference for industrial application in EDM drilling measurement.

  2. Investigation on power discharge in micro-EDM stainless steel drilling using different electrodes

    International Nuclear Information System (INIS)

    D'Urso, G.; Maccarini, G.; Quarto, M.; Ravasio, C.

    2015-01-01

    The present work deals with the execution of through micro-holes on stainless steel plates using a micro-EDM (Electrical discharge machining) machine. The investigation focuses on the influence of different electrodes' materials and power discharge on both the process performance and the dimensional characteristics of the holes. The experimental campaign was carried out by varying peak current and voltage in order to achieve both high and low power discharge conditions. Tubular electrodes made of three different materials (tungsten carbide, brass and copper) were used. The indexes taken into account were Material removal rate (MRR), Tool wear ratio (TWR), Diametral overcut (DOC) and Taper rate (TR). Brass and copper electrodes always resulted to be the best solution in terms of drilling speed even though the wear of these electrode types is remarkable higher than the tungsten one. On the opposite, tungsten carbide electrodes resulted to be the best solution when high dimensional and geometrical precision is required. Concerning the finishing of the hole inner surface, the best results were achieved using tungsten carbide electrode.

  3. Investigation on power discharge in micro-EDM stainless steel drilling using different electrodes

    Energy Technology Data Exchange (ETDEWEB)

    D' Urso, G.; Maccarini, G.; Quarto, M.; Ravasio, C. [University of Bergamo, Bergamo (Italy)

    2015-10-15

    The present work deals with the execution of through micro-holes on stainless steel plates using a micro-EDM (Electrical discharge machining) machine. The investigation focuses on the influence of different electrodes' materials and power discharge on both the process performance and the dimensional characteristics of the holes. The experimental campaign was carried out by varying peak current and voltage in order to achieve both high and low power discharge conditions. Tubular electrodes made of three different materials (tungsten carbide, brass and copper) were used. The indexes taken into account were Material removal rate (MRR), Tool wear ratio (TWR), Diametral overcut (DOC) and Taper rate (TR). Brass and copper electrodes always resulted to be the best solution in terms of drilling speed even though the wear of these electrode types is remarkable higher than the tungsten one. On the opposite, tungsten carbide electrodes resulted to be the best solution when high dimensional and geometrical precision is required. Concerning the finishing of the hole inner surface, the best results were achieved using tungsten carbide electrode.

  4. Optimization of control parameters for SR in EDM injection flushing type on stainless steel 304 workpiece

    International Nuclear Information System (INIS)

    Reza, M S; Yusoff, A R; Shaharun, M A

    2012-01-01

    The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece with copper tools are being optimized according to its individual machining characteristic i.e. surface roughness (SR). Higher SR during EDM machining process results for poor surface integrity of the workpiece. Hence, the quality characteristic for SR is set to lower-the-better to achieve the optimum surface integrity. Taguchi method has been used for the construction, layout and analysis of the experiment for each of the machining characteristic for the SR. The use of Taguchi method in the experiment saves a lot of time and cost of machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that the lower the machining diameter, the lower will be the SR.

  5. HyFlex EDM: superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments.

    Science.gov (United States)

    Pirani, C; Iacono, F; Generali, L; Sassatelli, P; Nucci, C; Lusvarghi, L; Gandolfi, M G; Prati, C

    2016-05-01

    To evaluate the surface and microstructural alterations of new and used HyFlex EDM prototypes and to test their fatigue resistance. Fifteen HyFlex EDM prototypes were used for in vitro instrumentation of severely curved root canals. Surface and microstructural characteristics of new and used files were compared by ESEM analysis equipped with energy dispersive X-ray spectrophotometry (EDS) and optical metallographic imaging. Usage-induced degradation was assessed. Thirty additional HyFlex EDM prototypes and 20 standard manufactured HyFlex CM files were subjected to cyclic fatigue tests. Time to fracture was recorded, and results were validated using the Kruskal-Wallis test (α-level 0.05). Fatigued files were analysed by ESEM for fractographic evaluation. Surface and microstructural characterization of EDM prototypes revealed the typical spark-machined surface of a NiTi EDM alloy. No fractures were registered during root canal instrumentation. No evident surface alterations and minor degradation were observed between new and used instruments. The metallographic analysis of new and used files disclosed a homogeneous structure, mostly composed of lenticular martensite grains, and some residual austenite. The cyclic fatigue test showed an increase of fatigue resistance up to 700% on the EDM compared to CM files. Spark-machined peculiar surface is the main feature of HyFlex EDM. Low degradation was observed after multiple canal instrumentations. Prototypes exhibited surprising high values of cyclic fatigue resistance and a safe in vitro use in severely curved canals. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  6. Establishment of ''Internal Rules'' and EDMS - Electronic Document Management System at NPP NEK

    International Nuclear Information System (INIS)

    Mandic, D.

    2012-01-01

    The main purpose of this paper is to present NPP's plans regarding the on-going project that started in November 2011, and that is related to the establishment of ''Internal Rules'' and EDMS - Electronic Document Management System.The term ''Internal Rules'' has been directly translated from Slovenian language (''Notranja pravila'') and adopted from the translated version of appropriate Slovenian national codes (ZVDAGA [1] in Slovenian language or PDAAIA [2] in English version). ''Internal Rules on capture and storage of materials in digital form'' refer to the rules adopted by a person as his/her internal act with reference to storage of his/her material. The main purpose for the establishment of the Internal Rules is to be able to justify that Krsko NPP is organized in compliance with the national codes covering that subject and strictly performing according to those Internal Rules. Once a Slovenian company achieves recognized and registered status in accordance with the Internal Rules document that has been certified and approved by the ARS (Archives of the Republic Slovenia), such company can utilize e-documents in the same way as they would utilize physical documents. Furthermore, a Slovenian company with approved Internal Rules can use e-documents in any legal aspect associated with the document's life cycle and the document's content as they would use the physical document or an authorized and approved copy of the physical document. Related to the nuclear regulatory background, NEK operates in compliance with the Slovenian legislation and also the US codes, regulations and guidelines; therefore, regarding the NPP specific documents, the Internal Rules and EDMS must also be in compliance with them. Since early 1990's, NEK has implemented document/records management system oriented towards supporting storage and management of physical documents/records and controlling distribution of active document copies. Document/records management system was supported by

  7. An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm

    Directory of Open Access Journals (Sweden)

    Chinmaya P. Mohanty

    2017-04-01

    Full Text Available Although significant research has gone into the field of electrical discharge machining (EDM, analysis related to the machining efficiency of the process with different electrodes has not been adequately made. Copper and brass are frequently used as electrode materials but graphite can be used as a potential electrode material due to its high melting point temperature and good electrical conductivity. In view of this, the present work attempts to compare the machinability of copper, graphite and brass electrodes while machining Inconel 718 super alloy. Taguchi’s L27 orthogonal array has been employed to collect data for the study and analyze effect of machining parameters on performance measures. The important performance measures selected for this study are material removal rate, tool wear rate, surface roughness and radial overcut. Machining parameters considered for analysis are open circuit voltage, discharge current, pulse-on-time, duty factor, flushing pressure and electrode material. From the experimental analysis, it is observed that electrode material, discharge current and pulse-on-time are the important parameters for all the performance measures. Utility concept has been implemented to transform a multiple performance characteristics into an equivalent performance characteristic. Non-linear regression analysis is carried out to develop a model relating process parameters and overall utility index. Finally, the quantum behaved particle swarm optimization (QPSO and particle swarm optimization (PSO algorithms have been used to compare the optimal level of cutting parameters. Results demonstrate the elegance of QPSO in terms of convergence and computational effort. The optimal parametric setting obtained through both the approaches is validated by conducting confirmation experiments.

  8. Simulation investigation of thermal phase transformation and residual stress in single pulse EDM of Ti-6Al-4V

    Science.gov (United States)

    Tang, Jiajing; Yang, Xiaodong

    2018-04-01

    The thermal phase transformation and residual stress are ineluctable in the electrical discharge machining (EDM) process, and they will greatly affect the working performances of the machined surface. This paper presents a simulation study on the thermal phase transformation and residual stress in single-pulse EDM of Ti-6Al-4V, which is the most popular titanium alloy in fields such as aircraft engine and some other leading industries. A multi-physics model including thermal, hydraulic, metallography and structural mechanics was developed. Based on the proposed model, the thickness and metallographic structure of the recast layer and heat affected layer (HAZ) were investigated. The distribution and characteristics of residual stress around the discharge crater were obtained. The recast layer and HAZ at the center of crater are found to be the thinnest, and their thicknesses gradually increase approaching the periphery of the crater. The recast layer undergoes a complete α‧ (martensitic) transformation, while the HAZ is mainly composed by the α  +  β  +  α‧ three-phase microstructure. Along the depth direction of crater, the Von Mises stress increases first and then decreases, reaching its maximal value near the interface of recast layer and HAZ. In the recast layer, both compressive stress component and tensile stress component are observed. ANOVA results showed that the influence of discharge current on maximal tensile stress is more significant than that of pulse duration, while the pulse duration has more significant influence on average thickness of the recast layer and the depth location of the maximal tensile stress. The works conducted in this study will help to evaluate the quality and integrity of EDMed surface, especially when the non-destructive testing is difficult to achieve.

  9. Annual spatiotemporal migration schedules in three larger insectivorous birds

    DEFF Research Database (Denmark)

    Jacobsen, Lars Bo; Jensen, Niels Odder; Willemoes, Mikkel

    2017-01-01

    Background: Knowledge of spatiotemporal migration patterns is important for our understanding of migration ecology and ultimately conservation of migratory species. We studied the annual migration schedules of European nightjar, a large nocturnal insectivore and compared it with two other larger ...

  10. Listing of nuclear power plant larger than 100 MWe

    International Nuclear Information System (INIS)

    McHugh, B.

    1976-03-01

    This report contains a list of all nuclear power plants larger than 100 MWe, printed out from the Argus Data Bank at Chalmers University of Technology in Sweden. The plants are listed by NSSS supply. (M.S.)

  11. Modeling of the effect of tool wear per discharge estimation error on the depth of machined cavities in micro-EDM milling

    DEFF Research Database (Denmark)

    Puthumana, Govindan; Bissacco, Giuliano; Hansen, Hans Nørgaard

    2017-01-01

    In micro-EDM milling, real time electrode wear compensation based on tool wear per discharge (TWD) estimation permits the direct control of the position of the tool electrode frontal surface. However, TWD estimation errors will cause errors on the tool electrode axial depth. A simulation tool...... is developed to determine the effects of errors in the initial estimation of TWD and its propagation effect with respect to the error on the depth of the cavity generated. Simulations were applied to micro-EDM milling of a slot of 5000 μm length and 50 μm depth and validated through slot milling experiments...... performed on a micro-EDM machine. Simulations and experimental results were found to be in good agreement, showing the effect of errror amplification through the cavity depth....

  12. The effect of microstructure on fatigue performance of Ti-6Al-4V alloy after EDM surface treatment for application in orthopaedics.

    Science.gov (United States)

    Stráský, Josef; Janeček, Miloš; Harcuba, Petr; Bukovina, Michal; Wagner, Lothar

    2011-11-01

    Three different microstructures--equiaxed, bi-modal and coarse lamellar--are prepared from Ti-6Al-4V alloy. Electric discharge machining (EDM) with a high peak current (29 A) is performed in order to impose surface roughness and modify the chemical composition of the surface. Detailed scanning electron microscopy (SEM) investigation revealed a martensitic surface layer and subsurface heat affected zone (HAZ). EDX measurements showed carbon enriched remnants of the EDM process on the material surface. Rotating bending fatigue tests are undertaken for EDM processed samples for all three microstructures and also for electropolished-benchmark-samples. The fatigue performance is found to be rather poor and not particularly dependent on microstructure. The bi-modal microstructure shows a slightly superior high cycle fatigue performance. This performance can be further improved by a suitable heat treatment to an endurance limit of 200 MPa. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Perspectives of the Si3N4-TiN ceramic composite as a biomaterial and manufacturing of complex-shaped implantable devices by electrical discharge machining (EDM).

    Science.gov (United States)

    Bucciotti, Francesco; Mazzocchi, Mauro; Bellosi, Alida

    2010-01-01

    In this work we investigated the suitability of electroconductive silicon nitride/titanium nitride composite for biomedical implantable devices with particular attention on the processing route that allows the net-shaping of complex components by electrical discharge machining (EDM). The composite, constituted mainly of a beta-Si3N4, dispersed TiN grains and a glassy grain boundary phase, exhibited a low density and high hardness, strength and toughness. Bulk, surface characteristics and properties of the Si3N4-TiN composite were analyzed. After the EDM process, the microstructure of the machined surface was examined. The obtained results showed that the Si3N4-TiN ceramic composite together with the EDM manufacturing process might potentially play a key role in implantable load-bearing prosthesis applications.

  14. Search for electric dipole moment in 129Xe atom using active nuclear spin maser

    Directory of Open Access Journals (Sweden)

    Ichikawa Y.

    2014-03-01

    Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.

  15. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  16. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  17. Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes

    Science.gov (United States)

    Tong, Hao; Li, Yong; Zhang, Long

    2018-02-01

    Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.

  18. Application of grey-fuzzy approach in parametric optimization of EDM process in machining of MDN 300 steel

    Science.gov (United States)

    Protim Das, Partha; Gupta, P.; Das, S.; Pradhan, B. B.; Chakraborty, S.

    2018-01-01

    Maraging steel (MDN 300) find its application in many industries as it exhibits high hardness which are very difficult to machine material. Electro discharge machining (EDM) is an extensively popular machining process which can be used in machining of such materials. Optimization of response parameters are essential for effective machining of these materials. Past researchers have already used Taguchi for obtaining the optimal responses of EDM process for this material with responses such as material removal rate (MRR), tool wear rate (TWR), relative wear ratio (RWR), and surface roughness (SR) considering discharge current, pulse on time, pulse off time, arc gap, and duty cycle as process parameters. In this paper, grey relation analysis (GRA) with fuzzy logic is applied to this multi objective optimization problem to check the responses by an implementation of the derived parametric setting. It was found that the parametric setting derived by the proposed method results in better a response than those reported by the past researchers. Obtained results are also verified using the technique for order of preference by similarity to ideal solution (TOPSIS). The predicted result also shows that there is a significant improvement in comparison to the results of past researchers.

  19. Fabrication of a miniature diamond grinding tool using a hybrid process of micro-EDM and co-deposition

    International Nuclear Information System (INIS)

    Chen, Shun-Tong; Lai, Yun-Cheng; Liu, Ching-Chang

    2008-01-01

    A novel miniature diamond grinding tool usable for the precise micro-grinding of miniature parts is presented. A hybrid process that combines 'micro-EDM' with 'precision co-deposition' is proposed. The metal substrate is micro-EDMed to a 50 µm diameter and micro diamonds with 0–2 µm grains are 'electroformed' on the substrate surface, producing a miniature multilayered grinding tool. Nickel and diamond act as binders and cutters, respectively. A partition plate with an array of drilled holes is designed to ensure good convection in the electroforming solution. The dispersion of diamond grains and displacement of nickel ions are noticeably improved. A miniature funnel mould enables the diamond grains to converge towards the cathode to increase their deposition probability on the substrate, thereby improving their distribution on the substrate surface. A micro ZrO 2 ceramic ferrule is finely ground by the developed grinding tool and then yields a surface roughness of R a = 0.085 µm. The proposed approach is applied during the final machining process

  20. Hardness and wear analysis of Cu/Al2O3 composite for application in EDM electrode

    Science.gov (United States)

    Hussain, M. Z.; Khan, U.; Jangid, R.; Khan, S.

    2018-02-01

    Ceramic materials, like Aluminium Oxide (Al2O3), have high mechanical strength, high wear resistance, high temperature resistance and good chemical durability. Powder metallurgy processing is an adaptable method commonly used to fabricate composites because it is a simple method of composite preparation and has high efficiency in dispersing fine ceramic particles. In this research copper and novel material aluminium oxide/copper (Al2O3/Cu) composite has been fabricated for the application of electrode in Electro-Discharge Machine (EDM) using powder metallurgy technique. Al2O3 particles with different weight percentages (0, 1%, 3% and 5%) were reinforced into copper matrix using powder metallurgy technique. The powders were blended and compacted at a load of 100MPa to produce green compacts and sintered at a temperature of 574 °C. The effect of aluminium oxide content on mass density, Rockwell hardness and wear behaviour were investigated. Wear behaviour of the composites was investigated on Die-Sink EDM (Electro-Discharge Machine). It was found that wear rate is highly depending on hardness, mass density and green protective carbonate layer formation at the surface of the composite.

  1. High efficiency atomic hydrogen source

    International Nuclear Information System (INIS)

    Lagomarsino, V.; Bassi, D.; Bertok, E.; De Paz, M.; Tommasini, F.

    1974-01-01

    This work presents preliminary results of research intended to produce a M.W. discharge atomic hydrogen source with good dissociation at pressures larger than 10 torr. Analysis of the recombination process at these pressures shows that the volume recombination by three body collisions may be more important than wall recombination or loss of atoms by diffusion and flow outside the discharge region

  2. Dispersal, phenology and predicted abundance of the larger grain ...

    African Journals Online (AJOL)

    The phenology and dispersal of the larger grain borer (LGB) in Africa is described, and comparisons are made between prediction of LGB numbers from laboratory studies and predictions from multiple linear models derived from trapping data in the field. The models were developed in Mexico and Kenya, using ...

  3. Listing of nuclear power plant larger than 100 MWe

    International Nuclear Information System (INIS)

    McHugh, B.

    1975-06-01

    This report contains a list of all nuclear power plants larger than 100 MWe, printed out from the Argus Data Bank at Chalmers University of Technology in Sweden. The plants are listed alphabetically. The report contains also a plant ranking list, where the plants are listed by the load factor (12 months) (M.S.)

  4. Listing of nuclear power plant larger than 100 MWe

    International Nuclear Information System (INIS)

    McHugh, B.

    1975-12-01

    This report contains a list of all nuclear power plants larger than 100 MWe, printed out from the Argus Data Bank at Chalmers University of Technology in Sweden. The plants are listed by country. The report contains also a plant ranking list, where the plants are listed by the load factor (12 months). (M.S.)

  5. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  6. Editorial Commentary: The Larger Holes or Larger Number of Holes We Drill in the Coracoid, the Weaker the Coracoid Becomes.

    Science.gov (United States)

    Brady, Paul

    2016-06-01

    The larger holes or larger number of holes we drill in the coracoid, the weaker the coracoid becomes. Thus, minimizing bone holes (both size and number) is required to lower risk of coracoid process fracture, in patients in whom transosseous shoulder acromioclavicular joint reconstruction is indicated. A single 2.4-mm-diameter tunnel drilled through both the clavicle and the coracoid lowers the risk of fracture, but the risk cannot be entirely eliminated. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  7. SME routes for innovation collaboration with larger enterprises

    DEFF Research Database (Denmark)

    Brink, Tove

    2017-01-01

    The research in this paper reveals how Small and Medium-sized Enterprises (SMEs) can contribute to industry competiveness through collaboration with larger enterprises. The research is based on a longitudinal qualitative case study starting in 2011 with 10 SME offshore wind farm suppliers...... and follow-up interviews in 2013. The research continued with a second approach in 2014 within operation and maintenance (O&M) through focus group interviews and subsequent individual interviews with 20 enterprises and a seminar in May 2015. The findings reveal opportunities and challenges for SMEs according...... to three different routes for cooperation and collaboration with larger enterprises: demand-driven cooperation, supplier-driven cooperation and partnerdriven collaboration. The SME contribution to innovation and competiveness is different within the three routes and ranges from providing specific knowledge...

  8. Effect of Process Parameters on the Total Heat Damaged Zone (HDZ) during Micro-EDM of Plastic Mold Steel 1.2738

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2016-01-01

    In micro electrical discharge machining, three subsurface layersare formed on the workpiece, they are;recast zone, heat affected zone and converted zone, primarily due to heating-quenching cycles. The HDZ inmicro-EDM is characterized by cracks and weakness in the grain boundary and thermal residu...

  9. How do environmental policies fit within larger strategic planning processes

    OpenAIRE

    Crowe, Lynn

    2015-01-01

    This chapter explores how environmental policies fit within larger strategic processes relevant to sport management and development. It identifies key policy areas such as environmental impact assessment, sustainable land use planning, environmental protection and visitor impact management. Good practice and guidelines which will enable sport managers to integrate their work with these environmental policies are explored. Detailed guidance on design and longer term management and maintenance ...

  10. Base stock policies with degraded service to larger orders

    DEFF Research Database (Denmark)

    Du, Bisheng; Larsen, Christian

    We study an inventory system controlled by a base stock policy assuming a compound renewal demand process. We extend the base stock policy by incorporating rules for degrading the service of larger orders. Two specific rules are considered, denoted Postpone(q,t) and Split(q), respectively. The aim...... of using these rules is to achieve a given order fill rate of the regular orders (those of size less than or equal to the parameter q) having less inventory. We develop mathematical expressions for the performance measures order fill rate (of the regular orders) and average on-hand inventory level. Based...

  11. Behavior and Body Patterns of the Larger Pacific Striped Octopus.

    Directory of Open Access Journals (Sweden)

    Roy L Caldwell

    Full Text Available Over thirty years ago anecdotal accounts of the undescribed Larger Pacific Striped Octopus suggested behaviors previously unknown for octopuses. Beak-to-beak mating, dens shared by mating pairs, inking during mating and extended spawning were mentioned in publications, and enticed generations of cephalopod biologists. In 2012-2014 we were able to obtain several live specimens of this species, which remains without a formal description. All of the unique behaviors listed above were observed for animals in aquaria and are discussed here. We describe the behavior, body color patterns, and postures of 24 adults maintained in captivity. Chromatophore patterns of hatchlings are also shown.

  12. Behavior and Body Patterns of the Larger Pacific Striped Octopus.

    Science.gov (United States)

    Caldwell, Roy L; Ross, Richard; Rodaniche, Arcadio; Huffard, Christine L

    2015-01-01

    Over thirty years ago anecdotal accounts of the undescribed Larger Pacific Striped Octopus suggested behaviors previously unknown for octopuses. Beak-to-beak mating, dens shared by mating pairs, inking during mating and extended spawning were mentioned in publications, and enticed generations of cephalopod biologists. In 2012-2014 we were able to obtain several live specimens of this species, which remains without a formal description. All of the unique behaviors listed above were observed for animals in aquaria and are discussed here. We describe the behavior, body color patterns, and postures of 24 adults maintained in captivity. Chromatophore patterns of hatchlings are also shown.

  13. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  14. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  15. Atomic physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  16. Analysis of the influence of process conditions on the surface finish of ceramic materials manufactured by EDM

    International Nuclear Information System (INIS)

    Puertas-Arbizu, I.; Luis-Perez, C. J.

    2004-01-01

    Electrical discharge machining (EDM) is an emerging alternative versus some other manufacturing processes of conductive ceramic materials, such as: laser machining, electrochemical machining, abrasive water jet, ultrasonic machining and diamond wheel grinding. Due to its interest in the industrial field, in this work a study of the influence of process conditions on the surface aspect of three conductive ceramic materials: hot-pressed boron carbide (B 4 C), reaction-bonded silicon carbide (SiSiC) and cobalt-bonded tungsten carbide (WC-Co) is carried out. These materials are to be electrical discharge machined under different machining conditions and in the particular case of finish stages (Ra≤ 1 μm). (Author)

  17. Effect of changing polarity of graphite tool/ Hadfield steel workpiece couple on machining performances in die sinking EDM

    Directory of Open Access Journals (Sweden)

    Özerkan Haci Bekir

    2017-01-01

    Full Text Available In this study, machining performance ouput parameters such as machined surface roughness (SR, material removal rate (MRR, tool wear rate (TWR, were experimentally examined and analyzed with the diversifying and changing machining parameters in (EDM. The processing parameters (input par. of this research are stated as tool material, peak current (I, pulse duration (ton and pulse interval (toff. The experimental machinings were put into practice by using Hadfield steel workpiece (prismatic and cylindrical graphite electrodes with kerosene dielectric at different machining current, polarity and pulse time settings. The experiments have shown that the type of tool material, polarity (direct polarity forms higher MRR, SR and TWR, current (high current lowers TWR and enhances MRR, TWR and pulse on time (ton=48□s is critical threshold value for MRR and TWR were influential on machining performance in electrical discharge machining.

  18. Parity nonconservation in Zeeman atomic transitions

    International Nuclear Information System (INIS)

    Kraftmakher, A.Ya.

    1990-01-01

    The abilities to observe the parity violation at the radiofrequency transitions between the hyperfine and Zeeman terms of the atomic levels are considered. The E-1 amplitudes fo the Zeeman transitions of heavy atoms in weak magnetic fields are larger, than for the light atoms hyperfine transitions at the same wavelength. 9 refs

  19. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  20. Opportunities and challenges for comparative effectiveness research (CER) with Electronic Clinical Data: a perspective from the EDM forum.

    Science.gov (United States)

    Holve, Erin; Segal, Courtney; Hamilton Lopez, Marianne

    2012-07-01

    The Electronic Data Methods (EDM) Forum brings together perspectives from the Prospective Outcome Systems using Patient-specific Electronic data to Compare Tests and therapies (PROSPECT) studies, the Scalable Distributed Research Networks, and the Enhanced Registries projects. This paper discusses challenges faced by the research teams as part of their efforts to develop electronic clinical data (ECD) infrastructure to support comparative effectiveness research (CER). The findings reflect a set of opportunities for transdisciplinary learning, and will ideally enhance the transparency and generalizability of CER using ECD. Findings are based on 6 exploratory site visits conducted under naturalistic inquiry in the spring of 2011. Themes, challenges, and innovations were identified in the visit summaries through coding, keyword searches, and review for complex concepts. : The identified overarching challenges and emerging opportunities include: the substantial level of effort to establish and sustain data sharing partnerships; the importance of understanding the strengths and limitations of clinical informatics tools, platforms, and models that have emerged to enable research with ECD; the need for rigorous methods to assess data validity, quality, and context for multisite studies; and, emerging opportunities to achieve meaningful patient and consumer engagement and work collaboratively with multidisciplinary teams. The new infrastructure must evolve to serve a diverse set of potential users and must scale to address a range of CER or patient-centered outcomes research (PCOR) questions. To achieve this aim-to improve the quality, transparency, and reproducibility of CER and PCOR-a high level of collaboration and support is necessary to foster partnership and best practices as part of the EDM Forum.

  1. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  2. Demonstrating the value of larger ensembles in forecasting physical systems

    Directory of Open Access Journals (Sweden)

    Reason L. Machete

    2016-12-01

    Full Text Available Ensemble simulation propagates a collection of initial states forward in time in a Monte Carlo fashion. Depending on the fidelity of the model and the properties of the initial ensemble, the goal of ensemble simulation can range from merely quantifying variations in the sensitivity of the model all the way to providing actionable probability forecasts of the future. Whatever the goal is, success depends on the properties of the ensemble, and there is a longstanding discussion in meteorology as to the size of initial condition ensemble most appropriate for Numerical Weather Prediction. In terms of resource allocation: how is one to divide finite computing resources between model complexity, ensemble size, data assimilation and other components of the forecast system. One wishes to avoid undersampling information available from the model's dynamics, yet one also wishes to use the highest fidelity model available. Arguably, a higher fidelity model can better exploit a larger ensemble; nevertheless it is often suggested that a relatively small ensemble, say ~16 members, is sufficient and that larger ensembles are not an effective investment of resources. This claim is shown to be dubious when the goal is probabilistic forecasting, even in settings where the forecast model is informative but imperfect. Probability forecasts for a ‘simple’ physical system are evaluated at different lead times; ensembles of up to 256 members are considered. The pure density estimation context (where ensemble members are drawn from the same underlying distribution as the target differs from the forecasting context, where one is given a high fidelity (but imperfect model. In the forecasting context, the information provided by additional members depends also on the fidelity of the model, the ensemble formation scheme (data assimilation, the ensemble interpretation and the nature of the observational noise. The effect of increasing the ensemble size is quantified by

  3. HIPAA is larger and more complex than Y2K.

    Science.gov (United States)

    Tempesco, J W

    2000-07-01

    The Health Insurance Portability and Accountability Act of 1996 (HIPAA) is a larger and more complex problem than Y2K ever was. According to the author, the costs associated with a project of such unending scope and in support of intrusion into both information and operational systems of every health care transaction will be incalculable. Some estimate that the administrative simplification policies implemented through HIPAA will save billions of dollars annually, but it remains to be seen whether the savings will outweigh implementation and ongoing expenses associated with systemwide application of the regulations. This article addresses the rules established for electronic data interchange, data set standards for diagnostic and procedure codes, unique identifiers, coordination of benefits, privacy of individual health care information, electronic signatures, and security requirements.

  4. Ubiquitous atom

    International Nuclear Information System (INIS)

    Spruch, G.M.; Spruch, L.

    1974-01-01

    The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)

  5. Atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton

  6. Modeling the effects of electrical and non-electrical parameters on the material removal and surface integrity in case of µEDM of a non-conductive ceramic material using a combined fuzzy-AOM approach

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2016-01-01

    Micro-EDM is a non-contact process based on the thermoelectric energy between a tool electrode and a workpiece. In μEDM process, the mechanism of material removal is melting and evaporation. The thermal energy in the discharge plasma helps remove material from the workpiece, at the same time...... and surface integrity for a non-conductive ceramic material. The fuzzy logic modeling system is employed for predicting the μEDM process responses. The trends in the material removal rate and hardness values with the chosen electrical and non-electrical parameter for the model and obtained using AOM approach...... are compared. The average deviation between the model predictions and the results obtained using AOM plots is less than 10%. The material removal rate (MRR) decreases linearly with voltage, indicating a difference in material removal mechanism in the μEDM of non-conductive materials....

  7. The cause of larger local magnitude (Mj) in western Japan

    Science.gov (United States)

    Kawamoto, H.; Furumura, T.

    2017-12-01

    The local magnitude of the Japan Meteorological Agency (JMA) scale (Mj) in Japan sometimes show a significant discrepancy between Mw. The Mj is calculated using the amplitude of the horizontal component of ground displacement recorded by seismometers with the natural period of T0=5 s using Katsumata et al. (2004). A typical example of such a discrepancy in estimating Mj was an overestimation of the 2000 Western Tottori earthquake (Mj=7.3, Mw=6.7; hereafter referred to as event T). In this study, we examined the discrepancy between Mj and Mw for recent large earthquakes occurring in Japan.We found that the most earthquakes with larger Mj (>Mw) occur in western Japan while the earthquakes in northern Japan show reasonable Mj (=Mw). To understand the cause of such larger Mj for western Japan earthquakes we examined the strong motion record from the K-NET and KiK-net network for the event T and other earthquakes for reference. The observed ground displacement record from the event T shows a distinctive Love wave packet in tangential motion with a dominant period of about T=5 s which propagates long distances without showing strong dispersions. On the other hand, the ground motions from the earthquakes in northeastern Japan do not have such surface wave packet, and attenuation of ground motion is significant. Therefore, the overestimation of the Mj for earthquakes in western Japan may be attributed to efficient generation and propagation properties of Love wave probably relating to the crustal structure of western Japan. To explain this, we then conducted a numerical simulation of seismic wave propagation using 3D sedimentary layer model (JIVSM; Koketsu et al., 2012) and the source model of the event T. The result demonstrated the efficient generation of Love wave from the shallow strike-slip source which propagates long distances in western Japan without significant dispersions. On the other hand, the generation of surface wave was not so efficient when using a

  8. Groups have a larger cognitive capacity than individuals.

    Science.gov (United States)

    Sasaki, Takao; Pratt, Stephen C

    2012-10-09

    Increasing the number of options can paradoxically lead to worse decisions, a phenomenon known as cognitive overload [1]. This happens when an individual decision-maker attempts to digest information exceeding its processing capacity. Highly integrated groups, such as social insect colonies, make consensus decisions that combine the efforts of many members, suggesting that these groups can overcome individual limitations [2-4]. Here we report that an ant colony choosing a new nest site is less vulnerable to cognitive overload than an isolated ant making this decision on her own. We traced this improvement to differences in individual behavior. In whole colonies, each ant assesses only a small subset of available sites, and the colony combines their efforts to thoroughly explore all options. An isolated ant, on the other hand, must personally assess a larger number of sites to approach the same level of option coverage. By sharing the burden of assessment, the colony avoids overtaxing the abilities of its members. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. More ‘altruistic’ punishment in larger societies

    Science.gov (United States)

    Marlowe, Frank W; Berbesque, J. Colette; Barr, Abigail; Barrett, Clark; Bolyanatz, Alexander; Cardenas, Juan Camilo; Ensminger, Jean; Gurven, Michael; Gwako, Edwins; Henrich, Joseph; Henrich, Natalie; Lesorogol, Carolyn; McElreath, Richard; Tracer, David

    2007-01-01

    If individuals will cooperate with cooperators, and punish non-cooperators even at a cost to themselves, then this strong reciprocity could minimize the cheating that undermines cooperation. Based upon numerous economic experiments, some have proposed that human cooperation is explained by strong reciprocity and norm enforcement. Second-party punishment is when you punish someone who defected on you; third-party punishment is when you punish someone who defected on someone else. Third-party punishment is an effective way to enforce the norms of strong reciprocity and promote cooperation. Here we present new results that expand on a previous report from a large cross-cultural project. This project has already shown that there is considerable cross-cultural variation in punishment and cooperation. Here we test the hypothesis that population size (and complexity) predicts the level of third-party punishment. Our results show that people in larger, more complex societies engage in significantly more third-party punishment than people in small-scale societies. PMID:18089534

  10. The cavity-nest ant Temnothorax crassispinus prefers larger nests.

    Science.gov (United States)

    Mitrus, S

    Colonies of the ant Temnothorax crassispinus inhabit mostly cavities in wood and hollow acorns. Typically in the field, nest sites that can be used by the ant are a limited resource. In a field experiment, it was investigated whether the ants prefer a specific size of nest, when different ones are available. In July 2011, a total of 160 artificial nests were placed in a beech-pine forest. Four artificial nests (pieces of wood with volume cavities, ca 415, 605, 730, and 980 mm 3 , respectively) were located on each square meter of the experimental plot. One year later, shortly before the emergence of new sexuals, the nests were collected. In July 2012, colonies inhabited more frequently bigger nests. Among queenright colonies, the ones which inhabited bigger nests had more workers. However, there was no relationship between volume of nest and number of workers for queenless colonies. Queenright colonies from bigger nests produced more sexual individuals, but there was no correlation between number of workers and sex allocation ratio, or between volume of nest and sex allocation ratio. In a laboratory experiment where ant colonies were kept in 470 and 860 mm 3 nests, larger colonies allocated more energy to produce sexual individuals. The results of this study show the selectivity of T. crassispinus ants regarding the size of nest cavity, and that the nest volume has an impact on life history parameters.

  11. Ecological tolerances of Miocene larger benthic foraminifera from Indonesia

    Science.gov (United States)

    Novak, Vibor; Renema, Willem

    2018-01-01

    To provide a comprehensive palaeoenvironmental reconstruction based on larger benthic foraminifera (LBF), a quantitative analysis of their assemblage composition is needed. Besides microfacies analysis which includes environmental preferences of foraminiferal taxa, statistical analyses should also be employed. Therefore, detrended correspondence analysis and cluster analysis were performed on relative abundance data of identified LBF assemblages deposited in mixed carbonate-siliciclastic (MCS) systems and blue-water (BW) settings. Studied MCS system localities include ten sections from the central part of the Kutai Basin in East Kalimantan, ranging from late Burdigalian to Serravallian age. The BW samples were collected from eleven sections of the Bulu Formation on Central Java, dated as Serravallian. Results from detrended correspondence analysis reveal significant differences between these two environmental settings. Cluster analysis produced five clusters of samples; clusters 1 and 2 comprise dominantly MCS samples, clusters 3 and 4 with dominance of BW samples, and cluster 5 showing a mixed composition with both MCS and BW samples. The results of cluster analysis were afterwards subjected to indicator species analysis resulting in the interpretation that generated three groups among LBF taxa: typical assemblage indicators, regularly occurring taxa and rare taxa. By interpreting the results of detrended correspondence analysis, cluster analysis and indicator species analysis, along with environmental preferences of identified LBF taxa, a palaeoenvironmental model is proposed for the distribution of LBF in Miocene MCS systems and adjacent BW settings of Indonesia.

  12. Males that drop a sexually selected weapon grow larger testes.

    Science.gov (United States)

    Joseph, Paul N; Emberts, Zachary; Sasson, Daniel A; Miller, Christine W

    2018-01-01

    Costly sexually selected weapons are predicted to trade off with postcopulatory traits, such as testes. Although weapons can be important for achieving access to females, individuals of some species can permanently drop (i.e. autotomize) their weapons, without regeneration, to escape danger. We capitalized on this natural behavior to experimentally address whether the loss of a sexually selected weapon leads to increased testes investment in the leaf-footed cactus bug, Narnia femorata Stål (Hemiptera: Coreidae). In a second experiment, we measured offspring production for males that lost a weapon during development. As predicted, males that dropped a hind limb during development grew significantly larger testes than the control treatments. Hind-limb autotomy did not result in the enlargement of other nearby traits. Our results are the first to experimentally demonstrate that males compensate for natural weapon loss by investing more in testes. In a second experiment we found that females paired with males that lost a hind limb had 40% lower egg hatching success than females paired with intact males, perhaps because of lower mating receptivity to males with a lost limb. Importantly, in those cases where viable offspring were produced, males missing a hind limb produced 42% more offspring than males with intact limbs. These results suggest that the loss of a hind-limb weapon can, in some cases, lead to greater fertilization success. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  13. Human resource management and career planning in a larger library

    Directory of Open Access Journals (Sweden)

    Jelka Gazvoda

    1997-01-01

    Full Text Available Human resource management is presented as a managerial function which is used to develop potential abilities of the employees to achieve organizational goals.Different perception of the employees is essential - people working in the organization are treated as capital and not as an expenditure. In human resource management the most important view of the employees is their potential growth and professional development, training for acquiring new responsibilities and encouragement for innovation. Library management is becoming more and more complex as the result of introducing new technologies. For this reason libraries need well trained people with potentials to modernize library performance and to overcome the conflict between the traditional organizational culture and the requirements of the modem technologically developed environment. The author presents different techniques of active human resource management, which can be used in larger libraries where an appropriate number of employees exists to realize different programmes with. These are programmes for education, staffing,career planning, stimmulation and reward systems, job redefinition and enrichment,and other forms of internal segmentation.

  14. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  15. Early Atomism

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  16. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  17. Exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.; Lambrecht, R.M.

    1984-01-01

    This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)

  18. Recombining overlapping BACs into a single larger BAC

    Directory of Open Access Journals (Sweden)

    Huxley Clare

    2004-01-01

    Full Text Available Abstract Background BAC clones containing entire mammalian genes including all the transcribed region and long range controlling elements are very useful for functional analysis. Sequenced BACs are available for most of the human and mouse genomes and in many cases these contain intact genes. However, large genes often span more than one BAC, and single BACs covering the entire region of interest are not available. Here we describe a system for linking two or more overlapping BACs into a single clone by homologous recombination. Results The method was used to link a 61-kb insert carrying the final 5 exons of the human CFTR gene onto a 160-kb BAC carrying the first 22 exons. Two rounds of homologous recombination were carried out in the EL350 strain of bacteria which can be induced for the Red genes. In the first round, the inserts of the two overlapping BACs were subcloned into modified BAC vectors using homologous recombination. In the second round, the BAC to be added was linearised with the very rare-cutting enzyme I-PpoI and electroporated into recombination efficient EL350 bacteria carrying the other BAC. Recombined BACs were identified by antibiotic selection and PCR screening and 10% of clones contained the correctly recombined 220-kb BAC. Conclusion The system can be used to link the inserts from any overlapping BAC or PAC clones. The original orientation of the inserts is not important and desired regions of the inserts can be selected. The size limit for the fragments recombined may be larger than the 61 kb used here and multiple BACs in a contig could be combined by alternating use of the two pBACLink vectors. This system should be of use to many investigators wishing to carry out functional analysis on large mammalian genes which are not available in single BAC clones.

  19. Medición de corrientes EDM sobre rodamientos en el conjunto motor de inducción y variador de frecuencia

    Directory of Open Access Journals (Sweden)

    David Raúl Quintero Sarmiento

    2013-07-01

    Full Text Available En este artículo se establece una metodología para la medición de corrientes de rodamiento del tipo “Electric Discharge Machining (EDM” en motores de inducción alimentados por variador de velocidad (VSD- Drive. Este artículo hace una introducción a los tipos de corriente de rodamiento causadas por la operación conjunta motor variador de velocidad, y establece una metodología de medición de corriente EDM que incluye el diseño y construcción de una bobina de Rogowski que permite la detección y medida de corrientes de rodamiento EDM. Finalmente se realizan pruebas de laboratorio para el registro, caracterización y validación de la metodología de medición de corrientes de rodamientos “EDM”.

  20. Cyclic Fatigue Resistance of OneShape, HyFlex EDM, WaveOne Gold, and Reciproc Blue Nickel-titanium Instruments.

    Science.gov (United States)

    Gündoğar, Mustafa; Özyürek, Taha

    2017-07-01

    The purpose of this study was to compare the cyclic fatigue resistances of Reciproc Blue (VDW, Munich, Germany), HyFlex EDM (Coltene/Whaledent, Altstätten, Switzerland), WaveOne Gold (Dentsply Maillefer, Ballaigues, Switzerland), and OneShape (Micro Mega, Besancon, France) single-file NiTi systems. Thirty Reciproc Blue R25 (25/.08), 30 HyFlex EDM (25/.∼), 30 WaveOne Gold Primary (25/.07), and 30 OneShape (25/.06) instruments were included in this study. All the instruments were rotated in artificial canals, which were made of stainless steel with an inner diameter of 1.5 mm, a 60° angle of curvature, and radii of curvatures of 5 mm until fracture occurred, and the time to fracture was recorded in seconds using a digital chronometer. The data were analyzed statistically using Kruskal-Wallis and post hoc Dunn tests via SPSS 21.0 software (SPSS Inc, Chicago, IL). The statistical significance level was set at 5%. The HyFlex EDM file (3456.33 ± 633.37) file had the statistically highest fatigue resistance, and the OneShape file (1221.63 ± 812.4) had the least fatigue resistance (P  .05) in the mean length of the fractured fragments of the files (P > .05). Within the limitations of the present in vitro study, it was found that cyclic fatigue resistance of HyFlex EDM files was higher than the cyclic fatigue resistances of OneShape, Reciproc Blue, and WaveOne Gold files. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. In vivo toxicologic study of larger silica nanoparticles in mice

    Directory of Open Access Journals (Sweden)

    Chan WT

    2017-04-01

    Full Text Available Wai-Tao Chan,1–3 Cheng-Che Liu,4 Jen-Shiu Chiang Chiau,5 Shang-Ting Tsai,6 Chih-Kai Liang,6 Mei-Lien Cheng,5 Hung-Chang Lee,7,8 Chun-Yun Yeung,1,3,9 Shao-Yi Hou2,6 1Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children’s Hospital, 2Graduate Institute of Engineering Technology, National Taipei University of Technology, 3Mackay Medicine, Nursing, and Management College, 4Institute of Preventive Medicine, National Defense Medical Center, Taipei, 5Department of Medical Research, MacKay Memorial Hospital, Hsinchu, 6Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, 7Department of Pediatrics, MacKay Memorial Hospital, Hsinchu, 8Department of Pediatrics, Taipei Medical University, Taipei, 9Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China Abstract: Silica nanoparticles (SiNPs are being studied and used for medical purposes. As nanotechnology grows rapidly, its biosafety and toxicity have frequently raised concerns. However, diverse results have been reported about the safety of SiNPs; several studies reported that smaller particles might exhibit toxic effects to some cell lines, and larger particles of 100 nm were reported to be genotoxic to the cocultured cells. Here, we investigated the in vivo toxicity of SiNPs of 150 nm in various dosages via intravenous administration in mice. The mice were observed for 14 days before blood examination and histopathological assay. All the mice survived and behaved normally after the administration of nanoparticles. No significant weight change was noted. Blood examinations showed no definite systemic dysfunction of organ systems. Histopathological studies of vital organs confirmed no SiNP-related adverse effects. We concluded that 150 nm SiNPs were biocompatible and safe for in vivo use in mice. Keywords: in vivo, mice, silica nanoparticle, nanotoxicity

  2. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  3. Multi-response optimization of surface integrity characteristics of EDM process using grey-fuzzy logic-based hybrid approach

    Directory of Open Access Journals (Sweden)

    Shailesh Dewangan

    2015-09-01

    Full Text Available Surface integrity remains one of the major areas of concern in electric discharge machining (EDM. During the current study, grey-fuzzy logic-based hybrid optimization technique is utilized to determine the optimal settings of EDM process parameters with an aim to improve surface integrity aspects after EDM of AISI P20 tool steel. The experiment is designed using response surface methodology (RSM considering discharge current (Ip, pulse-on time (Ton, tool-work time (Tw and tool-lift time (Tup as process parameters. Various surface integrity characteristics such as white layer thickness (WLT, surface crack density (SCD and surface roughness (SR are considered during the current research work. Grey relational analysis (GRA combined with fuzzy-logic is used to determine grey fuzzy reasoning grade (GFRG. The optimal solution based on this analysis is found to be Ip = 1 A, Ton = 10 μs, Tw = 0.2 s, and Tup = 0.0 s. Analysis of variance (ANOVA results clearly indicate that Ton is the most contributing parameter followed by Ip, for multiple performance characteristics of surface integrity.

  4. Dynamics of Transformation from Platinum Icosahedral Nanoparticles to Larger FCC Crystal at Millisecond Time Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenpei [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.; Wu, Jianbo [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering, Fredrick Seitz Materials Research Lab. and Dept. of Chemical and Biomolecular Engineering; Shanghai Jiao Tong Univ. (China). School of Materials Science and Engineering; Yoon, Aram [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.; Lu, Ping [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Qi, Liang [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Materials Science and Engineering; Wen, Jianguo [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Electron Microscopy Center; Miller, Dean J. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Electron Microscopy Center; Mabon, James C. [Univ. of Illinois at Urbana-Champaign, IL (United States). Fredrick Seitz Materials Research Lab.; Wilson, William L. [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.; Yang, Hong [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Chemical and Biomolecular Engineering; Zuo, Jian-Min [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering and Fredrick Seitz Materials Research Lab.

    2017-12-08

    Atomic motion at grain boundaries is essential to microstructure development, growth and stability of catalysts and other nanostructured materials. However, boundary atomic motion is often too fast to observe in a conventional transmission electron microscope (TEM) and too slow for ultrafast electron microscopy. We report on the entire transformation process of strained Pt icosahedral nanoparticles (ICNPs) into larger FCC crystals, captured at 2.5 ms time resolution using a fast electron camera. Results show slow diffusive dislocation motion at nm/s inside ICNPs and fast surface transformation at μm/s. By characterizing nanoparticle strain, we show that the fast transformation is driven by inhomogeneous surface stress. And interaction with pre-existing defects led to the slowdown of the transformation front inside the nanoparticles. Particle coalescence, assisted by oxygen-induced surface migration at T ≥ 300°C, also played a critical role. Thus by studying transformation in the Pt ICNPs at high time and spatial resolution, we obtain critical insights into the transformation mechanisms in strained Pt nanoparticles.

  5. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  6. Atomic interferometry

    International Nuclear Information System (INIS)

    Baudon, J.; Robert, J.

    2004-01-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  7. Effect of TiN Addition on 3Y-TZP Ceramics with Emphasis on Making EDM-Able Bodies

    Science.gov (United States)

    Khosravifar, Mahnoosh; Mirkazemi, Seyyed Mohammad; Taheri, Mahdiar; Golestanifard, Farhad

    2018-04-01

    In this study, to produce electrically conductive ceramics, rapid hot press (RHP) sintering of 3 mol.% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) and 3Y-TZP/TiN composites with TiN amounts of 25, 35, and 45 vol.% was performed at 1300, 1350, and 1400 °C. Interestingly, the toughness and hardness were improved in the presence of TiN up to 35 vol.% and maximum fracture toughness and hardness of 5.40 ± 0.05 MPa m1/2 and 14.50 ± 0.06 GPa, respectively, were obtained. However, the bending strength was decreased which could be attributed to the rather weak interfaces of nitride and oxide phases. Regarding the zirconia matrix, the effect of grain size on fracture toughness of the samples has been studied using x-ray diffraction and field emission scanning electron microscope (FESEM) analysis. It was also found that electrical resistivity decreased to the value of 6.88 × 10-6 Ω m at 45 vol.% of TiN. It seems the TiN grains form a network to impose conductivity on the ZrO2 body; however, below 35 vol.% TiN, due to lack of percolation effect, this conductivity could not be maintained according to FESEM studies. Finally, electrically conductive samples were successfully machined by electrical discharge machining (EDM).

  8. Numerical study of the dielectric liquid around an electrical discharge generated vapor bubble in ultrasonic assisted EDM.

    Science.gov (United States)

    Shervani-Tabar, Mohammad T; Mobadersany, Nima

    2013-07-01

    In electrical discharge machining due to the electrical current, very small bubbles are created in the dielectric fluid between the tool and the workpiece. Increase of the number of bubbles and their growth in size generate a single bubble. The bubble has an important role in electrical discharge machining. In this paper the effect of ultrasonic vibration of the tool and the velocity fields and pressure distribution in the dielectric fluid around the bubble in the process of electrical discharge machining are studied numerically. The boundary integral equation method is applied for the numerical solution of the problem. It is shown that ultrasonic vibration of the tool has great influence on the evolution of the bubble, fluid behavior and the efficiency of the machining in EDM. At the last stages of the collapse phase of the bubble, a liquid jet develops on the bubble which has different shapes. Due to the different cases, and a high pressure region appears just near the jet of the bubble. Also the fluid particles have the highest relative velocity just near the liquid jet of the bubble. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The low energy muon beam profile monitor for the muon g-2/EDM experiment at J-PARC

    Science.gov (United States)

    Razuvaev, G. P.; Bae, S.; Choi, H.; Choi, S.; Ko, H. S.; Kim, B.; Kitamura, R.; Mibe, T.; Otani, M.

    2017-09-01

    The muon g-2/EDM experiment at J-PARC aims to measure the muon anomalous magnetic moment and electric dipole moment with high precision by utilising an ultracold muon beam. The current muon g-2 discrepancy between the Standard Model prediction and the experimental value is about 3.5 standard deviations. This experiment requires a development of the muon LINAC to accelerate thermal muons to the 300 MeV/c momentum. Detectors for beam diagnostics play a key role in such an experiment. The beam profile monitoring system has been designed to measure the profile of the low energy muon beam. It was tested during two beam tests in 2016 at the MLF D2 line at J-PARC. The detector was used with positive muons, Mu-(μ+ e- e-), p and H-, e- and UV light. The system overview and preliminary results are given. Special attention is paid to the spatial resolution of the beam profile monitor and online monitor software used during data taking.

  10. Perancangan Tata Kelola Teknologi Informasi di BAPAPSI Pemkab Bandung Menggunakan framework COBIT 5 Pada Domain EDM dan DSS

    Directory of Open Access Journals (Sweden)

    Rati Amanda Fajrin

    2016-10-01

    Full Text Available Information technology has an important role to support the implementation of public information. Bandung regency government has one of the bodies, named BAPAPSI. The existing problems in BAPAPSI, especially in PPI are uneven internet network in all districts, bad internet connection, bad handling of the incident, and the procurement of servers that do not support the use of the application in BAPAPSI. Therefore, 7 lifecycle COBIT 5 methodology is used to solve the problems in BAPAPSI. COBIT 5 provides complete, comprehensive guidelines in helping organizations to achieve the effective use of IT. The first stage in this research is assess capability level, then the next stage are mapping governance objective, enterprise goals, IT Related Goals and IT Process on COBIT 5. So, the results are the priority process on EDM04 and DSS01 domain to be analyzed and to design procedure IT governance using COBIT 5. This research also recommends the target of organizational structure in accordance with the needs of the Bandung regency government.

  11. Atomic politics

    International Nuclear Information System (INIS)

    Skogmar, G.

    1979-01-01

    The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)

  12. Comparison of Alterations in the Surface Topographies of HyFlex CM and HyFlex EDM Nickel-titanium Files after Root Canal Preparation: A Three-dimensional Optical Profilometry Study.

    Science.gov (United States)

    Uslu, Gülşah; Özyürek, Taha; Yılmaz, Koray

    2018-01-01

    The aims of the present study were to examine the surface topographies of intact HyFlex CM and HyFlex EDM nickel-titanium files and to compare alterations in the surface topographies of these files after root canal preparation of severely curved canals of molar teeth. Eight HyFlex CM (25/.08) and 8 HyFlex EDM (25/.08) files were included in the present study. In total, 64 severely curved canals of molar teeth, with curvature angles ranging between 50° and 70°, were prepared with HyFlex CM and EDM (n = 32 in each group). Quantitative and qualitative analyses of the files' surface deformation were performed by using three-dimensional optical profilometry before and after root canal preparation. The data were analyzed with the Student t test at the 5% significant level by using SPSS 21.0 software. In the HyFlex EDM group, the qualitative evaluation revealed the presence of cracks and microcavities after use of the file for root canal preparation, whereas only minor surface deformation was observed in the HyFlex CM group. The average roughness, root mean square roughness, and peak to valley height values of the HyFlex EDM group were significantly higher than those of the HyFlex CM group before and after root canal preparation (P EDM group was not statistically significant (P > .5). Within the limitations of the present study, the HyFlex CM files showed significantly higher surface alterations compared with the HyFlex EDM files after the preparation of severely curved root canals. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Atomic secrecy

    International Nuclear Information System (INIS)

    Sweet, W.

    1979-01-01

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press

  14. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Jose V., E-mail: josev.mathew@gmail.com; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ∼16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ∼20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs. -- Highlights: • An improved permanent magnet quadrupole (PMQ) design with larger good field region is proposed. • We investigate four PMQ designs, including the widely used Halbach and bullet nosed designs. • Analytical calculations are backed by 2D as well as 3D numerical solvers, PANDIRA and RADIA. • The optimized 16 segment rectangular PMQ design is identified to exhibit the largest good field region. • The effect of easy axis orientation

  15. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    International Nuclear Information System (INIS)

    Mathew, Jose V.; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-01-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ∼16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ∼20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs. -- Highlights: • An improved permanent magnet quadrupole (PMQ) design with larger good field region is proposed. • We investigate four PMQ designs, including the widely used Halbach and bullet nosed designs. • Analytical calculations are backed by 2D as well as 3D numerical solvers, PANDIRA and RADIA. • The optimized 16 segment rectangular PMQ design is identified to exhibit the largest good field region. • The effect of easy axis orientation

  16. Elementary relativistic atoms

    International Nuclear Information System (INIS)

    Nemenov, L.

    2001-01-01

    The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state

  17. Antimatter atoms

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)

  18. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  19. Atom and Society

    International Nuclear Information System (INIS)

    1997-01-01

    The object of this colloquium is a thought about the means, for a democracy to adapt the process of decisions and the methods of communication with public opinion in order that the profits derived from atom go on to be larger than the risks. The questions of low doses, the nuclear safety, the underground laboratories for radioactive wastes, are studied in relation with public opinion, the question itself of public opinion is studied, the history of nuclear energy in France through the weapons and the nuclear power plants is evoked and gives an explanation of the situation of nuclear controversy. (N.C.)

  20. Empirical atom model of Vegard's law

    International Nuclear Information System (INIS)

    Zhang, Lei; Li, Shichun

    2014-01-01

    Vegard's law seldom holds true for most binary continuous solid solutions. When two components form a solid solution, the atom radii of component elements will change to satisfy the continuity requirement of electron density at the interface between component atom A and atom B so that the atom with larger electron density will expand and the atom with the smaller one will contract. If the expansion and contraction of the atomic radii of A and B respectively are equal in magnitude, Vegard's law will hold true. However, the expansion and contraction of two component atoms are not equal in most situations. The magnitude of the variation will depend on the cohesive energy of corresponding element crystals. An empirical atom model of Vegard's law has been proposed to account for signs of deviations according to the electron density at Wigner–Seitz cell from Thomas–Fermi–Dirac–Cheng model

  1. Atoms stories

    International Nuclear Information System (INIS)

    Radvanyi, P.; Bordry, M.

    1988-01-01

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  2. Atomic physics

    International Nuclear Information System (INIS)

    Held, B.

    1991-01-01

    This general book describes the change from classical physics to quantum physics. The first part presents atom evolution since antiquity and introduces fundamental quantities and elements of relativity. Experiments which have contributed to the evolution of knowledge on matter are analyzed in the second part. Applications of wave mechanics to the study of matter properties are presented in the third part [fr

  3. Numerical study on the splitting of a vapor bubble in the ultrasonic assisted EDM process with the curved tool and workpiece.

    Science.gov (United States)

    Shervani-Tabar, M T; Seyed-Sadjadi, M H; Shabgard, M R

    2013-01-01

    Electrical discharge machining (EDM) is a powerful and modern method of machining. In the EDM process, a vapor bubble is generated between the tool and the workpiece in the dielectric liquid due to an electrical discharge. In this process dynamic behavior of the vapor bubble affects machining process. Vibration of the tool surface affects bubble behavior and consequently affects material removal rate (MRR). In this paper, dynamic behavior of the vapor bubble in an ultrasonic assisted EDM process after the appearance of the necking phenomenon is investigated. It is noteworthy that necking phenomenon occurs when the bubble takes the shape of an hour-glass. After the appearance of the necking phenomenon, the vapor bubble splits into two parts and two liquid jets are developed on the boundaries of the upper and lower parts of the vapor bubble. The liquid jet developed on the upper part of the bubble impinges to the tool and the liquid jet developed on the lower part of the bubble impinges to the workpiece. These liquid jets cause evacuation of debris from the gap between the tool and the workpiece and also cause erosion of the workpiece and the tool. Curved tool and workpiece affect the shape and the velocity of the liquid jets during splitting of the vapor bubble. In this paper dynamics of the vapor bubble after its splitting near the curved tool and workpiece is investigated in three cases. In the first case surfaces of the tool and the workpiece are flat, in the second case surfaces of the tool and the workpiece are convex and in the third case surfaces of the tool and workpiece are concave. Numerical results show that in the third case, the velocity of liquid jets which are developed on the boundaries of the upper and lower parts of the vapor bubble after its splitting have the highest magnitude and their shape are broader than the other cases. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. PubChem atom environments.

    Science.gov (United States)

    Hähnke, Volker D; Bolton, Evan E; Bryant, Stephen H

    2015-01-01

    seemingly due to erroneous interpretation of structures from patent data. Compared to fragmentation statistics published 40 years ago, the exponential growth in chemistry is mirrored in a nearly eightfold increase in the number of unique chemical fragments; however, this result is clearly an upper bound estimate as earlier studies employed structure sampling approaches and this study shows that a relatively high rate of atom fragments are found in only a single chemical structure (singletons). In addition, the percentage of singletons grows as the size of the chemical fragment is increased. The observed growth of the numbers of unique fragments over time suggests that many chemically possible connections of atom types to larger fragments have yet to be explored by chemists. A dramatic drop in the relative rate of increase of atom environments from smaller to larger fragments shows that larger fragments mainly consist of diverse combinations of a limited subset of smaller fragments. This is further supported by the observed concomitant increase of singleton atom environments. Combined, these findings suggest that there is considerable opportunity for chemists to combine known fragments to novel chemical compounds. The comparison of PubChem to an older study of known chemical structures shows noticeable differences. The changes suggest advances in synthetic capabilities of chemists to combine atoms in new patterns. Log-log plots of fragment incidence show small numbers of fragments are found in many structures and that large numbers of fragments are found in very few structures, with nearly half being novel using the methods in this work. The relative decrease in the count of new fragments as a function of size further suggests considerable opportunity for more novel chemicals exists. Lastly, the differences in atom environment diversity between PubChem Substance and Compound showcase the effect of PubChem standardization protocols, but also indicate that a normalization

  5. Mechanical characterization of Cu-Zn wire electrode base used in EDM and study of influence of the process of machining on its properties

    Energy Technology Data Exchange (ETDEWEB)

    Sedjal, H., E-mail: hasedjal@yahoo.fr; Amirat, B. [Département of Mechanical engineering, University of M.MAMMERI, Tizi Ouzou (Algeria); Aichour, M.; Marouf, T.; Chitroub, M. [Engineering and Material Sciences Laboratory, Department of Metallurgy, Polytechnic national school, Algiers (Algeria)

    2015-03-30

    This work is part of a Research National project (PNR) carried out by the group of research of the engineering and material sciences laboratory of the polytechnic national school at Algiers in collaboration with company BCR, which relates to “the characterization of the wire intended for the EDM of matrices metal. The goal of this work is to bring metallographic explanations on the wire electrode used by the machine ROBOFIL 290P, mechanically characterized this wire as of knowing of advantage about the process of its manufacturing (wiredrawing, .) The methods of studies used are it micro Vickers pyramid hardness, the tensile test, optical microscopy and scan electronic microscopy SEM.

  6. Potentiality Studies of Stainless Steel 304 Material for Production of Medical Equipment using Micro Electrical Discharge Machining (micro-EDM) Analysis and Modeling

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2016-01-01

    Stainless steel 304 (SS304) is a material widely used for production of medical equipment mainly because of its anti-corrosive properties. It has excellent mechanical properties, strength and reliability because of which it is one of the best materials for fabrication of medical devices. This paper...... and process parameters were developed. Grey relational analysis was used to optimize the micro-EDM quality characteristics, and the highest grey relational grade (GRG) of 0.8021 was obtained at a voltage of 100 V and a capacitance of 0.4 μF....

  7. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  8. A new formulation of the relativistic many-body theory of electric dipole moments of closed shell atoms

    International Nuclear Information System (INIS)

    Latha, K V P; Angom, Dilip; Chaudhuri, Rajat K; Das, B P; Mukherjee, Debashis

    2007-01-01

    The electric dipole moments of closed-shell atoms are sensitive to the parity and time-reversal violating phenomena in the nucleus. The nuclear Schiff moment is one such property, it arises from the parity and time reversal violating quark-quark interactions and the quark-chromo electric dipole moments. We calculate the electric dipole moment of atomic 199 Hg arising from the nuclear Schiff moment using the relativistic coupled-cluster theory. This is the most accurate calculation of the quantity to date. Our calculations in combination with the experiment data provide important insights to the P and T violating coupling constants at the elementary particle level. In addition, a new limit on the tensor-pseudo tensor induced atomic EDM, calculated using the relativistic coupled-cluster theory is also presented

  9. Exotic atoms

    International Nuclear Information System (INIS)

    Kunselman, R.

    1993-01-01

    The experiments use a solid hydrogen layer to form muonic hydrogen isotopes that escape into vacuum. The method relies on transfer of the muon from protium to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections, and may be emitted from the surface of the layer. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes. A target has been constructed which exploits muonic atom emission in order to learn more about the energy dependence of transfer and muon molecular formation

  10. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  11. Flushing Ring for EDM

    Science.gov (United States)

    Earwood, L.

    1985-01-01

    Removing debris more quickly lowers cutting time. Operation, cutting oil and pressurized air supplied to ring placed around workpiece. Air forces oil through small holes and agitates oil as it flows over workpiece. High flow rate and agitation dislodge and remove debris. Electrical discharge removes material from workpiece faster.

  12. Estuary Data Mapper (EDM)

    Science.gov (United States)

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions

  13. EDMS implementation challenge.

    Science.gov (United States)

    De La Torre, Marta

    2002-08-01

    The challenges faced by facilities wishing to implement an electronic medical record system are complex and overwhelming. Issues such as customer acceptance, basic computer skills, and a thorough understanding of how the new system will impact work processes must be considered and acted upon. Acceptance and active support are necessary from Senior Administration and key departments to enable this project to achieve measurable success. This article details one hospital's "journey" through design and successful implementation of an electronic medical record system.

  14. Atomic reactor thermal engineering

    International Nuclear Information System (INIS)

    Kim, Gwang Ryong

    1983-02-01

    This book starts the introduction of atomic reactor thermal engineering including atomic reaction, chemical reaction, nuclear reaction neutron energy and soon. It explains heat transfer, heat production in the atomic reactor, heat transfer of fuel element in atomic reactor, heat transfer and flow of cooler, thermal design of atomic reactor, design of thermodynamics of atomic reactor and various. This deals with the basic knowledge of thermal engineering for atomic reactor.

  15. Atomic energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1978-01-01

    Development of nuclear science in India, particularly the research and development work at the Bhabha Atomic Research Centre (BARC), Bombay, is described. Among the wide range of materials developed for specific functions under rigorous conditions are nuclear pure grade uranium, zirconium and beryllium, and conventional materials like aluminium, carbon steel and stainless steels. Radioisotopes are produced and used for tracer studies in various fields. Various types of nuclear gauges and nuclear instruments are produced. Radiations have been used to develop new high yielding groundnut mutants with large kernals. The sterile male technique for pest control and radiosterilization technique to process potatoes, onions and marine foods for storage are ready for exploitation. Processes and equipment have been developed for production of electrolytic hydrogen, electrothermal phosphorus and desalinated water. Indigenously manufactured components and materials are now being used for the nuclear energy programme. Indian nuclear power programme strategy is to build heavy water reactors and to utilise their byproduct plutonium and depleted uranium to feed fast breeder reactors which will produce more fissile material than burnt. Finally a special mention has been made of the manpower development programme of the BARC. BARC has established a training school in 1957 giving advanced training in physics, chemistry and various branches of engineering and metallurgy

  16. A study of atomic interaction between suspended nanoparticles and sodium atoms in liquid sodium

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki

    2010-01-01

    A feasibility study of suppression of the chemical reactivity of sodium itself using an atomic interaction between nanoparticles and sodium atoms has been carried out. We expected that the atomic interaction strengthens when the nanoparticle metal is the transition element which has a major difference in electronegativity from sodium. We also calculated the atomic interaction between nanoparticle and sodium atoms. It became clear that the atomic bond between the nanoparticle atom and the sodium atom is larger than that between sodium atoms, and the charge transfer takes place to the nanoparticle atom from the sodium atom. Using sodium with suspended nanoparticles, the fundamental physical properties related to the atomic interaction were investigated to verify the atomic bond. The surface tension of sodium with suspended nanoparticles increased, and the evaporation rate of sodium with suspended nanoparticles also decreased compared with that of sodium. Therefore the presence of the atomic interaction between nanoparticles and sodium was verified from these experiments. Because the fundamental physical property changes by the atomic interaction, we expected changes in the chemical reactivity characteristics. The chemical reaction properties of sodium with suspended nanoparticles with water were investigated experimentally. The released reaction heat and the reaction rate of sodium with suspended nanoparticles were reduced than those of sodium. The influence of the charge state of nanoparticle on the chemical process with water was theoretically investigated to speculate on the cause of reaction suppression. The potential energy in both primary and side reactions changed by the charge transfer, and the free energy of activation of the reaction with water increased. Accordingly, the reaction barrier also increased. This suggests there is a possibility of the reduction in the reaction of sodium by the suspension of nanoparticles. Consequently the possibility of the

  17. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  18. Machines géantes pour sonder l'univers de l'atome

    CERN Multimedia

    Wilde, M, S

    1966-01-01

    To always more deeply explore the infinitely small world of the atom, Science is paradoxically brought to build buildings and machines increasingly larger - Giant accelerators producing high energy particle beams that can dissociate the structures of the atomic nucleus

  19. Why borrowers pay premiums to larger lenders: Empirical evidence from sovereign syndicated loans

    OpenAIRE

    Hallak, Issam

    2002-01-01

    All other terms being equal (e.g. seniority), syndicated loan contracts provide larger lending compensations (in percentage points) to institutions funding larger amounts. This paper explores empirically the motivation for such a price design on a sample of sovereign syndicated loans in the period 1990-1997. I find strong evidence that a larger premium is associated with higher renegotiation probability and information asymmetries. It hardly has any impact on the number of lenders though. Thi...

  20. Atomic weight versus atomic mass controversy

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    A problem for the Atomic Weights Commission for the past decade has been the controversial battle over the names ''atomic weight'' and ''atomic mass''. The Commission has considered the arguments on both sides over the years and it appears that this meeting will see more of the same discussion taking place. In this paper, I review the situation and offer some alternatives

  1. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  2. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  3. Code ATOM for calculation of atomic characteristics

    International Nuclear Information System (INIS)

    Vainshtein, L.A.

    1990-01-01

    In applying atomic physics to problems of plasma diagnostics, it is necessary to determine some atomic characteristics, including energies and transition probabilities, for very many atoms and ions. Development of general codes for calculation of many types of atomic characteristics has been based on general but comparatively simple approximate methods. The program ATOM represents an attempt at effective use of such a general code. This report gives a brief description of the methods used, and the possibilities of and limitations to the code are discussed. Characteristics of the following processes can be calculated by ATOM: radiative transitions between discrete levels, radiative ionization and recombination, collisional excitation and ionization by electron impact, collisional excitation and ionization by point heavy particle (Born approximation only), dielectronic recombination, and autoionization. ATOM explores Born (for z=1) or Coulomb-Born (for z>1) approximations. In both cases exchange and normalization can be included. (N.K.)

  4. 29 CFR 779.232 - Franchise or other arrangements which create a larger enterprise.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Franchise or other arrangements which create a larger... Apply; Enterprise Coverage Leased Departments, Franchise and Other Business Arrangements § 779.232 Franchise or other arrangements which create a larger enterprise. (a) In other instances, franchise...

  5. Great tits provided with ad libitum food lay larger eggs when exposed to colder temperatures

    NARCIS (Netherlands)

    Schaper, S.V.; Visser, M.E.

    2013-01-01

    The amount of nutrients deposited into a bird egg varies both between and within clutches of the same female. Larger eggs enhance offspring traits, but as a tradeoff, laying large eggs also infers energetic costs to the female. Income breeders usually lay larger eggs later in the season, when

  6. Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes

    Science.gov (United States)

    Zhu, Yifu

    1992-05-01

    We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.

  7. The search for permanent electric dipole moments, in particular for the one of the neutron

    CERN Document Server

    CERN. Geneva

    2010-01-01

    Nonzero permanent electric dipole moments (EDM) of fundamental systems like particles, nuclei, atoms or molecules violate parity and time reversal invariance. Invoking the CPT theorem, time reversal violation implies CP violation. Although CP-violation is implemented in the standard electro-weak theory, EDM generated this way remain undetectably small. However, this CP-violation also appears to fail explaining the observed baryon asymmetry of our universe. Extensions of the standard theory usually include new CP violating phases which often lead to the prediciton of larger EDM. EDM searches in different systems are complementary and various efforts worldwide are underway, but no finite value could be established yet. An improved search for the EDM of the neutron requires, among other things, much better statistics. At PSI, we are presently commissioning a new high intensity source of ultracold neutrons. At the same time, with an international collaboration, we are setting up for a new measurement of the ...

  8. Continuum states in ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Garibotti, C.R. (Centro Atomico Bariloche and CONICET (Argentina)); Barrachina, R.O. (Centro Atomico Bariloche and CONICET (Argentina))

    1994-03-01

    We review the experimental and theoretical situation for ionization collisions of nude ions with neutral gas atoms, at intermediate and high impact energies. We consider particularly that part of the electron spectrum where emission is larger, corresponding to the joint action to the two ions. We discuss the evidence of this two-center interaction and how it is described by current theories. (orig.)

  9. The electrostatic atomization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, A J

    1984-06-01

    Exploitation of the unique and potentially beneficial characteristics of electrostatic atomization in combustion systems has foundered upon the inability of two element, diode devices to operate at flow rates that are larger than a fraction of a millilitre per second. This restriction has been attributed to the high innate electrical resistivity of hydrocarbon fuels. A discussion of proposed electrostatic fuel atomizers and their limitations is presented from the vantage of a recently developed theory of electrostatic spraying. Comparison of theory and experiment reveals the existence of a 'constant of spraying' and the presence of an operational regime in which low charge density droplet development is possible. Operation with hydrocarbons in this regime occurs when the mean droplet size is greater than or equal to 10 ..mu..m and fluid viscosity is below about 250 cp. The resulting spray has a mean droplet size that is functionally dependent only upon the free charge density level of the fluid. Consequently there is no theoretical impediment to the attainment of high flow rate electrostatic atomization with fluids of arbitrary conductivity. Implementation is achieved by a general class of electrostatic spray devices which employ direct charge injection. The Spray Triode, a submerged field-emission electron gun, represents a particularly simple member of this new class of atomizer. Among the Spray Triode operational characteristics to be discussed is insensitivity to spray fluid properties and flow rate.

  10. Methods and devices for small specimen testing at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Jitsukawa, Shiro; Kizaki, Minoru; Umino, Akira; Shiba, Kiyoyuki; Hishinuma, Akimichi

    1993-01-01

    Devices for a punch test on annular notched specimens, small punch (SP) tests, and miniaturized tension tests in hot cells were developed. A micro-manipulator to handle small specimens and an electro-discharge machine (EDM) to extract miniaturized tension specimens and annular notched specimens from transmission electron microscopy (TEM) disks were also fabricated. These devices were designed and made for remote operation in hot cells. Preliminary tests to evaluate the applicability of test methods were carried out. Correlation between SP test results and tensile properties was not strong. Miniaturized tensile results were reasonably similar to the results with larger specimens. The ductile-brittle transition temperature (DBTT) by the punch test on annular notched specimens was higher than that obtained from the SP test. However, materials dependence of the DBTT was different from that measured by standard Charpy V-notch (CVN) tests. This may be due to a specimen size effect

  11. Atomic fountain and applications

    International Nuclear Information System (INIS)

    Rawat, H.S.

    2000-01-01

    An overview of the development of working of MOT along with the basic principle of laser atom cooling and trapping is given. A technique to separate the cooled and trapped atoms from the MOT using atomic fountain technique will also be covered. The widely used technique for atomic fountain is, first to cool and trap the neutral atoms in MOT and then launch them in the vertical direction, using moving molasses technique. Using 133 Cs atomic fountain clock, time improvement of 2 to 3 order of magnitude over a conventional 133 Cs atomic clock has been observed

  12. Interferometry with atoms

    International Nuclear Information System (INIS)

    Helmcke, J.; Riehle, F.; Witte, A.; Kisters, T.

    1992-01-01

    Physics and experimental results of atom interferometry are reviewed and several realizations of atom interferometers are summarized. As a typical example of an atom interferometer utilizing the internal degrees of freedom of the atom, we discuss the separated field excitation of a calcium atomic beam using four traveling laser fields and demonstrate the Sagnac effect in a rotating interferometer. The sensitivity of this interferometer can be largely increased by use of slow atoms with narrow velocity distribution. We therefore furthermore report on the preparation of a laser cooled and deflected calcium atomic beam. (orig.)

  13. Larger red-shift in optical emissions obtained from the thin films of globular proteins (BSA, lysozyme) – polyelectrolyte (PAA) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, Hrishikesh [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India); Kundu, Sarathi, E-mail: sarathi.kundu@gmail.com [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India); Basu, Saibal [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2016-09-30

    Graphical abstract: Thin films of protein-polyelectrolyte complexes show larger red-shift in optical emission. - Highlights: • Globular proteins (lysozyme and BSA) and polyelectrolyte (sodium polyacrylic acid) are used to form protein-polyelectrolyte complexes (PPC). • Larger red-shift in optical emission is obtained from the thin films of PPC. • Red-shift is not obtained from the solution of PPC and pure protein thin films. • Larger red-shift from PPC films is due to the energy dissipation as non-radiative form through interactions with nearby atoms. • Red-shift in optical emission is independent on the thickness of the PPC film. - Abstract: Globular proteins (lysozyme and BSA) and polyelectrolyte (sodium polyacrylic acid) are used to form protein-polyelectrolyte complexes (PPC). Out-of-plane structures of ≈30–60 nm thick PPC films and their surface morphologies have been studied by using X-ray reflectivity and atomic force microscopy, whereas optical behaviors of PPC and protein conformations have been studied by using UV–vis, photoluminescence and FTIR spectroscopy respectively. Our study reveals that thin films of PPC show a larger red-shift of 23 and 16 nm in the optical emissions in comparison to that of pure protein whereas bulk PPC show a small blue-shift of ≈3 nm. A small amount of peak-shift is found to occur due to the heat treatment or concentration variation of the polyelectrolyte/protein in bulk solution but cannot produce such film thickness independent larger red-shift. Position of the emission peak remains nearly unchanged with the film thickness. Mechanism for such larger red-shift has been proposed.

  14. Empirical atom model of Vegard's law

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei, E-mail: zhleile2002@163.com [Materials Department, College of Electromechanical Engineering, China University of Petroleum, Qingdao 266555 (China); School of Electromechanical Automobile Engineering, Yantai University, Yantai 264005 (China); Li, Shichun [Materials Department, College of Electromechanical Engineering, China University of Petroleum, Qingdao 266555 (China)

    2014-02-01

    Vegard's law seldom holds true for most binary continuous solid solutions. When two components form a solid solution, the atom radii of component elements will change to satisfy the continuity requirement of electron density at the interface between component atom A and atom B so that the atom with larger electron density will expand and the atom with the smaller one will contract. If the expansion and contraction of the atomic radii of A and B respectively are equal in magnitude, Vegard's law will hold true. However, the expansion and contraction of two component atoms are not equal in most situations. The magnitude of the variation will depend on the cohesive energy of corresponding element crystals. An empirical atom model of Vegard's law has been proposed to account for signs of deviations according to the electron density at Wigner–Seitz cell from Thomas–Fermi–Dirac–Cheng model.

  15. Three-atom clusters

    International Nuclear Information System (INIS)

    Pen'kov, F.M.

    1998-01-01

    The Born-Oppenheimer approximation is used to obtain an equation for the effective interaction in three atoms bound by a single electron. For low binding energies in an 'electron + atom' pair, long-range forces arise between the atoms, leading to bound states when the size of the three-atom cluster is a few tens of angstrom. A system made of alkali-metal atoms is considered as an example

  16. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  17. Larger amygdala volume in first-degree relatives of patients with major depression

    Directory of Open Access Journals (Sweden)

    Nina Romanczuk-Seiferth

    2014-01-01

    Conclusions: Larger gray matter volume in healthy relatives of MDD patients point to a possible vulnerability mechanism in MDD etiology and therefore extend knowledge in the field of high-risk approaches in MDD.

  18. [Research progress of larger flexion gap than extension gap in total knee arthroplasty].

    Science.gov (United States)

    Zhang, Weisong; Hao, Dingjun

    2017-05-01

    To summarize the progress of larger flexion gap than extension gap in total knee arthro-plasty (TKA). The domestic and foreign related literature about larger flexion gap than extension gap in TKA, and its impact factors, biomechanical and kinematic features, and clinical results were summarized. During TKA, to adjust the relations of flexion gap and extension gap is one of the key factors of successful operation. The biomechanical, kinematic, and clinical researches show that properly larger flexion gap than extension gap can improve both the postoperative knee range of motion and the satisfaction of patients, but does not affect the stability of the knee joint. However, there are also contrary findings. So adjustment of flexion gap and extension gap during TKA is still in dispute. Larger flexion gap than extension gap in TKA is a new joint space theory, and long-term clinical efficacy, operation skills, and related complications still need further study.

  19. Purchasing innovations in the construction sector in the Netherlands : a comparison between SMEs and larger companies

    NARCIS (Netherlands)

    de Rijk, Melissa

    2015-01-01

    Posterpresentatie Ondernemerschapsmiddag KCO, gehouden op 16 november 2015. Main research question: To what extend does the purchasing activity of incremental and radical innovations of SMEs differ from that of larger companies in the construction sector in the Netherlands?

  20. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  1. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  2. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  3. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  4. Atomic Fisher information versus atomic number

    International Nuclear Information System (INIS)

    Nagy, A.; Sen, K.D.

    2006-01-01

    It is shown that the Thomas-Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gaspar provides a qualitatively correct expression for the Fisher information: Gaspar's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number

  5. Atomic-fluorescence spectrophotometry

    International Nuclear Information System (INIS)

    Bakhturova, N.F.; Yudelevich, I.G.

    1975-01-01

    Atomic-fluorescence spectrophotometry, a comparatively new method for the analysis of trace quantities, has developed rapidly in the past ten years. Theoretical and experimental studies by many workers have shown that atomic-fluorescence spectrophotometry (AFS) is capable of achieving a better limit than atomic absorption for a large number of elements. The present review examines briefly the principles of atomic-fluorescence spectrophotometry and the types of fluorescent transition. The excitation sources, flame and nonflame atomizers, used in AFS are described. The limits of detection achieved up to the present, using flame and nonflame methods of atomization are given

  6. A Micro-computed Tomography Evaluation of the Shaping Ability of Two Nickel-titanium Instruments, HyFlex EDM and ProTaper Next.

    Science.gov (United States)

    Venino, Pier Matteo; Citterio, Claudio Luigi; Pellegatta, Alberto; Ciccarelli, Marta; Maddalone, Marcello

    2017-04-01

    The aim of this study was to evaluate and compare, by means of micro-computed tomography imaging, the shaping ability of ProTaper Next (PTN) and the novel HyFlex EDM (HFEDM) instruments. Forty teeth were randomly divided into 2 groups and prepared with PTN or HFEDM. Root canal transportation and centering ratio were evaluated in mesiodistal and buccolingual directions at 5 levels (at the midpoint of the apical, middle, and coronal thirds and at the boundaries between them). Variations in volume, surface, and cross-sectional shape were measured for the apical, middle, and coronal thirds. The null hypotheses were that no differences existed between the 2 groups. The D'Agostino-Pearson test (α = .05) was conducted to assess the normality of the data sets. The distributions were compared by using the Mann-Whitney test (α = .05). Statistically significant differences (P < .005) were recorded only for buccolingual canal transportation and centering ratio at the section between the middle and coronal thirds, where HFEDM files were superior. HFEDM and PTN files were similarly effective, and both safely prepared the root canals, respecting their original anatomies. HFEDM files performed better in terms of buccolingual canal transportation and centering ratio at the section between the middle and coronal thirds. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Apically Extruded Debris during Root Canal Instrumentation with Reciproc Blue, HyFlex EDM, and XP-endo Shaper Nickel-titanium Files.

    Science.gov (United States)

    Uslu, Gülşah; Özyürek, Taha; Yılmaz, Koray; Gündoğar, Mustafa; Plotino, Gianluca

    2018-05-01

    The purpose of this study was to investigate the amount of apically extruded debris by Reciproc Blue (REC Blue; VDW, Munich, Germany), HyFlex EDM (HEDM; Coltene/Whaledent, Altstätten, Switzerland), and XP-endo Shaper (XPS; FKG Dentaire SA, La Chaux-de-Fonds, Switzerland) files during root canal preparation at body temperature. Sixty extracted single-rooted mandibular premolar human teeth were randomly assigned to 3 groups (n = 20). The canals were instrumented using 1 of the following instruments: REC Blue, HEDM, or XPS. Apically extruded debris during instrumentation was collected into preweighed Eppendorf tubes. All the procedures were performed at 35°C. The amount of extruded debris was calculated by subtracting the weight value of the tooth-free apparatus from the postpreparation weight value. The data were analyzed using the Kruskal-Wallis test at a 5% significance level. All the instruments tested caused extrusion of some debris from the apical foramen. XPS extruded significantly less debris from the apex than REC Blue (P  .05). Within the limitations of this in vitro study, the amount of apically extruded debris registered for the different files tested was REC Blue > HEDM > XPS, with a statistical difference only between XPS and REC Blue. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Cyclic fatigue resistances of Hyflex EDM, WaveOne gold, Reciproc blue and 2shape NiTi rotary files in different artificial canals.

    Science.gov (United States)

    Özyürek, Taha; Gündoğar, Mustafa; Uslu, Gülşah; Yılmaz, Koray; Staffoli, Simone; Nm, Grande; Plotino, Gianluca; Polimeni, Antonella

    2018-01-30

    The aim of the present study was to compare the cyclic fatigue resistances of HyFlex EDM (HEDM), WaveOne Gold (WOG), Reciproc Blue (RB), and 2Shape (TS) NiTi systems having different metallurgic properties. HEDM, WOG, RB, and TS instruments were rotated in artificial canals which were made of stainless steel with an inner diameter of 1.5 mm, 45°, and 90° angles of curvatures and a radius of curvature of 5 mm until fracture occurred, and the time to fracture (TTF) was recorded in seconds. Also, number of cycles to fracture was calculated (NCF). Data were statistically analyzed using Kruskal-Wallis and t test. The statistical significance level was set at P  0.05). When the NCF values were taken into consideration, HEDM reported a significantly higher cyclic fatigue resistance than TS in both canal curvatures analyzed (P < 0.05). Within the limitations of the present study, RB NiTi files showed statistically higher cyclic fatigue resistance in artificial canals with 45° and 90° than the other NiTi files tested.

  9. Influence of surface position along the working range of conoscopic holography sensors on dimensional verification of AISI 316 wire EDM machined surfaces.

    Science.gov (United States)

    Fernández, Pedro; Blanco, David; Rico, Carlos; Valiño, Gonzalo; Mateos, Sabino

    2014-03-06

    Conoscopic holography (CH) is a non-contact interferometric technique used for surface digitization which presents several advantages over other optical techniques such as laser triangulation. Among others, the ability for the reconstruction of high-sloped surfaces stands out, and so does its lower dependence on surface optical properties. Nevertheless, similarly to other optical systems, adjustment of CH sensors requires an adequate selection of configuration parameters for ensuring a high quality surface digitizing. This should be done on a surface located as close as possible to the stand-off distance by tuning frequency (F) and power (P) until the quality indicators Signal-to-Noise Ratio (SNR) and signal envelope (Total) meet proper values. However, not all the points of an actual surface are located at the stand-off distance, but they could be located throughout the whole working range (WR). Thus, the quality of a digitized surface may not be uniform. The present work analyses how the quality of a reconstructed surface is affected by its relative position within the WR under different combinations of the parameters F and P. Experiments have been conducted on AISI 316 wire EDM machined flat surfaces. The number of high-quality points digitized as well as distance measurements between different surfaces throughout the WR allowed for comparing the metrological behaviour of the CH sensor with respect to a touch probe (TP) on a CMM.

  10. Influence of Surface Position along the Working Range of Conoscopic Holography Sensors on Dimensional Verification of AISI 316 Wire EDM Machined Surfaces

    Directory of Open Access Journals (Sweden)

    Pedro Fernández

    2014-03-01

    Full Text Available Conoscopic holography (CH is a non-contact interferometric technique used for surface digitization which presents several advantages over other optical techniques such as laser triangulation. Among others, the ability for the reconstruction of high-sloped surfaces stands out, and so does its lower dependence on surface optical properties. Nevertheless, similarly to other optical systems, adjustment of CH sensors requires an adequate selection of configuration parameters for ensuring a high quality surface digitizing. This should be done on a surface located as close as possible to the stand-off distance by tuning frequency (F and power (P until the quality indicators Signal-to-Noise Ratio (SNR and signal envelope (Total meet proper values. However, not all the points of an actual surface are located at the stand-off distance, but they could be located throughout the whole working range (WR. Thus, the quality of a digitized surface may not be uniform. The present work analyses how the quality of a reconstructed surface is affected by its relative position within the WR under different combinations of the parameters F and P. Experiments have been conducted on AISI 316 wire EDM machined flat surfaces. The number of high-quality points digitized as well as distance measurements between different surfaces throughout the WR allowed for comparing the metrological behaviour of the CH sensor with respect to a touch probe (TP on a CMM.

  11. Magnetic design and method of a superconducting magnet for muon g - 2/EDM precise measurements in a cylindrical volume with homogeneous magnetic field

    Science.gov (United States)

    Abe, M.; Murata, Y.; Iinuma, H.; Ogitsu, T.; Saito, N.; Sasaki, K.; Mibe, T.; Nakayama, H.

    2018-05-01

    A magnetic field design method of magneto-motive force (coil block (CB) and iron yoke) placements for g - 2/EDM measurements has been developed and a candidate placements were designed under superconducting limitations of current density 125 A/mm2 and maximum magnetic field on CBs less than 5.5 T. Placements of CBs and an iron yoke with poles were determined by tuning SVD (singular value decomposition) eigenmode strengths. The SVD was applied on a response matrix from magneto-motive forces to the magnetic fields in the muon storage region and two-dimensional (2D) placements of magneto-motive forces were designed by tuning the magnetic field eigenmode strengths obtained by the magnetic field. The tuning was performed iteratively. Magnetic field ripples in the azimuthal direction were minimized for the design. The candidate magnetic design had five CBs and an iron yoke with center iron poles. The magnet satisfied specifications of homogeneity (0.2 ppm peak-to-peak in 2D placements (the cylindrical coordinate of the radial position R and axial position Z) and less than 1.0 ppm ripples in the ring muon storage volume (0.318 m 0.0 m) for the spiral muon injection from the iron yoke at top.

  12. Systém pro obchodování s virtuálními předměty

    OpenAIRE

    Sedláček, Lukáš

    2007-01-01

    Cílem této práce je seznámit čtenáře s problematikou systémů pro obchodování s virtuálními předměty. Práce je zaměřena hlavně na virtuální ekonomiky MMORPG (Massive(ly)-Multiplayer Online Role-Playing Game). Pro hlubší pochopení MMORPG světů, je v této práci zpracován jejich vznik, vývoj, historie, psychologické aspekty, náhled do problematiky jejich virtuálních ekonomik, stručná charakteristika elektronických platebních systémů a informace o dvou virtuálních ekonomikách (Entropia Universe a ...

  13. The mechanics of unrest at Long Valley caldera, California: 1. Modeling the geometry of the source using GPS, leveling and two-color EDM data

    Science.gov (United States)

    Battaglia, Maurizio; Segall, P.; Murray, J.; Cervelli, Peter; Langbein, J.

    2003-01-01

    We surveyed 44 existing leveling monuments in Long Valley caldera in July 1999, using dual frequency global positioning system (GPS) receivers. We have been able to tie GPS and leveling to a common reference frame in the Long Valley area and computed the vertical deformation by differencing GPS-based and leveled orthometric heights. The resurgent dome uplifted 74??7 cm from 1975 to 1999. To define the inflation source, we invert two-color EDM and uplift data from the 1985-1999 unrest period using spherical or ellipsoidal sources. We find that the ellipsoidal source satisfies both the vertical and horizontal deformation data, whereas the spherical point source cannot. According to our analysis of the 1985-1999 data, the main source of deformation is a prolate ellipsoid located beneath the resurgent dome at a depth of 5.9 km (95% bounds of 4.9-7.5 km). This body is vertically elongated, has an aspect ratio of 0.475 (95% bounds are 0.25-0.65) and a volume change of 0.086 km3 (95% bounds are 0.06-0.13 km3). Failure to account for the ellipsoidal nature of the source biases the estimated source depth by 2.1 km (35%), and the source volume by 0.038 km3 (44%). ?? 2003 Elsevier B.V. All rights reserved.

  14. Optimization the machining parameters by using VIKOR and Entropy Weight method during EDM process of Al–18% SiCp Metal matrix composit

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Bhuyan

    2016-06-01

    Full Text Available The objective of this paper is to optimize the process parameters by combined approach of VIKOR and Entropy weight measurement method during Electrical discharge machining (EDM process of Al-18wt.%SiCp metal matrix composite (MMC. The central composite design (CCD method is considered to evaluate the effect of three process parameters; namely pulse on time (Ton, peak current (Ip and flushing pressure (Fp on the responses like material removal rate (MRR, tool wear rate (TWR, Radial over cut (ROC and surface roughness (Ra. The Entropy weight measurement method evaluates the individual weights of each response and, using VIKOR method, the multi-objective responses are optimized to get a single numerical index known as VIKOR Index. Then the Analysis of Variance (ANOVA technique is used to determine the significance of the process parameters on the VIKOR Index. Finally, the result of the VIKOR Indexed is validated by conformation test using the liner mathematical model equation develop by responses surface methodology to identify the effectiveness of the proposed method.

  15. Multi-Response Optimization and Regression Analysis of Process Parameters for Wire-EDMed HCHCr Steel Using Taguchi’s Technique

    Directory of Open Access Journals (Sweden)

    K. Srujay Varma

    2017-04-01

    Full Text Available In this study, effect of machining process parameters viz. pulse-on time, pulse-off time, current and servo-voltage for machining High Carbon High Chromium Steel (HCHCr using copper electrode in wire EDM was investigated. High Carbon High Chromium Steel is a difficult to machine alloy, which has many applications in low temperature manufacturing, and copper is chosen as electrode as it has good electrical conductivity and most frequently used electrode all over the world. Tool making culture of copper has made many shops in Europe and Japan to used copper electrode. Experiments were conducted according to Taguchi’s technique by varying the machining process parameters at three levels. Taguchi’s method based on L9 orthogonal array was followed and number of experiments was limited to 9. Experimental cost and time consumption was reduced by following this statistical technique. Targeted output parameters are Material Removal Rate (MRR, Vickers Hardness (HV and Surface Roughness (SR. Analysis of Variance (ANOVA and Regression Analysis was performed using Minitab 17 software to optimize the parameters and draw relationship between input and output process parameters. Regression models were developed relating input and output parameters. It was observed that most influential factor for MRR, Hardness and SR are Ton, Toff and SV.

  16. Optimized Compositional Design and Processing-Fabrication Paths for Larger Heats of Nanostructured Ferritic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-02-06

    The objective of this work was to characterize the alloy 14YWT-PM2, which is an extruded and cross-rolled precursor alloy to a large heat of 14YWT being produced using an alternative processing path that incorporates Y during gas atomization process.

  17. Interplay of vacuum-mediated inter- and intra-atomic couplings in a pair of atoms

    International Nuclear Information System (INIS)

    Schmid, Sandra Isabelle; Evers, Joerg

    2010-01-01

    The resonance fluorescence emitted by a system of two dipole-dipole interacting nearby four-level atoms in a J=1/2↔J=1/2 configuration is studied. This setup is the simplest realistic model system which provides a complete description of the (inter-atomic) dipole-dipole interaction for arbitrary orientation of the inter-atomic distance vector, and at the same time allows for intra-atomic spontaneously generated coherences. Our main interest is the interplay of both these different coupling mechanisms. We discuss different methods to analyze the contribution of the various vacuum-induced coupling constants to the total resonance fluorescence spectrum. These allow us to find a dressed state interpretation of the contribution of the different inter-atomic dipole-dipole couplings to the total spectrum. We further study the role of the spontaneously generated coherences, and identify two different contributions to the single-particle vacuum-induced couplings. We show that they have a noticeable impact on the total resonance fluorescence spectrum down to small inter-atomic distances, even though the dipole-dipole coupling constants then are much larger in magnitude than the the single-particle coupling constants. Interestingly, we find that the inter-atomic couplings can induce an effect of the intra-atomic spontaneously generated coherences on the observed spectra which is not present in single-atom systems.

  18. Possible Evolution of the Pulsar Braking Index from Larger than Three to About One

    International Nuclear Information System (INIS)

    Tong, H.; Kou, F. F.

    2017-01-01

    The coupled evolution of pulsar rotation and inclination angle in the wind braking model is calculated. The oblique pulsar tends to align. The pulsar alignment affects its spin-down behavior. As a pulsar evolves from the magneto-dipole radiation dominated case to the particle wind dominated case, the braking index first increases and then decreases. In the early time, the braking index may be larger than three. During the following long time, the braking index is always smaller than three. The minimum braking index is about one. This can explain the existence of a high braking index larger than three and a low braking index simultaneously. The pulsar braking index is expected to evolve from larger than three to about one. The general trend is for the pulsar braking index to evolve from the Crab-like case to the Vela-like case.

  19. Possible Evolution of the Pulsar Braking Index from Larger than Three to About One

    Energy Technology Data Exchange (ETDEWEB)

    Tong, H. [School of Physics and Electronic Engineering, Guangzhou University, 510006 Guangzhou (China); Kou, F. F., E-mail: htong_2005@163.com [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China)

    2017-03-10

    The coupled evolution of pulsar rotation and inclination angle in the wind braking model is calculated. The oblique pulsar tends to align. The pulsar alignment affects its spin-down behavior. As a pulsar evolves from the magneto-dipole radiation dominated case to the particle wind dominated case, the braking index first increases and then decreases. In the early time, the braking index may be larger than three. During the following long time, the braking index is always smaller than three. The minimum braking index is about one. This can explain the existence of a high braking index larger than three and a low braking index simultaneously. The pulsar braking index is expected to evolve from larger than three to about one. The general trend is for the pulsar braking index to evolve from the Crab-like case to the Vela-like case.

  20. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  1. Atom chips: mesoscopic physics with cold atoms

    International Nuclear Information System (INIS)

    Krueger, P.; Wildermuth, S.; Hofferberth, S.; Haller, E.; GAllego Garcia, D.; Schmiedmayer, J.

    2005-01-01

    Full text: Cold neutral atoms can be controlled and manipulated in microscopic potentials near surfaces of atom chips. These integrated micro-devices combine the known techniques of atom optics with the capabilities of well established micro- and nanofabrication technology. In analogy to electronic microchips and integrated fiber optics, the concept of atom chips is suitable to explore the domain of mesoscopic physics with matter waves. We use current and charge carrying structures to form complex potentials with high spatial resolution only microns from the surface. In particular, atoms can be confined to an essentially one-dimensional motion. In this talk, we will give an overview of our experiments studying the manipulation of both thermal atoms and BECs on atom chips. First experiments in the quasi one-dimensional regime will be presented. These experiments profit from strongly reduced residual disorder potentials caused by imperfections of the chip fabrication with respect to previously published experiments. This is due to our purely lithographic fabrication technique that proves to be advantageous over electroplating. We have used one dimensionally confined BECs as an ultra-sensitive probe to characterize these potentials. These smooth potentials allow us to explore various aspects of the physics of degenerate quantum gases in low dimensions. (author)

  2. Quasi-atoms

    International Nuclear Information System (INIS)

    Armbruster, P.

    1976-01-01

    The concept of a quasi-atom is discussed, and several experiments are described in which molecular or quasi-atomic transitions have been observed. X-ray spectra are shown for these experiments in which heavy ion projectiles were incident on various targets and the resultant combined system behaved as a quasi-atom. This rapidly developing field has already given new insight into atomic collision phenomena. (P.J.S.)

  3. Atomic Energy Control Act

    International Nuclear Information System (INIS)

    1970-01-01

    This act provides for the establishment of the Atomic Energy Control Board. The board is responsible for the control and supervision of the development, application and use of atomic energy. The board is also considered necessary to enable Canada to participate effectively in measures of international control of atomic energy

  4. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  5. Ionization due to the interaction between two Rydberg atoms

    International Nuclear Information System (INIS)

    Robicheaux, F

    2005-01-01

    Using a classical trajectory Monte Carlo method, we have computed the ionization resulting from the interaction between two cold Rydberg atoms. We focus on the products resulting from close interaction between two highly excited atoms. We give information on the distribution of ejected electron energies, the distribution of internal atom energies and the velocity distribution of the atoms and ions after the ionization. If the potential for the atom is not purely Coulombic, the average interaction between two atoms can change from attractive to repulsive giving a Van de Graaff-like mechanism for accelerating atoms. In a small fraction of ionization cases, we find that the ionization leads to a positive molecular ion where all of the distances are larger than 1000 Bohr radii

  6. Differential cross sections for inelastic scattering of electrons on Kr and Xe atoms at intermediate energies

    International Nuclear Information System (INIS)

    Filipovic, D.M.

    1989-01-01

    Electron-impact excitation of the larger- number noble-gas atoms is a way of understanding excitation mechanisms in atomic collisional processes. Krypton and xenon have the largest atomic number of all the stable noble gases. Therefore, effects dependent on the size of a target atom, such as alignment and orientation of the atomic outer shell charge cloud after collisional excitation, are best observed by studying these atoms. Normalized, absolute differential cross sections (DCS's) for the lowest electronic states of Kr and Xe atoms, at intermediate energies, are the subject of this report

  7. Framing the Discussion: Elections as Components of Larger Political and Cultural Geographies

    Science.gov (United States)

    Knopp, Larry

    2016-01-01

    It is important to remember that elections are but one piece--albeit an important one--of much larger processes of politics and governance. Moreover, in the United States they are increasingly implicated in the construction of identities and places. What goes on in the course of electoral politics (creating electoral systems and voting districts,…

  8. Dust captures effectiveness of scrubber systems on mechanical miners operating in larger roadways.

    CSIR Research Space (South Africa)

    Hole, BJ

    1998-03-01

    Full Text Available The project was directed towards bord and pillar working by mechanised miners operating in larger section roadways, where the problem of scrubber capture tends to be greatest owing to the limited size of the zone of influence around exhaust...

  9. Larger Bowl Size Increases the Amount of Cereal Children Request, Consume, and Waste

    NARCIS (Netherlands)

    Wansink, Brian; van Ittersum, Koert; Payne, Collin R.

    Objective To examine whether larger bowls bias children toward requesting more food from the adults who serve them. Study design Study 1 was a between-subject design involving 69 preschool-age children who were randomized to receive either a small (8 oz) or large (16 oz) cereal bowl and were asked

  10. A specialist toxicity database (TRACE) is more effective than its larger, commercially available counterparts

    NARCIS (Netherlands)

    Anderson, C.A.; Copestake, P.T.; Robinson, L.

    2000-01-01

    The retrieval precision and recall of a specialist bibliographic toxicity database (TRACE) and a range of widely available bibliographic databases used to identify toxicity papers were compared. The analysis indicated that the larger size and resources of the major bibliographic databases did not,

  11. Larger foraminifera distribution on a mesotrophic carbonate shelf in SW Sulawesi (Indonesia)

    NARCIS (Netherlands)

    Renema, W.; Troelstra, S.R.

    2001-01-01

    Larger symbiont bearing foraminifera typically live in shallow tropical seas. In this study the fauna composition of patch reefs scattered over the Spermonde Shelf (SW Sulawesi, Indonesia), a mesotrophic carbonate shelf, is examined. The foraminiferal fauna of the Spermonde Shelf is characterised by

  12. Size selectivity of commercial (300 MC) and larger square mesh top ...

    African Journals Online (AJOL)

    In the present study, size selectivity of a commercial (300 MC) and a larger square mesh top panel (LSMTPC) codend for blue whiting (Micromesistius poutassou) were tested on a commercial trawl net in the international waters between Turkey and Greece. Trawling, performed during daylight was carried out at depths ...

  13. Larger foraminifera from a relict structure off Karwar western Indian continental margin

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    of such water masses having been present in the region. Among the larger forms, @iAmphistegina bicirculata, A. radiata@@ var. @ipapillosa@@ and @iOperculina ammonoides@@ indicate mixing, while @iNummulites cumingii@@ and @iBorelis schlumbergeri@@ were relict...

  14. 78 FR 18902 - Defining Larger Participants of the Student Loan Servicing Market

    Science.gov (United States)

    2013-03-28

    ... BUREAU OF CONSUMER FINANCIAL PROTECTION 12 CFR Part 1090 [Docket No. CFPB-2013-0005] RIN 3170-AA35... Protection. ACTION: Proposed rule; request for public comment. SUMMARY: The Bureau of Consumer Financial Protection (Bureau or CFPB) proposes to amend the regulation defining larger participants of certain consumer...

  15. Ventilation efficiency in a low-energy dwelling setting – a parameter study for larger rooms

    NARCIS (Netherlands)

    Dijkstra, D.; Loomans, M.G.L.C.; Hensen, J.L.M.; Cremers, B.E. (Bart)

    2016-01-01

    Mechanical balanced ventilation systems typically is applied in new and renovated dwellings in The Netherlands. The application assumes an adequate ventilation efficiency but this has not been confirmed for larger rooms (e.g. living rooms with kitchen attached). This study investigates ventilation

  16. Modelling and analysis of material removal rate and surface roughness in wire-cut EDM of armour materials

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2015-12-01

    Full Text Available The current work presents a comparative study of wire electrical discharge machining (WEDM of armour materials such as aluminium alloy 7017 and rolled homogeneous armour (RHA steel using buckingham pi theorem to model the input variables and thermo-physical characteristics of WEDM on material removal rate (MRR and surface roughness (Ra of Al 7017 and RHA steel. The parameters of the model such as pulse-on time, flushing pressure, input power, thermal diffusivity and latent heat of vaporization have been determined through design of experiment methodology. Wear rate of brass wire increases with rise in input energy in machining Al 7017. The dependence of thermo-physical properties and machining variables on mechanism of MRR and Ra has been described by performing scanning electron microscope (SEM study. The rise in pulse-on time from 0.85μs to 1.25μs causes improvement in MRR and deterioration of surface finish. The machined surface has revealed that craters are found on the machined surface. The propensity of formation of craters increases during WEDM with a higher current and larger pulse-on time.

  17. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  18. Electronic and atomic impacts on large clusters

    International Nuclear Information System (INIS)

    Gspann, J.

    1982-01-01

    Describing first the generation and properties of molecular beams of large Van der Waals clusters such as speed distribution, cluster size distribution, and internal temperature of the clusters, the review then features the results of electronic impacts on large clusters: metastable electronic cluster excitations, ejection of positive cluster ions of less than 100 atoms from much larger parent clusters, and ionization of the large clusters. Atomic impacts at thermal energies are treated with respect to the scattering cross section of the clusters, their drag coefficient in free molecular flow, and the peculiarities of impacts on helium clusters of either isotope. (Auth.)

  19. Observation of dynamic atom-atom correlation in liquid helium in real space.

    Science.gov (United States)

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T

    2017-05-04

    Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  20. Atomic Covalent Functionalization of Graphene

    Science.gov (United States)

    Johns, James E.; Hersam, Mark C.

    2012-01-01

    Conspectus Although graphene’s physical structure is a single atom thick, two-dimensional, hexagonal crystal of sp2 bonded carbon, this simple description belies the myriad interesting and complex physical properties attributed to this fascinating material. Because of its unusual electronic structure and superlative properties, graphene serves as a leading candidate for many next generation technologies including high frequency electronics, broadband photodetectors, biological and gas sensors, and transparent conductive coatings. Despite this promise, researchers could apply graphene more routinely in real-world technologies if they could chemically adjust graphene’s electronic properties. For example, the covalent modification of graphene to create a band gap comparable to silicon (~1 eV) would enable its use in digital electronics, and larger band gaps would provide new opportunities for graphene-based photonics. Towards this end, researchers have focused considerable effort on the chemical functionalization of graphene. Due to its high thermodynamic stability and chemical inertness, new methods and techniques are required to create covalent bonds without promoting undesirable side reactions or irreversible damage to the underlying carbon lattice. In this Account, we review and discuss recent theoretical and experimental work studying covalent modifications to graphene using gas phase atomic radicals. Atomic radicals have sufficient energy to overcome the kinetic and thermodynamic barriers associated with covalent reactions on the basal plane of graphene but lack the energy required to break the C-C sigma bonds that would destroy the carbon lattice. Furthermore, because they are atomic species, radicals substantially reduce the likelihood of unwanted side reactions that confound other covalent chemistries. Overall, these methods based on atomic radicals show promise for the homogeneous functionalization of graphene and the production of new classes of two

  1. DREAMS: a payload on-board the ExoMars EDM Schiaparelli for the characterization of Martian environment during the statistical dust storm season

    Science.gov (United States)

    Molfese, Cesare; Esposito, Francesca; Debei, Stefano; Bettanini, Carlo; Arruego Rodríguez, Ignacio; Colombatti, Giacomo; Harri, Ari-Matty.; Montmessin, Franck; Wilson, Colin; Aboudan, Alessio; Mugnuolo, Raffaele; Pirrotta, Simone; Marchetti, Ernesto; Witasse, Olivier

    2015-04-01

    , the dust opacity, and the atmospheric electric properties close to the surface of Mars. It will fly in January 2016 on-board the Schiaparelli Entry, Descent and landing Demonstrator Module (EDM) of the ExoMars space mission. It is foreseen to land on Mars in late October 2016 during the statistical dust storm season. Therefore, DREAMS might have the unique chance to make scientific measurements to characterize the Martian environment in a dusty scenario also performing the first ever measurements of atmospheric electric field on Mars. The relationship between the process of dust entrainment in the atmosphere during dust events and the enhancement of atmospheric electric field has been widely studied in an intense field test campaign in the Sahara desert. In order to better characterize this physical process, we performed atmospheric and environmental measurements comparable to those that DREAMS will acquire on Mars. Preliminary results will be discussed. DREAMS is in a high development state. A first model has been delivered to ESA and has been integrated in the EDM Flight Model. Integration tests are on-going. The DREAMS Flight Model will be delivered at the end of March this year.

  2. New nonbinary quantum codes with larger distance constructed from BCH codes over 𝔽q2

    Science.gov (United States)

    Xu, Gen; Li, Ruihu; Fu, Qiang; Ma, Yuena; Guo, Luobin

    2017-03-01

    This paper concentrates on construction of new nonbinary quantum error-correcting codes (QECCs) from three classes of narrow-sense imprimitive BCH codes over finite field 𝔽q2 (q ≥ 3 is an odd prime power). By a careful analysis on properties of cyclotomic cosets in defining set T of these BCH codes, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing BCH codes is determined to be much larger than the result given according to Aly et al. [S. A. Aly, A. Klappenecker and P. K. Sarvepalli, IEEE Trans. Inf. Theory 53, 1183 (2007)] for each different code length. Thus families of new nonbinary QECCs are constructed, and the newly obtained QECCs have larger distance than those in previous literature.

  3. Larger eggs in resident brown trout living in sympatry with anadromous brown trout

    DEFF Research Database (Denmark)

    Olofsson, H.; Mosegaard, Henrik

    1999-01-01

    Freshwater resident brown trout (Salmo trutta L.) in the stream Jorlandaan (southwestern Sweden) had larger eggs (range of actual mean egg wet weights, 65.9-108.5 mg) than both sympatric migratory trout (76.8-84.2 mg) and trout from five other Swedish streams with allopatric resident (23.7-80.1 mg......) or migratory populations (44.5-121.9 mg), after accounting for differences in body size. In Jorlandaan, some resident females even had a larger absolute mean egg weight than any of the migratory females found in the stream Resident trout had low absolute fecundity, and our data suggest that resident females...... in Jorlandan produce large eggs at the expense of their fecundity The extremely large relative egg size in resident Jorlandaan females suggests that the production of large offspring enhances fitness, possibly through increased fry survival....

  4. A contribution to radiotherapy of the larger-celled bronchial carcinoma

    International Nuclear Information System (INIS)

    Zoubie, I.

    1982-01-01

    This work consists of a retrospective definition of disease courses of 859 patients with lung tumors and the definition of the survival curves in their dependence on histology, radiation dose and sex. With 721 larger-celled bronchial carcinomas the ratio of men to women was 12:1. The age peak lay between 60 and 70 years. The one/five year survival rate of all included larger-celled bronchial carcinomas (n=701) was, independent from the therapy form, 35.7, resp. 4.78%. The one year/five year survival rates were for the squamous epithelia 31.08/0.58%, for the undifferentiated carcinomas 25.34/3.41%, and for the lung tumors without histology 35.4/5.14%. Lobectomized patients with squamous epithelium carcinoma had in comparison to pneumonectomized patients a clearly higher survival chance. A clearly sex-dependent predisposition for a certain type of carcinoma was not present. (TRV) [de

  5. Action video game players and deaf observers have larger Goldmann visual fields.

    Science.gov (United States)

    Buckley, David; Codina, Charlotte; Bhardwaj, Palvi; Pascalis, Olivier

    2010-03-05

    We used Goldmann kinetic perimetry to compare how training and congenital auditory deprivation may affect the size of the visual field. We measured the ability of action video game players and deaf observers to detect small moving lights at various locations in the central (around 30 degrees from fixation) and peripheral (around 60 degrees ) visual fields. Experiment 1 found that 10 habitual video game players showed significantly larger central and peripheral field areas than 10 controls. In Experiment 2 we found that 13 congenitally deaf observers had significantly larger visual fields than 13 hearing controls for both the peripheral and central fields. Here the greatest differences were found in the lower parts of the fields. Comparison of the two groups showed that whereas VGP players have a more uniform increase in field size in both central and peripheral fields deaf observers show non-uniform increases with greatest increases in lower parts of the visual field.

  6. Impact of Alternative Inputs and Grooming Methods on Large-R Jet Reconstruction in ATLAS

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    During Run 1 of the LHC, the optimal reconstruction algorithm for large-$R$ jets in ATLAS, characterized in terms of the ability to discriminate signal from background and robust reconstruction in the presence of pileup, was found to be anti-$k_{t}$ jets with a radius parameter of 1.0, formed from locally calibrated topological calorimeter cell clusters and groomed with the trimming algorithm to remove contributions from pileup and underlying event. Since that time, much theoretical, phenomenological, and experimental work has been performed to improve both the reconstruction of the jet inputs as well as the grooming techniques applied to reconstructed jets. In this work, an inclusive survey of both pileup mitigation algorithms applied to calorimeter cell clusters and grooming algorithms is done to study their pileup stability and ability to identify hadronically decaying W bosons within the ATLAS experiment. It is found that compared to the conventional reconstruction algorithm of large-$R$ trimmed jets form...

  7. Larger aftershocks happen farther away: nonseparability of magnitude and spatial distributions of aftershocks

    Science.gov (United States)

    Van Der Elst, Nicholas; Shaw, Bruce E.

    2015-01-01

    Aftershocks may be driven by stress concentrations left by the main shock rupture or by elastic stress transfer to adjacent fault sections or strands. Aftershocks that occur within the initial rupture may be limited in size, because the scale of the stress concentrations should be smaller than the primary rupture itself. On the other hand, aftershocks that occur on adjacent fault segments outside the primary rupture may have no such size limitation. Here we use high-precision double-difference relocated earthquake catalogs to demonstrate that larger aftershocks occur farther away than smaller aftershocks, when measured from the centroid of early aftershock activity—a proxy for the initial rupture. Aftershocks as large as or larger than the initiating event nucleate almost exclusively in the outer regions of the aftershock zone. This observation is interpreted as a signature of elastic rebound in the earthquake catalog and can be used to improve forecasting of large aftershocks.

  8. Protecting the larger fish: an ecological, economical and evolutionary analysis using a demographic model

    DEFF Research Database (Denmark)

    Verdiell, Nuria Calduch

    . Recently, there is increasing evidence that this size-selective fishing reduces the chances of maintaining populations at levels sufficient to produce maximum sustainable yields, the chances of recovery/rebuilding populations that have been depleted/collapsed and may causes rapid evolutionary changes...... and the consequent changes in yield. We attempt to evaluate the capability of the larger fish to mitigate the evolutionary change on life-history traits caused by fishing, while also maintaining a sustainable annual yield. This is achieved by calculating the expected selection response on three life-history traits......Many marine fish stocks are reported as overfished on a global scale. This overfishing not only removes fish biomass, but also causes dramatic changes in the age and size structure of fish stocks. In particular, targeting of the larger individuals truncates the age and size structure of stocks...

  9. Investigation of Larger Poly(α-Methylstyrene) Mandrels for High Gain Designs Using Microencapsulation

    International Nuclear Information System (INIS)

    Takagi, Masaru; Cook, Robert; McQuillan, Barry; Gibson, Jane; Paguio, Sally

    2004-01-01

    In recent years we have demonstrated that 2-mm-diameter poly(α-methylstyrene) mandrels meeting indirect drive NIF surface symmetry specifications can be produced using microencapsulation methods. Recently higher gain target designs have been introduced that rely on frequency doubled (green) laser energy and require capsules up to 4 mm in diameter, nominally meeting the same surface finish and symmetry requirements as the existing 2-mm-diameter capsule designs. Direct drive on the NIF also requires larger capsules. In order to evaluate whether the current microencapsulation-based mandrel fabrication techniques will adequately scale to these larger capsules, we have explored extending the techniques to 4-mm-diameter capsules. We find that microencapsulated shells meeting NIF symmetry specifications can be produced, the processing changes necessary to accomplish this are presented here

  10. Larger groups of passerines are more efficient problem solvers in the wild

    Science.gov (United States)

    Morand-Ferron, Julie; Quinn, John L.

    2011-01-01

    Group living commonly helps organisms face challenging environmental conditions. Although a known phenomenon in humans, recent findings suggest that a benefit of group living in animals generally might be increased innovative problem-solving efficiency. This benefit has never been demonstrated in a natural context, however, and the mechanisms underlying improved efficiency are largely unknown. We examined the problem-solving performance of great and blue tits at automated devices and found that efficiency increased with flock size. This relationship held when restricting the analysis to naive individuals, demonstrating that larger groups increased innovation efficiency. In addition to this effect of naive flock size, the presence of at least one experienced bird increased the frequency of solving, and larger flocks were more likely to contain experienced birds. These findings provide empirical evidence for the “pool of competence” hypothesis in nonhuman animals. The probability of success also differed consistently between individuals, a necessary condition for the pool of competence hypothesis. Solvers had a higher probability of success when foraging with a larger number of companions and when using devices located near rather than further from protective tree cover, suggesting a role for reduced predation risk on problem-solving efficiency. In contrast to traditional group living theory, individuals joining larger flocks benefited from a higher seed intake, suggesting that group living facilitated exploitation of a novel food source through improved problem-solving efficiency. Together our results suggest that both ecological and social factors, through reduced predation risk and increased pool of competence, mediate innovation in natural populations. PMID:21930936

  11. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    OpenAIRE

    Edelman , Irina; Ivanova , Oxana; Ivantsov , Ruslan; Velikanov , D.; Zabluda , V.; Zubavichus , Y.; Veligzhanin , A.; Zaikovskiy , V.; Stepanov , S.; Artemenko , Alla; Curély , Jacques; Kliava , Janis

    2012-01-01

    International audience; A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge struct...

  12. Larger error signals in major depression are associated with better avoidance learning

    Directory of Open Access Journals (Sweden)

    James F eCavanagh

    2011-11-01

    Full Text Available The medial prefrontal cortex (mPFC is particularly reactive to signals of error, punishment, and conflict in the service of behavioral adaptation and it is consistently implicated in the etiology of Major Depressive Disorder (MDD. This association makes conceptual sense, given that MDD has been associated with hyper-reactivity in neural systems associated with punishment processing. Yet in practice, depression-related variance in measures of mPFC functioning often fails to relate to performance. For example, neuroelectric reflections of mediofrontal error signals are often found to be larger in MDD, but a deficit in post-error performance suggests that these error signals are not being used to rapidly adapt behavior. Thus, it remains unknown if depression-related variance in error signals reflects a meaningful alteration in the use of error or punishment information. However, larger mediofrontal error signals have also been related to another behavioral tendency: increased accuracy in avoidance learning. The integrity of this error-avoidance system remains untested in MDD. In this study, EEG was recorded as 21 symptomatic, drug-free participants with current or past MDD and 24 control participants performed a probabilistic reinforcement learning task. Depressed participants had larger mPFC EEG responses to error feedback than controls. The direct relationship between error signal amplitudes and avoidance learning accuracy was replicated. Crucially, this relationship was stronger in depressed participants for high conflict lose-lose situations, demonstrating a selective alteration of avoidance learning. This investigation provided evidence that larger error signal amplitudes in depression are associated with increased avoidance learning, identifying a candidate mechanistic model for hypersensitivity to negative outcomes in depression.

  13. When gains loom larger than losses: reversed loss aversion for small amounts of money.

    Science.gov (United States)

    Harinck, Fieke; Van Dijk, Eric; Van Beest, Ilja; Mersmann, Paul

    2007-12-01

    Previous research has generally shown that people are loss averse; that is, they weigh losses more heavily than gains. In a series of three experiments, we found that for small outcomes, this pattern is reversed, and gains loom larger than losses. We explain this reversal on the basis of (a) the hedonic principle, which states that individuals are motivated to maximize pleasure and to minimize pain, and (b) the assumption that small losses are more easily discounted cognitively than large losses are.

  14. Shaping Ability of Reciproc, WaveOne GOLD, and HyFlex EDM Single-file Systems in Simulated S-shaped Canals.

    Science.gov (United States)

    Özyürek, Taha; Yılmaz, Koray; Uslu, Gülşah

    2017-05-01

    The aim of the present study was to compare the shaping ability of Reciproc (RPC; VDW, Munich, Germany), HyFlex EDM (HEDM; Coltene/Whaledent AG, Altstätten, Switzerland), and WaveOne GOLD (WOG; Dentsply Maillefer, Ballaigues, Switzerland) nickel-titanium (NiTi) files made of different NiTi alloys in S-shaped simulated canals. Sixty S-shaped canals in resin blocks were prepared to an apical size of 0.25 mm using RPC R25, WOG Primary, and HEDM OneFile (n = 20 canal/per group) systems. Composite images were made from the superimposition of pre- and postinstrumentation images. The amount of resin removed by each system was measured using a digital template and image analysis software in 22 different points. Canal aberrations were also recorded. Data were statistically analyzed using the Kruskal-Wallis and post hoc Dunn tests at the 5% level. NiTi file fracture was not observed during shaping of the simulated canals although a danger zone formation in 1 sample and a ledge in 1 sample were observed in the RPC group. There was no statistically significant difference between the WOG and HEDM groups' apical, medial, and coronal regions (P > .05). However, it was determined that the RPC group removed a statistically significantly higher amount of resin from all the canal regions when compared with the WOG and HEDM groups (P < .05). Within the limitation of the present study, it was determined that all of the tested NiTi files caused various levels of resin removal. However, WOG and HEDM NiTi files were found to cause a lower level of resin removal than RPC NiTi files. Copyright © 2017 American Association of Endodontists. All rights reserved.

  15. ANALISIS TATA KELOLA OPTIMALISASI SUMBER DAYA SISTEM INFORMASI MANAJEMEN JEMBATAN TIMBANG (EDM04 BERDASARKAN KERANGKA KERJA COBIT 5 PADA DINAS PERHUBUNGAN KOMUNIKASI DAN INFORMATIKA PROVINSI JAWA TENGAH

    Directory of Open Access Journals (Sweden)

    Yudistira Dian Hastiti

    2016-06-01

    Full Text Available Dinas Perhubungan Komunikasi dan Informatika (Dinhubkominfo Provinsi Jawa tengah sebagai perumus dan pelaksana kebijakan teknis, fasilitator, dan evaluator terkait penyelengaraan kegiatan penimbangan kendaraan bermotor melalui 16 jembatan timbang yang tersebar di wilayah provinsi jawa tengah telah mengimplementasikan sebuah system yang dipergunakan untuk kemudahan dalam menimbang kendaraan dengan mendata setiap kendaraan pada suatu system yang disebut Sistem Informasi Manajemen Jembatan Timbang (SIM JT. Masalah yang ditemukan saat ini yaitu, melihat padatnya antrian panjang kendaraan yang akan ditimbang disebabkan karena SIM JT yang belum memiliki database identitas kendaraan dan tidak dapat terpantau secara real time yang terjadi saat local server dalam keadaan down. Berdasarkan hal tersebut Dinhubkominfo berupaya mengoptimalkan kinerja SIM JT baik dari segi sumber daya manajemen manusia, TI, serta keuangan untuk meminimalkan kesalahan serta meningkatkan efektifitas pelayanan. Dari hasil studi dokumen, wawancara, dan kuesioner  berdasarkan COBIT 5 menghasilkan tingkat kapabilitas tata kelola proses optimalisasi sumer daya (EDM04 pada Dinas Perhubungan Komunikasi dan Informatika Provinsi Jawa Tengah saat ini berada di level 3 dengan status pencapaian Largely Achieved sebesar 80,18% setara dengan 3,80 dimana level 0, 1, dan 2 mencapai status Fully Achieved. Hal ini menunjukan telah mengelola dengan baik proses optimalisasi sumber daya dan diimplementasikan untuk mendukung pengerjaan proses standar dan efektif. Untuk mencapai tingkat target, Dinhubkominfo dapat melakukan strategi perbaikan dengan memperhatikan secara bertahap dari proses atribut level 1 sampai 4 Kata Kunci: Analisis Tata Kelola TI, COBIT 5, Sistem Informasi Manajemen Jembatan Timbang, Analisis Tingkat Kapabilitas, Analisis Kesenjangan.

  16. Avaliação do desenvolvimento motor de escolares com três baterias motoras: EDM, MABC-2 e TGMD-2

    Directory of Open Access Journals (Sweden)

    Rozana Aparecida da Silveira

    2014-10-01

    Full Text Available Objetivo: o presente estudo visou avaliar o desempenho das habilidades motoras de crianças com 9 e 10 anos de idade. Método: consistiu em pesquisa qualiquantitativa, de campo, representativa embora não probabilística, descritiva correlacional com delineamento entre e intra participantes conforme os objetivos traçados. Foram avaliados 172 escolares, sendo 67 meninos e 105 meninas, regularmente matriculados. Totalizou 516 coletas, uma vez que cada criança foi avaliada pelas três baterias motoras. Resultados: na análise do desenvolvimento motor das crianças por meio da aplicação das baterias motoras, verificou-se que, segundo a EDM, em geral os participantes apresentaram déficit no desenvolvimento motor geral, com relação à idade cronológica, apresentando idade motora de 109 meses ou aproximadamente 9 anos e obtendo melhor desempenho em organização temporal e desempenho mais fraco em organização espacial, possivelmente em decorrência à dificuldade com a noção de direito-esquerdo. Os meninos apresentaram desempenho superior às meninas em todas as habilidades motoras, exceto em esquema corporal. De acordo com o MABC-2, os participantes classificaram-se na faixa “limítrofe” de desenvolvimento motor, apresentando melhores escores em equilíbrio e escores fracos em destreza manual. Considerações Finais: conforme a classificação do TGMD-2, as crianças obtiveram resultado médio nas habilidades de locomoção e abaixo da média nas habilidades de controle de objetos. Em relação às diferenças entre os sexos, os meninos, de um modo geral, obtiveram melhor desempenho do que as meninas nas três baterias motoras.

  17. Sequencing Larger Intact Proteins (30-70 kDa) with Activated Ion Electron Transfer Dissociation

    Science.gov (United States)

    Riley, Nicholas M.; Westphall, Michael S.; Coon, Joshua J.

    2018-01-01

    The analysis of intact proteins via mass spectrometry can offer several benefits to proteome characterization, although the majority of top-down experiments focus on proteoforms in a relatively low mass range (AI-ETD) to proteins in the 30-70 kDa range. AI-ETD leverages infrared photo-activation concurrent to ETD reactions to improve sequence-informative product ion generation. This method generates more product ions and greater sequence coverage than conventional ETD, higher-energy collisional dissociation (HCD), and ETD combined with supplemental HCD activation (EThcD). Importantly, AI-ETD provides the most thorough protein characterization for every precursor ion charge state investigated in this study, making it suitable as a universal fragmentation method in top-down experiments. Additionally, we highlight several acquisition strategies that can benefit characterization of larger proteins with AI-ETD, including combination of spectra from multiple ETD reaction times for a given precursor ion, multiple spectral acquisitions of the same precursor ion, and combination of spectra from two different dissociation methods (e.g., AI-ETD and HCD). In all, AI-ETD shows great promise as a method for dissociating larger intact protein ions as top-down proteomics continues to advance into larger mass ranges. [Figure not available: see fulltext.

  18. Stereotactic Radiosurgery with Neoadjuvant Embolization of Larger Arteriovenous Malformations: An Institutional Experience

    Directory of Open Access Journals (Sweden)

    Richard Dalyai

    2014-01-01

    Full Text Available Objective. This study investigates the safety and efficacy of a multimodality approach combining staged endovascular embolizations with subsequent SRS for the management of larger AVMs. Methods. Ninety-five patients with larger AVMs were treated with staged endovascular embolization followed by SRS between 1996 and 2011. Results. The median volume of AVM in this series was 28 cm3 and 47 patients (48% were Spetzler-Martin grade IV or V. Twenty-seven patients initially presented with hemorrhage. Sixty-one patients underwent multiple embolizations while a single SRS session was performed in 64 patients. The median follow-up after SRS session was 32 months (range 9–136 months. Overall procedural complications occurred in 14 patients. There were 13 minor neurologic complications and 1 major complication (due to embolization while four patients had posttreatment hemorrhage. Thirty-eight patients (40% were cured radiographically. The postradiosurgery actuarial rate of obliteration was 45% at 5 years, 56% at 7 years, and 63% at 10 years. In multivariate analysis, larger AVM size, deep venous drainage, and the increasing number of embolization/SRS sessions were negative predictors of obliteration. The number of embolizations correlated positively with the number of stereotactic radiosurgeries (P<0.005. Conclusions. Multimodality endovascular and radiosurgical approach is an efficacious treatment strategy for large AVM.

  19. Historical Carbon Dioxide Emissions Caused by Land-Use Changes are Possibly Larger than Assumed

    Science.gov (United States)

    Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B. D.; Ciais, P.; Poulter, B.; Bayer, A. D.; Bondeau, A.; Calle, L.; Chini, L. P.; hide

    2017-01-01

    The terrestrial biosphere absorbs about 20% of fossil-fuel CO2 emissions. The overall magnitude of this sink is constrained by the difference between emissions, the rate of increase in atmospheric CO2 concentrations, and the ocean sink. However, the land sink is actually composed of two largely counteracting fluxes that are poorly quantified: fluxes from land-use change andCO2 uptake by terrestrial ecosystems. Dynamic global vegetation model simulations suggest that CO2 emissions from land-use change have been substantially underestimated because processes such as tree harvesting and land clearing from shifting cultivation have not been considered. As the overall terrestrial sink is constrained, a larger net flux as a result of land-use change implies that terrestrial uptake of CO2 is also larger, and that terrestrial ecosystems might have greater potential to sequester carbon in the future. Consequently, reforestation projects and efforts to avoid further deforestation could represent important mitigation pathways, with co-benefits for biodiversity. It is unclear whether a larger land carbon sink can be reconciled with our current understanding of terrestrial carbon cycling. Our possible underestimation of the historical residual terrestrial carbon sink adds further uncertainty to our capacity to predict the future of terrestrial carbon uptake and losses.

  20. Larger miliolids of the Late Cretaceous and Paleogene seen through space and time

    Directory of Open Access Journals (Sweden)

    Vlasta Ćosović

    2002-12-01

    Full Text Available Spatial and temporal occurrences of the larger (complex miliolids are discussed to give more light on biostratigraphy and paleobiogeographic provinces distribution. Seven generaand 47 species from the Late Cretaceous to Oligocene inhabited shallow marine settings in the Indo-Pacific, Tethyan and Caribbean regions. Of all genera only four (Idalina, Periloculina, Pseudolacazina, Lacazina widespread throughout Tethys in theLate Cretaceous and Paleogene. Single occurrence of Lacazina was recorded further to east (Moluccas. By now the Late Cretaceous genus Adrahentina is known only from the Spain. The newcomer’s Eocene genera were Fabularia and Lacazinella. Fabularia reachedhigh diversity in species term in the Central and Western Tethys and occured as unique genus in Caribbean realm, too. Conversely, during the same period, Lacazinella spread over the southern border of Neo-Tethys reaching New Guinea.On the Adriatic – Dinaric Carbonate Platform, larger miliolids occurred from the Late Cretaceous to Cuisian, having the same biostratigraphically trends and distribution as contemporaneous larger miliolids from the Tethys.

  1. Speaker Input Variability Does Not Explain Why Larger Populations Have Simpler Languages.

    Science.gov (United States)

    Atkinson, Mark; Kirby, Simon; Smith, Kenny

    2015-01-01

    A learner's linguistic input is more variable if it comes from a greater number of speakers. Higher speaker input variability has been shown to facilitate the acquisition of phonemic boundaries, since data drawn from multiple speakers provides more information about the distribution of phonemes in a speech community. It has also been proposed that speaker input variability may have a systematic influence on individual-level learning of morphology, which can in turn influence the group-level characteristics of a language. Languages spoken by larger groups of people have less complex morphology than those spoken in smaller communities. While a mechanism by which the number of speakers could have such an effect is yet to be convincingly identified, differences in speaker input variability, which is thought to be larger in larger groups, may provide an explanation. By hindering the acquisition, and hence faithful cross-generational transfer, of complex morphology, higher speaker input variability may result in structural simplification. We assess this claim in two experiments which investigate the effect of such variability on language learning, considering its influence on a learner's ability to segment a continuous speech stream and acquire a morphologically complex miniature language. We ultimately find no evidence to support the proposal that speaker input variability influences language learning and so cannot support the hypothesis that it explains how population size determines the structural properties of language.

  2. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms

  3. Atoms - molecules - nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Otter, G.; Honecker, R.

    1993-01-01

    This first volume covers the following topics: Wave-particle dualism, classical atomic physics; the Schroedinger equation, angular momentum in quantum physics, one-electron atoms and many-electron atoms with atomic structure, atomic spectra, exotic atoms, influence of electric and magnetic fields

  4. Atomic and molecular sciences

    International Nuclear Information System (INIS)

    Lane, N.F.

    1989-01-01

    The theoretical atomic and molecular physics program at Rice University addresses basic questions about the collision dynamics of electrons, atoms, ions and molecules, emphasizing processes related to possible new energy technologies and other applications. The program focuses on inelastic collision processes that are important in understanding energy and ionization balance in disturbed gases and plasmas. Emphasis is placed on systems and processes where some experimental information is available or where theoretical results may be expected to stimulate new measurements. Examples of current projects include: excitation and charge-transfer processes; orientation and alignment of excited states following collisions; Rydberg atom collisions with atoms and molecules; Penning ionization and ion-pair formation in atom-atom collisions; electron-impact ionization in dense, high-temperature plasmas; electron-molecule collisions; and related topics

  5. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  6. Cyclic fatigue resistance of R-Pilot, HyFlex EDM and PathFile nickel-titanium glide path files in artificial canals with double (S-shaped) curvature.

    Science.gov (United States)

    Uslu, G; Özyürek, T; Yılmaz, K; Gündoğar, M

    2018-05-01

    To examine the cyclic fatigue resistances of R-Pilot, HyFlex EDM and PathFile NiTi glide path files in S-shaped artificial canals. Twenty R-Pilot (12.5/.04), 20 HyFlex EDM (10/.05) and 20 PathFile (19/.02) single-file glide path files were included. Sixty files (n: 20/each) were subjected to static cyclic fatigue testing using double-curved canals until fracture occurred (TF). The number of cycles to fracture (NCF) was calculated by multiplying the rpm value by the TF. The length of the fractured fragment (FL) was determined by a digital microcaliper. Six samples of fractured files (n: 2/each) were examined by SEM to determine the fracture mode. The NCF and the FL data were analysed using one-way anova, post hoc Tamhane and Kruskal-Wallis tests using SPPS 21 software. The significance level was set at 5%. In the double-curved canal, all the files fractured first in the apical curvature and then in the coronal curvature. The NCF values revealed that the R-Pilot had the greatest cyclic fatigue resistance, followed by the HyFlex EDM and PathFile in both the apical and coronal curvatures (P < 0.05). R-Pilot NiTi glide path files, used in a reciprocating motion, had the greatest cyclic fatigue resistance amongst the tested NiTi glide path files in an artificial S-shaped canal. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Metal atom oxidation laser

    International Nuclear Information System (INIS)

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-01-01

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides

  8. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  9. Economical Atomic Layer Deposition

    Science.gov (United States)

    Wyman, Richard; Davis, Robert; Linford, Matthew

    2010-10-01

    Atomic Layer Deposition is a self limiting deposition process that can produce films at a user specified height. At BYU we have designed a low cost and automated atomic layer deposition system. We have used the system to deposit silicon dioxide at room temperature using silicon tetrachloride and tetramethyl orthosilicate. Basics of atomic layer deposition, the system set up, automation techniques and our system's characterization are discussed.

  10. Atomic physics made clear

    International Nuclear Information System (INIS)

    Meinhold, H.

    1980-01-01

    This book is a popular introduction into the foundations of atomic physics und quantum mechanics. Starting from some phenomenological concepts Bohr's model and the construction of the periodic system regarding the shell structure of atoms are introduced. In this framework the selection rules and magnetic moments of atomic electrons are considered. Finally the wave-particle dualism is considered. In the appendix some mathematical methods are described which are useful for a deeper penetration into the considered ideas. (HSI)

  11. Deeply bound pionic atom

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Yamazaki, Toshimitsu

    1989-01-01

    The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)

  12. Single atom oscillations

    International Nuclear Information System (INIS)

    Wiorkowski, P.; Walther, H.

    1990-01-01

    Modern methods of laser spectroscopy allow the study of single atoms or ions in an unperturbed environment. This has opened up interesting new experiments, among them the detailed study of radiation-atom coupling. In this paper, the following two experiments dealing with this problem are reviewed: the single-atom maser and the study of the resonance fluorescence of a single stored ion. The simplest and most fundamental system for studying radiation-matter coupling is a single two-level atom interacting with a single mode of an electromagnetic field in a cavity. This problem received a great deal of attention shortly after the maser was invented

  13. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  14. The erection of larger windmills in the open countryside - an investigation of the visual effects

    International Nuclear Information System (INIS)

    1996-12-01

    The future use of larger windmills will result in new visual effects. The investigation points out that these effects will be dependent on the main characteristics of the landscape. Windmills with a height of 90 m will be taller than any other element found in the landscape with the exception of some chimneys, masts, etc. It is shown that very tall windmills should not be set up in large dominating groups, that it is important that the towers are slender and that the blades rotate slowly (in order to give a more peaceful effect), if the landscape should not be spoiled. Large windmills dominate an area of 1 - 3 kilometers, but at a distance of 10 - 12 km they can appear to fade away between woods and large buildings etc. Naturally, large windmills will be prominent on heaths and moors, and would not be welcome where there are buildings of cultural interest or where the landscape is under conservation. They could, it is stated, be placed amongst a group of smaller windmills, as this would help to lessen their dominance, but should not be positioned where one type of landscape merges into another, as here they would show up more. Local boundaries should also be taken into consideration. When planning where to locate windmills the overall visual effect over larger areas should be contemplated in addition to the preservation of views of buildings etc. of historical interest. Photographs should be taken of proposed sites so that paper models can be placed so as to produce an idea of the visual effects of erecting larger windmills in various positions in specified areas

  15. Radiative processes of two entangled atoms in cosmic string spacetime

    Science.gov (United States)

    Cai, Huabing; Ren, Zhongzhou

    2018-01-01

    We investigate the radiative processes of two static two-level atoms in a maximally entangled state coupled to vacuum electromagnetic field in the cosmic string spacetime. We find that the decay rate from the entangled state to the ground state crucially depends on the atomic separation, the polarization directions of the individual atoms, the atom-string distance and the deficit angle induced by the string. As the atom-string distance increases, the decay rate oscillates around the result in Minkowski spacetime and the amplitude gradually decreases. The oscillation is more severe for larger planar angle deficit. We analyze the decay rate in different circumstances such as near zone and specific polarization cases. Some comparisons between symmetric and antisymmetric states are performed. By contrast with the case in Minkowski spacetime, we can reveal the effects of the cosmic string on the radiative properties of the entangled atoms.

  16. Collecting the neclected kingdom: Guidelines for the field mycologist with emphasis on the larger fungi

    DEFF Research Database (Denmark)

    Buyck, B.; Læssøe, Thomas; Meyer, Marianne

    2010-01-01

    Guidelines are provided for collecting a group of organisms that has often been overlooked in earlier inventories: the kingdom Fungi and other groups that are traditionally collected by mycologists such as slime molds. After a short introduction on fungi and the feasibility of an ‘all fungal taxa......’ inventory, the authors divide the fungi in six ‘practical’ groups that require specific approaches: slime molds, lichens, parasitic fungi of plants and animals, larger mushrooms, microscopic fungi. Various topics are discussed in relation to three chronological stages (before, during and after...

  17. Laser-Induced Damage Growth on Larger-Aperture Fused Silica Optical Components at 351 nm

    International Nuclear Information System (INIS)

    Wan-Qing, Huang; Wei, Han; Fang, Wang; Yong, Xiang; Fu-Quan, Li; Bin, Feng; Feng, Jing; Xiao-Feng, Wei; Wan-Guo, Zheng; Xiao-Min, Zhang

    2009-01-01

    Laser-induced damage is a key lifetime limiter for optics in high-power laser facility. Damage initiation and growth under 351 nm high-fluence laser irradiation are observed on larger-aperture fused silica optics. The input surface of one fused silica component is damaged most severely and an explanation is presented. Obscurations and the area of a scratch on it are found to grow exponentially with the shot number. The area of damage site grows linearly. Micrographs of damage sites support the micro-explosion damage model which could be used to qualitatively explain the phenomena

  18. Examples of fatigue lifetime and reliability evaluation of larger wind turbine components

    DEFF Research Database (Denmark)

    Tarp-Johansen, N.J.

    2003-01-01

    This report is one out of several that constitute the final report on the ELSAM funded PSO project “Vindmøllekomponenters udmattelsesstyrke og levetid”, project no. 2079, which regards the lifetime distribution of larger wind turbine components in ageneric turbine that has real life dimensions....... Though it was the initial intention of the project to consider only the distribution of lifetimes the work reported in this document provides also calculations of reliabilities and partial load safetyfactors under specific assumptions about uncertainty sources, as reliabilities are considered...

  19. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  20. Safeguards for the atom

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    Concern over the destructive potentialities of nuclear energy has grown all over the world. In fact, it was this concern, coupled with an awareness of the equally great potentialities for peaceful prosperity, that led to the establishment of the International Atomic Energy Agency. That nuclear energy should be used solely for peaceful purposes is an ideal to which all people would subscribe. Realization of this ideal, however, is dependent on many complex factors which are outside the scope of the Agency. In its own limited sphere, however, the Agency has the responsibility to ensure that in its efforts to promote the peaceful uses it does not in any way increase the potentiality of military use. The possibility of military application is not the only danger that the Agency must guard against, it has a further function arising from the nature of the materials needed in atomic energy work. Since the basic materials are radioactive and since all ionizing radiation is potentially dangerous, the Agency must ensure that in helping its Member States to develop the peaceful uses of atomic energy it does not increase the hazards of nuclear radiation or radioactive contamination. It must establish standards of safe practice for activities carried out under its auspices or with its assistance. Since the safeguards will have two distinct objectives, a distinction can be made between those which will be designed to prevent the diversion of Agency assistance to military use and those against health and safety hazards. So far as the health and safety measures are concerned, a good deal of work has already been done in determining the standards of safe practice which will be the basis for the relevant rules. The Agency has published the first in its series of safety manuals, 'Safe Handling of Radioisotopes', which deals with such standards. Safeguards against the diversion or loss of nuclear materials and facilities are more difficult to devise. It is not considered feasible for

  1. Safeguards for the atom

    International Nuclear Information System (INIS)

    1959-01-01

    Concern over the destructive potentialities of nuclear energy has grown all over the world. In fact, it was this concern, coupled with an awareness of the equally great potentialities for peaceful prosperity, that led to the establishment of the International Atomic Energy Agency. That nuclear energy should be used solely for peaceful purposes is an ideal to which all people would subscribe. Realization of this ideal, however, is dependent on many complex factors which are outside the scope of the Agency. In its own limited sphere, however, the Agency has the responsibility to ensure that in its efforts to promote the peaceful uses it does not in any way increase the potentiality of military use. The possibility of military application is not the only danger that the Agency must guard against, it has a further function arising from the nature of the materials needed in atomic energy work. Since the basic materials are radioactive and since all ionizing radiation is potentially dangerous, the Agency must ensure that in helping its Member States to develop the peaceful uses of atomic energy it does not increase the hazards of nuclear radiation or radioactive contamination. It must establish standards of safe practice for activities carried out under its auspices or with its assistance. Since the safeguards will have two distinct objectives, a distinction can be made between those which will be designed to prevent the diversion of Agency assistance to military use and those against health and safety hazards. So far as the health and safety measures are concerned, a good deal of work has already been done in determining the standards of safe practice which will be the basis for the relevant rules. The Agency has published the first in its series of safety manuals, 'Safe Handling of Radioisotopes', which deals with such standards. Safeguards against the diversion or loss of nuclear materials and facilities are more difficult to devise. It is not considered feasible for

  2. Larger foraminifera of the Devil's Den and Blue Hole sinkholes, Florida

    Science.gov (United States)

    Cotton, Laura J.; Eder, Wolfgang; Floyd, James

    2018-03-01

    Shallow-water carbonate deposits are well-known from the Eocene of the US Gulf Coast and Caribbean. These deposits frequently contain abundant larger benthic foraminifera (LBF). However, whilst integrated stratigraphic studies have helped to refine the timing of LBF overturning events within the Tethys and Indo-Pacific regions with respect to global bio- and chemo-stratigraphic records, little recent work has been carried out in the Americas. The American LBF assemblages are distinctly different from those of Europe and the Indo-Pacific. It is therefore essential that the American bio-province is included in studies of LBF evolution, biodiversity and climate events to understand these processes on a global scale.Here we present the LBF ranges from two previously unpublished sections spanning 35 and 29 m of the upper Eocene Ocala limestone, as the early stages of a larger project addressing the taxonomy and biostratigraphy of the LBF of Florida. The study indicates that the lower member of the Ocala limestone may be Bartonian rather than Priabonian in age, with implications for the biostratigraphy of the region. In addition, the study highlights the need for multiple sites to assess the LBF assemblages and fully constrain ranges across Florida and the US Gulf and suggests potential LBF events for future integrated stratigraphic study.

  3. EOCENE LARGER FORAMINIFERAL BIOSTRATIGRAPHY IN THE SOUTHERNMOST DAUPHINOIS DOMAIN (MARITIME ALPS, FRANCE-ITALY BORDER

    Directory of Open Access Journals (Sweden)

    DARIO VARRONE

    2007-07-01

    Full Text Available The Trucco Formation and the Nummulitic Limestone (Dauphinois Domain, Maritime Alps are characterized by abundant larger foraminifera, specifically nummulitids, orthophragminids and encrusting foraminifera. In the Maritime Alps, previous studies suggest a late Lutetian age for the Trucco Formation and a late Lutetian-Priabonian age for the Nummulitic Limestone.Biostratigraphic analysis of the nummulitids, in 11 stratigraphic sections, allowed us to distinguish 3 biozones:MALF1 Zone: defined by the presence of Nummulites brongniarti d’Archiac & Haime, N. puschi d’Archiac, N. perforatus de Montfort, N. striatus (Bruguière, N. cf. dufrenoyi d’Archiac & Haime, N. variolarius/incrassatus and Operculina schwageri Silvestri.MALF2 Zone: defined by the presence of Nummulites perforatus de Montfort, N. striatus (Bruguière, N. cf. dufrenoyi d’Archiac & Haime, N. variolarius/incrassatus and Operculina schwageri Silvestri.MALF 3 Zone: defined by the presence of gr. Nummulites variolarius/incrassatus, N. striatus (Bruguière and Operculina schwageri Silvestri.According to current larger foraminiferal biozonal schemes, the age of these local biozones corresponds to the Bartonian p.p.Moreover, the comparison with biostratigraphic schemes established for the Dauphinois Domain and for the Tethyan area evidences that several typical nummulitid species of the late Bartonian are lacking in the southern Dauphinois Domain, probably due to a paleogeographic control. 

  4. Juvenile exposure to predator cues induces a larger egg size in fish

    Science.gov (United States)

    Segers, Francisca H. I. D.; Taborsky, Barbara

    2012-01-01

    When females anticipate a hazardous environment for their offspring, they can increase offspring survival by producing larger young. Early environmental experience determines egg size in different animal taxa. We predicted that a higher perceived predation risk by juveniles would cause an increase in the sizes of eggs that they produce as adults. To test this, we exposed juveniles of the mouthbrooding cichlid Eretmodus cyanostictus in a split-brood experiment either to cues of a natural predator or to a control situation. After maturation, females that had been confronted with predators produced heavier eggs, whereas clutch size itself was not affected by the treatment. This effect cannot be explained by a differential female body size because the predator treatment did not influence growth trajectories. The observed increase of egg mass is likely to be adaptive, as heavier eggs gave rise to larger young and in fish, juvenile predation risk drops sharply with increasing body size. This study provides the first evidence that predator cues perceived by females early in life positively affect egg mass, suggesting that these cues allow her to predict the predation risk for her offspring. PMID:21976689

  5. Atoms stories; Histoire d`atomes

    Energy Technology Data Exchange (ETDEWEB)

    Radvanyi, P; Bordry, M [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France)

    1988-12-31

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  6. Low energy atom-atom collisions

    International Nuclear Information System (INIS)

    Child, M.S.

    1980-01-01

    The semiclassical theory of atom-atom potential scattering and of low energy inelastic atom-atom scattering is reviewed. Particular attention is given to the origin and interpretation of rainbow structure, diffraction oscillations and exchange oscillations in the potential scattering differential cross-section, and to the glory structure and symmetry oscillations in the integral cross-section. Available methods for direct inversion of the cross-section data to recover the potential are reviewed in some detail. The theory of non-adiabatic transitions is introduced by a short discussion of interaction mechanisms and of diabetic and adiabatic representations. Analytical S matrix elements are presented for two state curve-crossing (Landau-Zener-Stuckelberg), Demkov and Nikitin models. The relation between Stuckelberg oscillations in the S matrix and in the differential cross-section is discussed in terms of interference between trajectories belonging to two different classical deflection functions. The energy dependences of the inelastic integral cross-section for curve-crossing and Demkov type transitions are also discussed. Finally the theory is reviewed in relation to a recent close-coupled study of fine structure transitions in F( 2 P) + Xe( 2 S) scattering

  7. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  8. Structures of larger proteins in solution: Three- and four-dimensional heteronuclear NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gronenborn, A.M.; Clore, G.M. [National Institutes of Health, Bethesda, MD (United States)

    1994-12-01

    Complete understanding of a protein`s function and mechanism of action can only be achieved with a knowledge of its three-dimensional structure at atomic resolution. At present, there are two methods available for determining such structures. The first method, which has been established for many years, is x-ray diffraction of protein single crystals. The second method has blossomed only in the last 5 years and is based on the application of nuclear magnetic resonance (NMR) spectroscopy to proteins in solution. This review paper describes three- and four-dimensional NMR methods applied to protein structure determination and was adapted from Clore and Gronenborn. The review focuses on the underlying principals and practice of multidimensional NMR and the structural information obtained.

  9. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  10. Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Blackman, N.S.; Gummer, W.K.

    1982-02-01

    This paper has been prepared to provide an overview of the responsibilities and activities of the Atomic Energy Control Board. It is designed to address questions that are often asked concerning the establishment of the Atomic Energy Control Board, its enabling legislation, licensing and compliance activities, federal-provincial relationships, international obligations, and communications with the public

  11. mu. -nucleon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Dobretsov, Yu; Dolgoshein, B; Kirillov-Ugryumov, V

    1980-12-01

    The properties and formation are described of ..mu..-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of ..mu..-nucleon atoms is shown. The prospects of their use are indicated.

  12. μ-nucleon atoms

    International Nuclear Information System (INIS)

    Dobretsov, Yu.; Dolgoshejn, B.; Kirillov-Ugryumov, V.

    1980-01-01

    The properties and formation are described of μ-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of μ-nucleon atoms is shown. The prospects of their use are indicated. (J.P.)

  13. Atomic Ferris wheel beams

    Science.gov (United States)

    Lembessis, Vasileios E.

    2017-07-01

    We study the generation of atom vortex beams in the case where a Bose-Einstein condensate, released from a trap and moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.

  14. Atom lithography of Fe

    NARCIS (Netherlands)

    Sligte, te E.; Smeets, B.; van der Stam, K.M.R.; Herfst, R.W.; Straten, van der P.; Beijerinck, H.C.W.; Leeuwen, van K.A.H.

    2004-01-01

    Direct write atom lithography is a technique in which nearly resonant light is used to pattern an atom beam. Nanostructures are formed when the patterned beam falls onto a substrate. We have applied this lithography scheme to a ferromagnetic element, using a 372 nm laser light standing wave to

  15. Beyond the Atom

    Science.gov (United States)

    Cox, John

    2011-08-01

    1. Introduction - the atom in the seventies; 2. The vacuum tube; 3. The new rays; 4. The new substances; 5. Disintegration; 6. A family tree; 7. Verifications and results; 8. The objective reality of molecules; 9. The new atom; Bibliography; Index.

  16. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  17. Atom electron scattering

    International Nuclear Information System (INIS)

    Santoso, B.

    1976-01-01

    Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)

  18. Atomic energy for progress

    International Nuclear Information System (INIS)

    1974-01-01

    The film discusses the functions and activities of the Philippine Atomic Energy Commission. Shown are the applications of atomic energy in research, agriculture, engineering, industry and medicine, as well as the construction of the research reactor and its inauguration by President Marcos

  19. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  20. Isotopes and atomic weights

    International Nuclear Information System (INIS)

    Zhang Qinglian

    1990-01-01

    A review of the chemical and mass spectrometric methods of determining the atomic weights of elements is presented. A, special discussion is devoted to the calibration of the mass spectrometer with highly enriched isotopes. It is illustrated by the recent work on europium. How to choose the candidate element for new atomic weight determination forms the last section of the article

  1. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  2. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  3. Antiprotonic-hydrogen atoms

    International Nuclear Information System (INIS)

    Batty, C.J.

    1989-07-01

    Experimental studies of antiprotonic-hydrogen atoms have recently made great progress following the commissioning of the low energy antiproton facility (LEAR) at CERN in 1983. At the same time our understanding of the atomic cascade has increased considerably through measurements of the X-ray spectra. The life history of the p-bar-p atom is considered in some detail, from the initial capture of the antiproton when stopping in hydrogen, through the atomic cascade with the emission of X-rays, to the final antiproton annihilation and production of mesons. The experiments carried out at LEAR are described and the results compared with atomic cascade calculations and predictions of strong interaction effects. (author)

  4. 4π Noncoplanar Stereotactic Body Radiation Therapy for Centrally Located or Larger Lung Tumors

    International Nuclear Information System (INIS)

    Dong, Peng; Lee, Percy; Ruan, Dan; Long, Troy; Romeijn, Edwin; Low, Daniel A.; Kupelian, Patrick; Abraham, John; Yang, Yingli; Sheng, Ke

    2013-01-01

    Purpose: To investigate the dosimetric improvements in stereotactic body radiation therapy for patients with larger or central lung tumors using a highly noncoplanar 4π planning system. Methods and Materials: This study involved 12 patients with centrally located or larger lung tumors previously treated with 7- to 9-field static beam intensity modulated radiation therapy to 50 Gy. They were replanned using volumetric modulated arc therapy and 4π plans, in which a column generation method was used to optimize the beam orientation and the fluence map. Maximum doses to the heart, esophagus, trachea/bronchus, and spinal cord, as well as the 50% isodose volume, the lung volumes receiving 20, 10, and 5 Gy were minimized and compared against the clinical plans. A dose escalation study was performed to determine whether a higher prescription dose to the tumor would be achievable using 4π without violating dose limits set by the clinical plans. The deliverability of 4π plans was preliminarily tested. Results: Using 4π plans, the maximum heart, esophagus, trachea, bronchus and spinal cord doses were reduced by 32%, 72%, 37%, 44%, and 53% (P≤.001), respectively, and R 50 was reduced by more than 50%. Lung V 20 , V 10 , and V 5 were reduced by 64%, 53%, and 32% (P≤.001), respectively. The improved sparing of organs at risk was achieved while also improving planning target volume (PTV) coverage. The minimal PTV doses were increased by the 4π plans by 12% (P=.002). Consequently, escalated PTV doses of 68 to 70 Gy were achieved in all patients. Conclusions: We have shown that there is a large potential for plan quality improvement and dose escalation for patients with larger or centrally located lung tumors using noncoplanar beams with sufficient quality and quantity. Compared against the clinical volumetric modulated arc therapy and static intensity modulated radiation therapy plans, the 4π plans yielded significantly and consistently improved tumor coverage and

  5. 4π Noncoplanar Stereotactic Body Radiation Therapy for Centrally Located or Larger Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Peng; Lee, Percy; Ruan, Dan [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States); Long, Troy; Romeijn, Edwin [Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan (United States); Low, Daniel A.; Kupelian, Patrick; Abraham, John; Yang, Yingli [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States); Sheng, Ke, E-mail: ksheng@mednet.ucla.edu [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States)

    2013-07-01

    Purpose: To investigate the dosimetric improvements in stereotactic body radiation therapy for patients with larger or central lung tumors using a highly noncoplanar 4π planning system. Methods and Materials: This study involved 12 patients with centrally located or larger lung tumors previously treated with 7- to 9-field static beam intensity modulated radiation therapy to 50 Gy. They were replanned using volumetric modulated arc therapy and 4π plans, in which a column generation method was used to optimize the beam orientation and the fluence map. Maximum doses to the heart, esophagus, trachea/bronchus, and spinal cord, as well as the 50% isodose volume, the lung volumes receiving 20, 10, and 5 Gy were minimized and compared against the clinical plans. A dose escalation study was performed to determine whether a higher prescription dose to the tumor would be achievable using 4π without violating dose limits set by the clinical plans. The deliverability of 4π plans was preliminarily tested. Results: Using 4π plans, the maximum heart, esophagus, trachea, bronchus and spinal cord doses were reduced by 32%, 72%, 37%, 44%, and 53% (P≤.001), respectively, and R{sub 50} was reduced by more than 50%. Lung V{sub 20}, V{sub 10}, and V{sub 5} were reduced by 64%, 53%, and 32% (P≤.001), respectively. The improved sparing of organs at risk was achieved while also improving planning target volume (PTV) coverage. The minimal PTV doses were increased by the 4π plans by 12% (P=.002). Consequently, escalated PTV doses of 68 to 70 Gy were achieved in all patients. Conclusions: We have shown that there is a large potential for plan quality improvement and dose escalation for patients with larger or centrally located lung tumors using noncoplanar beams with sufficient quality and quantity. Compared against the clinical volumetric modulated arc therapy and static intensity modulated radiation therapy plans, the 4π plans yielded significantly and consistently improved tumor

  6. Electrodialytic removal of cadmium from biomass combustion fly ash in larger scale

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Simonsen, Peter

    2005-01-01

    Due to a high concentration of the toxic heavy metal cadmium (Cd), biomass combustion fly ash often fails to meet the Danish legislative requirements for recycling on agricultural fields. It has previously been shown that it is possible to reduce the concentration of Cd in different bio ashes...... significantly by using electrodialytic remediation, an electrochemically assisted extraction method. In this work the potential of the method was demonstrated in larger scale. Three different experimental set-ups were used, ranging from bench-scale (25 L ash suspension) to pilot scale (0.3 - 3 m3......). The experimental ash was a straw combustion fly ash suspended in water. Within 4 days of remediation, Cd concentrations below the limiting concentration of 5.0 mg Cd/kg DM for straw ash were reached. On the basis of these results, the energy costs for remediation of ash in industrial scale have been estimated...

  7. Beyond Panglossian Optimism: Larger N2 Amplitudes Probably Signal a Bilingual Disadvantage in Conflict Monitoring

    Directory of Open Access Journals (Sweden)

    Kenneth R. Paap

    2015-01-01

    Full Text Available In this special issue on the brain mechanisms that lead to cognitive benefits of bilingualism we discussed six reasons why it will be very difficult to discover those mechanisms. Many of these problems apply to the article by Fernandez, Acosta, Douglass, Doshi, and Tartar that also appears in the special issue. These concerns include the following: 1 an overly optimistic assessment of the replicability of bilingual advantages in behavioral studies, 2 reliance on risky small samples sizes, 3 failures to match the samples on demographic characteristics such as immigrant status, and 4 language group differences that occur in neural measures (i.e., N2 amplitude, but not in the behavioral data. Furthermore the N2 amplitude measure in general suffers from valence ambiguity: larger N2 amplitudes reported for bilinguals are more likely to reflect poorer conflict resolution rather than enhanced inhibitory control.

  8. Design of reactor internals in larger high-temperature reactors with spherical fuel elements

    International Nuclear Information System (INIS)

    Elter, C.

    1981-01-01

    In his paper, the author analyzes and summarizes the present state of the art with emphasis on the prototype reactor THTR 300 MWe, because in addition to spherical fuel elements, this type includes other features of future HTR design such as the same flow direction of cooland gas through the core. The paper on hand also elaborates design guidelines for reactor internals applicable with large HTR's of up to 1200 MWe. Proved designs will be altered so as to meet the special requirements of larger cores with spherical elements to be reloaded according to the OTTO principle. This paper is furthermore designed as a starting point for selective and swift development of reactor internals for large HTR's to be refuelled according to the OTTO principle. (orig./GL) [de

  9. Imaging samples larger than the field of view: the SLS experience

    Science.gov (United States)

    Vogiatzis Oikonomidis, Ioannis; Lovric, Goran; Cremona, Tiziana P.; Arcadu, Filippo; Patera, Alessandra; Schittny, Johannes C.; Stampanoni, Marco

    2017-06-01

    Volumetric datasets with micrometer spatial and sub-second temporal resolutions are nowadays routinely acquired using synchrotron X-ray tomographic microscopy (SRXTM). Although SRXTM technology allows the examination of multiple samples with short scan times, many specimens are larger than the field-of-view (FOV) provided by the detector. The extension of the FOV in the direction perpendicular to the rotation axis remains non-trivial. We present a method that can efficiently increase the FOV merging volumetric datasets obtained by region-of-interest tomographies in different 3D positions of the sample with a minimal amount of artefacts and with the ability to handle large amounts of data. The method has been successfully applied for the three-dimensional imaging of a small number of mouse lung acini of intact animals, where pixel sizes down to the micrometer range and short exposure times are required.

  10. Practical aspects of NMR signal assignment in larger and challenging proteins

    Science.gov (United States)

    Frueh, Dominique P.

    2014-01-01

    NMR has matured into a technique routinely employed for studying proteins in near physiological conditions. However, applications to larger proteins are impeded by the complexity of the various correlation maps necessary to assign NMR signals. This article reviews the data analysis techniques traditionally employed for resonance assignment and describes alternative protocols necessary for overcoming challenges in large protein spectra. In particular, simultaneous analysis of multiple spectra may help overcome ambiguities or may reveal correlations in an indirect manner. Similarly, visualization of orthogonal planes in a multidimensional spectrum can provide alternative assignment procedures. We describe examples of such strategies for assignment of backbone, methyl, and nOe resonances. We describe experimental aspects of data acquisition for the related experiments and provide guidelines for preliminary studies. Focus is placed on large folded monomeric proteins and examples are provided for 37, 48, 53, and 81 kDa proteins. PMID:24534088

  11. Performance of large-R jets and jet substructure reconstruction with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2012-01-01

    This paper presents the application of techniques to study jet substructure. The performance of modified jet algorithms for a variety of jet types and event topologies is investigated. Properties of jets subjected to the mass-drop filtering, trimming and pruning algorithms are found to have a reduced sensitivity to multiple proton-proton interactions and exhibit improved stability at high luminosity. Monte Carlo studies of the signal-background discrimination with jet grooming in new physics searches based on jet invariant mass and jet substructure properties are also presented. The application of jet trimming is shown to improve the robustness of large-R jet measurements, reduce sensitivity to the superfluous effects due to the intense environment of the high luminosity LHC, and improve the physics potential of searches for heavy boosted objects. The analyses presented in this note use the full 2011 ATLAS dataset, corresponding to an integrated luminosity of 4.7 \\pm 0.2 fb−1 .

  12. The Larger Bound on the Domination Number of Fibonacci Cubes and Lucas Cubes

    Directory of Open Access Journals (Sweden)

    Shengzhang Ren

    2014-01-01

    Full Text Available Let Γn and Λn be the n-dimensional Fibonacci cube and Lucas cube, respectively. Denote by Γ[un,k,z] the subgraph of Γn induced by the end-vertex un,k,z that has no up-neighbor. In this paper, the number of end-vertices and domination number γ of Γn and Λn are studied. The formula of calculating the number of end-vertices is given and it is proved that γ(Γ[un,k,z]≤2k-1+1. Using these results, the larger bound on the domination number γ of Γn and Λn is determined.

  13. Designing key-dependent chaotic S-box with larger key space

    International Nuclear Information System (INIS)

    Yin Ruming; Yuan Jian; Wang Jian; Shan Xiuming; Wang Xiqin

    2009-01-01

    The construction of cryptographically strong substitution boxes (S-boxes) is an important concern in designing secure cryptosystems. The key-dependent S-boxes designed using chaotic maps have received increasing attention in recent years. However, the key space of such S-boxes does not seem to be sufficiently large due to the limited parameter range of discretized chaotic maps. In this paper, we propose a new key-dependent S-box based on the iteration of continuous chaotic maps. We explore the continuous-valued state space of chaotic systems, and devise the discrete mapping between the input and the output of the S-box. A key-dependent S-box is constructed with the logistic map in this paper. We show that its key space could be much larger than the current key-dependent chaotic S-boxes.

  14. Smoking Topography among Korean Smokers: Intensive Smoking Behavior with Larger Puff Volume and Shorter Interpuff Interval.

    Science.gov (United States)

    Kim, Sungroul; Yu, Sol

    2018-05-18

    The difference of smoker's topography has been found to be a function many factors, including sex, personality, nicotine yield, cigarette type (i.e., flavored versus non-flavored) and ethnicity. We evaluated the puffing behaviors of Korean smokers and its association with smoking-related biomarker levels. A sample of 300 participants was randomly recruited from metropolitan areas in South Korea. Topography measures during a 24-hour period were obtained using a CReSS pocket device. Korean male smokers smoked two puffs less per cigarette compared to female smokers (15.0 (13.0⁻19.0) vs. 17.5 (15.0⁻21.0) as the median (Interquartile range)), but had a significantly larger puff volume (62.7 (52.7⁻75.5) mL vs. 53.5 (42.0⁻64.2) mL); p = 0.012). The interpuff interval was similar between men and women (8.9 (6.5⁻11.2) s vs. 8.3 (6.2⁻11.0) s; p = 0.122) but much shorter than other study results. A dose-response association ( p = 0.0011) was observed between daily total puff volumes and urinary cotinine concentrations, after controlling for sex, age, household income level and nicotine addiction level. An understanding of the difference of topography measures, particularly the larger puff volume and shorter interpuff interval of Korean smokers, may help to overcome a potential underestimation of internal doses of hazardous byproducts of smoking.

  15. Global warming may disproportionately affect larger adults in a predatory coral reef fish

    KAUST Repository

    Messmer, Vanessa

    2016-11-03

    Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current-day (28.5 °C) vs. projected end-of-century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45-2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass-specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02-2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate-induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock-on effects for trophodynamics and functioning of ecosystems.

  16. Larger ATV engine size correlates with an increased rate of traumatic brain injury.

    Science.gov (United States)

    Butts, C Caleb; Rostas, Jack W; Lee, Y L; Gonzalez, Richard P; Brevard, Sidney B; Frotan, M Amin; Ahmed, Naveed; Simmons, Jon D

    2015-04-01

    Since the introduction of all-terrain vehicles (ATV) to the United States in 1971, injuries and mortalities related to their use have increased significantly. Furthermore, these vehicles have become larger and more powerful. As there are no helmet requirements or limitations on engine-size in the State of Alabama, we hypothesised that larger engine size would correlate with an increased incidence of traumatic brain injury (TBI) in patients following an ATV crash. Patient and ATV data were prospectively collected on all ATV crashes presenting to a level one trauma centre from September 2010 to May 2013. Collected data included: demographics, age of driver, ATV engine size, presence of helmet, injuries, and outcomes. The data were grouped according to the ATV engine size in cubic centimetres (cc). For the purposes of this study, TBI was defined as any type of intracranial haemorrhage on the initial computed tomography scan. There were 61 patients identified during the study period. Two patients (3%) were wearing a helmet at the time of injury. Patients on an ATV with an engine size of 350 cc or greater had higher Injury Severity Scores (13.9 vs. 7.5, p ≤ 0.05) and an increased incidence of TBI (26% vs. 0%, p ≤ 0.05) when compared to patients on ATV's with an engine size less than 350 cc. Patients on an ATV with an engine size of 350 cc or greater were more likely to have a TBI. The use of a helmet was rarely present in this cohort. Legislative efforts to implement rider protection laws for ATVs are warranted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Larger fig wasps are more careful about which figs to enter--with good reason.

    Science.gov (United States)

    Liu, Cong; Yang, Da-Rong; Compton, Stephen G; Peng, Yan-Qiong

    2013-01-01

    Floral longevity reflects a balance between gains in pollinator visitation and the costs of flower maintenance. Because rewards to pollinators change over time, older flowers may be less attractive, reducing the value of extended longevity. Un-pollinated figs, the inflorescences of Ficus species, can remain receptive for long periods, but figs that are older when entered by their host-specific fig wasp pollinators produce fewer seeds and fig wasp offspring. Our field experiments with Ficushispida, a dioecious fig tree, examined how the length of time that receptive figs have remained un-pollinated influences the behaviour and reproductive success of its short-lived fig wasp pollinator, Ceratosolensolmsi marchali. The results were consistent in three different seasons, and on male and female trees, although receptivity was greatly extended during colder months. Pollinators took longer to find the ostioles of older figs, and longer to penetrate them. They also became increasingly unwilling to enter figs as they aged, and increasing numbers of the wasps became trapped in the ostiolar bracts. Larger individuals were particularly unwilling to enter older figs, resulting in older figs being pollinated by smaller wasps. On female trees, where figs produce only seeds, seed production declined rapidly with fig age. On male trees, the numbers and size of fig wasp offspring declined, and a higher proportion were male. Older male figs are harder to enter, especially for larger individuals, and offer poorer quality oviposition opportunities. This study opens an interesting new perspective on the coevolution of figs and their pollinators, especially factors influencing pollinator body size and emphasises the subtleties of interactions between mutualists.

  18. Transmissible Plasmids and Integrons Shift Escherichia coli Population Toward Larger Multiple Drug Resistance Numbers.

    Science.gov (United States)

    Suhartono, Suhartono; Savin, Mary C; Gbur, Edward E

    2018-04-01

    Transmissible plasmids and integrons may play important roles in the persistence and spread of antibiotic-resistant bacteria throughout aquatic environment by accumulating antibiotic resistance genes (ARG). Class 1 and class 2 integron (intI), mobilization (mob), sulfamethoxazole resistance (sul), and trimethoprim resistance (dfr) genes were PCR-amplified and confirmed through DNA sequencing following plasmid extraction from 139 antibiotic-resistant Escherichia coli. E. coli had previously been recovered from wastewater treatment plant effluent and receiving stream water in Northwest Arkansas and isolates had expressed resistance to one to six antibiotics. Almost half of the total isolates (47%) carried putatively transmissible plasmids with mob F12 gene as the most frequently detected mobilization gene. When two or three mob genes were detected per isolate, there was a significant shift in the population toward larger multiple drug resistance (MDR) number. Class 1 and/or 2 integrons were prevalent (46%), and the presence of integron significantly shifted the isolate population toward larger MDR number. More isolates carried single or coexistence of two or three sul genes (99.3%), and single or a combination up to five dfr genes (89.3%) than had exhibited in vitro resistance to the respective antibiotics. These findings indicate not only the role of the wastewater treatment effluent and the stream environment in coaccumulation of ARG with transmissible plasmids and integrons in multiple antibiotic-resistant E. coli populations but also suggest that density of sul and dfr resistance genes within an isolate may serve as a biomarker for mobile MDR in general.

  19. Global warming may disproportionately affect larger adults in a predatory coral reef fish.

    Science.gov (United States)

    Messmer, Vanessa; Pratchett, Morgan S; Hoey, Andrew S; Tobin, Andrew J; Coker, Darren J; Cooke, Steven J; Clark, Timothy D

    2017-06-01

    Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current-day (28.5 °C) vs. projected end-of-century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45-2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass-specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02-2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate-induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock-on effects for trophodynamics and functioning of ecosystems. © 2016 John Wiley & Sons Ltd.

  20. Introgression of a Rare Haplotype from Southeastern Africa to Breed California Blackeyes with Larger Seeds

    Directory of Open Access Journals (Sweden)

    Mitchell R Lucas

    2015-03-01

    Full Text Available Seed size distinguishes most crops from their wild relatives and is an important quality trait for the grain legume cowpea. In order to breed cowpea varieties with larger seeds we introgressed a rare haplotype associated with large seeds at the Css-1 locus from an African buff seed type cultivar, IT82E-18 (18.5g/100 seeds, into a blackeye seed type cultivar, CB27 (22g/100 seed. Four RILs derived from these two parents were chosen for marker-assisted breeding based on SNP genotyping with a goal of stacking large seed haplotypes into a CB27 background. Foreground and background selection were performed during two cycles of backcrossing based on genome-wide SNP markers. The average seed size of introgression lines homozygous for haplotypes associated with large seeds was 28.7g/100 seed and 24.8g/100 seed for cycles 1 and 2, respectively. One cycle 1 introgression line with desirable seed quality was selfed for two generations to make families with very large seeds (28-35g/100 seeds. Field-based performance trials helped identify breeding lines that not only have large seeds but are also desirable in terms of yield, maturity, and plant architecture when compared to industry standards. A principal component analysis was used to explore the relationships between the parents relative to a core set of landraces and improved varieties based on high-density SNP data. The geographic distribution of haplotypes at the Css-1 locus suggest the haplotype associated with large seeds is unique to accessions collected from Southeastern Africa. Therefore this QTL has a strong potential to develop larger seeded varieties for other growing regions which is demonstrated in this work using a California pedigree.

  1. Global warming may disproportionately affect larger adults in a predatory coral reef fish

    KAUST Repository

    Messmer, Vanessa; Pratchett, Morgan S.; Hoey, Andrew S.; Tobin, Andrew J.; Coker, Darren James; Cooke, Steven J.; Clark, Timothy D.

    2016-01-01

    Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current-day (28.5 °C) vs. projected end-of-century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45-2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass-specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02-2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate-induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock-on effects for trophodynamics and functioning of ecosystems.

  2. Larger Neural Responses Produce BOLD Signals That Begin Earlier in Time

    Directory of Open Access Journals (Sweden)

    Serena eThompson

    2014-06-01

    Full Text Available Functional MRI analyses commonly rely on the assumption that the temporal dynamics of hemodynamic response functions (HRFs are independent of the amplitude of the neural signals that give rise to them. The validity of this assumption is particularly important for techniques that use fMRI to resolve sub-second timing distinctions between responses, in order to make inferences about the ordering of neural processes. Whether or not the detailed shape of the HRF is independent of neural response amplitude remains an open question, however. We performed experiments in which we measured responses in primary visual cortex (V1 to large, contrast-reversing checkerboards at a range of contrast levels, which should produce varying amounts of neural activity. Ten subjects (ages 22-52 were studied in each of two experiments using 3 Tesla scanners. We used rapid, 250 msec, temporal sampling (repetition time, or TR and both short and long inter-stimulus interval (ISI stimulus presentations. We tested for a systematic relationship between the onset of the HRF and its amplitude across conditions, and found a strong negative correlation between the two measures when stimuli were separated in time (long- and medium-ISI experiments, but not the short-ISI experiment. Thus, stimuli that produce larger neural responses, as indexed by HRF amplitude, also produced HRFs with shorter onsets. The relationship between amplitude and latency was strongest in voxels with lowest mean-normalized variance (i.e., parenchymal voxels. The onset differences observed in the longer-ISI experiments are likely attributable to mechanisms of neurovascular coupling, since they are substantially larger than reported differences in the onset of action potentials in V1 as a function of response amplitude.

  3. Experimental atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The experimental atomic physics program within the physics division is carried out by two groups, whose reports are given in this section. Work of the accelerator atomic physics group is centered around the 6.5-MV EN tandem accelerator; consequently, most of its research is concerned with atomic processes occurring to, or initiated by, few MeV/amu heavy ions. Other activities of this group include higher energy experiments at the Holifield Heavy Ion Research Facility (HHIRF), studies of electron and positron channeling radiation, and collaborative experiments at other institutions. The second experimental group concerns itself with lower energy atomic collision physics in support of the Fusion Energy Program. During the past year, the new Electron Cyclotron Resonance Source has been completed and some of the first data from this facility is presented. In addition to these two activities in experimental atomic physics, other chapters of this report describe progress in theoretical atomic physics, experimental plasma diagnostic development, and atomic data center compilation activities

  4. Depth of origin of atoms sputtered from crystalline targets

    International Nuclear Information System (INIS)

    Shapiro, M.H.; Trovato, E.; Tombrello, T.A.

    2001-01-01

    Recently, V.I. Shulga and W. Eckstein (Nucl. Instr. and Meth. B 145 (1998) 492) investigated the depth of origin of atoms sputtered from random elemental targets using the Monte Carlo code TRIM.SP and the lattice code OKSANA. They found that the mean depth of origin is proportional to N -0.86 , where N is the atomic density; and that the most probable escape depth is ∼λ 0 /2, where λ 0 is the mean atomic distance. Since earlier molecular dynamics simulations with small crystalline elemental targets typically produced a most probable escape depth of zero (i.e., most sputtered atoms came from the topmost layer of the target), we have carried out new molecular dynamics simulations of sputtered atom escape depths with much larger crystalline targets. Our new results, which include the bcc targets Cs, Rb and W, as well as the fcc targets Cu and Au predict that the majority of sputtered atoms come from the first atomic layer for the bcc(1 0 0), bcc(1 1 1), fcc(1 0 0) and fcc(1 1 1) targets studied. For the high-atomic density targets Cu, Au and W, the mean depth of origin of sputtered atoms typically is less than 0.25λ 0 . For the low-atomic density targets Cs and Rb, the mean depth of origin of sputtered atoms is considerably larger, and depends strongly on the crystal orientation. We show that the discrepancy between the single-crystal and amorphous target depth of origin values can be resolved by applying a simple correction to the single-crystal results

  5. Atomic mass spectrometry

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1997-01-01

    The elemental inorganic analysis seems to be dominated today by techniques based on atomic spectrometry. After an evaluation of advantages and limitations of using mass analysers (ion detectors) versus conventional photomultipliers (photon detector) a brief review of the more popular techniques of the emerging Atomic Mass spectrometry is carried out. Their huge potential for inorganic trace analysis is such that in the future we could well witness how this end of the century and millennium marked the fall of the photons empire in Analytical Atomic Spectrometry. (Author)

  6. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  7. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  8. Division of atomic physics

    International Nuclear Information System (INIS)

    Kroell, S.

    1994-01-01

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  9. Atom trap trace analysis

    International Nuclear Information System (INIS)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-01-01

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual 85 Kr and 81 Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10 -11 and 10 -13 , respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications

  10. Burdigalian turbid water patch reef environment revealed by larger benthic foraminifera

    Science.gov (United States)

    Novak, V.; Renema, W.; Throughflow-project

    2012-04-01

    Ancient isolated patch reefs outcropping from siliciclastic sediments are a trademark for the Miocene carbonate deposits occurring in East Kalimantan, Indonesia. They develop in transitional shelf sediments deposited between deltaic and deep marine deposits (Allen and Chambers, 1998). The Batu Putih Limestone (Wilson, 2005) and similar outcrops in adjacent areas have been characterized as shallow water carbonates influenced by high siliciclastic input, showing low relief patch reefs in turbid waters. Larger benthic foraminifera (LBF) are excellent markers for biochronology and paleoenvironmental reconstruction. This study aims to reveal age and paleoenvironment of a shallow water carbonate patch reef developed in mixed depositional system by using LBF and microfacies analysis. The studied section is located near Bontang, East Kalimantan, and is approximately 80 m long and 12 m high. It is placed within Miocene sediments in the central part of the Kutai Basin. Patch reef and capping sediments were logged through eight transects along section and divided into nine different lithological units from which samples were collected. Thin sections and isolated specimens of larger benthic foraminifera were analyzed and recognized to species level (where possible) providing age and environmental information. Microfacies analysis of thin sections included carbonate classification (textural scheme of Dunham, 1962) and assemblage composition of LBF, algae and corals relative abundance. Three environmentally indicative groups of LBF were separated based on test morphology, habitat or living relatives (Hallock and Glenn, 1986). Analysed foraminifera assemblage suggests Burdigalian age (Tf1). With use of microfacies analysis nine successive lithological units were grouped into five facies types. Paleoenvironmental reconstruction of LBF fossil assemblage indicate two cycles of possible deepening recorded in the section. Based on high muddy matrix ratio in analyzed thin-sections we

  11. Section of Atomic Collisions

    International Nuclear Information System (INIS)

    Berenyi, D.; Biri, S.; Gulyas, L.; Juhasz, Z.; Kover, A.; Orban, A.; Palinkas, J.; Papp, T.; Racz, R.; Ricz, S.

    2009-01-01

    The Section of Atomic Collisions is a research unit with extended activity in the field of atomic and molecular physics. Starting from the study of atomic processes at the beamlines of nuclear physics accelerators in the seventies, our research community became one of the centers of fundamental research in Atomki. We also have a strong connection to materials sciences especially along the line of electron and ion spectroscopy methods. Our present activity covers a wide range of topics from atomic collision mechanisms of fundamental interest, to the complex interactions of electrons, ions, photons and antiparticles with atoms, molecules, surfaces, and specific nanostructures. In the last few years, an increasing fraction of our present topics has become relevant for applications, e.g., molecular collision studies for the radiation therapy methods of tumors, or ion-nanostructure interactions for the future construction of small ion-focusing elements. Our section belongs to the Division of Atomic Physics. The other unit of the Division is the Section of Electron Spectroscopy and Materials Sciences. There are traditionally good connections and a strong collaboration between the groups of the two sections in many fields. From the very beginning of our research work in atomic collisions, external collaborations were of vital importance for us. We regularly organize international workshops in the field of fast ion-atom collisions and related small conferences in Debrecen from 1981. Recently, we organized the Conference on Radiation Damage in Biomolecular Systems (RADAM 2008, Debrecen), and coorganized the Conference on Elementary Processes in Atomic Systems (CEPAS 2008, Cluj). We have access to several large scale facilities in Europe within the framework of formal and informal collaborations. The next themes are in this article: Forward electron emission from energetic atomic collisions; Positron-atom collisions; Photon-atom interactions; Interference effects in electron

  12. Application of chemical mutagens and radiation in breeding buckwheat for larger seeds

    International Nuclear Information System (INIS)

    Alekseeva, E.S.

    1988-01-01

    Full text: In 1974, seeds of the Viktoriya variety of buckwheat were treated with 20-30 krad gamma radiation and chemical mutagens in the Biophysics Department of the Kishinev Agricultural Institute. For the chemical mutagen treatment, we used N-ethylnitroso-urea NEH (0.025 and 0.012%), N-methylnitroso-urea NMH (0.01 and 0.005%), ethylenimine EI (0.01 and 0.005%), dimethyl sulphate DMS (0.01 and 0.005%) and 1.4-bis-diazoacetyl butane DAB (0.01 and 0.05%). Since some investigators think that different results are produced by changing the order of the treatment, we treated seeds with chemical mutagens before and after irradiation and this was followed by drying. A total of 2400 seeds were treated. Selection started with M 2 seeds produced by M 1 plants. The thousand seed weight of the best ones ranged from 40.7 to 47.8 g, which was 11.9-18.7 g heavier than the control. The large seed size thus selected was heritable. Since larger seeds are very important for the creation of high yielding varieties buckwheat, only families with these characteristics were selected for further work. We observed even some further increase in seed weight in the next generation. It was observed that when planting large seeds, after six days of growth the cotyledons were significantly larger than in the control plants. This characteristic was used in selecting for a high yielding large-seed variety of buckwheat. The plants were selected twice: once for development of large cotyledon leaves and the second time for plant yield. In the fourth generation, the families thus obtained continued to be studied in greenhouse experiments and the same time be propagated under field conditions. The seeds of these families were then combined and under the name Podolyanka in 1976 were subjected to competitive variety testing. Following the competitive variety testing the mutant variety Podolyanka was released in 1984. It is high yielding (2950 kg/ha), has a short vegetation period (matures 17-18 days

  13. Distribution of living larger benthic foraminifera in littoral environments of the United Arab Emirates

    Science.gov (United States)

    Fiorini, Flavia; Lokier, Stephen W.

    2015-04-01

    The distribution of larger benthic foraminifera in Recent littoral environment of the United Arab Emirates (Abu Dhabi and Western regions) was investigated with the aim of understanding the response of those foraminifera to an increase in water salinity. For this purpose, 100 sediment samples from nearshore shelf, beach-front, channel, lagoon, and intertidal environment were collected. Sampling was undertaken at a water depth shallower than 15 m in water with a temperature of 22 to 35˚C, a salinity ranging from 40 to 60‰ and a pH of 8. Samples were stained with rose Bengal at the moment of sample collection in order to identify living specimens. The most abundant epiphytic larger benthic foraminifera in the studied area were Peneroplis pertusus and P. planatus with less common Spirolina areatina, S. aciculate and Sorites marginalis. The living specimens of the above mentioned species with normal test growing were particularly abundant in the nearshore shelf and lagoonal samples collected on seaweed. Dead specimens were concentrated in the coarser sediments of the beach-front, probably transported from nearby environments. Shallow coastal ponds are located in the upper intertidal zone and have a maximum salinity of 60‰ and contain abundant detached seagrass. Samples collected from these ponds possess a living foraminifera assemblage dominated by Peneroplis pertusus and P. planatus. High percentages (up to 50% of the stained assemblage) of Peneroplis presented abnormality in test growth, such as the presence of multiple apertures with reduced size, deformation in the general shape of the test, irregular suture lines and abnormal coiling. The high percentage of abnormal tests reflects natural environmental stress mainly caused by high and variable salinity. The unique presence of living epiphytic species, suggests that epiphytic foraminifera may be transported into the pond together with seagrass and continued to live in the pond. This hypothesis is supported by

  14. Mud deposit formation on the open coast of the larger Patos Lagoon-Cassino Beach system

    Science.gov (United States)

    Vinzon, S. B.; Winterwerp, J. C.; Nogueira, R.; de Boer, G. J.

    2009-03-01

    This paper proposes an explanation of the mud deposits on the inner Shelf of Cassino Beach, South Brazil, by using computational modeling. These mud deposits are mainly formed by sediments delivered from Patos Lagoon, a coastal lagoon connected to the Shelf, next to Cassino Beach. The deposits are characterized by (soft) mud layers of about 1 m thick and are found between the -5 and -20 isobaths. Two hydrodynamic models of the larger Patos Lagoon-Cassino Beach system were calibrated against water elevation measured for a 5 months period, and against currents and salinity measured for a week period. The circulation patterns and water exchange through the mouth were analyzed as a function of local and remote wind effects, and river discharges. The remote wind effect mainly governs the quantity of water exchange with the Lagoon through its effect on mean sea level as a result of Ekman dynamics, while river discharges are important for the salinity of the exchanged water masses. Local winds augment the export-import rates by set-up and set-down within the Lagoon, but their effects are much smaller than those of the remote wind. Currents patterns on the inner Shelf during water outflow revealed a recirculation zone south of the Lagoon, induced by the local geometry and bathymetry of the system. This recirculation zone coincides with observed locations of mud deposition. Water, hence suspended sediment export occurs when remote and local winds are from the N-E, which explains why fine sediment deposits are mainly found south of the Lagoon's breakwater. A sensitivity analysis with the numerical model quantified the contribution of the various mechanisms driving the transport and fate of the fine suspended sediments, i.e. the effects of remote and local wind, of the astronomical tide, of river discharge and fresh-salt water-induced density currents, and of earth rotation. It is concluded that gravitational circulation and earth rotation affects the further dispersion of

  15. History of early atomic clocks

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    2005-01-01

    This review of the history of early atomic clocks includes early atomic beam magnetic resonance, methods of separated and successive oscillatory fields, microwave absorption, optical pumping and atomic masers. (author)

  16. Shyer and larger bird species show more reduced fear of humans when living in urban environments.

    Science.gov (United States)

    delBarco-Trillo, Javier

    2018-04-01

    As the natural habitats of many species are degraded or disappear, there is scope for these species to be established in urban habitats. To ease the establishment and maintenance of urban populations of more species we need to better understand what degree of phenotypical change to expect as different species transition into urban environments. During the first stages of urban colonization, behavioural changes such as an increase in boldness are particularly important. A consistent response in urban populations is to decrease the distance at which individuals flee from an approaching human (flight initiation distance, or FID). Performing a phylogenetic generalized least-squares (PGLS) analysis on 130 avian species, I found that the largest changes in FID between rural and urban populations occur in species that are larger-bodied and naturally shy (higher rural FID), two phenotypic traits that are not normally associated with urban colonizers. More unlikely species may thus be able to colonize urban environments, especially if we design cities in ways that promote such urban colonizations. © 2018 The Author(s).

  17. Outcomes of multiple wire localization for larger breast cancers: when can mastectomy be avoided?

    Science.gov (United States)

    Kirstein, Laurie J; Rafferty, Elizabeth; Specht, Michelle C; Moore, Richard H; Taghian, Alphonse G; Hughes, Kevin S; Gadd, Michele A; Smith, Barbara L

    2008-09-01

    Mastectomy is often recommended when mammography shows a breast cancer with extensive calcifications. We wished to determine whether the use of multiple localizing wires to guide lumpectomy in this setting was associated with increased rates of breast conservation. We also wanted to identify factors that predicted a poor chance of successful lumpectomy, to avoid multiple lumpectomy attempts in a patient who would ultimately require mastectomy. Records of 153 women with breast cancer who underwent lumpectomy for larger lesions that required multiple wire localization and 196 controls who required only single wire localization were reviewed retrospectively. The number of localizing wires, specimen volume, largest specimen dimension, number of surgical procedures, and rates of breast conservation were scored. Seventy-seven percent of patients requiring multiple wire localization had successful breast conservation, compared with 90% of those needing only single wire localization. Only 28% of multiple wire patients required more than 1 excision to achieve clear margins, compared with 36% of single wire patients (p localizing wires for excision. The use of multiple wires can decrease the number of procedures required to obtain clear lumpectomy margins.

  18. Technique for Extension of Small Antenna Array Mutual-Coupling Data to Larger Antenna Arrays

    Science.gov (United States)

    Bailey, M. C.

    1996-01-01

    A technique is presented whereby the mutual interaction between a small number of elements in a planar array can be interpolated and extrapolated to accurately predict the combined interactions in a much larger array of many elements. An approximate series expression is developed, based upon knowledge of the analytical characteristic behavior of the mutual admittance between small aperture antenna elements in a conducting ground plane. This expression is utilized to analytically extend known values for a few spacings and orientations to other element configurations, thus eliminating the need to numerically integrate a large number of highly oscillating and slowly converging functions. This paper shows that the technique can predict very accurately the mutual coupling between elements in a very large planar array with a knowledge of the self-admittance of an isolated element and the coupling between only two-elements arranged in eight different pair combinations. These eight pair combinations do not necessarily have to correspond to pairs in the large array, although all of the individual elements must be identical.

  19. Larger aggregates of mutant seipin in Celia's Encephalopathy, a new protein misfolding neurodegenerative disease.

    Science.gov (United States)

    Ruiz-Riquelme, Alejandro; Sánchez-Iglesias, Sofía; Rábano, Alberto; Guillén-Navarro, Encarna; Domingo-Jiménez, Rosario; Ramos, Adriana; Rosa, Isaac; Senra, Ana; Nilsson, Peter; García, Ángel; Araújo-Vilar, David; Requena, Jesús R

    2015-11-01

    Celia's Encephalopathy (MIM #615924) is a recently discovered fatal neurodegenerative syndrome associated with a new BSCL2 mutation (c.985C>T) that results in an aberrant isoform of seipin (Celia seipin). This mutation is lethal in both homozygosity and compounded heterozygosity with a lipodystrophic BSCL2 mutation, resulting in a progressive encephalopathy with fatal outcomes at ages 6-8. Strikingly, heterozygous carriers are asymptomatic, conflicting with the gain of toxic function attributed to this mutation. Here we report new key insights about the molecular pathogenic mechanism of this new syndrome. Intranuclear inclusions containing mutant seipin were found in brain tissue from a homozygous patient suggesting a pathogenic mechanism similar to other neurodegenerative diseases featuring brain accumulation of aggregated, misfolded proteins. Sucrose gradient distribution showed that mutant seipin forms much larger aggregates as compared with wild type (wt) seipin, indicating an impaired oligomerization. On the other hand, the interaction between wt and Celia seipin confirmed by coimmunoprecipitation (CoIP) assays, together with the identification of mixed oligomers in sucrose gradient fractionation experiments can explain the lack of symptoms in heterozygous carriers. We propose that the increased aggregation and subsequent impaired oligomerization of Celia seipin leads to cell death. In heterozygous carriers, wt seipin might prevent the damage caused by mutant seipin through its sequestration into harmless mixed oligomers. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Working with and promoting early career scientists within a larger community

    Science.gov (United States)

    Pratt, K.

    2017-12-01

    For many scientific communities, engaging early career researchers is critical for success. These young scientists (graduate students, postdocs, and newly appointed professors) are actively forming collaborations and instigating new research programs. They also stand to benefit hugely from being part of a scientific community, gaining access to career development activities, becoming part of strong collaborator networks, and achieving recognition in their field of study — all of which will help their professional development. There are many ways community leaders can work proactively to support and engage early career scientists, and it it is often a community manager's job to work with leadership to implement such activities. In this presentation, I will outline ways of engaging early career scientists at events and tailored workshops, of promoting development of their leadership skills, and of creating opportunities for recognizing early career scientists within larger scientific communities. In this talk, I will draw from my experience working with the Deep Carbon Observatory Early Career Scientist Network, supported by the Alfred P. Sloan Foundation.

  1. Lecture archiving on a larger scale at the University of Michigan and CERN

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Jeremy; Lougheed, Robert; Neal, Homer A, E-mail: herrj@umich.ed [University of Michigan, 450 Church St., Ann Arbor, MI 48109 (United States)

    2010-04-01

    The ATLAS Collaboratory Project at the University of Michigan has been a leader in the area of collaborative tools since 1999. Its activities include the development of standards, software and hardware tools for lecture archiving, and making recommendations for videoconferencing and remote teaching facilities. Starting in 2006 our group became involved in classroom recordings, and in early 2008 we spawned CARMA, a University-wide recording service. This service uses a new portable recording system that we developed. Capture, archiving and dissemination of rich multimedia content from lectures, tutorials and classes are increasingly widespread activities among universities and research institutes. A growing array of related commercial and open source technologies is becoming available, with several new products introduced in the last couple years. As the result of a new close partnership between U-M and CERN IT, a market survey of these products was conducted and a summary of the results are presented here. It is informing an ambitious effort in 2009 to equip many CERN rooms with automated lecture archiving systems, on a much larger scale than before. This new technology is being integrated with CERN's existing webcast, CDS, and Indico applications.

  2. Assignment methodology for larger RNA oligonucleotides: Application to an ATP-binding RNA aptamer

    International Nuclear Information System (INIS)

    Dieckmann, Thorsten; Feigon, Juli

    1997-01-01

    The use of uniform 13C, 15N labeling in the NMR spectroscopic study of RNA structures has greatly facilitated the assignment process in small RNA oligonucleotides. For ribose spinsystem assignments, exploitation of these labels has followed previously developed methods for the study of proteins. However, for sequential assignment of the exchangeable and nonexchangeable protons of the nucleotides, it has been necessary to develop a variety of new NMR experiments. Even these are of limited utility in the unambiguous assignment of larger RNAs due to the short carbon relaxation times and extensive spectral overlap for all nuclei.These problems can largely be overcome by the additional use of base-type selectively 13C, 15N-labeled RNA in combination with a judicious use of related RNAs with base substitutions. We report the application of this approach to a 36-nucleotide ATP-binding RNA aptamer in complex with AMP. Complete sequential 1H assignments, as well as the majority of 13C and 15N assignments, were obtained

  3. Flower-Visiting Butterflies Avoid Predatory Stimuli and Larger Resident Butterflies: Testing in a Butterfly Pavilion.

    Directory of Open Access Journals (Sweden)

    Yuya Fukano

    Full Text Available The flower-visiting behaviors of pollinator species are affected not only by flower traits but also by cues of predators and resident pollinators. There is extensive research into the effects of predator cues and resident pollinators on the flower-visiting behaviors of bee pollinators. However, there is relatively little research into their effects on butterfly pollinators probably because of the difficulty in observing a large number of butterfly pollination events. We conducted a dual choice experiment using artificial flowers under semi-natural conditions in the butterfly pavilion at Tama Zoological Park to examine the effects of the presence of a dead mantis and resident butterflies have on the flower-visiting behavior of several butterfly species. From 173 hours of recorded video, we observed 3235 visitations by 16 butterfly species. Statistical analysis showed that (1 butterflies avoided visiting flowers occupied by a dead mantis, (2 butterflies avoided resident butterflies that were larger than the visitor, and (3 butterflies showed greater avoidance of a predator when the predator was present together with the resident butterfly than when the predator was located on the opposite flower of the resident. Finally, we discuss the similarities and differences in behavioral responses of butterfly pollinators and bees.

  4. Developmental reversals in risky decision making: intelligence agents show larger decision biases than college students.

    Science.gov (United States)

    Reyna, Valerie F; Chick, Christina F; Corbin, Jonathan C; Hsia, Andrew N

    2014-01-01

    Intelligence agents make risky decisions routinely, with serious consequences for national security. Although common sense and most theories imply that experienced intelligence professionals should be less prone to irrational inconsistencies than college students, we show the opposite. Moreover, the growth of experience-based intuition predicts this developmental reversal. We presented intelligence agents, college students, and postcollege adults with 30 risky-choice problems in gain and loss frames and then compared the three groups' decisions. The agents not only exhibited larger framing biases than the students, but also were more confident in their decisions. The postcollege adults (who were selected to be similar to the students) occupied an interesting middle ground, being generally as biased as the students (sometimes more biased) but less biased than the agents. An experimental manipulation testing an explanation for these effects, derived from fuzzy-trace theory, made the students look as biased as the agents. These results show that, although framing biases are irrational (because equivalent outcomes are treated differently), they are the ironical output of cognitively advanced mechanisms of meaning making.

  5. Why droplet dimension can be larger than, equal to, or smaller than the nanowire dimension

    Science.gov (United States)

    Mohammad, S. Noor

    2009-11-01

    Droplets play central roles in the nanowire (NW) growth by vapor phase mechanisms. These mechanisms include vapor-liquid-solid (VLS), vapor-solid-solid or vapor-solid (VSS), vapor-quasisolid-solid or vapor-quasiliquid-solid (VQS), oxide-assisted growth (OAG), and self-catalytic growth (SCG) mechanisms. Fundamentals of the shape, size, characteristics, and dynamics of droplets and the impacts of them on the NW growth, have been studied. The influence of growth techniques, growth parameters (e.g., growth temperature, partial pressure, gas flow rates, etc.), thermodynamic conditions, surface and interface energy, molar volume, chemical potentials, etc. have been considered on the shapes and sizes of droplets. A model has been presented to explain why droplets can be larger than, equal to, or smaller than the associated NWs. Various growth techniques have been analyzed to understand defects created in NWs. Photoluminescence characteristics have been presented to quantify the roles of droplets in the creation of NW defects. The study highlights the importance of the purity of the droplet material. It attests to the superiority of the SCG mechanism, and clarifies the differences between the VSS, VQS, VLS, and SCG mechanisms. It explains why droplets produced by some mechanisms are visible but droplets produced by some other mechanisms are not visible. It elucidates the formation mechanisms of very large and very small droplets, and discusses the ground rules for droplets creating necked NWs. It puts forth reasons to demonstrate that very large droplets may not behave as droplets.

  6. Patterns of species richness and the center of diversity in modern Indo-Pacific larger foraminifera.

    Science.gov (United States)

    Förderer, Meena; Rödder, Dennis; Langer, Martin R

    2018-05-29

    Symbiont-bearing Larger Benthic Foraminifera (LBF) are ubiquitous components of shallow tropical and subtropical environments and contribute substantially to carbonaceous reef and shelf sediments. Climate change is dramatically affecting carbonate producing organisms and threatens the diversity and structural integrity of coral reef ecosystems. Recent invertebrate and vertebrate surveys have identified the Coral Triangle as the planet's richest center of marine life delineating the region as a top priority for conservation. We compiled and analyzed extensive occurrence records for 68 validly recognized species of LBF from the Indian and Pacific Ocean, established individual range maps and applied Minimum Convex Polygon (MCP) and Species Distribution Model (SDM) methodologies to create the first ocean-wide species richness maps. SDM output was further used for visualizing latitudinal and longitudinal diversity gradients. Our findings provide strong support for assigning the tropical Central Indo-Pacific as the world's species-richest marine region with the Central Philippines emerging as the bullseye of LBF diversity. Sea surface temperature and nutrient content were identified as the most influential environmental constraints exerting control over the distribution of LBF. Our findings contribute to the completion of worldwide research on tropical marine biodiversity patterns and the identification of targeting centers for conservation efforts.

  7. Transport properties of a Kondo dot with a larger side-coupled noninteracting quantum dot

    International Nuclear Information System (INIS)

    Liu, Y S; Fan, X H; Xia, Y J; Yang, X F

    2008-01-01

    We investigate theoretically linear and nonlinear quantum transport through a smaller quantum dot in a Kondo regime connected to two leads in the presence of a larger side-coupled noninteracting quantum dot, without tunneling coupling to the leads. To do this we employ the slave boson mean field theory with the help of the Keldysh Green's function at zero temperature. The numerical results show that the Kondo conductance peak may develop multiple resonance peaks and multiple zero points in the conductance spectrum owing to constructive and destructive quantum interference effects when the energy levels of the large side-coupled noninteracting dot are located in the vicinity of the Fermi level in the leads. As the coupling strength between two quantum dots increases, the tunneling current through the quantum device as a function of gate voltage applied across the two leads is suppressed. The spin-dependent transport properties of two parallel coupled quantum dots connected to two ferromagnetic leads are also investigated. The numerical results show that, for the parallel configuration, the spin current or linear spin differential conductance are enhanced when the polarization strength in the two leads is increased

  8. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model

    Science.gov (United States)

    Thogmartin, W.E.; Knutson, M.G.

    2007-01-01

    Much of what is known about avian species-habitat relations has been derived from studies of birds at local scales. It is entirely unclear whether the relations observed at these scales translate to the larger landscape in a predictable linear fashion. We derived habitat models and mapped predicted abundances for three forest bird species of eastern North America using bird counts, environmental variables, and hierarchical models applied at three spatial scales. Our purpose was to understand habitat associations at multiple spatial scales and create predictive abundance maps for purposes of conservation planning at a landscape scale given the constraint that the variables used in this exercise were derived from local-level studies. Our models indicated a substantial influence of landscape context for all species, many of which were counter to reported associations at finer spatial extents. We found land cover composition provided the greatest contribution to the relative explained variance in counts for all three species; spatial structure was second in importance. No single spatial scale dominated any model, indicating that these species are responding to factors at multiple spatial scales. For purposes of conservation planning, areas of predicted high abundance should be investigated to evaluate the conservation potential of the landscape in their general vicinity. In addition, the models and spatial patterns of abundance among species suggest locations where conservation actions may benefit more than one species. ?? 2006 Springer Science+Business Media B.V.

  9. Flower-Visiting Butterflies Avoid Predatory Stimuli and Larger Resident Butterflies: Testing in a Butterfly Pavilion.

    Science.gov (United States)

    Fukano, Yuya; Tanaka, Yosuke; Farkhary, Sayed Ibrahim; Kurachi, Takuma

    2016-01-01

    The flower-visiting behaviors of pollinator species are affected not only by flower traits but also by cues of predators and resident pollinators. There is extensive research into the effects of predator cues and resident pollinators on the flower-visiting behaviors of bee pollinators. However, there is relatively little research into their effects on butterfly pollinators probably because of the difficulty in observing a large number of butterfly pollination events. We conducted a dual choice experiment using artificial flowers under semi-natural conditions in the butterfly pavilion at Tama Zoological Park to examine the effects of the presence of a dead mantis and resident butterflies have on the flower-visiting behavior of several butterfly species. From 173 hours of recorded video, we observed 3235 visitations by 16 butterfly species. Statistical analysis showed that (1) butterflies avoided visiting flowers occupied by a dead mantis, (2) butterflies avoided resident butterflies that were larger than the visitor, and (3) butterflies showed greater avoidance of a predator when the predator was present together with the resident butterfly than when the predator was located on the opposite flower of the resident. Finally, we discuss the similarities and differences in behavioral responses of butterfly pollinators and bees.

  10. The application of slip length models to larger textures in turbulent flows over superhydrophobic surfaces

    Science.gov (United States)

    Fairhall, Chris; Garcia-Mayoral, Ricardo

    2017-11-01

    We present results from direct numerical simulations of turbulent flows over superhydrophobic surfaces. We assess the validity of simulations where the surface is modelled as homogeneous slip lengths, comparing them to simulations where the surface texture is resolved. Our results show that once the coherent flow induced by the texture is removed from the velocity fields, the remaining flow sees the surface as homogeneous. We then investigate how the overlying turbulence is modified by the presence of surface texture. For small textures, we show that turbulence is shifted closer to the wall due to the presence of slip, but otherwise remains essentially unmodified. For larger textures, the texture interacts with the turbulent lengthscales, thereby modifying the overlying turbulence. We also show that the saturation of the effect of the spanwise slip length (Fukagata et al. 2006, Busse & Sandham 2012, Seo & Mani 2016), which is drag increasing, is caused by the impermeability imposed at the surface. This work was supported by the Engineering and Physical Sciences Research Council.

  11. Lecture archiving on a larger scale at the University of Michigan and CERN

    International Nuclear Information System (INIS)

    Herr, Jeremy; Lougheed, Robert; Neal, Homer A

    2010-01-01

    The ATLAS Collaboratory Project at the University of Michigan has been a leader in the area of collaborative tools since 1999. Its activities include the development of standards, software and hardware tools for lecture archiving, and making recommendations for videoconferencing and remote teaching facilities. Starting in 2006 our group became involved in classroom recordings, and in early 2008 we spawned CARMA, a University-wide recording service. This service uses a new portable recording system that we developed. Capture, archiving and dissemination of rich multimedia content from lectures, tutorials and classes are increasingly widespread activities among universities and research institutes. A growing array of related commercial and open source technologies is becoming available, with several new products introduced in the last couple years. As the result of a new close partnership between U-M and CERN IT, a market survey of these products was conducted and a summary of the results are presented here. It is informing an ambitious effort in 2009 to equip many CERN rooms with automated lecture archiving systems, on a much larger scale than before. This new technology is being integrated with CERN's existing webcast, CDS, and Indico applications.

  12. Stable isotope stratigraphy and larger benthic foraminiferal extinctions in the Melinau Limestone, Sarawak

    Science.gov (United States)

    Cotton, Laura J.; Pearson, Paul N.; Renema, Willem

    2014-01-01

    Important long-ranging groups of larger benthic foraminifera (LBF) are known to have become extinct during a period of global cooling and climate disruption at the Eocene-Oligocene transition (EOT) but the precise timing and mechanisms are uncertain. Recent study showed unexpectedly that the LBF extinction in Tanzania occurs very close to the Eocene/Oligocene boundary, as recognised by the extinction of the planktonic foraminiferal Family Hantkeninidae, rather than at the later period of maximum global ice growth and sea-level fall, as previously thought. Here we investigate the same phase of extinction in the Melinau Limestone of Sarawak, on the island of Borneo, Malaysia one of the most complete carbonate successions spanning the Eocene to Lower Miocene. Assemblages of LBF from the Melinau Limestone were studied extensively by Geoffrey Adams during the 1960s-80s, confirming a major extinction during the EOT, but the section lacked independent means of correlation. By analysing rock samples originally studied by Adams and now in the Natural History Museum, London, we provide new bulk stable isotope (δ13C and δ18O) records. This enables us to identify, albeit tentatively, the level of maximum stable isotope excursion and show that the LBF extinction event in the Melinau Limestone occurs below this isotope excursion, supporting the results from Tanzania and indicating that the extinction of LBF close to the Eocene/Oligocene boundary may be a global phenomenon.

  13. Volcanism in slab tear faults is larger than in island-arcs and back-arcs.

    Science.gov (United States)

    Cocchi, Luca; Passaro, Salvatore; Tontini, Fabio Caratori; Ventura, Guido

    2017-11-13

    Subduction-transform edge propagators are lithospheric tears bounding slabs and back-arc basins. The volcanism at these edges is enigmatic because it is lacking comprehensive geological and geophysical data. Here we present bathymetric, potential-field data, and direct observations of the seafloor on the 90 km long Palinuro volcanic chain overlapping the E-W striking tear of the roll-backing Ionian slab in Southern Tyrrhenian Sea. The volcanic chain includes arc-type central volcanoes and fissural, spreading-type centers emplaced along second-order shears. The volume of the volcanic chain is larger than that of the neighbor island-arc edifices and back-arc spreading center. Such large volume of magma is associated to an upwelling of the isotherms due to mantle melts upraising from the rear of the slab along the tear fault. The subduction-transform edge volcanism focuses localized spreading processes and its magnitude is underestimated. This volcanism characterizes the subduction settings associated to volcanic arcs and back-arc spreading centers.

  14. Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption

    International Nuclear Information System (INIS)

    Shen, Yang; Pang, Yongqiang; Wang, Jiafu; Ma, Hua; Pei, Zhibin; Qu, Shaobo

    2015-01-01

    When a folded resistive patch array stands up on a metallic plane, it can exhibit more outstanding absorption performance. Our theoretical investigations and simulations demonstrated that the folded resistive patch arrays can enhance the absorption bandwidth progressively with the increase of the incident angle for the oblique transverse magnetic incidence, which is contrary to the conventional resistive frequency selective surface absorber. On illumination, we achieved a 3D structure metamaterial absorber with the folded resistive patches. The proposed absorber is obtained from the inspiration of the origami, and it has broadband and lager-incident angle absorption. Both the simulations and the measurements indicate that the proposed absorber achieves the larger-incident angle absorption until 75° in the frequency band of 3.6–11.4 GHz. In addition, the absorber is extremely lightweight. The areal density of the fabricated sample is about 0.023 g cm −2 . Due to the broadband and lager-incident angle absorption, it is expected that the absorbers may find potential applications such as stealth technologies and electromagnetic interference. (paper)

  15. Is a larger refuge always better? Dispersal and dose in pesticide resistance evolution.

    Science.gov (United States)

    Takahashi, Daisuke; Yamanaka, Takehiko; Sudo, Masaaki; Andow, David A

    2017-06-01

    The evolution of resistance against pesticides is an important problem of modern agriculture. The high-dose/refuge strategy, which divides the landscape into treated and nontreated (refuge) patches, has proven effective at delaying resistance evolution. However, theoretical understanding is still incomplete, especially for combinations of limited dispersal and partially recessive resistance. We reformulate a two-patch model based on the Comins model and derive a simple quadratic approximation to analyze the effects of limited dispersal, refuge size, and dominance for high efficacy treatments on the rate of evolution. When a small but substantial number of heterozygotes can survive in the treated patch, a larger refuge always reduces the rate of resistance evolution. However, when dominance is small enough, the evolutionary dynamics in the refuge population, which is indirectly driven by migrants from the treated patch, mainly describes the resistance evolution in the landscape. In this case, for small refuges, increasing the refuge size will increase the rate of resistance evolution. Our analysis distils major driving forces from the model, and can provide a framework for understanding directional selection in source-sink environments. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  16. Atomic Energy Authority Bill

    International Nuclear Information System (INIS)

    Gray, J.H.N.; Stoddart, D.L.; Sinclair, R.M.; Ezra, D.

    1985-01-01

    The House, in Committee, discussed the following matters in relation to the Atomic Energy Authority Bill; financing; trading; personnel conditions of employment; public relations; organization; research programmes; fuels; energy sources; information dissemination. (U.K.)

  17. Atomic and Molecular Interactions

    International Nuclear Information System (INIS)

    2002-01-01

    The Gordon Research Conference (GRC) on Atomic and Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field

  18. Zeeman atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given

  19. Optics With Cold Atoms

    National Research Council Canada - National Science Library

    Hau, Lene

    2004-01-01

    .... And to test the novel atom sensor, we have built a moving-molasses magneto-optical trap in a geometry tailor-suited to the nanotube detector geometry, involving construction of a highly stable laser...

  20. Atomic Energy Control Regulations

    International Nuclear Information System (INIS)

    1992-01-01

    This is the consolidated text of the Atomic Energy Control Regulations of 17 March 1960, with amendments to 27 August 1992. The Regulations cover the licensing of nuclear facilities, radiation sources, including uranium mining, radiation protection questions, etc. (NEA)

  1. The atomic conflict

    International Nuclear Information System (INIS)

    Mez, L.

    1981-01-01

    This book provides a general view at the atomic programmes of several countries and makes an attempt to unmask the atomic industrial combines with their interlockings. The governments role is analysed as well as the atomic policy of the parties, union-trades and associations. Then, the anti-atomic movements in those countries, their forms of resistance, the resonance and the alternative proposals are presented. The countries concerned are Australia, the FRG, COMECON, Danmark, the EG, Finland, France, Great Britain, Ireland, Japan, the Netherlands, Norway, Austria, Sweden, Switzerland, Spain and the USA. For the pocket book version, Lutz Mez adds an updating epilogue which continues with the developments until springtime 1981. (orig./HP) [de

  2. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  3. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  4. Atoms at work

    International Nuclear Information System (INIS)

    1982-07-01

    This illustrated booklet discusses the following: atoms; fission of uranium; nuclear power plants; reactor types; plutonium (formation, properties, uses); radioactive waste (fuel cycle, reprocessing, waste management); nuclear fusion; fusion reactors; radiation; radioisotopes and their uses. (U.K.)

  5. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  6. Atomic Interferometry, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Vertical cavity surface emitting lasers (VCSELs) is a new technology which can be used for developing high performance laser components for atom-based sensors...

  7. Atomic bomb cataracts

    International Nuclear Information System (INIS)

    Shiraeda, Kanji

    1992-01-01

    Eye disturbance caused by atomic bomb radiation can be divided into three groups: direct injury immediately after exposure, eye lesions associated with radiation syndrome, and delayed disturbance. The crystalline lens of the eye is the most radiosensitive. Atomic bomb cataract has been investigated in a number of studies. The first section of this chapter discusses radiation cataract in terms of the incidence and characteristics. The second section deals with atomic bomb cataract, which can be diagnosed based on the four criteria: (1) opacity of the crystalline lens, (2) a history of proximal exposure, (3) lack of eye disease complicating cataract, and (4) non-exposure to radiation other than atomic bombing. The prevalence of cataract and severity of opacity are found to correlate with exposure doses and age at the time of exposure. Furthermore, it is found to correlate with distance from the hypocenter, the condition of shielding, epilation, and the presence or absence or degree of radiation syndrome. (N.K.)

  8. Mesonic atom production in high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Wakai, M.; Bando, H.; Sano, M.

    1987-08-01

    The production probability of π-mesonic atom in high-energy nuclear collisions is estimated by a coalescence model. The production cross section is calculated for p + Ne and Ne + Ne systems at 2.1 GeV/A and 5.0 GeV/A beam energy. It is shown that nuclear fragments with larger charge numbers have the advantage in the formation of π-mesonic atoms. The cross section is proportional to Z 3 and of the order of magnitude of 1 ∼ 10 μb in all the above cases. The production cross sections of K-mesonic atoms are also estimated. (author)

  9. The Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Doern, G.B.

    1976-01-01

    This study describes and assesses the regulatory and administrative processes and procedures of the Atomic Energy Control Board, the AECB. The Atomic Energy Control Act authorized the AECB to control atomic energy materials and equipment in the national interest and to participate in measures for the international control of atomic energy. The AECB is authorized to make regulations to control atomic energy materials and equipment and to make grants in support of atomic energy research. (author)

  10. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  11. Harnessing the atom

    International Nuclear Information System (INIS)

    1999-01-01

    Splitting the atom has had a major impact on the history of the latter part of the 20th century. This film depicts the many benefits - and also drawbacks - of nuclear technology, and describes how the International Atomic Energy Agency performs its various tasks. It touches on challenges such as the choice between major energy sources, growing concerns about the global climate, and prospects for nuclear arms control and disarmament

  12. Atomic Energy Act 1946

    International Nuclear Information System (INIS)

    1946-01-01

    This Act provides for the development of atomic energy in the United Kingdom and for its control. It details the duties and powers of the competent Minister, in particular his powers to obtain information on and to inspect materials, plant and processes, to control production and use of atomic energy and publication of information thereon. Also specified is the power to search for and work minerals and to acquire property. (NEA) [fr

  13. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  14. Manipulating atoms with photons

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, C.N.

    1998-01-01

    The article is a translation of the lecture delivered on the occasion of the 1997 Nobel Prize awarding ceremony. The physical mechanisms which allow manipulating of neutral atoms with laser photons are described. A remark is also made concerning several possible applications of ultra-cool atoms and streams of future research. The article is completed by Prof. Cohen-Tannoudji's autobiography. (Z.J.)

  15. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  16. EDM Electrode for Internal Grooves

    Science.gov (United States)

    Ramani, V.; Werner, A.

    1985-01-01

    Electroerosive process inexpensive alternative to broaching. Hollow brass electrodes, soldered at one end to stainless-steel holding ring, held in grooves in mandrel. These electrodes used to machine grooves electrically in stainless-steel tube three-eights inch (9.5 millimeters) in diameter. Tool used on tubes already in place in equipment.

  17. About Estuary Data Mapper (EDM)

    Science.gov (United States)

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions.

  18. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, M; Tomonaga, M; Amenomori, T; Matsuo, T [Nagasaki Univ. (Japan). School of Medicine

    1991-12-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5{approx}0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author).

  19. On the bosonic atoms

    Science.gov (United States)

    Amusia, M. Ya.; Chernysheva, L. V.

    2018-01-01

    We investigate ground state properties of atoms, in which substitute fermions - electrons by bosons, namely π --mesons. We perform some calculations in the frame of modified Hartree-Fock (HF) equation. The modification takes into account symmetry, instead of anti-symmetry of the pair identical bosons wave function. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms "by hand". The contribution of meson-meson and meson-nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions A π - , pion atoms A π , and the number of extra bound pions ΔN π increases with the growth of nuclear charge Z. For e.g. Xe ΔN π = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.

  20. Electron - atom bremsstrahlung

    International Nuclear Information System (INIS)

    Kim, L.

    1986-01-01

    Features of bremsstrahlung radiation from neutral atoms and atoms in hot dense plasmas are studied. Predictions for the distributions of electron-atom bremsstrahlung radiation for both the point-Coulomb potential and screened potentials are obtained using a classical numerical method. Results agree with exact quantum-mechanical partial-wave results for low incident electron energies in both the point-Coulomb and screened potentials. In the screened potential, the asymmetry parameter of a spectrum is reduced from the Coulomb values. The difference increases with decreasing energy and begins to oscillate at very low energies. The scaling properties of bremsstrahlung spectra and energy losses were also studied. It was found that the ratio of the radiative energy loss for positrons to that for electrons obeys a simple scaling law, being expressible fairly accurately as a function only of the quantity T 1 /Z 2 . This scaling is exact in the case of the point-Coulomb potential, both for classical bremsstrahlung and for the nonrelativistic dipole Sommerfeld formula. Bremsstrahlung from atoms in hot dense plasmas were also studied describing the atomic potentials by the temperature-and-density dependent Thomas-Fermi mode. Gaunt factors were obtained with the relativistic partial-wave method for atoms in plasmas of various densities and temperatures