WorldWideScience

Sample records for large-volume turbidity currents

  1. Turbidity Current Bedforms

    NARCIS (Netherlands)

    Cartigny, Matthieu; Postma, G.

    2017-01-01

    Turbidity currents in the submarine seascape are what river flows are in terrestrial landscapes. While rivers transport sediment from the mountains through valleys towards the sea, turbidity currents transport sediment from the shallow marine realms through canyons towards the deeper abyssal plains.

  2. Turbidity Current Head Mixing

    Science.gov (United States)

    Hernandez, David; Sanchez, Miguel Angel; Medina, Pablo

    2010-05-01

    A laboratory experimental set - up for studying the behaviour of sediment in presence of a turbulent field with zero mean flow is compared with the behaviour of turbidity currents [1] . Particular interest is shown on the initiation of sediment motion and in the sediment lift - off. The behaviour of the turbidity current in a flat ground is compared with the zero mean flow oscilating grid generated turbulence as when wave flow lifts off suspended sediments [2,3]. Some examples of the results obtained with this set-up relating the height of the head of the turbidity current to the equilibrium level of stirred lutoclines are shown. A turbulent velocity u' lower than that estimated by the Shield diagram is required to start sediment motion. The minimum u' required to start sediment lift - off, is a function of sediment size, cohesivity and resting time. The lutocline height depends on u', and the vorticity at the lutocline seems constant for a fixed sediment size [1,3]. Combining grid stirring and turbidty current head shapes analyzed by means of advanced image analysis, sediment vertical fluxes and settling speeds can be measured [4,5]. [1] D. Hernandez Turbulent structure of turbidity currents and sediment transport Ms Thesis ETSECCPB, UPC. Barcelona 2009. [2] A. Sánchez-Arcilla; A. Rodríguez; J.C. Santás; J.M. Redondo; V. Gracia; R. K'Osyan; S. Kuznetsov; C. Mösso. Delta'96 Surf-zone and nearshore measurements at the Ebro Delta. A: International Conference on Coastal Research through large Scale Experiments (Coastal Dynamics '97). University of Plymouth, 1997, p. 186-187. [3] P. Medina, M. A. Sánchez and J. M. Redondo. Grid stirred turbulence: applications to the initiation of sediment motion and lift-off studies Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26, Issue 4, 2001, Pages 299-304 [4] M.O. Bezerra, M. Diez, C. Medeiros, A. Rodriguez, E. Bahia., A. Sanchez-Arcilla and J.M. Redondo. Study on the influence of waves on

  3. A multilayer approach for turbidity currents

    Science.gov (United States)

    Fernandez-Nieto, Enrique; Castro Díaz, Manuel J.; Morales de Luna, Tomás

    2017-04-01

    When a river that carries sediment in suspension enters into a lake or the ocean it can form a plume that can be classified as hyperpycnal or hypopycnal. Hypopycnal plumes occurs if the combined density of the sediment and interstitial fluid is lower than that of the ambient. Hyperpycnal plumes are a class of sediment-laden gravity current commonly referred to as turbidity currents [7,9]. Some layer-averaged models have been previously developed (see [3, 4, 8] among others). Although this layer-averaged approach gives a fast and valuable information, it has the disadvantage that the vertical distribution of the sediment in suspension is lost. A recent technique based on a multilayer approach [1, 2, 6] has shown to be specially useful to generalize shallow water type models in order to keep track of the vertical components of the averaged variables in the classical shallow water equations. In [5] multilayer model is obtained using a vertical discontinuous Galerkin approach for which the vertical velocity is supposed to be piecewise linear and the horizontal velocity is supposed to be piecewise constant. In this work the technique introduced in [5] is generalized to derive a model for turbidity currents. This model allows to simulate hyperpycnal as well as hypopycnal plumes. Several numerical tests will be presented. References [1] E. Audusse, M. Bristeau, B. Perthame, and J. Sainte-Marie. A multilayer Saint-Venant system with mass exchanges for shallow water flows. derivation and numerical validation. ESAIM: Mathematical Modelling and Numerical Analysis, 45(1):169-200, (2010). [2] E. Audusse, M.-O. Bristeau, M. Pelanti, and J. Sainte-Marie. Approximation of the hydrostatic Navier–Stokes system for density stratified flows by a multilayer model: Kinetic interpretation and numerical solution. Journal of Computational Physics, 230(9):3453-3478, (2011). [3] S. F. Bradford and N. D. Katopodes. Hydrodynamics of turbid underflows. i: Formulation and numerical

  4. A uniform laminar air plasma plume with large volume excited by an alternating current voltage

    Science.gov (United States)

    Li, Xuechen; Bao, Wenting; Chu, Jingdi; Zhang, Panpan; Jia, Pengying

    2015-12-01

    Using a plasma jet composed of two needle electrodes, a laminar plasma plume with large volume is generated in air through an alternating current voltage excitation. Based on high-speed photography, a train of filaments is observed to propagate periodically away from their birth place along the gas flow. The laminar plume is in fact a temporal superposition of the arched filament train. The filament consists of a negative glow near the real time cathode, a positive column near the real time anode, and a Faraday dark space between them. It has been found that the propagation velocity of the filament increases with increasing the gas flow rate. Furthermore, the filament lifetime tends to follow a normal distribution (Gaussian distribution). The most probable lifetime decreases with increasing the gas flow rate or decreasing the averaged peak voltage. Results also indicate that the real time peak current decreases and the real time peak voltage increases with the propagation of the filament along the gas flow. The voltage-current curve indicates that, in every discharge cycle, the filament evolves from a Townsend discharge to a glow one and then the discharge quenches. Characteristic regions including a negative glow, a Faraday dark space, and a positive column can be discerned from the discharge filament. Furthermore, the plasma parameters such as the electron density, the vibrational temperature and the gas temperature are investigated based on the optical spectrum emitted from the laminar plume.

  5. Sedimentological regimes for turbidity currents: Depth-averaged theory

    Science.gov (United States)

    Halsey, Thomas C.; Kumar, Amit; Perillo, Mauricio M.

    2017-07-01

    Turbidity currents are one of the most significant means by which sediment is moved from the continents into the deep ocean; their properties are interesting both as elements of the global sediment cycle and due to their role in contributing to the formation of deep water oil and gas reservoirs. One of the simplest models of the dynamics of turbidity current flow was introduced three decades ago, and is based on depth-averaging of the fluid mechanical equations governing the turbulent gravity-driven flow of relatively dilute turbidity currents. We examine the sedimentological regimes of a simplified version of this model, focusing on the role of the Richardson number Ri [dimensionless inertia] and Rouse number Ro [dimensionless sedimentation velocity] in determining whether a current is net depositional or net erosional. We find that for large Rouse numbers, the currents are strongly net depositional due to the disappearance of local equilibria between erosion and deposition. At lower Rouse numbers, the Richardson number also plays a role in determining the degree of erosion versus deposition. The currents become more erosive at lower values of the product Ro × Ri, due to the effect of clear water entrainment. At higher values of this product, the turbulence becomes insufficient to maintain the sediment in suspension, as first pointed out by Knapp and Bagnold. We speculate on the potential for two-layer solutions in this insufficiently turbulent regime, which would comprise substantial bedload flow with an overlying turbidity current.

  6. Morphodynamics of supercritical high-density turbidity currents

    NARCIS (Netherlands)

    Cartigny, M.

    2012-01-01

    Seafloor and outcrop observations combined with numerical and physical experiments show that turbidity currents are likely 1) to be in a supercritical flow state and 2) to carry high sediment concentrations (being of high-density). The thesis starts with an experimental study of bedforms

  7. In situ visualization and data analysis for turbidity currents simulation

    Science.gov (United States)

    Camata, Jose J.; Silva, Vítor; Valduriez, Patrick; Mattoso, Marta; Coutinho, Alvaro L. G. A.

    2018-01-01

    Turbidity currents are underflows responsible for sediment deposits that generate geological formations of interest for the oil and gas industry. LibMesh-sedimentation is an application built upon the libMesh library to simulate turbidity currents. In this work, we present the integration of libMesh-sedimentation with in situ visualization and in transit data analysis tools. DfAnalyzer is a solution based on provenance data to extract and relate strategic simulation data in transit from multiple data for online queries. We integrate libMesh-sedimentation and ParaView Catalyst to perform in situ data analysis and visualization. We present a parallel performance analysis for two turbidity currents simulations showing that the overhead for both in situ visualization and in transit data analysis is negligible. We show that our tools enable monitoring the sediments appearance at runtime and steer the simulation based on the solver convergence and visual information on the sediment deposits, thus enhancing the analytical power of turbidity currents simulations.

  8. Giant landslides and turbidity currents in the Agadir Canyon Region, NW-Africa

    Science.gov (United States)

    Krastel, Sebastian; Wynn, Russell B.; Stevenson, Christopher; Feldens, Peter; Mehringer, Lisa; Schürer, Anke

    2017-04-01

    head region of the Agadir Canyon. Interestingly, this failure did not leave a major landslide scarp behind suggesting a small initial failure despite the large-volume deposits in the Madeira Abyssal Plain. The turbidity current must have eroded and incorporated huge amounts of sediments while traveling through the canyon.

  9. MassFLOW-3D as a simulation tool for turbidity currents

    NARCIS (Netherlands)

    Basani, Riccardo; Janocko, Michal; Cartigny, Matthieu J.B.; Hansen, Ernst W.M.; Eggenhuisen, Joris T.

    2014-01-01

    Turbidity currents are the most important mechanism for the dispersal and deposition of sand in the deep-sea setting and thus the main phenomenon leading to the formation of oil and gas reservoirs in deep water deposits. The flow characteristics of turbidity currents are difficult to observe and

  10. Acoustic Imaging of a Turbidity Current Flowing along a Channel

    Science.gov (United States)

    Hughes Clarke, J. E.; Hiroji, A.; Cahill, L.; Fedele, J. J.

    2017-12-01

    As part of a 3 month sequence of repetitive surveys and ADCP monitoring, more than 30 turbidity currents have been identified modifying a lobe channel in 130 to 190m of water on the Squamish prodelta. For a 6 day period, daily surveys at low tide tried to capture the change resulting from a single flow. On the 8thof June three flows occurred within a half hour. Along channel multibeam images of the seabed and water column were obtained from a moving vessel immediately before, during and after the passage of the third flow. In this manner the spatial extent of the in-channel and overbank flow could be constrained. By following the flow, the spatial pattern of scattering from the flow upper surface could be examined over a 2 km length of the channel. Along channel bands of high scattering appear related to enhanced release of gas along the channel flanks. Notably, no signature of the underlying across-channel bedform modulations were evident, suggesting that the upper surface of the flow does not feel the influence of the channel floor. Overbank spillage of the flow could be detected by perturbation of a plankton scattering layer just above the seabed. Additionally, evidence of enhanced overbank deposition due to flow stripping on the outer corner of a bend was identified from backscatter changes. The specific seabed alteration due to this flow could be identified and compared with the cumulative change over three months in the channel and adjacent channel-lobe transition zone. As the flow passed under the ADCP, it had a peak velocity of over 2 m/s, a thickness of 4-5m and duration of 35 minutes. Based on the timing of the flow head when in view of the surface vessel, it was decelerating as it exited the mouth of the channel.

  11. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons.

    Science.gov (United States)

    Azpiroz-Zabala, Maria; Cartigny, Matthieu J B; Talling, Peter J; Parsons, Daniel R; Sumner, Esther J; Clare, Michael A; Simmons, Stephen M; Cooper, Cortis; Pope, Ed L

    2017-10-01

    Seabed-hugging flows called turbidity currents are the volumetrically most important process transporting sediment across our planet and form its largest sediment accumulations. We seek to understand the internal structure and behavior of turbidity currents by reanalyzing the most detailed direct measurements yet of velocities and densities within oceanic turbidity currents, obtained from weeklong flows in the Congo Canyon. We provide a new model for turbidity current structure that can explain why these are far more prolonged than all previously monitored oceanic turbidity currents, which lasted for only hours or minutes at other locations. The observed Congo Canyon flows consist of a short-lived zone of fast and dense fluid at their front, which outruns the slower moving body of the flow. We propose that the sustained duration of these turbidity currents results from flow stretching and that this stretching is characteristic of mud-rich turbidity current systems. The lack of stretching in previously monitored flows is attributed to coarser sediment that settles out from the body more rapidly. These prolonged seafloor flows rival the discharge of the Congo River and carry ~2% of the terrestrial organic carbon buried globally in the oceans each year through a single submarine canyon. Thus, this new structure explains sustained flushing of globally important amounts of sediment, organic carbon, nutrients, and fresh water into the deep ocean.

  12. Propagation of a turbidity current in confined geometries

    Science.gov (United States)

    Silvestre, Nuno; Salgueiro, Dora; Franca, Mário J.; Ferreira, Rui M. L.

    2017-04-01

    Sedimentation in reservoirs due to turbidity currents originates problems of loss of storage capacity as well as clogging of outlets/intakes. These currents are driven by the difference in specific weight between the current itself and the surrounding fluid, due to the presence of particles in suspension. As a gravity current, the main properties of these phenomena has been investigated by several authors since the 1970´s. Despite driven by a simple mechanism, the propagation of these currents can become more complex owing to the influence of factors such as geometry, bed roughness and other non-uniform elements. However, the majority of conducted studies has been focused in characterising only the influence of density imbalance. The propagation of a density current in confined geometries and the influence of bed roughness is herein investigated, through laboratory experiments carried out at the Laboratory of Hydraulics and Environment of Instituto Superior Técnico, Lisbon. The density currents were generated with brine to allow for visualization and velocity measurement. The laboratory experiments comprised point and continuous release of a dense NaCl mixture with a tracer (Rhodamine WT), with a density equal to 1028 g/L, into a tank with resting freshwater (1000 g/L). The transport and the mixing processes were recorded with high-speed video. The mass distribution was obtained through a photometric methodology and the Particle Image Velocimetry (PIV) technique was used to measure the instantaneous flow velocity fields and the depth of the density current. Both methodologies were used to measure different plan views of the phenomena, including profile and top views, for different regions, near-field and far-field. Different bed roughness were studied, including smooth and rough bed. The facility was designed with the objective to generate a complex 2D flow with an advancing wave front but also shocks reflected from the walls. As the image analysis technique

  13. Which Triggers Produce the Most Erosive, Frequent, and Longest Runout Turbidity Currents on Deltas?

    Science.gov (United States)

    Hizzett, J. L.; Hughes Clarke, J. E.; Sumner, E. J.; Cartigny, M. J. B.; Talling, P. J.; Clare, M. A.

    2018-01-01

    Subaerial rivers and turbidity currents are the two most voluminous sediment transport processes on our planet, and it is important to understand how they are linked offshore from river mouths. Previously, it was thought that slope failures or direct plunging of river floodwater (hyperpycnal flow) dominated the triggering of turbidity currents on delta fronts. Here we reanalyze the most detailed time-lapse monitoring yet of a submerged delta; comprising 93 surveys of the Squamish Delta in British Columbia, Canada. We show that most turbidity currents are triggered by settling of sediment from dilute surface river plumes, rather than landslides or hyperpycnal flows. Turbidity currents triggered by settling plumes occur frequently, run out as far as landslide-triggered events, and cause the greatest changes to delta and lobe morphology. For the first time, we show that settling from surface plumes can dominate the triggering of hazardous submarine flows and offshore sediment fluxes.

  14. Surging Versus Continuous Turbidity Currents: Flow Dynamics and Deposits in an Experimental Intraslope Minibasin

    OpenAIRE

    Lamb, Michael P.; Hickson, Thomas; Marr, Jeffrey G.; Sheets, Ben; Paola, Chris; Parker, Gary

    2004-01-01

    Small intraslope basins (~100 km^2), or "minibasins," such as those found on the continental slope of the Gulf of Mexico, have been filled predominantly by turbidity currents. Each minibasin is the result of local subsidence and is partially or completely isolated from neighboring basins by ridges formed from compensational uplift. We undertook a series of experiments to investigate the relationship between the flow dynamics of turbidity currents entering a minibasin and the stratal architect...

  15. Triggering of frequent turbidity currents in Monterey Canyon and the role of antecedent conditioning

    Science.gov (United States)

    Clare, M. A.; Rosenberger, K. J.; Talling, P.; Barry, J.; Maier, K. L.; Parsons, D. R.; Simmons, S.; Gales, J. A.; Gwiazda, R.; McGann, M.; Paull, C. K.

    2017-12-01

    Turbidity currents pose a hazard to seafloor infrastructure, deliver organic carbon and nutrients to deep-sea communities, and form economically important deposits. Thus, determining the tempo of turbidity current activity and whether different triggers result in different flow modes is important. Identification of specific triggers is challenging, however, because most studies of turbidity currents are based on their deposits. New direct monitoring of flows and environmental conditions provides the necessary temporal constraints to identify triggering mechanisms. The Coordinated Canyon Experiment (CCE) in Monterey Canyon, offshore California is the most ambitious attempt yet to measure turbidity flows and their triggers. The CCE provides precise constraint on flow timing, initiation, and potential triggers based on measurements at 7 different instrumented moorings and 2 metocean buoys. Fifteen turbidity flows were measured in 18 months; with recorded velocities >8 m/s and run-outs of up to 50 km. Presence of live estuarine foraminifera within moored sediment traps suggests that that flows originated in water depths of Turbidity currents are thought to be triggered by processes including earthquakes, river floods and storm waves. Here we analyse seismicity, local river discharge, internal tides, wave height, direction and period data. We identify no clear control of any of these individual variables on flow timing. None of the recorded earthquakes (

  16. How well do basic models describe the turbidity currents coming down Monterey and Congo Canyon?

    Science.gov (United States)

    Cartigny, M.; Simmons, S.; Heerema, C.; Xu, J. P.; Azpiroz, M.; Clare, M. A.; Cooper, C.; Gales, J. A.; Maier, K. L.; Parsons, D. R.; Paull, C. K.; Sumner, E. J.; Talling, P.

    2017-12-01

    Turbidity currents rival rivers in their global capacity to transport sediment and organic carbon. Furthermore, turbidity currents break submarine cables that now transport >95% of our global data traffic. Accurate turbidity current models are thus needed to quantify their transport capacity and to predict the forces exerted on seafloor structures. Despite this need, existing numerical models are typically only calibrated with scaled-down laboratory measurements due to the paucity of direct measurements of field-scale turbidity currents. This lack of calibration thus leaves much uncertainty in the validity of existing models. Here we use the most detailed observations of turbidity currents yet acquired to validate one of the most fundamental models proposed for turbidity currents, the modified Chézy model. Direct measurements on which the validation is based come from two sites that feature distinctly different flow modes and grain sizes. The first are from the multi-institution Coordinated Canyon Experiment (CCE) in Monterey Canyon, California. An array of six moorings along the canyon axis captured at least 15 flow events that lasted up to hours. The second is the deep-sea Congo Canyon, where 10 finer grained flows were measured by a single mooring, each lasting several days. Moorings captured depth-resolved velocity and suspended sediment concentration at high resolution (turbidity currents; the modified Chézy model. This basic model has been very useful for river studies over the past 200 years, as it provides a rapid estimate of how flow velocity varies with changes in river level and energy slope. Chézy-type models assume that the gravitational force of the flow equals the friction of the river-bed. Modified Chézy models have been proposed for turbidity currents. However, the absence of detailed measurements of friction and sediment concentration within full-scale turbidity currents has forced modellers to make rough assumptions for these parameters. Here

  17. Sediment concentrations, flow conditions, and downstream evolution of two turbidity currents, Monterey Canyon, USA

    Science.gov (United States)

    Xu, Jingping; Octavio E. Sequeiros,; Noble, Marlene A.

    2014-01-01

    The capacity of turbidity currents to carry sand and coarser sediment from shallow to deep regions in the submarine environment has attracted the attention of researchers from different disciplines. Yet not only are field measurements of oceanic turbidity currents a rare achievement, but also the data that have been collected consist mostly of velocity records with very limited or no suspended sediment concentration or grain size distribution data. This work focuses on two turbidity currents measured in Monterey Canyon in 2002 with emphasis on suspended sediment from unique samples collected within the body of these currents. It is shown that concentration and grain size of the suspended material, primarily controlled by the source of the gravity flows and their interaction with bed material, play a significant role in shaping the characteristics of the turbidity currents as they travel down the canyon. Before the flows reach their normal or quasi-steady state, which is defined by bed slope, bed roughness, and suspended grain size, they might pass through a preliminary adjustment stage where they are subject to capacity-driven deposition, and release heavy material in excess. Flows composed of fine (silt/clay) sediments tend to be thicker than those with sands. The measured velocity and concentration data confirm that flow patterns differ between the front and body of turbidity currents and that, even after reaching normal state, the flow regime can be radically disrupted by abrupt changes in canyon morphology.

  18. First direct observations linking confined supercritical turbidity currents to their depositional architecture and facies characteristics

    Science.gov (United States)

    Hage, S.; Cartigny, M.; Hughes Clarke, J. E.; Clare, M. A.; Sumner, E.; Hubbard, S. M.; Talling, P.; Lintern, G.; Stacey, C.; Vardy, M. E.; Hunt, J.; Vendettuoli, D.; Yokokawa, M.; Hizzett, J. L.; Vellinga, A. J.; Azpiroz, M.

    2017-12-01

    Turbidity currents transfer globally significant amounts of sediment via submarine channels from the continental margin to deep submarine fans. Submarine channel inception is thought to result from erosive, supercritical turbidity currents that are common in proximal settings of the marine realm. Recent monitoring of submarine processes have provided the first measurements of supercritical turbidity currents (Hughes Clarke, 2016), demonstrating that they drive the upstream migration of crescentic bedforms in confined submarine channels. Although upstream-migrating bedforms are common in confined channels across the world's oceans, there is considerable debate over the type of deposits that they produce. It is important to understand what types of deposit record these supercritical bedforms to potentially identify them from geological archives. For the first time, we combine direct measurements from supercritical field-scale turbidity currents with the facies and depositional architecture resulting from such flows. We show how the subsurface architecture evolves in a highly active channel at Squamish submarine delta, British Columbia, Canada. Repeated upstream migration of bedforms is found to create two main deposit geometries. First, regular back-stepping beds result from flow deceleration on the slightly-inclined sides of the bedforms. Second, lens-shaped scour fills composed of massive deposits result from erosion of the back-stepping beds by subsequent turbidity currents. We relate our findings to a range of ancient outcrop studies to demonstrate that supercritical flows are common in proximal settings through the geological record. This study provides the first direct observation-based model to identify confined supercritical turbidity currents and their associated upslope-migrating bedforms in the sedimentary record. This is important for correctly identifying the proximal sites of ancient submarine channels that served as past conduits for globally

  19. Turbidity current hydraulics and sediment deposition in erodible sinuous channels: Laboratory experiments and numerical simulations

    NARCIS (Netherlands)

    Janocko, M.; Cartigny, M.J.B.; Nemec, W.; Hansen, E.W.M.

    2013-01-01

    This study explores the relationship between the hydraulics of turbidity currents in erodible sinuous channels and the resulting intra-channel sediment depocentres (channel bars). Four factors are considered to exert critical control on sedimentation in sinuous submarine channels: (1) the

  20. Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective

    Science.gov (United States)

    Piper, David J.W.; Normark, William R.

    2009-01-01

    How the processes that initiate turbidity currents influence turbidite deposition is poorly understood, and many discussions in the literature rely on concepts that are overly simplistic. Marine geological studies provide information on the initiation and flow path of turbidity currents, including their response to gradient. In case studies of late Quaternary turbidites on the eastern Canadian and western U.S. margins, initiation processes are inferred either from real-time data for historical flows or indirectly from the age and contemporary paleogeography, erosional features, and depositional record. Three major types of initiation process are recognized: transformation of failed sediment, hyperpycnal flow from rivers or ice margins, and resuspension of sediment near the shelf edge by oceanographic processes. Many high-concentration flows result from hyperpycnal supply of hyperconcentrated bedload, or liquefaction failure of coarse-grained sediment, and most tend to deposit in slope conduits and on gradients turbidity flows. In most basins, there is a complex feedback between different types of turbidity-current initiation, the transformation of the flows, and the associated slope morphology. As a result, there is no simple relationship between initiating process and type of deposit.

  1. Monitoring of well-controlled turbidity currents using the latest technology and a dredger

    Science.gov (United States)

    Vellinga, A. J.; Cartigny, M.; Clare, M. A.; Mastbergen, D. R.; Van den Ham, G.; Koelewijn, A. R.; de Kleine, M.; Hizzett, J. L.; Azpiroz, M.; Simmons, S.; Parsons, D. R.

    2017-12-01

    Recent advances in technology enable monitoring of turbidity currents at field scale. This now allows us to test models developed at small-scale in the laboratory. However, interpretation of field measurements is complicated, as the instruments used are not bespoke for monitoring turbidity currents. For example, Acoustic Doppler Current Profiles (ADCPs) are developed to measure clear water flows, and 3D multimode multibeam echosounders (M3s) are made to find shoals of fish. Calibration of field-scale measurements is complicated, as we often do not know fundamental information about the measured flows, such as grain size and initial sediment volume. We present field-scale measurements of two turbidity currents for which the pre- and post-flow bathymetry, grain size and initial sediment volume is known precisely. A dredger created two turbidity currents by twice discharging 500m3 of sediment on a slope in the Western Scheldt Estuary, the Netherlands. Flow velocity and echo intensity were directly measured using three frequencies of ADCPs, and two M3 sonars imaged the flow morphology in 3D. This experiment was part of the IJkdijk research program. The turbidity currents formed upstream-migrating crescentic shaped bedforms. The ADCPs measured peak flow velocities of 1-1.5 m/s. The M3s however suggest head velocities are 2-4 m/s. The two measured turbidity currents have thicknesses of about 3m, are up to 50m in width and travel downslope for about 150m. Flow dimensions, duration, and sediment discharge indicate a mean sediment concentration of 1-5 vol. %. Flow morphology evolves from a fast but thin, snout-like head, to a thicker body, and a dilute tail. The initial flow dynamics contrast with many laboratory experiments, but are coherent with direct measurements of much larger flows in the Congo Canyon. Well-constrained field studies, like this one, thus help to understand the validity of scaling from the laboratory to the deep sea.

  2. Sediment Transport Capacity of Turbidity Currents: from Microscale to Geological Scale.

    Science.gov (United States)

    Eggenhuisen, J. T.; Tilston, M.; Cartigny, M.; Pohl, F.; de Leeuw, J.; van der Grind, G. J.

    2016-12-01

    A big question in sedimentology concerns the magnitude of fluxes of sediment particles, solute matter and dissolved gasses from shallow marine waters to deep basins by turbidity current flow. Here we establish sediment transport capacity of turbidity current flow on three levels. The most elementary level is set by the maximum amount of sediment that can be contained at the base of turbidity currents without causing complete extinction of boundary layer turbulence. The second level concerns the capacity in a vertical column within turbidity currents. The third level involves the amount of sediment that can be transported in turbidite systems on geological timescales. The capacity parameter Γ compares turbulent forces near the boundary of a turbulent suspension to gravity and buoyancy forces acting on suspended particles. The condition of Γ>1 coincides with complete suppression of coherent boundary layer turbulence in Direct Numerical Simulations of sediment-laden turbulent flow. Γ=1 coincides with the upper limit of observed suspended particle concentrations in flume and field measurements. Γ is grainsize independent, yet capacity of the full vertical structure of turbidity currents becomes grainsize dependent. This is due to the appearance of grainsize dependent vertical motions within turbulence as a primary control on the shape of the vertical concentration profile. We illustrate this dependence with experiments and theory and conclude that capacity depends on the competence of prevailing turbulence to suspend particle sizes. The concepts of capacity and competence are thus tangled. Finally, the capacity of turbidity current flow structure is coupled to geological constraints on recurrence times, channel and lobe life cycles, and allogenic forcing on system activity to arrive at system scale sediment transport capacity. We demonstrate a simple model that uses the fundamental process insight described above to estimate geological sediment budgets from

  3. Quivering on the brink: Common observations of turbidity current frequency and triggering in disparate settings

    Science.gov (United States)

    Clare, M. A.; Rosenberger, K. J.; Parsons, D. R.; Gales, J. A.; Gwiazda, R.; Paull, C. K.; Talling, P.; Cartigny, M.; Azpiroz, M.; Pope, E.; Hizzett, J. L.; Hughes Clarke, J. E.

    2017-12-01

    Turbidity currents pose a hazard to seafloor infrastructure, convey sediment to the deep sea, and provide nutrients to benthic communities. Despite their importance, we still know little about specifically how and when such powerful long run-out flows are triggered, and how strongly different trigger mechanisms control flow behaviour. New advances in direct monitoring now allow us to precisely constrain turbidity current frequency and test the efficiency of previously hypothesised triggering mechanisms. Here, we document the timing of sub-annual turbidity currents based on direct measurements using Acoustic Doppler Current Profilers at four different sites. Two sites are located at offshore fjord-head deltas in British Columbia (Squamish delta & Bute Inlet), which are fed by meltwater in spring and summer. The third is the deep-water Congo Canyon, which is located offshore Angola, and is fed by the second largest river in the world. Fourth is the Monterey Canyon, offshore California, which does not have a direct link to a river and is instead fed by littoral drift. Despite the differences in scale and setting, all of the sites show similar trends in turbidity current frequency. The first commonality is that flow timing is typically delayed (hours to weeks) following periods of rapid sediment discharge, rather than immediately coincident with them. The second commonality is that flows are rare (typically they do not occur at all) for at least half of the year in each of the sites. Instead, flows are clustered within a specific time window. We underline the importance of preconditioning prior to, and during that time window and propose that an environmental threshold must be exceeded in order to "switch on" these systems. This threshold primarily relates to magnitude of sediment delivery at the head of the channel or canyon. Once that threshold is surpassed, then systems are primed for action, quivering on the brink, allowing even small external perturbations to

  4. Turbidity Currents With Equilibrium Basal Driving Layers: A Mechanism for Long Runout

    Science.gov (United States)

    Luchi, R.; Balachandar, S.; Seminara, G.; Parker, G.

    2018-02-01

    Turbidity currents run out over 100 km in lakes and reservoirs, and over 1,000 km in the ocean. They do so without dissipating themselves via excess entrainment of ambient water. Existing layer-averaged formulations cannot capture this. We use a numerical model to describe the temporal evolution of a turbidity current toward steady state under condition of zero net sediment flux at the bed. The flow self-partitions itself into two layers. The lower "driving layer" approaches an invariant flow thickness, velocity profile, and suspended sediment concentration profile that sequesters nearly all of the suspended sediment. This layer can continue indefinitely at steady state over a constant bed slope. The upper "driven layer" contains a small fraction of the suspended sediment. The devolution of the flow into these two layers likely allows the driving layer to run out long distances.

  5. Depositional turbidity currents in diapiric minibasins on the continental slope: Formulation and theory

    OpenAIRE

    Toniolo, Horacio; Lamb, Michael; Parker, Gary

    2006-01-01

    The northern continental slope of the Gulf of Mexico is riddled with numerous subsiding diapiric minibasins bounded by ridges, many but not all of which are connected by channels created by turbidity currents. The region is economically relevant in that many of these diapiric minibasins constitute focal points for the deposition of sand. Some of these sandy deposits in turn serve as excellent reservoirs for hydrocarbons. A better understanding of the "fill and spill" process by which minibasi...

  6. Deposition By Turbidity Currents In Intraslope Diapiric Minibasins: Results Of 1-D Experiments And Numerical Modeling

    Science.gov (United States)

    Lamb, M.; Toniolo, H.; Parker, G.

    2001-12-01

    The slope of the continental margin of the northern Gulf of Mexico is riddled with small basins resulting from salt tectonics. Each such minibasin is the result of local subsidence due to salt withdrawal, and is isolated from neighboring basins by ridges formed due to compensational uplift. The minibasins are gradually filled by turbidity currents, which are active at low sea stand. Experiments in a 1-D minibasin reveal that a turbidity current flowing into a deep minibasin must undergo a hydraulic jump and form a muddy pond. This pond may not spill out of the basin even with continuous inflow. The reason for this is the detrainment of water across the settling interface that forms at the top of the muddy pond. Results of both experiments and numerical modeling of the flow and the evolution of the deposit are presented. The numerical model is the first of its kind to capture both the hydraulic jump and the effect of detrainment in ponded turbidity currents.

  7. Spatial-Temporal Variations of Turbidity and Ocean Current Velocity of the Ariake Sea Area, Kyushu, Japan Through Regression Analysis with Remote Sensing Satellite Data

    OpenAIRE

    Yuichi Sarusawa; Kohei Arai

    2013-01-01

    Regression analysis based method for turbidity and ocean current velocity estimation with remote sensing satellite data is proposed. Through regressive analysis with MODIS data and measured data of turbidity and ocean current velocity, regressive equation which allows estimation of turbidity and ocean current velocity is obtained. With the regressive equation as well as long term MODIS data, turbidity and ocean current velocity trends in Ariake Sea area are clarified. It is also confirmed tha...

  8. Anatomy of a turbidity current: Concentration and grain size structure of a deep-sea flow revealed by multiple-frequency acoustic profilers

    Science.gov (United States)

    Simmons, S.; Parsons, D. R.; Paull, C. K.; Barry, J.; Chaffey, M. R.; Gwiazda, R.; O'Reilly, T. C.; Maier, K. L.; Rosenberger, K. J.; Talling, P.; Xu, J.

    2017-12-01

    Turbidity currents are responsible for transporting large volumes of sediment to the deep ocean, yet remain poorly understood due to the limited number of field observations of these episodic, high energy events. As part of the Monterey Coordinated Canyon Experiment high resolution, sub-minute acoustic velocity and backscatter profiles were acquired with downward-looking acoustic Doppler current profilers (ADCPs) distributed along the canyon on moorings at depths ranging from 270 to 1,900 m over a period of 18 months. Additionally, three upward-looking ADCPs on different frequencies (300, 600 and 1200 kHz) profiled the water column above a seafloor instrument node (SIN) at 1850 m water depth. Traps on the moorings collected sediment carried by the flows at different heights above the seafloor and sediment cores were taken to determine the depositional record produced by the flows. Several sediment-laden turbidity flows were observed during the experiment, three of which ran out for more than 50 km to water depths of greater than 1,900 m and were observed on all of the moorings. Flow speeds of up to 6 m/s were observed and individual moorings, anchored by railroad wheels, moved up to 7.8 km down-canyon during these powerful events. We present results based on a novel analysis of the multiple-frequency acoustic data acquired by the ADCPs at the SIN integrated with grain size data from the sediment traps, close to the deepest mooring in the array where the flow thickened to the 70 m height of the ADCP above the bed. The analysis allows, for the first time, retrieval of the suspended sediment concentration and vertical distribution of grain size structure within a turbidity in spectacular detail. The details of the stratification and flow dynamics will be used to re-evaluate and discuss our existing models for these deep-sea flows.

  9. Novel Quantification of Sediment Concentration in Turbidity Currents Through in-situ Measurements of Conductivity and Temperature

    Science.gov (United States)

    Xu, J.; Wang, Z.; Gwiazda, R.; Paull, C. K.; Talling, P.; Parsons, D. R.; Maier, K. L.; Simmons, S.; Cartigny, M.

    2017-12-01

    During a large turbidity current event observed by seven moorings placed along Monterey Canyon, offshore central California, in the axial channel between 300 and 1900 meters water depth, a conductivity/temperature sensor placed 11 meters above canyon floor on the mooring at 1500 meters water depth recorded a rapid decrease of conductivity and increase of temperature during the passage of a large turbidity current. The conductivity decline is unlikely caused by fresh water input owing to lack of precipitation in the region prior to the event. We investigated the mechanisms of turbidity currents' high sediment concentration reducing the measured conductivity. By conducting a series of laboratory experiments with a range of different concentrations, grain size, and water temperature combinations, we quantified a relationship between reduced conductivity and the elevated sediment concentration. This relationship can be used for estimating the very high sediment concentrations in a turbidity current with a condition of assuming constant salinity of the ambient seawater. The empirical relationship was then applied to the in-situ time-series of temperature and conductivity measured during this turbidity current. The highest sediment concentration, in the head of the flow, reached nearly 400 g/L (volume concentration 17%). Such a high value, which has yet been reported in literature for an oceanic turbidity current, will have significant implications for the dynamics and deposits of such flows.

  10. Turbidity current flow over an erodible obstacle and phases of sediment wave generation

    Science.gov (United States)

    Strauss, Moshe; Glinsky, Michael E.

    2012-06-01

    We study the flow of particle-laden turbidity currents down a slope and over an obstacle. A high-resolution 2-D computer simulation model is used, based on the Navier-Stokes equations. It includes poly-disperse particle grain sizes in the current and substrate. Particular attention is paid to the erosion and deposition of the substrate particles, including application of an active layer model. Multiple flows are modeled from a lock release that can show the development of sediment waves (SW). These are stream-wise waves that are triggered by the increasing slope on the downstream side of the obstacle. The initial obstacle is completely erased by the resuspension after a few flows leading to self consistent and self generated SW that are weakly dependant on the initial obstacle. The growth of these waves is directly related to the turbidity current being self sustaining, that is, the net erosion is more than the net deposition. Four system parameters are found to influence the SW growth: (1) slope, (2) current lock height, (3) grain lock concentration, and (4) particle diameters. Three phases are discovered for the system: (1) "no SW," (2) "SW buildup," and (3) "SW growth". The second phase consists of a soliton-like SW structure with a preserved shape. The phase diagram of the system is defined by isolating regions divided by critical slope angles as functions of current lock height, grain lock concentration, and particle diameters.

  11. New insights from direct monitoring of turbidity currents; and a proposal for co-ordinating international efforts at a series of global "turbidity current test sites"

    Science.gov (United States)

    Talling, Peter

    2015-04-01

    Turbidity currents, and other types of submarine sediment density flow, arguably redistribute more sediment across the surface of the Earth than any other flow process. It is now over 60 years since the seminal publication of Kuenen and Migliorini (1950) in which they made the link between sequences of graded bedding and turbidity currents. The deposits of submarine sediment density flows have been described in numerous locations worldwide, and this might lead to the view that these flows are well understood. However, it is sobering to note quite how few direct measurements we have from these submarine flows in action. Sediment concentration is the critical parameter controlling such flows, yet it has never been measured directly for flows that reach and build submarine fans. How then do we know what type of flow to model in flume tanks, or which assumptions to use to formulate numerical simulations or analytical models? It is proposed here that international efforts are needed for an initiative to monitor active turbidity currents at a series of 'test sites' where flows occur frequently. The flows evolve significantly, such that source to sink data are needed. We also need to directly monitor flows in different settings with variable triggering factors and flow path morphologies because their character can vary significantly. Such work should integrate numerical and physical modelling with the collection of field observations in order to understand the significance of field observations. Such an international initiative also needs to include coring of deposits to link flow processes to deposit character, because in most global locations flow behaviour must be inferred from deposits alone. Collection of seismic datasets is also crucial for understanding the larger-scale evolution and resulting architecture of these systems, and to link with studies of subsurface reservoirs. Test site datasets should thus include a wide range of data types, not just from direct flow

  12. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    Science.gov (United States)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  13. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics

    Science.gov (United States)

    Hughes Clarke, John E.

    2016-01-01

    Field observations of turbidity currents remain scarce, and thus there is continued debate about their internal structure and how they modify underlying bedforms. Here, I present the results of a new imaging method that examines multiple surge-like turbidity currents within a delta front channel, as they pass over crescent-shaped bedforms. Seven discrete flows over a 2-h period vary in speed from 0.5 to 3.0 ms−1. Only flows that exhibit a distinct acoustically attenuating layer at the base, appear to cause bedform migration. That layer thickens abruptly downstream of the bottom of the lee slope of the bedform, and the upper surface of the layer fluctuates rapidly at that point. The basal layer is inferred to reflect a strong near-bed gradient in density and the thickening is interpreted as a hydraulic jump. These results represent field-scale flow observations in support of a cyclic step origin of crescent-shaped bedforms. PMID:27283503

  14. Management of turbidity current venting in reservoirs under different bed slopes.

    Science.gov (United States)

    Chamoun, Sabine; De Cesare, Giovanni; Schleiss, Anton J

    2017-12-15

    The lifetime and efficiency of dams is endangered by the process of sedimentation. To ensure the sustainable use of reservoirs, many sediment management techniques exist, among which venting of turbidity currents. Nevertheless, a number of practical questions remain unanswered due to a lack of systematic investigations. The present research introduces venting and evaluates its performance using an experimental model. In the latter, turbidity currents travel on a smooth bed towards the dam and venting is applied through a rectangular bottom outlet. The combined effect of outflow discharge and bed slopes on the sediment release efficiency of venting is studied based on different criteria. Several outflow discharges are tested using three different bed slopes (i.e., 0%, 2.4% and 5.0%). Steeper slopes yield higher venting efficiency. Additionally, the optimal outflow discharge leading to the largest venting efficiency with the lowest water loss increases when moving from the horizontal bed to the inclined positions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A Gradually Varied Approach to Model Turbidity Currents in Submarine Channels

    Science.gov (United States)

    Bolla Pittaluga, M.; Frascati, A.; Falivene, O.

    2018-01-01

    We develop a one-dimensional model to describe the dynamics of turbidity current flowing in submarine channels. We consider the flow as a steady state polydisperse suspension accounting for water detrainment from the clear water-turbid interface, for spatial variations of the channel width and for water and sediment lateral overspill from the channel levees. Moreover, we account for sediment exchange with the bed extending the model to deal with situations where the current meets a nonerodible bed. Results show that when water detrainment is accounted for, the flow thickness becomes approximately constant proceeding downstream. Similarly, in the presence of channel levees, the flow tends to adjust to channel relief through the lateral loss of water and sediment. As more mud is spilled above the levees relative to sand, the flow becomes more sand rich proceeding downstream when lateral overspill is present. Velocity and flow thickness predicted by the model are then validated by showing good agreement with laboratory observations. Finally, the model is applied to the Monterey Canyon bathymetric data matching satisfactorily the December 2002 event field measurements and predicting a runout length consistent with observations.

  16. A Model based Examination of Conditions for Ignition of Turbidity Currents on Slopes

    Science.gov (United States)

    Mehta, A. J.; Krishna, G.

    2009-12-01

    Turbidity currents form a major mechanism for the movement of sediment in the natural environment. Self-accelerating turbidity currents over continental slopes are of considerable scientific and engineering interest due to their role as agents for submarine sediment transportation from the shelf to the seabed. Such currents are called ignitive provided they eventually reach a catastrophic state as acceleration results in high sediment loads due to erosion of the sloping bed. A numerical model, which treats the fluid and the particles as two separate phases, is applied to investigate the effects of particle size, initial flow friction velocity and mild bed slope on the ignitive condition. Laboratory experimental data have been included as part of the analysis for qualitative comparison purposes. Ignition for the smallest of the three selected sizes (0.21mm) of medium sand typical of Florida beaches was found to depend on the initial conditions at the head of the slope as determined by the pressure gradient. Bed slope seemed to be of secondary importance. For the two sands with larger grain sizes (0.28mm and 0.35mm) the slope was found to play a more important role when compared to the initial pressure gradient. For a given pressure gradient, increasing the slope increased the likelihood of self-acceleration. It is concluded that in general ignition cannot be defined merely in terms of positive values of the velocity gradient and the sediment flux gradient along the slope. Depending on particle size the initial pressure gradient can also play a role. For the selected initial conditions (grain size, pressure gradient and bed slope), out of the 54 combinations tested, all except three satisfied the Knapp-Bagnold criterion for auto-suspension irrespective of whether the turbid current was ignitive or non-ignitive. In all 54 cases the current was found to erode the bed. Further use of the model will require accommodation of wider ranges of sediment size and bed density

  17. Numerical Simulation of Recent Turbidity Currents in the Monterey Canyon System, Offshore California

    Science.gov (United States)

    Heimsund, S.; Xu, J.; Nemec, W.

    2007-12-01

    The method of computational fluid dynamics (CFD) has been used, in the form of a 3D numerical model (Flow- 3D®), to perform a full-scale simulation of turbidity currents measured in December 2002 by three moorings in the Soquel and Monterey canyons. The model was verified by simulation of laboratory flows, and was upscaled to the Monterey Canyon system on the basis of high-resolution bathymetric data and flow measurements. The measured velocity profiles were sufficient to assess the flow thickness, initial velocity and duration in the canyon head zone. A computational grid with a highest feasible resolution was used, and both bathymetry and hydrostatic pressure were accounted for. The volumetric sediment concentration and exact grain- size composition of the flows were unknown, and thus a range of values for the initial concentration and bed roughness were assumed and assessed on a trial-and-error basis. The simulations reveal the behavior of a turbidity current along its descent path, including its local hydraulic characteristics (the 3D field of velocity, sediment concentration, shear stress, strain rate, and dynamic viscosity, as well as the magnitude of velocity and turbulent shear). The results confirm that the velocity structure of turbidity current is highly sensitive to variation in seafloor topography. The December 17th flow in the Soquel Canyon appears to have lost capacity by dilution over a relatively short distance and shown significant velocity fluctuations, which is attributed to the rugged topography of the canyon floor. A major loss of momentum occurred when the flow plunged at high angle into the Monterey Canyon, crashing against its bend's southern wall. The December 20th flow in the Monterey Canyon, in contrast, developed a considerably longer body and strongly accelerated towards the canyon's sharp second bend before crashing against its western wall. The mooring data show a down-canyon decline of velocity and suggest gradual waning, but the

  18. Filling of a Salt-withdrawal Minibasin on the Continental Slope by Turbidity Currents: Experimental study

    Science.gov (United States)

    Violet, J.; Evans, C.; Sheets, B.; Paola, C.; Pratson, L.; Parker, G.

    2001-12-01

    We report on the transport and deposition of sediment by turbidity currents in an experimental basin designed to model salt-withdrawal minibasins found along the northern continental slope of the Gulf of Mexico. The experiment was performed in two stages in the subsiding EXperimental EarthScape facility (XES) at St. Anthony Falls Laboratory, University of Minnesota. Stage I consisted of 15 turbidity-current events in the following sequence: one 36-minute continuous event, six 1.85-minute small pulses, one 3.8-minute large pulse, six more small pulses, one more large pulse, and finally one more continuous event. The continuous events and the small pulses had a flow discharge of 1.5 liters/s and the large pulse had a flow discharge of 4.5 liters/s. The flows all had a volume concentration of sediment of 0.05. The sediment comprised three grades of silica with nominal diameters of 20 microns (45%), 45 microns (40%) and 110 microns (15%). The basin subsided continuously during Stage I. Stage II consisted of the same sequence of events as Stage I, but with no further subsidence. The sand content was eliminated during the latter part of Stage II. The deposit was imaged as it developed during the experiment using high-frequency sonar. The sonar records show indications of incipient self-channelization as well as clear erosion, bypass, and deposition. Erosion was promoted by large pulse events and the absence of sand. The deposit shows well developed lamination and normal grading.

  19. Linking submarine channel–levee facies and architecture to flow structure of turbidity currents: : insights from flume tank experiments

    NARCIS (Netherlands)

    de Leeuw, J.|info:eu-repo/dai/nl/380590913; Eggenhuisen, J.T.|info:eu-repo/dai/nl/322850274; Cartigny, M.J.B.|info:eu-repo/dai/nl/304823716

    Submarine leveed channels are sculpted by turbidity currents that are commonly highly stratified. Both the concentration and the grain size decrease upward in the flow, and this is a fundamental factor that affects the location and grain size of deposits around a channel. This study presents

  20. Influence of Waves and Tides on Upper Slope Turbidity Currents and their Deposits: An Outcrop and Laboratory Study

    Science.gov (United States)

    Daniller-Varghese, M. S.; Smith, E.; Mohrig, D. C.; Goudge, T. A.; Hassenruck-Gudipati, H. J.; Koo, W. M.; Mason, J.; Swartz, J. M.; Kim, J.

    2017-12-01

    Research on interactions of turbidity currents with waves and tides highlight both their importance and complexity. The Elkton Siltstone at Cape Arago, Oregon, USA, preserves rhythmically bedded deposits that we interpret as the product of tidally modified hyperpycnal flows under the influence of water-surface waves. Evidence for the interpretation of tidal influence is taken from couplet thickness measurements consistent with semidiurnal tides arranged into monthly cycles. These deposits were likely sourced from suspended-sediment laden river plumes; thinner, finer-grained beds represent deposition during flood tide, and thicker, coarser-grained beds represent deposition during ebb tide. Sedimentary structures within the rhythmites change from proximal to distal sections, but both sections preserve combined-flow bedforms within the beds, implying wave influence. Our paleo-topographic reconstruction has the proximal section located immediately down-dip of the shelf slope-break and the distal section located 1.5km further offshore in 125m greater water depth. We present experimental results from wave-influenced turbidity currents calling into question the interpretation that combined-flow bedforms necessarily require deposition at or above paleo-wave base. Turbidity currents composed of quartz silt and very fine sand were released into a 10m long, 1.2m deep tank. Currents ran down a 9-degree ramp with a motor driven wave-maker positioned at the distal end of the tank. The currents interacted with the wave field as they travelled downslope into deeper water. While oscillatory velocities measured within the wave-influenced turbidity currents decreased with distance downslope, the maximum oscillatory velocities measured in the combined-flow currents at depth were five to six times larger than those measured under a wave field without turbidity currents. These results suggest that combined-flow turbidity currents can transmit oscillating-flow signals beneath the

  1. Large volume cryogenic silicon detectors

    International Nuclear Information System (INIS)

    Braggio, C.; Boscardin, M.; Bressi, G.; Carugno, G.; Corti, D.; Galeazzi, G.; Zorzi, N.

    2009-01-01

    We present preliminary measurements for the development of a large volume silicon detector to detect low energy and low rate energy depositions. The tested detector is a one cm-thick silicon PIN diode with an active volume of 31 cm 3 , cooled to the liquid helium temperature to obtain depletion from thermally-generated free carriers. A thorough study has been done to show that effects of charge trapping during drift disappears at a bias field value of the order of 100V/cm.

  2. Large volume cryogenic silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35131 Padova (Italy); Boscardin, M. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy); Bressi, G. [INFN sez. di Pavia, via Bassi 6, 27100 Pavia (Italy); Carugno, G.; Corti, D. [INFN sez. di Padova, via Marzolo 8, 35131 Padova (Italy); Galeazzi, G. [INFN lab. naz. Legnaro, viale dell' Universita 2, 35020 Legnaro (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy)

    2009-12-15

    We present preliminary measurements for the development of a large volume silicon detector to detect low energy and low rate energy depositions. The tested detector is a one cm-thick silicon PIN diode with an active volume of 31 cm{sup 3}, cooled to the liquid helium temperature to obtain depletion from thermally-generated free carriers. A thorough study has been done to show that effects of charge trapping during drift disappears at a bias field value of the order of 100V/cm.

  3. Quantifying the Journey of a Turbidity Current: How Water and Sediment Discharges Vary with Distance in Monterey Canyon

    Science.gov (United States)

    Chapplow, N.; Talling, P.; Cartigny, M.; Parsons, D. R.; Simmons, S.; Clare, M. A.; Paull, C. K.

    2017-12-01

    Turbidity currents transport vast quantities of sediment across the seafloor and form the largest sediment accumulations on Earth. Such flows pose a hazard to strategically important seafloor infrastructure and are important agents for the transport of organic carbon and nutrients that support deep-sea ecosystems. It is therefore important to quantify the scale of these flows, how much sediment they transport, and how their discharge evolves over time and space along their flow path. Two modes of flow evolution have been proposed based on experimental and numerical models. The first is termed ignition, where flows entrain seafloor sediment and become more voluminous and powerful and increase in discharge. The second is dissipation, where sediment falls out of suspension, flows decelerate and lose discharge. Field-scale turbidity currents have only been measured at a handful of sites worldwide, however, and never at multiple locations along their full course. Therefore, it has not been possible to determine when, where and why flows diverge into these two modes in the deep sea and how discharge of the flows varies. The ambitious multi-institution Coordinated Canyon Experiment measured turbidity currents at seven instrumented moorings along the Monterey Canyon, offshore California. Fifteen flows were recorded, including the fastest events yet measured at high resolution (>8 m/s). This remarkable dataset provides the first opportunity to quantify down-channel sediment and flow discharge evolution of turbidity currents in the deep sea. To understand whether flows ignite or dissipate, we derive total and sediment discharges for each of the flows at all seven mooring locations down the canyon. Discharges are calculated from measured velocities, and sediment concentrations derived using a novel inversion method. Two distinct flow modes are observed, where most flows rapidly dissipated in the upper reaches of the canyon, while three ran out for the full 50 km array length

  4. Annotated bibliography: Marine geologic hazards of the Hawaiian Islands with special focus on submarine slides and turbidity currents

    Energy Technology Data Exchange (ETDEWEB)

    Normark, W.R.; Herring, H.H.

    1993-10-01

    This annotated bibliography was compiled to highlight the submarine geology of the Hawaiian Islands and identify known and potential marine geologic hazards with special emphasis on turbidity currents, submarine slides and tsunamis. Some references are included that are not specific to Hawaii but are needed to understand the geologic processes that can affect the integrity of submarine cables and other man-made structures. Entries specific to the Hawaiian Island area are shown in bold type.

  5. A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon

    Science.gov (United States)

    Symons, William O.; Sumner, Esther J.; Paull, Charles K.; Cartigny, Matthieu J.B.; Xu, Jingping; Maier, Katherine L.; Lorenson, Thomas; Talling, Peter J.

    2017-01-01

    Submarine turbidity currents create some of the largest sediment accumulations on Earth, yet there are few direct measurements of these flows. Instead, most of our understanding of turbidity currents results from analyzing their deposits in the sedimentary record. However, the lack of direct flow measurements means that there is considerable debate regarding how to interpret flow properties from ancient deposits. This novel study combines detailed flow monitoring with unusually precisely located cores at different heights, and multiple locations, within the Monterey submarine canyon, offshore California, USA. Dating demonstrates that the cores include the time interval that flows were monitored in the canyon, albeit individual layers cannot be tied to specific flows. There is good correlation between grain sizes collected by traps within the flow and grain sizes measured in cores from similar heights on the canyon walls. Synthesis of flow and deposit data suggests that turbidity currents sourced from the upper reaches of Monterey Canyon comprise three flow phases. Initially, a thin (38–50 m) powerful flow in the upper canyon can transport, tilt, and break the most proximal moorings and deposit chaotic sands and gravel on the canyon floor. The initially thin flow front then thickens and deposits interbedded sands and silty muds on the canyon walls as much as 62 m above the canyon floor. Finally, the flow thickens along its length, thus lofting silty mud and depositing it at greater altitudes than the previous deposits and in excess of 70 m altitude.

  6. What threat do turbidity currents and submarine landslides pose to submarine telecommunications cable infrastructure?

    Science.gov (United States)

    Clare, Michael; Pope, Edward; Talling, Peter; Hunt, James; Carter, Lionel

    2016-04-01

    The global economy relies on uninterrupted usage of a network of telecommunication cables on the seafloor. These submarine cables carry ~99% of all trans-oceanic digital data and voice communications traffic worldwide, as they have far greater bandwidth than satellites. Over 9 million SWIFT banks transfers alone were made using these cables in 2004, totalling 7.4 trillion of transactions per day between 208 countries, which grew to 15 million SWIFT bank transactions last year. We outline the challenge of why, how often, and where seafloor cables are broken by natural causes; primarily subsea landslides and sediment flows (turbidity currents and also debris flows and hyperpycnal flows). These slides and flows can be very destructive. As an example, a sediment flow in 1929 travelled up to 19 m/s and broke 11 cables in the NE Atlantic, running out for ~800 km to the abyssal ocean. The 2006 Pingtung earthquake triggered a sediment flow that broke 22 cables offshore Taiwan over a distance of 450 km. Here, we present initial results from the first statistical analysis of a global database of cable breaks and causes. We first investigate the controls on frequency of submarine cable breaks in different environmental and geological settings worldwide. We assess which types of earthquake pose a significant threat to submarine cable networks. Meteorological events, such as hurricanes and typhoons, pose a significant threat to submarine cable networks, so we also discuss the potential impacts of future climate change on the frequency of such hazards. We then go on to ask what are the physical impacts of submarine sediment flows on submerged cables? A striking observation from past cable breaks is sometimes cables remain unbroken, whilst adjacent cables are severed (and record powerful flows travelling at up to 6 m/s). Why are some cables broken, but neighbouring cables remain intact? We provide some explanations for this question, and outline the need for future in

  7. Mechanisms of Complete Turbulence Suppression in Turbidity Currents Driven by Mono-Disperse and Bi-Disperse Suspensions of Sediment

    Directory of Open Access Journals (Sweden)

    Mrugesh S. Shringarpure

    2014-09-01

    Full Text Available Turbidity currents are submarine flows where the sediment fluid mixture (heavy current drives along the sloping ocean floor displacing the surrounding clear fluid (light ambient. Under the influence of gravity, the suspended sediments drive the current and at the same time settle down on the ocean bed. The interplay of turbulent mixing and settling sediments leads to stable stratification of sediments in the turbidity current. In previous studies (Cantero et al. 2009b; Cantero et al., 2009a; Cantero et al., 2012a; Talling et al., 2007 it was observed that strong settling tendency (large sediment sizes could cause complete turbulence suppression. In this study, we will analyse this process of complete turbulence suppression by means of direct numerical simulations (DNS of turbidity currents. In wall bounded unstratified flows, it has been long established that turbulence is sustained by the process of auto-generation of near-wall hairpin like and quasi-streamwise turbulent vortical structures. It was also identified that auto-generation is possible only when the strength of the turbulent structures is greater than a threshold value (Zhou et. al., 1996. Through quadrant analysis of Reynolds stress events and visualization of turbulent vortical structures, we observe that stratification by sediments lead to damping and spatial re-distribution of turbulent vortical structures in the flow. We propose that complete turbulence suppression is brought about by a total shutdown in the auto-generation process of the existing turbulent structures in the flow. We also identify three parameters – Reynolds number (Reτ, Richardson number (Riτ and sediment settling velocity (V˜z that quantify the process of turbulence suppression. A criterion for complete turbulence suppression is also proposed which can be defined as a critical value for RiτV˜z. This critical value is a function of Ret and based on simulations, experiments and field observations it

  8. Ensonifying Change: Repeat Ultra-High-Resolution Surveys in Monterey Canyon before and after Passage of a Turbidity Current

    Science.gov (United States)

    Wolfson-Schwehr, M.; Paull, C. K.; Caress, D. W.; Carvajal, C.; Thomas, H. J.; Maier, K. L.; Parsons, D. R.; Simmons, S.

    2017-12-01

    Turbidity currents are one of the primary means of global sediment transport, yet our understanding of how they interact with the seafloor is hindered by the limited number of direct measurements. The Coordinated Canyon Experiment (CCE; October 2015 - April 2017) has made great strides in addressing this issue by providing direct measurements of turbidity currents and detailed observations of the resulting seafloor change in Monterey Canyon, offshore California. Here we focus on a section of the canyon at 1850-m water depth, where a Seafloor Instrument Node (SIN) recorded passage of three turbidity currents using a range of sensors, including three upward-looking acoustic Doppler current profilers. The fastest event at this site had a maximum velocity of 2.8 m/s, and dragged the 430-Kg SIN 26 m down-canyon. Repeat mapping surveys were conducted four times during the CCE, utilizing a prototype ultra-high-resolution mapping system mounted on the ROV Doc Ricketts. The survey platform hosts a 400-kHz Reson 7125 multibeam sonar, a 3DatDepth SL1 subsea LiDAR, two stereo color cameras, and a Kearfott SeaDevil INS. At a survey altitude of 2.5 m above the bed, the system provides remarkable 5-cm resolution multibeam bathymetry, 1-cm resolution LiDAR bathymetry, and 2-mm resolution photomosaics, and can cover a 100-m2 survey area. Surveys of the SIN site prior to and after the fastest event show areas of net deposition/erosion of 60 cm and 20 cm, respectively. Net deposition occurred in the topographic lows between bedforms, while erosion was focused on the bedform crests. At the end of the experiment, transects of sediment cores were taken by ROV within areas of net deposition. The cores show a variety of sedimentary facies, including muds, sands, gravel, and organic rich layers. Gravel layers have sharp erosive bases. The repeat surveys document the dynamic nature of flute-like scours as the flow events erode and deposit material along the canyon floor, as well as the

  9. Fauna and habitat types driven by turbidity currents in the lobe complex of the Congo deep-sea fan

    Science.gov (United States)

    Sen, Arunima; Dennielou, Bernard; Tourolle, Julie; Arnaubec, Aurélien; Rabouille, Christophe; Olu, Karine

    2017-08-01

    This study characterizes the habitats and megafaunal community of the Congo distal lobe complex driven by turbidity currents through the use of remotely operated vehicle (ROV) still imagery transects covering distances in the order of kilometers. In this sedimentary, abyssal area about 5000 m deep and 750 km offshore from western Africa, large quantities of deposited organic material supplied by the Congo River canyon and channel support aggregations of large sized foraminifers (Bathysiphon sp.) and vesicomyid clams (Christineconcha regab, Abyssogena southwardae) often associated with methane cold seeps, as well as opportunistic deep-sea scavengers. Additionally, bacterial mats, assumed to be formed by large sulfur-oxidizing filamentous bacteria (Beggiatoa type), and black patches of presumably reduced sediment were seen which are, together with sulfur-oxidizing symbiont- bearing vesicomyids, indicators of sulfide-rich sediments. Habitat and faunal distribution were analyzed in relation to the microtopography obtained with the ROV multibeam echosounder, at three sites from the entrance of the lobe complex where the channel is still deep, to the main, flatter area of turbidite deposition. Specific characteristics of the system influence animal distributions: both the forams and the vesicomyid clams tended to avoid the channels characterized by high-speed currents, and are therefore preferentially located along channel flanks affected by sliding, and on levees formed by channel overspill. Foram fields are found in flat areas and form large fields, whereas the vesicomyids have a patchy distribution and appear to show a preference for regions of local topographical relief such as slide scars or collapsed blocks of sediments, which likely facilitate sulfide exhumation. The colonization of sulfide rich sediments by vesicomyids is limited, but nonetheless was seen to occur in the main deposition area where they have to cope with very high sedimentation rates (up to 20 cm

  10. Maintaining turbidity and current flow in laboratory aquarium studies, a case study using Sabellaria spinulosa

    DEFF Research Database (Denmark)

    Davies, Andrew J.; S. Last, Kim; Attard, Karl

    2009-01-01

    RT) is a simple and reliable system for the resuspension of food or sediments using an enclosed airlift. The particle rain from the lift is mixed in the tank by two water inputs that provide directional current flow across the study organism(s). The vortex mixing creates a turbulent lateral water flow that allows......Many aquatic organisms rely on the suspension of particulate matter for food or for building materials, yet these conditions are difficult to replicate in laboratory mesocosms. Consequently, husbandry and experimental conditions may often be sub-optimal. The Vortex Resuspension Tank (Vo...... the distribution of particulate matter outwards from the sediment outflow. By calibrating a VoRT it is possible to control sedimentation rate by manipulating water and air flow rates. As an example application, three VoRTs were maintained under different sediment loadings to assess the sediment fraction...

  11. Large volume axionic Swiss cheese inflation

    Science.gov (United States)

    Misra, Aalok; Shukla, Pramod

    2008-09-01

    Continuing with the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi Yau's, arXiv: 0707.0105 [hep-th], Nucl. Phys. B, in press], after inclusion of perturbative and non-perturbative α corrections to the Kähler potential and (D1- and D3-) instanton generated superpotential, we show the possibility of slow roll axionic inflation in the large volume limit of Swiss cheese Calabi Yau orientifold compactifications of type IIB string theory. We also include one- and two-loop corrections to the Kähler potential but find the same to be subdominant to the (perturbative and non-perturbative) α corrections. The NS NS axions provide a flat direction for slow roll inflation to proceed from a saddle point to the nearest dS minimum.

  12. Large volume axionic Swiss cheese inflation

    International Nuclear Information System (INIS)

    Misra, Aalok; Shukla, Pramod

    2008-01-01

    Continuing with the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi-Yau's, (arXiv: 0707.0105 [hep-th]), Nucl. Phys. B, in press], after inclusion of perturbative and non-perturbative α ' corrections to the Kaehler potential and (D1- and D3-) instanton generated superpotential, we show the possibility of slow roll axionic inflation in the large volume limit of Swiss cheese Calabi-Yau orientifold compactifications of type IIB string theory. We also include one- and two-loop corrections to the Kaehler potential but find the same to be subdominant to the (perturbative and non-perturbative) α ' corrections. The NS-NS axions provide a flat direction for slow roll inflation to proceed from a saddle point to the nearest dS minimum

  13. Filling of a Salt-withdrawal Minibasin on the Continental Slope by Turbidity Currents: Futher Research and Results

    Science.gov (United States)

    Violet, J. A.; Sheets, B. A.; Paola, C.; Pratson, L. F.; Parker, G.

    2002-12-01

    We illustrate further research results on the transport and deposition of sediment by turbidity currents in an experimental basin, designed to model salt-withdrawal minibasins found along the northern continental slope of the Gulf of Mexico. The experiment was performed in 2001 in the subsiding EXperimental EarthScape facility (XES) at St. Anthony Falls Laboratory, University of Minnesota. The run consisted of two stages that each contained the same sequence of events, which were of three different variations (1.85-minute pulses of 1.5 liters/s discharges, 3.8-minute pulses of 4.5 liters/s discharges, or 36 minute events of 1.5 liters/s discharges). The sediment comprised three grades of silica with nominal diameters of 20 microns (45%), 45 microns (40%) and 110 microns (15%) and all flows had a volume concentration of sediment of 5%. The only difference between stage I and II was that no subsidence occurred during stage II, and that the 110 micron sand was removed from the flows late in stage II to study the effects of a smaller mean flow-grainsize. Research since the run has focused on the correction of high-frequency sonar data taken during the run, digital photography taken of dried deposit stratigraphy and grainsize data also taken at various locations in the dried deposit. The sonar data is utilized in the creation of post-event topographies and isopach maps to illustrate what the controls on erosion, deposition, flow path, deposit thickness and even the channelization of early flow events are. Comparisons of the stratigraphy and the grainsize data with the conclusions from the sonar data are made, as sonar is also constructed in a manner that exhibits synthetic or predicted stratigraphy (before compaction). Finally the stratigraphy is structurally described in the proximal, medial, and distal segments of the deposit and comparisons to the field are made.

  14. Hydraulic evolution of high-density turbidity currents from the Brushy Canyon Formation, Eddy County, New Mexico inferred by comparison to settling and sorting experiments

    Science.gov (United States)

    Motanated, Kannipa; Tice, Michael M.

    2016-05-01

    Hydraulic transformations in turbidity currents are commonly driven by or reflected in changes in suspended sediment concentrations, but changes preceding transformations can be difficult to diagnose because they do not produce qualitative changes in resultant deposits. This study integrates particle settling experiments and in situ detection of hydraulically contrasting particles in turbidites in order to infer changes in suspended sediment concentration during deposition of massive (Bouma Ta) sandstone divisions. Because grains of contrasting density are differentially sorted during hindered settling from dense suspensions, relative grading patterns can be used to estimate suspended sediment concentrations and interpret hydraulic evolution of the depositing turbidity currents. Differential settling of dense particles (aluminum ballotini) through suspensions of hydraulically coarser light particles (silica ballotini) with volumetric concentration, Cv, were studied in a thin vessel by using particle-image-velocimetry. At high Cv, aluminum particles were less retarded than co-sedimenting silica particles, and effectively settled as hydraulically coarser grains. This was because particles were entrained into clusters dominated by the settling behavior of the silica particles. Terminal settling velocities of both particles converged at Cv ≥ 25%, and particle sorting was diminished. The results of settling experiments were applied to understand settling of analogous feldspar and zircon grains in natural turbidity flows. Distributions of light and heavy mineral grains in massive sandstones, Bouma Ta divisions, of turbidites from the Middle Permian Brushy Canyon Formation were observed in situ by X-ray fluorescence microscopy (μXRF). Hydraulic sorting of these grains resulted in characteristic patterns of zirconium abundance that decreased from base to top within Ta divisions. These profiles resulted from upward fining of zircon grains with respect to co

  15. Sediment Lofting From Melt-Water Generated Turbidity Currents During Heinrich Events as a Tool to Assess Main Sediment Delivery Phases to Small Subpolar Ocean Basins

    Science.gov (United States)

    Hesse, R.

    2009-05-01

    Small subpolar ocean basins such as the Labrador Sea received a major portion (25%) of their sediment fill during the Pleistocene glaciations (less than 5% of the basin's lifetime), but the detailed timing of sediment supply to the basin remained essentially unknown until recently. The main sediment input into the basin was probably not coupled to major glacial cycles and associated sea-level changes but was related to Heinrich events. Discovery of the depositional facies of fine-grained lofted sediment provides a tool which suggests that the parent-currents from which lofting took place may have been sandy-gravelly turbidity currents that built a huge braided abyssal plain in the Labrador Sea (700 by 120 km underlain by 150 m on average of coarse- grained sediment) which is one of the largest sand accumulations (104 km3) on Earth. The facies of lofted sediment consists of stacked layers of graded muds that contain ice-rafted debris (IRD) which impart a bimodal grain-size distribution to the graded muds. The texturally incompatible grain populations of the muds (median size between 4 and 8 micrometers) and the randomly distributed coarse silt and sand-sized IRD require the combination of two transport processes that delivered the populations independently and allowed mixing at the depositional site: (i) sediment rafting by icebergs (dropstones) and (ii) the rise of turbid freshwater plumes out of fresh-water generated turbidity currents. Sediment lofting from turbidity currents is a process that occurs in density currents generated from sediment-laden fresh-water discharges into the sea that can produce reversed buoyancy, as is well known from experiments. When the flows have traveled long enough, their tops will have lost enough sediment by settling so that they become hypopycnal (their density decreasing below that of the ambient seawater) causing the current tops to lift up. The turbid fresh-water clouds buoyantly rise out of the turbidity current to a level of

  16. Electrochemical filtration for turbidity removal in industrial cooling/process water systems

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Venkateswaran, G.

    2008-01-01

    Water samples of large cooling water reservoirs may look visibly clear and transparent, but still may contain sub-micron size particles at sub-parts-per-million levels. Deposition of these particles on heat exchanger surfaces, reduces the heat transfer efficiency in power industry. In nuclear power plants, additionally it creates radiation exposure problems due to activation of fine metallic turbidity in the reactor core and its subsequent transfer to out-of-core surfaces. Sub-micron filtration creates back high-pressure problem. Zeta filters available commercially are prescribed for separating either positively or negatively charged particles. They are of once-use and throw-type. Precipitation surface modified ion exchangers impart chemical impurities to the system. Thus, sub-micron size and dilute turbidity removal from large volumes of waters such as heat exchanger cooling water in nuclear and power industry poses a problem. Electro deposition of the turbidity causing particles, on porous carbon/graphite felt electrodes, is one of the best suited methods for turbidity removal from large volumes of water due to the filter's high permeability, inertness to the system and regenerability resulting in low waste generation. Initially, active indium turbidity removal from RAPS-1 heavy water moderator system, and microbes removal from heat exchanger cooling lake water of RAPS 1 and 2 were demonstrated with in-house designed and fabricated prototype electrochemical filter (ECF). Subsequently, a larger size, high flow filter was fabricated and deployed for iron turbidity removal from active process waters system of Kaiga Generation Station unit 1 and silica and iron turbidity removal from cooling water pond used for heat exchanger of a high temperature high pressure (HTHP) loop at WSCD, Kalpakkam. The ECF proved its exclusive utility for sub-micron size turbidity removal and microbes removal. ECF maneuverability with potential and current for both positively and

  17. On the interaction between fluid turbulence and particle loading: numerical simulation of turbidity currents and prediction of deep-sea arenites

    Science.gov (United States)

    Doronzo, D. M.; Dufek, J.

    2012-04-01

    Turbidity currents are water-particle flows able to move large distance over the seafloor, and the deep-sea arenitic facies of their deposits often represents an important class of hydrocarbon reservoirs. Coupling flow behavior and the resulting deposits may thus help finding new reservoirs, as well as reconstructing the sediment transport mechanisms from the continental shelf to the abyssal plain. There is a broad literature of turbidity currents, which includes field, theoretical, experimental, and numerical studies on flow dynamics and associated deposits. Generally, the field and theoretical approaches focus on the scale of actual deposits and currents, respectively, whereas experimental and numerical approaches are often restricted to the laboratory scale and relatively low-Reynolds number, respectively. Fully resolved simulations that incorporate complex bathymetry, large-scale flow, multiphase and 3D effects, are computationally expensive and require closure schemes. Here, a 2D numerical model of turbidity current is proposed, which is based on the Euler-Lagrange formulation of multiphase physics, and on the Reynolds-averaged Navier-Stokes closure of turbulence. This strategy has been recently used in volcanology to simulate the gas-particle flow of pyroclastic density currents, in order to predict their deposits. The incompressible conservation equations of mass and momentum are solved for the water, and the equation of particle motion is solved for the sediment, which for this example, has an initial concentration of 1 % of 0.5 mm sand particles. The equations are solved numerically with the finite-volume method of Ansys Fluent software, and particle and fluid motion are two-way coupled during calculation, which means that the particles are tracked on the basis of water solution, then are allowed to affect the liquid turbulence through a momentum exchange. The Reynolds (turbulent) stresses, which dominate over the viscous ones in the turbidity current, are

  18. The Swift Turbidity Marker

    Science.gov (United States)

    Omar, Ahmad Fairuz; MatJafri, Mohd Zubir

    2011-01-01

    The Swift Turbidity Marker is an optical instrument developed to measure the level of water turbidity. The components and configuration selected for the system are based on common turbidity meter design concepts but use a simplified methodology to produce rapid turbidity measurements. This work is aimed at high school physics students and is the…

  19. Coupling of RF antennas to large volume helicon plasma

    Directory of Open Access Journals (Sweden)

    Lei Chang

    2018-04-01

    Full Text Available Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.

  20. From DNS to RANS: A Multi-model workflow to understand the Influence of Hurricanes on Generating Turbidity Currents in the Gulf of Mexico

    Science.gov (United States)

    Syvitski, J. P.; Arango, H.; Harris, C. K.; Meiburg, E. H.; Jenkins, C. J.; Auad, G.; Hutton, E.; Kniskern, T. A.; Radhakrishnan, S.

    2016-12-01

    A loosely coupled numerical workflow is developed to address land-sea pathways for sediment routing from terrestrial and coastal sources, across the continental shelf and ultimately down the continental slope canyon system of the northern Gulf of Mexico (GOM). Model simulations represent a range of environmental conditions that might lead to the generation of turbidity-currents. The workflow comprises: 1) A simulator for the water and sediment discharged from rivers into the GOM with WMBsedv2 with calibration using USGS and USACE gauged river data; 2) Domain grids and bathymetry (ETOPO2) for the ocean models and realistic seabed sediment texture grids (dbSEABED) for the sediment transport models; 3) A spectral wave action simulator (10 km resolution) (WaveWatch III) driven by GFDL - GFS winds; 4) A simulator for ocean dynamics (ROMS) forced with ECMWF ERA winds; 5) A simulator for seafloor resuspension and transport (CSTMS); 6) Simulators (HurriSlip) of seafloor failure and flow ignition locations for boundary input to a turbidity current model; and 7) A RANS turbidity current model (TURBINS) to route sediment flows down GOM canyons, providing estimates of bottom shear stresses. TURBINS was developed first as a DNS model and then converted to an LES model wherein a dynamic turbulence closure scheme was employed. Like most DNS to LES model comparisons (these being done by the UCSB team), turbulence scaling allowed for higher Re applications but were found still not capable of simulating field scale (GOM continental canyons) environments. The LES model was next converted to a non-hydrostatic RANS model capable of field scale applications but only with a daisy-chain approach to multiple model runs along the simulated canyon floor. These model adaptations allowed the workflow to be tested for the year 1-Oct-2007 to 30-Sep-2008 that included two domain Hurricanes (Ike and Gustav). The RANS-TURBINS employed further boundary simplifications on both sediment erosion and

  1. Coastal circulation and sediment dynamics in Maunalua Bay, Oahu, Hawaii, measurements of waves, currents, temperature, salinity, and turbidity; November 2008-February 2009

    Science.gov (United States)

    Storlazzi, Curt D.; Presto, M. Katherine; Logan, Joshua B.; Field, Michael E.

    2010-01-01

    High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Maunalua Bay, southern Oahu, Hawaii, during the 2008-2009 winter to better understand coastal circulation, water-column properties, and sediment dynamics during a range of conditions (trade winds, kona storms, relaxation of trade winds, and south swells). A series of bottom-mounted instrument packages were deployed in water depths of 20 m or less to collect long-term, high-resolution measurements of waves, currents, water levels, temperature, salinity, and turbidity. These data were supplemented with a series of profiles through the water column to characterize the vertical and spatial variability in water-column properties within the bay. These measurements support the ongoing process studies being done as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Pacific Coral Reef Project; the ultimate goal of these studies is to better understand the transport mechanisms of sediment, larvae, pollutants, and other particles in coral reef settings. Project Objectives The objective of this study was to understand the temporal variations in currents, waves, tides, temperature, salinity and turbidity within a coral-lined embayment that receives periodic discharges of freshwater and sediment from multiple terrestrial sources in the Maunalua Bay. Instrument packages were deployed for a three-month period during the 2008-2009 winter and a series of vertical profiles were collected in November 2008, and again in February 2009, to characterize water-column properties within the bay. Measurements of flow and water-column properties in Maunalua Bay provided insight into the potential fate of terrestrial sediment, nutrient, or contaminant delivered to the marine environment and coral larval transport within the embayment. Such data are useful for providing baseline information for future watershed decisions and for establishing guidelines for

  2. Investigation of a large volume negative hydrogen ion source

    International Nuclear Information System (INIS)

    Courteille, C.; Bruneteau, A.M.; Bacal, M.

    1995-01-01

    The electron and negative ion densities and temperatures are reported for a large volume hybrid multicusp negative ion source. Based on the scaling laws an analysis is made of the plasma formation and loss processes. It is shown that the positive ions are predominantly lost to the walls, although the observed scaling law is n + ∝I 0.57 d . However, the total plasma loss scales linearly with the discharge current, in agreement with the theoretical model. The negative ion formation and loss is also discussed. It is shown that at low pressure (1 mTorr) the negative ion wall loss becomes a significant part of the total loss. The dependence of n - /n e versus the electron temperature is reported. When the negative ion wall loss is negligible, all the data on n - /n e versus the electron temperatures fit a single curve. copyright 1995 American Institute of Physics

  3. Conditions for the occurrence of intense turbidity currents in the benthic boundary layer over a sloping bottom

    NARCIS (Netherlands)

    Zhmur, VV

    2003-01-01

    The evolution of density currents over the continental slope of the ocean is investigated with allowance for the entrainment of the bottom sediments and background liquid in motion. A simple criterion is proposed for determining the possibility of evolving initially weak density currents into bottom

  4. Non-cohesive silt turbidity current flow processes; insights from proximal sandy-silt and silty-sand turbidites, Fiordland, New Zealand

    Science.gov (United States)

    Strachan, Lorna J.; Bostock, Helen C.; Barnes, Philip M.; Neil, Helen L.; Gosling, Matthew

    2016-08-01

    Silt-rich turbidites are commonly interpreted as distal marine deposits. They are associated with interlaminated clay and silt deposition from the upper and rear portions of turbidity currents. Here, multibeam bathymetry and shallow sediment core data from the intra-slope Secretary Basin, Fiordland, New Zealand, located laminar) flows that have undergone a variety of up-dip flow transformations. Most flows were initially erosive followed by deposition of partitioned 2- or 3- phase mixed mode flows that include high-density transitional and laminar flows that can be fore- or after-runners to low-density turbulent flow sections. Turbulence is inferred to have been suppressed in high-density flows by increasing flow concentration of both sands and silts. The very fine and fine sand modal grain sizes of sandy-silt and silty-sand turbidites are significantly coarser than classical abyssal plain silt turbidites and are generally coarser than overbank silt turbidites. While the low percentage of clays within Secretary Basin sandy-silt and silty-sand turbidites represents a fundamental difference between these and other silt and mud turbidites, we suggest these beds represent a previously undescribed suite of proximal continental slope deposits.

  5. Massive Rock Detachments from the Continental slope of the Balsas River Submarine Delta that occur due to Instability of Sediments which Produce Turbidity Currents and Tsunamis

    Science.gov (United States)

    Sandoval-Ochoa, J.; Aguayo-Camargo, J.

    2007-05-01

    During the NOAA oceanographic delivery cruise of the US R/V "Roger Revelle" to the Scripps Institution of Oceanography at the University of California in San Diego, California USA, in July 1996; a well calibrated bathymetric equipment, the SeaBeam* 2012, was tested. Good resolutions in data allowed bathymetric mapping to visualize the sea floor relief. Detailed colorful chartographic images showed a portion of the continental slope between the Balsas River Delta and the Middle America Trench and between the Balsas Canyon and La Necesidad Canyon. The surveyed area covered more than 3 000 square kilometers. After the delivery cruise, one of the goals was to measure and analyze the Morphobathymetry of the uneven lower portion of the Balsas River Submarine Delta. So far some of the findings with the morphometric analyses consist of several isolated slump scars that each comprise more than 12 cubic kilometers in volume and a multiple slump scar with an evident steep hollow about 200 cubic kilometers absent of rock. These volumes of rock apparently underwent a remobilization from the slope during the Late Quaternary. The rock detachments occured in relatively small portions but in instantaneous massive displacements because of their instability as well as other identified factors in the region. Over time more and more authors have accepted that coastal cuts or submarine slump scars have been left by sudden movements of rock and fluids. The phenomena that occur in the region in general, are accompanied on one side by potential and kinetic energies like falling bodies, flows and gravity waves, and on the other side, by mass transfer of rock and fluid mobilization like turbidity currents, accumulations, sea wave surges or tsunamis. In some cases the phenomena is produced by another natural triggering forces or by an earthquake. We propose that events like these, i.e. massive detachments and their products such as accumulations, turbidity currents and depositional debrites

  6. Higgs, moduli problem, baryogenesis and large volume compactifications

    International Nuclear Information System (INIS)

    Higaki, Tetsutaro; Takahashi, Fuminobu

    2012-07-01

    We consider the cosmological moduli problem in the context of high-scale supersymmetry breaking suggested by the recent discovery of the standard-model like Higgs boson. In order to solve the notorious moduli-induced gravitino problem, we focus on the LARGE volume scenario, in which the modulus decay into gravitinos can be kinematically forbidden. We then consider the Affleck-Dine mechanism with or without an enhanced coupling with the inflaton, taking account of possible Q-ball formation. We show that the baryon asymmetry of the present Universe can be generated by the Affleck-Dine mechanism in LARGE volume scenario, solving the moduli and gravitino problems.

  7. Higgs, moduli problem, baryogenesis and large volume compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [RIKEN Nishina Center, Saitama (Japan). Mathematical Physics Lab.; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics

    2012-07-15

    We consider the cosmological moduli problem in the context of high-scale supersymmetry breaking suggested by the recent discovery of the standard-model like Higgs boson. In order to solve the notorious moduli-induced gravitino problem, we focus on the LARGE volume scenario, in which the modulus decay into gravitinos can be kinematically forbidden. We then consider the Affleck-Dine mechanism with or without an enhanced coupling with the inflaton, taking account of possible Q-ball formation. We show that the baryon asymmetry of the present Universe can be generated by the Affleck-Dine mechanism in LARGE volume scenario, solving the moduli and gravitino problems.

  8. Dark Radiation predictions from general Large Volume Scenarios

    Science.gov (United States)

    Hebecker, Arthur; Mangat, Patrick; Rompineve, Fabrizio; Witkowski, Lukas T.

    2014-09-01

    Recent observations constrain the amount of Dark Radiation (Δ N eff ) and may even hint towards a non-zero value of Δ N eff . It is by now well-known that this puts stringent constraints on the sequestered Large Volume Scenario (LVS), i.e. on LVS realisations with the Standard Model at a singularity. We go beyond this setting by considering LVS models where SM fields are realised on 7-branes in the geometric regime. As we argue, this naturally goes together with high-scale supersymmetry. The abundance of Dark Radiation is determined by the competition between the decay of the lightest modulus to axions, to the SM Higgs and to gauge fields, and leads to strict constraints on these models. Nevertheless, these constructions can in principle meet current DR bounds due to decays into gauge bosons alone. Further, a rather robust prediction for a substantial amount of Dark Radiation can be made. This applies both to cases where the SM 4-cycles are stabilised by D-terms and are small `by accident', i.e. tuning, as well as to fibred models with the small cycles stabilised by loops. In these constructions the DR axion and the QCD axion are the same field and we require a tuning of the initial misalignment to avoid Dark Matter overproduction. Furthermore, we analyse a closely related setting where the SM lives at a singularity but couples to the volume modulus through flavour branes. We conclude that some of the most natural LVS settings with natural values of model parameters lead to Dark Radiation predictions just below the present observational limits. Barring a discovery, rather modest improvements of present Dark Radiation bounds can rule out many of these most simple and generic variants of the LVS.

  9. A novel image processing-based system for turbidity measurement in domestic and industrial wastewater.

    Science.gov (United States)

    Mullins, Darragh; Coburn, Derek; Hannon, Louise; Jones, Edward; Clifford, Eoghan; Glavin, Martin

    2018-03-01

    provides a multipoint analysis that can be easily repeated for large volumes of wastewater effluent. Although the system was specifically designed and tested for wastewater treatment applications, it could have applications such as in drinking water treatment, and in other areas where fluid turbidity is an important measurement.

  10. Small scale turbidity currents in a tectonically active submarine graben, the Gulf of Corinth (Greece): their significance in dispersing mine tailings and their relevance to basin filling

    Science.gov (United States)

    Papatheodorou, G.; Stefatos, A.; Christodoulou, D.; Ferentinos, G.

    2003-04-01

    The Gulf of Corinth is an intra-plate active graben within the Aegean microplate, which is characterized by high frequency occurrence of gravitative mass movements. A detailed marine survey in Antikyra bay, on the northern margin of the graben, was carried out (i) to study the bathymetry and morphology of the seafloor and (ii) to examine the distribution and dispersion of bauxite “red-mud” tailings and the formation of present-day fine grained, thin bedded turbidites. The examination of high resolution seismic profiles has shown that the northern flank of the gulf of Corinth consists of the shelf, slope and basin floor. The shelf has an average width of 10 km and dips very gently at a gradient less than 1.2o to a depth of 300m. The slope extends from the 300m to the 700m isobath with a gradient ranging from 5o to 7.5o. The basin floor deeper than the 700m isobath is flat with a gradient less than 0.1o. The shelf break and upper slope are affected by mass-movements. The seafloor on slope is incised by numerous channels trending in a NNE-SSW direction. The floor of the plain is covered by ponded turbidites. The analysis of cores based on (i) the texture and the structure of the individual layers of the surficial sedimentary cover and (ii) the tracing of bauxite red-mud tailing which have been discharged since 1970 on the upper shelf of the Antikyra Bay, have shown that: (i) Shelf and upper slope sediments are transported to the basin floor by turbidity flows. (ii) The slope surface is affected by the erosional action of the turbidity currents. (iii) The basin floor is covered by thin-bedded fine-grained turbidites whose thickness ranges from 0.8-4 cm. (iv) The individual turbidite beds, which consist of silt and clay, are structureless and are separated by sharp, planar or erosional contacts. (v) Hemipelagic intercalations are absent. The number of turbiditic events recorded in the surveyed area is from 2-5 events over a period of 15 years or 122 to 333 events

  11. Compact turbidity meter

    Science.gov (United States)

    Hirschberg, J. G.

    1979-01-01

    Proposed monitor that detects back-reflected infrared radiation makes in situ turbidity measurements of lakes, streams, and other bodies of water. Monitor is compact, works well in daylight as at night, and is easily operated in rough seas.

  12. Research of Intelligent Turbidity Sensor

    OpenAIRE

    Licai Zhang; Yaoguang Wei; Yingyi Chen; Daoliang Li; Lihua Zeng

    2014-01-01

    Turbidity is an important index to evaluate the water quality. Turbidity can reflect the effects of insoluble substances that contain bait and seston on water. Traditional methods of turbidity detection are complicated, they have low efficiency and poor reliability. To solve the turbidity detection problem in aquaculture, an intelligent optical turbidity sensor which is based on scattering theory has been proposed in this paper. After analyzing the quality characteristics of aquaculture water...

  13. Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration.

    Science.gov (United States)

    Mull, Bonnie; Hill, Vincent R

    2012-12-01

    Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recovering MS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. Published by Elsevier B.V.

  14. Investigation of turbidity effect on exergetic performance of solar ponds

    International Nuclear Information System (INIS)

    Atiz, Ayhan; Bozkurt, Ismail; Karakilcik, Mehmet; Dincer, Ibrahim

    2014-01-01

    Highlights: • A comprehensive experimental work on a turbidity of the solar pond. • Percentage transmission evaluation of the turbid and clean salty water of the zones. • Exergy analysis of the inner zones for turbid and clean salty water. • Turbidity effect on exergy efficiencies of the solar pond. • The thermal performance assessment by comparing the exergetic efficiencies of the solar pond. - Abstract: The present paper undertakes a study on the exergetic performance assessment of a solar pond and experimental investigation of turbidity effect on the system performance. There are various types of solar energy applications including solar ponds. One of significant parameters to consider in the assessment of solar pond performance is turbidity which is caused by dirty over time (e.g., insects, leaf, dust and wind bringing parts fall down). Thus, the turbidity in the salty water decreases solar energy transmission through the zones. In this study, the samples are taken from the three zones of the solar pond and analyzed using a spectrometer for three months. The transmission aspects of the solar pond are investigated under calm and turbidity currents to help distinguish the efficiencies. Furthermore, the maximum exergy efficiencies are found to be 28.40% for the calm case and 22.27% with turbidity effects for the month of August, respectively. As a result, it is confirmed that the solar pond performance is greatly affected by the turbidity effect

  15. A digital gain stabilizer for large volume organic scintillation detectors

    International Nuclear Information System (INIS)

    Braunsfurth, J.; Geske, K.

    1976-01-01

    A digital gain stabilizer is described, optimized for use with photomultipliers mounted on large volume organic scintillators, or other radiation detectors, which exhibit no prominent peaks in their amplitude spectra. As applications of this kind usually involve many phototubes or detectors, circuit simplicity, production reproduceability, and the possibility of computer controlled operation were major design criteria. Two versions were built, the first one using standard TTL-SSI and MSI circuitry, the second one - to reduce power requirements - using a mixture of TTL- and CMOS-LSI circuits. (Auth.)

  16. Removal of rare gases from large volume airstreams

    International Nuclear Information System (INIS)

    Hopke, P.K.; Leong, K.H.; Stukel, J.J.; Lewis, C.; Jebackumar, R.; Illinois Univ., Urbana; Illinois Univ., Urbana

    1986-01-01

    The cost-effective removal of low levels of rare gases and particularly radon from large volume air flows is a difficult problem. The use of various scrubbing systems using non-conventional fluids has been studied. The parameters for both a packed tower absorber and a gas scrubber have been calculated for a system using perfluorobenzene as the fluid. Based on these parameters, a packed bed tower of conventional proportions is feasible for the removal of >95% of 37 Bq/m 3 of radon from a flow of 4.7 m 3 /second. (author)

  17. Naturally light hidden photons in LARGE volume string compactifications

    International Nuclear Information System (INIS)

    Goodsell, M.; Jaeckel, J.; Redondo, J.; Ringwald, A.

    2009-09-01

    Extra ''hidden'' U(1) gauge factors are a generic feature of string theory that is of particular phenomenological interest. They can kinetically mix with the Standard Model photon and are thereby accessible to a wide variety of astrophysical and cosmological observations and laboratory experiments. In this paper we investigate the masses and the kinetic mixing of hidden U(1)s in LARGE volume compactifications of string theory. We find that in these scenarios the hidden photons can be naturally light and that their kinetic mixing with the ordinary electromagnetic photon can be of a size interesting for near future experiments and observations. (orig.)

  18. Adsorption of transuranic elements from large volume sea water

    International Nuclear Information System (INIS)

    Holm, E.; Ballestra, S.

    1976-01-01

    Some years ago a sampler for concentrating radionuclides from large volumes of sea water was developed by Silker et al. of the Battelle Northwest Laboratories. They used pure A1 2 O 3 as the adsorbent. The device has been applied successfully to the determination of 238 Pu and 239 Pu in several sea water samples. Our experience on the application of an identical system for the determination of transuranics in Mediterranean sea water was not quite as satisfactory as we had hoped. The chemistry involved in leaching up to 1 kg Al 2 O 3 . with acid, followed by removal of dissolved aluminium from the transuranic fraction, is rather tedious and time-consuming for routine use. The adsorption efficiency of transuranics, checked by dual-bed adsorption did not give consistent results. However, since the principle of the device is attractive enough for handling large volume water samples, it was felt that it was worthwhile to test other types of adsorbents which are easier to handle than Al 2 O 3 . For this purpose, chitosan and manganese dioxide were chosen and series of experiments were conducted in order to examine the suitability of these materials as an adsorbent in the system

  19. Aluminum Corrosion and Turbidity

    International Nuclear Information System (INIS)

    Longtin, F.B.

    2003-01-01

    Aluminum corrosion and turbidity formation in reactors correlate with fuel sheath temperature. To further substantiate this correlation, discharged fuel elements from R-3, P-2 and K-2 cycles were examined for extent of corrosion and evidence of breaking off of the oxide film. This report discusses this study

  20. APPHi: Automated Photometry Pipeline for High Cadence Large Volume Data

    Science.gov (United States)

    Sánchez, E.; Castro, J.; Silva, J.; Hernández, J.; Reyes, M.; Hernández, B.; Alvarez, F.; García T.

    2018-04-01

    APPHi (Automated Photometry Pipeline) carries out aperture and differential photometry of TAOS-II project data. It is computationally efficient and can be used also with other astronomical wide-field image data. APPHi works with large volumes of data and handles both FITS and HDF5 formats. Due the large number of stars that the software has to handle in an enormous number of frames, it is optimized to automatically find the best value for parameters to carry out the photometry, such as mask size for aperture, size of window for extraction of a single star, and the number of counts for the threshold for detecting a faint star. Although intended to work with TAOS-II data, APPHi can analyze any set of astronomical images and is a robust and versatile tool to performing stellar aperture and differential photometry.

  1. Dilute scintillators for large-volume tracking detectors

    Energy Technology Data Exchange (ETDEWEB)

    Reeder, R.A. (University of New Mexico, Albuquerque, NM (United States)); Dieterle, B.D. (University of New Mexico, Albuquerque, NM (United States)); Gregory, C. (University of New Mexico, Albuquerque, NM (United States)); Schaefer, F. (University of New Mexico, Albuquerque, NM (United States)); Schum, K. (University of New Mexico, Albuquerque, NM (United States)); Strossman, W. (University of California, Riverside, CA (United States)); Smith, D. (Embry-Riddle Aeronautical Univ., Prescott, AZ (United States)); Christofek, L. (Los Alamos National Lab., NM (United States)); Johnston, K. (Los Alamos National Lab., NM (United States)); Louis, W.C. (Los Alamos National Lab., NM (United States)); Schillaci, M. (Los Alamos National Lab., NM (United States)); Volta, M. (Los Alamos National Lab., NM (United States)); White, D.H. (Los Alamos National Lab., NM (United States)); Whitehouse, D. (Los Alamos National Lab., NM (United States)); Albert, M. (University of Pennsylvania, Phi

    1993-10-01

    Dilute scintillation mixtures emit isotropic light for both fast and slow particles, but retain the Cherenkov light cone from fast particles. Large volume detectors using photomultipliers to reconstruct relativistic tracks will also be sensitive to slow particles if they are filled with these mixtures. Our data show that 0.03 g/l of b-PBD in mineral oil has a 2.4:1 ratio (in the first 12 ns) of isotropic light to Cherenkov light for positron tracks. The light attenuation length is greater than 15 m for wavelength above 400 nm, and the scintillation decay time is about 2 ns for the fast component. There is also a slow isotropic light component that is larger (relative to the fast component) for protons than for electrons. This effect allows particle identification by a technique similar to pulse shape discrimination. These features will be utilized in LSND, a neutrino detector at LAMPF. (orig.)

  2. Doping the 1 kton Large Volume Detector with Gd

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Gianmarco [University of L' Aquila, Via Vetoio snc, 67100 Coppito (AQ) Italy (Italy); Fulgione, Walter; Porta, Amanda [Istituto di Fisica dello Spazio Interplanetario, INAF, Corso Fiume 4, Torino (Italy); Machado, Ana Amelia Bergamini [Laboratori Nazionali del Gran Sasso, INFN, s.s. 17bis Km 18-10, Assergi (AQ) (Italy); Mal' gin, Alexei [Institute for Nuclear Research, Russian Academy of Sciences, pr. Shestidesyatiletiya Oktyabrya 7a, Moscow, 117312 (Russian Federation); Molinario, Andrea; Vigorito, Carlo, E-mail: bruno@to.infn.it, E-mail: fulgione@to.infn.it, E-mail: ana.machado@lngs.infn.it, E-mail: malgin@lngs.infn.it, E-mail: amolinar@to.infn.it, E-mail: Amanda.Porta@subatech.in2p3.fr, E-mail: vigorito@to.infn.it [INFN, Via Pietro Giuria 1, Torino (Italy)

    2011-06-01

    The Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory (LNGS), Italy, is a ν observatory which has been monitoring the Galaxy since June 1992 to study neutrinos from core collapse supernovae. The experiment in the present configuration is made by 840 scintillator detectors, for a total active mass of 1000 tons. The detector sensitivity to neutrino bursts due to a core collapse supernova has been already discussed in term of maximum detectable distance. In this paper we evaluate the improvements that LVD could obtain if all its active scintillator mass was doped with a small amount (0.14% in weight) of Gadolinium. We simulated neutron captures following ν-bar {sub e} inverse beta decay reactions in one LVD counter (1.2 ton) with Gd doped liquid scintillator obtaining an efficiency for the detection of this process of η{sub n}|{sub Gd} = 80% and a mean capture time τ = 25μs, in good agreement with the results obtained by the measures. This implies a gain of a factor ∼ 20 in the signal to noise ratio for neutron capture detection with respect to the undoped liquid scintillator. We discuss how the captures of neutrons from rock radioactivity on Gd modify the background conditions of the detector and we calculate the curves expressing the sensitivity to a ν-bar {sub e} burst from core collapse supernovae depending on the distance of the collapsing star. It results that doping the 1 kton Large Volume Detector with Gd would assure a 90% detection efficiency at the distance of the Large Magellanic Cloud (50 kpc), an achievement which is equivalent to that obtained by doubling the number of counters in LVD.

  3. Doping the 1 kton Large Volume Detector with Gd

    International Nuclear Information System (INIS)

    Bruno, Gianmarco; Fulgione, Walter; Porta, Amanda; Machado, Ana Amelia Bergamini; Mal'gin, Alexei; Molinario, Andrea; Vigorito, Carlo

    2011-01-01

    The Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory (LNGS), Italy, is a ν observatory which has been monitoring the Galaxy since June 1992 to study neutrinos from core collapse supernovae. The experiment in the present configuration is made by 840 scintillator detectors, for a total active mass of 1000 tons. The detector sensitivity to neutrino bursts due to a core collapse supernova has been already discussed in term of maximum detectable distance. In this paper we evaluate the improvements that LVD could obtain if all its active scintillator mass was doped with a small amount (0.14% in weight) of Gadolinium. We simulated neutron captures following ν-bar e inverse beta decay reactions in one LVD counter (1.2 ton) with Gd doped liquid scintillator obtaining an efficiency for the detection of this process of η n | Gd = 80% and a mean capture time τ = 25μs, in good agreement with the results obtained by the measures. This implies a gain of a factor ∼ 20 in the signal to noise ratio for neutron capture detection with respect to the undoped liquid scintillator. We discuss how the captures of neutrons from rock radioactivity on Gd modify the background conditions of the detector and we calculate the curves expressing the sensitivity to a ν-bar e burst from core collapse supernovae depending on the distance of the collapsing star. It results that doping the 1 kton Large Volume Detector with Gd would assure a 90% detection efficiency at the distance of the Large Magellanic Cloud (50 kpc), an achievement which is equivalent to that obtained by doubling the number of counters in LVD

  4. Evaluation of a laser scanner for large volume coordinate metrology: a comparison of results before and after factory calibration

    International Nuclear Information System (INIS)

    Ferrucci, M; Muralikrishnan, B; Sawyer, D; Phillips, S; Petrov, P; Yakovlev, Y; Astrelin, A; Milligan, S; Palmateer, J

    2014-01-01

    Large volume laser scanners are increasingly being used for a variety of dimensional metrology applications. Methods to evaluate the performance of these scanners are still under development and there are currently no documentary standards available. This paper describes the results of extensive ranging and volumetric performance tests conducted on a large volume laser scanner. The results demonstrated small but clear systematic errors that are explained in the context of a geometric error model for the instrument. The instrument was subsequently returned to the manufacturer for factory calibration. The ranging and volumetric tests were performed again and the results are compared against those obtained prior to the factory calibration. (paper)

  5. Optics of turbid slabs

    International Nuclear Information System (INIS)

    Kokhanovsky, A.A.

    2002-01-01

    This paper is devoted to an alternative derivation of the asymptotic equations for the reflection and transmission functions of turbid slabs. The derivation is based on the reciprocity principle and the law of conservation of energy. Thus it is very general. This allows us to apply the obtained equations even in cases where the foundations of the radiative transfer theory are in question (e.g. for highly concentrated suspensions and pastes). (author)

  6. Characterization of segmented large volume, high purity germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [Koeln Univ. (Germany). Inst. fuer Kernphysik

    2006-07-01

    {gamma}-ray tracking in future HPGe arrays like AGATA will rely on pulse shape analysis (PSA) of multiple {gamma}-interactions. For this purpose, a simple and fast procedure was developed which enabled the first full characterization of a segmented large volume HPGe detector. An analytical model for the hole mobility in a Ge crystal lattice was developed to describe the hole drift anisotropy with experimental velocity values along the crystal axis as parameters. The new model is based on the drifted Maxwellian hole distribution in Ge. It is verified by reproducing successfully experimental longitudinal hole anisotropy data. A comparison between electron and hole mobility shows large differences for the longitudinal and tangential velocity anisotropy as a function of the electrical field orientation. Measurements on a 12 fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by {gamma}-ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60 keV. A precise measurement of the hole drift anisotropy was performed with 356 keV rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and the digital electronics

  7. Characterization of segmented large volume, high purity germanium detectors

    International Nuclear Information System (INIS)

    Bruyneel, B.

    2006-01-01

    γ-ray tracking in future HPGe arrays like AGATA will rely on pulse shape analysis (PSA) of multiple γ-interactions. For this purpose, a simple and fast procedure was developed which enabled the first full characterization of a segmented large volume HPGe detector. An analytical model for the hole mobility in a Ge crystal lattice was developed to describe the hole drift anisotropy with experimental velocity values along the crystal axis as parameters. The new model is based on the drifted Maxwellian hole distribution in Ge. It is verified by reproducing successfully experimental longitudinal hole anisotropy data. A comparison between electron and hole mobility shows large differences for the longitudinal and tangential velocity anisotropy as a function of the electrical field orientation. Measurements on a 12 fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by γ-ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60 keV. A precise measurement of the hole drift anisotropy was performed with 356 keV rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and the digital electronics. The results are

  8. Study on water boiling noises in a large volume

    International Nuclear Information System (INIS)

    Masagutov, R.F.; Krivtsov, V.A.

    1977-01-01

    Presented are the results of measurement of the noise spectra during boiling of water in a large volume at the pressure of 1 at. Boiling of the distilled water has been accomplished with the use of the heaters made of the Kh18N10T steel, 50 mm in length, 2 mm in the outside diameter, with the wall thickness of 0.1 mm. The degree of water under heating changed during the experiments from 0 to 80 deg C, and the magnitude of the specific heat flux varied from o to 0.7 - 0.9 qsup(x), where qsup(x) was the specific heat flux of the tube burn-out. The noise spectrum of the boiling water was analyzed at frequencies of 0.5 to 200 kHz. The submerge-type pressure-electric transmitters were used for measurements. At underheating boiling during the experiment the standing waves have formed which determine the structure of the measured spectra. During saturated boiling of water no standing waves were revealed. At underheating over 15 - 20 deg C the water boiling process is accompanied by the noises within the ultrasonic frequency range. The maximum upper boundary of the noise in the experiments amounts to 90 - 100 kHz

  9. SUSY’s Ladder: reframing sequestering at Large Volume

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Matthew [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-04-07

    Theories with approximate no-scale structure, such as the Large Volume Scenario, have a distinctive hierarchy of multiple mass scales in between TeV gaugino masses and the Planck scale, which we call SUSY’s Ladder. This is a particular realization of Split Supersymmetry in which the same small parameter suppresses gaugino masses relative to scalar soft masses, scalar soft masses relative to the gravitino mass, and the UV cutoff or string scale relative to the Planck scale. This scenario has many phenomenologically interesting properties, and can avoid dangers including the gravitino problem, flavor problems, and the moduli-induced LSP problem that plague other supersymmetric theories. We study SUSY’s Ladder using a superspace formalism that makes the mysterious cancelations in previous computations manifest. This opens the possibility of a consistent effective field theory understanding of the phenomenology of these scenarios, based on power-counting in the small ratio of string to Planck scales. We also show that four-dimensional theories with approximate no-scale structure enforced by a single volume modulus arise only from two special higher-dimensional theories: five-dimensional supergravity and ten-dimensional type IIB supergravity. This gives a phenomenological argument in favor of ten dimensional ultraviolet physics which is different from standard arguments based on the consistency of superstring theory.

  10. Prospects for accelerator neutron sources for large volume minerals analysis

    International Nuclear Information System (INIS)

    Clayton, C.G.; Spackman, R.

    1988-01-01

    The electron Linac can be regarded as a practical source of thermal neutrons for activation analysis of large volume mineral samples. With a suitable target and moderator, a neutron flux of about 10 10 n/cm/s over 2-3 kg of rock can be generated. The proton Linac gives the possibility of a high neutron yield (> 10 12 n/s) of fast neutrons at selected energies. For the electron Linac, targets of W-U and W-Be are discussed. The advantages and limitations of the system are demonstrated for the analysis of gold in rocks and ores and for platinum in chromitite. These elements were selected as they are most likely to justify an accelerator installation at the present time. Errors due to self shielding in gold particles for thermal neutrons are discussed. The proton Linac is considered for neutrons generated from a lithium target through the 7 Li(p, n) 7 Be reaction. The analysis of gold by fast neutron activation is considered. This approach avoids particle self-absorption and, by appropriate proton energy selection, avoids potentially dominating interfering reactions. The analysis of 235 U in the presence of 238 U and 232 Th is also considered. (author)

  11. ESB application for effective synchronization of large volume measurements data

    CERN Document Server

    Wyszkowski, Przemysław Michał

    2011-01-01

    The TOTEM experiment at CERN aims at measurement of total cross section, elastic scattering and diffractive processes of colliding protons in the Large Hadron Collider. In order for the research to be possible, it is necessary to process huge amounts of data coming from variety of sources: TOTEM detectors, CMS detectors, measurement devices around the Large Hadron Collider tunnel and many other external systems. Preparing final results involves also calculating plenty of intermediate figures, which also need to be stored. In order for the work of the scientist to be effective and convenient it is crucial to provide central point for the data storage, where all raw and intermediate figures will be stored. This thesis aims at presenting the usage of Enterprise Service Bus concept in building software infrastructure for transferring large volume of measurements data. Topics discussed here include technologies and mechanisms realizing the concept of integration bus, model of data transferring system based on ...

  12. Large volume syringe pump extruder for desktop 3D printers

    Directory of Open Access Journals (Sweden)

    Kira Pusch

    2018-04-01

    Full Text Available Syringe pump extruders are required for a wide range of 3D printing applications, including bioprinting, embedded printing, and food printing. However, the mass of the syringe becomes a major challenge for most printing platforms, requiring compromises in speed, resolution and/or volume. To address these issues, we have designed a syringe pump large volume extruder (LVE that is compatible with low-cost, open source 3D printers, and herein demonstrate its performance on a PrintrBot Simple Metal. Key aspects of the LVE include: (1 it is open source and compatible with open source hardware and software, making it inexpensive and widely accessible to the 3D printing community, (2 it utilizes a standard 60 mL syringe as its ink reservoir, effectively increasing print volume of the average bioprinter, (3 it is capable of retraction and high speed movements, and (4 it can print fluids using nozzle diameters as small as 100 μm, enabling the printing of complex shapes/objects when used in conjunction with the freeform reversible embedding of suspended hydrogels (FRESH 3D printing method. Printing performance of the LVE is demonstrated by utilizing alginate as a model biomaterial ink to fabricate parametric CAD models and standard calibration objects. Keywords: Additive manufacturing, 3D bioprinting, Embedded printing, FRESH, Soft materials extrusion

  13. Characterization of large volume HPGe detectors. Part II: Experimental results

    International Nuclear Information System (INIS)

    Bruyneel, Bart; Reiter, Peter; Pascovici, Gheorghe

    2006-01-01

    Measurements on a 12-fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by γ-ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60keV. A precise measurement of the hole drift anisotropy was performed with 356keV γ-rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and digital signal processing electronics

  14. Importance of atmospheric turbidity and associated uncertainties in solar radiation and luminous efficacy modelling

    International Nuclear Information System (INIS)

    Gueymard, Christian A.

    2005-01-01

    For many solar-related applications, it is important to separately predict the direct and diffuse components of irradiance or illuminance. Under clear skies, turbidity plays a determinant role in quantitatively affecting these components. In this paper, various aspects of the effect of turbidity on both spectral and broadband radiation are addressed, as well as the uncertainty in irradiance predictions due to inaccurate turbidity data, and the current improvements in obtaining the necessary turbidity data

  15. Some results of turbidity networks

    OpenAIRE

    Volz, F. E.

    2011-01-01

    Turbidity networks to obtain daily values of haze attenuation from measurements of solar radiation, mostly by means of sun photometers, were established in 1961 in the USA by the National Center for Air Pollution Control, Cincinnati, Ohio, and in Western Europe from 1963 to 1967 by the author. The course of turbidity in the two networks during interesting periods is presented. Discussion of synoptic variations of turbidity is rather difficult, when referring to periods of rapid change of air ...

  16. A self-sampling method to obtain large volumes of undiluted cervicovaginal secretions.

    Science.gov (United States)

    Boskey, Elizabeth R; Moench, Thomas R; Hees, Paul S; Cone, Richard A

    2003-02-01

    Studies of vaginal physiology and pathophysiology sometime require larger volumes of undiluted cervicovaginal secretions than can be obtained by current methods. A convenient method for self-sampling these secretions outside a clinical setting can facilitate such studies of reproductive health. The goal was to develop a vaginal self-sampling method for collecting large volumes of undiluted cervicovaginal secretions. A menstrual collection device (the Instead cup) was inserted briefly into the vagina to collect secretions that were then retrieved from the cup by centrifugation in a 50-ml conical tube. All 16 women asked to perform this procedure found it feasible and acceptable. Among 27 samples, an average of 0.5 g of secretions (range, 0.1-1.5 g) was collected. This is a rapid and convenient self-sampling method for obtaining relatively large volumes of undiluted cervicovaginal secretions. It should prove suitable for a wide range of assays, including those involving sexually transmitted diseases, microbicides, vaginal physiology, immunology, and pathophysiology.

  17. CURRENT DIRECTION, turbidity and other data from FIXED PLATFORM in the NE Pacific from 1987-05-05 to 1991-05-09 (NODC Accession 9700219)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, current, and other data were collected from CTDs and current meters deployed by the Geological Survey off the west coast of California (NE...

  18. Differential turbidity measurements at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Bates, J.A.; Kleckner, E.W.; Michalsky, J.J.; Schrotke, P.M.; Thorp, J.M.

    1978-01-01

    An experiment to exmine differential turbidity effects on measured insolation between the Rattlesnake Observatory and the Hanford Meteorological Station was conducted during summer 1977. Several types of solar radiation instruments were used, including pyranometers, multiwavelength sunphotometers, and an active cavity radiometer. Preliminary results show dramatic temporal variability of aerosol loading at HMS and significant insolation and turbidity differences between the Observatory and HMS

  19. Flow-through electroporation based on constant voltage for large-volume transfection of cells.

    Science.gov (United States)

    Geng, Tao; Zhan, Yihong; Wang, Hsiang-Yu; Witting, Scott R; Cornetta, Kenneth G; Lu, Chang

    2010-05-21

    Genetic modification of cells is a critical step involved in many cell therapy and gene therapy protocols. In these applications, cell samples of large volume (10(8)-10(9)cells) are often processed for transfection. This poses new challenges for current transfection methods and practices. Here we present a novel flow-through electroporation method for delivery of genes into cells at high flow rates (up to approximately 20 mL/min) based on disposable microfluidic chips, a syringe pump, and a low-cost direct current (DC) power supply that provides a constant voltage. By eliminating pulse generators used in conventional electroporation, we dramatically lowered the cost of the apparatus and improved the stability and consistency of the electroporation field for long-time operation. We tested the delivery of pEFGP-C1 plasmids encoding enhanced green fluorescent protein into Chinese hamster ovary (CHO-K1) cells in the devices of various dimensions and geometries. Cells were mixed with plasmids and then flowed through a fluidic channel continuously while a constant voltage was established across the device. Together with the applied voltage, the geometry and dimensions of the fluidic channel determined the electrical parameters of the electroporation. With the optimal design, approximately 75% of the viable CHO cells were transfected after the procedure. We also generalize the guidelines for scaling up these flow-through electroporation devices. We envision that this technique will serve as a generic and low-cost tool for a variety of clinical applications requiring large volume of transfected cells. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Large-volume injection in gas chromatographic trace analysis using temperature-programmable (PTV) injectors

    NARCIS (Netherlands)

    Mol, J.G.J.; Janssen, J.G.M.; Cramers, C.A.M.G.; Brinkman, U.A.T.

    1996-01-01

    The use of programmed-temperature vaporising (PTV) injectors for large-volume injection in capillary gas chromatography is briefly reviewed. The principles and optimisation of large-volume PTV injection are discussed. Guidelines are given for selection of the PTV conditions and injection mode for

  1. Calibration of a large volume argon-41 gas-effluent monitor

    International Nuclear Information System (INIS)

    Wilson, William E.; Lovas, Thomas A.

    1976-01-01

    In September of 1975, a large volume Argon-41 sampler was calibrated using a series connected calibration chamber of known sensitivity and a constant flow of activated Argon gas. The calibration included analysis of the effects of flow rate through the large volume sampler and yielded a calibration constant of 2.34 x 10 -8 μc/cm 3 /CPM. (author)

  2. Differential turbidity at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Kleckner, E.W.; Michalsky, J.J.; Stokes, G.M.

    1980-01-01

    Experiments continued in FY 1979 to examine differential turbidity effects on insolation as measured at the earth's surface. These experiments are primarily intended to provide means for interpreting insolation-data assessment studies. These data are also valuable for inferring aerosol radiative or optical effects, which is an important consideration in evaluating inadvertent climate modification and visibility degradation as a result of aerosols. The experiments are characterized by frequent, nearly simultaneous observations at the Rattlesnake Mountain Observatory (RMO) and the Hanford Meteorological Station (HMS) and take advantage of the nearly 1-km altitude difference between these two observing sites. This study indicated that nearly simultaneous measurements of the direct solar beam from stationary sites that are separated in altitude can be used to monitor the incremental optical depth arising from aerosols in the intervening layer. Once appropriate calbiration procedures have been established for the MASP unit, the direct solar data can be used to document on a routine basis aerosol variations in the first kilometer between HMS and RMO

  3. Application of a colorimeter for turbidity measurement

    Science.gov (United States)

    Wen, Yizhang; Hu, Yingtian; Wang, Xiaoping

    2016-02-01

    This paper describes a new turbidity transducer based on color measurement. The absorbance of solutions reflects the absorption and scattering of suspended particle for incident light which could determine the turbidity of solutions. The experimental results indicate that there are good linear relationships between chromaticity and turbidity. The new way is suitable for continuous monitoring of water turbidity in the wide range.

  4. Application of a colorimeter for turbidity measurement

    International Nuclear Information System (INIS)

    Wen, Yizhang; Hu, Yingtian; Wang, Xiaoping

    2016-01-01

    This paper describes a new turbidity transducer based on color measurement. The absorbance of solutions reflects the absorption and scattering of suspended particle for incident light which could determine the turbidity of solutions. The experimental results indicate that there are good linear relationships between chromaticity and turbidity. The new way is suitable for continuous monitoring of water turbidity in the wide range. (paper)

  5. Coastal circulation and water-column properties in the War in the Pacific National Historical Park, Guam: measurements and modeling of waves, currents, temperature, salinity, and turbidity, April-August 2012

    Science.gov (United States)

    Storlazzi, Curt D.; Cheriton, Olivia M.; Lescinski, Jamie M.R.; Logan, Joshua B.

    2014-01-01

    The U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center (PCMSC) initiated an investigation in the National Park Service’s (NPS) War in the Pacific National Historical Park (WAPA) to provide baseline scientific information on coastal circulation and water-column properties along west-central Guam, focusing on WAPA’s Agat Unit, as it relates to the transport and settlement of coral larvae, fish, and other marine organisms. The oceanographic data and numerical circulation modeling results from this study demonstrate that circulation in Agat Bay was strongly driven by winds and waves at longer (>1 day) timescales and by the tides at shorter (Turbidity was relatively low in Agat Bay and was similar to levels measured elsewhere along west-central Guam. The numerical circulation modeling results provide insight into the potential paths of buoyant material released from a series of locations along west-central Guam under summer non-trade wind forcing conditions that characterize coral spawning events. This information may be useful in evaluating the potential zones of influence/impact resulting from transport by surface currents of material released from these select locations.

  6. Coastal circulation and sediment dynamics in Pelekane and Kawaihae Bays, Hawaii--measurements of waves, currents, temperature, salinity, turbidity, and geochronology: November 2010--March 2011

    Science.gov (United States)

    Storlazzi, Curt D.; Field, Michael E.; Presto, M. Katherine; Swarzenski, Peter W.; Logan, Joshua B.; Reiss, Thomas E.; Elfers, Timothy C.; Cochran, Susan A.; Torresan, Michael E.; Chezar, Hank

    2012-01-01

    Coral reef communities on the Island of Hawaii have been heavily affected by the construction of Kawaihae Harbor in the 1950s and by subsequent changes in land use in the adjacent watershed. Sedimentation and other forms of land-based pollution have led to declines in water quality and coral reef health over the past two decades (Tissot, 1998). Erosion mitigation efforts are underway on land, and there is a need to evaluate the impact of these actions on the adjacent coastal ecosystem. The Kohala Center and Kohala Watershed Partnership was awarded $2.69 million from the National Oceanographic and Atmospheric Administration’s (NOAA) Restoration Center as part of the American Recovery and Reinvestment Act of 2009 to stabilize soil and improve land-use practices in the Pelekane Bay watershed. The grant allowed the Kohala Watershed Partnership to implement various upland watershed management activities to reduce land-based sources of pollution into Pelekane Bay. However, a number of questions must be answered in order to: (1) evaluate the effectiveness of the terrestrial watershed remediation efforts; (2) understand the potential of the local marine ecosystem to recover; and (3) understand the potential threat that existing mud deposits in the bay pose to adjacent, relatively pristine coral reef ecosystems. The goal of this experiment was to help address these questions and establish a framework to evaluate the success of the Kohala Watershed Partnership restoration efforts. This research program will also provide resource managers with information relevant to other watershed restoration efforts currently being planned in neighboring watersheds. This project involved an interdisciplinary team of coral reef biologists from the University of Hawaii Coral Reef Assessment and Monitoring Program, who focused on the impact of sedimentation on the biota of Pelekane Bay, and a team of geologists and oceanographers from the U.S. Geological Survey (USGS), who focused on the

  7. Coastal Circulation and Sediment Dynamics in War-in-the-Pacific National Historical Park, Guam; measurements of waves, currents, temperature, salinity, and turbidity, June 2007-January 2008

    Science.gov (United States)

    Storlazzi, Curt D.; Presto, M. Katherine; Logan, Joshua B.

    2009-01-01

    Flow in and around coral reefs affects a number of physical, chemical and biologic processes that influence the health and sustainability of coral reef ecosystems. These range from the residence time of sediment and contaminants to nutrient uptake and larval retention and dispersal. As currents approach a coast they diverge to flow around reef structures, causing high horizontal and vertical shear. This can result in either the rapid advection of material in localized jets, or the retention of material in eddies that form in the lee of bathymetric features. The high complexity and diversity both within and between reefs, in conjunction with past technical restrictions, has limited our understanding of the nature of flow and the resulting flux of physical, chemical, and biologic material in these fragile ecosystems. Sediment, nutrients, and other pollutants from a variety of land-based activities adversely impact many coral reef ecosystems in the U.S. and around the world. These pollutants are transported in surface water runoff, groundwater seepage, and atmospheric fallout into coastal waters, and there is compelling evidence that the sources have increased globally as a result of human-induced changes to watersheds. In Guam, and elsewhere on U.S. high islands in the Pacific and Caribbean, significant changes in the drainage basins due to agriculture, feral grazing, fires, and urbanization have in turn altered the character and volume of land-based pollution released to coral reefs. Terrigenous sediment run-off (and the associated nutrients and contaminants often absorbed to it) and deposition on coral reefs are recognized to potentially have significant impact on coral health by blocking light and inhibiting photosynthesis, directly smothering and abrading coral, and triggering increases in macro algae. Studies that combine information on watershed, surface water- and groundwater-flow, transport and fate of sediment and other pollutants in the reef environment

  8. Forced transport of thermal energy in magmatic and phreatomagmatic large volume ignimbrites: Paleomagnetic evidence from the Colli Albani volcano, Italy

    Science.gov (United States)

    Trolese, Matteo; Giordano, Guido; Cifelli, Francesca; Winkler, Aldo; Mattei, Massimo

    2017-11-01

    Few studies have detailed the thermal architecture of large-volume pyroclastic density current deposits, although such work has a clear importance for understanding the dynamics of eruptions of this magnitude. Here we examine the temperature of emplacement of large-volume caldera-forming ignimbrites related to magmatic and phreatomagmatic eruptions at the Colli Albani volcano, Italy, by using thermal remanent magnetization analysis on both lithic and juvenile clasts. Results show that all the magmatic ignimbrites were deposited at high temperature, between the maximum blocking temperature of the magnetic carrier (600-630 °C) and the glass transition temperature (about 710 °C). Temperature estimations for the phreatomagmatic ignimbrite range between 200 and 400 °C, with most of the clasts emplaced between 200 and 320 °C. Because all the investigated ignimbrites, magmatic and phreatomagmatic, share similar magma composition, volume and mobility, we attribute the temperature difference to magma-water interaction, highlighting its pronounced impact on thermal dissipation, even in large-volume eruptions. The homogeneity of the deposit temperature of each ignimbrite across its areal extent, which is maintained across topographic barriers, suggests that these systems are thermodynamically isolated from the external environment for several tens of kilometers. Based on these findings, we propose that these large-volume ignimbrites are dominated by the mass flux, which forces the lateral transport of mass, momentum, and thermal energy for distances up to tens of kilometers away from the vent. We conclude that spatial variation of the emplacement temperature can be used as a proxy for determining the degree of forced-convection flow.

  9. Transporting large volumes of residual radioactive material: FUSRAP solutions

    International Nuclear Information System (INIS)

    Pressnell, T.; McDaniel, P.; Darby, J.

    1997-01-01

    During the 1940s, 1950s and 1960s, many sites in the United States were used by the Manhattan Engineer District and the Atomic Energy Commission for processing and storing uranium and thorium ores and metals. Some of the sites were owned by the federal government; others were owned by universities or other institutions; and still others, such as chemical plants, were privately owned. The Formerly Utilized Sites Remedial Action Program (FUSRAP) is one of several U.S. Department of Energy programs created to address radioactive contamination in excess of guidelines at these sites. FUSRAP currently includes 46 sites in 14 states. This article includes the following topics in describing FUSRAP work: Logistics challenges; engineering challenges (package inspection, equipment compatability, moisture content requirements, waste volume estimation); Traffic management

  10. Natural fluctuations in nearshore turbidity and the relative influences of beach renourishment

    OpenAIRE

    Dompe, Philip E.

    1993-01-01

    Turbidity is a measure of the clarity of water. Turbidity depends upon the scattering and absorption of light by suspended particles. The focus of this study was to obtain quantitative measurements of turbidity in the nearshore zone, along with measurements of associated wave parameters and currents occurring naturally and during a beach nourishment project. The objectives were to make quantitative and qualitative comparisons between natural events and those induced by the dred...

  11. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    Science.gov (United States)

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Turbid releases from Glen Canyon Dam, Arizona, following rainfall-runoff events of September 2013

    Science.gov (United States)

    Wildman, Richard A.; Vernieu, William

    2017-01-01

    Glen Canyon Dam is a large dam on the Colorado River in Arizona. In September 2013, it released turbid water following intense thunderstorms in the surrounding area. Turbidity was >15 nephelometric turbidity units (NTU) for multiple days and >30 NTU at its peak. These unprecedented turbid releases impaired downstream fishing activity and motivated a rapid-response field excursion. At 5 locations upstream from the dam, temperature, specific conductance, dissolved oxygen, chlorophyll a, and turbidity were measured in vertical profiles. Local streamflow and rainfall records were retrieved, and turbidity and specific conductance data in dam releases were evaluated. Profiling was conducted to determine possible sources of turbidity from 3 tributaries nearest the dam, Navajo, Antelope, and Wahweap creeks, which entered Lake Powell as interflows during this study. We discuss 4 key conditions that must have been met for tributaries to influence turbidity of dam releases: tributary flows must have reached the dam, tributary flows must have been laden with sediment, inflow currents must have been near the depth of dam withdrawals, and the settling velocity of particles must have been slow. We isolate 2 key uncertainties that reservoir managers should resolve in future similar studies: the reach of tributary water into the reservoir thalweg and the distribution of particle size of suspended sediment. These uncertainties leave the source of the turbidity ambiguous, although an important role for Wahweap Creek is possible. The unique combination of limnological factors we describe implies that turbid releases at Glen Canyon Dam will continue to be rare.

  13. Detecting Boosted Dark Matter from the Sun with Large Volume Neutrino Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joshua; /SLAC; Cui, Yanou; /Perimeter Inst. Theor. Phys.; Zhao, Yue; /Stanford U., ITP /Stanford U., Phys. Dept.

    2015-04-02

    We study novel scenarios where thermal dark matter (DM) can be efficiently captured in the Sun and annihilate into boosted dark matter. In models with semi-annihilating DM, where DM has a non-minimal stabilization symmetry, or in models with a multi-component DM sector, annihilations of DM can give rise to stable dark sector particles with moderate Lorentz boosts. We investigate both of these possibilities, presenting concrete models as proofs of concept. Both scenarios can yield viable thermal relic DM with masses O(1)-O(100) GeV. Taking advantage of the energetic proton recoils that arise when the boosted DM scatters off matter, we propose a detection strategy which uses large volume terrestrial detectors, such as those designed to detect neutrinos or proton decays. In particular, we propose a search for proton tracks pointing towards the Sun. We focus on signals at Cherenkov-radiation-based detectors such as Super-Kamiokande (SK) and its upgrade Hyper-Kamiokande (HK). We find that with spin-dependent scattering as the dominant DM-nucleus interaction at low energies, boosted DM can leave detectable signals at SK or HK, with sensitivity comparable to DM direct detection experiments while being consistent with current constraints. Our study provides a new search path for DM sectors with non-minimal structure.

  14. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy.

    Science.gov (United States)

    Burnett, T L; Kelley, R; Winiarski, B; Contreras, L; Daly, M; Gholinia, A; Burke, M G; Withers, P J

    2016-02-01

    Ga(+) Focused Ion Beam-Scanning Electron Microscopes (FIB-SEM) have revolutionised the level of microstructural information that can be recovered in 3D by block face serial section tomography (SST), as well as enabling the site-specific removal of smaller regions for subsequent transmission electron microscope (TEM) examination. However, Ga(+) FIB material removal rates limit the volumes and depths that can be probed to dimensions in the tens of microns range. Emerging Xe(+) Plasma Focused Ion Beam-Scanning Electron Microscope (PFIB-SEM) systems promise faster removal rates. Here we examine the potential of the method for large volume serial section tomography as applied to bainitic steel and WC-Co hard metals. Our studies demonstrate that with careful control of milling parameters precise automated serial sectioning can be achieved with low levels of milling artefacts at removal rates some 60× faster. Volumes that are hundreds of microns in dimension have been collected using fully automated SST routines in feasible timescales (<24h) showing good grain orientation contrast and capturing microstructural features at the tens of nanometres to the tens of microns scale. Accompanying electron back scattered diffraction (EBSD) maps show high indexing rates suggesting low levels of surface damage. Further, under high current Ga(+) FIB milling WC-Co is prone to amorphisation of WC surface layers and phase transformation of the Co phase, neither of which have been observed at PFIB currents as high as 60nA at 30kV. Xe(+) PFIB dual beam microscopes promise to radically extend our capability for 3D tomography, 3D EDX, 3D EBSD as well as correlative tomography. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Development of large-volume rhyolitic ignibrites (LRI'S): The Chalupas Caldera, an example from Ecuador

    International Nuclear Information System (INIS)

    Hammersley, L.; DePaolo, D.J; Beate, B

    2001-01-01

    The mechanisms responsible for the generation of large volumes of silicic magma and the eruption of large-volume rhyolitic ignimbrites (LRI's) remain poorly understood. Of particular interest are the relative roles of crustal assimilation, fractional crystallization and magma supply and the processes by which large volumes of magma accumulate in crustal chambers rather than erupt in smaller batches. Isotope geochemistry, combined with study of major and trace element variations of lavas, can be used to infer the relative contribution of crustal material and continued magmatic supply. Timescales for the accumulation of magma can be estimated using detailed geochronology. Magma supply rates can be estimated from eruption rates of nearby volcanoes. In this study we investigate the evolution of the Chalupas LRI, a caldera system in the Ecuadorian Andes where LRI's are rare in comparison to the Southern Volcanic Zone (SVZ) of South America (au)

  16. Rejecting escape events in large volume Ge detectors by a pulse shape selection procedure

    International Nuclear Information System (INIS)

    Del Zoppo, A.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Loukachine, K.; Maiolino, C.; Migneco, E.; Piattelli, P.; Santonocito, D.; Sapienza, P.

    1993-01-01

    The dependence of the response to γ-rays of a large volume Ge detector on the interval width of a selected initial rise pulse slope is investigated. The number of escape events associated with a small pulse slope is found to be greater than the corresponding number of full energy events. An escape event rejection procedure based on the observed correlation between energy deposition and pulse shape is discussed. Such a procedure seems particularly suited for the design of highly granular large volume Ge detector arrays. (orig.)

  17. Feasibility of large volume casting cementation process for intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Chen Zhuying; Chen Baisong; Zeng Jishu; Yu Chengze

    1988-01-01

    The recent tendency of radioactive waste treatment and disposal both in China and abroad is reviewed. The feasibility of the large volume casting cementation process for treating and disposing the intermediate level radioactive waste from spent fuel reprocessing plant in shallow land is assessed on the basis of the analyses of the experimental results (such as formulation study, solidified radioactive waste properties measurement ect.). It can be concluded large volume casting cementation process is a promising, safe and economic process. It is feasible to dispose the intermediate level radioactive waste from reprocessing plant it the disposal site chosen has resonable geological and geographical conditions and some additional effective protection means are taken

  18. Continuous turbidity monitoring in streams of northwestern California

    Science.gov (United States)

    Rand Eads; Jack Lewis

    2002-01-01

    Abstract - Redwood Sciences Laboratory, a field office of the USDA Forest Service, Pacific Southwest Research Station has developed and refined methods and instrumentation to monitor turbidity and suspended sediment in streams of northern California since 1996. Currently we operate 21 stations and have provided assistance in the installation of 6 gaging stations for...

  19. Large volume liquid silicone injection in the upper thighs : a never ending story

    NARCIS (Netherlands)

    Hofer, SOP; Damen, A; Nicolai, JPA

    This report concerns a 26-year-old male-to-female transsexual who had received a large volume liquid silicone injection of unknown grade into her upper lateral thighs to gain female contour. She presented at our outpatient clinic 4 years after the silicone injection with complaints of pain and

  20. A New Electropositive Filter for Concentrating Enterovirus and Norovirus from Large Volumes of Water - MCEARD

    Science.gov (United States)

    The detection of enteric viruses in environmental water usually requires the concentration of viruses from large volumes of water. The 1MDS electropositive filter is commonly used for concentrating enteric viruses from water but unfortunately these filters are not cost-effective...

  1. Optimization of Large Volume Injection for Improved Detection of Polycyclic Aromatic Hydrocarbons (PAH) in Mussels

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Ghorbani, Faranak

    2008-01-01

    Detection of PAH of six benzene rings is somewhat troublesome and lowering the limits of detection (LODs) for these compounds in food is necessary. For this purpose, we optimized a Programmable-Temperature-Vaporisation (PTV) injection with Large Volume Injection (LVI) with regard to the GC-MS det...

  2. Absolute activity determinations on large volume geological samples independent of self-absorption effects

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1980-01-01

    This paper describes a method for measuring the absolute activity of large volume samples by γ-spectroscopy independent of self-absorption effects using Ge detectors. The method yields accurate matrix independent results at the expense of replicative counting of the unknown sample. (orig./HP)

  3. Capillary gas chromatographic analysis of nerve agents using large volume injections

    NARCIS (Netherlands)

    Degenhardt, C.E.A.M.; Kientz, C.E.

    1996-01-01

    The use of large volume injections has been studied for the verification of intact organophosphorus chemical warfare agents in water samples. As the use of ethyl acetate caused severe detection problems new potential solvents were evaluated. With the developed procedure, the nerve agents sarin,

  4. Large Volume, Behaviorally-relevant Illumination for Optogenetics in Non-human Primates.

    Science.gov (United States)

    Acker, Leah C; Pino, Erica N; Boyden, Edward S; Desimone, Robert

    2017-10-03

    This protocol describes a large-volume illuminator, which was developed for optogenetic manipulations in the non-human primate brain. The illuminator is a modified plastic optical fiber with etched tip, such that the light emitting surface area is > 100x that of a conventional fiber. In addition to describing the construction of the large-volume illuminator, this protocol details the quality-control calibration used to ensure even light distribution. Further, this protocol describes techniques for inserting and removing the large volume illuminator. Both superficial and deep structures may be illuminated. This large volume illuminator does not need to be physically coupled to an electrode, and because the illuminator is made of plastic, not glass, it will simply bend in circumstances when traditional optical fibers would shatter. Because this illuminator delivers light over behaviorally-relevant tissue volumes (≈ 10 mm 3 ) with no greater penetration damage than a conventional optical fiber, it facilitates behavioral studies using optogenetics in non-human primates.

  5. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    Science.gov (United States)

    Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.

    2016-02-01

    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications.

  6. Annealing as grown large volume CZT single crystals for increased spectral resolution

    International Nuclear Information System (INIS)

    Li, Longxia

    2008-01-01

    The spectroscopic performance of current large-volume Cadmium 10% Zinc Telluride, Cd 0.9 Zn 0.1 Te, (CZT) detectors is impaired by cumulative effect of tellurium precipitates (secondary phases) presented in CZT single-crystal grown by low-pressure Bridgman techniques(1). This statistical effect may limit the energy resolution of large-volume CZT detectors (typically 2-5% at 662 keV for 12-mm thick devices). The stochastic nature of the interaction prevents the use of any electronic or digital charge correction techniques without a significant reduction in the detector efficiency. This volume constraint hampers the utility of CZT since the detectors are inefficient at detecting photons >1MeV and/or in low fluency situations. During the project, seven runs CZT ingots have been grown, in these ingots the indium dopant concentrations have been changed in the range between 0.5ppm to 6ppm. The I-R mapping imaging method has been employed to study the Te-precipitates. The Teprecipitates in as-grown CZT wafers, and after annealing wafers have been systematically studied by using I-R mapping system (home installed, resolution of 1.5 (micro)m). We employed our I-R standard annealing CZT (Zn=4%) procedure or two-steps annealing into radiation CZT (Zn=10%), we achieved the 'non'-Te precipitates (size 10 9-10 (Omega)-cm. We believe that the Te-precipitates are the p-type defects, its reducing number causes the CZT became n+-type, therefore we varied or reduced the indium dapant concentration during the growth and changed the Te-precipitates size and density by using different Cd-temperature and different annealing procedures. We have made the comparisons among Te-precipitates size, density and Indium dopant concentrations, and we found that the CZT with smaller size of Te-precipitates is suitable for radiation uses but non-Te precipitates is impossible to be used in the radiation detectors, because the CZT would became un-dopant or 'intrinsic' with non radiation affection (we

  7. Dynamics of coarse particulate matter in the turbidity maximum zone of the Gironde Estuary

    Science.gov (United States)

    Fuentes-Cid, Ana; Etcheber, Henri; Schmidt, Sabine; Abril, Gwenaël; De-Oliveira, Eric; Lepage, Mario; Sottolichio, Aldo

    2014-01-01

    There is a lack of studies devoted to coarse particulate matter (CPM) in estuaries, although this fraction can disturb activities that filter large volumes of water, such as industrial or fishery activities. In the macrotidal and highly-turbid Gironde Estuary, a monthly sampling of CPM was performed in 2011 and 2013 at two stations in the Turbidity Maximum Zone (TMZ) to understand its seasonal, tidal and hydrological dynamics. Regardless of the season and station, low quantities of CPM (few g m-3) were observed in comparison with suspended particulate matter (several 103 g m-3). The highest concentrations were consistently recorded in bottom waters and at the upstream station. Whereas there is no clear link between the CPM present in the column water and spring or neap tides, an increase in the CPM size has been identified at the two stations after a flood event, fact potentially critical regarding filtering functioning of estuarine activities.

  8. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, T.L. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); FEI Company, Achtseweg Noord 5, Bldg, 5651 GG, Eindhoven (Netherlands); Kelley, R. [FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124 (United States); Winiarski, B. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); FEI Company, Achtseweg Noord 5, Bldg, 5651 GG, Eindhoven (Netherlands); Contreras, L. [FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124 (United States); Daly, M.; Gholinia, A.; Burke, M.G. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Withers, P.J., E-mail: P.J.Withers@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); BP International Centre for Advanced Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-02-15

    Ga{sup +} Focused Ion Beam-Scanning Electron Microscopes (FIB-SEM) have revolutionised the level of microstructural information that can be recovered in 3D by block face serial section tomography (SST), as well as enabling the site-specific removal of smaller regions for subsequent transmission electron microscope (TEM) examination. However, Ga{sup +} FIB material removal rates limit the volumes and depths that can be probed to dimensions in the tens of microns range. Emerging Xe{sup +} Plasma Focused Ion Beam-Scanning Electron Microscope (PFIB-SEM) systems promise faster removal rates. Here we examine the potential of the method for large volume serial section tomography as applied to bainitic steel and WC–Co hard metals. Our studies demonstrate that with careful control of milling parameters precise automated serial sectioning can be achieved with low levels of milling artefacts at removal rates some 60× faster. Volumes that are hundreds of microns in dimension have been collected using fully automated SST routines in feasible timescales (<24 h) showing good grain orientation contrast and capturing microstructural features at the tens of nanometres to the tens of microns scale. Accompanying electron back scattered diffraction (EBSD) maps show high indexing rates suggesting low levels of surface damage. Further, under high current Ga{sup +} FIB milling WC–Co is prone to amorphisation of WC surface layers and phase transformation of the Co phase, neither of which have been observed at PFIB currents as high as 60 nA at 30 kV. Xe{sup +} PFIB dual beam microscopes promise to radically extend our capability for 3D tomography, 3D EDX, 3D EBSD as well as correlative tomography. - Highlights: • The uptake of dual beam FIBs has been rapid but long milling times have limited imaged volumes to tens of micron dimensions. • Emerging plasma Xe{sup +} PFIB-SEM technology offers materials removal rates at least 60× greater than conventional Ga{sup +} FIB systems with

  9. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy

    International Nuclear Information System (INIS)

    Burnett, T.L.; Kelley, R.; Winiarski, B.; Contreras, L.; Daly, M.; Gholinia, A.; Burke, M.G.; Withers, P.J.

    2016-01-01

    Ga + Focused Ion Beam-Scanning Electron Microscopes (FIB-SEM) have revolutionised the level of microstructural information that can be recovered in 3D by block face serial section tomography (SST), as well as enabling the site-specific removal of smaller regions for subsequent transmission electron microscope (TEM) examination. However, Ga + FIB material removal rates limit the volumes and depths that can be probed to dimensions in the tens of microns range. Emerging Xe + Plasma Focused Ion Beam-Scanning Electron Microscope (PFIB-SEM) systems promise faster removal rates. Here we examine the potential of the method for large volume serial section tomography as applied to bainitic steel and WC–Co hard metals. Our studies demonstrate that with careful control of milling parameters precise automated serial sectioning can be achieved with low levels of milling artefacts at removal rates some 60× faster. Volumes that are hundreds of microns in dimension have been collected using fully automated SST routines in feasible timescales (<24 h) showing good grain orientation contrast and capturing microstructural features at the tens of nanometres to the tens of microns scale. Accompanying electron back scattered diffraction (EBSD) maps show high indexing rates suggesting low levels of surface damage. Further, under high current Ga + FIB milling WC–Co is prone to amorphisation of WC surface layers and phase transformation of the Co phase, neither of which have been observed at PFIB currents as high as 60 nA at 30 kV. Xe + PFIB dual beam microscopes promise to radically extend our capability for 3D tomography, 3D EDX, 3D EBSD as well as correlative tomography. - Highlights: • The uptake of dual beam FIBs has been rapid but long milling times have limited imaged volumes to tens of micron dimensions. • Emerging plasma Xe + PFIB-SEM technology offers materials removal rates at least 60× greater than conventional Ga + FIB systems with comparable or less damage. • The

  10. Assembly, operation and disassembly manual for the Battelle Large Volume Water Sampler (BLVWS)

    International Nuclear Information System (INIS)

    Thomas, V.W.; Campbell, R.M.

    1984-12-01

    Assembly, operation and disassembly of the Battelle Large Volume Water Sampler (BLVWS) are described in detail. Step by step instructions of assembly, general operation and disassembly are provided to allow an operator completely unfamiliar with the sampler to successfully apply the BLVWS to his research sampling needs. The sampler permits concentration of both particulate and dissolved radionuclides from large volumes of ocean and fresh water. The water sample passes through a filtration section for particle removal then through sorption or ion exchange beds where species of interest are removed. The sampler components which contact the water being sampled are constructed of polyvinylchloride (PVC). The sampler has been successfully applied to many sampling needs over the past fifteen years. 9 references, 8 figures

  11. High Energy Performance Tests of Large Volume LaBr{sub 3}:Ce Detector

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A.; Gondal, M.A.; Khiari, F.Z.; Dastageer, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Maslehuddin, M.M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2015-07-01

    High energy prompt gamma ray tests of a large volume cylindrical 100 mm x 100 mm (height x diameter) LaBr{sub 3}:Ce detector were carried out using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. In this study prompt gamma-rays yield were measured from water samples contaminated with toxic elements such nickel, chromium and mercury compounds with gamma ray energies up to 10 MeV. The experimental yield of prompt gamma-rays from toxic elements were compared with the results of Monte Carlo calculations. In spite of its higher intrinsic background due to its larger volume, an excellent agreement between the experimental and calculated yields of high energy gamma-rays from Ni, Cr and Hg samples has been achieved for the large volume LaBr{sub 3}:Ce detector. (authors)

  12. Management of Large Volumes of Waste Arising in a Nuclear or Radiological Emergency

    International Nuclear Information System (INIS)

    2017-10-01

    This publication, prepared in light of the IAEA Action Plan on Nuclear Safety developed after the accident at the Fukushima Daiichi nuclear power plant, addresses the management of large volumes of radioactive waste arising in a nuclear or radiological emergency, as part of overall emergency preparedness. The management of large volumes of waste will be one of many efforts to be dealt with to allow recovery of affected areas, to support return of evacuated or relocated populations and preparations for normal social and economic activities, and/or to mitigate additional environmental impacts. The publication is intended to be of use to national planners and policy makers, facility and programme managers, and other professionals responsible for developing and implementing national plans and strategies to manage radioactive waste arising from nuclear or radiological emergencies.

  13. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, P. K., E-mail: pkumar@ipr.res.in; Singh, S. K.; Sanyasi, A. K.; Awasthi, L. M., E-mail: kushagra.lalit@gmail.com; Mattoo, S. K. [Institute for Plasma Research, Gandhinagar (India)

    2016-07-15

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  14. F-term stabilization of odd axions in LARGE volume scenario

    International Nuclear Information System (INIS)

    Gao, Xin; Shukla, Pramod

    2014-01-01

    In the context of the LARGE volume scenario, stabilization of axionic moduli is revisited. This includes both even and odd axions with their scalar potential being generated by F-term contributions via various tree-level and non-perturbative effects like fluxed E3-brane instantons and fluxed poly-instantons. In all the cases, we estimate the decay constants and masses of the axions involved

  15. Insufficient evidence of benefit regarding mortality due to albumin substitution in HCC-free cirrhotic patients undergoing large volume paracentesis.

    Science.gov (United States)

    Kütting, Fabian; Schubert, Jens; Franklin, Jeremy; Bowe, Andrea; Hoffmann, Vera; Demir, Muenevver; Pelc, Agnes; Nierhoff, Dirk; Töx, Ulrich; Steffen, Hans-Michael

    2017-02-01

    Current guidelines for clinical practice recommend the infusion of human albumin after large volume paracentesis. After inspecting the current evidence behind this recommendation, we decided to conduct a systematic review and meta-analysis in order to address the effect of albumin on mortality and morbidity in the context of large volume paracentesis. We performed a comprehensive search of large databases and abstract books of conference proceedings up to March 15th 2016 for randomized controlled trials, testing the infusion of human albumin against alternatives (vs no treatment, vs plasma expanders; vs vasoconstrictors) in HCC-free patients suffering from cirrhosis. We analyzed these trials with regard to mortality, changes in plasma renin activity (PRA), hyponatremia, renal impairment, recurrence of ascites with consequential re-admission into hospital and additional complications. We employed trial sequential analysis in order to calculate the number of patients required in controlled trials to be able to determine a statistically significant advantage of the administration of one agent over another with regard to mortality. We were able to include 21 trials totaling 1277 patients. While the administration of albumin prevents a rise in PRA as well as hyponatremia, no improvement in strong clinical endpoints such as mortality could be demonstrated. Trial sequential analysis showed that at least 1550 additional patients need to be recruited into RCTs and analyzed with regard to this question in order to detect or disprove a 25% mortality effect. There is insufficient evidence that the infusion of albumin after LVP significantly lowers mortality in HCC-free patients with advanced liver disease. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  16. A new adsorption-elution technique for the concentration of aquatic extracellular antibiotic resistance genes from large volumes of water.

    Science.gov (United States)

    Wang, Da-Ning; Liu, Lu; Qiu, Zhi-Gang; Shen, Zhi-Qiang; Guo, Xuan; Yang, Dong; Li, Jing; Liu, Wei-Li; Jin, Min; Li, Jun-Wen

    2016-04-01

    Extracellular antibiotic resistance genes (eARGs) that help in the transmission and spread of antibiotic-resistant bacteria are emerging environmental contaminants in water, and there is therefore a growing need to assess environmental levels and associated risks of eARGs. However, as they are present in low amounts, it is difficult to detect eARGs in water directly with PCR techniques. Here, we prepared a new type of nucleic acid adsorption particle (NAAP) with high capacity and developed an optimal adsorption-elution method to concentrate eARGs from large volumes of water. With this technique, we were able to achieve an eARG recovery rate of above 95% from 10 L of water samples. Moreover, combining this new method with quantitative real-time PCR (qPCR), the sensitivity of the eARG detection was 10(4) times that of single qPCR, with the detection limit lowered to 100 gene copies (GCs)/L. Our analyses showed that the eARG load, virus load and certain water characteristics such as pH, chemical oxygen demand (CODMn), and turbidity affected the eARGs recovery rate. However, high eARGs recovery rates always remained within the standard limits for natural surface water quality, while eARG levels in water were lower than the detection limits of single qPCR assays. The recovery rates were not affected by water temperature and heterotrophic plate counts (HPC). The eARGs whatever located in the plasmids or the short-length linear DNAs can be recovered from the water. Furthermore, the recovery rate was high even in the presence of high concentrations of plasmids in different natural water (Haihe river, well water, raw water for drinking water, Jinhe river, Tuanbo lake and the Yunqiao reservoir). By this technology, eARGs concentrations were found ranging from (2.70 ± 0.73) × 10(2) to (4.58 ± 0.47) × 10(4) GCs/L for the extracellular ampicillin resistance gene and (5.43 ± 0.41) × 10(2) to (2.14 ± 0.23) × 10(4) GCs/L for the extracellular gentamicin

  17. Modeling of Turbidity Variation in Two Reservoirs Connected by a Water Transfer Tunnel in South Korea

    Directory of Open Access Journals (Sweden)

    Jae Chung Park

    2017-06-01

    Full Text Available The Andong and Imha reservoirs in South Korea are connected by a water transfer tunnel. The turbidity of the Imha reservoir is much higher than that of the Andong reservoir. Thus, it is necessary to examine the movement of turbidity between the two reservoirs via the water transfer tunnel. The aim of this study was to investigate the effect of the water transfer tunnel on the turbidity behavior of the two connecting reservoirs and to further understand the effect of reservoir turbidity distribution as a function of the selective withdrawal depth. This study applied the CE-QUAL-W2, a water quality and 2-dimensional hydrodynamic model, for simulating the hydrodynamic processes of the two reservoirs. Results indicate that, in the Andong reservoir, the turbidity of the released water with the water transfer tunnel was similar to that without the tunnel. However, in the Imha reservoir, the turbidity of the released water with the water transfer tunnel was lower than that without the tunnel. This can be attributed to the higher capacity of the Andong reservoir, which has double the storage of the Imha reservoir. Withdrawal turbidity in the Imha reservoir was investigated using the water transfer tunnel. This study applied three withdrawal selections as elevation (EL. 141.0 m, 146.5 m, and 152.0 m. The highest withdrawal turbidity resulted in EL. 141.0 m, which indicates that the high turbidity current is located at a vertical depth of about 20–30 m because of the density difference. These results will be helpful for understanding the release and selective withdrawal turbidity behaviors for a water transfer tunnel between two reservoirs.

  18. Numerical simulation of seismic wave propagation from land-excited large volume air-gun source

    Science.gov (United States)

    Cao, W.; Zhang, W.

    2017-12-01

    The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of

  19. Geophysics Under Pressure: Large-Volume Presses Versus the Diamond-Anvil Cell

    Science.gov (United States)

    Hazen, R. M.

    2002-05-01

    Prior to 1970, the legacy of Harvard physicist Percy Bridgman dominated high-pressure geophysics. Massive presses with large-volume devices, including piston-cylinder, opposed-anvil, and multi-anvil configurations, were widely used in both science and industry to achieve a range of crustal and upper mantle temperatures and pressures. George Kennedy of UCLA was a particularly influential advocate of large-volume apparatus for geophysical research prior to his death in 1980. The high-pressure scene began to change in 1959 with the invention of the diamond-anvil cell, which was designed simultaneously and independently by John Jamieson at the University of Chicago and Alvin Van Valkenburg at the National Bureau of Standards in Washington, DC. The compact, inexpensive diamond cell achieved record static pressures and had the advantage of optical access to the high-pressure environment. Nevertheless, members of the geophysical community, who favored the substantial sample volumes, geothermally relevant temperature range, and satisfying bulk of large-volume presses, initially viewed the diamond cell with indifference or even contempt. Several factors led to a gradual shift in emphasis from large-volume presses to diamond-anvil cells in geophysical research during the 1960s and 1970s. These factors include (1) their relatively low cost at time of fiscal restraint, (2) Alvin Van Valkenburg's new position as a Program Director at the National Science Foundation in 1964 (when George Kennedy's proposal for a Nation High-Pressure Laboratory was rejected), (3) the development of lasers and micro-analytical spectroscopic techniques suitable for analyzing samples in a diamond cell, and (4) the attainment of record pressures (e.g., 100 GPa in 1975 by Mao and Bell at the Geophysical Laboratory). Today, a more balanced collaborative approach has been adopted by the geophysics and mineral physics community. Many high-pressure laboratories operate a new generation of less expensive

  20. Novel regenerative large-volume immobilized enzyme reactor: preparation, characterization and application.

    Science.gov (United States)

    Ruan, Guihua; Wei, Meiping; Chen, Zhengyi; Su, Rihui; Du, Fuyou; Zheng, Yanjie

    2014-09-15

    A novel large-volume immobilized enzyme reactor (IMER) on small column was prepared with organic-inorganic hybrid silica particles and applied for fast (10 min) and oriented digestion of protein. At first, a thin enzyme support layer was formed in the bottom of the small column by polymerization with α-methacrylic acid and dimethacrylate. After that, amino SiO2 particles was prepared by the sol-gel method with tetraethoxysilane and 3-aminopropyltriethoxysilane. Subsequently, the amino SiO2 particles were activated by glutaraldehyde for covalent immobilization of trypsin. Digestive capability of large-volume IMER for proteins was investigated by using bovine serum albumin (BSA), cytochrome c (Cyt-c) as model proteins. Results showed that although the sequence coverage of the BSA (20%) and Cyt-c (19%) was low, the large-volume IMER could produce peptides with stable specific sequence at 101-105, 156-160, 205-209, 212-218, 229-232, 257-263 and 473-451 of the amino sequence of BSA when digesting 1mg/mL BSA. Eight of common peptides were observed during each of the ten runs of large-volume IMER. Besides, the IMER could be easily regenerated by reactivating with GA and cross-linking with trypsin after breaking the -C=N- bond by 0.01 M HCl. The sequence coverage of BSA from regenerated IMER increased to 25% comparing the non-regenerated IMER (17%). 14 common peptides. accounting for 87.5% of first use of IMER, were produced both with IMER and regenerated IMER. When the IMER was applied for ginkgo albumin digestion, the sequence coverage of two main proteins of ginkgo, ginnacin and legumin, was 56% and 55%, respectively. (Reviewer 2) Above all, the fast and selective digestion property of the large-volume IMER indicated that the regenerative IMER could be tentatively used for the production of potential bioactive peptides and the study of oriented protein digestion. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. SyPRID sampler: A large-volume, high-resolution, autonomous, deep-ocean precision plankton sampling system

    Science.gov (United States)

    Billings, Andrew; Kaiser, Carl; Young, Craig M.; Hiebert, Laurel S.; Cole, Eli; Wagner, Jamie K. S.; Van Dover, Cindy Lee

    2017-03-01

    The current standard for large-volume (thousands of cubic meters) zooplankton sampling in the deep sea is the MOCNESS, a system of multiple opening-closing nets, typically lowered to within 50 m of the seabed and towed obliquely to the surface to obtain low-spatial-resolution samples that integrate across 10 s of meters of water depth. The SyPRID (Sentry Precision Robotic Impeller Driven) sampler is an innovative, deep-rated (6000 m) plankton sampler that partners with the Sentry Autonomous Underwater Vehicle (AUV) to obtain paired, large-volume plankton samples at specified depths and survey lines to within 1.5 m of the seabed and with simultaneous collection of sensor data. SyPRID uses a perforated Ultra-High-Molecular-Weight (UHMW) plastic tube to support a fine mesh net within an outer carbon composite tube (tube-within-a-tube design), with an axial flow pump located aft of the capture filter. The pump facilitates flow through the system and reduces or possibly eliminates the bow wave at the mouth opening. The cod end, a hollow truncated cone, is also made of UHMW plastic and includes a collection volume designed to provide an area where zooplankton can collect, out of the high flow region. SyPRID attaches as a saddle-pack to the Sentry vehicle. Sentry itself is configured with a flight control system that enables autonomous survey paths to low altitudes. In its verification deployment at the Blake Ridge Seep (2160 m) on the US Atlantic Margin, SyPRID was operated for 6 h at an altitude of 5 m. It recovered plankton samples, including delicate living larvae, from the near-bottom stratum that is seldom sampled by a typical MOCNESS tow. The prototype SyPRID and its next generations will enable studies of plankton or other particulate distributions associated with localized physico-chemical strata in the water column or above patchy habitats on the seafloor.

  2. Large-volume paracentesis with indwelling peritoneal catheter and albumin infusion: a community hospital study

    Directory of Open Access Journals (Sweden)

    Daniel K. Martin

    2016-10-01

    Full Text Available Background: The management of ascites can be problematic. This is especially true in patients with diuretic refractory ascites who develop a tense abdomen. This often results in hypotension and decreased venous return with resulting renal failure. In this paper, we further examine the risks and benefits of utilizing an indwelling peritoneal catheter to remove large-volume ascites over a 72-h period while maintaining intravascular volume and preventing renal failure. Methods: We retrospectively reviewed charts and identified 36 consecutive patients undergoing continuous large-volume paracentesis with an indwelling peritoneal catheter. At the time of drain placement, no patients had signs or laboratory parameters suggestive of spontaneous bacterial peritonitis. The patients underwent ascitic fluid removal through an indwelling peritoneal catheter and were supported with scheduled albumin throughout the duration. The catheter was used to remove up to 3 L every 8 h for a maximum of 72 h. Regular laboratory and ascitic fluid testing was performed. All patients had a clinical follow-up within 3 months after the drain placement. Results: An average of 16.5 L was removed over the 72-h time frame of indwelling peritoneal catheter maintenance. The albumin infusion utilized correlated to 12 mg/L removed. The average creatinine trend improved in a statistically significant manner from 1.37 on the day of admission to 1.21 on the day of drain removal. No patients developed renal failure during the hospital course. There were no documented episodes of neutrocytic ascites or bacterial peritonitis throughout the study review. Conclusion: Large-volume peritoneal drainage with an indwelling peritoneal catheter is safe and effective for patients with tense ascites. Concomitant albumin infusion allows for maintenance of renal function, and no increase in infectious complications was noted.

  3. Turbidity distribution in the Atlantic Ocean

    Science.gov (United States)

    Eittreim, S.; Thorndike, E.M.; Sullivan, L.

    1976-01-01

    The regional coverage of Lamont nephelometer data in the North and South Atlantic can be used to map seawater turbidity at all depths. At the level of the clearest water, in the mid-depth regions, the turbidity distribution primarily reflects the pattern of productivity in the surface waters. This suggests that the 'background' turbidity level in the oceans is largely a function of biogenic fallout. The bottom waters of the western Atlantic generally exhibit large increases in turbidity. The most intense benthic nepheloid layers are in the southwestern Argentine basin and northern North American basin; the lowest bottom water turbidity in the western Atlantic is in the equatorial regions. Both the Argentine and North American basin bottom waters appear to derive their high turbidity largely from local resuspension of terrigenous input in these basins. In contrast to the west, the eastern Atlantic basins show very low turbidities with the exception of three regions: the Mediterranean outflow area, the Cape basin, and the West European basin. ?? 1976.

  4. Open loop control of filament heating power supply for large volume plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Sugandhi, R., E-mail: ritesh@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Srivastava, P.K.; Sanyasi, A.K. [Homi Bhabha National Institute, Mumbai 400094 (India); Srivastav, Prabhakar [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Awasthi, L.M., E-mail: kushagra.lalit@gmail.com [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Mattoo, S.K. [Homi Bhabha National Institute, Mumbai 400094 (India)

    2017-02-15

    A power supply (20 V, 10 kA) for powering the filamentary cathode has been procured, interfaced and integrated with the centralized control system of Large Volume Plasma Device (LVPD). Software interface has been developed on the standard Modbus RTU communication protocol. It facilitates the dashboard for configuration, on line status monitoring, alarm management, data acquisition, synchronization and controls. It has been tested for stable operation of the power supply for the operational capabilities. The paper highlights the motivation, interface description, implementation and results obtained.

  5. Open loop control of filament heating power supply for large volume plasma device

    International Nuclear Information System (INIS)

    Sugandhi, R.; Srivastava, P.K.; Sanyasi, A.K.; Srivastav, Prabhakar; Awasthi, L.M.; Mattoo, S.K.

    2017-01-01

    A power supply (20 V, 10 kA) for powering the filamentary cathode has been procured, interfaced and integrated with the centralized control system of Large Volume Plasma Device (LVPD). Software interface has been developed on the standard Modbus RTU communication protocol. It facilitates the dashboard for configuration, on line status monitoring, alarm management, data acquisition, synchronization and controls. It has been tested for stable operation of the power supply for the operational capabilities. The paper highlights the motivation, interface description, implementation and results obtained.

  6. Complex Security System for Premises Under Conditions of Large Volume of Passenger Traffic

    Directory of Open Access Journals (Sweden)

    Yakubov Vladimir

    2016-01-01

    Full Text Available Subsystems of the design of a complex security system for premises under conditions of large volume of passenger traffic are considered. These subsystems provide video- and thermal imaging control, radio wave tomography, and gas analysis. Simultaneous application of all examined variants will essentially increase the probability of timely prevention of dangerous situations with the probability of false alarm as low as possible. It is important that finally, this will provide protection of population and will facilitate the work of intelligence services.

  7. Fan-beam scanning laser optical computed tomography for large volume dosimetry

    Science.gov (United States)

    Dekker, K. H.; Battista, J. J.; Jordan, K. J.

    2017-05-01

    A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations.

  8. Biological intrusion barriers for large-volume waste-disposal sites

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Cline, J.F.; Rickard, W.H.

    1982-01-01

    intrusion of plants and animals into shallow land burial sites with subsequent mobilization of toxic and radiotoxic materials has occured. Based on recent pathway modeling studies, such intrusions can contribute to the dose received by man. This paper describes past work on developing biological intrusion barrier systems for application to large volume waste site stabilization. State-of-the-art concepts employing rock and chemical barriers are discussed relative to long term serviceability and cost of application. The interaction of bio-intrusion barrier systems with other processes affecting trench cover stability are discussed to ensure that trench cover designs minimize the potential dose to man. 3 figures, 6 tables

  9. Characteristics of the NE-213 large-volume neutron counters for muon catalyzed fusion investigation

    International Nuclear Information System (INIS)

    Bystritsky, V.M.; Wozniak, J.; Zinov, V.G.

    1984-01-01

    The Monte-Carlo method was used to establish the properties and feasibility of a large-volume NE-213 scin illator as an efficient neutron detector. The recoil proton spectra, calculated efficiencies for different detection thresholds and scintillator sizes are presented for the neutron energy up to 15 MeV. The time characteristics, e. g., time resolution, are discussed. It is also shown that no strong influence of light attenuation by the scintilla or itself on calculated efficiencies is observed, when gamma-calibration technique is used. The detector vol me of approximately 100 l is suggested for application in investigations of μ-atom and μ-molecular processes

  10. Fan-beam scanning laser optical computed tomography for large volume dosimetry

    International Nuclear Information System (INIS)

    Dekker, K H; Battista, J J; Jordan, K J

    2017-01-01

    A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations. (paper)

  11. First results on material identification and imaging with a large-volume muon tomography prototype

    Energy Technology Data Exchange (ETDEWEB)

    Pesente, S. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Vanini, S. [University of Padova and INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy)], E-mail: sara.vanini@pd.infn.it; Benettoni, M. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Bonomi, G. [University of Brescia, via Branze 38, 25123 Brescia and INFN Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); Calvini, P. [University of Genova and INFN Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy); Checchia, P.; Conti, E.; Gonella, F.; Nebbia, G. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Squarcia, S. [University of Genova and INFN Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy); Viesti, G. [University of Padova and INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Zenoni, A. [University of Brescia, via Branze 38, 25123 Brescia and INFN Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); Zumerle, G. [University of Padova and INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy)

    2009-06-11

    The muon tomography technique, based on the Multiple Coulomb Scattering of cosmic ray muons, has been proposed recently as a tool to perform non-destructive assays of large-volume objects without any radiation hazard. In this paper we discuss experimental results obtained with a scanning system prototype, assembled using two large-area CMS Muon Barrel drift chambers. The capability of the apparatus to produce 3D images of objects and to classify them according to their density is presented. We show that the absorption of low-momentum muons in the scanned objects produces an underestimate of their scattering density, making the discrimination of materials heavier than lead more difficult.

  12. First results on material identification and imaging with a large-volume muon tomography prototype

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G. [Dipartimento di Fisica, Universita di Padova, via Marzolo 8, I-35131 Padova (Italy); Pesente, S.; Benettoni, M.; Checchia, P.; Conti, E.; Gonella, F.; Nebbia, G. [INFN, Sez. di Padova, Via Marzolo 8, I-35131 Padova (Italy); Vanini, S.; Viesti, G.; Zumerle, G. [Dip. di Fisica G. Galilei, Universita di Padova, I-35131 Padova (Italy); INFN, Sez. di Padova, Via Marzolo 8, I-35131 Padova (Italy); Bonomi, G.; Zenoni, A. [Universita di Brescia, I-25133 Brescia (Italy); INFN, Sez. di Pavia, Via Valotti 9, I-25133 Brescia (Italy); Calvini, P.; Squarcia, S. [Dip. di Fisica, Universita di Genova, Genova (Italy); INFN, Sez. di Genova, Via Dodecaneso 33, I-16146 Genova (Italy)

    2009-07-01

    The muon tomography technique, based on the multiple Coulomb scattering of cosmic ray muons, has been proposed recently as a tool to perform non-destructive assays of large volume objects without any radiation hazard. In this paper we present the experimental results obtained with a scanning system prototype, assembled using two large area CMS Muon Barrel drift chambers. The imaging capability of the apparatus is shown, and the possibility to discriminate among different materials is discussed in a specific case of detecting lead objects inside a metal matrix. This specific case is dictated by a need in safely handling scrap metal cargoes in the steel industry. (authors)

  13. SDSS Log Viewer: visual exploratory analysis of large-volume SQL log data

    Science.gov (United States)

    Zhang, Jian; Chen, Chaomei; Vogeley, Michael S.; Pan, Danny; Thakar, Ani; Raddick, Jordan

    2012-01-01

    User-generated Structured Query Language (SQL) queries are a rich source of information for database analysts, information scientists, and the end users of databases. In this study a group of scientists in astronomy and computer and information scientists work together to analyze a large volume of SQL log data generated by users of the Sloan Digital Sky Survey (SDSS) data archive in order to better understand users' data seeking behavior. While statistical analysis of such logs is useful at aggregated levels, efficiently exploring specific patterns of queries is often a challenging task due to the typically large volume of the data, multivariate features, and data requirements specified in SQL queries. To enable and facilitate effective and efficient exploration of the SDSS log data, we designed an interactive visualization tool, called the SDSS Log Viewer, which integrates time series visualization, text visualization, and dynamic query techniques. We describe two analysis scenarios of visual exploration of SDSS log data, including understanding unusually high daily query traffic and modeling the types of data seeking behaviors of massive query generators. The two scenarios demonstrate that the SDSS Log Viewer provides a novel and potentially valuable approach to support these targeted tasks.

  14. A retrospective analysis of complications of large volume liposuction; local perspective from a third world country

    International Nuclear Information System (INIS)

    Arshad, S.M.; Latif, S.; Altaf, H.N.

    2017-01-01

    This study was aimed at evaluating the complications that occurred in patients undergoing large volume liposuction and to see if there was a correlation between amount of aspirate and the rate of complications. Methodology: A detailed history, complete physical examination, BMI, and anthropometric measurements were documented for all patients. All patients under went liposuction using tumescent technique under general anesthesia in Yusra General Hospital. Patients were discharged home after 24 to 48 hours. Pressure garments were advised for 6 weeks and were called for weekly follow up for 6 weeks. Pressure garments were advised for 6 weeks. Complications were documented. SPSS version 20 was used for analysis of data. Results: Out of 217 patients, 163 (75%) were female and 54 male. Mean age was 37.1 SD+-6.7 years. Bruising and seroma were most common complications; 4.1% and 2.3%, respectively. The incidence of infection was 0.9%. One patient had over-correction and four patients (1.8%) had under-correction. Significant blood loss was encountered in one patient. Two patients (0.9%) had pulmonary embolism and 2(0.9%) suffered from necrotizing fasciitis. None of our patients undergoing large volume liposuction had fat embolism and there was no mortality. Conclusion: Careful patient selection and strict adherence to guidelines can ensure a good outcome and can minimize risk of complications. Both physicians and patients should be educated to have realistic expectations to avoid complications and improve patient safety. (author)

  15. Colloids Versus Albumin in Large Volume Paracentesis to Prevent Circulatory Dysfunction: Evidence-based Case Report.

    Science.gov (United States)

    Widjaja, Felix F; Khairan, Paramita; Kamelia, Telly; Hasan, Irsan

    2016-04-01

    Large volume paracentesis may cause paracentesis induced circulatory dysfunction (PICD). Albumin is recommended to prevent this abnormality. Meanwhile, the price of albumin is too expensive and there should be another alternative that may prevent PICD. This report aimed to compare albumin to colloids in preventing PICD. Search strategy was done using PubMed, Scopus, Proquest, dan Academic Health Complete from EBSCO with keywords of "ascites", "albumin", "colloid", "dextran", "hydroxyethyl starch", "gelatin", and "paracentesis induced circulatory dysfunction". Articles was limited to randomized clinical trial and meta-analysis with clinical question of "In hepatic cirrhotic patient undergone large volume paracentesis, whether colloids were similar to albumin to prevent PICD". We found one meta-analysis and four randomized clinical trials (RCT). A meta analysis showed that albumin was still superior of which odds ratio 0.34 (0.23-0.51). Three RCTs showed the same results and one RCT showed albumin was not superior than colloids. We conclude that colloids could not constitute albumin to prevent PICD, but colloids still have a role in patient who undergone paracentesis less than five liters.

  16. Capillary gas chromatographic analysis of nerve agents using large volume injections. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Deinum, T.; Nieuwenhuy, C.

    1994-11-01

    The procedure developed at TNO-Prins Maurits Laboratory (TNO-PML) for the verification of intact organophosphorus chemical warfare agents in water samples was improved. The last step in this procedure, the laborious and non-reproducible transfer of an ethyl acetate extract onto a Tenax-adsorption tube followed by thermal desorption of the Tenax-tube, was replaced by large volume injection of the extract onto a capillary gas chromatographic system. The parameters controlling the injection of a large volume of an extract (200 ul) were investigated and optimized. As ethyl acetate caused severe problems, potential new solvents were evaluated. With the improved procedure, the nerve agents sarin, tabun, soman, diisopropyl fluorophosphate (DFP) and VX could be determined in freshly prepared water samples at pg/ml (ppt) levels. The fate of the nerve agents under study in water at two pH`s (4.8 and 6) was investigated. For VX, the pH should be adjusted before extraction. Moreover, it is worthwhile to acidify water samples to diminish hydrolysis.

  17. Turbidity monitoring at select MDOT construction sites.

    Science.gov (United States)

    2012-06-01

    The objective of this project was to establish baseline turbidity conditions at select construction : sites by establishing a water quality monitoring program and documenting MDOT approved : BMPs on site. In 2009 the United States Environmental Prote...

  18. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Science.gov (United States)

    2010-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Maximum contaminant levels for turbidity. The maximum contaminant levels for turbidity are applicable to... part. The maximum contaminant levels for turbidity in drinking water, measured at a representative...

  19. Insolation and turbidity measurements at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Kleckner, E.W.; Michalsky, J.J.; Thorp, J.M.

    1979-01-01

    From observations obtained at the Rattlesnake Observatory and the Hanford Meteorological Station, the redistribution of solar radiation as a result of aerosols in the lowest 1 km of the earth's atmosphere has been examined using several types of solar radiation measuring instruments. Large turbidity excursions are observed with high values associated with stagnant air masses and low values associated with frontal passage. Turbidities show variations in color dependence that arise because of changes in particle size distribution

  20. Beyond Rating Curves: Time Series Models for in-Stream Turbidity Prediction

    Science.gov (United States)

    Wang, L.; Mukundan, R.; Zion, M.; Pierson, D. C.

    2012-12-01

    ARMA(1,2) errors were fit to the observations. Preliminary model validation exercises at a 30-day forecast horizon show that the ARMA error models generally improve the predictive skill of the linear regression rating curves. Skill seems to vary based on the ambient hydrologic conditions at the onset of the forecast. For example, ARMA error model forecasts issued before a high flow/turbidity event do not show significant improvements over the rating curve approach. However, ARMA error model forecasts issued during the "falling limb" of the hydrograph are significantly more accurate than rating curves for both single day and accumulated event predictions. In order to assist in reservoir operations decisions associated with turbidity events and general water supply reliability, DEP has initiated design of an Operations Support Tool (OST). OST integrates a reservoir operations model with 2D hydrodynamic water quality models and a database compiling near-real-time data sources and hydrologic forecasts. Currently, OST uses conventional flow-turbidity rating curves and hydrologic forecasts for predictive turbidity inputs. Given the improvements in predictive skill over traditional rating curves, the ARMA error models are currently being evaluated as an addition to DEP's Operations Support Tool.

  1. Estimation of atmospheric turbidity over Ghardaïa city

    OpenAIRE

    Djafer, Djelloul; Irbah, Abdanour

    2013-01-01

    International audience; The atmospheric turbidity expresses the attenuation of the solar radiation that reaches the Earth's surface under cloudless sky and describes the optical thickness of the atmosphere. We investigate the atmospheric turbidity over Gharda¨ıa city using two turbidity parameters, the Linke turbidity factor and the Angstr ¨om turbidity coefficient. Their values and temporal variation are obtained from data recorded between 2004 and 2008 at Gharda¨ıa. The results show that bo...

  2. On the modelling of shallow turbidity flows

    Science.gov (United States)

    Liapidevskii, Valery Yu.; Dutykh, Denys; Gisclon, Marguerite

    2018-03-01

    In this study we investigate shallow turbidity density currents and underflows from mechanical point of view. We propose a simple hyperbolic model for such flows. On one hand, our model is based on very basic conservation principles. On the other hand, the turbulent nature of the flow is also taken into account through the energy dissipation mechanism. Moreover, the mixing with the pure water along with sediments entrainment and deposition processes are considered, which makes the problem dynamically interesting. One of the main advantages of our model is that it requires the specification of only two modeling parameters - the rate of turbulent dissipation and the rate of the pure water entrainment. Consequently, the resulting model turns out to be very simple and self-consistent. This model is validated against several experimental data and several special classes of solutions (such as travelling, self-similar and steady) are constructed. Unsteady simulations show that some special solutions are realized as asymptotic long time states of dynamic trajectories.

  3. Effect, Feasibility, and Clinical Relevance of Cell Enrichment in Large Volume Fat Grafting

    DEFF Research Database (Denmark)

    Rasmussen, Bo Sonnich; Lykke Sørensen, Celine; Vester-Glowinski, Peter Viktor

    2017-01-01

    Large volume fat grafting is limited by unpredictable volume loss; therefore, methods of improving graft retention have been developed. Fat graft enrichment with either stromal vascular fraction (SVF) cells or adipose tissue-derived stem/stromal cells (ASCs) has been investigated in several animal...... and human studies, and significantly improved graft retention has been reported. Improvement of graft retention and the feasibility of these techniques are equally important in evaluating the clinical relevance of cell enrichment. We conducted a systematic search of PubMed to identify studies on fat graft...... enrichment that used either SVF cells or ASCs, and only studies reporting volume assessment were included. A total of 38 articles (15 human and 23 animal) were included to investigate the effects of cell enrichment on graft retention as well as the feasibility and clinical relevance of cell-enriched fat...

  4. Rugged Large Volume Injection for Sensitive Capillary LC-MS Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Hanne Roberg-Larsen

    2017-08-01

    Full Text Available A rugged and high throughput capillary column (cLC LC-MS switching platform using large volume injection and on-line automatic filtration and filter back-flush (AFFL solid phase extraction (SPE for analysis of environmental water samples with minimal sample preparation is presented. Although narrow columns and on-line sample preparation are used in the platform, high ruggedness is achieved e.g., injection of 100 non-filtrated water samples did not result in a pressure rise/clogging of the SPE/capillary columns (inner diameter 300 μm. In addition, satisfactory retention time stability and chromatographic resolution were also features of the system. The potential of the platform for environmental water samples was demonstrated with various pharmaceutical products, which had detection limits (LOD in the 0.05–12.5 ng/L range. Between-day and within-day repeatability of selected analytes were <20% RSD.

  5. Electro-mechanical probe positioning system for large volume plasma device

    Science.gov (United States)

    Sanyasi, A. K.; Sugandhi, R.; Srivastava, P. K.; Srivastav, Prabhakar; Awasthi, L. M.

    2018-05-01

    An automated electro-mechanical system for the positioning of plasma diagnostics has been designed and implemented in a Large Volume Plasma Device (LVPD). The system consists of 12 electro-mechanical assemblies, which are orchestrated using the Modbus communication protocol on 4-wire RS485 communications to meet the experimental requirements. Each assembly has a lead screw-based mechanical structure, Wilson feed-through-based vacuum interface, bipolar stepper motor, micro-controller-based stepper drive, and optical encoder for online positioning correction of probes. The novelty of the system lies in the orchestration of multiple drives on a single interface, fabrication and installation of the system for a large experimental device like the LVPD, in-house developed software, and adopted architectural practices. The paper discusses the design, description of hardware and software interfaces, and performance results in LVPD.

  6. Improved tolerance of abdominal large-volume radiotherapy due to ornithine aspartate

    International Nuclear Information System (INIS)

    Kuttig, H.

    1983-01-01

    The influence of ornithine aspartate on supporting the hepatic function was investigated in a group of 47 patients with tumour dissemination in the pelvic and abdominal region, randomised on the basis of the progress of the serum enzymes GOT, GPT, LAD, LDH, LAP and the alkaline phosphatase during and following completion of a course of large-volume radiotherapy. The adjuvant therapy with ornithine aspartate resulted in reduced enzyme movement with an earlier tendency to normalisation. The results, which are borne out by statistics, clearly show an improvement in the hepatic function on detoxication of toxic degradation products of radiotherapy with reduced impairment of the body's own defence mechanisms. Subjectively too, the course of treatment with ornithine aspartate showed a reduced ratio of side effects as regards lassitude and impairment of the patient's general well-being as compared with the group of patients to whom ornithine aspartate was not simultaneously administered. (orig.) [de

  7. The position response of a large-volume segmented germanium detector

    International Nuclear Information System (INIS)

    Descovich, M.; Nolan, P.J.; Boston, A.J.; Dobson, J.; Gros, S.; Cresswell, J.R.; Simpson, J.; Lazarus, I.; Regan, P.H.; Valiente-Dobon, J.J.; Sellin, P.; Pearson, C.J.

    2005-01-01

    The position response of a large-volume segmented coaxial germanium detector is reported. The detector has 24-fold segmentation on its outer contact. The output from each contact was sampled with fast digital signal processing electronics in order to determine the position of the γ-ray interaction from the signal pulse shape. The interaction position was reconstructed in a polar coordinate system by combining the radial information, contained in the rise-time of the pulse leading edge, with the azimuthal information, obtained from the magnitude of the transient charge signals induced on the neighbouring segments. With this method, a position resolution of 3-7mm is achieved in both the radial and the azimuthal directions

  8. The position response of a large-volume segmented germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Descovich, M. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom)]. E-mail: mdescovich@lbl.gov; Nolan, P.J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Boston, A.J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Dobson, J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Gros, S. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Lazarus, I. [CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Regan, P.H. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Valiente-Dobon, J.J. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Sellin, P. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Pearson, C.J. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2005-11-21

    The position response of a large-volume segmented coaxial germanium detector is reported. The detector has 24-fold segmentation on its outer contact. The output from each contact was sampled with fast digital signal processing electronics in order to determine the position of the {gamma}-ray interaction from the signal pulse shape. The interaction position was reconstructed in a polar coordinate system by combining the radial information, contained in the rise-time of the pulse leading edge, with the azimuthal information, obtained from the magnitude of the transient charge signals induced on the neighbouring segments. With this method, a position resolution of 3-7mm is achieved in both the radial and the azimuthal directions.

  9. Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations

    International Nuclear Information System (INIS)

    Borg, Michael; Hansen, Anders Melchior; Bredmose, Henrik

    2016-01-01

    Designing floating substructures for the next generation of 10MW and larger wind turbines has introduced new challenges in capturing relevant physical effects in dynamic simulation tools. In achieving technically and economically optimal floating substructures, structural flexibility may increase to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations for large-volume substructures, including wave-structure interactions, to form the basis of deriving sectional loads and stresses within the substructure. The method is applied to a case study to illustrate the implementation and relevance. It is found that the flexible mode is significantly excited in an extreme event, indicating an increase in predicted substructure internal loads. (paper)

  10. Development of metallic molds for the large volume plastic scintillator fabrication

    International Nuclear Information System (INIS)

    Calvo, Wilson A.P.; Vieira, Jose M.; Rela, Paulo R.; Bruzinga, Wilson A.; Araujo, Eduardo P.; Costa Junior, Nelson P.; Hamada, Margarida M.

    1997-01-01

    The plastic scintillators are radiation detectors made of organic fluorescent compounds dissolved in a solidified polymer matrix. The manufacturing process of large volume detectors (55 liters) at low cost, by polymerization of the styrene monomer plus PPO and POPOP scintillators, was studied in this paper. Metallic molds of ASTM 1200 aluminum and AISI 304 stainless steel were produced by TIG welding process since the polymerization reaction is very exothermic. The measurements of transmittance, luminescence, X-ray fluorescence and light output were carried out in the plastic scintillators made using different metallic molds. The characterization results of the detectors produced in an open system using ASTM 1200 aluminum mold show that there is not quality change in the scintillator, even with aluminum being considered as unstable for styrene monomer. Therefore, the ASTM 1200 aluminum was found to be the best alternative to produce the detector by an open system polymerization. (author). 11 refs., 8 figs., 1 tab

  11. The core collapse supernova rate from 24 years of data of the Large Volume Detector

    Science.gov (United States)

    Bruno, G.; Fulgione, W.; Molinario, A.; Vigorito, C.; LVD Collaboration

    2017-09-01

    The Large Volume Detector (LVD) at INFN Laboratori Nazionali del Gran Sasso, Italy is a 1 kt liquid scintillator neutrino observatory mainly designed to study low energy neutrinos from Gravitational Stellar Collapses (GSC) with 100% efficiency over the entire Galaxy. Here we summarize the results of the search for supernova neutrino bursts over the full data set lasting from June 1992 to May 2016 for a total live time of 8211 days. In the lack of a positive observation, either in standalone mode or in coincidence with other experiments, we establish the upper limit to the rate of GSC event in the Milky Way: 0.1 year-1 at 90% c.l..

  12. Studies on a pulse shaping system for fast coincidence with very large volume HPGe detectors

    International Nuclear Information System (INIS)

    Bose, S.; Chatterjee, M.B.; Sinha, B.K.; Bhattacharya, R.

    1987-01-01

    A variant of the leading edge timing (LET) has been proposed which compensates the ''walk'' due to risetime spread in very large volume (∝100 cm 3 ) HPGe detectors. The method - shape compensated leading edge timing (SCLET) - can be used over a wide dynamic range of energies with 100% efficiency and has been compared with the LET and ARC methods. A time resolution of 10 ns fwhm and 21 ns fwtm has been obtained with 22 Na gamma rays and two HPGe detectors of 96 and 114 cm 3 volume. This circuit is easy to duplicate and use can be a low cost alternative to commercial circuits in experiments requiring a large number of detectors. (orig.)

  13. Large-volume static compression using nano-polycrystalline diamond for opposed anvils in compact cells

    International Nuclear Information System (INIS)

    Okuchi, T; Sasaki, S; Ohno, Y; Osakabe, T; Odake, S; Kagi, H

    2010-01-01

    In order to extend the pressure regime of intrinsically low-sensitivity methods of measurement, such as neutron scattering and NMR, sample volume to be compressed in compact opposed-anvil cells is desired to be significantly increased. We hereby conducted a series of experiments using two types of compact cells equipped with enforced loading mechanisms. Super-hard nano-polycrystalline diamond (NPD) anvils were carefully prepared for large-volume compression in these cells. These anvils are harder, larger and stronger than single crystal diamond anvils, so that they could play an ideal role to accept the larger forces. Supported and unsupported anvil geometries were separately tested to evaluate this expectation. In spite of insufficient support to the anvils, pressures to 14 GPa were generated for the sample volume of > 0.1 mm 3 , without damaging the NPD anvils. These results demonstrate a large future potential of compact cells equipped with NPD anvils and enforced loading mechanism.

  14. Development of a spatially uniform fast ionization wave in a large-volume discharge

    International Nuclear Information System (INIS)

    Zatsepin, D.V.; Starikovskaya, S.M.; Starikovskii, A.Yu.

    1998-01-01

    A study is made of a high-voltage nanosecond breakdown in the form of a fast ionization wave produced in a large-volume (401) discharge chamber. The propagation speed of the wave front and the integral energy deposition in a plasma are measured for various regimes of the air discharge at pressures of 10 -2 -4 Torr. A high degree of both the spatial uniformity of the discharge and the reproducibility of the discharge parameters is obtained. The possibility of the development of a fast ionization wave in an electrodeless system is demonstrated. A transition of the breakdown occurring in the form of a fast ionization wave into the streamer breakdown is observed. It is shown that such discharges are promising for technological applications

  15. Measurement of Atmospheric Neutrino Oscillations with Very Large Volume Neutrino Telescopes

    Directory of Open Access Journals (Sweden)

    J. P. Yáñez

    2015-01-01

    Full Text Available Neutrino oscillations have been probed during the last few decades using multiple neutrino sources and experimental set-ups. In the recent years, very large volume neutrino telescopes have started contributing to the field. First ANTARES and then IceCube have relied on large and sparsely instrumented volumes to observe atmospheric neutrinos for combinations of baselines and energies inaccessible to other experiments. Using this advantage, the latest result from IceCube starts approaching the precision of other established technologies and is paving the way for future detectors, such as ORCA and PINGU. These new projects seek to provide better measurements of neutrino oscillation parameters and eventually determine the neutrino mass ordering. The results from running experiments and the potential from proposed projects are discussed in this review, emphasizing the experimental challenges involved in the measurements.

  16. Radio-chemical dosage of 90Sr in large volumes of drinking water

    International Nuclear Information System (INIS)

    Jeanmaire, L.; Patti, F.; Bullier, D.

    1965-01-01

    I. Principle of the method: 1. Fixing on a resin of all the cations present in the water. 2. Elution using 5 N nitric acid and precipitation of strontium as the carbonate. 3. Concentration of the strontium using the fuming nitric acid method. 4. Purification of the strontium on a resin by selective elution with ammonium citrate. 5. The strontium-90 is measured by separation at the 90 Y equilibrium in the form of the oxalate which is then counted. II. Advantages of the method The concentration of the radio-activity starting from large volumes (100 l) is generally tedious but this method which makes use of a fixation on a cationic resin makes it very simple. The rest of the method consists of a series of simple chemical operations using ion-exchange on resins and coprecipitation. Finally, it is possible to dose stable strontium. (authors) [fr

  17. Aerodynamics of the Large-Volume, Flow-Through Detector System. Final report

    International Nuclear Information System (INIS)

    Reed, H.; Saric, W.; Laananen, D.; Martinez, C.; Carrillo, R.; Myers, J.; Clevenger, D.

    1996-03-01

    The Large-Volume Flow-Through Detector System (LVFTDS) was designed to monitor alpha radiation from Pu, U, and Am in mixed-waste incinerator offgases; however, it can be adapted to other important monitoring uses that span a number of potential markets, including site remediation, indoor air quality, radon testing, and mine shaft monitoring. Goal of this effort was to provide mechanical design information for installation of LVFTDS in an incinerator, with emphasis on ability to withstand the high temperatures and high flow rates expected. The work was successfully carried out in three stages: calculation of pressure drop through the system, materials testing to determine surrogate materials for wind-tunnel testing, and wind-tunnel testing of an actual configuration

  18. MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-06-01

    Full Text Available We present a new approach to retrieve Aerosol Optical Depth (AOD using the Moderate Resolution Imaging Spectroradiometer (MODIS over the turbid coastal water. This approach supplements the operational Dark Target (DT aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters. Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of anthropogenic aerosol particles on coastal air quality and climate.

  19. APS 6BM-B Large Volume High Pressure Beamline: A Workhorse for Rock and Mineral Physics

    Science.gov (United States)

    Chen, H.; Whitaker, M. L.; Baldwin, K. J.; Huebsch, W. R.; Vaughan, M. T.; Weidner, D. J.

    2017-12-01

    With the inheritance of decades of technical innovations at the NSLS X17B2 Beamline, APS 6BM-B Beamline was established in 2015 and is a dedicated beamline for synchrotron-based large volume high pressure research in earth sciences, especially rock and mineral physics. Currently a 250-ton hydraulic press equipped with a D-DIA module is installed and a Rotational Drickamer Apparatus from Yale University is hosted every cycle, covering a pressure range from crust to lower mantle. 6BM-B operates in white beam mode with an effective energy range of 20-100 keV. Energy dispersive X-ray diffraction data is collected using a 10-element solid state Ge array detector arranged in a circular geometry to allow for the real time assessment of stress. Direct radiographic imaging using Prosillica CCD camera and scintillating YAG crystals yields sample strain and strain rate. In addition to applications in phase transitions, equation of states measurements, sound velocity measurements, this setup is ideal for studies of steady state and dynamic deformation process. In this presentation, technical features and strengths of 6BM-B will be discussed. Most recent progress and science highlights of our user community will be showcased.

  20. Development of large-volume, high-resolution tracking detectors based on capillaries filled with liquid scintillator

    International Nuclear Information System (INIS)

    Buontempo, S.; Fabre, J.P.; Frenkel, A.; Gregoire, G.; Hoepfner, K.; Konijn, J.; Kozarenko, E.; Kreslo, I.; Kushnirenko, A.; Martellotti, G.; Michel, L.; Mondardini, M.R.; Penso, G.; Siegmund, W.P.; Strack, R.; Tyukov, V.; Vasilchenko, V.; Vilain, P.; Wilquet, G.; Winter, K.; Wong, H.; Zymin, K.

    1995-01-01

    Searches for the decay of short-lived particles require real time, high-resolution tracking in active targets, which in the case of neutrino physics should be of large volume. The possibility of achieving this by using glass capillaries filled with organic liquid scintillator is being investigated in the framework of the CHORUS experiment at CERN. In this paper, after outlining the application foreseen, advances in the tracking technique are discussed and results from tests are reported. An active target of dimensions 180x2x2 cm 3 has been assembled from capillaries with 20 μm diameter pores. The readout scheme currently in operation allows the reading of similar 5x10 5 channels using a single chain of image intensifiers having a resolution of σ similar 20 μm. Following the development of new liquid scintillators and purification methods an attenuation length of similar 3 m has been obtained. This translates into a hit density of 3.5 per mm for a minimum-ionizing particle that crosses the active target at a distance of 1 m from the readout end. (orig.)

  1. An experimental study on the excitation of large volume airguns in a small volume body of water

    International Nuclear Information System (INIS)

    Wang, Baoshan; Yang, Wei; Yuan, Songyong; Ge, Hongkui; Chen, Yong; Guo, Shijun; Xu, Ping

    2010-01-01

    A large volume airgun array is effective in generating seismic waves, which is extensively used in large volume bodies of water such as oceans, lakes and reservoirs. So far, the application of large volume airguns is subject to the distribution of large volume bodies of water. This paper reports an attempt to utilize large volume airguns in a small body of water as a seismic source for seismotectonic studies. We carried out a field experiment in Mapaoquan pond, Fangshan district, Beijing, during the period 25–30 May 2009. Bolt LL1500 airguns, each with volumes of 2000 in 3 , the largest commercial airguns available today, were used in this experiment. We tested the excitation of the airgun array with one or two guns. The airgun array was placed 7–11 m below the water's surface. The near- and far-field seismic motions induced by the airgun source were recorded by a 100 km long seismic profile composed of 16 portable seismometers and a 100 m long strong motion seismograph profile, respectively. The following conclusions can be drawn from this experiment. First, it is feasible to excite large volume airguns in a small volume body of water. Second, seismic signals from a single shot of one airgun can be recognized at the offset up to 15 km. Taking advantage of high source repeatability, we stacked records from 128 shots to enhance the signal-to-noise ratio, and direct P-waves can be easily identified at the offset ∼50 km in stacked records. Third, no detectable damage to fish or near-field constructions was caused by the airgun shots. Those results suggest that large volume airguns excited in small bodies of water can be used as a routinely operated seismic source for mid-scale (tens of kilometres) subsurface explorations and monitoring under various running conditions

  2. Removal of turbidity and suspended solids backwash water from rapid sand filter by using electrocoagulation

    Directory of Open Access Journals (Sweden)

    AR Yari

    2016-07-01

    Full Text Available Introduction: By appropriate method can be recycled more than 95 percent effluent backwashing the filter. This study aimed to examine the efficiency of the electrocoagulation process on turbidity and suspended solids removal from backwash effluent of rapid sand filter of water treatment plants No 1 in Karaj. Methods: This bench-scale experimental study was carried out on the samples of backwash effluent in a batch system. The Plexiglas tank with a volume of 4 liters, containing of 4 plate electrodes made of aluminum and iron was connected to a direct current power supply. Samples every 15 minutes to measure turbidity and suspended solids collected in the middle of the reactor and examined. Effect of several parameters such as current density, reaction time and voltage were studied. The total number of samples tested were 48. Turbidity and total suspended solids was measured by nephlometry and gravimetric method, respectively. Results: The highest removal efficiency of turbidity and suspended solids in reaction time of 60 minutes, current density of 2 mA and a voltage of 45 mV was observed. The highest removal efficiency of turbidity in aluminum and iron electrodes were 96.83 and 83.77 %, respectively. Also The highest removal efficiency of suspended solids were 96.73 and 86.22 %, respectively. Conclusion: The results showed that electro- coagulation process can be a good choice to remove turbidity and suspended from backwash of rapid sand filter. Aluminum electrode efficiency in the removal of turbidity and suspended solids was greater than the iron electrode.

  3. Effect of Canister Movement on Water Turbidity

    International Nuclear Information System (INIS)

    TRIMBLE, D.J.

    2000-01-01

    Requirements for evaluating the adherence characteristics of sludge on the fuel stored in the K East Basin and the effect of canister movement on basin water turbidity are documented in Briggs (1996). The results of the sludge adherence testing have been documented (Bergmann 1996). This report documents the results of the canister movement tests. The purpose of the canister movement tests was to characterize water turbidity under controlled canister movements (Briggs 1996). The tests were designed to evaluate methods for minimizing the plumes and controlling water turbidity during fuel movements leading to multi-canister overpack (MCO) loading. It was expected that the test data would provide qualitative visual information for use in the design of the fuel retrieval and water treatment systems. Video recordings of the tests were to be the only information collected

  4. Process automation system for integration and operation of Large Volume Plasma Device

    International Nuclear Information System (INIS)

    Sugandhi, R.; Srivastava, P.K.; Sanyasi, A.K.; Srivastav, Prabhakar; Awasthi, L.M.; Mattoo, S.K.

    2016-01-01

    Highlights: • Analysis and design of process automation system for Large Volume Plasma Device (LVPD). • Data flow modeling for process model development. • Modbus based data communication and interfacing. • Interface software development for subsystem control in LabVIEW. - Abstract: Large Volume Plasma Device (LVPD) has been successfully contributing towards understanding of the plasma turbulence driven by Electron Temperature Gradient (ETG), considered as a major contributor for the plasma loss in the fusion devices. Large size of the device imposes certain difficulties in the operation, such as access of the diagnostics, manual control of subsystems and large number of signals monitoring etc. To achieve integrated operation of the machine, automation is essential for the enhanced performance and operational efficiency. Recently, the machine is undergoing major upgradation for the new physics experiments. The new operation and control system consists of following: (1) PXIe based fast data acquisition system for the equipped diagnostics; (2) Modbus based Process Automation System (PAS) for the subsystem controls and (3) Data Utilization System (DUS) for efficient storage, processing and retrieval of the acquired data. In the ongoing development, data flow model of the machine’s operation has been developed. As a proof of concept, following two subsystems have been successfully integrated: (1) Filament Power Supply (FPS) for the heating of W- filaments based plasma source and (2) Probe Positioning System (PPS) for control of 12 number of linear probe drives for a travel length of 100 cm. The process model of the vacuum production system has been prepared and validated against acquired pressure data. In the next upgrade, all the subsystems of the machine will be integrated in a systematic manner. The automation backbone is based on 4-wire multi-drop serial interface (RS485) using Modbus communication protocol. Software is developed on LabVIEW platform using

  5. Hierarchical imaging: a new concept for targeted imaging of large volumes from cells to tissues.

    Science.gov (United States)

    Wacker, Irene; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R

    2016-12-12

    Imaging large volumes such as entire cells or small model organisms at nanoscale resolution seemed an unrealistic, rather tedious task so far. Now, technical advances have lead to several electron microscopy (EM) large volume imaging techniques. One is array tomography, where ribbons of ultrathin serial sections are deposited on solid substrates like silicon wafers or glass coverslips. To ensure reliable retrieval of multiple ribbons from the boat of a diamond knife we introduce a substrate holder with 7 axes of translation or rotation specifically designed for that purpose. With this device we are able to deposit hundreds of sections in an ordered way in an area of 22 × 22 mm, the size of a coverslip. Imaging such arrays in a standard wide field fluorescence microscope produces reconstructions with 200 nm lateral resolution and 100 nm (the section thickness) resolution in z. By hierarchical imaging cascades in the scanning electron microscope (SEM), using a new software platform, we can address volumes from single cells to complete organs. In our first example, a cell population isolated from zebrafish spleen, we characterize different cell types according to their organelle inventory by segmenting 3D reconstructions of complete cells imaged with nanoscale resolution. In addition, by screening large numbers of cells at decreased resolution we can define the percentage at which different cell types are present in our preparation. With the second example, the root tip of cress, we illustrate how combining information from intermediate resolution data with high resolution data from selected regions of interest can drastically reduce the amount of data that has to be recorded. By imaging only the interesting parts of a sample considerably less data need to be stored, handled and eventually analysed. Our custom-designed substrate holder allows reproducible generation of section libraries, which can then be imaged in a hierarchical way. We demonstrate, that EM

  6. Process automation system for integration and operation of Large Volume Plasma Device

    Energy Technology Data Exchange (ETDEWEB)

    Sugandhi, R., E-mail: ritesh@ipr.res.in; Srivastava, P.K.; Sanyasi, A.K.; Srivastav, Prabhakar; Awasthi, L.M.; Mattoo, S.K.

    2016-11-15

    Highlights: • Analysis and design of process automation system for Large Volume Plasma Device (LVPD). • Data flow modeling for process model development. • Modbus based data communication and interfacing. • Interface software development for subsystem control in LabVIEW. - Abstract: Large Volume Plasma Device (LVPD) has been successfully contributing towards understanding of the plasma turbulence driven by Electron Temperature Gradient (ETG), considered as a major contributor for the plasma loss in the fusion devices. Large size of the device imposes certain difficulties in the operation, such as access of the diagnostics, manual control of subsystems and large number of signals monitoring etc. To achieve integrated operation of the machine, automation is essential for the enhanced performance and operational efficiency. Recently, the machine is undergoing major upgradation for the new physics experiments. The new operation and control system consists of following: (1) PXIe based fast data acquisition system for the equipped diagnostics; (2) Modbus based Process Automation System (PAS) for the subsystem controls and (3) Data Utilization System (DUS) for efficient storage, processing and retrieval of the acquired data. In the ongoing development, data flow model of the machine’s operation has been developed. As a proof of concept, following two subsystems have been successfully integrated: (1) Filament Power Supply (FPS) for the heating of W- filaments based plasma source and (2) Probe Positioning System (PPS) for control of 12 number of linear probe drives for a travel length of 100 cm. The process model of the vacuum production system has been prepared and validated against acquired pressure data. In the next upgrade, all the subsystems of the machine will be integrated in a systematic manner. The automation backbone is based on 4-wire multi-drop serial interface (RS485) using Modbus communication protocol. Software is developed on LabVIEW platform using

  7. Atmospheric turbidity parameters in the high polluted site of egypt

    International Nuclear Information System (INIS)

    Shaltout, M.A.M.; Rahoma, U.A.

    1996-01-01

    Monthly variations of Linke, angstrom and Schuepp turbidity coefficients and gamma exponent as well as the influence of climatic factor on them are analysed. For each of these turbidity coefficients; calculated from measurements of broad band filters at Helwan, egypt, desert climate, are reported. A linear regression model fitted to Angstrom's turbidity turbidity coefficient beta and Linke turbidity L for Helwan. The calculation showed that, it is higher values of atmospheric turbidity coefficients due to, both the effect of air pollutants in the Helwan atmosphere from the four cement companies and some of heavy industrial factories, and the effect of the former's desert climate. 6 figs., 2 tabs

  8. Fingerprinting Persistent Turbidity in Sheep Creek Reservoir, Owhyee, Nevada

    Science.gov (United States)

    Ransom, R. N.; Hooper, R. L.; Kerner, D.; Nicols, S.

    2007-12-01

    Sheep Creek Reservoir near Owyhee, NV is historically a quality rainbow trout fishery. Persistent high-turbidity has been an issue since a major storm event in 2005 resulted in surface water runoff into the Reservoir. The high turbidity is adversely impacting the quality of the fishery. Initial turbidity measurements in 2005 were upwards of 80NTU and these numbers have only decreased to 30NTU over the past two summers. Field parameters indicate the turbidity is associated with high total suspended solids (TSS) and not algae. Five water samples collected from around the reservoir during June, 2007 indicated uniform TSS values in the range of 5 to 12mg/L and oriented powder x-ray diffraction(XRD) and transmission electron microscopy(TEM) analyses of suspended sediment shows very uniform suspended particulate mineralogy including smectite, mixed layer illite/smectite (I/S), discrete illite, lesser amounts of kaolin, sub-micron quartz and feldspar. Diatoms represent a ubiquitous but minor component of the suspended solids. Six soil samples collected from possible source areas around the reservoir were analyzed using both XRD and TEM to see if a source area for the suspended solids could be unambiguously identified. Soils on the east side of the reservoir contain smectite and mixed layer I/S but very little of the other clays. The less than 2 micron size fraction from soils collected from a playa on the topographic bench immediately to the west of the reservoir show a mineralogic finger-print essentially identical to the current suspended sediment. The suspended sediment probably originates on the bench to the west of the reservoir and cascades into the reservoir over the topographic break during extreme storm events. The topographic relief, short travel distance and lack of a suitable vegetated buffer zone to the west are all consistent with a primary persistent suspended sediment source from the west. Identification of the sediment source allows for design of a cost

  9. A new large-volume metal reference standard for radioactive waste management.

    Science.gov (United States)

    Tzika, F; Hult, M; Stroh, H; Marissens, G; Arnold, D; Burda, O; Kovář, P; Suran, J; Listkowska, A; Tyminski, Z

    2016-03-01

    A new large-volume metal reference standard has been developed. The intended use is for calibration of free-release radioactivity measurement systems and is made up of cast iron tubes placed inside a box of the size of a Euro-pallet (80 × 120 cm). The tubes contain certified activity concentrations of (60)Co (0.290 ± 0.006 Bq g(-1)) and (110m)Ag (3.05 ± 0.09 Bq g(-1)) (reference date: 30 September 2013). They were produced using centrifugal casting from a smelt into which (60)Co was first added and then one piece of neutron irradiated silver wire was progressively diluted. The iron castings were machined to the desirable dimensions. The final material consists of 12 iron tubes of 20 cm outer diameter, 17.6 cm inner diameter, 40 cm length/height and 245.9 kg total mass. This paper describes the reference standard and the process of determining the reference activity values. © The Author 2015. Published by Oxford University Press.

  10. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    International Nuclear Information System (INIS)

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming

    2013-01-01

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a “black out” phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm× 260 mm× 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  11. Plasma response to electron energy filter in large volume plasma device

    International Nuclear Information System (INIS)

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K.

    2013-01-01

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma

  12. On 'light' fermions and proton stability in 'big divisor' D3/D7 large volume compactifications

    International Nuclear Information System (INIS)

    Misra, Aalok; Shukla, Pramod

    2011-01-01

    Building on our earlier work (Misra and Shukla, Nucl. Phys. B 827:112, 2010; Phys. Lett. B 685:347-352, 2010), we show the possibility of generating ''light'' fermion mass scales of MeV-GeV range (possibly related to the first two generations of quarks/leptons) as well as eV (possibly related to first two generations of neutrinos) in type IIB string theory compactified on Swiss-Cheese orientifolds in the presence of a mobile space-time filling D3-brane restricted to (in principle) stacks of fluxed D7-branes wrapping the ''big'' divisor Σ B . This part of the paper is an expanded version of the latter half of Sect. 3 of a published short invited review (Misra, Mod. Phys. Lett. A 26:1, 2011) written by one of the authors [AM ]. Further, we also show that there are no SUSY GUT-type dimension-five operators corresponding to proton decay, and we estimate the proton lifetime from a SUSY GUT-type four-fermion dimension-six operator to be 10 61 years. Based on GLSM calculations in (Misra and Shukla, Nucl. Phys. B 827:112, 2010) for obtaining the geometric Kaehler potential for the ''big divisor,'' using further the Donaldson's algorithm, we also briefly discuss in the first of the two appendices the metric for the Swiss-Cheese Calabi-Yau used, which we obtain and which becomes Ricci flat in the large-volume limit. (orig.)

  13. Major risk from rapid, large-volume landslides in Europe (EU Project RUNOUT)

    Science.gov (United States)

    Kilburn, Christopher R. J.; Pasuto, Alessandro

    2003-08-01

    Project RUNOUT has investigated methods for reducing the risk from large-volume landslides in Europe, especially those involving rapid rates of emplacement. Using field data from five test sites (Bad Goisern and Köfels in Austria, Tessina and Vajont in Italy, and the Barranco de Tirajana in Gran Canaria, Spain), the studies have developed (1) techniques for applying geomorphological investigations and optical remote sensing to map landslides and their evolution; (2) analytical, numerical, and cellular automata models for the emplacement of sturzstroms and debris flows; (3) a brittle-failure model for forecasting catastrophic slope failure; (4) new strategies for integrating large-area Global Positioning System (GPS) arrays with local geodetic monitoring networks; (5) methods for raising public awareness of landslide hazards; and (6) Geographic Information System (GIS)-based databases for the test areas. The results highlight the importance of multidisciplinary studies of landslide hazards, combining subjects as diverse as geology and geomorphology, remote sensing, geodesy, fluid dynamics, and social profiling. They have also identified key goals for an improved understanding of the physical processes that govern landslide collapse and runout, as well as for designing strategies for raising public awareness of landslide hazards and for implementing appropriate land management policies for reducing landslide risk.

  14. On `light' fermions and proton stability in `big divisor' D3/ D7 large volume compactifications

    Science.gov (United States)

    Misra, Aalok; Shukla, Pramod

    2011-06-01

    Building on our earlier work (Misra and Shukla, Nucl. Phys. B 827:112, 2010; Phys. Lett. B 685:347-352, 2010), we show the possibility of generating "light" fermion mass scales of MeV-GeV range (possibly related to the first two generations of quarks/leptons) as well as eV (possibly related to first two generations of neutrinos) in type IIB string theory compactified on Swiss-Cheese orientifolds in the presence of a mobile space-time filling D3-brane restricted to (in principle) stacks of fluxed D7-branes wrapping the "big" divisor Σ B . This part of the paper is an expanded version of the latter half of Sect. 3 of a published short invited review (Misra, Mod. Phys. Lett. A 26:1, 2011) written by one of the authors [AM]. Further, we also show that there are no SUSY GUT-type dimension-five operators corresponding to proton decay, and we estimate the proton lifetime from a SUSY GUT-type four-fermion dimension-six operator to be 1061 years. Based on GLSM calculations in (Misra and Shukla, Nucl. Phys. B 827:112, 2010) for obtaining the geometric Kähler potential for the "big divisor," using further the Donaldson's algorithm, we also briefly discuss in the first of the two appendices the metric for the Swiss-Cheese Calabi-Yau used, which we obtain and which becomes Ricci flat in the large-volume limit.

  15. A Novel Technique for Endovascular Removal of Large Volume Right Atrial Tumor Thrombus

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, Barbara, E-mail: nickel.ba@gmail.com [US Teleradiology and Quantum Medical Radiology Group (United States); McClure, Timothy, E-mail: tmcclure@gmail.com; Moriarty, John, E-mail: jmoriarty@mednet.ucla.edu [UCLA Medical Center, Department of Interventional Radiology (United States)

    2015-08-15

    Venous thromboembolic disease is a significant cause of morbidity and mortality, particularly in the setting of large volume pulmonary embolism. Thrombolytic therapy has been shown to be a successful treatment modality; however, its use somewhat limited due to the risk of hemorrhage and potential for distal embolization in the setting of large mobile thrombi. In patients where either thrombolysis is contraindicated or unsuccessful, and conventional therapies prove inadequate, surgical thrombectomy may be considered. We present a case of percutaneous endovascular extraction of a large mobile mass extending from the inferior vena cava into the right atrium using the Angiovac device, a venovenous bypass system designed for high-volume aspiration of undesired endovascular material. Standard endovascular methods for removal of cancer-associated thrombus, such as catheter-directed lysis, maceration, and exclusion, may prove inadequate in the setting of underlying tumor thrombus. Where conventional endovascular methods either fail or are unsuitable, endovascular thrombectomy with the Angiovac device may be a useful and safe minimally invasive alternative to open resection.

  16. A Novel Technique for Endovascular Removal of Large Volume Right Atrial Tumor Thrombus

    International Nuclear Information System (INIS)

    Nickel, Barbara; McClure, Timothy; Moriarty, John

    2015-01-01

    Venous thromboembolic disease is a significant cause of morbidity and mortality, particularly in the setting of large volume pulmonary embolism. Thrombolytic therapy has been shown to be a successful treatment modality; however, its use somewhat limited due to the risk of hemorrhage and potential for distal embolization in the setting of large mobile thrombi. In patients where either thrombolysis is contraindicated or unsuccessful, and conventional therapies prove inadequate, surgical thrombectomy may be considered. We present a case of percutaneous endovascular extraction of a large mobile mass extending from the inferior vena cava into the right atrium using the Angiovac device, a venovenous bypass system designed for high-volume aspiration of undesired endovascular material. Standard endovascular methods for removal of cancer-associated thrombus, such as catheter-directed lysis, maceration, and exclusion, may prove inadequate in the setting of underlying tumor thrombus. Where conventional endovascular methods either fail or are unsuitable, endovascular thrombectomy with the Angiovac device may be a useful and safe minimally invasive alternative to open resection

  17. A model for steady-state large-volume plasma generation

    International Nuclear Information System (INIS)

    Uhm, H.S.; Miller, J.D.; Schneider, R.F.

    1991-01-01

    In this paper, a simple, new scheme to generate a uniform, steady-state, large-volume plasma is presented. The weakly magnetized plasma is created by direct ionization of the background gas by low-energy electrons generated from thermionic filaments. An annular arrangement of the filaments ensures a uniform plasma density in the radial direction as predicted by theory. Experiments have been performed to characterize the plasma generated in such a configuration. In order to explain the experimental observation, we develop a bulk plasma theory based on plasma transport via cross-field diffusion. As assumed in the theoretical model, the experimental measurements indicate a uniform plasma density along the axis. Both the theory and experiment indicate that the plasma density is a function of the square of the external magnetic field. The theory also predicts the plasma density to be proportional to the neutral density to the two-thirds power in agreement with the experimental data. We also observe the experimental data to agree remarkably well with theoretical prediction for a broad range of system parameters

  18. Active species in a large volume N2-O2 post-discharge reactor

    International Nuclear Information System (INIS)

    Kutasi, K; Pintassilgo, C D; Loureiro, J; Coelho, P J

    2007-01-01

    A large volume post-discharge reactor placed downstream from a flowing N 2 -O 2 microwave discharge is modelled using a three-dimensional hydrodynamic model. The density distributions of the most populated active species present in the reactor-O( 3 P), O 2 (a 1 Δ g ), O 2 (b 1 Σ g + ), NO(X 2 Π), NO(A 2 Σ + ), NO(B 2 Π), NO 2 (X), O 3 , O 2 (X 3 Σ g - ) and N( 4 S)-are calculated and the main source and loss processes for each species are identified for two discharge conditions: (i) p = 2 Torr, f = 2450 MHz, and (ii) p = 8 Torr, f = 915 MHz; in the case of a N 2 -2%O 2 mixture composition and gas flow rate of 2 x 10 3 sccm. The modification of the species relative densities by changing the oxygen percentage in the initial gas mixture composition, in the 0.2%-5% range, are presented. The possible tuning of the species concentrations in the reactor by changing the size of the connecting afterglow tube between the active discharge and the large post-discharge reactor is investigated as well

  19. Reduced Albumin Dosing During Large-Volume Paracentesis Is Not Associated with Adverse Clinical Outcomes.

    Science.gov (United States)

    Johnson, Kara B; Mueller, Jessica L; Simon, Tracey G; Zheng, Hui; King, Lindsay Y; Makar, Robert S; Gervais, Debra A; Chung, Raymond T

    2015-07-01

    LVP is used to manage diuretic-resistant ascites in cirrhotic patients. Albumin administration prevents complications including acute kidney injury and paracentesis-induced circulatory dysfunction, but the optimal dose is unclear. We sought to assess adherence to guidelines enacted in July 2011 at our center for reducing the albumin dose administered at large-volume paracentesis (LVP) and evaluate the cost and rate of complications of LVPs before and after guideline enactment. All LVPs performed on cirrhotic patients in our center's Department of Radiology between July 2009 and January 2014 were studied. Outcomes included adherence to guidelines, LVP complications, and administered albumin cost. Groups were compared using Student's t tests for continuous data and Chi-square or Fisher's exact tests for categorical data. A repeated measurements model accounted for patients with multiple LVPs. Of the 935 LVPs, 288 occurred before guideline implementation (group 1) and 647 occurred after (group 2). The mean dose of albumin administered was 13.7 g/L of ascites removed in group 1 versus 10.3 g/L in group 2 (p albumin administration and associated cost savings was still observed. There was no increase in LVP-related complications after guideline implementation or in the adherent group, suggesting that albumin dose can be safely reduced. Future efforts should be directed at enhancing guideline adherence and potentially further reducing albumin dosing.

  20. Effect of large volume paracentesis on plasma volume--a cause of hypovolemia

    International Nuclear Information System (INIS)

    Kao, H.W.; Rakov, N.E.; Savage, E.; Reynolds, T.B.

    1985-01-01

    Large volume paracentesis, while effectively relieving symptoms in patients with tense ascites, has been generally avoided due to reports of complications attributed to an acute reduction in intravascular volume. Measurements of plasma volume in these subjects have been by indirect methods and have not uniformly confirmed hypovolemia. We have prospectively evaluated 18 patients (20 paracenteses) with tense ascites and peripheral edema due to chronic liver disease undergoing 5 liter paracentesis for relief of symptoms. Plasma volume pre- and postparacentesis was assessed by a 125 I-labeled human serum albumin dilution technique as well as by the change in hematocrit and postural blood pressure difference. No significant change in serum sodium, urea nitrogen, hematocrit or postural systolic blood pressure difference was noted at 24 or 48 hr after paracentesis. Serum creatinine at 24 hr after paracentesis was unchanged but a small but statistically significant increase in serum creatinine was noted at 48 hr postparacentesis. Plasma volume changed -2.7% (n = 6, not statistically significant) during the first 24 hr and -2.8% (n = 12, not statistically significant) during the 0- to 48-hr period. No complications from paracentesis were noted. These results suggest that 5 liter paracentesis for relief of symptoms is safe in patients with tense ascites and peripheral edema from chronic liver disease

  1. “Finite” non-Gaussianities and tensor-scalar ratio in large volume Swiss-cheese compactifications

    Science.gov (United States)

    Misra, Aalok; Shukla, Pramod

    2009-03-01

    Developing on the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi-Yau's, Nucl. Phys. B 799 (2008) 165-198, arXiv: 0707.0105] and [A. Misra, P. Shukla, Large volume axionic Swiss-cheese inflation, Nucl. Phys. B 800 (2008) 384-400, arXiv: 0712.1260 [hep-th

  2. Using turbidity for designing water networks.

    Science.gov (United States)

    Castaño, J A; Higuita, J C

    2016-05-01

    Some methods to design water networks with minimum fresh water consumption are based on the selection of a key contaminant. In most of these "single contaminant methods", a maximum allowable concentration of contaminants must be established in water demands and water sources. Turbidity is not a contaminant concentration but is a property that represents the "sum" of other contaminants, with the advantage that it can be cheaper and easily measured than biological oxygen demand, chemical oxygen demand, suspended solids, dissolved solids, among others. The objective of this paper is to demonstrate that turbidity can be used directly in the design of water networks just like any other contaminant concentration. A mathematical demonstration is presented and in order to validate the mathematical results, the design of a water network for a guava fudge production process is performed. The material recovery pinch diagram and nearest neighbors algorithm were used for the design of the water network. Nevertheless, this water network could be designed using other single contaminant methodologies. The maximum error between the expected and the real turbidity values in the water network was 3.3%. These results corroborate the usefulness of turbidity in the design of water networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Safe total corporal contouring with large-volume liposuction for the obese patient.

    Science.gov (United States)

    Dhami, Lakshyajit D; Agarwal, Meenakshi

    2006-01-01

    The advent of the tumescent technique in 1987 allowed for safe total corporal contouring as an ambulatory, single-session megaliposuction with the patient under regional anesthesia supplemented by local anesthetic only in selected areas. Safety and aesthetic issues define large-volume liposuction as having a 5,000-ml aspirate, mega-volume liposuction as having an 8,000-ml aspirate, and giganto-volume liposuction as having an aspirate of 12,000 ml or more. Clinically, a total volume comprising 5,000 ml of fat and wetting solution aspirated during the procedure qualifies for megaliposuction/large-volume liposuction. Between September 2000 and August 2005, 470 cases of liposuction were managed. In 296 (63%) of the 470 cases, the total volume of aspirate exceeded 5 l (range, 5,000-22,000 ml). Concurrent limited or total-block lipectomy was performed in 70 of 296 cases (23.6%). Regional anesthesia with conscious sedation was preferred, except where liposuction targeted areas above the subcostal region (the upper trunk, lateral chest, gynecomastia, breast, arms, and face), or when the patient so desired. Tumescent infiltration was achieved with hypotonic lactated Ringer's solution, adrenalin, triamcinalone, and hyalase in all cases during the last one year of the series. This approach has clinically shown less tissue edema in the postoperative period than with conventional physiologic saline used in place of the Ringer's lactate solution. The amount injected varied from 1,000 to 8,000 ml depending on the size, site, and area. Local anesthetic was included only for the terminal portion of the tumescent mixture, wherever the subcostal regions were infiltrated. The aspirate was restricted to the unstained white/yellow fat, and the amount of fat aspirated did not have any bearing on the amount of solution infiltrated. There were no major complications, and no blood transfusions were administered. The hospital stay ranged from 8 to 24 h for both liposuction and liposuction

  4. 'Finite' non-Gaussianities and tensor-scalar ratio in large volume Swiss-cheese compactifications

    International Nuclear Information System (INIS)

    Misra, Aalok; Shukla, Pramod

    2009-01-01

    Developing on the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi-Yau's, Nucl. Phys. B 799 (2008) 165-198, (arXiv: 0707.0105)] and [A. Misra, P. Shukla, Large volume axionic Swiss-cheese inflation, Nucl. Phys. B 800 (2008) 384-400, (arXiv: 0712.1260 [hep-th])] and using the formalisms of [S. Yokoyama, T. Suyama, T. Tanaka, Primordial non-Gaussianity in multi-scalar slow-roll inflation, (arXiv: 0705.3178 [astro-ph]); S. Yokoyama, T. Suyama, T. Tanaka, Primordial non-Gaussianity in multi-scalar inflation, Phys. Rev. D 77 (2008) 083511, (arXiv: 0711.2920 [astro-ph])], after inclusion of perturbative and non-perturbative α' corrections to the Kaehler potential and (D1- and D3-)instanton generated superpotential, we show the possibility of getting finite values for the non-linear parameter f NL while looking for non-Gaussianities in type IIB compactifications on orientifolds of the Swiss cheese Calabi-Yau WCP 4 [1,1,1,6,9] in the L(arge) V(olume) S(cenarios) limit. We show the same in two contexts. First is multi-field slow-roll inflation with D3-instanton contribution coming from a large number of multiple wrappings of a single (Euclidean) D3-brane around the 'small' divisor yielding f NL ∼O(1). The second is when the slow-roll conditions are violated and for the number of the aforementioned D3-instanton wrappings being of O(1) but more than one, yielding f NL ∼O(1). Based on general arguments not specific to our (string-theory) set-up, we argue that requiring curvature perturbations not to grow at horizon crossing and at super-horizon scales, automatically picks out hybrid inflationary scenarios which in our set up can yield f NL ∼O(1) and tensor-scalar ratio of O(10 -2 ). For all our calculations, the world-sheet instanton contributions to the Kaehler potential coming from the non-perturbative α ' corrections

  5. Removal of COD and turbidity to improve wastewater quality using electrocoagulation technique

    International Nuclear Information System (INIS)

    Mohd Faiqun Niam; Fadil Othman; Johan Sohaili; Zulfa Fauzia

    2007-01-01

    Electrocoagulation (EC) is becoming a popular process to be used for wastewater treatment. The removal of COD and turbidity from wastewater by EC using iron (Fe) electrode material was investigated in this paper. Several working parameters, such as pH, current density, and operating time were studied in an attempt to achieve a higher removal capacity. Wastewater sample was made from milk powder with initial COD of 1140 mgL -1 and turbidity of 491 NTU. Current density was varied from 3.51 to 5.62 mA cm -2 , and operating time of between 30 and 50 minutes. The results show that the effluent wastewater was very clear and its quality exceeded the direct discharge standard. The removal efficiencies of COD and turbidity were high, being more than 65 % and 95 %. In addition, the experimental results also show that the electrocoagulation can neutralize pH of wastewater. (author)

  6. Performance of large electron energy filter in large volume plasma device

    International Nuclear Information System (INIS)

    Singh, S. K.; Srivastava, P. K.; Awasthi, L. M.; Mattoo, S. K.; Sanyasi, A. K.; Kaw, P. K.; Singh, R.

    2014-01-01

    This paper describes an in-house designed large Electron Energy Filter (EEF) utilized in the Large Volume Plasma Device (LVPD) [S. K. Mattoo, V. P. Anita, L. M. Awasthi, and G. Ravi, Rev. Sci. Instrum. 72, 3864 (2001)] to secure objectives of (a) removing the presence of remnant primary ionizing energetic electrons and the non-thermal electrons, (b) introducing a radial gradient in plasma electron temperature without greatly affecting the radial profile of plasma density, and (c) providing a control on the scale length of gradient in electron temperature. A set of 19 independent coils of EEF make a variable aspect ratio, rectangular solenoid producing a magnetic field (B x ) of 100 G along its axis and transverse to the ambient axial field (B z ∼ 6.2 G) of LVPD, when all its coils are used. Outside the EEF, magnetic field reduces rapidly to 1 G at a distance of 20 cm from the center of the solenoid on either side of target and source plasma. The EEF divides LVPD plasma into three distinct regions of source, EEF and target plasma. We report that the target plasma (n e ∼ 2 × 10 11  cm −3 and T e ∼ 2 eV) has no detectable energetic electrons and the radial gradients in its electron temperature can be established with scale length between 50 and 600 cm by controlling EEF magnetic field. Our observations reveal that the role of the EEF magnetic field is manifested by the energy dependence of transverse electron transport and enhanced transport caused by the plasma turbulence in the EEF plasma

  7. Type IIB orientifolds, D-brane instantons and the large volume scenario

    Energy Technology Data Exchange (ETDEWEB)

    Plauschinn, Erik

    2009-07-28

    This thesis is concerned with a branch of research in String Theory called String Phenomenology which aims for a better understanding of the connection between String Theory and Particle Physics. In particular, in this work we cover three topics which are important in order to establish this connection. The first topic is about String Theory model building in the context of so-called type IIB orientifolds with orientifold three- and seven-planes. After giving a brief overview, we work out in detail an important consistency condition for String Theory constructions, the so-called tadpole cancellation condition, and we verify explicitly that chiral anomalies are cancelled via the generalised Green-Schwarz mechanism. The second topic is concerned with so-called D-brane instantons which are nonperturbative effects in type II String Theory constructions. We recall the instanton calculus for such configurations, we derive the so-called A eck-Dine-Seiberg superpotential in String Theory and we develop an important constraint, a chiral zero-mode constraint, for instanton contributions in the presence of a realistic Particle Physics sector. The third topic is about moduli stabilisation in type IIB string compactifications. More concretely, we review the so-called KKLT as well as Large Volume Scenario, and we construct and study a model for the latter scenario where the constraint mentioned above has been taken into account explicitly. Although the three topics studied in this thesis are slightly different in nature, there is nevertheless a complex interplay between them with many interrelations. In order to uncover these connections, a detailed study of each individual subject has been performed which has led to new results such as the chiral zero-mode constraint. (orig.)

  8. Addressing challenges in bar-code scanning of large-volume infusion bags.

    Science.gov (United States)

    Raman, Kirthana; Heelon, Mark; Kerr, Gary; Higgins, Thomas L

    2011-08-01

    A hospital pharmacy's efforts to identify and address challenges with bedside scanning of bar codes on large-volume parenteral (LVP) infusion bags are described. Bar-code-assisted medication administration (BCMA) has been shown to reduce medication errors and improve patient safety. After the pilot implementation of a BCMA system and point-of-care scanning procedures at a medical center's intensive care unit, it was noted that nurses' attempted bedside scans of certain LVP bags for product identification purposes often were not successful. An investigation and root-cause analysis, including observation of nurses' scanning technique by a multidisciplinary team, determined that the scanning failures stemmed from the placement of two bar-code imprints-one with the product identification code and another, larger imprint with the expiration date and lot number-adjacently on the LVP bags. The nursing staff was educated on a modified scanning technique, which resulted in significantly improved success rates in the scanning of the most commonly used LVP bags. Representatives of the LVP bag manufacturer met with hospital staff to discuss the problem and corrective measures. As part of a subsequent infusion bag redesign, the manufacturer discontinued the use of the bar-code imprint implicated in the scanning failures. Failures in scanning LVP bags were traced to problematic placement of bar-code imprints on the bags. Interdisciplinary collaboration, consultation with the bag manufacturer, and education of the nursing and pharmacy staff resulted in a reduction in scanning failures and the manufacturer's removal of one of the bar codes from its LVP bags.

  9. Albumin infusion in patients undergoing large-volume paracentesis: a meta-analysis of randomized trials.

    Science.gov (United States)

    Bernardi, Mauro; Caraceni, Paolo; Navickis, Roberta J; Wilkes, Mahlon M

    2012-04-01

    Albumin infusion reduces the incidence of postparacentesis circulatory dysfunction among patients with cirrhosis and tense ascites, as compared with no treatment. Treatment alternatives to albumin, such as artificial colloids and vasoconstrictors, have been widely investigated. The aim of this meta-analysis was to determine whether morbidity and mortality differ between patients receiving albumin versus alternative treatments. The meta-analysis included randomized trials evaluating albumin infusion in patients with tense ascites. Primary endpoints were postparacentesis circulatory dysfunction, hyponatremia, and mortality. Eligible trials were sought by multiple methods, including computer searches of bibliographic and abstract databases and the Cochrane Library. Results were quantitatively combined under a fixed-effects model. Seventeen trials with 1,225 total patients were included. There was no evidence of heterogeneity or publication bias. Compared with alternative treatments, albumin reduced the incidence of postparacentesis circulatory dysfunction (odds ratio [OR], 0.39; 95% confidence interval [CI], 0.27-0.55). Significant reductions in that complication by albumin were also shown in subgroup analyses versus each of the other volume expanders tested (e.g., dextran, gelatin, hydroxyethyl starch, and hypertonic saline). The occurrence of hyponatremia was also decreased by albumin, compared with alternative treatments (OR, 0.58; 95% CI, 0.39-0.87). In addition, mortality was lower in patients receiving albumin than alternative treatments (OR, 0.64; 95% CI, 0.41-0.98). This meta-analysis provides evidence that albumin reduces morbidity and mortality among patients with tense ascites undergoing large-volume paracentesis, as compared with alternative treatments investigated thus far. Copyright © 2011 American Association for the Study of Liver Diseases.

  10. Effect, Feasibility, and Clinical Relevance of Cell Enrichment in Large Volume Fat Grafting: A Systematic Review.

    Science.gov (United States)

    Rasmussen, Bo Sonnich; Lykke Sørensen, Celine; Vester-Glowinski, Peter Viktor; Herly, Mikkel; Trojahn Kølle, Stig-Frederik; Fischer-Nielsen, Anne; Drzewiecki, Krzysztof Tadeusz

    2017-07-01

    Large volume fat grafting is limited by unpredictable volume loss; therefore, methods of improving graft retention have been developed. Fat graft enrichment with either stromal vascular fraction (SVF) cells or adipose tissue-derived stem/stromal cells (ASCs) has been investigated in several animal and human studies, and significantly improved graft retention has been reported. Improvement of graft retention and the feasibility of these techniques are equally important in evaluating the clinical relevance of cell enrichment. We conducted a systematic search of PubMed to identify studies on fat graft enrichment that used either SVF cells or ASCs, and only studies reporting volume assessment were included. A total of 38 articles (15 human and 23 animal) were included to investigate the effects of cell enrichment on graft retention as well as the feasibility and clinical relevance of cell-enriched fat grafting. Improvements in graft retention, the SVF to fat (SVF:fat) ratio, and the ASC concentration used for enrichment were emphasized. We proposed an increased retention rate greater than 1.5-fold relative to nonenriched grafts and a maximum SVF:fat ratio of 1:1 as the thresholds for clinical relevance and feasibility, respectively. Nine studies fulfilled these criteria, whereof 6 used ASCs for enrichment. We found no convincing evidence of a clinically relevant effect of SVF enrichment in humans. ASC enrichment has shown promising results in enhancing graft retention, but additional clinical trials are needed to substantiate this claim and also determine the optimal concentration of SVF cells/ASCs for enrichment. 4. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  11. Type IIB orientifolds, D-brane instantons and the large volume scenario

    International Nuclear Information System (INIS)

    Plauschinn, Erik

    2009-01-01

    This thesis is concerned with a branch of research in String Theory called String Phenomenology which aims for a better understanding of the connection between String Theory and Particle Physics. In particular, in this work we cover three topics which are important in order to establish this connection. The first topic is about String Theory model building in the context of so-called type IIB orientifolds with orientifold three- and seven-planes. After giving a brief overview, we work out in detail an important consistency condition for String Theory constructions, the so-called tadpole cancellation condition, and we verify explicitly that chiral anomalies are cancelled via the generalised Green-Schwarz mechanism. The second topic is concerned with so-called D-brane instantons which are nonperturbative effects in type II String Theory constructions. We recall the instanton calculus for such configurations, we derive the so-called A eck-Dine-Seiberg superpotential in String Theory and we develop an important constraint, a chiral zero-mode constraint, for instanton contributions in the presence of a realistic Particle Physics sector. The third topic is about moduli stabilisation in type IIB string compactifications. More concretely, we review the so-called KKLT as well as Large Volume Scenario, and we construct and study a model for the latter scenario where the constraint mentioned above has been taken into account explicitly. Although the three topics studied in this thesis are slightly different in nature, there is nevertheless a complex interplay between them with many interrelations. In order to uncover these connections, a detailed study of each individual subject has been performed which has led to new results such as the chiral zero-mode constraint. (orig.)

  12. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes

    Science.gov (United States)

    Liu, Nian; Lu, Zhenda; Zhao, Jie; McDowell, Matthew T.; Lee, Hyun-Wook; Zhao, Wenting; Cui, Yi

    2014-03-01

    Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anodes are structural degradation and instability of the solid-electrolyte interphase caused by the large volume change (~300%) during cycling, the occurrence of side reactions with the electrolyte, and the low volumetric capacity when the material size is reduced to a nanometre scale. Here, we propose a hierarchical structured silicon anode that tackles all three of these problems. Our design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation. An ensemble of these hybrid nanoparticles is then encapsulated by a thicker carbon layer in micrometre-size pouches to act as an electrolyte barrier. As a result of this hierarchical arrangement, the solid-electrolyte interphase remains stable and spatially confined, resulting in superior cyclability (97% capacity retention after 1,000 cycles). In addition, the microstructures lower the electrode-electrolyte contact area, resulting in high Coulombic efficiency (99.87%) and volumetric capacity (1,270 mAh cm-3), and the cycling remains stable even when the areal capacity is increased to the level of commercial lithium-ion batteries (3.7 mAh cm-2).

  13. Implementation guide for turbidity threshold sampling: principles, procedures, and analysis

    Science.gov (United States)

    Jack Lewis; Rand Eads

    2009-01-01

    Turbidity Threshold Sampling uses real-time turbidity and river stage information to automatically collect water quality samples for estimating suspended sediment loads. The system uses a programmable data logger in conjunction with a stage measurement device, a turbidity sensor, and a pumping sampler. Specialized software enables the user to control the sampling...

  14. 40 CFR 141.22 - Turbidity sampling and analytical requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Turbidity sampling and analytical... § 141.22 Turbidity sampling and analytical requirements. The requirements in this section apply to... the water distribution system at least once per day, for the purposes of making turbidity measurements...

  15. Karakteristik Total Padatan Tersuspensi (Total Suspended Solid Dan Kekeruhan (Turbidity Secara Vertikal Di Perairan Teluk Benoa, Bali

    Directory of Open Access Journals (Sweden)

    I Gede Hendrawan

    2016-06-01

    Full Text Available Benoa bay is one of estuary that located in the Southern part of Bali Island, and as a strategic tourism destination. The increased of the human activity has an important role to give an ecological pressure for the seawater ecosystem in the Benoa bay. Total suspended solid (TSS and turbidity is one of the important indicators that could be determining the quality of the seawater. As the estuary, Benoa bay received fresh water from the river discharge that also potentially carries any material to the bay. In addition, port activity is also has an important role in contributing a various material to the Benoa bay. From this research, we found that the TSS concentration and the turbidity are higher in the surface water and also in the bottom layer. TSS concentration and the turbidity also varied from the bay mouth trough the line of vessel onto the inner of bay. TSS concentration and turbidity in the bay mouth has a smaller concentration rather than in the inner part of bay. TSS concentration and turbidity in the inner of bay could be caused by the port activity. In addition, seawater circulation is also has an importan factor to contributing the TSS concentration and the turbidity. Sea current would be erroted the seabottom and with the different shape of the topography could be increased the TSS and turbidity.

  16. Turbidity and microbes removal from water using an electrochemical filter

    International Nuclear Information System (INIS)

    Venkateswaran, G.; Gokhale, B.K.; Belapurkar, A.D.; Kumbhar, A.G.; Balaji, V.

    2004-01-01

    An in-house designed and fabricated Electrochemical fibrous graphite filter (ECF) was used to remove turbidity and microbes. The filter was found to be effective in removing sub micron size indium turbidity from RAPS-1 moderator water, iron turbidity from Active Process Cooling Water (APCW) of Kaiga Generating Station and microbial reduction from process cooling water RAPS-2. Unlike conventional turbidity removal by addition of coagulants and biocide chemical additions for purification, ECF is a clean way to remove the turbidity without contaminating the system and is best suited for close loop systems

  17. Process Improvement to Enhance Quality in a Large Volume Labor and Birth Unit.

    Science.gov (United States)

    Bell, Ashley M; Bohannon, Jessica; Porthouse, Lisa; Thompson, Heather; Vago, Tony

    using the Lean process, frontline clinicians identified areas that needed improvement, developed and implemented successful strategies that addressed each gap, and enhanced the quality and safety of care for a large volume perinatal service.

  18. State of art data acquisition system for large volume plasma device

    International Nuclear Information System (INIS)

    Sugandhi, Ritesh; Srivastava, Pankaj; Sanyasi, Amulya Kumar; Srivastav, Prabhakar; Awasthi, Lalit Mohan; Mattoo, Shiban Krishna; Parmar, Vijay; Makadia, Keyur; Patel, Ishan; Shah, Sandeep

    2015-01-01

    The Large volume plasma device (LVPD) is a cylindrical device (ϕ = 2m, L = 3m) dedicated for carrying out investigations on plasma physics problems ranging from excitation of whistler structures to plasma turbulence especially, exploring the linear and nonlinear aspects of electron temperature gradient(ETG) driven turbulence, plasma transport over the entire cross section of LVPD. The machine operates in a pulsed mode with repetition cycle of 1 Hz and acquisition pulse length of duration of 15 ms, presently, LVPD has VXI data acquisition system but this is now in phasing out mode because of non-functioning of its various amplifier stages, expandability and unavailability of service support. The VXI system has limited capabilities to meet new experimental requirements in terms of numbers of channel (16), bit resolutions (8 bit), record length (30K points) and calibration support. Recently, integration of new acquisition system for simultaneous sampling of 40 channels of data, collected over multiple time scales with high speed is successfully demonstrated, by configuring latest available hardware and in-house developed software solutions. The operational feasibility provided by LabVIEW platform is not only for operating DAQ system but also for providing controls to various subsystems associated with the device. The new system is based on PXI express instrumentation bus and supersedes the existing VXI based data acquisition system in terms of instrumentation capabilities. This system has capability to measure 32 signals at 60 MHz sampling frequency and 8 signals with 1.25 GHz with 10 bit and 12 bit resolution capability for amplitude measurements. The PXI based system successfully addresses and demonstrate the issues concerning high channel count, high speed data streaming and multiple I/O modules synchronization. The system consists of chassis (NI 1085), 4 high sampling digitizers (NI 5105), 2 very high sampling digitizers (NI 5162), data streaming RAID drive (NI

  19. The relative contribution of processes driving variability in flow, shear, and turbidity over a fringing coral reef: West Maui, Hawaii

    Science.gov (United States)

    Storlazzi, C.D.; Jaffe, B.E.

    2008-01-01

    High-frequency measurements of waves, currents and water column properties were made on a fringing coral reef off northwest Maui, Hawaii, for 15 months between 2001 and 2003 to aid in understanding the processes governing flow and turbidity over a range of time scales and their contributions to annual budgets. The summer months were characterized by consistent trade winds and small waves, and under these conditions high-frequency internal bores were commonly observed, there was little net flow or turbidity over the fore reef, and over the reef flat net flow was downwind and turbidity was high. When the trade winds waned or the wind direction deviated from the dominant trade wind orientation, strong alongshore flows occurred into the typically dominant wind direction and lower turbidity was observed across the reef. During the winter, when large storm waves impacted the study area, strong offshore flows and high turbidity occurred on the reef flat and over the fore reef. Over the course of a year, trade wind conditions resulted in the greatest net transport of turbid water due to relatively strong currents, moderate overall turbidity, and their frequent occurrence. Throughout the period of study, near-surface current directions over the fore reef varied on average by more than 41?? from those near the seafloor, and the orientation of the currents over the reef flat differed on average by more than 65?? from those observed over the fore reef. This shear occurred over relatively short vertical (order of meters) and horizontal (order of hundreds of meters) scales, causing material distributed throughout the water column, including the particles in suspension causing the turbidity (e.g. sediment or larvae) and/or dissolved nutrients and contaminants, to be transported in different directions under constant oceanographic and meteorologic forcing.

  20. Single shot imaging through turbid medium and around corner using coherent light

    Science.gov (United States)

    Li, Guowei; Li, Dayan; Situ, Guohai

    2018-01-01

    Optical imaging through turbid media and around corner is a difficult challenge. Even a very thin layer of a turbid media, which randomly scatters the probe light, can appear opaque and hide any objects behind it. Despite many recent advances, no current method can image the object behind turbid media with single record using coherent laser illumination. Here we report a method that allows non-invasive single-shot optical imaging through turbid media and around corner via speckle correlation. Instead of being as an obstacle in forming diffractionlimited images, speckle actually can be a carrier that encodes sufficient information to imaging through visually opaque layers. Optical imaging through turbid media and around corner is experimentally demonstrated using traditional imaging system with the aid of iterative phase retrieval algorithm. Our method require neither scan of illumination nor two-arm interferometry or long-time exposure in acquisition, which has new implications in optical sensing through common obscurants such as fog, smoke and haze.

  1. Bifocal optical coherenc refractometry of turbid media.

    Science.gov (United States)

    Alexandrov, Sergey A; Zvyagin, Andrei V; Silva, K K M B Dilusha; Sampson, David D

    2003-01-15

    We propose and demonstrate a novel technique, which we term bifocal optical coherence refractometry, for the rapid determination of the refractive index of a turbid medium. The technique is based on the simultaneous creation of two closely spaced confocal gates in a sample. The optical path-length difference between the gates is measured by means of low-coherence interferometry and used to determine the refractive index. We present experimental results for the refractive indices of milk solutions and of human skin in vivo. As the axial scan rate determines the acquisition time, which is potentially of the order of tens of milliseconds, the technique has potential for in vivo refractive-index measurements of turbid biological media under dynamic conditions.

  2. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  3. Feedback between residual circulations and sediment distribution in highly turbid estuaries: an analytical model

    NARCIS (Netherlands)

    Talke, S.A.|info:eu-repo/dai/nl/304823554; de Swart, H.E.|info:eu-repo/dai/nl/073449725; Schuttelaars, H.|info:eu-repo/dai/nl/164035656

    2009-01-01

    Motivated by field studies of the Ems estuary which show longitudinal gradients in bottom sediment concentration as high as O(0.01 kg/m4), we develop an analytical model for estuarine residual circulation based on currents from salinity gradients, turbidity gradients, and freshwater discharge.

  4. Innovative GOCI algorithm to derive turbidity in highly turbid waters: a case study in the Zhejiang coastal area.

    Science.gov (United States)

    Qiu, Zhongfeng; Zheng, Lufei; Zhou, Yan; Sun, Deyong; Wang, Shengqiang; Wu, Wei

    2015-09-21

    An innovative algorithm is developed and validated to estimate the turbidity in Zhejiang coastal area (highly turbid waters) using data from the Geostationary Ocean Color Imager (GOCI). First, satellite-ground synchronous data (n = 850) was collected from 2014 to 2015 using 11 buoys equipped with a Yellow Spring Instrument (YSI) multi-parameter sonde capable of taking hourly turbidity measurements. The GOCI data-derived Rayleigh-corrected reflectance (R(rc)) was used in place of the widely used remote sensing reflectance (R(rs)) to model turbidity. Various band characteristics, including single band, band ratio, band subtraction, and selected band combinations, were analyzed to identify correlations with turbidity. The results indicated that band 6 had the closest relationship to turbidity; however, the combined bands 3 and 6 model simulated turbidity most accurately (R(2) = 0.821, pcoastal waters is feasible. As an example, the developed model was applied to 8 hourly GOCI images on 30 December 2014. Three cross sections were selected to identify the spatiotemporal variation of turbidity in the study area. Turbidity generally decreased from near-shore to offshore and from morning to afternoon. Overall, the findings of this study provide a simple and practical method, based on GOCI data, to estimate turbidity in highly turbid coastal waters at high temporal resolutions.

  5. Protein aggregate turbidity: Simulation of turbidity profiles for mixed-aggregation reactions.

    Science.gov (United States)

    Hall, Damien; Zhao, Ran; Dehlsen, Ian; Bloomfield, Nathaniel; Williams, Steven R; Arisaka, Fumio; Goto, Yuji; Carver, John A

    2016-04-01

    Due to their colloidal nature, all protein aggregates scatter light in the visible wavelength region when formed in aqueous solution. This phenomenon makes solution turbidity, a quantity proportional to the relative loss in forward intensity of scattered light, a convenient method for monitoring protein aggregation in biochemical assays. Although turbidity is often taken to be a linear descriptor of the progress of aggregation reactions, this assumption is usually made without performing the necessary checks to provide it with a firm underlying basis. In this article, we outline utilitarian methods for simulating the turbidity generated by homogeneous and mixed-protein aggregation reactions containing fibrous, amorphous, and crystalline structures. The approach is based on a combination of Rayleigh-Gans-Debye theory and approximate forms of the Mie scattering equations. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  6. A Monte-Carlo code for neutron efficiency calculations for large volume Gd-loaded liquid scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Trzcinski, A.; Zwieglinski, B. [Soltan Inst. for Nuclear Studies, Warsaw (Poland); Lynen, U. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Pochodzalla, J. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    1998-10-01

    This paper reports on a Monte-Carlo program, MSX, developed to evaluate the performance of large-volume, Gd-loaded liquid scintillation detectors used in neutron multiplicity measurements. The results of simulations are presented for the detector intended to count neutrons emitted by the excited target residue in coincidence with the charged products of the projectile fragmentation following relativistic heavy-ion collisions. The latter products could be detected with the ALADIN magnetic spectrometer at GSI-Darmstadt. (orig.) 61 refs.

  7. Turbidity and oil removal from oilfield produced water, middle oil company by electrocoagulation technique

    Directory of Open Access Journals (Sweden)

    Mohammed Thamer

    2018-01-01

    Full Text Available Huge quantity of produced water is salty water trapped in the oil wells rock and brought up along with oil or gas during production. It usually contains hydrocarbons as oil and suspended solids or turbidity. Therefore the aim of this study is to treat produced water before being discharge to surface water or re injected in oil wells. In this paper experimental results were investigated on treating produced water (which is obtained from Middle Oil Company-Iraq, through electrocoagulation (EC. The performance of EC was investigated for reduction of turbidity and oil content up to allowable limit. Effect of different parameters were studied; (pH, current density, distance between two electrodes, and electrolysis time. The experimental runs carried out by an electrocoagulation unit was assembled and installed in the lab and the reactor was made of a material Perspex, with a capacity of approximately 2.5 liters and dimensions were 20 cm in length, 14 cm in width and 16 cm height. The electrodes employed were made of commercial materials. The anode was a perforated aluminum rectangular plate with a thickness of 1.72 mm, a height of 60 mm and length of 140 mm and the cathode was a mesh iron. The current was used in the unit with different densities to test the turbidity removing efficiency (0.0025, 0.00633, 0.01266 and 0.0253 A/cm2.The experiment showed that the best turbidity removing was (10, 9.7, 9.2, 18 NTU respectively. The distance between the electrodes of the unit was 3cm. The present turbidity removing was 92.33%. A slight improvement of turbidity removing was shown when the distance between the electrodes was changed from 0.5 to 3 cm with fixation of current density. The best turbidity removing was 93.5% , (7.79 NTU when the distance between the electrodes were 1 cm. The experimental results found that concentration of oil had decreased to (10.7, 11.2, 11.7, 12.3 mg/l when different current densities (0.00253, 0.00633, 0.01266, 0.0253 A/cm2

  8. Microscopic imaging through turbid media Monte Carlo modeling and applications

    CERN Document Server

    Gu, Min; Deng, Xiaoyuan

    2015-01-01

    This book provides a systematic introduction to the principles of microscopic imaging through tissue-like turbid media in terms of Monte-Carlo simulation. It describes various gating mechanisms based on the physical differences between the unscattered and scattered photons and method for microscopic image reconstruction, using the concept of the effective point spread function. Imaging an object embedded in a turbid medium is a challenging problem in physics as well as in biophotonics. A turbid medium surrounding an object under inspection causes multiple scattering, which degrades the contrast, resolution and signal-to-noise ratio. Biological tissues are typically turbid media. Microscopic imaging through a tissue-like turbid medium can provide higher resolution than transillumination imaging in which no objective is used. This book serves as a valuable reference for engineers and scientists working on microscopy of tissue turbid media.

  9. Turbidity data: Hollywood Beach, Florida, January 1990 to April 1992

    OpenAIRE

    Dompe, Philip E.; Hanes, D. M.

    1993-01-01

    This data report contains measurements of turbidity obtained near Hollywood, Florida, during the period of January 1990 to April 1992. Data were obtained within one meter of the seabed in depths of 5 m and 10 m. Turbidity was found to vary significantly under natural conditions, with values during storms sometimes exceeding 29 NTU. Tables and plots of turbidity data are presented. (Document contains 77 pages.)

  10. Effects of Prevailing Winds on Turbidity of a Shallow Estuary

    OpenAIRE

    Cho, Hyun Jung

    2007-01-01

    Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation) collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were...

  11. Atmospheric turbidity and the diffuse irradiance in Lagos, Nigeria

    International Nuclear Information System (INIS)

    Maduekwe, A.A.L.; Chendo, M.A.C.

    1994-06-01

    The relationships between the total hemispherical irradiance reaching the earth surface in Lagos, Nigeria and the turbidity coefficients at two wavelengths namely λ(500) and λ(880) measured with a Volz sun photometer have been investigated. Using simple piecewise linear regression relationships between the atmospheric turbidity using Angstrom turbidity coefficients and the diffuse components of solar radiation are presented. (author). 18 refs, 11 figs, 3 tabs

  12. Resuscitation of a Polytraumatized Patient with Large Volume Crystalloid-Colloid Infusions – Correlation Between Global and Regional Hemodynamics: Case Report

    OpenAIRE

    Lončarić-Katušin, Mirjana; Belavić, Matija; Žunić, Josip; Gučanin, Snježana; Žilić, Antonio; Korać, Želimir

    2010-01-01

    Aggressive large volume resuscitation is obligatory to achieve necessary tissue oxygenation. An adequate venous preload normalizes global hemodynamics and avoids multiorgan failure (MOF) and death in patients with multiple injuries. Large volume resuscitation is associated with complications in minimally monitored patients. A properly guided resuscitation procedure will finally prevent MOF and patient death. Transpulmonary thermodilution technique and gastric tonometry are used in venous prel...

  13. Absorption coefficient instrument for turbid natural waters

    Science.gov (United States)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-01-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  14. Characterization of turbidity in Florida's Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements.

    Science.gov (United States)

    Wang, Menghua; Nim, Carl J; Son, Seunghyun; Shi, Wei

    2012-10-15

    This paper describes the use of ocean color remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to characterize turbidity in Lake Okeechobee and its primary drainage basins, the Caloosahatchee and St. Lucie estuaries from 2002 to 2010. Drainage modification and agricultural development in southern Florida transport sediments and nutrients from watershed agricultural areas to Lake Okeechobee. As a result of development around Lake Okeechobee and the estuaries that are connected to Lake Okeechobee, estuarine conditions have also been adversely impacted, resulting in salinity and nutrient fluctuations. The measurement of water turbidity in lacustrine and estuarine ecosystems allows researchers to understand important factors such as light limitation and the potential release of nutrients from re-suspended sediments. Based on a strong correlation between water turbidity and normalized water-leaving radiance at the near-infrared (NIR) band (nL(w)(869)), a new satellite water turbidity algorithm has been developed for Lake Okeechobee. This study has shown important applications with satellite-measured nL(w)(869) data for water quality monitoring and measurements for turbid inland lakes. MODIS-Aqua-measured water property data are derived using the shortwave infrared (SWIR)-based atmospheric correction algorithm in order to remotely obtain synoptic turbidity data in Lake Okeechobee and normalized water-leaving radiance using the red band (nL(w)(645)) in the Caloosahatchee and St. Lucie estuaries. We found varied, but distinct seasonal, spatial, and event driven turbidity trends in Lake Okeechobee and the Caloosahatchee and St. Lucie estuary regions. Wind waves and hurricanes have the largest influence on turbidity trends in Lake Okeechobee, while tides, currents, wind waves, and hurricanes influence the Caloosahatchee and St. Lucie estuarine areas. Published by Elsevier Ltd.

  15. Reduction of Turbidity of Water Using Locally Available Natural Coagulants

    Science.gov (United States)

    Asrafuzzaman, Md.; Fakhruddin, A. N. M.; Hossain, Md. Alamgir

    2011-01-01

    Turbidity imparts a great problem in water treatment. Moringa oleifera, Cicer arietinum, and Dolichos lablab were used as locally available natural coagulants in this study to reduce turbidity of synthetic water. The tests were carried out, using artificial turbid water with conventional jar test apparatus. Optimum mixing intensity and duration were determined. After dosing water-soluble extracts of Moringa oleifera, Cicer arietinum, and Dolichos lablab reduced turbidity to 5.9, 3.9, and 11.1 nephelometric turbidity unit (NTU), respectively, from 100 NTU and 5, 3.3, and 9.5, NTU, respectively, after dosing and filtration. Natural coagulants worked better with high, turbid, water compare to medium, or low, turbid, water. Highest turbidity reduction efficiency (95.89%) was found with Cicer arietinum. About 89 to 96% total coliform reduction were also found with natural coagulant treatment of turbid water. Using locally available natural coagulants, suitable, easier, and environment friendly options for water treatment were observed. PMID:23724307

  16. Unusual behaviour of phototrophic picoplankton in turbid waters.

    Science.gov (United States)

    Somogyi, Boglárka; Pálffy, Károly; V-Balogh, Katalin; Botta-Dukát, Zoltán; Vörös, Lajos

    2017-01-01

    Autotrophic picoplankton (APP) abundance and contribution to phytoplankton biomass was studied in Hungarian shallow lakes to test the effect of inorganic turbidity determining the size distribution of the phytoplankton. The studied lakes displayed wide turbidity (TSS: 4-2250 mg l-1) and phytoplankton biomass (chlorophyll a: 1-460 μg l-1) range, as well as APP abundance (0 and 100 million cells ml-1) and contribution (0-100%) to total phytoplankton biomass. Inorganic turbidity had a significant effect on the abundance and contribution of APP, resulting in higher values compared to other freshwater lakes with the same phytoplankton biomass. Our analysis has provided empirical evidence for a switching point (50 mg l-1 inorganic turbidity), above which turbidity is the key factor causing APP predominance regardless of phytoplankton biomass in shallow turbid lakes. Our results have shown that turbid shallow lakes are unique waters, where the formerly and widely accepted model (decreasing APP contribution with increasing phytoplankton biomass) is not applicable. We hypothesize that this unusual behaviour of APP in turbid waters is a result of either diminished underwater light intensity or a reduced grazing pressure due to high inorganic turbidity.

  17. Unusual behaviour of phototrophic picoplankton in turbid waters.

    Directory of Open Access Journals (Sweden)

    Boglárka Somogyi

    Full Text Available Autotrophic picoplankton (APP abundance and contribution to phytoplankton biomass was studied in Hungarian shallow lakes to test the effect of inorganic turbidity determining the size distribution of the phytoplankton. The studied lakes displayed wide turbidity (TSS: 4-2250 mg l-1 and phytoplankton biomass (chlorophyll a: 1-460 μg l-1 range, as well as APP abundance (0 and 100 million cells ml-1 and contribution (0-100% to total phytoplankton biomass. Inorganic turbidity had a significant effect on the abundance and contribution of APP, resulting in higher values compared to other freshwater lakes with the same phytoplankton biomass. Our analysis has provided empirical evidence for a switching point (50 mg l-1 inorganic turbidity, above which turbidity is the key factor causing APP predominance regardless of phytoplankton biomass in shallow turbid lakes. Our results have shown that turbid shallow lakes are unique waters, where the formerly and widely accepted model (decreasing APP contribution with increasing phytoplankton biomass is not applicable. We hypothesize that this unusual behaviour of APP in turbid waters is a result of either diminished underwater light intensity or a reduced grazing pressure due to high inorganic turbidity.

  18. Appearance and water quality of turbidity plumes produced by dredging in Tampa Bay, Florida

    Science.gov (United States)

    Goodwin, Carl R.; Michaelis, D.M.

    1984-01-01

    Turbidity plumes in Tampa Bay, Florida, produced during ship-channel dredging operations from February 1977 to August 1978, were monitored in order to document plume appearance and water quality, evaluate plume influence on the characteristics of Tampa Bay water, and provide a data base for comparison with other areas that have similar sediment, dredge, placement, containment, and tide conditions. The plumes investigated originated from the operation of one hopper dredge and three cutterhead-pipeline dredges. Composition of bottom sediment was found to vary from 85 percent sand and shell fragments to 60 percent silt and clay. Placement methods for dredged sediment included beach nourishment, stationary submerged discharge, oscillating surface discharge, and construction of emergent dikes. Tidal currents ranged from slack water to flow velocities of 0.60 meter per second. Plumes were monitored simultaneously by (1) oblique and vertical 35-millimeter aerial photography and (2) water-quality sampling to determine water clarity and concentrations of nutrients, metals, pesticides, and industrial compounds. Forty-nine photographs depict plumes ranging in length from a few tens of meters to several kilometers and ranging in turbidity level from hopper-dredge unloading operations also produced plumes of low visibility. Primary turbidity plumes were produced directly by dredging and placement operations; secondary plumes were produced indirectly by resuspension of previously deposited material. Secondary plumes were formed both by erosion, in areas of high-velocity tidal currents, and by turbulence from vessels passing over fine material deposited in shallow areas. Where turbidity barriers were not used, turbidity plumes visible at the surface were good indicators of the location of turbid water at depth. Where turbidity barriers were used, turbid bottom water was found at locations having no visible surface plumes. A region of rapidly accelerating then decelerating flow

  19. Soft SUSY breaking parameters and RG running of squark and slepton masses in large volume Swiss Cheese compactifications

    International Nuclear Information System (INIS)

    Misra, Aalok; Shukla, Pramod

    2010-01-01

    We consider type IIB large volume compactifications involving orientifolds of the Swiss Cheese Calabi-Yau WCP 4 [1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the 'big' divisor Σ B (as opposed to the 'small' divisor usually done in the literature thus far) as well as supporting D7-brane fluxes. After reviewing our proposal of (Misra and Shukla, 2010) for resolving a long-standing tension between large volume cosmology and phenomenology pertaining to obtaining a 10 12 GeV gravitino in the inflationary era and a TeV gravitino in the present era, and summarizing our results of (Misra and Shukla, 2010) on soft supersymmetry breaking terms and open-string moduli masses, we discuss the one-loop RG running of the squark and slepton masses in mSUGRA-like models (using the running of the gaugino masses) to the EW scale in the large volume limit. Phenomenological constraints and some of the calculated soft SUSY parameters identify the D7-brane Wilson line moduli as the first two generations/families of squarks and sleptons and the D3-brane (restricted to the big divisor) position moduli as the two Higgses for MSSM-like models at TeV scale. We also discuss how the obtained open-string/matter moduli make it easier to impose FCNC constraints, as well as RG flow of off-diagonal squark mass(-squared) matrix elements.

  20. Soft SUSY breaking parameters and RG running of squark and slepton masses in large volume Swiss Cheese compactifications

    Science.gov (United States)

    Misra, Aalok; Shukla, Pramod

    2010-03-01

    We consider type IIB large volume compactifications involving orientifolds of the Swiss Cheese Calabi-Yau WCP[1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the “big” divisor ΣB (as opposed to the “small” divisor usually done in the literature thus far) as well as supporting D7-brane fluxes. After reviewing our proposal of [1] (Misra and Shukla, 2010) for resolving a long-standing tension between large volume cosmology and phenomenology pertaining to obtaining a 10 GeV gravitino in the inflationary era and a TeV gravitino in the present era, and summarizing our results of [1] (Misra and Shukla, 2010) on soft supersymmetry breaking terms and open-string moduli masses, we discuss the one-loop RG running of the squark and slepton masses in mSUGRA-like models (using the running of the gaugino masses) to the EW scale in the large volume limit. Phenomenological constraints and some of the calculated soft SUSY parameters identify the D7-brane Wilson line moduli as the first two generations/families of squarks and sleptons and the D3-brane (restricted to the big divisor) position moduli as the two Higgses for MSSM-like models at TeV scale. We also discuss how the obtained open-string/matter moduli make it easier to impose FCNC constraints, as well as RG flow of off-diagonal squark mass(-squared) matrix elements.

  1. the Preliminary Research Based on Seismic Signals Generated by Hutubi Transmitting Seismic Station with One Large-volume Airgun Array

    Science.gov (United States)

    Wang, Q.; Su, J.; Wei, Y.; Zhang, W.; Wang, H.; Wang, B.; Ji, Z.

    2017-12-01

    For studying the subsurface structure and its subtle changes, we built the Hutubi transmitting seismic station with one large-volume airgun array at one artificial water pool in the northern segment of Tianshan mountain, where earthquakes occurred frequently. The airgun array consists of six airguns with every airgun capacity of 2000in3, and the artificial water pool with the top diameter of 100m, bottom diameter of 20m and the depth of 18m.We started the regular excitation experiment with the large-volume airgun source every week since June, 2013. Using seismic signals geneated by the Hutubi airgun source, we made the preliminary research on the airgun source, waveform characteristics and the subsurface velocity changes in the northern Tiansh mountain. The results are as follows: The seismic signal exited by the airgun source is characteristic of low-frequency ,and the dominant frequency is in the range of 2 6Hz. The Hutubi transmitting seismic station can continuously generate long-distance detectable and highly repeatable signals, and the correlation coefficient of sigals is greater than 0.95; and the longest propagation distance arrives to 380km, in addition, the 5000-shot stacked sigal using the phase weighted stack technique can be identified in the station, which is about 1300km from the Hutubi transmitting seismic station. Hutubi large-volume airgun source is fitted to detect and monitor the regional-scale subsurface stress state. Applying correlation test method, we measured weak subsurface velocity changes in the northern Tianshan mountain, and found that the several stations, which are within 150km from the the Hutubi transmitting seismic station, appeared 0.1 0.2% relative velocity changes before the Hutubi MS6.2 earthquake on Dec.8, 2016.

  2. Percutaneous Image-Guided Cryoablation of Challenging Mediastinal Lesions Using Large-Volume Hydrodissection: Technical Considerations and Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Garnon, Julien, E-mail: juliengarnon@gmail.com; Koch, Guillaume, E-mail: Guillaume.koch@gmail.com; Caudrelier, Jean, E-mail: caudjean@yahoo.fr [University Hospital of Strasbourg, Department of Interventional Radiology (France); Ramamurthy, Nitin, E-mail: Nitin-ramamurthy@hotmail.com [Norfolk and Norwich University Hospital, Department of Radiology (United Kingdom); Rao, Pramod, E-mail: pramodrao@me.com [University of Strasbourg, ICube (France); Tsoumakidou, Georgia, E-mail: Georgia.tsoumakidou@chru-strasbourg.fr; Cazzato, Roberto Luigi, E-mail: cazzatorobertoluigi@gmail.com; Gangi, Afshin, E-mail: Afshin.gangi@chru-strasbourg.fr [University Hospital of Strasbourg, Department of Interventional Radiology (France)

    2016-11-15

    ObjectiveThis study was designed to describe the technique of percutaneous image-guided cryoablation with large-volume hydrodissection for the treatment of challenging mediastinal lesions.MethodsBetween March 2014 and June 2015, three patients (mean age 62.7 years) with four neoplastic anterior mediastinal lesions underwent five cryoablation procedures using large-volume hydrodissection. Procedures were performed under general anaesthesia using CT guidance. Lesion characteristics, hydrodissection and cryoablation data, technical success, complications, and clinical outcomes were assessed using retrospective chart review.ResultsLesions (mean size 2.7 cm; range 2–4.3 cm) were in contact with great vessels (n = 13), trachea (n = 3), and mediastinal nerves (n = 6). Hydrodissection was performed intercostally (n = 4), suprasternally (n = 2), transsternally (n = 1), or via the sternoclavicular joint (n = 1) using 1–3 spinal needles over 13.4 (range 7–26) minutes; 450 ml of dilute contrast was injected (range 300–600 ml) and increased mean lesion-collateral structure distance from 1.9 to 7.7 mm. Vulnerable mediastinal nerves were identified in four of five procedures. Technical success was 100 %, with one immediate complication (recurrent laryngeal nerve injury). Mean follow-up period was 15 months. One lesion demonstrated residual disease on restaging PET-CT and was retreated to achieve complete ablation. At last follow-up, two patients remained disease-free, and one patient developed distant disease after 1 year without local recurrence.ConclusionsCryoablation using large-volume hydrodissection is a feasible technique, enabling safe and effective treatment of challenging mediastinal lesions.

  3. Temperature monitoring in large volume spread footing foundations: case study "Parque da Cidade" - São Paulo

    Directory of Open Access Journals (Sweden)

    D. Couto

    Full Text Available ABSTRACT In recent years, the construction of foundation elements from large-volume reinforced concrete is becoming increasingly common. This implies a potential increase in the risk of cracks of thermal origin, due to the heat of hydration of cement. Under these circumstances, these concrete elements need to be treated using the mass concrete theory, widespread in dam construction, but little used when designing buildings. This paper aims to present a case study about the procedures and problems involved in the construction of a spread footing with a volume of approximately 800m³ designed for the foundation of a shopping center in São Paulo, Brazil.

  4. Implication on the core collapse supernova rate from 21 years of data of the Large Volume Detector

    CERN Document Server

    Agafonova, N Y; Antonioli, P; Ashikhmin, V V; Badino, G.; Bari, G; Bertoni, R; Bressan, E; Bruno, G; Dadykin, V L; Dobrynina, E A; Enikeev, R I; Fulgione, W; Galeotti, P; Garbini, M; Ghia, P L; Giusti, P; Gomez, F; Kemp, E; Malgin, A S; Molinario, A; Persiani, R; Pless, I A; Porta, A; Ryasny, V G; Ryazhskaya, O G; Saavedra, O; Sartorelli, G; Shakiryanova, I R; Selvi, M; Trinchero, G C; Vigorito, C; Yakushev, V F; Zichichi, A

    2015-01-01

    The Large Volume Detector (LVD) has been continuously taking data since 1992 at the INFN Gran Sasso National Laboratory. LVD is sensitive to neutrino bursts from gravitational stellar collapses with full detection probability over the Galaxy. We have searched for neutrino bursts in LVD data taken in 7335 days of operation. No evidence of neutrino signals has been found between June 1992 and December 2013. The 90% C.L. upper limit on the rate of core-collapse and failed supernova explosions out to distances of 25 kpc is found to be 0.114/y.

  5. Dynamics of turbidity plumes in Lake Ontario. [Welland Canal and Niagara, Genesee, and Oswego Rivers

    Science.gov (United States)

    Pluhowski, E. J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Large turbidity features along the 275 km south shore of Lake Ontario were analyzed using LANDSAT-1 images. The Niagara River plume, ranging from 30 to 500 sq km in area is, by far, the largest turbidity feature in the lake. Based on image tonal comparisons, turbidity in the Welland Canal is usually higher than that in any other water course discharging into the lake during the shipping season. Less turbid water enters the lake from the Port Dalhousie diversion channel and the Genesee River. Relatively clear water resulting from the deposition of suspended matter in numerous upstream lakes is discharged by the Niagara and Oswego Rivers. Plume analysis corroborates the presence of a prevailing eastward flowing longshore current along the entire south shore. Plumes resulting from beach erosion were detected in the images. Extensive areas of the south shore are subject to erosion but the most severely affected beaches are situated between Fifty Mile Point, Ontario and Thirty Mile Point, New York along the Rochester embayment, and between Sodus Bay and Nine Mile Point.

  6. Turbidity-controlled sampling for suspended sediment load estimation

    Science.gov (United States)

    Jack Lewis

    2003-01-01

    Abstract - Automated data collection is essential to effectively measure suspended sediment loads in storm events, particularly in small basins. Continuous turbidity measurements can be used, along with discharge, in an automated system that makes real-time sampling decisions to facilitate sediment load estimation. The Turbidity Threshold Sampling method distributes...

  7. Turbidity affects foraging success of drift-feeding rosyide dace

    Science.gov (United States)

    Richard M. Zamor; Gary D. Grossman

    2007-01-01

    The effects of suspended sediment on nongame fishes are not well understood. We examined the effects of suspended sediment (i.e., turbidity) on reactive distance and prey capture success at springautumn (12°C) and summer (18°C) temperatures for royside dace Clinostomus funduloides in an artificial stream. Experimental turbidities ranged from 0 to 56...

  8. Effects of Prevailing Winds on Turbidity of a Shallow Estuary

    Directory of Open Access Journals (Sweden)

    Hyun Jung Cho

    2007-06-01

    Full Text Available Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were responsible for the long-term, large-scale turbidity pattern of the estuary, whereas the short-term changes in wind direction had differential effects on turbidity and water level in varying locations. There were temporal and spatial changes in the relationship between vertical light attenuation coefficient (Kd and turbidity, which indicate difference in phytoplankton and color also affect Kd. This study demonstrates that the effect of wind on turbidity and water level on different shores can be identified through system-specific analyses of turbidity patterns.

  9. Turbidity threshold sampling for suspended sediment load estimation

    Science.gov (United States)

    Jack Lewis; Rand Eads

    2001-01-01

    Abstract - The paper discusses an automated procedure for measuring turbidity and sampling suspended sediment. The basic equipment consists of a programmable data logger, an in situ turbidimeter, a pumping sampler, and a stage-measuring device. The data logger program employs turbidity to govern sample collection during each transport event. Mounting configurations and...

  10. Polymeric turbidity sensor fabricated by laser direct writing

    International Nuclear Information System (INIS)

    Li, Shu; Lin, Qiao; Wu, George; Chen, Liuhua; Wu, X

    2011-01-01

    The design of a miniature-sized turbidity sensor fabricated by laser direct writing was proposed and tested. A dual-beam dual-detector sensing structure was written by a 488 nm laser from UV curable optical polymer to form a 4 mm diameter turbidity sensing probe, with the fabrication process being shortened to a few seconds. Experimental tests on prototypes were conducted by using standard turbidity solutions, and the data were processed with a self-adapting neural network based on a single input single output algorithm. The scattering coefficient for normalized turbidity of the standards was obtained, and system accuracy was validated by an error analysis. Experimental results indicated that in the testing situation presented in this paper, the sensor was capable of responding to turbidity with a relative error of about 3%

  11. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J

    2008-01-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  12. Immunoglobulin G levels during collection of large volume plasma for fractionation.

    Science.gov (United States)

    Burkhardt, Thomas; Rothe, Remo; Moog, Rainer

    2017-06-01

    There is a need of comprehensive work dealing with the quality of plasma for fractionation with respect to the IgG content as today most plasma derivates are used to treat patients with immunodeficiencies and autoimmune disorders. Therefore, a prospective study was carried out to analyse IgG levels before plasmapheresis and every 200ml collected plasma. Fifty-four experienced plasmapheresis donors were recruited for subsequent 850ml plasmapheresis using the Aurora Plasmapheresis System. Donorś peripheral blood counts were analysed before and after plasmapheresis using an electronic counter. Total protein, IgG and citrate were measured turbidometrically before, during and after apheresis as well as in the plasma product. Furthermore, platelets, red and white blood cells were analysed as parameters of product quality. An average of 2751±247ml blood was processed in 47±6min. The collected plasma volume was 850±1mL and citrate consumption was 177±15mL. A continuous drop of donors' IgG level was observed during plasmapheresis. The drop was 13% of the IgG baseline value at 800mL collected plasma. Total protein, IgG and cell counts of the plasma product met current guidelines of plasma for fractionation. Donors' IgG levels during apheresis showed a steady decrease without compromising the quality of plasma product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Solar neutrino detection in a large volume double-phase liquid argon experiment

    Energy Technology Data Exchange (ETDEWEB)

    Franco, D.; Agnes, P. [APC, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, Paris 75205 (France); Giganti, C.; Agostino, L.; De Cecco, S., E-mail: dfranco@in2p3.fr, E-mail: cgiganti@lpnhe.in2p3.fr, E-mail: pagnes@in2p3.fr, E-mail: lagostin@lpnhe.in2p3.fr, E-mail: sandro.dececco@lpnhe.in2p3.fr [LPNHE Paris, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris 75252 (France); and others

    2016-08-01

    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne-yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all three cartesian directions. While enabling Dark Matter searches with sensitivity extending to the ''neutrino floor'' (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ∼15% precision, and significantly improve the precision of the {sup 7}Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.

  14. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J [E15 Chair for Astroparticle Physics, Technische Universitat Miinchen, Physik Department, James-Franck-Str., D-85748 Garching (Germany)

    2008-11-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  15. Simulation of turbid underflows generated by the plunging of a river

    Science.gov (United States)

    Kassem, Ahmed; Imran, Jasim

    2001-07-01

    When the density of sediment-laden river water exceeds that of the lake or ocean into which it discharges, the river plunges to the bottom of the receiving water body and continues to flow as a hyperpycnal flow. These particle-laden underflows, also known as turbidity currents, can travel remarkable distances and profoundly influence the seabed morphology from shoreline to abyss by depositing, eroding, and dispersing large quantities of sediment particles. Here we present a new approach to investigating the transformation of a plunging river flow into a turbidity current. Unlike previous workers using experimental and numerical treatments, we consider the evolution of a turbidity current from a river as different stages of a single flow process. From initial commotion to final stabilization, the transformation of a river (open channel flow) into a density-driven current (hyperpycnal flow) is captured in its entirety by a numerical model. Successful implementation of the model in laboratory and field cases has revealed the dynamics of a complex geophysical flow that is extremely difficult to observe in the field or model in the laboratory.

  16. Performance Evaluation of Five Turbidity Sensors in Three Primary Standards

    Science.gov (United States)

    Snazelle, Teri T.

    2015-10-28

    Open-File Report 2015-1172 is temporarily unavailable.Five commercially available turbidity sensors were evaluated by the U.S. Geological Survey, Hydrologic Instrumentation Facility (HIF) for accuracy and precision in three types of turbidity standards; formazin, StablCal, and AMCO Clear (AMCO–AEPA). The U.S. Environmental Protection Agency (EPA) recognizes all three turbidity standards as primary standards, meaning they are acceptable for reporting purposes. The Forrest Technology Systems (FTS) DTS-12, the Hach SOLITAX sc, the Xylem EXO turbidity sensor, the Yellow Springs Instrument (YSI) 6136 turbidity sensor, and the Hydrolab Series 5 self-cleaning turbidity sensor were evaluated to determine if turbidity measurements in the three primary standards are comparable to each other, and to ascertain if the primary standards are truly interchangeable. A formazin 4000 nephelometric turbidity unit (NTU) stock was purchased and dilutions of 40, 100, 400, 800, and 1000 NTU were made fresh the day of testing. StablCal and AMCO Clear (for Hach 2100N) standards with corresponding concentrations were also purchased for the evaluation. Sensor performance was not evaluated in turbidity levels less than 40 NTU due to the unavailability of polymer-bead turbidity standards rated for general use. The percent error was calculated as the true (not absolute) difference between the measured turbidity and the standard value, divided by the standard value.The sensors that demonstrated the best overall performance in the evaluation were the Hach SOLITAX and the Hydrolab Series 5 turbidity sensor when the operating range (0.001–4000 NTU for the SOLITAX and 0.1–3000 NTU for the Hydrolab) was considered in addition to sensor accuracy and precision. The average percent error in the three standards was 3.80 percent for the SOLITAX and -4.46 percent for the Hydrolab. The DTS-12 also demonstrated good accuracy with an average percent error of 2.02 percent and a maximum relative standard

  17. Performance evaluation of different filter media in turbidity removal from water by application of modified qualitative indices.

    Science.gov (United States)

    Gholikandi, G Badalians; Dehghanifard, E; Sepehr, M Noori; Torabian, A; Moalej, S; Dehnavi, A; Yari, Ar; Asgari, Ar

    2012-01-01

    Water filtration units have been faced problems in water turbidity removal related to their media, which is determined by qualitative indices. Moreover, Current qualitative indices such as turbidity and escaping particle number could not precisely determine the efficiency of the media in water filtration, so defining new indices is essential. In this study, the efficiency of Anthracite-Silica and LECA-Silica media in turbidity removal were compared in different operating condition by using modified qualitative indices. The pilot consisted of a filter column (one meter depth) which consisted of a layer of LECA (450 mm depth) and a layer of Silica sand (350 mm depth. Turbidities of 10, 20, and 30 NTU, coagulant concentrations of 4, 8, and 12 ppm and filtration rates of 10, 15, and 20 m/h were considered as variables. The LECA-Silica media is suitable media for water filtration. Averages of turbidity removal efficiencies in different condition for the LECA-Silica media were 85.8±5.37 percent in stable phase and 69.75±3.37 percent in whole operation phase, while the efficiency of total system were 98.31±0.63 and 94.49±2.97 percent, respectively. The LECA layer efficiency in turbidity removal was independent from filtration rates and due to its low head loss; LECA can be used as a proper medium for treatment plants. Results also showed that the particle index (PI) was a suitable index as a substitute for turbidity and EPN indices.

  18. Treatment of Highly Turbid Water by Polyaluminum Ferric Chloride (PAFCL

    Directory of Open Access Journals (Sweden)

    Fazel Fazel Mohammadi-Moghaddam

    2015-10-01

    Full Text Available Background & Aims of the Study: In some situation like rainfall seasons raw water become very turbid so it affected the water treatment plant processes and quality of produced water. Treatment of very high turbid water has some concerns like precursors for disinfection by-products and very loading rate of particle on filter's media and consequently increases in water consumption for filter backwash. This paper investigates the performance of a composite inorganic polymer of aluminium and ferric salt, Polyaluminium ferric chloride (PAFCl, for the removal of turbidity, color and natural organic matter (NOM from high turbid water. Materials and Methods: Experiments were carried out by Jar test experiment by synthetic water samples with 250 and 500 NTU turbidity that prepared in laboratory. Results: The results of conventional jar test showed that the optimum pH for coagulation of water sample was 7.5 to 8 and optimum dosage of the coagulant was 10 mg/L. Removal efficiency of turbidity, color and UV adsorbent at 254 nm at optimum dose and pH without filtration was 99.92%, 100% and 80.6% respectively for first sample (250 NTU and 99.95%, 99.49% and 84.77 for second sample (500 NTU respectively. Conclusion: It concluded that polyaluminium ferric chloride has a very good efficiency for the removal of turbidity, color and organic matter in high turbid water. Also it can be select as a coagulant for high turbid water and some waste water from water treatment plant like filter backwash water.

  19. Determination of average fission fraction produced by 14 MeV neutrons in assemblies with large volume of depleted uranium

    International Nuclear Information System (INIS)

    Wang Dalun; Li Benci; Wang Xiuchun; Li Yijun; Zhang Shaohua; He Yongwu

    1991-07-01

    The average fission fraction of 238 U caused by 14 MeV neutrons in assemblies with large volume depleted uranium has been determined. The measured value of p f 238U (R ∞ depleted ) 14 was 0.897 ± 0.036. Measurements were also completed for neutron flux distribution and average fission fraction of 235 U isotope in depleted uranium sphere. Values of p f 238U (R depleted ) have been obtained by using a series of uranium spheres. For a sphere with Φ 600 the p f 23 '8 U (R 300 depleted ) is 0.823 ± 0.041, the density of depleted uranium assembly is 18.8g/cm 3 and total weight of assembly is about 2.8t

  20. Systems and methods for the detection of low-level harmful substances in a large volume of fluid

    Science.gov (United States)

    Carpenter, Michael V.; Roybal, Lyle G.; Lindquist, Alan; Gallardo, Vincente

    2016-03-15

    A method and device for the detection of low-level harmful substances in a large volume of fluid comprising using a concentrator system to produce a retentate and analyzing the retentate for the presence of at least one harmful substance. The concentrator system performs a method comprising pumping at least 10 liters of fluid from a sample source through a filter. While pumping, the concentrator system diverts retentate from the filter into a container. The concentrator system also recirculates at least part of the retentate in the container again through the filter. The concentrator system controls the speed of the pump with a control system thereby maintaining a fluid pressure less than 25 psi during the pumping of the fluid; monitors the quantity of retentate within the container with a control system, and maintains a reduced volume level of retentate and a target volume of retentate.

  1. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) for rapid hygiene control of large-volume water samples.

    Science.gov (United States)

    Elsäßer, Dennis; Ho, Johannes; Niessner, Reinhard; Tiehm, Andreas; Seidel, Michael

    2018-04-01

    Hygiene of drinking water is periodically controlled by cultivation and enumeration of indicator bacteria. Rapid and comprehensive measurements of emerging pathogens are of increasing interest to improve drinking water safety. In this study, the feasibility to detect bacteriophage PhiX174 as a potential indicator for virus contamination in large volumes of water is demonstrated. Three consecutive concentration methods (continuous ultrafiltration, monolithic adsorption filtration, and centrifugal ultrafiltration) were combined to concentrate phages stepwise from 1250 L drinking water into 1 mL. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) is applied as rapid detection method. Field measurements were conducted to test the developed system for hygiene online monitoring under realistic conditions. We could show that this system allows the detection of artificial contaminations of bacteriophage PhiX174 in drinking water pipelines. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Material properties of large-volume cadmium zinc telluride crystals and their relationship to nuclear detector performance

    Energy Technology Data Exchange (ETDEWEB)

    James, R.B.; Lund, J. [Sandia National Labs., Livermore, CA (United States); Yoon, H. [Sandia National Labs., Livermore, CA (United States)]|[Univ. of California, Los Angeles, CA (United States)] [and others

    1997-09-01

    The material showing the greatest promise today for production of large-volume gamma-ray spectrometers operable at room temperature is cadmium zinc telluride (CZT). Unfortunately, because of deficiencies in the quality of the present material, high-resolution CZT spectrometers have thus far been limited to relatively small dimensions, which makes them inefficient at detecting high photon energies and ineffective for weak radiation signals except in near proximity. To exploit CZT fully, it will be necessary to make substantial improvements in the material quality. Improving the material involves advances in the purity, crystallinity, and control of the electrical compensation mechanism. Sandia National Laboratories, California, in close collaboration with US industry and academia, has initiated efforts to develop a detailed understanding of the underlying material problems limiting the performance of large volume gamma-ray spectrometers and to overcome them through appropriate corrections therein. A variety of analytical and numerical techniques are employed to quantify impurities, compositional and stoichiometric variations, crystallinity, strain, bulk and surface defect states, carrier mobilities and lifetimes, electric field distributions, and contact chemistry. Data from these measurements are correlated with spatial maps of the gamma-ray and alpha particle spectroscopic response to determine improvements in the material purification, crystal growth, detector fabrication, and surface passivation procedures. The results of several analytical techniques will be discussed. The intended accomplishment of this work is to develop a low-cost, high-efficiency CZT spectrometer with an active volume of 5 cm{sup 3} and energy resolution of 1--2% (at 662 keV), which would give the US a new field capability for screening radioactive substances.

  3. Analysis of plant hormones by microemulsion electrokinetic capillary chromatography coupled with on-line large volume sample stacking.

    Science.gov (United States)

    Chen, Zongbao; Lin, Zian; Zhang, Lin; Cai, Yan; Zhang, Lan

    2012-04-07

    A novel method of microemulsion electrokinetic capillary chromatography (MEEKC) coupled with on-line large volume sample stacking was developed for the analysis of six plant hormones including indole-3-acetic acid, indole-3-butyric acid, indole-3-propionic acid, 1-naphthaleneacetic acid, abscisic acid and salicylic acid. Baseline separation of six plant hormones was achieved within 10 min by using the microemulsion background electrolyte containing a 97.2% (w/w) 10 mM borate buffer at pH 9.2, 1.0% (w/w) ethyl acetate as oil droplets, 0.6% (w/w) sodium dodecyl sulphate as surfactant and 1.2% (w/w) 1-butanol as cosurfactant. In addition, an on-line concentration method based on a large volume sample stacking technique and multiple wavelength detection was adopted for improving the detection sensitivity in order to determine trace level hormones in a real sample. The optimal method provided about 50-100 fold increase in detection sensitivity compared with a single MEEKC method, and the detection limits (S/N = 3) were between 0.005 and 0.02 μg mL(-1). The proposed method was simple, rapid and sensitive and could be applied to the determination of six plant hormones in spiked water samples, tobacco leaves and 1-naphthylacetic acid in leaf fertilizer. The recoveries ranged from 76.0% to 119.1%, and good reproducibilities were obtained with relative standard deviations (RSDs) less than 6.6%.

  4. Material properties of large-volume cadmium zinc telluride crystals and their relationship to nuclear detector performance

    International Nuclear Information System (INIS)

    James, R.B.; Lund, J.; Yoon, H.

    1997-01-01

    The material showing the greatest promise today for production of large-volume gamma-ray spectrometers operable at room temperature is cadmium zinc telluride (CZT). Unfortunately, because of deficiencies in the quality of the present material, high-resolution CZT spectrometers have thus far been limited to relatively small dimensions, which makes them inefficient at detecting high photon energies and ineffective for weak radiation signals except in near proximity. To exploit CZT fully, it will be necessary to make substantial improvements in the material quality. Improving the material involves advances in the purity, crystallinity, and control of the electrical compensation mechanism. Sandia National Laboratories, California, in close collaboration with US industry and academia, has initiated efforts to develop a detailed understanding of the underlying material problems limiting the performance of large volume gamma-ray spectrometers and to overcome them through appropriate corrections therein. A variety of analytical and numerical techniques are employed to quantify impurities, compositional and stoichiometric variations, crystallinity, strain, bulk and surface defect states, carrier mobilities and lifetimes, electric field distributions, and contact chemistry. Data from these measurements are correlated with spatial maps of the gamma-ray and alpha particle spectroscopic response to determine improvements in the material purification, crystal growth, detector fabrication, and surface passivation procedures. The results of several analytical techniques will be discussed. The intended accomplishment of this work is to develop a low-cost, high-efficiency CZT spectrometer with an active volume of 5 cm 3 and energy resolution of 1--2% (at 662 keV), which would give the US a new field capability for screening radioactive substances

  5. SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Bichay, T; Mayville, A [Mercy Health, Saint Mary’s, Grand Rapids, MI (United States)

    2016-06-15

    Purpose: CyberKnife is a well-documented modality for SRS and SBRT treatments. Typical tumors are small and 1–5 fractions are usually used. We determined the feasibility of using CyberKnife, with an InCise multileaf collimator option, for larger tumors undergoing standard dose and fractionation. The intent was to understand the limitation of using this modality for other external beam radiation treatments. Methods: Five tumors from different anatomical sites with volumes from 127.8 cc to 1,320.5 cc were contoured and planned on a Multiplan V5.1 workstation. The target average diameter ranged from 7 cm to 13 cm. The dose fractionation was 1.8–2.0 Gy/fraction and 25–45 fractions for total doses of 45–81 Gy. The sites planned were: pancreas, head and neck, prostate, anal, and esophagus. The plans were optimized to meet conventional dose constraints based on various RTOG protocols for conventional fractionation. Results: The Multiplan treatment planning system successfully generated clinically acceptable plans for all sites studied. The resulting dose distributions achieved reasonable target coverage, all greater than 95%, and satisfactory normal tissue sparing. Treatment times ranged from 9 minutes to 38 minutes, the longest being a head and neck plan with dual targets receiving different doses and with multiple adjacent critical structures. Conclusion: CyberKnife, with the InCise multileaf collimation option, can achieve acceptable dose distributions in large volume tumors treated with conventional dose and fractionation. Although treatment times are greater than conventional accelerator time; target coverage and dose to critical structures can be kept within a clinically acceptable range. While time limitations exist, when necessary CyberKnife can provide an alternative to traditional treatment modalities for large volume tumors.

  6. Large volume unresectable locally advanced non-small cell lung cancer: acute toxicity and initial outcome results with rapid arc

    Directory of Open Access Journals (Sweden)

    Fogliata Antonella

    2010-10-01

    Full Text Available Abstract Background To report acute toxicity, initial outcome results and planning therapeutic parameters in radiation treatment of advanced lung cancer (stage III with volumetric modulated arcs using RapidArc (RA. Methods Twenty-four consecutive patients were treated with RA. All showed locally advanced non-small cell lung cancer with stage IIIA-IIIB and with large volumes (GTV:299 ± 175 cm3, PTV:818 ± 206 cm3. Dose prescription was 66Gy in 33 fractions to mean PTV. Delivery was performed with two partial arcs with a 6 MV photon beam. Results From a dosimetric point of view, RA allowed us to respect most planning objectives on target volumes and organs at risk. In particular: for GTV D1% = 105.6 ± 1.7%, D99% = 96.7 ± 1.8%, D5%-D95% = 6.3 ± 1.4%; contra-lateral lung mean dose resulted in 13.7 ± 3.9Gy, for spinal cord D1% = 39.5 ± 4.0Gy, for heart V45Gy = 9.0 ± 7.0Gy, for esophagus D1% = 67.4 ± 2.2Gy. Delivery time was 133 ± 7s. At three months partial remission > 50% was observed in 56% of patients. Acute toxicities at 3 months showed 91% with grade 1 and 9% with grade 2 esophageal toxicity; 18% presented grade 1 and 9% with grade 2 pneumonia; no grade 3 acute toxicity was observed. The short follow-up does not allow assessment of local control and progression free survival. Conclusions RA proved to be a safe and advantageous treatment modality for NSCLC with large volumes. Long term observation of patients is needed to assess outcome and late toxicity.

  7. Turbidity Responses from Timber Harvesting, Wildfire, and Post-Fire Logging in the Battle Creek Watershed, Northern California.

    Science.gov (United States)

    Lewis, Jack; Rhodes, Jonathan J; Bradley, Curtis

    2018-04-11

    The Battle Creek watershed in northern California was historically important for its Chinook salmon populations, now at remnant levels due to land and water uses. Privately owned portions of the watershed are managed primarily for timber production, which has intensified since 1998, when clearcutting became widespread. Turbidity has been monitored by citizen volunteers at 13 locations in the watershed. Approximately 2000 grab samples were collected in the 5-year analysis period as harvesting progressed, a severe wildfire burned 11,200 ha, and most of the burned area was salvage logged. The data reveal strong associations of turbidity with the proportion of area harvested in watersheds draining to the measurement sites. Turbidity increased significantly over the measurement period in 10 watersheds and decreased at one. Some of these increases may be due to the influence of wildfire, logging roads and haul roads. However, turbidity continued trending upwards in six burned watersheds that were logged after the fire, while decreasing or remaining the same in two that escaped the fire and post-fire logging. Unusually high turbidity measurements (more than seven times the average value for a given flow condition) were very rare (0.0% of measurements) before the fire but began to appear in the first year after the fire (5.0% of measurements) and were most frequent (11.6% of measurements) in the first 9 months after salvage logging. Results suggest that harvesting contributes to road erosion and that current management practices do not fully protect water quality.

  8. To fear or to feed: the effects of turbidity on perception of risk by a marine fish

    Science.gov (United States)

    Leahy, Susannah M.; McCormick, Mark I.; Mitchell, Matthew D.; Ferrari, Maud C. O.

    2011-01-01

    Coral reefs are currently experiencing a number of worsening anthropogenic stressors, with nearshore reefs suffering from increasing sedimentation because of growing human populations and development in coastal regions. In habitats where vision and olfaction serve as the primary sources of information, reduced visual input from suspended sediment may lead to significant alterations in prey fish behaviour. Here, we test whether prey compensate for reduced visual information by increasing their antipredator responses to chemically mediated risk cues in turbid conditions. Experiments with the spiny damselfish, Acanthochromis polyacanthus, found that baseline activity levels were reduced by 23 per cent in high turbidity conditions relative to low turbidity conditions. Furthermore, risk cues elicited strong antipredator responses at all turbidity levels; the strongest antipredator responses were observed in high turbidity conditions, with fish reducing their foraging by almost 40 per cent, as compared with 17 per cent for fish in clear conditions. This provides unambiguous evidence of sensory compensation in a predation context for a tropical marine fish, and suggests that prey fish may be able to behaviourally offset some of the fitness reductions resulting from anthropogenic sedimentation of their habitats. PMID:21849308

  9. To fear or to feed: the effects of turbidity on perception of risk by a marine fish.

    Science.gov (United States)

    Leahy, Susannah M; McCormick, Mark I; Mitchell, Matthew D; Ferrari, Maud C O

    2011-12-23

    Coral reefs are currently experiencing a number of worsening anthropogenic stressors, with nearshore reefs suffering from increasing sedimentation because of growing human populations and development in coastal regions. In habitats where vision and olfaction serve as the primary sources of information, reduced visual input from suspended sediment may lead to significant alterations in prey fish behaviour. Here, we test whether prey compensate for reduced visual information by increasing their antipredator responses to chemically mediated risk cues in turbid conditions. Experiments with the spiny damselfish, Acanthochromis polyacanthus, found that baseline activity levels were reduced by 23 per cent in high turbidity conditions relative to low turbidity conditions. Furthermore, risk cues elicited strong antipredator responses at all turbidity levels; the strongest antipredator responses were observed in high turbidity conditions, with fish reducing their foraging by almost 40 per cent, as compared with 17 per cent for fish in clear conditions. This provides unambiguous evidence of sensory compensation in a predation context for a tropical marine fish, and suggests that prey fish may be able to behaviourally offset some of the fitness reductions resulting from anthropogenic sedimentation of their habitats.

  10. Performance testing of coagulants to reduce stormwater runoff turbidity.

    Science.gov (United States)

    2014-05-01

    On December 1, 2009, the US Environmental Protection Agency (EPA) published a rule in the Federal : Register establishing non-numeric and, for the first time, numeric effluent limitation guidelines (ELGs). The : numeric ELGs included a turbidity limi...

  11. Improved Methods for Correlating Turbidity and Suspended Solids for Monitoring

    National Research Council Canada - National Science Library

    2000-01-01

    This technical note describes techniques normally used to measure turbidity and suspended solids in waters, how the two parameters relate to each other and to various environmental impacts, and why...

  12. 14C assimilation in a turbid man-made lake

    International Nuclear Information System (INIS)

    Stegmann, P.

    1978-01-01

    This article discusses the phytoplankton primary production in a turbid impoundment. The use of radioactive carbon to estimate the amount of plankton is described. The results are compared to those received from a clear-water environment

  13. Turbidity monitoring equipment and methodology evaluation at MDOT construction sites.

    Science.gov (United States)

    2014-12-01

    State Study 261 is a continuation of State study 225, "Turbidity Monitoring at Select : MDOT Construction Sites", which was successful in establishing baseline stream data : at several active construction sites. State Study 261 focused on the equipme...

  14. Observation technology for remote operation in contaminated turbid water

    International Nuclear Information System (INIS)

    Kishimoto, Manabu; Mitsui, Takashi

    2016-01-01

    Remote underwater work in contaminated tanks and pools is one of major decontamination and decommissioning works under high-dose radiation environment. Generally in this kind of work, visual information is limited due to turbid water caused by suspended sludge particles in the water and it makes remote underwater work difficult to be performed safely and efficiently. Therefore, some alternative observation methods to optical cameras have been required. In order to satisfy this requirement, the alternative observation technology which can obtain visual information in contaminated turbid water has been developed since 2014. It is a technology using an acoustic imaging system in a designated airtight container. It provides the visual information in real time regardless of turbidity without significant contamination of any parts of the system. This paper will present development details of this innovative observation technology and its effectiveness to various remote works in contaminated turbid water. (author)

  15. Dynamic imaging through turbid media based on digital holography.

    Science.gov (United States)

    Li, Shiping; Zhong, Jingang

    2014-03-01

    Imaging through turbid media using visible or IR light instead of harmful x ray is still a challenging problem, especially in dynamic imaging. A method of dynamic imaging through turbid media using digital holography is presented. In order to match the coherence length between the dynamic object wave and the reference wave, a cw laser is used. To solve the problem of difficult focusing in imaging through turbid media, an autofocus technology is applied. To further enhance the image contrast, a spatial filtering technique is used. A description of digital holography and experiments of imaging the objects hidden in turbid media are presented. The experimental result shows that dynamic images of the objects can be achieved by the use of digital holography.

  16. Preliminary study on the effect of mixing and time on turbidity removal in wastewater treatment

    International Nuclear Information System (INIS)

    Abu Bakar, A.; Jaafar, J.

    2006-01-01

    The current trend favorable in the wastewater treatment industry is to use natural polymer as a coagulant. It is believed that this natural polymer can perform as well as synthetic organic polymer. In this study, natural polymer - Moringa Oleifera was used to destabilize the colloidal particles in wastewater so that the floc will be formed in this process. Jar test was used to evaluate, to determine the dosages and to optimize the coagulant - Moringa Oleifera in these processes. The experimental result has showed that, by using Moringa Oleifera as a coagulant the turbidity of the wastewater can be removed up to 98% which is comparable to the performance of synthetic polymer, alum. This study however is applicable for wastewater which in the medium to high turbidity ranging from 80 to 100 NTU. (Author)

  17. MASEX '83, a survey of the turbidity maximum in the Weser Estuary

    International Nuclear Information System (INIS)

    Fanger, H.U.; Neumann, L.; Ohm, K.; Riethmueller, R.

    1986-01-01

    A one-week survey of the turbidity maximum in the Weser Estuary was conducted in the Fall of 1983 using the survey ship RV 'Victor Hensen'. Supplemental measurements were taken using in-situ current - conductivity - temperature - turbidity meters. The thickness of the bottom mud was determined using a gamma-ray transmission probe and compared with core sample analysis. The location of no-net tidal averaged bottom flow was determined to be at km 57. The off-ship measurements were taken using a CTD probe combined with a light attenuation meter. A comparison between salinity and attenuation gives insight into the relative importance of erosion, sedimentation and advective transport. (orig.) [de

  18. Establishment of turbidity forecasting model and early-warning system for source water turbidity management using back-propagation artificial neural network algorithm and probability analysis.

    Science.gov (United States)

    Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng

    2014-08-01

    The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation.

  19. Effects of turbidity, sediment, and polyacrylamide on native freshwater mussels

    Science.gov (United States)

    Buczek, Sean B.; Cope, W. Gregory; McLaughlin, Richard A.; Kwak, Thomas J.

    2018-01-01

    Turbidity is a ubiquitous pollutant adversely affecting water quality and aquatic life in waterways globally. Anionic polyacrylamide (PAM) is widely used as an effective chemical flocculent to reduce suspended sediment (SS) and turbidity. However, no information exists on the toxicity of PAM‐flocculated sediments to imperiled, but ecologically important, freshwater mussels (Unionidae). Thus, we conducted acute (96 h) and chronic (24 day) laboratory tests with juvenile fatmucket (Lampsilis siliquoidea) and three exposure conditions (nonflocculated settled sediment, SS, and PAM‐flocculated settled sediment) over a range of turbidity levels (50, 250, 1,250, and 3,500 nephelometric turbidity units). Survival and sublethal endpoints of protein oxidation, adenosine triphosphate (ATP) production, and protein concentration were used as measures of toxicity. We found no effect of turbidity levels or exposure condition on mussel survival in acute or chronic tests. However, we found significant reductions in protein concentration, ATP production, and oxidized proteins in mussels acutely exposed to the SS condition, which required water movement to maintain sediment in suspension, indicating responses that are symptoms of physiological stress. Our results suggest anionic PAM applied to reduce SS may minimize adverse effects of short‐term turbidity exposure on juvenile freshwater mussels without eliciting additional lethal or sublethal toxicity.

  20. Optical imaging of objects in turbid medium with ultrashort pulses

    Science.gov (United States)

    Wang, Chih-Yu; Sun, Chia-Wei; Yang, Chih Chung; Kiang, Yean-Woei; Lin, Chii-Wann

    2000-07-01

    Photons are seriously scattered when entering turbid medium; this the images of objects hidden in turbid medium can not be obtained by just collecting the transmitted photons. Early-arriving photons, which are also called ballistic or snake protons, are much less scattered when passing through turbid medium, and contains more image information than the late-arriving ones. Therefore, objects embedded in turbid medium can be imaged by gathering the ballistic and snake photons. In the present research we try to recover images of objects in turbid medium by simultaneously time-gate and polarization-gate to obtain the snake photons. An Argon-pumped Ti-Sapphire laser with 100fs pulses was employed as a light source. A streak camera with a 2ps temporal resolution was used to extract the ballistic and snake photons. Two pieces of lean swine meat, measured 4mmX3mm and 5xxX4mm, respectively, were placed in a 10cmX10cmX3cm acrylic tank, which was full of diluted milk. A pair of polarizer and an analyzer was used to extract the light that keeps polarization unchanged. The combination of time gating and polarization gating resulted in good images of objects hidden in turbid medium.

  1. Plasma properties in a large-volume, cylindrical and asymmetric radio-frequency capacitively coupled industrial-prototype reactor

    International Nuclear Information System (INIS)

    Lazović, Saša; Puač, Nevena; Spasić, Kosta; Malović, Gordana; Petrović, Zoran Lj; Cvelbar, Uroš; Mozetič, Miran; Radetić, Maja

    2013-01-01

    We have developed a large-volume low-pressure cylindrical plasma reactor with a size that matches industrial reactors for treatment of textiles. It was shown that it efficiently produces plasmas with only a small increase in power as compared with a similar reactor with 50 times smaller volume. Plasma generated at 13.56 MHz was stable from transition to streamers and capable of long-term continuous operation. An industrial-scale asymmetric cylindrical reactor of simple design and construction enabled good control over a wide range of active plasma species and ion concentrations. Detailed characterization of the discharge was performed using derivative, Langmuir and catalytic probes which enabled determination of the optimal sets of plasma parameters necessary for successful industry implementation and process control. Since neutral atomic oxygen plays a major role in many of the material processing applications, its spatial profile was measured using nickel catalytic probe over a wide range of plasma parameters. The spatial profiles show diffusion profiles with particle production close to the powered electrode and significant wall losses due to surface recombination. Oxygen atom densities range from 10 19 m −3 near the powered electrode to 10 17 m −3 near the wall. The concentrations of ions at the same time are changing from 10 16 to the 10 15 m −3 at the grounded chamber wall. (paper)

  2. Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges

    Science.gov (United States)

    Stepanyan, Sergey; Hayashi, Jun; Salmon, Arthur; Stancu, Gabi D.; Laux, Christophe O.

    2017-04-01

    This work presents experimental observations of strong expanding thermal jets following the application of nanosecond spark discharges. These jets propagate in a toroidal shape perpendicular to the interelectrode axis, with high velocities of up to 30 m s-1 and over distances of the order of a cm. Their propagation length is much larger than the thermal expansion region produced by the conventional millisecond sparks used in car engine ignition, thus greatly improving the volumetric excitation of gas mixtures. The shape and velocity of the jets is found to be fairly insensitive to the shape of the electrodes. In addition, their spatial extent is found to increase with the number of nanosecond sparks and with the discharge voltage, and to decrease slightly with the pressure between 1 and 7 atm at constant applied voltage. Finally, this thermal jet phenomenon is observed in experiments conducted with many types of gas mixtures, including air, nitrogen, argon, and combustible CH4/air mixtures. This makes nanosecond repetitively pulsed discharges particularly attractive for aerodynamic flow control or plasma-assisted combustion because of their ability to excite large volumes of gas, typically about 100 times the volume of the discharge.

  3. Chromatographic lipophilicity determination using large volume injections of the solvents non-miscible with the mobile phase.

    Science.gov (United States)

    Sârbu, Costel; Naşcu-Briciu, Rodica Domnica; Casoni, Dorina; Kot-Wasik, Agata; Wasik, Andrzej; Namieśnik, Jacek

    2012-11-30

    A new perspective in the lipophilicity evaluation through RP-HPLC is permitted by analysis of the retention factor (k) obtained by injecting large volumes of test samples prepared in solvents immiscible with mobile phase. The experiment is carried out on representative groups of compounds with increased toxicity (mycotoxins and alkaloids) and amines with important biological activity (naturally occurring monoamine compounds and related drugs), which are covering a large interval of lipophilicity. The stock solution of each compound was prepared in hexane and the used mobile phases were mixtures of methanol or acetonitrile and water, in suited volume ratio. The injected volume was between 10 and 100 μL, while the used stationary phases were RP-18 and RP-8. On both reverse stationary phases the retention factors were linearly decreasing while the injection volume was increasing. In all cases, the linear models were highly statistically significant. On the basis of the obtained results new lipophilicity indices were purposed and discussed. The developed lipophilicity indices and the computationally expressed ones are correlated at a high level of statistical significance. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Solid-Phase Extraction and Large-Volume Sample Stacking-Capillary Electrophoresis for Determination of Tetracycline Residues in Milk

    Directory of Open Access Journals (Sweden)

    Gabriela Islas

    2018-01-01

    Full Text Available Solid-phase extraction in combination with large-volume sample stacking-capillary electrophoresis (SPE-LVSS-CE was applied to measure chlortetracycline, doxycycline, oxytetracycline, and tetracycline in milk samples. Under optimal conditions, the proposed method had a linear range of 29 to 200 µg·L−1, with limits of detection ranging from 18.6 to 23.8 µg·L−1 with inter- and intraday repeatabilities < 10% (as a relative standard deviation in all cases. The enrichment factors obtained were from 50.33 to 70.85 for all the TCs compared with a conventional capillary zone electrophoresis (CZE. This method is adequate to analyze tetracyclines below the most restrictive established maximum residue limits. The proposed method was employed in the analysis of 15 milk samples from different brands. Two of the tested samples were positive for the presence of oxytetracycline with concentrations of 95 and 126 µg·L−1. SPE-LVSS-CE is a robust, easy, and efficient strategy for online preconcentration of tetracycline residues in complex matrices.

  5. Safety Analysis in Large Volume Vacuum Systems Like Tokamak: Experiments and Numerical Simulation to Analyze Vacuum Ruptures Consequences

    Directory of Open Access Journals (Sweden)

    A. Malizia

    2014-01-01

    Full Text Available The large volume vacuum systems are used in many industrial operations and research laboratories. Accidents in these systems should have a relevant economical and safety impact. A loss of vacuum accident (LOVA due to a failure of the main vacuum vessel can result in a fast pressurization of the vessel and consequent mobilization dispersion of hazardous internal material through the braches. It is clear that the influence of flow fields, consequence of accidents like LOVA, on dust resuspension is a key safety issue. In order to develop this analysis an experimental facility is been developed: STARDUST. This last facility has been used to improve the knowledge about LOVA to replicate a condition more similar to appropriate operative condition like to kamaks. By the experimental data the boundary conditions have been extrapolated to give the proper input for the 2D thermofluid-dynamics numerical simulations, developed by the commercial CFD numerical code. The benchmark of numerical simulation results with the experimental ones has been used to validate and tune the 2D thermofluid-dynamics numerical model that has been developed by the authors to replicate the LOVA conditions inside STARDUST. In present work, the facility, materials, numerical model, and relevant results will be presented.

  6. Evaluation of thermal stress in the anode chamber wall of a large volume magnetic bucket ion source

    International Nuclear Information System (INIS)

    Wells, Russell; Horiike, Hiroshi; Kuriyama, Masaaki; Ohara, Yoshihiro

    1984-02-01

    Thermal stress analysis was performed on the plasma chamber of the Large Volume Magnetic Multipole Bucket Ion Source (LVB) designed for use on the JT-60 NBI system. The energy absorbed by the walls of the plasma chambers of neutral beam injectors is of the order of 1% of the accelerator electrical drain power. A previous study indicates that a moderately high heat flux, of about 600W/cm 2 , is concentrated on the magnetic field cusp lines during normal full power operation. Abnormal arc discharges during conditioning of a stainless steel LVB produced localized melting of the stainless steel at several locations near the cusps lines. The power contained in abnormal arc discharges (arc spots) was estimated from the observed melting. Thermal stress analysis was performed numerically on representative sections of the copper LVB design for both stable and abnormal arc discharge conditions. Results show that this chamber should not fail due to thermal fatigue stesses arising from normal arc discharges. However, fatigue failure may occur after several hundred to a few thousand arc spots of 30mS duration at any one location. Limited arc discharge operation of the copper bucket was performed to partially verify the chamber's durability. (author)

  7. In situ tryptophan-like fluorometers: assessing turbidity and temperature effects for freshwater applications.

    Science.gov (United States)

    Khamis, K; Sorensen, J P R; Bradley, C; Hannah, D M; Lapworth, D J; Stevens, R

    2015-04-01

    Tryptophan-like fluorescence (TLF) is an indicator of human influence on water quality as TLF peaks are associated with the input of labile organic carbon (e.g. sewage or farm waste) and its microbial breakdown. Hence, real-time measurement of TLF could be particularly useful for monitoring water quality at a higher temporal resolution than available hitherto. However, current understanding of TLF quenching/interference is limited for field deployable sensors. We present results from a rigorous test of two commercially available submersible tryptophan fluorometers (ex ∼ 285, em ∼ 350). Temperature quenching and turbidity interference were quantified in the laboratory and compensation algorithms developed. Field trials were then undertaken involving: (i) an extended deployment (28 days) in a small urban stream; and, (ii) depth profiling of an urban multi-level borehole. TLF was inversely related to water temperature (regression slope range: -1.57 to -2.50). Sediment particle size was identified as an important control on the turbidity specific TLF response, with signal amplification apparent 200 NTU for clay particles. Compensation algorithms significantly improved agreement between in situ and laboratory readings for baseflow and storm conditions in the stream. For the groundwater trial, there was an excellent agreement between laboratory and raw in situ TLF; temperature compensation provided only a marginal improvement, and turbidity corrections were unnecessary. These findings highlight the potential utility of real time TLF monitoring for a range of environmental applications (e.g. tracing polluting sources and monitoring groundwater contamination). However, in situations where high/variable suspended sediment loads or rapid changes in temperature are anticipated concurrent monitoring of turbidity and temperature is required and site specific calibration is recommended for long term, surface water monitoring.

  8. Climate-change refugia: shading reef corals by turbidity.

    Science.gov (United States)

    Cacciapaglia, Chris; van Woesik, Robert

    2016-03-01

    Coral reefs have recently experienced an unprecedented decline as the world's oceans continue to warm. Yet global climate models reveal a heterogeneously warming ocean, which has initiated a search for refuges, where corals may survive in the near future. We hypothesized that some turbid nearshore environments may act as climate-change refuges, shading corals from the harmful interaction between high sea-surface temperatures and high irradiance. We took a hierarchical Bayesian approach to determine the expected distribution of 12 coral species in the Indian and Pacific Oceans, between the latitudes 37°N and 37°S, under representative concentration pathway 8.5 (W m(-2) ) by 2100. The turbid nearshore refuges identified in this study were located between latitudes 20-30°N and 15-25°S, where there was a strong coupling between turbidity and tidal fluctuations. Our model predicts that turbidity will mitigate high temperature bleaching for 9% of shallow reef habitat (to 30 m depth) - habitat that was previously considered inhospitable under ocean warming. Our model also predicted that turbidity will protect some coral species more than others from climate-change-associated thermal stress. We also identified locations where consistently high turbidity will likely reduce irradiance to turbid nearshore refuges identified in this study, particularly in the northwestern Hawaiian Islands, the northern Philippines, the Ryukyu Islands (Japan), eastern Vietnam, western and eastern Australia, New Caledonia, the northern Red Sea, and the Arabian Gulf, should become part of a judicious global strategy for reef-coral persistence under climate change. © 2015 John Wiley & Sons Ltd.

  9. Hyperspectral sensing for turbid water quality monitoring in freshwater rivers: Empirical relationship between reflectance and turbidity and total solids.

    Science.gov (United States)

    Wu, Jiunn-Lin; Ho, Chung-Ru; Huang, Chia-Ching; Srivastav, Arun Lal; Tzeng, Jing-Hua; Lin, Yao-Tung

    2014-11-28

    Total suspended solid (TSS) is an important water quality parameter. This study was conducted to test the feasibility of the band combination of hyperspectral sensing for inland turbid water monitoring in Taiwan. The field spectral reflectance in the Wu river basin of Taiwan was measured with a spectroradiometer; the water samples were collected from the different sites of the Wu river basin and some water quality parameters were analyzed on the sites (in situ) as well as brought to the laboratory for further analysis. To obtain the data set for this study, 160 in situ sample observations were carried out during campaigns from August to December, 2005. The water quality results were correlated with the reflectivity to determine the spectral characteristics and their relationship with turbidity and TSS. Furthermore, multiple-regression (MR) and artificial neural network (ANN) were used to model the transformation function between TSS concentration and turbidity levels of stream water, and the radiance measured by the spectroradiometer. The value of the turbidity and TSS correlation coefficient was 0.766, which implies that turbidity is significantly related to TSS in the Wu river basin. The results indicated that TSS and turbidity are positively correlated in a significant way across the entire spectrum, when TSS concentration and turbidity levels were under 800 mg·L(-1) and 600 NTU, respectively. Optimal wavelengths for the measurements of TSS and turbidity are found in the 700 and 900 nm range, respectively. Based on the results, better accuracy was obtained only when the ranges of turbidity and TSS concentration were less than 800 mg·L(-1) and less than 600 NTU, respectively and used rather than using whole dataset (R(2) = 0.93 versus 0.88 for turbidity and R(2) = 0.83 versus 0.58 for TSS). On the other hand, the ANN approach can improve the TSS retrieval using MR. The accuracy of TSS estimation applying ANN (R(2) = 0.66) was better than with the MR approach (R

  10. Hyperspectral Sensing for Turbid Water Quality Monitoring in Freshwater Rivers: Empirical Relationship between Reflectance and Turbidity and Total Solids

    Directory of Open Access Journals (Sweden)

    Jiunn-Lin Wu

    2014-11-01

    Full Text Available Total suspended solid (TSS is an important water quality parameter. This study was conducted to test the feasibility of the band combination of hyperspectral sensing for inland turbid water monitoring in Taiwan. The field spectral reflectance in the Wu river basin of Taiwan was measured with a spectroradiometer; the water samples were collected from the different sites of the Wu river basin and some water quality parameters were analyzed on the sites (in situ as well as brought to the laboratory for further analysis. To obtain the data set for this study, 160 in situ sample observations were carried out during campaigns from August to December, 2005. The water quality results were correlated with the reflectivity to determine the spectral characteristics and their relationship with turbidity and TSS. Furthermore, multiple-regression (MR and artificial neural network (ANN were used to model the transformation function between TSS concentration and turbidity levels of stream water, and the radiance measured by the spectroradiometer. The value of the turbidity and TSS correlation coefficient was 0.766, which implies that turbidity is significantly related to TSS in the Wu river basin. The results indicated that TSS and turbidity are positively correlated in a significant way across the entire spectrum, when TSS concentration and turbidity levels were under 800 mg·L−1 and 600 NTU, respectively. Optimal wavelengths for the measurements of TSS and turbidity are found in the 700 and 900 nm range, respectively. Based on the results, better accuracy was obtained only when the ranges of turbidity and TSS concentration were less than 800 mg·L−1 and less than 600 NTU, respectively and used rather than using whole dataset (R2 = 0.93 versus 0.88 for turbidity and R2 = 0.83 versus 0.58 for TSS. On the other hand, the ANN approach can improve the TSS retrieval using MR. The accuracy of TSS estimation applying ANN (R2 = 0.66 was better than with the MR

  11. Monitoring suspended sediments and turbidity in Sahelian basins

    Science.gov (United States)

    Robert, Elodie; Grippa, Manuela; Kergoat, Laurent; Martinez, Jean-Michel; Pinet, Sylvain; Nogmana, Soumaguel

    2017-04-01

    Suspended matter can carry viruses and bacteria that are pathogenic to humans and can foster their development. Therefore, turbidity can be considered a vector of microbiological contaminants, which cause diarrheal diseases, and it can be used as a proxy for fecal bacteria. Few studies have focused on water turbidity in rural Africa, where many cases of intestinal parasitic infections are due to the consumption of unsafe water from ponds, reservoirs, lakes and rivers. Diarrheal diseases are indeed the second cause of infant mortality in sub-Saharan Africa. Furthermore, in this region, environment survey is minimal or inexistent. Monitoring water turbidity therefore represents a challenge for health improvement. Turbidity refers to the optical properties of water and it is well suited to monitoring by remote sensing. Because it varies in space and time and because the small water bodies (Africa challenges the use of remote sensing and questions the methods developed for less turbid waters. In addition, high aerosol loadings (mineral dust and biomass burning) may be detrimental to turbidity retrieval in this region because of inaccurate atmospheric corrections. We propose a method to monitor water quality of Sahelian ponds, lakes and rivers using in-situ and remote sensing data, which is tested at different sites for which in-situ water turbidity and suspended sediments concentration (SSSC) measurements are acquired. Water sample are routinely collected at two sites within the AMMA-CATCH observatory part of the Réseau de Bassin Versants (RBV) French network: the Agoufou pond in northern Mali (starting September 2014), and the Niger River at Niamey in Niger (starting June 2015). These data are used to evaluate different indexes to derive water turbidity from the reflectance in the visible and infrared bands of high resolution optical sensors (LANDSAT, SENTINEL2). The temporal evolution of the turbidity of ponds, lakes and rivers is well captured at the seasonal and

  12. [Exploration of the Essence of "Endogenous Turbidity" in Chinese Medicine].

    Science.gov (United States)

    Fan, Xin-rong; Tang, Nong; Ji, Yun-xi; Zhang, Yao-zhong; Jiang, Li; Huang, Gui-hua; Xie, Sheng; Li, Liu-mei; Song, Chun-hui; Ling, Jiang-hong

    2015-08-01

    The essence of endogenous turbidity in Chinese medicine (CM) is different from cream, fat, phlegm, retention, damp, toxicity, and stasis. Along with the development of modern scientific technologies and biology, researches on the essence of endogenous turbidity should keep pace with the time. Its material bases should be defined and new connotation endowed at the microscopic level. The essence of turbidity lies in abnormal functions of zang-fu organs. Sugar, fat, protein, and other nutrient substances cannot be properly decomposed, but into semi-finished products or intermediate metabolites. They are inactive and cannot participate in normal material syntheses and decomposition. They cannot be transformed to energy metabolism, but also cannot be synthesized as executive functioning of active proteins. If they cannot be degraded by autophagy-lysosome or ubiquitin-prosome into glucose, fatty acids, amino acids, and other basic nutrients to be used again, they will accumulate inside the human body and become endogenous turbidity. Therefore, endogenous turbidity is different from final metabolites such as urea, carbon dioxide, etc., which can transform vital qi. How to improve the function of zang-fu organs, enhance its degradation by autophagy-lysosome or ubiquitin-prosome is of great significance in normal operating of zang-fu organs and preventing the emergence and progress of related diseases.

  13. Short-term forecasting of turbidity in trunk main networks.

    Science.gov (United States)

    Meyers, Gregory; Kapelan, Zoran; Keedwell, Edward

    2017-11-01

    Water discolouration is an increasingly important and expensive issue due to rising customer expectations, tighter regulatory demands and ageing Water Distribution Systems (WDSs) in the UK and abroad. This paper presents a new turbidity forecasting methodology capable of aiding operational staff and enabling proactive management strategies. The turbidity forecasting methodology developed here is completely data-driven and does not require hydraulic or water quality network model that is expensive to build and maintain. The methodology is tested and verified on a real trunk main network with observed turbidity measurement data. Results obtained show that the methodology can detect if discolouration material is mobilised, estimate if sufficient turbidity will be generated to exceed a preselected threshold and approximate how long the material will take to reach the downstream meter. Classification based forecasts of turbidity can be reliably made up to 5 h ahead although at the expense of increased false alarm rates. The methodology presented here could be used as an early warning system that can enable a multitude of cost beneficial proactive management strategies to be implemented as an alternative to expensive trunk mains cleaning programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. High Turbidity Solis Clear Sky Model: Development and Validation

    Directory of Open Access Journals (Sweden)

    Pierre Ineichen

    2018-03-01

    Full Text Available The Solis clear sky model is a spectral scheme based on radiative transfer calculations and the Lambert–Beer relation. Its broadband version is a simplified fast analytical version; it is limited to broadband aerosol optical depths lower than 0.45, which is a weakness when applied in countries with very high turbidity such as China or India. In order to extend the use of the original simplified version of the model for high turbidity values, we developed a new version of the broadband Solis model based on radiative transfer calculations, valid for turbidity values up to 7, for the three components, global, beam, and diffuse, and for the four aerosol types defined by Shettle and Fenn. A validation of low turbidity data acquired in Geneva shows slightly better results than the previous version. On data acquired at sites presenting higher turbidity data, the bias stays within ±4% for the beam and the global irradiances, and the standard deviation around 5% for clean and stable condition data and around 12% for questionable data and variable sky conditions.

  15. P08.52 Proton therapy re-Irradiation in large-volume recurrent glioblastoma.

    Science.gov (United States)

    Amelio, D.; Widesott, L.; Vennarini, S.; Fellin, F.; Maines, F.; Righetto, R.; Lorentini, S.; Farace, P.; Schwarz, M.; Amichetti, M.

    2016-01-01

    Abstract Purpose: To report preliminary results of re-irradiation with proton therapy (PT) in large-volume recurrent glioblastoma (rGBM). Matherial/Methods: Between January and December 2015 ten patients (pts) with rGBM were re-irradiated with PT. All pts were previously treated with photon radiotherapy (60 Gy) with concomitant and adjuvant TMZ for 1–20 cycles (median, 7). Seven pts were re-irradiated at first relapse/progression. Four patients were re-irradiated after partial tumor resection. Median age and Karnofsky performance status at re-irradiation were 57 years (range, 41–68) and 80%, (range, 70–100), respectively. Median time between prior radiotherapy and PT was 9 months (range, 5–24). Target definition was based on CT, MR, and 18F-DOPA PET imaging. GTV included any area of contrast enhancement after contrast medium administration plus any pathological PET uptake regions. CTV was generated by adding to GTV a 3-mm uniform margin manually corrected in proximity of anatomical barriers. CTV was expanded by 4 mm to create PTV. Median PTV volume was 90 cc (range, 46–231). All pts received 36 GyRBE in 18 fractions. Four pts also received concomitant temozolomide (75 mg/m2/die, 7 days/week). All pts were treated with active beam scanning PT using 2–3 fields with single field optimization technique. Results: All pts completed the treatment without breaks. Registered acute side effects (according to Common Terminology Criteria for Adverse Events version 4.0 - CTCAE) include grade 1–2 skin erythema, alopecia, fatigue, conjunctivitis, concentration impairment, dysphasia, and headache. There were no grade 3 or higher toxicities. One patient developed grade 1 neutropenia. Five pts started PT under steroids (2–7 mg/daily); two of them reduced the dose during PT, while three kept the same steroids dose. None of remaining pts needed steroids therapy. Registered late side effects (according to CTCAE version 4.0) include grade 1–2 alopecia, fatigue

  16. Concurrent monitoring of vessels and water turbidity enhances the strength of evidence in remotely sensed dredging impact assessment

    NARCIS (Netherlands)

    Wu, G.; Leeuw, de J.; Skidmore, A.K.; Prins, H.H.T.; Liu, Y.

    2007-01-01

    Remotely sensed assessment of dredging impacts on water turbidity is straightforward when turbidity plumes show up in clear water. However, it is more complicated in turbid waters as the spatial or temporal changes in turbidity might be of natural origin. The plausibility of attributing turbidity

  17. Development of a unified sizing method for gas radiation heating facilities used in large-volume buildings; Developpement d'une methode de dimensionnement unifiee d'installations de chauffage radiant gaz pour les batiments de grand volume

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, M.; Bego, L.; Douls, Y.; Le Dean, P.; Paradowski, V. [Gaz de France, GDF, Dir. de la Recherche, 75 - Paris (France)

    2000-07-01

    Builders now have perfect command of the natural gas heating technique used for large-volume buildings. However, the sizing of heating facilities still leaves grounds for discussion, whatever the energies actually used. Accordingly, between 1997 and 1999, the ATG (technical association of the Gas industry in France), seven French manufacturers of 'large volume' heating equipment, the Chaleur Et Rayonnement (CER) association and Gaz de France decided to collaborate and develop a 'unified sizing method' for heating facilities using radiating emitters. During the first year of the study, the above partners worked on the said method (theoretical thermal study of the radiative phenomena, and then adaptation to the methods currently used by the various manufacturers). In 1998, with the support of the ADEME (the French environment and energy control agency), the partners tested the method on five industrial buildings (studying the thermal behavior and making air renewal measurements with search gases). This work made it possible to either confirm or adapt the theoretical evaluations which had been made originally. In 1999, a software program was produced to make the developed method more user friendly. The program can be used to determine the power to be installed, but also to assess the quality of the chosen configuration of the emitters (unit power, inclination, orientation) for optimum customer comfort. (authors)

  18. Extending the range of turbidity measurement using polarimetry

    Science.gov (United States)

    Baba, Justin S.

    2017-11-21

    Turbidity measurements are obtained by directing a polarized optical beam to a scattering sample. Scattered portions of the beam are measured in orthogonal polarization states to determine a scattering minimum and a scattering maximum. These values are used to determine a degree of polarization of the scattered portions of the beam, and concentrations of scattering materials or turbidity can be estimated using the degree of polarization. Typically, linear polarizations are used, and scattering is measured along an axis that orthogonal to the direction of propagation of the polarized optical beam.

  19. A feasibility study for a remote laser water turbidity meter

    Science.gov (United States)

    Hickman, G. D.; Ghovanlou, A. H.; Friedman, E. J.; Gault, C. S.; Hogg, J. E.

    1974-01-01

    A technique to remotely determine the attenuation coefficient (alpha) of the water was investigated. The backscatter energy (theta = 180 deg) of a pulse laser (lambda = 440 - 660 nm) was found directly related to the water turbidity. The greatest sensitivity was found to exist at 440 nm. For waters whose turbidity was adjusted using Chesapeake Bay sediment, the sensitivity in determining alpha at 440 nm was found to be approximately 5 - 10%. A correlation was also found to exist between the water depth (time) at which the peak backscatter occurs and alpha.

  20. Significance of multiple scattering in imaging through turbid media

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.

    1986-01-01

    The degradation of image quality in a turbid medium is analyzed within the framework of the small-angle approximation, the diffusion approximation, and a rigorous two-dimensional radiative transfer equation. These three approaches allow us to emphasize different aspects of the imaging problem when multiple scattering effects are important. For a medium with a forward-peaked phase function, the separation of multiple scattering into a series of scatterings of various order provides a fruitful technique. The use of the diffusion approximation and transport theory extends the determination of the modulation transfer function to a turbid medium with an arbitrary degree of anisotropy

  1. Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large Igneous Province

    Science.gov (United States)

    Hauff, F.; Hoernle, K.; Tilton, G.; Graham, D. W.; Kerr, A. C.

    2000-01-01

    isochron diagrams suggests that the age of separation of enriched and depleted components from the depleted MORB source mantle could have been ≤500 Ma before CLIP formation and interpreted to reflect the recycling time of the CLIP source. Mantle plume heads may provide a mechanism for transporting large volumes of possibly young recycled oceanic lithosphere residing in the lower mantle back into the shallow MORB source mantle.

  2. A deep water turbidity origin for the Altuda Formation (Capitanian, Permian), Northwest Glass Mountains, Texas

    Science.gov (United States)

    Haneef, Mohammad; Rohr, D.M.; Wardlaw, B.R.

    2000-01-01

    The Altuda Formation (Capitanian) in the northwestern Glass Mountains is comprised of thin, even bedded limestones, dolostones, mixed clastic-carbonates, and silt/sandstones interbedded with basin-ward dipping wedge-shaped clinoforms of the Captian Limestone. The formation is characterized by graded bedding, planar laminations, flame structures, contorted/convolute bedding, horizontal branching burrows, and shelf-derived normal marine fauna. A detailed study of the Altuda Formation north of Old Blue Mountain, Glass Mountains, reveals that the formation in this area was deposited by turbidity currents in slope to basinal settings.

  3. USING TURBIDITY DATA TO PREDICT SUSPENDED SEDIMENT CONCENTRATIONS: POSSIBILITIES, LIMITATIONS, AND PITFALLS

    Science.gov (United States)

    This talk will look at the relationships between turbidity and suspended sediment concentrations in a variety of geographic areas, geomorphic river types, and river sizes; and attempt to give guidance on using existing turbidity data to predict suspended sediment concentrations.

  4. Laser measure of sea salinity, temperature and turbidity in depth

    Science.gov (United States)

    Hirschberg, J. G.; Wouters, A. W.; Byrne, J. D.

    1974-01-01

    A method is described in which a pulsed laser is used to probe the sea. Backscattered light is analyzed in time, intensity and wavelength. Tyndall, Raman and Brillouin scattering are used to obtain the backscatter turbidity, sound velocity, salinity, and the temperature as a function of depth.

  5. 40 CFR 230.21 - Suspended particulates/turbidity.

    Science.gov (United States)

    2010-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles..., and man's activities including dredging and filling. Particulates may remain suspended in the water...

  6. Turbidity. Training Module 5.240.2.77.

    Science.gov (United States)

    Bonte, John L.; Davidson, Arnold C.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with candle turbidimeter and the nephelometric method of turbidity analysis. Included are objectives, an instructor guide, student handout, and transparency masters. A video tape is also available from the author. This module considers use…

  7. Turbidity removal from surface water using Tamarindus indica crude ...

    African Journals Online (AJOL)

    Plant-based coagulants are potential alternatives to chemical coagulants used in drinking water treatment. This paper examined the turbidity removal efficiency of Tamarindus indica fruit crude pulp extract (CPE) towards evaluating a low-cost option for drinking-water treatment. Laboratory analysis was carried out on high ...

  8. Operational monitoring of turbidity in rivers: how satellites can contribute

    Science.gov (United States)

    Hucke, Dorothee; Hillebrand, Gudrun; Winterscheid, Axel; Kranz, Susanne; Baschek, Björn

    2016-10-01

    The applications of remote sensing in hydrology are diverse and offer significant benefits for water monitoring. Up to now, operational river monitoring and sediment management in Germany mainly rely on in-situ measurements and on results obtained from numerical modelling. Remote sensing by satellites has a great potential to supplement existing data with two-dimensional information on near-surface turbidity distributions at greater spatial scales than in-situ measurements can offer. Within the project WasMon-CT (WaterMonitoring-Chlorophyll/Turbidity), the Federal Institute of Hydrology (BfG) aims at the implementation of an operational monitoring of turbidity distributions based on satellite images (esp. Sentinel-2, Landsat7 and 8). Initially, selected federal inland and estuarine waterways will be addressed: Rhine, Elbe, Ems, Weser. WasMon-CT is funded within the German Copernicus activities. Within the project, a database of atmospherically corrected, geo-referenced turbidity data will be assembled. The collected corresponding meta-data will include aspects of satellite data as well as hydrological data, e.g. cloud cover and river run-off. Based on this catalogue of spatially linked meta-data, the satellite data will be selected by e.g. cloud cover or run-off. The permanently updated database will include past as well as recent satellite images. It is designed with a long-term perspective to optimize the existing in-situ measurement network, which will serve partly for calibration and partly as validation data set. The aim is to extend, but not to substitute, the existing frequent point measurements with spatially extensive, satellite-derived data from the near surface part of the water column. Here, turbidity is used as proxy for corresponding suspended sediment concentrations. For this, the relationship between turbidity and suspended sediment concentrations will be investigated. Products as e.g. longitudinal profiles or virtual measurement stations will be

  9. A contribution to understanding the turbidity behaviour in an Amazon floodplain

    OpenAIRE

    Alcântara, E.; Novo, E.; Stech, J.; Lorenzzetti, J.; Barbosa, C.; Assireu, A.; Souza, A.

    2010-01-01

    Observations of turbidity provide quantitative information about water quality. However, the number of available in situ measurements for water quality determination is usually limited in time and space. Here, we present an analysis of the temporal and spatial variability of the turbidity of an Amazon floodplain lake using two approaches: (1) wavelet analysis of a turbidity time series measured by an automatic monitoring system, which should be improved/simplified, and (2) turbidity samples m...

  10. Potential of turbidity monitoring for real time control of pollutant discharge in sewers during rainfall events

    OpenAIRE

    LACOUR, Céline; JOANNIS, Claude; GROMAIRE, MC; CHEBBO, Ghassan

    2009-01-01

    Turbidity sensors can be used to continuously monitor the evolution of pollutant mass discharge. For two sites within the Paris combined sewer system, continuous turbidity, conductivity and flow data were recorded at one-minute time intervals over a one-year period. This paper is intended to highlight the variability in turbidity dynamics during wet weather. For each storm event, turbidity response aspects were analysed through different classifications. The correlation between classification...

  11. Turbidity-controlled suspended sediment sampling for runoff-event load estimation

    Science.gov (United States)

    Jack Lewis

    1996-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is generally a much better predictor than water discharge. Although it is now possible to collect continuous turbidity data even at remote sites, sediment sampling and load estimation are still conventionally based on discharge. With frequent calibration the relation of turbidity to...

  12. 40 CFR 141.551 - What strengthened combined filter effluent turbidity limits must my system meet?

    Science.gov (United States)

    2010-07-01

    ... effluent turbidity limits must my system meet? 141.551 Section 141.551 Protection of Environment... Effluent Requirements § 141.551 What strengthened combined filter effluent turbidity limits must my system meet? Your system must meet two strengthened combined filter effluent turbidity limits. (a) The first...

  13. 40 CFR 141.560 - Is my system subject to individual filter turbidity requirements?

    Science.gov (United States)

    2010-07-01

    ... filter turbidity requirements? 141.560 Section 141.560 Protection of Environment ENVIRONMENTAL PROTECTION... Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.560 Is my system subject to individual filter turbidity requirements? If your system is a subpart...

  14. Centrifuge experiments for removal of aluminium turbidity from Dhruva heavy water

    International Nuclear Information System (INIS)

    Shetiya, R.S.; Unny, V.K.P.; Nayak, A.P.

    1989-01-01

    Aluminium turbidity and associated radioactivity was observed in the moderator cum coolant system of Dhruva during initial power operation. Ion exchange resin beds of the purification system were not able to remove aluminium turbidity and radioactivity of system heavy water. Centrifuge technique was used as a convenient alternative method to remove the turbidity and radioactivity. (author)

  15. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false What happens if my system's turbidity... Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.561 What happens if my system's turbidity monitoring equipment fails? If there is a failure in the continuous...

  16. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales.

    Science.gov (United States)

    Austin, Åsa N; Hansen, Joakim P; Donadi, Serena; Eklöf, Johan S

    2017-01-01

    Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer) and spatial scales (local and regional), using causal modeling based on data from a field survey along the central Swedish Baltic Sea coast. The two best-fitting regional-scale models both suggested that in spring, high cover of vegetation reduces water turbidity. In summer, the relationships differed between the two models; in the first model high vegetation cover reduced turbidity; while in the second model reduction of summer turbidity by high vegetation cover in spring had a positive effect on summer vegetation which suggests a positive feedback of vegetation on itself. Nitrogen load had a positive effect on turbidity in both seasons, which was comparable in strength to the effect of vegetation on turbidity. To assess whether the effect of vegetation was primarily caused by sediment stabilization or a reduction of phytoplankton, we also tested models where turbidity was replaced by phytoplankton fluorescence or sediment-driven turbidity. The best-fitting regional-scale models suggested that high sediment-driven turbidity in spring reduces vegetation cover in summer, which in turn has a negative effect on sediment-driven turbidity in summer, indicating a potential positive feedback of sediment-driven turbidity on itself. Using data at the local scale, few relationships were significant, likely due to the influence of unmeasured variables and/or spatial heterogeneity. In summary, causal modeling based on data from a large-scale field survey suggested that aquatic vegetation can reduce turbidity at regional scales, and that high

  17. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales.

    Directory of Open Access Journals (Sweden)

    Åsa N Austin

    Full Text Available Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer and spatial scales (local and regional, using causal modeling based on data from a field survey along the central Swedish Baltic Sea coast. The two best-fitting regional-scale models both suggested that in spring, high cover of vegetation reduces water turbidity. In summer, the relationships differed between the two models; in the first model high vegetation cover reduced turbidity; while in the second model reduction of summer turbidity by high vegetation cover in spring had a positive effect on summer vegetation which suggests a positive feedback of vegetation on itself. Nitrogen load had a positive effect on turbidity in both seasons, which was comparable in strength to the effect of vegetation on turbidity. To assess whether the effect of vegetation was primarily caused by sediment stabilization or a reduction of phytoplankton, we also tested models where turbidity was replaced by phytoplankton fluorescence or sediment-driven turbidity. The best-fitting regional-scale models suggested that high sediment-driven turbidity in spring reduces vegetation cover in summer, which in turn has a negative effect on sediment-driven turbidity in summer, indicating a potential positive feedback of sediment-driven turbidity on itself. Using data at the local scale, few relationships were significant, likely due to the influence of unmeasured variables and/or spatial heterogeneity. In summary, causal modeling based on data from a large-scale field survey suggested that aquatic vegetation can reduce turbidity at regional scales

  18. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.

    2018-03-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to

  19. Performance of alum and assorted coagulants in turbidity removal of muddy water

    Science.gov (United States)

    Malik, Qasim H.

    2018-03-01

    Coagulation is a primary and cost effective process in water treatment plants. Under optimum conditions, not only it effectively removes turbidity but also results in reduced sludge volume and subsequently minimizes sludge management costs. Highly turbid water from streams, canals, rivers and rain run offs was run through jar test for turbidity removal. The brown water with 250NTU turbidity when coagulated with alum and assorted coagulants proved that maximum turbidity removal was witnessed using alum dose of 0.25 g/l at ph 6 with a sedimentation time of 30 min.

  20. Turbidity in oil-in-water-emulsions - Key factors and visual perception.

    Science.gov (United States)

    Linke, C; Drusch, S

    2016-11-01

    The aim of the present study is to systematically describe the factors affecting turbidity in beverage emulsions and to get a better understanding of visual perception of turbidity. The sensory evaluation of the human visual perception of turbidity showed that humans are most sensitive to turbidity differences between two samples in the range between 1000 and 1500 NTU (ratio) (nephelometric turbidity units). At very high turbidity values >2000 TU in NTU (ratio) were needed to distinguish between samples that they were perceived significantly different. Particle size was the most important factor affecting turbidity. It was shown that a maximum turbidity occurs at a mean volume - surface diameter of 0.2μm for the oil droplet size. Additional parameters were the refractive index, the composition of the aqueous phase and the presence of excess emulsifier. In a concentration typical for a beverage emulsion a change in the refractive index of the oil phase may allow the alteration of turbidity by up to 30%. With the knowledge on visual perception of turbidity and the determining factors, turbidity can be tailored in product development according to the customer requirements and in quality control to define acceptable variations in optical appearance. Copyright © 2016. Published by Elsevier Ltd.

  1. Environmental conditions and intraspecific interference: unexpected effects of turbidity on pike (Esox lucius) foraging

    DEFF Research Database (Denmark)

    Nilsson, P.A.; Jacobsen, Lene; Berg, Søren

    2009-01-01

    on pike foraging alone or among conspecifics in different levels of water turbidity, we expected high turbidity to decrease the perceived risk of intraspecific interactions among pike, and thereby decrease the strength of interference, as turbidity would decrease the visual contact between individuals...... and act as a refuge from behavioural interactions. The results show that this is not the case, but suggest that interference is induced instead of reduced in high turbidity. Per capita foraging rates do not differ between pike foraging alone or in groups in our clear and moderately turbid treatments......, indicating no effect of interference. As high turbidity enhances prey consumption for pike individuals foraging alone, but does not have this effect for pike in groups, high turbidity induces the relative interference effect. We suggest that future evaluations of the stabilizing effects of interference...

  2. Turbidity of a Binary Fluid Mixture: Determining Eta

    Science.gov (United States)

    Jacobs, Donald T.

    1996-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.

  3. Measurement of in vitro microtubule polymerization by turbidity and fluorescence.

    Science.gov (United States)

    Mirigian, Matthew; Mukherjee, Kamalika; Bane, Susan L; Sackett, Dan L

    2013-01-01

    Tubulin polymerization may be conveniently monitored by the increase in turbidity (optical density, or OD) or by the increase in fluorescence intensity of diamidino-phenylindole. The resulting data can be a quantitative measure of microtubule (MT) assembly, but some care is needed in interpretation, especially of OD data. Buffer formulations used for the assembly reaction significantly influence the polymerization, both by altering the critical concentration for polymerization and by altering the exact polymer produced-for example, by increasing the production of sheet polymers in addition to MT. Both the turbidity and the fluorescence methods are useful for demonstrating the effect of MT-stabilizing or -destabilizing additives. 2013 Published by Elsevier Inc.

  4. Holographic characterization of colloidal particles in turbid media

    Science.gov (United States)

    Cheong, Fook Chiong; Kasimbeg, Priya; Ruffner, David B.; Hlaing, Ei Hnin; Blusewicz, Jaroslaw M.; Philips, Laura A.; Grier, David G.

    2017-10-01

    Holographic particle characterization uses in-line holographic microscopy and the Lorenz-Mie theory of light scattering to measure the diameter and the refractive index of individual colloidal particles in their native dispersions. This wealth of information has proved invaluable in fields as diverse as soft-matter physics, biopharmaceuticals, wastewater management, and food science but so far has been available only for dispersions in transparent media. Here, we demonstrate that holographic characterization can yield precise and accurate results even when the particles of interest are dispersed in turbid media. By elucidating how multiple light scattering contributes to image formation in holographic microscopy, we establish the range conditions under which holographic characterization can reliably probe turbid samples. We validate the technique with measurements on model colloidal spheres dispersed in commercial nanoparticle slurries.

  5. Effect of Fresnel Reflectivity in a Spherical Turbid Medium

    CERN Document Server

    Elghazaly, A

    2003-01-01

    Radiative transfer problem for anisotropic scattering in a spherical homogeneous, turbid medium with angular dependent (specular) reflecting boundary is solved using the pomraning-Eddington approximation method. The angular dependent reflectivity of the boundary is considered as Fresnel's reflection probability function. The partial heat flux is calculated with anisotropic scattering through a homogeneous solid sphere. our results are compared with the available data and give an excellent agreement.

  6. Effect of Fresnel Reflectivity in a Spherical Turbid Medium

    International Nuclear Information System (INIS)

    Elghazaly, A.; Attia, M.T.

    2003-01-01

    Radiative transfer problem for anisotropic scattering in a spherical homogeneous, turbid medium with angular dependent (specular) reflecting boundary is solved using the pomraning-Eddington approximation method. The angular dependent reflectivity of the boundary is considered as Fresnel's reflection probability function. The partial heat flux is calculated with anisotropic scattering through a homogeneous solid sphere. our results are compared with the available data and give an excellent agreement

  7. Riverbank filtration for the treatment of highly turbid Colombian rivers

    Science.gov (United States)

    Gutiérrez, Juan Pablo; van Halem, Doris; Rietveld, Luuk

    2017-05-01

    The poor quality of many Colombian surface waters forces us to seek alternative, sustainable treatment solutions with the ability to manage peak pollution events and to guarantee the uninterrupted provision of safe drinking water to the population. This review assesses the potential of using riverbank filtration (RBF) for the highly turbid and contaminated waters in Colombia, emphasizing water quality improvement and the influence of clogging by suspended solids. The suspended sediments may be favorable for the improvement of the water quality, but they may also reduce the production yield capacity. The cake layer must be balanced by scouring in order for an RBF system to be sustainable. The infiltration rate must remain high enough throughout the river-aquifer interface to provide the water quantity needed, and the residence time of the contaminants must be sufficient to ensure adequate water quality. In general, RBF seems to be a technology appropriate for use in highly turbid and contaminated surface rivers in Colombia, where improvements are expected due to the removal of turbidity, pathogens and to a lesser extent inorganics, organic matter and micro-pollutants. RBF has the potential to mitigate shock loads, thus leading to the prevention of shutdowns of surface water treatment plants. In addition, RBF, as an alternative pretreatment step, may provide an important reduction in chemical consumption, considerably simplifying the operation of the existing treatment processes. However, clogging and self-cleansing issues must be studied deeper in the context of these highly turbid waters to evaluate the potential loss of abstraction capacity yield as well as the development of different redox zones for efficient contaminant removal.

  8. Recovering low-turbidity cutting liquid from silicon slurry waste.

    Science.gov (United States)

    Tsai, Tzu-Hsuan; Shih, Yu-Pei

    2014-04-30

    In order to recover a low-turbidity polyalkylene glycol (PAG) liquid from silicon slurry waste by sedimentation, temperatures were adjusted, and acetone, ethanol or water was used as a diluent. The experimental results show that the particles in the waste would aggregate and settle readily by using water as a diluent. This is because particle surfaces had lower surface potential value and weaker steric stabilization in PAG-water than in PAG-ethanol or PAG-acetone solutions. Therefore, water is the suggested diluent for recovering a low-turbidity PAG (sedimentation. After 50 wt.% water-assisted sedimentation for 21 days, the solid content of the upper liquid reduced to 0.122 g/L, and the turbidity decreased to 44 NTU. The obtained upper liquid was then vacuum-distillated to remove water. The final recovered PAG with 0.37 NTU had similar viscosity and density to the unused PAG and could be reused in the cutting process. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Turbidity removal: Gravel and charcoal as roughing filtration media

    Directory of Open Access Journals (Sweden)

    Josiah A. Adeyemo

    2010-10-01

    Full Text Available Roughing filtration is an important pre-treatment process for wastewater, because it efficiently separates fine solid particles over prolonged periods, without the addition of chemicals. For this study, a pilot plant was designed at Delmas Coal Mine in the Mpumalanga province of South Africa. The design and sizing of the pilot plant was guided by Wegelin’s design criteria. Gravel was used as a control medium because it is one of the most commonly used roughing filter media and because it was used in developing the criteria. We compared the performance of gravel as a filter medium to that of another locally available material, charcoal, for the removal of turbidity in wastewater. The pilot plant was monitored continuously for 90 days from commissioning until the end of the project. The overall performance of the roughing filter in turbidity removal, using gravel or charcoal, was considered efficient for the pre-treatment of waste water. Charcoal performed slightly better than gravel as a filter medium for the removal of turbidity, possibly because charcoal has a slightly higher specific surface area and porosity than gravel, which could enhance sedimentation and other filtration processes, such as adsorption, respectively.

  10. Clearing muddied waters: Capture of environmental DNA from turbid waters.

    Directory of Open Access Journals (Sweden)

    Kelly E Williams

    Full Text Available Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest.

  11. Optical imaging through turbid media with a degenerate four wave mixing correlation time gate

    International Nuclear Information System (INIS)

    Sappey, A.D.

    1994-01-01

    A novel method for detection of ballistic light and rejection of unwanted diffusive light to image structures inside highly scattering media is demonstrated. Degenerate four wave mixing (DFWM) of a doubled YAG laser in Rhodamine 6G is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore lost memory of the structures inside the scattering medium. We present preliminary results that determine the nature of the DFWM grating, confirm the coherence time of the laser, prove the phase-conjugate nature of the signal beam, and determine the dependence of the signal (reflectivity) on dye concentration and laser intensity. Finally, we have obtained images of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye. These imaging experiments demonstrate the utility of DFWM for imaging through turbid media. Based on our results, the use of DFWM as an ultrafast time gate for the detection of ballistic light in optical mammography appears to hold great promise for improving the current state of the art

  12. Direct imaging of turbid media using long-time back-scattered photons, a numerical study

    International Nuclear Information System (INIS)

    Boulanger, Joan; Liu, Fengshan; El Akel, Azad; Charette, Andre

    2006-01-01

    Direct imaging is a convenient way to obtain information on the interior of a semi-transparent turbid material by non-invasive probing using laser beams. The major difficulty is linked to scattering which scrambles the directional information coming from the laser beam. It is found in this paper that the long-term multiple-scattered reflected photons may provide structural information on the inside of a material, which offers an interesting alternative to using information only from un-scattered or least-scattered photons as obtained from current direct imaging set-ups for thin media. Based on some observations on a non-homogeneous three layered 1-D slab irradiated by a laser pulse, a direct probing methodology making use of the long-term back-scattered photons is illustrated to recover inclusions positions in a turbid 2-D medium. First, the numerical model is presented. Second, an extended parametrical study is conducted on 1-D homogeneous and non-homogeneous slabs with different laser pulse durations. It is found that the reflected asymptotic logarithmic slope carries information about the presence of the inclusion and that short laser pulses are not necessary since only the decaying parts of the remanent optical signature is important. Longer laser pulses allow a higher level of energy injection and signal to noise ratio. Third, those observations are used for the probing of a 2-D non-homogeneous phantom. (author)

  13. Forty-five degree backscattering-mode nonlinear absorption imaging in turbid media.

    Science.gov (United States)

    Cui, Liping; Knox, Wayne H

    2010-01-01

    Two-color nonlinear absorption imaging has been previously demonstrated with endogenous contrast of hemoglobin and melanin in turbid media using transmission-mode detection and a dual-laser technology approach. For clinical applications, it would be generally preferable to use backscattering mode detection and a simpler single-laser technology. We demonstrate that imaging in backscattering mode in turbid media using nonlinear absorption can be obtained with as little as 1-mW average power per beam with a single laser source. Images have been achieved with a detector receiving backscattered light at a 45-deg angle relative to the incoming beams' direction. We obtain images of capillary tube phantoms with resolution as high as 20 microm and penetration depth up to 0.9 mm for a 300-microm tube at SNR approximately 1 in calibrated scattering solutions. Simulation results of the backscattering and detection process using nonimaging optics are demonstrated. A Monte Carlo-based method shows that the nonlinear signal drops exponentially as the depth increases, which agrees well with our experimental results. Simulation also shows that with our current detection method, only 2% of the signal is typically collected with a 5-mm-radius detector.

  14. Use of Moringa oleifera seeds for the removal of turbidity of water supply

    Directory of Open Access Journals (Sweden)

    Gustavo Lopes Muniz

    2015-04-01

    Full Text Available Water used for human consumption may contain various impurities and solid particles in suspension that increase its turbidity level. Moringa oleifera Lam is a plant that has the potential to be used as coagulating agent in removing turbidity. The objective of this work was to evaluate the efficiency of Moringa oleifera seeds used in shells and without shells in the removal of turbidity from waters with different degrees of turbidity. Waters were used with 70, 250 and 400 initial NTU obtained synthetically. The extract of moringa seeds was prepared using unshelled and shelled seeds, seeking a simplified procedure and practice. The sedimentation times and dose of coagulant solution used were based on existing recommendations in the literature. All treatments were performed with three replicates and the averages depicted in graphs. The results showed that the use of extract of moringa seeds in shells was more efficient than with unshelled seeds in the removal of turbidity of all treatments and that the shelled seeds removed more than 99% of the initial turbidity of the water samples. Furthermore, there was a direct relationship between turbidity removal efficiency and the level of initial turbidity of the samples. The seeds were more efficient in removing turbidity of the water with a higher level of initial turbidity.

  15. Large-volume injection of sample diluents not miscible with the mobile phase as an alternative approach in sample preparation for bioanalysis: an application for fenspiride bioequivalence.

    Science.gov (United States)

    Medvedovici, Andrei; Udrescu, Stefan; Albu, Florin; Tache, Florentin; David, Victor

    2011-09-01

    Liquid-liquid extraction of target compounds from biological matrices followed by the injection of a large volume from the organic layer into the chromatographic column operated under reversed-phase (RP) conditions would successfully combine the selectivity and the straightforward character of the procedure in order to enhance sensitivity, compared with the usual approach of involving solvent evaporation and residue re-dissolution. Large-volume injection of samples in diluents that are not miscible with the mobile phase was recently introduced in chromatographic practice. The risk of random errors produced during the manipulation of samples is also substantially reduced. A bioanalytical method designed for the bioequivalence of fenspiride containing pharmaceutical formulations was based on a sample preparation procedure involving extraction of the target analyte and the internal standard (trimetazidine) from alkalinized plasma samples in 1-octanol. A volume of 75 µl from the octanol layer was directly injected on a Zorbax SB C18 Rapid Resolution, 50 mm length × 4.6 mm internal diameter × 1.8 µm particle size column, with the RP separation being carried out under gradient elution conditions. Detection was made through positive ESI and MS/MS. Aspects related to method development and validation are discussed. The bioanalytical method was successfully applied to assess bioequivalence of a modified release pharmaceutical formulation containing 80 mg fenspiride hydrochloride during two different studies carried out as single-dose administration under fasting and fed conditions (four arms), and multiple doses administration, respectively. The quality attributes assigned to the bioanalytical method, as resulting from its application to the bioequivalence studies, are highlighted and fully demonstrate that sample preparation based on large-volume injection of immiscible diluents has an increased potential for application in bioanalysis.

  16. Large volume TENAX {sup registered} extraction of the bioaccessible fraction of sediment-associated organic compounds for a subsequent effect-directed analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, K.; Brack, W. [UFZ - Helmholtz Centre or Environmental Research, Leipzig (Germany). Dept. of Effect-Directed Analysis

    2007-06-15

    Background, Aim and Scope: Effect-directed analysis (EDA) is a powerful tool for the identification of key toxicants in complex environmental samples. In most cases, EDA is based on total extraction of organic contaminants leading to an erroneous prioritization with regard to hazard and risk. Bioaccessibility-directed extraction aims to discriminate between contaminants that take part in partitioning between sediment and biota in a relevant time frame and those that are enclosed in structures, that do not allow rapid desorption. Standard protocols of targeted extraction of rapidly desorbing, and thus bioaccessible fraction using TENAX {sup registered} are based only on small amounts of sediment. In order to get sufficient amounts of extracts for subsequent biotesting, fractionation, and structure elucidation a large volume extraction technique needs to be developed applying one selected extraction time and excluding toxic procedural blanks. Materials and Methods: Desorption behaviour of sediment contaminants was determined by a consecutive solid-solid extraction of sediment using TENAX {sup registered} fitting a tri-compartment model on experimental data. Time needed to remove the rapidly desorbing fraction trap was calculated to select a fixed extraction time for single extraction procedures. Up-scaling by about a factor of 100 provided a large volume extraction technique for EDA. Reproducibility and comparability to small volume approach were proved. Blanks of respective TENAX {sup registered} mass were investigated using Scenedesmus vacuolatus and Artemia salina as test organisms. Results: Desorption kinetics showed that 12 to 30 % of sediment associated pollutants are available for rapid desorption. t{sub r}ap is compound dependent and covers a range of 2 to 18 h. On that basis a fixed extraction time of 24 h was selected. Validation of large volume approach was done by the means of comparison to small method and reproducibility. The large volume showed a good

  17. Successful Large-volume Leukapheresis for Hematopoietic Stem Cell Collection in a Very-low-weight Brain Tumor Infant with Coagulopathy

    Directory of Open Access Journals (Sweden)

    Yu-Mei Liao

    2013-06-01

    Full Text Available Peripheral apheresis has become a safe procedure to collect hematopoietic stem cells, even in pediatric patients and donors. However, the apheresis procedure for small and sick children is more complicated due to difficult venous access, relatively large extracorporeal volume, toxicity of citrate, and unstable hemostasis. We report a small and sick child with refractory medulloblastoma, impaired liver function, and coagulopathy after several major cycles of cisplatin-based chemotherapy. She successfully received large-volume leukapheresis for hematopoietic stem cell collection, although the patient experienced severe coagulopathy during the procedures. Health care providers should be alert to this potential risk.

  18. Island building in the South China Sea: detection of turbidity plumes and artificial islands using Landsat and MODIS data

    Science.gov (United States)

    Barnes, Brian B.; Hu, Chuanmin

    2016-01-01

    The South China Sea is currently in a state of intense geopolitical conflict, with six countries claiming sovereignty over some or all of the area. Recently, several countries have carried out island building projects in the Spratly Islands, converting portions of coral reefs into artificial islands. Aerial photography and high resolution satellites can capture snapshots of this construction, but such data are lacking in temporal resolution and spatial scope. In contrast, lower resolution satellite sensors with regular repeat sampling allow for more rigorous assessment and monitoring of changes to the reefs and surrounding areas. Using Landsat-8 data at ≥15-m resolution, we estimated that over 15 km2 of submerged coral reef area was converted to artificial islands between June 2013 and December 2015, mostly by China. MODIS data at ≥250-m resolution were used to locate previously underreported island building activities, as well as to assess resulting in-water turbidity plumes. The combined spatial extent of observed turbidity plumes for island building activities at Mischief, Subi, and Fiery Cross Reefs was over 4,300 km2, although nearly 40% of this area was only affected once. Together, these activities represent widespread damage to coral ecosystems through physical burial as well as indirect turbidity effects. PMID:27628096

  19. Island building in the South China Sea: detection of turbidity plumes and artificial islands using Landsat and MODIS data.

    Science.gov (United States)

    Barnes, Brian B; Hu, Chuanmin

    2016-09-15

    The South China Sea is currently in a state of intense geopolitical conflict, with six countries claiming sovereignty over some or all of the area. Recently, several countries have carried out island building projects in the Spratly Islands, converting portions of coral reefs into artificial islands. Aerial photography and high resolution satellites can capture snapshots of this construction, but such data are lacking in temporal resolution and spatial scope. In contrast, lower resolution satellite sensors with regular repeat sampling allow for more rigorous assessment and monitoring of changes to the reefs and surrounding areas. Using Landsat-8 data at ≥15-m resolution, we estimated that over 15 km(2) of submerged coral reef area was converted to artificial islands between June 2013 and December 2015, mostly by China. MODIS data at ≥250-m resolution were used to locate previously underreported island building activities, as well as to assess resulting in-water turbidity plumes. The combined spatial extent of observed turbidity plumes for island building activities at Mischief, Subi, and Fiery Cross Reefs was over 4,300 km(2), although nearly 40% of this area was only affected once. Together, these activities represent widespread damage to coral ecosystems through physical burial as well as indirect turbidity effects.

  20. Turbidity of mouthrinsed water as a screening index for oral malodor.

    Science.gov (United States)

    Ueno, Masayuki; Takeuchi, Susumu; Samnieng, Patcharaphol; Morishima, Seiji; Shinada, Kayoko; Kawaguchi, Yoko

    2013-08-01

    The objectives of this research were to examine the relationship between turbidity of mouthrinsed water and oral malodor, and to evaluate whether the turbidity could be used to screen oral malodor. The subjects were 165 oral malodor patients. Gas chromatography and organoleptic test (OT) were used for oral malodor measurement. Oral examination along with collection of saliva and quantification of bacteria was conducted. Turbidity of mouthrinsed water was measured with turbidimeter. Logistic regression with oral malodor status by OT as the dependent variable and receiver operating characteristic (ROC) analysis were performed. Turbidity had a significant association with oral malodor status. In addition, ROC analysis showed that the turbidity had an ability to screen for presence or absence of oral malodor. Turbidity could reflect or represent other influential variables of oral malodor and may be useful as a screening method for oral malodor. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. 'Dip-sticks' calibration handles self-attenuation and coincidence effects in large-volume gamma-ray spectrometry

    CERN Document Server

    Wolterbeek, H T

    2000-01-01

    Routine gamma-spectrometric analyses of samples with low-level activities (e.g. food, water, environmental and industrial samples) are often performed in large samples, placed close to the detector. In these geometries, detection sensitivity is improved but large errors are introduced due to self-attenuation and coincidence summing. Current approaches to these problems comprise computational methods and spiked standard materials. However, the first are often regarded as too complex for practical routine use, the latter never fully match real samples. In the present study, we introduce a dip-sticks calibration as a fast and easy practical solution to this quantification problem in a routine analytical setting. In the proposed set-up, calibrations are performed within the sample itself, thus making it a broadly accessible matching-reference approach, which is principally usable for all sample matrices.

  2. Numerical Study for a Large Volume Droplet on the Dual-rough Surface: Apparent Contact Angle, Contact Angle Hysteresis and Transition Barrier.

    Science.gov (United States)

    Dong, Jian; Jin, Yanli; Dong, He; Liu, Jiawei; Ye, Senbin

    2018-06-14

    The profile, apparent contact angle (ACA), contact angle hysteresis (CAH) and wetting state transmission energy barrier (WSTEB) are important static and dynamic properties of a large volume droplet on the hierarchical surface. Understanding them can provide us with important insights to functional surfaces and promote the application in corresponding areas. In this paper, we established three theoretical models (Model 1, Model 2 and Model 3) and corresponding numerical methods, which were obtained by the free energy minimization and the nonlinear optimization algorithm, to predict the profile, ACA, CAH and WSTEB of a large volume droplet on the horizontal regular dual-rough surface. In consideration of the gravity, the energy barrier on the contact circle, the dual heterogenous structures and their roughness on the surface, the models are more universal and accurate than previous models. It showed that the predictions of the models were in good agreement with the results from the experiment or literature. The models are promising to become novel design approaches of functional surfaces, which are frequently applied in microfluidic chips, water self-catchment system and dropwise condensation heat transfer system.

  3. Effects of large volume injection of aliphatic alcohols as sample diluents on the retention of low hydrophobic solutes in reversed-phase liquid chromatography.

    Science.gov (United States)

    David, Victor; Galaon, Toma; Aboul-Enein, Hassan Y

    2014-01-03

    Recent studies showed that injection of large volume of hydrophobic solvents used as sample diluents could be applied in reversed-phase liquid chromatography (RP-LC). This study reports a systematic research focused on the influence of a series of aliphatic alcohols (from methanol to 1-octanol) on the retention process in RP-LC, when large volumes of sample are injected on the column. Several model analytes with low hydrophobic character were studied by RP-LC process, for mobile phases containing methanol or acetonitrile as organic modifiers in different proportions with aqueous component. It was found that starting with 1-butanol, the aliphatic alcohols can be used as sample solvents and they can be injected in high volumes, but they may influence the retention factor and peak shape of the dissolved solutes. The dependence of the retention factor of the studied analytes on the injection volume of these alcohols is linear, with a decrease of its value as the sample volume is increased. The retention process in case of injecting up to 200μL of upper alcohols is dependent also on the content of the organic modifier (methanol or acetonitrile) in mobile phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales

    OpenAIRE

    Austin, ?sa N.; Hansen, Joakim P.; Donadi, Serena; Ekl?f, Johan S.

    2017-01-01

    Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer) and spatial scales (local and regional), using causal model...

  5. [Experimental research of turbidity influence on water quality monitoring of COD in UV-visible spectroscopy].

    Science.gov (United States)

    Tang, Bin; Wei, Biao; Wu, De-Cao; Mi, De-Ling; Zhao, Jing-Xiao; Feng, Peng; Jiang, Shang-Hai; Mao, Ben-Jiang

    2014-11-01

    Eliminating turbidity is a direct effect spectroscopy detection of COD key technical problems. This stems from the UV-visible spectroscopy detected key quality parameters depend on an accurate and effective analysis of water quality parameters analytical model, and turbidity is an important parameter that affects the modeling. In this paper, we selected formazine turbidity solution and standard solution of potassium hydrogen phthalate to study the turbidity affect of UV--visible absorption spectroscopy detection of COD, at the characteristics wavelength of 245, 300, 360 and 560 nm wavelength point several characteristics with the turbidity change in absorbance method of least squares curve fitting, thus analyzes the variation of absorbance with turbidity. The results show, In the ultraviolet range of 240 to 380 nm, as the turbidity caused by particle produces compounds to the organics, it is relatively complicated to test the turbidity affections on the water Ultraviolet spectra; in the visible region of 380 to 780 nm, the turbidity of the spectrum weakens with wavelength increases. Based on this, this paper we study the multiplicative scatter correction method affected by the turbidity of the water sample spectra calibration test, this method can correct water samples spectral affected by turbidity. After treatment, by comparing the spectra before, the results showed that the turbidity caused by wavelength baseline shift points have been effectively corrected, and features in the ultraviolet region has not diminished. Then we make multiplicative scatter correction for the three selected UV liquid-visible absorption spectroscopy, experimental results shows that on the premise of saving the characteristic of the Ultraviolet-Visible absorption spectrum of water samples, which not only improve the quality of COD spectroscopy detection SNR, but also for providing an efficient data conditioning regimen for establishing an accurate of the chemical measurement methods.

  6. Using the Surface Reflectance MODIS Terra Product to Estimate Turbidity in Tampa Bay, Florida

    OpenAIRE

    Douglas L. Rickman; Frank E. Muller-Karger; Max J. Moreno-Madrinan; Mohammad Z. Al-Hamdan

    2010-01-01

    Turbidity is a commonly-used index of the factors that determine light penetration in the water column. Consistent estimation of turbidity is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Traditional methods monitoring fixed geographical locations at fixed intervals may not be representative of the mean water turbidity in estuaries between intervals, and can be expensive and time con...

  7. Oceanic turbidity and chlorophyll as inferred from ERTS-1 observations

    Science.gov (United States)

    Curran, R. J.

    1973-01-01

    Spectral signatures of phytoplankton and other obscuring effects are considered in order to determine how to best use satellite data. The results of this study were then used to analyze the spectral data obtained from the ERTS-1 multispectral scanner (MSS). The analyzed satellite data were finally compared with surface ship measurements of chlorophyll concentration. It was found that the effects of water turbidity on the multispectral imagery can be discriminated by rationing the two shortest wavelength channels so that the effect of phytoplankton is enhanced.

  8. Landsat Thematic Mapper monitoring of turbid inland water quality

    Science.gov (United States)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  9. Assessing the risk posed by high-turbidity water to water supplies.

    Science.gov (United States)

    Chang, Chia-Ling; Liao, Chung-Sheng

    2012-05-01

    The objective of this study is to assess the risk of insufficient water supply posed by high-turbidity water. Several phenomena can pose risks to the sufficiency of a water supply; this study concerns risks to water treatment plants from particular properties of rainfall and raw water turbidity. High-turbidity water can impede water treatment plant operations; rainfall properties can influence the degree of soil erosion. Thus, water turbidity relates to rainfall characteristics. Exceedance probabilities are presented for different rainfall intensities and turbidities of water. When the turbidity of raw water is higher than 5,000 NTU, it can cause operational problems for a water treatment plant. Calculations show that the turbidity of raw water at the Ban-Sin water treatment plant will be higher than 5,000 NTU if the rainfall intensity is larger than 165 mm/day. The exceedance probability of high turbidity (turbidity >5,000 NTU) in the Ban-Sin water treatment plant is larger than 10%. When any water treatment plant cannot work regularly, its ability to supply water to its customers is at risk.

  10. Developmental plasticity in vision and behavior may help guppies overcome increased turbidity.

    Science.gov (United States)

    Ehlman, Sean M; Sandkam, Benjamin A; Breden, Felix; Sih, Andrew

    2015-12-01

    Increasing turbidity in streams and rivers near human activity is cause for environmental concern, as the ability of aquatic organisms to use visual information declines. To investigate how some organisms might be able to developmentally compensate for increasing turbidity, we reared guppies (Poecilia reticulata) in either clear or turbid water. We assessed the effects of developmental treatments on adult behavior and aspects of the visual system by testing fish from both developmental treatments in turbid and clear water. We found a strong interactive effect of rearing and assay conditions: fish reared in clear water tended to decrease activity in turbid water, whereas fish reared in turbid water tended to increase activity in turbid water. Guppies from all treatments decreased activity when exposed to a predator. To measure plasticity in the visual system, we quantified treatment differences in opsin gene expression of individuals. We detected a shift from mid-wave-sensitive opsins to long wave-sensitive opsins for guppies reared in turbid water. Since long-wavelength sensitivity is important in motion detection, this shift likely allows guppies to salvage motion-detecting abilities when visual information is obscured in turbid water. Our results demonstrate the importance of developmental plasticity in responses of organisms to rapidly changing environments.

  11. Comparison of Water Turbidity Removal Efficiencies of Descurainia Sophia Seed Extract and Ferric chloride

    Directory of Open Access Journals (Sweden)

    Mazyar Peyda

    2016-03-01

    Full Text Available Background Turbidity removal using inorganic coagulants such as iron and aluminum salts in water treatment processes causes environmental and human health concern. Historically, the use of natural coagulant to purify turbid water has been practiced for a long time. Recent research indicates that Descurainia Sophia seed can be effectively used as a natural coagulant to remove water turbidity. Method: In this work, turbidity removal efficiency of Descurainia Sophia seed extract was compared with Ferric chloride. Experiments were performed in laboratory scale. The coagulation experiments were done with kaolin as a model soil to produce turbidity in distilled water. The turbidity removal efficiency of Descurainia Sophia seed extract and Ferric chloride were conducted with jar test apparatus. In all experiments, initial turbidity was kept constant 100(NTU. Optimum combination of independent variables was used to compare two different types of coagulants. Result: The obtained results showed that Ferric chloride could remove 89.75% of the initial turbidity, while in case of Descurainia Sophia this value was 43.13%. The total organic carbon (TOC analysis of the treated water using seed extract showed an increased concentration of TOC equal to 0.99 mg/L. Conclusions: This research has shown that Descurainia Sophia seed extract has an acceptable potential in the coagulation/flocculation process to treat turbid water.

  12. Interrelation of surface tension, optical turbidity, and color of operational transformer oils

    International Nuclear Information System (INIS)

    L’vov, S. Yu.; Lyut’ko, E. O.; Lankau, Ya. V.; Komarov, V. B.; Seliverstov, A. F.; Bondareva, V. N.; L’vov, Yu. N.; L’vov, M. Yu.; Ershov, B. G.

    2011-01-01

    Measurements of the acidity, optical turbidity, surface tension, and color of transformer oil from 54 power transformers, autotransformers, and shunt reactors are reported. Changes in surface tension, optical turbidity, and color are found to obey adequate linear correlations, while the acidity has no correlation with any of these properties. Numerical criteria for the maximum permissible state (quality) of the oil with respect to optical turbidity and color are obtained. Recommendations to operating staff are provided for cases in which the criteria for optical turbidity and color are exceeded.

  13. Characterization of large volume CdZnTe detectors with a quad-grid structure for the COBRA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rohatsch, Katja [TU Dresden, Institut fuer Kern- und Teilchenphysik, 01069 Dresden (Germany); Collaboration: COBRA-Collaboration

    2016-07-01

    The COBRA experiment uses room temperature semiconductor detectors made of Cadmium-Zinc-Telluride, which contains several double beta isotopes, to search for neutrinoless double beta-decay. To compensate for poor hole transport in CdZnTe the detectors are equipped with a coplanar grid (CPG) instead of a planar anode. Currently, a demonstrator setup consisting of 64 1 cm{sup 3} CPG-detectors is in operation at the LNGS in Italy to prove the concept and to determine the long-term stability of the detectors and the instrumentation. For a future large scale experiment it is planned to use larger CdZnTe detectors with a volume of 6 cm{sup 3}, because of the better surface-to-volume ratio and the higher full energy detection efficiency. This will also reduce the background contribution of surface contaminations. Before the installation at the LNGS the new detector design is validated and studied in detail. This talk presents a laboratory experiment for the characterization with γ-radiation of 6 cm{sup 3} CdZnTe quad-grid detectors. The anode of such a detector is divided into four sub-CPGs. The characterization routine consists of the determination of the optimal working point and two-dimensional spatially resolved scans with a highly collimated γ-source.

  14. Automated transmission-mode scanning electron microscopy (tSEM for large volume analysis at nanoscale resolution.

    Directory of Open Access Journals (Sweden)

    Masaaki Kuwajima

    Full Text Available Transmission-mode scanning electron microscopy (tSEM on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm(2 (65.54 µm per side at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM system, which were only 66.59 µm(2 (8.160 µm per side at the same pixel size. The tSEM produced outstanding images and had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant nonlinear distortions within a central field of ∼100 µm(2 and produced near-perfect image registration across serial sections using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from RECONSTRUCT™ or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section (∼45 nm. Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to other biological systems.

  15. Detection limits for nanoparticles in solution with classical turbidity spectra

    Science.gov (United States)

    Le Blevennec, G.

    2013-09-01

    Detection of nanoparticles in solution is required to manage safety and environmental problems. Spectral transmission turbidity method has now been known for a long time. It is derived from the Mie Theory and can be applied to any number of spheres, randomly distributed and separated by large distance compared to wavelength. Here, we describe a method for determination of size, distribution and concentration of nanoparticles in solution using UV-Vis transmission measurements. The method combines Mie and Beer Lambert computation integrated in a best fit approximation. In a first step, a validation of the approach is completed on silver nanoparticles solution. Verification of results is realized with Transmission Electronic Microscopy measurements for size distribution and an Inductively Coupled Plasma Mass Spectrometry for concentration. In view of the good agreement obtained, a second step of work focuses on how to manage the concentration to be the most accurate on the size distribution. Those efficient conditions are determined by simple computation. As we are dealing with nanoparticles, one of the key points is to know what the size limits reachable are with that kind of approach based on classical electromagnetism. In taking into account the transmission spectrometer accuracy limit we determine for several types of materials, metals, dielectrics, semiconductors the particle size limit detectable by such a turbidity method. These surprising results are situated at the quantum physics frontier.

  16. A Reflectance Model for Relatively Clear and Turbid Waters

    Directory of Open Access Journals (Sweden)

    S. P. Tiwari

    2013-02-01

    Full Text Available Accurate modeling of spectral remote sensing reflectance (Rrs is of great interest for ocean colour studies in highly turbid and relatively clear waters. In this work a semianalytical model that simulates the spectral curves of remote sensing reflectance of these waters is developed based on the inherent optical properties (IOPs and f and Q factors. For accommodating differences in the optical properties of the water and accounting for their directional variations, IOPs and f and Q factors are derived as a function of phytoplankton pigments, suspended sediments and solar zenith angle. Results of this model are compared with in-situ bio-optical data collected at 83 stations encompassing highly turbid/relatively cleared waters of the South Sea of Korea. Measured and modeled remote sensing reflectances agree favorably in both magnitude and spectral shape, with considerably low errors (mean relative error MRE -0.0327; root mean square error RMSE 0.205, bias -0.0727 and slope 1.15 and correlation coefficient R2 0.74. These results suggest that the new model has the ability to reproduce measured reflectance values and has potentially profound implications for remote sensing of complex waters in this region.

  17. Quantitative polarized Raman spectroscopy in highly turbid bone tissue.

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D; Wilson, Robert H; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H; Morris, Michael D

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (pbones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  18. Turbid Media Extinction Coefficient for Near-Infrared Laser Radiation

    International Nuclear Information System (INIS)

    Dreischuh, T; Gurdev, L; Vankov, O; Stoyanov, D; Avramov, L

    2015-01-01

    In this work, extended investigations are performed of the extinction coefficient of Intralipid-20% dilutions in distilled water depending on the Intralipid concentration, for laser radiation wavelengths in the red and near-infrared regions covering the so-called tissue optical window. The extinction is measured by using an approach we have developed recently based on the features of the spatial intensity distribution of laser-radiation beams propagating through semi-infinite turbid media. The measurements are conducted using separately two dilution- containing plexiglass boxes of different sizes and volumes, in order to prove the appropriateness of the assumption of semi-infinite turbid medium. The experimental results for the extinction are in agreement with our previous results and with empiric formulae found by other authors concerning the wavelength dependence of the scattering coefficient of Intralipid – 10% and Intralipid – 20%. They are also in agreement with known data of the water absorptance. It is estimated as well that the wavelengths around 1320 nm would be advantageous for deep harmless sensing and diagnostics of tissues

  19. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David; Griffiths, Ronald

    2018-01-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples

  20. Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae.

    Science.gov (United States)

    Suzuki, Jumpei; Imamura, Masahiro; Nakano, Daisuke; Yamamoto, Ryosuke; Fujita, Masafumi

    2018-07-15

    Anthropogenic water turbidity derived from suspended solids (SS) is caused by reservoir sediment management practices such as drawdown flushing. Turbid water induces stress in many aquatic organisms, but the effects of turbidity on oxidative stress responses in aquatic insects have not yet been demonstrated. Here, we examined antioxidant responses, oxidative damage, and energy reserves in caddisfly (Stenopsyche marmorata) larvae exposed to turbid water (0 mg SS L -1 , 500 mg SS L -1 , and 2000 mg SS L -1 ) at different temperatures. We evaluated the combined effects of turbid water and temperature by measuring oxidative stress and using metabolic biomarkers. No turbidity level was significantly lethal to S. marmorata larvae. Moreover, there were no significant differences in antioxidant response or oxidative damage between the control and turbid water treatments at a low temperature (10 °C). However, at a high temperature (25 °C), turbid water modulated the activity of the antioxidant enzymes superoxide dismutase and catalase and the oxygen radical absorbance capacity as an indicator of the redox state of the insect larvae. Antioxidant defenses require energy, and high temperature was associated with low energy reserves, which might limit the capability of organisms to counteract reactive oxygen species. Moreover, co-exposure to turbid water and high temperature caused fluctuation of antioxidant defenses and increased the oxidative damage caused by the production of reactive oxygen species. Furthermore, the combined effect of high temperature and turbid water on antioxidant defenses and oxidative damage was larger than the individual effects. Therefore, our results demonstrate that exposure to both turbid water and high temperature generates additive and synergistic interactions causing oxidative stress in this aquatic insect species. Copyright © 2018. Published by Elsevier B.V.

  1. Turbidity interferes with foraging success of visual but not chemosensory predators.

    Science.gov (United States)

    Lunt, Jessica; Smee, Delbert L

    2015-01-01

    Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator-prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs.

  2. Radionuclides and particles in seawater with the large volume in situ filtration and concentration system in the coastal waters off Japan

    International Nuclear Information System (INIS)

    Aono, Tatsuo; Nakanishi, Takahiro; Okubo, Ayako; Zheng, Jian; Yamada, Masatoshi; Kusakabe, Masashi

    2008-01-01

    It is necessary to determine the radionuclides in dissolved and particulate state in order to clarify the distributions and behavior of these in seawater. Because the concentrations of radionuclides and particles are very low in the ocean, it is difficult to concentrate and fractionate the particulate matters with the filtration systems in seawater. The large volume in situ filtration and concentration system (LV-FiCS) was developed to collect various forms of trace radionuclides and particles in seawater. The LV-FiCS has been operated during several cruises in the coastal waters off Japan, and several m 3 of seawaters were filtered through different kinds of filters and then pass through the adsorbents to concentrate radionuclides simultaneously. This system could be shown the vertical profiles of thorium with the size-fractionated method and the behavior of these nuclides in the ocean. (author)

  3. Analysis of polycyclic aromatic hydrocarbons in water and beverages using membrane-assisted solvent extraction in combination with large volume injection-gas chromatography-mass spectrometric detection.

    Science.gov (United States)

    Rodil, Rosario; Schellin, Manuela; Popp, Peter

    2007-09-07

    Membrane-assisted solvent extraction (MASE) in combination with large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) was applied for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. The MASE conditions were optimized for achieving high enrichment of the analytes from aqueous samples, in terms of extraction conditions (shaking speed, extraction temperature and time), extraction solvent and composition (ionic strength, sample pH and presence of organic solvent). Parameters like linearity and reproducibility of the procedure were determined. The extraction efficiency was above 65% for all the analytes and the relative standard deviation (RSD) for five consecutive extractions ranged from 6 to 18%. At optimized conditions detection limits at the ng/L level were achieved. The effectiveness of the method was tested by analyzing real samples, such as river water, apple juice, red wine and milk.

  4. New methods to interpolate large volume of data from points or particles (Mesh-Free) methods application for its scientific visualization

    International Nuclear Information System (INIS)

    Reyes Lopez, Y.; Yervilla Herrera, H.; Viamontes Esquivel, A.; Recarey Morfa, C. A.

    2009-01-01

    In the following paper we developed a new method to interpolate large volumes of scattered data, focused mainly on the results of the Mesh free Methods, Points Methods and the Particles Methods application. Through this one, we use local radial basis function as interpolating functions. We also use over-tree as the data structure that allows to accelerate the localization of the data that influences to interpolate the values at a new point, speeding up the application of scientific visualization techniques to generate images from large data volumes from the application of Mesh-free Methods, Points and Particle Methods, in the resolution of diverse models of physics-mathematics. As an example, the results obtained after applying this method using the local interpolation functions of Shepard are shown. (Author) 22 refs

  5. Coral reefs of the turbid inner-shelf of the Great Barrier Reef, Australia: An environmental and geomorphic perspective on their occurrence, composition and growth

    Science.gov (United States)

    Browne, N. K.; Smithers, S. G.; Perry, C. T.

    2012-10-01

    Investigations of the geomorphic and sedimentary context in which turbid zone reefs exist, both in the modern and fossil reef record, can inform key ecological debates regarding species tolerances and adaptability to elevated turbidity and sedimentation. Furthermore, these investigations can address critical geological and palaeoecological questions surrounding longer-term coral-sediment interactions and reef growth histories. Here we review current knowledge about turbid zone reefs from the inner-shelf regions of the Great Barrier Reef (GBR) in Australia to consider these issues and to evaluate reef growth in the period prior to and post European settlement. We also consider the future prospects of these reefs under reported changing water quality regimes. Turbid zone reefs on the GBR are relatively well known compared to those in other reef regions. They occur within 20 km of the mainland coast where reef development may be influenced by continual or episodic terrigenous sediment inputs, fluctuating salinities (24-36 ppt), and reduced water quality through increased nutrient and pollutant delivery from urban and agricultural runoff. Individually, and in synergy, these environmental conditions are widely viewed as unfavourable for sustained and vigorous coral reef growth, and thus these reefs are widely perceived as marginal compared to clear water reef systems. However, recent research has revealed that this view is misleading, and that in fact many turbid zone reefs in this region are resilient, exhibit relatively high live coral cover (> 30%) and have distinctive community assemblages dominated by fast growing (Acropora, Montipora) and/or sediment tolerant species (Turbinaria, Goniopora, Galaxea, Porites). Palaeoecological reconstructions based on the analysis of reef cores show that community assemblages are relatively stable at millennial timescales, and that many reefs are actively accreting (average 2-7 mm/year) where accommodation space is available

  6. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems

    Energy Technology Data Exchange (ETDEWEB)

    Solak, Murat [Duezce University, Kaynasli Vocational School, Environmental Protection and Control Department, 81900 Duezce (Turkey); Kilic, Mehmet, E-mail: kavi@mmf.sdu.edu.tr [Sueleyman Demirel University, Engineering and Architecture Faculty, Environmental Engineering Department, 32260 Isparta (Turkey); Hueseyin, Yazici; Sencan, Aziz [Sueleyman Demirel University, Engineering and Architecture Faculty, Environmental Engineering Department, 32260 Isparta (Turkey)

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m{sup 2}, and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m{sup 2}, respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  7. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems

    International Nuclear Information System (INIS)

    Solak, Murat; Kilic, Mehmet; Hueseyin, Yazici; Sencan, Aziz

    2009-01-01

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m 2 , and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m 2 , respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  8. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems.

    Science.gov (United States)

    Solak, Murat; Kiliç, Mehmet; Hüseyin, Yazici; Sencan, Aziz

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m(2), and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m(2), respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  9. Turbidity and total suspended solid concentration dynamics in streamflow from California oak woodland watersheds

    Science.gov (United States)

    David J. Lewis; Kenneth W. Tate; Randy A. Dahlgren; Jacob Newell

    2002-01-01

    Resource agencies, private landowners, and citizen monitoring programs utilize turbidity (water clarity) measurements as a water quality indicator for total suspended solids (TSS – mass of solids per unit volume) and other constituents in streams and rivers. The dynamics and relationships between turbidity and TSS are functions of watershed-specific factors and...

  10. Determination of Residual Chlorine and Turbidity in Drinking Water. Instructor's Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This instructor's guide presents analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. This publication is intended…

  11. Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water.

    Science.gov (United States)

    Aboubaraka, Abdelmeguid E; Aboelfetoh, Eman F; Ebeid, El-Zeiny M

    2017-08-01

    This study presents the performance of graphene oxide (GO) as a coagulant in turbidity removal from naturally and artificially turbid raw surface water. GO is considered an excellent alternative to alum, the more common coagulant used in water treatment processes, to reduce the environmental release of aluminum. Effects of GO dosage, pH, and temperature on its coagulation ability were studied to determine the ideal turbidity removal conditions. The turbidity removal was ≥95% for all levels of turbid raw surface water (20, 100, and 200 NTU) at optimum conditions. The role of alkalinity in inducing turbidity removal by GO coagulation was much more pronounced upon using raw surface water samples compared with that using artificially turbid deionized water samples. Moreover, GO demonstrated high-performance removal of biological contaminants such as algae, heterotrophic bacteria, and fecal coliform bacteria by 99.0%, 98.8% and 96.0%, respectively, at a dosage of 40 mg/L. Concerning the possible environmental release of GO into the treated water following filtration process, there was no residual GO in a wide range of pH values. The outcomes of the study highlight the excellent coagulation performance of GO for the removal of turbidity and biological contaminants from raw surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Determination of Residual Chlorine and Turbidity in Drinking Water. Student Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This student's manual covers analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. The publication is intended for…

  13. Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan.

    Science.gov (United States)

    Chang, Qing; Zhang, Min; Wang, Jinxi

    2009-09-30

    A macromolecule heavy metal flocculant mercaptoacetyl chitosan (MAC) was prepared by reacting chitosan with mercaptoacetic acid. In preliminary experiments, the flocculation performance of MAC was evaluated by using wastewater containing Cu(2+) or/and turbidity. Some factors which affect the removal of Cu(2+) and turbidity were also studied. The experimental results showed that: (1) MAC can remove both Cu(2+) and turbidity from wastewater. The removal efficiency of Cu(2+) by using MAC combined with hydrolyzed polyacrylamide is higher than that by only using MAC, the removal efficiency of Cu(2+) reaches above 98%; (2) when water sample containing not only Cu(2+) but also turbidity-causing substance, the removal efficiency of both Cu(2+) and turbidity will be promoted by the cooperation effect of each other, the residual concentration of Cu(2+) reaches below 0.5 mg L(-1) and the turbidity reaches below 3NTU, Cu(2+) is more easily removed by MAC when turbidity is higher; (3) the removal efficiency of Cu(2+) increases with the increase in pH value, contrarily removal efficiency of turbidity decreases with the increase in pH value.

  14. Potential of turbidity monitoring for real time control of pollutant discharge in sewers during rainfall events.

    Science.gov (United States)

    Lacour, C; Joannis, C; Gromaire, M-C; Chebbo, G

    2009-01-01

    Turbidity sensors can be used to continuously monitor the evolution of pollutant mass discharge. For two sites within the Paris combined sewer system, continuous turbidity, conductivity and flow data were recorded at one-minute time intervals over a one-year period. This paper is intended to highlight the variability in turbidity dynamics during wet weather. For each storm event, turbidity response aspects were analysed through different classifications. The correlation between classification and common parameters, such as the antecedent dry weather period, total event volume per impervious hectare and both the mean and maximum hydraulic flow for each event, was also studied. Moreover, the dynamics of flow and turbidity signals were compared at the event scale. No simple relation between turbidity responses, hydraulic flow dynamics and the chosen parameters was derived from this effort. Knowledge of turbidity dynamics could therefore potentially improve wet weather management, especially when using pollution-based real-time control (P-RTC) since turbidity contains information not included in hydraulic flow dynamics and not readily predictable from such dynamics.

  15. Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons.

    Science.gov (United States)

    Lee, Chih-Sheng; Lee, Yi-Chao; Chiang, Hui-Min

    2016-07-01

    River turbidity is of dynamic nature, and its stable state is significantly changed during the period of heavy rainfall events. The frequent occurrence of typhoons in Taiwan has caused serious problems in drinking water treatment due to extremely high turbidity. The aim of the present study is to evaluate impact of typhoons on river turbidity. The statistical methods used included analyses of paired annual mean and standard deviation, frequency distribution, and moving standard deviation, skewness, and autocorrelation; all clearly indicating significant state changes of river turbidity. Typhoon Morakot of 2009 (recorded high rainfall over 2000mm in three days, responsible for significant disaster in southern Taiwan) is assumed as a major initiated event leading to critical state change. In addition, increasing rate of turbidity in rainfall events is highly and positively correlated with rainfall intensity both for pre- and post-Morakot periods. Daily turbidity is also well correlated with daily flow rate for all the eleven events evaluated. That implies potential prediction of river turbidity by river flow rate during rainfall and typhoon events. Based on analysis of stable state changes, more effective regulations for better basin management including soil-water conservation in watershed are necessary. Furthermore, municipal and industrial water treatment plants need to prepare and ensure the adequate operation of water treatment with high raw water turbidity (e.g., >2000NTU). Finally, methodology used in the present of this study can be applied to other environmental problems with abrupt state changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers

    Science.gov (United States)

    W.F. Henley; M.A. Patterson; R.J. Neves; A. Dennis Lemly

    2000-01-01

    Sedimentation and turbidity are significant contributors to declines in populations of North American aquatic organisms. Impacts to lotic fauna may be expressed through pervasive alterations in local food chains beginning at the primary trophic level. Decreases in primary production are associated with increases in sedimentation and turbidity and produce negative...

  17. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  18. Sediment-induced turbidity impairs foraging performance and prey choice of planktivorous coral reef fishes.

    Science.gov (United States)

    Johansen, J L; Jones, G P

    2013-09-01

    Sedimentation is a substantial threat to aquatic ecosystems and a primary cause of habitat degradation on near-shore coral reefs. Although numerous studies have demonstrated major impacts of sedimentation and turbidity on corals, virtually nothing is known of the sensitivity of reef fishes. Planktivorous fishes are an important trophic group that funnels pelagic energy sources into reef ecosystems. These fishes are visual predators whose foraging is likely to be impaired by turbidity, but the threshold for such effects and their magnitude are unknown. This study examined the effect of sediment-induced turbidity on foraging in four species of planktivorous damselfishes (Pomacentridae) of the Great Barrier Reef, including inshore and offshore species that potentially differ in tolerance for turbidity. An experimental flow tunnel was used to quantify their ability to catch mobile and immobile planktonic prey under different levels of turbidity and velocity in the range encountered on natural and disturbed reefs. Turbidity of just 4 NTU (nephelometric turbidity units) reduced average attack success by up to 56%, with higher effect sizes for species with offshore distributions. Only the inshore species (Neopomacentrus bankieri), which frequently encounters this turbidity on coastal reefs, could maintain high prey capture success. At elevated turbidity similar to that found on disturbed reefs (8 NTU), attack success was reduced in all species examined by up to 69%. These reductions in attack success led to a 21-24% decrease in foraging rates for all mid to outer-shelf species, in spite of increasing attack rates at high turbidity. Although effects of turbidity varied among species, it always depended heavily on prey mobility and ambient velocity. Attack success was up to 14 times lower on mobile prey, leaving species relatively incapable of foraging on anything but immobile prey at high turbidity. Effects of turbidity were particularly prominent at higher velocities, as

  19. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    Science.gov (United States)

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  20. A drifter for measuring water turbidity in rivers and coastal oceans.

    Science.gov (United States)

    Marchant, Ross; Reading, Dean; Ridd, James; Campbell, Sean; Ridd, Peter

    2015-02-15

    A disposable instrument for measuring water turbidity in rivers and coastal oceans is described. It transmits turbidity measurements and position data via a satellite uplink to a processing server. The primary purpose of the instrument is to help document changes in sediment runoff from river catchments in North Queensland, Australia. The 'river drifter' is released into a flooded river and drifts downstream to the ocean, measuring turbidity at regular intervals. Deployment in the Herbert River showed a downstream increase in turbidity, and thus suspended sediment concentration, while for the Johnstone River there was a rapid reduction in turbidity where the river entered the sea. Potential stranding along river banks is a limitation of the instrument. However, it has proved possible for drifters to routinely collect data along 80 km of the Herbert River. One drifter deployed in the Fly River, Papua New Guinea, travelled almost 200 km before stranding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Robust sensor for turbidity measurement from light scattering and absorbing liquids.

    Science.gov (United States)

    Kontturi, Ville; Turunen, Petri; Uozumi, Jun; Peiponen, Kai-Erik

    2009-12-01

    Internationally standardized turbidity measurements for probing solid particles in liquid are problematic in the case of simultaneous light scattering and absorption. A method and a sensor to determine the turbidity in the presence of light absorption are presented. The developed sensor makes use of the total internal reflection of a laser beam at the liquid-prism interface, and the turbidity is assessed using the concept of laser speckle pattern. Using average filtering in speckle data analyzing the observed dynamic speckle pattern, which is due to light scattering from particles and the static speckle due to stray light of the sensor, can be separated from each other. Good correlation between the standard deviation of dynamic speckle and turbidity value for nonabsorbing and for absorbing liquids was observed. The sensor is suggested, for instance, for the measurement of ill-behaved as well as small-volume turbid liquids in both medicine and process industry.

  2. Effects of turbidity and prey density on the foraging success of age 0 year yellow perch Perca flavescens.

    Science.gov (United States)

    Wellington, C G; Mayer, C M; Bossenbroek, J M; Stroh, N A

    2010-05-01

    Laboratory experiments were conducted to determine how larval and juvenile yellow perch Perca flavescens respond to changes in prey density when exposed to different levels and types of turbidity (phytoplanktonic or sedimentary). Across prey densities, consumption by P. flavescens tended to be less in phytoplanktonic turbidity compared with sedimentary turbidity. For larvae, this effect was dependent on turbidity level (consumption differed between turbidity types only at high turbidity), while for juveniles the difference with turbidity type was equal across turbidity levels. These results suggest that phytoplankton blooms are detrimental to the ability of late season age 0 year P. flavescens to forage and support the need to control factors leading to excessive phytoplankton growth in lakes.

  3. Markov chain solution of photon multiple scattering through turbid slabs.

    Science.gov (United States)

    Lin, Ying; Northrop, William F; Li, Xuesong

    2016-11-14

    This work introduces a Markov Chain solution to model photon multiple scattering through turbid slabs via anisotropic scattering process, i.e., Mie scattering. Results show that the proposed Markov Chain model agree with commonly used Monte Carlo simulation for various mediums such as medium with non-uniform phase functions and absorbing medium. The proposed Markov Chain solution method successfully converts the complex multiple scattering problem with practical phase functions into a matrix form and solves transmitted/reflected photon angular distributions by matrix multiplications. Such characteristics would potentially allow practical inversions by matrix manipulation or stochastic algorithms where widely applied stochastic methods such as Monte Carlo simulations usually fail, and thus enable practical diagnostics reconstructions such as medical diagnosis, spray analysis, and atmosphere sciences.

  4. Use of Moringa oleifera seed extracts to reduce helminth egg numbers and turbidity in irrigation water.

    Science.gov (United States)

    Sengupta, Mita E; Keraita, Bernard; Olsen, Annette; Boateng, Osei K; Thamsborg, Stig M; Pálsdóttir, Guðný R; Dalsgaard, Anders

    2012-07-01

    Water from wastewater-polluted streams and dug-outs is the most commonly used water source for irrigation in urban farming in Ghana, but helminth parasite eggs in the water represent health risks when used for crop production. Conventional water treatment is expensive, requires advanced technology and often breaks down in less developed countries so low cost interventions are needed. Field and laboratory based trials were carried out in order to investigate the effect of the natural coagulant Moringa oleifera (MO) seed extracts in reducing helminh eggs and turbidity in irrigation water, turbid water, wastewater and tap water. In medium to high turbid water MO extracts were effective in reducing the number of helminth eggs by 94-99.5% to 1-2 eggs per litre and the turbidity to 7-11 NTU which is an 85-96% reduction. MO is readily available in many tropical countries and can be used by farmers to treat high turbid water for irrigation, however, additional improvements of water quality, e.g. by sand filtration, is suggested to meet the guideline value of ≤ 1 helminth egg per litre and a turbidity of ≤ 2 NTU as recommended by the World Health Organization and the U.S. Environmental Protection Agency for water intended for irrigation. A positive correlation was established between reduction in turbidity and helminth eggs in irrigation water, turbid water and wastewater treated with MO. This indicates that helminth eggs attach to suspended particles and/or flocs facilitated by MO in the water, and that turbidity and helminth eggs are reduced with the settling flocs. However, more experiments with water samples containing naturally occurring helminth eggs are needed to establish whether turbidity can be used as a proxy for helminth eggs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Automatic real-time control of suspended sediment based upon high frequency in situ measurements of nephelometric turbidity

    Science.gov (United States)

    Jack Lewis; Rand Eads

    1998-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is potentially a much better predictor than water discharge. Since about 1990, it has been feasible to automatically collect high frequency turbidity data at remote sites using battery-powered turbidity probes that are properly mounted in the river or stream. With sensors calibrated...

  6. On Assumptions in Development of a Mathematical Model of Thermo-gravitational Convection in the Large Volume Process Tanks Taking into Account Fermentation

    Directory of Open Access Journals (Sweden)

    P. M. Shkapov

    2015-01-01

    Full Text Available The paper provides a mathematical model of thermo-gravity convection in a large volume vertical cylinder. The heat is removed from the product via the cooling jacket at the top of the cylinder. We suppose that a laminar fluid motion takes place. The model is based on the NavierStokes equation, the equation of heat transfer through the wall, and the heat transfer equation. The peculiarity of the process in large volume tanks was the distribution of the physical parameters of the coordinates that was taken into account when constructing the model. The model corresponds to a process of wort beer fermentation in the cylindrical-conical tanks (CCT. The CCT volume is divided into three zones and for each zone model equations was obtained. The first zone has an annular cross-section and it is limited to the height by the cooling jacket. In this zone the heat flow from the cooling jacket to the product is uppermost. Model equation of the first zone describes the process of heat transfer through the wall and is presented by linear inhomogeneous differential equation in partial derivatives that is solved analytically. For the second and third zones description there was a number of engineering assumptions. The fluid was considered Newtonian, viscous and incompressible. Convective motion considered in the Boussinesq approximation. The effect of viscous dissipation is not considered. The topology of fluid motion is similar to the cylindrical Poiseuille. The second zone model consists of the Navier-Stokes equations in cylindrical coordinates with the introduction of a simplified and the heat equation in the liquid layer. The volume that is occupied by an upward convective flow pertains to the third area. Convective flows do not mix and do not exchange heat. At the start of the process a medium has the same temperature and a zero initial velocity in the whole volume that allows us to specify the initial conditions for the process. The paper shows the

  7. Open Data, Jupyter Notebooks and Geospatial Data Standards Combined - Opening up large volumes of marine and climate data to other communities

    Science.gov (United States)

    Clements, O.; Siemen, S.; Wagemann, J.

    2017-12-01

    The EU-funded Earthserver-2 project aims to offer on-demand access to large volumes of environmental data (Earth Observation, Marine, Climate data and Planetary data) via the interface standard Web Coverage Service defined by the Open Geospatial Consortium. Providing access to data via OGC web services (e.g. WCS and WMS) has the potential to open up services to a wider audience, especially to users outside the respective communities. Especially WCS 2.0 with its processing extension Web Coverage Processing Service (WCPS) is highly beneficial to make large volumes accessible to non-expert communities. Users do not have to deal with custom community data formats, such as GRIB for the meteorological community, but can directly access the data in a format they are more familiar with, such as NetCDF, JSON or CSV. Data requests can further directly be integrated into custom processing routines and users are not required to download Gigabytes of data anymore. WCS supports trim (reduction of data extent) and slice (reduction of data dimension) operations on multi-dimensional data, providing users a very flexible on-demand access to the data. WCPS allows the user to craft queries to run on the data using a text-based query language, similar to SQL. These queries can be very powerful, e.g. condensing a three-dimensional data cube into its two-dimensional mean. However, the more processing-intensive the more complex the query. As part of the EarthServer-2 project, we developed a python library that helps users to generate complex WCPS queries with Python, a programming language they are more familiar with. The interactive presentation aims to give practical examples how users can benefit from two specific WCS services from the Marine and Climate community. Use-cases from the two communities will show different approaches to take advantage of a Web Coverage (Processing) Service. The entire content is available with Jupyter Notebooks, as they prove to be a highly beneficial tool

  8. Towards large volume big divisor D3/D7 " μ-split supersymmetry" and Ricci-flat Swiss-cheese metrics, and dimension-six neutrino mass operators

    Science.gov (United States)

    Dhuria, Mansi; Misra, Aalok

    2012-02-01

    We show that it is possible to realize a " μ-split SUSY" scenario (Cheng and Cheng, 2005) [1] in the context of large volume limit of type IIB compactifications on Swiss-cheese Calabi-Yau orientifolds in the presence of a mobile space-time filling D3-brane and a (stack of) D7-brane(s) wrapping the "big" divisor. For this, we investigate the possibility of getting one Higgs to be light while other to be heavy in addition to a heavy higgsino mass parameter. Further, we examine the existence of long lived gluino that manifests one of the major consequences of μ-split SUSY scenario, by computing its decay width as well as lifetime corresponding to the three-body decays of the gluino into either a quark, a squark and a neutralino or a quark, squark and goldstino, as well as two-body decays of the gluino into either a neutralino and a gluon or a goldstino and a gluon. Guided by the geometric Kähler potential for Σ obtained in Misra and Shukla (2010) [2] based on GLSM techniques, and the Donaldson's algorithm (Barun et al., 2008) [3] for obtaining numerically a Ricci-flat metric, we give details of our calculation in Misra and Shukla (2011) [4] pertaining to our proposed metric for the full Swiss-cheese Calabi-Yau (the geometric Kähler potential being needed to be included in the full moduli space Kähler potential in the presence of the mobile space-time filling D3-brane), but for simplicity of calculation, close to the big divisor, which is Ricci-flat in the large volume limit. Also, as an application of the one-loop RG flow solution for the higgsino mass parameter, we show that the contribution to the neutrino masses at the EW scale from dimension-six operators arising from the Kähler potential, is suppressed relative to the Weinberg-type dimension-five operators.

  9. Determination of Linke turbidity factor from solar radiation measurement in northern Tunisia

    International Nuclear Information System (INIS)

    Chaabane, M.; Masmoudi, M.; Medhioub, K.

    2004-01-01

    The attenuation of solar radiation through a real atmosphere versus that through a clean dry atmosphere gives an indication of the atmospheric turbidity. Study of atmospheric turbidity is important in meteorology, climatology and for monitoring of atmospheric pollution. The Linke turbidity factor refers to the whole spectrum, that is, overall spectrally integrated attenuation, which includes presence of gaseous water vapour and aerosols. In this work, a procedure for calculation of Linke turbidity factor is adopted using pyrheliometric measurements in a coastal tourist location in Tunisia (Sidi Bou Said), during three summer months (June, July and August 1999). Real diurnal and monthly variations of the T L turbidity factor are found in the three studied months, with a maximum in August afternoon and a minimum in July morning. The increase of T L is an indication for increasing atmospheric turbidity level (pollution). The correlation between atmospheric turbidity and the local weather conditions shows that this increase is essentially due to the heavy water vapour content of maritime air masses, carried by the north-eastern winds prevalent during the afternoon. A second pollution source is the dust content of the continental air masses carried by western and southern winds prevalent in the morning. Next to this can be added the influence of traffic at rush hours and during the afternoon of summer holidays. (Author)

  10. A polychromatic turbidity microplate assay to distinguish discovery stage drug molecules with beneficial precipitation properties.

    Science.gov (United States)

    Morrison, John; Nophsker, Michelle; Elzinga, Paul; Donoso, Maria; Park, Hyunsoo; Haskell, Roy

    2017-10-05

    A material sparing microplate screening assay was developed to evaluate and compare the precipitation of discovery stage drug molecules as a function of time, concentration and media composition. Polychromatic turbidity time course profiles were collected for cinnarizine, probucol, dipyridamole as well as BMS-932481, and compared with turbidity profiles of monodisperse particle size standards. Precipitation for select sample conditions were further characterized at several time points by size, morphology, amount and form via laser diffraction, microscopy, size based particle counting and X-ray diffraction respectively. Wavelength dependent turbidity was found indicative of nanoprecipitate, while wavelength independent turbidity was consistent with larger microprecipitate formation. A transition from wavelength dependent to wavelength independent turbidity occurred for nanoparticle to microparticle growth, and a decrease in wavelength independent turbidity correlated with continued growth in size of microparticles. Other sudden changes in turbidity signal over time such as rapid fluctuation, a decrease in slope or a sharp inversion were correlated with very large or aggregated macro-precipitates exceeding 100μm in diameter, a change in the rate of precipitate formation or an amorphous to crystalline form conversion respectively. The assay provides an effective method to efficiently monitor and screen the precipitation fates of drug molecules, even during the early stages of discovery with limited amounts of available material. This capability highlights molecules with beneficial precipitation properties that are able to generate and maintain solubility enabling amorphous or nanoparticle precipitates. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    Science.gov (United States)

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Suspended-sediment concentrations (SSCs) and turbidity were measured for 2 to 3 years at 14 monitoring sites throughout the upper Esopus Creek watershed in the Catskill Mountains of New York State. The upper Esopus Creek watershed is part of the New York City water-supply system that supplies water to more than 9 million people every day. Turbidity, caused primarily by high concentrations of inorganic suspended particles, is a potential water-quality concern because it colors the water and can reduce the effectiveness of drinking-water disinfection. The purposes of this study were to quantify concentrations of suspended sediment and turbidity levels, to estimate suspended-sediment loads within the upper Esopus Creek watershed, and to investigate the relations between SSC and turbidity. Samples were collected at four locations along the main channel of Esopus Creek and at all of the principal tributaries. Samples were collected monthly and during storms and were analyzed for SSC and turbidity in the laboratory. Turbidity was also measured every 15 minutes at six of the sampling stations with in situ turbidity probes.

  12. Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata

    Directory of Open Access Journals (Sweden)

    Bahman Ramavandi

    2014-08-01

    Full Text Available A biocoagulant was successfully extracted from Plantago ovata by using an FeCl3-induced crude extract (FCE. The potential of FCE to act as a natural coagulant was tested for clarification using the turbid water of a river. Experimental tests were performed to evaluate the effects of turbidity concentration, coagulant quantity, water pH, and humic acid concentration on the coagulation of water turbidity by FCE. The maximum turbidity removal was occurred at water pH<8. At the optimum dosage of FCE, only 0.8 mg/L of dissolved organic carbon was released to the treated water. An increase in the humic acid led to the promotion of the water turbidity removal. Results demonstrated that the FCE removed more than 95.6% of all initial turbidity concentrations (50–300 NTU. High bacteriological quality was achieved in the treated water. FCE as an eco-friendly biocoagulant was revealed to be a very efficient coagulant for removing turbidity from waters.

  13. Drinking water turbidity and emergency department visits for gastrointestinal illness in Atlanta, 1993-2004.

    Science.gov (United States)

    Tinker, Sarah C; Moe, Christine L; Klein, Mitchel; Flanders, W Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E

    2010-01-01

    The extent to which drinking water turbidity measurements indicate the risk of gastrointestinal illness is not well understood. Despite major advances in drinking water treatment and delivery, infectious disease can still be transmitted through drinking water in the United States, and it is important to have reliable indicators of microbial water quality to inform public health decisions. The objective of our study was to assess the relationship between gastrointestinal illness, quantified through emergency department visits, and drinking water quality, quantified as raw water and filtered water turbidity measured at the treatment plant. We examined the relationship between turbidity levels of raw and filtered surface water measured at eight major drinking water treatment plants in the metropolitan area of Atlanta, Georgia, and over 240,000 emergency department visits for gastrointestinal illness during 1993-2004 among the population served by these plants. We fit Poisson time-series statistical regression models that included turbidity in a 21-day distributed lag and that controlled for meteorological factors and long-term time trends. For filtered water turbidity, the results were consistent with no association with emergency department visits for gastrointestinal illness. We observed a modest association between raw water turbidity and emergency department visits for gastrointestinal illness. Our results suggest that source water quality may contribute modestly to endemic gastrointestinal illness in the study area. The association between turbidity and emergency department visits for gastrointestinal illness was only observed when raw water turbidity was considered; filtered water turbidity may not serve as a reliable indicator of modest pathogen risk at all treatment plants.

  14. Collagen I self-assembly: revealing the developing structures that generate turbidity.

    Science.gov (United States)

    Zhu, Jieling; Kaufman, Laura J

    2014-04-15

    Type I collagen gels are routinely used in biophysical studies and bioengineering applications. The structural and mechanical properties of these fibrillar matrices depend on the conditions under which collagen fibrillogenesis proceeds, and developing a fuller understanding of this process will enhance control over gel properties. Turbidity measurements have long been the method of choice for monitoring developing gels, whereas imaging methods are regularly used to visualize fully developed gels. In this study, turbidity and confocal reflectance microscopy (CRM) were simultaneously employed to track collagen fibrillogenesis and reconcile the information reported by the two techniques, with confocal fluorescence microscopy (CFM) used to supplement information about early events in fibrillogenesis. Time-lapse images of 0.5 mg/ml, 1.0 mg/ml, and 2.0 mg/ml acid-solubilized collagen I gels forming at 27°C, 32°C, and 37°C were collected. It was found that in situ turbidity measured in a scanning transmittance configuration was interchangeable with traditional turbidity measurements using a spectrophotometer. CRM and CFM were employed to reveal the structures responsible for the turbidity that develops during collagen self-assembly. Information from CRM and transmittance images was collapsed into straightforward single variables; total intensity in CRM images tracked turbidity development closely for all collagen gels investigated, and the two techniques were similarly sensitive to fibril number and dimension. Complementary CRM, CFM, and in situ turbidity measurements revealed that fibril and network formation occurred before substantial turbidity was present, and the majority of increasing turbidity during collagen self-assembly was due to increasing fibril thickness. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. DRINKING WATER TURBIDITY AND EMERGENCY DEPARTMENT VISITS FOR GASTROINTESTINAL ILLNESS IN ATLANTA, 1993 – 2004

    Science.gov (United States)

    Tinker, Sarah C.; Moe, Christine L.; Klein, Mitchel; Flanders, W. Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E.

    2013-01-01

    Background The extent to which drinking water turbidity measurements indicate the risk of gastrointestinal illness is not well-understood. Despite major advances in drinking water treatment and delivery, infectious disease can still be transmitted through drinking water in the U.S., and it is important to have reliable indicators of microbial water quality to inform public health decisions. The objective of our study was to assess the relationship between gastrointestinal illness, quantified through emergency department visits, and drinking water quality, quantified as raw water and filtered water turbidity measured at the treatment plant. Methods We examined the relationship between turbidity levels of raw and filtered surface water measured at eight major drinking water treatment plants in the metropolitan area of Atlanta, Georgia, and over 240 000 emergency department visits for gastrointestinal illness during 1993–2004 among the population served by these plants. We fit Poisson time-series statistical regression models that included turbidity in a 21-day distributed lag and that controlled for meteorological factors and long-term time trends. Results For filtered water turbidity, the results were consistent with no association with emergency department visits for gastrointestinal illness. We observed a modest association between raw water turbidity and emergency department visits for gastrointestinal illness. This association was not observed for all treatment plants in plant-specific analyses. Conclusions Our results suggest that source water quality may contribute modestly to endemic gastrointestinal illness in the study area. The association between turbidity and emergency department visits for gastrointestinal illness was only observed when raw water turbidity was considered; filtered water turbidity may not serve as a reliable indicator of modest pathogen risk at all treatment plants. PMID:18941478

  16. Increasing precision of turbidity-based suspended sediment concentration and load estimates.

    Science.gov (United States)

    Jastram, John D; Zipper, Carl E; Zelazny, Lucian W; Hyer, Kenneth E

    2010-01-01

    Turbidity is an effective tool for estimating and monitoring suspended sediments in aquatic systems. Turbidity can be measured in situ remotely and at fine temporal scales as a surrogate for suspended sediment concentration (SSC), providing opportunity for a more complete record of SSC than is possible with physical sampling approaches. However, there is variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. This study investigated the potential to improve turbidity-based SSC, and by extension the resulting sediment loading estimates, by incorporating hydrologic variables that can be monitored remotely and continuously (typically 15-min intervals) into the SSC estimation procedure. On the Roanoke River in southwestern Virginia, hydrologic stage, turbidity, and other water-quality parameters were monitored with in situ instrumentation; suspended sediments were sampled manually during elevated turbidity events; samples were analyzed for SSC and physical properties including particle-size distribution and organic C content; and rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC estimation variance and hydrologic variables that explained variability of those physical properties. Results indicated that the inclusion of any of the measured physical properties in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables to represent these physical properties, along with turbidity, resulted in a model, relying solely on data collected remotely and continuously, that estimated SSC with less variance than a conventional turbidity-based univariate model, allowing a more precise estimate of sediment loading, Modeling results are consistent with known mechanisms governing sediment transport in hydrologic systems.

  17. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique

    Energy Technology Data Exchange (ETDEWEB)

    Merzouk, B. [Departement d' Hydraulique, Universite Mohamed Boudiaf de M' sila (Algeria)], E-mail: mbelkov@yahoo.fr; Gourich, B. [Laboratoire de Genie des Procedes, Ecole Superieure de Technologie de Casablanca, B.P. 8012, Oasis (Morocco); Sekki, A. [Departement de Genie des Procedes, Universite Ferhat Abbas de Setif (Algeria); Madani, K.; Chibane, M. [Faculte des Sciences de la Nature et de la Vie, Universite A - Mira de Bejaia (Algeria)

    2009-05-15

    The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C{sub 0}), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity ({kappa}) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5 mA/cm{sup 2}) and various interelectrode distance (1, 2 and 3 cm). For solutions with 300 mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55 mA/cm{sup 2}, initial pH was 7.6, conductivity was 2.1 mS/cm, duration of treatment was 10 min and interelectrode distance was 1 cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD{sub 5}) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600 mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15 min), and the removal rate reaches 95%.

  18. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique

    International Nuclear Information System (INIS)

    Merzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Chibane, M.

    2009-01-01

    The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C 0 ), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity (κ) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5 mA/cm 2 ) and various interelectrode distance (1, 2 and 3 cm). For solutions with 300 mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55 mA/cm 2 , initial pH was 7.6, conductivity was 2.1 mS/cm, duration of treatment was 10 min and interelectrode distance was 1 cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD 5 ) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600 mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15 min), and the removal rate reaches 95%

  19. Tidal variations of flow convergence, shear, and stratification at the Rio de la Plata estuary turbidity front

    Science.gov (United States)

    FramiñAn, Mariana B.; Valle-Levinson, Arnoldo; Sepúlveda, HéCtor H.; Brown, Otis B.

    2008-08-01

    Intratidal variability of density and velocity fields is investigated at the turbidity front of the Río de la Plata Estuary, South America. Current velocity and temperature-salinity profiles collected in August 1999 along a repeated transect crossing the front are analyzed. Horizontal and vertical gradients, stability of the front, convergence zones, and transverse flow associated to the frontal boundary are described. Strong horizontal convergence of the across-front velocity and build up of along-front velocity shear were observed at the front. In the proximity of the front, enhanced transverse (or along-front) flow created jet-like structures at the surface and near the bottom flowing in opposite directions. These structures persisted throughout the tidal cycle and were advected upstream (downstream) by the flood (ebb) current through a distance of ˜10 km. During peak flood, the upper layer flow reversed from its predominant downstream direction and upstreamflow occupied the entire water column; outside the peak flood, two-layer estuarine circulation dominated. Changes in density field were observed in response to tidal straining, tidal advection, and wind-induced mixing, but stratification remained throughout the tidal cycle. This work demonstrates the large spatial variability of the velocity field at the turbidity front; it provides evidence of enhanced transverse circulation along the frontal boundary; and reveals the importance of advective and frictional intratidal processes in the dynamics of the central part of the estuary.

  20. Solid phase extraction of large volume of water and beverage samples to improve detection limits for GC-MS analysis of bisphenol A and four other bisphenols.

    Science.gov (United States)

    Cao, Xu-Liang; Popovic, Svetlana

    2018-01-01

    Solid phase extraction (SPE) of large volumes of water and beverage products was investigated for the GC-MS analysis of bisphenol A (BPA), bisphenol AF (BPAF), bisphenol F (BPF), bisphenol E (BPE), and bisphenol B (BPB). While absolute recoveries of the method were improved for water and some beverage products (e.g. diet cola, iced tea), breakthrough may also have occurred during SPE of 200 mL of other beverages (e.g. BPF in cola). Improvements in method detection limits were observed with the analysis of large sample volumes for all bisphenols at ppt (pg/g) to sub-ppt levels. This improvement was found to be proportional to sample volumes for water and beverage products with less interferences and noise levels around the analytes. Matrix effects and interferences were observed during SPE of larger volumes (100 and 200 mL) of the beverage products, and affected the accurate analysis of BPF. This improved method was used to analyse bisphenols in various beverage samples, and only BPA was detected, with levels ranging from 0.022 to 0.030 ng/g for products in PET bottles, and 0.085 to 0.32 ng/g for products in cans.

  1. A measurement of the efficiency for the detection of neutrons in the momentum range 200 to 3200 MeV/c, in large volume liquid scintillation counters

    International Nuclear Information System (INIS)

    Brown, R.M.; Clark, A.G.; Duke, P.J.

    1976-04-01

    A description is given of a system of 194 large volume liquid scintillation counters designed to detect neutrons in an experiment on the reaction π - p → π 0 n in the resonance region. The detection efficiency of the system has been determined, as a function of neutron momentum, in three separate measurements, covering the range 200 to 3200 MeV/c. Below 400 MeV/c the efficiency shows the expected momentum dependence near threshold, rising to a maximum of 50% near 300 MeV/c and then falling to 43% near 400 MeV/c. In the region 400 to 700 MeV/c the efficiency rises to 47% near 600 MeV/c and falls again to 43%, an effect not seen before; the efficiency was expected to be almost momentum independent in this region. Above the threshold for inelastic processes in nucleon-nucleon collision (approximately 800 MeV/c) the efficiency rises significantly reaching a maximum value of 65% above 1700 MeV/c. (author)

  2. Highly selective solid-phase extraction and large volume injection for the robust gas chromatography-mass spectrometric analysis of TCA and TBA in wines.

    Science.gov (United States)

    Insa, S; Anticó, E; Ferreira, V

    2005-09-30

    A reliable solid-phase extraction (SPE) method for the simultaneous determination of 2,4,6-trichloroanisole (TCA) and 2,4,6-tribromoanisole (TBA) in wines has been developed. In the proposed procedure 50 mL of wine are extracted in a 1 mL cartridge filled with 50 mg of LiChrolut EN resins. Most wine volatiles are washed up with 12.5 mL of a water:methanol solution (70%, v/v) containing 1% of NaHCO3. Analytes are further eluted with 0.6 mL of dichloromethane. A 40 microL aliquot of this extract is directly injected into a PTV injector operated in the solvent split mode, and analysed by gas chromatography (GC)-ion trap mass spectrometry using the selected ion storage mode. The solid-phase extraction, including sample volume and rinsing and elution solvents, and the large volume GC injection have been carefully evaluated and optimized. The resulting method is precise (RSD (%) TBA, respectively), robust (the absolute recoveries of both analytes are higher than 80% and consistent wine to wine) and friendly to the GC-MS system (the extract is clean, simple and free from non-volatiles).

  3. Use of nitrogen to remove solvent from through oven transfer adsorption desorption interface during analysis of polycyclic aromatic hydrocarbons by large volume injection in gas chromatography.

    Science.gov (United States)

    Áragón, Alvaro; Toledano, Rosa M; Cortés, José M; Vázquez, Ana M; Villén, Jesús

    2014-04-25

    The through oven transfer adsorption desorption (TOTAD) interface allows large volume injection (LVI) in gas chromatography and the on-line coupling of liquid chromatography and gas chromatography (LC-GC), enabling the LC step to be carried out in normal as well as in reversed phase. However, large amounts of helium, which is both expensive and scarce, are necessary for solvent elimination. We describe how slight modification of the interface and the operating mode allows nitrogen to be used during the solvent elimination steps. In order to evaluate the performance of the new system, volumes ranging from 20 to 100μL of methanolic solutions of four polycyclic aromatic hydrocarbons (PAHs) were sampled. No significant differences were found in the repeatability and sensitivity of the analyses of standard PAH solutions when using nitrogen or helium. The performance using the proposed modification was similar and equally satisfactory when using nitrogen or helium for solvent elimination in the TOTAD interface. In conclusion, the use of nitrogen will make analyses less expensive. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Determination of tributyltin in environmental water matrices using stir bar sorptive extraction with in-situ derivatisation and large volume injection-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Neng, N R; Santalla, R P; Nogueira, J M F

    2014-08-01

    Stir bar sorptive extraction with in-situ derivatization using sodium tetrahydridoborate (NaBH4) followed by liquid desorption and large volume injection-gas chromatography-mass spectrometry detection under the selected ion monitoring mode (SBSE(NaBH4)in-situ-LD/LVI-GC-MS(SIM)) was successfully developed for the determination of tributyltin (TBT) in environmental water matrices. NaBH4 proved to be an effective and easy in-situ speciation agent for TBT in aqueous media, allowing the formation of adducts with enough stability and suitable polarity for SBSE analysis. Assays performed on water samples spiked at the 10.0μg/L, yielded convenient recoveries (68.2±3.0%), showed good accuracy, suitable precision (RSD<9.0%), low detection limits (23ng/L) and excellent linear dynamic range (r(2)=0.9999) from 0.1 to 170.0µg/L, under optimized experimental conditions. By using the standard addition method, the application of the present methodology to real surface water samples allowed very good performance at the trace level. The proposed methodology proved to be a feasible alternative for routine quality control analysis, easy to implement, reliable and sensitive to monitor TBT in environmental water matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. High-sensitivity direct analysis of aflatoxins in peanuts and cereal matrices by ultra-performance liquid chromatography with fluorescence detection involving a large volume flow cell.

    Science.gov (United States)

    Oulkar, Dasharath; Goon, Arnab; Dhanshetty, Manisha; Khan, Zareen; Satav, Sagar; Banerjee, Kaushik

    2018-04-03

    This paper reports a sensitive and cost effective method of analysis for aflatoxins B1, B2, G1 and G2. The sample preparation method was primarily optimised in peanuts, followed by its validation in a range of peanut-processed products and cereal (rice, corn, millets) matrices. Peanut slurry [12.5 g peanut + 12.5 mL water] was extracted with methanol: water (8:2, 100 mL), cleaned through an immunoaffinity column and thereafter measured directly by ultra-performance liquid chromatography-fluorescence (UPLC-FLD) detection, within a chromatographic runtime of 5 minutes. The use of a large volume flow cell in the FLD nullified the requirement of any post-column derivatisation and provided the lowest ever reported limits of quantification of 0.025 for B1 and G1 and 0.01 μg/kg for B2 and G2. The single laboratory validation of the method provided acceptable selectivity, linearity, recovery and precision for reliable quantifications in all the test matrices as well as demonstrated compliance with the EC 401/2006 guidelines for analytical quality control of aflatoxins in foodstuffs.

  6. The design and performance of a large-volume spherical CsI(Tl) scintillation counter for gamma-ray spectroscopy

    CERN Document Server

    Meng, L J; Chirkin, V M; Potapov, V N; Ivanov, O P; Ignatov, S M

    2002-01-01

    This paper presents details of the design and performance of a prototype large-volume scintillation detector used for gamma-ray spectroscopy. In this detector, a spherical CsI(Tl) scintillation crystal having a diameter of 5.7 cm was polished and packed in dry MgO powder. The scintillation light from the crystal was viewed using a single 1x1 cm sup 2 silicon PIN diode. A low-noise preamplifier was also integrated within the detector housing. The measured noise level was equivalent to approx 800 electrons (FWHM). Such a configuration provided a very good light collection efficiency, which resulted in an average of 20 electrons being generated per keV of energy deposited in the crystal. One of the key features of the detector design is that it minimises spatial variations in the light collection efficiency throughout the detector. Compared with a standard 3 in. NaI scintillation counter, this feature leads to a much-improved energy resolution, particularly for photon energies above 1 MeV. The results presented ...

  7. Water pollution screening by large-volume injection of aqueous samples and application to GC/MS analysis of a river Elbe sample

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S.; Efer, J.; Engewald, W. [Leipzig Univ. (Germany). Inst. fuer Analytische Chemie

    1997-03-01

    The large-volume sampling of aqueous samples in a programmed temperature vaporizer (PTV) injector was used successfully for the target and non-target analysis of real samples. In this still rarely applied method, e.g., 1 mL of the water sample to be analyzed is slowly injected direct into the PTV. The vaporized water is eliminated through the split vent. The analytes are concentrated onto an adsorbent inside the insert and subsequently thermally desorbed. The capability of the method is demonstrated using a sample from the river Elbe. By means of coupling this method with a mass selective detector in SIM mode (target analysis) the method allows the determination of pollutants in the concentration range up to 0.01 {mu}g/L. Furthermore, PTV enrichment is an effective and time-saving method for non-target analysis in SCAN mode. In a sample from the river Elbe over 20 compounds were identified. (orig.) With 3 figs., 2 tabs.

  8. Large-volume multi-tined expandable RF ablation in pig livers: comparison of 2D and volumetric measurements of the ablation zone

    International Nuclear Information System (INIS)

    Bangard, Christopher; Roesgen, Silvia; Lackner, Klaus J.; Wahba, Roger; Stippel, Dirk L.; Wiemker, Rafael; Hellmich, Martin; Reiter, Hannah; Fischer, Juergen H.

    2010-01-01

    To compare two-dimensional (2D) and three-dimensional (3D) computed tomography (CT) measurements of ablation zones (AZs) related to the shaft of two different large-volume monopolar multi-tined expandable electrodes. Percutaneous radiofrequency (RF) ablation was performed in 12 pigs (81.6±7.8 kg) using two electrodes (LeVeen 5 cm, Rita XL 5 cm; n=6 in each group). Contrast-enhanced CT with the electrode shaft in place evaluated the AZ. The largest sphere centred on the electrode shaft within the AZ was calculated (1) based on the 2D axial CT image in the plane of the shaft assuming rotational symmetry of the AZ and (2) using prototype software and the 3D volume data of the AZ measured with CT. The mean largest diameter of a sphere centred on the electrode shaft was always smaller using the 3D data of the AZ than using 2D CT measurements assuming rotational symmetry of the AZ (3D vs 2D): LeVeen 18.2±4.8 mm; 24.5 ±3.1 mm; p=0.001; Rita XL 20.0±3.7 mm; 28.8±4.9 mm; p=0.0002. All AZ showed indentations around the tines. Two-dimensional CT measurements assuming rotational symmetry of the AZ overestimate the largest ablated sphere centred on the electrode shaft compared with 3D CT measurements. (orig.)

  9. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis.

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-05

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of NaOH on large-volume sample stacking of haloacetic acids in capillary zone electrophoresis with a low-pH buffer.

    Science.gov (United States)

    Tu, Chuanhong; Zhu, Lingyan; Ang, Chay Hoon; Lee, Hian Kee

    2003-06-01

    Large-volume sample stacking (LVSS) is an effective on-capillary sample concentration method in capillary zone electrophoresis, which can be applied to the sample in a low-conductivity matrix. NaOH solution is commonly used to back-extract acidic compounds from organic solvent in sample pretreatment. The effect of NaOH as sample matrix on LVSS of haloacetic acids was investigated in this study. It was found that the presence of NaOH in sample did not compromise, but rather help the sample stacking performance if a low pH background electrolyte (BGE) was used. The sensitivity enhancement factor was higher than the case when sample was dissolved in pure water or diluted BGE. Compared with conventional injection (0.4% capillary volume), 97-120-fold sensitivity enhancement in terms of peak height was obtained without deterioration of separation with an injection amount equal to 20% of the capillary volume. This method was applied to determine haloacetic acids in tap water by combination with liquid-liquid extraction and back-extraction into NaOH solution. Limits of detection at sub-ppb levels were obtained for real samples with direct UV detection.

  11. Towards Large Volume Big Divisor D3-D7 "mu-Split Supersymmetry" and Ricci-Flat Swiss-Cheese Metrics, and Dimension-Six Neutrino Mass Operators

    CERN Document Server

    Dhuria, Mansi

    2012-01-01

    We show that it is possible to realize a "mu-split SUSY" scenario [1] in the context of large volume limit of type IIB compactifications on Swiss-Cheese Calabi-Yau's in the presence of a mobile space-time filling D3-brane and a (stack of) D7-brane(s) wrapping the "big" divisor Sigma_B. For this, we investigate the possibility of getting one Higgs to be light while other to be heavy in addition to a heavy Higgsino mass parameter. Further, we examine the existence of long lived gluino that manifests one of the major consequences of mu-split SUSY scenario, by computing its decay width as well as lifetime corresponding to the 3-body decays of the gluino into a quark, a squark and a neutralino or Goldstino, as well as 2-body decays of the gluino into either a neutralino or a Goldstino and a gluon. Guided by the geometric Kaehler potential for Sigma_B obtained in [2] based on GLSM techniques, and the Donaldson's algorithm [3] for obtaining numerically a Ricci-flat metric, we give details of our calculation in [4] p...

  12. Impact of different metal turbidities on radiolytic hydrogen generation in nuclear power plants

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Belapurkar, A.D.; Venkateswaran, G.; Kishore, K.

    2005-01-01

    Radiolytic hydrogen generation on γ irradiation of turbid solutions containing metal turbidities such as titanium, nickel, iron, chromium, copper, indium, and aluminium was studied. It is suggested that the chemical reactivity of the metal in the turbid solution with e aq -/H/OH produced by radiolysis of water interferes with the recombination reactions which destroy H 2 and H 2 O 2 , thus leading to higher yield of hydrogen. The rate of generation of hydrogen and the G(H 2 ) value is related to the reactivity of the metal ion/hydroxylated species with the free radicals. (orig.)

  13. Turbidity as an Indicator of Water Quality in Diverse Watersheds of the Upper Pecos River Basin

    Directory of Open Access Journals (Sweden)

    Gregory M. Huey

    2010-06-01

    Full Text Available Microbial concentrations, total suspended solids (TSS and turbidity vary with stream hydrology and land use. Turbidity, TSS, and microbial concentrations, loads and yields from four watersheds were assessed: an unburned montane forest, a catastrophically burned montane forest, urban land use and rangeland prairie. Concentrations and loads for most water quality variables were greatest during storm events. Turbidity was an effective indicator of TSS, E. coli and Enterococci spp. The greatest threat to public health from microbial contamination occurs during storm runoff events. Efforts to manage surface runoff and erosion would likely improve water quality of the upper Pecos River basin in New Mexico, USA.

  14. Bioremediation of Turbid Surface Water Using Seed Extract from the Moringa oleifera Lam. (Drumstick) Tree.

    Science.gov (United States)

    Lea, Michael

    2014-05-01

    An indigenous water treatment method uses Moringa oleifera seeds in the form of a crude water-soluble extract in suspension, resulting in an effective natural clarification agent for highly turbid and untreated pathogenic surface water. Efficient reduction (80.0% to 99.5%) of high turbidity produces an aesthetically clear supernatant, concurrently accompanied by 90.00% to 99.99% (1 to 4 log) bacterial reduction. Application of this low-cost Moringa oleifera protocol is recommended for water treatment where rural and peri-urban people living in extreme poverty are presently drinking highly turbid and microbiologically contaminated water. Copyright © 2014 John Wiley & Sons, Inc.

  15. Spatial and temporal variation in suspended sediment, organic matter, and turbidity in a Minnesota prairie river: implications for TMDLs.

    Science.gov (United States)

    Lenhart, Christian F; Brooks, Kenneth N; Heneley, Daniel; Magner, Joseph A

    2010-06-01

    The Minnesota River Basin (MRB), situated in the prairie pothole region of the Upper Midwest, contributes excessive sediment and nutrient loads to the Upper Mississippi River. Over 330 stream channels in the MRB are listed as impaired by the Minnesota Pollution Control Agency, with turbidity levels exceeding water quality standards in much of the basin. Addressing turbidity impairment requires an understanding of pollutant sources that drive turbidity, which was the focus of this study. Suspended volatile solids (SVS), total suspended solids (TSS), and turbidity were measured over two sampling seasons at ten monitoring stations in Elm Creek, a turbidity impaired tributary in the MRB. Turbidity levels exceeded the Minnesota standard of 25 nephelometric units in 73% of Elm Creek samples. Turbidity and TSS were correlated (r (2) = 0.76), yet they varied with discharge and season. High levels of turbidity occurred during periods of high stream flow (May-June) because of excessive suspended inorganic sediment from watershed runoff, stream bank, and channel contributions. Both turbidity and TSS increased exponentially downstream with increasing stream power, bank height, and bluff erosion. However, organic matter discharged from wetlands and eutrophic lakes elevated SVS levels and stream turbidity in late summer when flows were low. SVS concentrations reached maxima at lake outlets (50 mg/l) in August. Relying on turbidity measurements alone fails to identify the cause of water quality impairment whether from suspended inorganic sediment or organic matter. Therefore, developing mitigation measures requires monitoring of both TSS and SVS from upstream to downstream reaches.

  16. The effect of submerged aquatic vegetation expansion on a declining turbidity trend in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Hestir, E.L.; Schoellhamer, David H.; Jonathan Greenberg,; Morgan-King, Tara L.; Ustin, S.L.

    2016-01-01

    Submerged aquatic vegetation (SAV) has well-documented effects on water clarity. SAV beds can slow water movement and reduce bed shear stress, promoting sedimentation and reducing suspension. However, estuaries have multiple controls on turbidity that make it difficult to determine the effect of SAV on water clarity. In this study, we investigated the effect of primarily invasive SAV expansion on a concomitant decline in turbidity in the Sacramento-San Joaquin River Delta. The objective of this study was to separate the effects of decreasing sediment supply from the watershed from increasing SAV cover to determine the effect of SAV on the declining turbidity trend. SAV cover was determined by airborne hyperspectral remote sensing and turbidity data from long-term monitoring records. The turbidity trends were corrected for the declining sediment supply using suspended-sediment concentration data from a station immediately upstream of the Delta. We found a significant negative trend in turbidity from 1975 to 2008, and when we removed the sediment supply signal from the trend it was still significant and negative, indicating that a factor other than sediment supply was responsible for part of the turbidity decline. Turbidity monitoring stations with high rates of SAV expansion had steeper and more significant turbidity trends than those with low SAV cover. Our findings suggest that SAV is an important (but not sole) factor in the turbidity decline, and we estimate that 21–70 % of the total declining turbidity trend is due to SAV expansion.

  17. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data

    Science.gov (United States)

    Doxaran, David; Froidefond, Jean-Marie; Castaing, Patrice; Babin, Marcel

    2009-02-01

    Over a 1-year period, field and satellite measurements of surface water turbidity were combined in order to study the dynamics of the turbidity maximum zone (TM) in a macrotidal estuary (the Gironde, France). Four fixed platforms equipped with turbidity sensors calibrated to give the suspended particulate matter (SPM) concentration provided continuous information in the upper estuary. Full resolution data recorded by the moderate resolution imaging spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellite platforms provided information in the central and lower estuary twice a day (depending on cloud cover). Field data were used to validate a recently developed SPM quantification algorithm applied to the MODIS 'surface reflectance' product. The algorithm is based on a relationship between the SPM concentration and a reflectance ratio of MODIS bands 2 (near-infrared) and 1 (red). Based on 62 and 75 match-ups identified in 2005 with MODIS Terra and Aqua data, the relative uncertainty of the algorithm applied to these sensors was found to be 22 and 18%, respectively. Field measurements showed the tidal variations of turbidity in the upper estuary, while monthly-averaged MODIS satellite data complemented by field data allowed observing the monthly movements of the TM in the whole estuary. The trapping of fine sediments occurred in the upper estuary during the period of low river flow. This resulted in the formation of a highly concentrated TM during a 4-month period. With increasing river flow, the TM moved rapidly to the central estuary. A part of the TM detached, moved progressively in the lower estuary and was finally either massively exported to the ocean during peak floods or temporary trapped (settled) on intertidal mudflats. The massive export to the ocean was apparently the result of combined favorable environmental conditions: presence of fluid mud near the mouth, high river flow, high tides and limited wind speeds. The mean SPM concentration

  18. Navigation by light polarization in clear and turbid waters

    Science.gov (United States)

    Lerner, Amit; Sabbah, Shai; Erlick, Carynelisa; Shashar, Nadav

    2011-01-01

    Certain terrestrial animals use sky polarization for navigation. Certain aquatic species have also been shown to orient according to a polarization stimulus, but the correlation between underwater polarization and Sun position and hence the ability to use underwater polarization as a compass for navigation is still under debate. To examine this issue, we use theoretical equations for per cent polarization and electric vector (e-vector) orientation that account for the position of the Sun, refraction at the air–water interface and Rayleigh single scattering. The polarization patterns predicted by these theoretical equations are compared with measurements conducted in clear and semi-turbid coastal sea waters at 2 m and 5 m depth over sea floors of 6 m and 28 m depth. We find that the per cent polarization is correlated with the Sun's elevation only in clear waters. We furthermore find that the maximum value of the e-vector orientation angle equals the angle of refraction only in clear waters, in the horizontal viewing direction, over the deeper sea floor. We conclude that navigation by use of underwater polarization is possible under restricted conditions, i.e. in clear waters, primarily near the horizontal viewing direction, and in locations where the sea floor has limited effects on the light's polarization. PMID:21282170

  19. Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Mahannah, R. N.; Edwards, T. B.

    2013-01-01

    Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards

  20. Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mahannah, R. N.; Edwards, T. B.

    2013-01-15

    Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards

  1. Enhancing the numerical aperture of lenses using ZnO nanostructure-based turbid media

    International Nuclear Information System (INIS)

    Khokhra, Richa; Barman, Partha Bir; Kumar, Rajesh; Kumar, Manoj; Rawat, Nitin; Jang, Hwanchol; Lee, Heung-No

    2013-01-01

    Nanosheets, nanoparticles, and microstructures of ZnO were synthesized via a wet chemical method. ZnO films with a thickness of 44–46 μm were fabricated by spray coating, and these have been investigated for their potential use in turbid lens applications. A morphology-dependent comparative study of the transmittance of ZnO turbid films was conducted. Furthermore, these ZnO turbid films were used to enhance the numerical aperture (NA) of a Nikon objective lens. The variation in NA with different morphologies was explained using size-dependent scattering by the fabricated films. A maximum NA of around 1.971 of the objective lens with a turbid film of ZnO nanosheets was achieved. (paper)

  2. Determination atmospheric conditions by evaluating clearness index, turbidity and brightness of the sky

    International Nuclear Information System (INIS)

    Kandilli, C.

    2005-01-01

    There are fifteen different sky types which range from totally overcast sky to low turbidity clear sky have been defined by CIE (International Commission on Illumination). For the applications of solar energy engineering and day lighting purposes, it has a great importance to determine the physical characteristics of atmosphere and the sky type. The most important parameters which define the sky type are clearness index, turbidity and brightness. In this study, the parameters of clearness index, turbidity and brightness of the sky belong to Izmir was calculated and their relations with solar radiation and its components were represented according to 10 years data (1994-2004) of meteorology station of Ege University Solar Energy Institute. In this study, clearness index, turbidity, sky clearness and brightness were evaluated to put forward the effects of the these parameters on the atmospheric condition for designing and engineering purposes

  3. Survival of Poliovirus in Flowing Turbid Seawater Treated with Ultraviolet Light

    Science.gov (United States)

    Hill, W. F.; Hamblet, F. E.; Akin, E. W.

    1967-01-01

    The effectiveness of a model ultraviolet (UV) radiation unit for treating flowing turbid seawater contaminated with poliovirus was determined. At a turbidity of 70 ppm, the observed survival ratios ranged from 1.9 × 10-3 (99.81% reduction) to 1.5 × 10-4 (99.98% reduction) at flow rates ranging from 25 to 15 liters/min; no virus was recovered at flow rates of 10 and 5 liters/min. At a turbidity of 240 ppm, the observed survival ratios ranged from 3.2 × 10-2 (96.80% reduction) to 2.1 × 10-4 (99.98% reduction) at flow rates ranging from 25 to 5 liters/min. As expected, turbidity had an adverse influence on the effectiveness of UV radiation; however, by adjusting the flow rate of the seawater through the treatment unit, adequate disinfection was shown to be predictable. Images Fig. 1 PMID:4291955

  4. IMPACT OF TURBIDITY ON TCE AND DEGRADATION PRODUCTS IN GROUND WATER

    Science.gov (United States)

    Elevated particulate concentrations in ground water samples can bias contaminant concentration data. This has been particularly problematic for metal analyses where artificially increased turbidity levels can affect metals concentrations and confound interpretation of the data. H...

  5. Experimental determination of the boundary condition for diffuse photons in a homogeneous turbid medium

    International Nuclear Information System (INIS)

    Everitt, David L.; Zhu, Tuo; Zhu, H.-M.; Zhu, X. D.

    2000-01-01

    We present a simple experimental method that permits an empirical determination of the effective boundary condition and the extrapolated end point for the diffuse photon density in a homogeneous turbid medium. (c) 2000 Optical Society of America

  6. Turbidity of the atmospheric and water at the major ports of India

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Rodrigues, A.; Ramdasan, K.

    The atmospheric and water turbidity observed at nine major ports of India, namely Cochin, Mangalore, Mormugao, Mumbai, Jawaharlal Nehru (JNP), Kandla on the west coast and Tuticorin, Chennai and Visakhapatnam on the east coast, using the parameters...

  7. Light diffusion in N-layered turbid media: steady-state domain.

    Science.gov (United States)

    Liemert, André; Kienle, Alwin

    2010-01-01

    We deal with light diffusion in N-layered turbid media. The steady-state diffusion equation is solved for N-layered turbid media having a finite or an infinitely thick N'th layer. Different refractive indices are considered in the layers. The Fourier transform formalism is applied to derive analytical solutions of the fluence rate in Fourier space. The inverse Fourier transform is calculated using four different methods to test their performance and accuracy. Further, to avoid numerical errors, approximate formulas in Fourier space are derived. Fast solutions for calculation of the spatially resolved reflectance and transmittance from the N-layered turbid media ( approximately 10 ms) with small relative differences (<10(-7)) are found. Additionally, the solutions of the diffusion equation are compared to Monte Carlo simulations for turbid media having up to 20 layers.

  8. Grand Composite Raster Images of Turbidity in the Gulf of Maine for Stellwagen Bank NMS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This personal geodatabase contains raster images of turbidity in the Gulf of Maine. These raster images are a composite of several years (1997-2005) binned by season...

  9. Turbidity-induced changes in feeding strategies of fish in estuaries

    African Journals Online (AJOL)

    1991-11-12

    Nov 12, 1991 ... in hatching success (Rosenthal & Alderdice 1976), egg sur- .... ther turbidity reduces feeding rate and thirdly whether turbi- dity reduces the reactive ...... composition and suspended sediment on insect predation by the torrent ...

  10. Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy

    NARCIS (Netherlands)

    Amelink, Arjen; Kruijt, Bastiaan; Robinson, Dominic J.; Sterenborg, Henricus J. C. M.

    2008-01-01

    We have developed a new technique, fluorescence differential path length spectroscopy (FDPS), that enables the quantitative investigation of fluorophores in turbid media. FDPS measurements are made with the same probe geometry as differential path length spectroscopy (DPS) measurements. Phantom

  11. Experimental evidence of an effective medium seen by diffuse light in turbid colloids

    International Nuclear Information System (INIS)

    Contreras-Tello, H; Garcia-Valenzuela, A

    2011-01-01

    The propagation of diffuse light in turbid media is usually modeled with radiative transfer theory. When diffuse light travelling in a turbid colloid is reflected and transmitted at a flat interface where there is a refractive index mismatch, it is not clear whether one should assume the incident diffuse-light is travelling in a medium with a refractive index equal to that of the background medium (usually referred to as the matrix) or if one should assume it travels in an effective medium. Most authors simply avoid this issue and most often use the refractive index of the matrix. While this might be a good approximation for dilute turbid media one may suspect that for highly scattering materials it may not be the case. In this work we investigate experimentally this issue. Our experimental results provide clear evidence that diffuse light inside the turbid colloid travels in an effective medium and not in the matrix.

  12. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging

    Science.gov (United States)

    Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.

    2012-01-01

    By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at

  13. Process-based modelling of turbidity-current hydrodynamics and sedimentation

    NARCIS (Netherlands)

    Groenenberg, R.M.

    2007-01-01

    The production potential of deep-water reservoirs is primarily determined by rock bulk volume, porosity and permeability. Quantification of the geometry and spatial distribution of reservoir sands in deep-water deposits can provide crucial information to assess sand body volume, connectivity and the

  14. The stratigraphic record and processes of turbidity current transformation across deep-marine lobes

    NARCIS (Netherlands)

    Kane, Ian A.; Ponten, Anna; Vangdal, Brita; Eggenhuisen, Joris|info:eu-repo/dai/nl/322850274; Hodgson, David M.; Spychala, Yvonne T.|info:eu-repo/dai/nl/411435019

    Sedimentary facies in the distal parts of deep-marine lobes can diverge significantly from those predicted by classical turbidite models, and sedimentological processes in these environments are poorly understood. This gap may be bridged using outcrop studies and theoretical models. In the

  15. Welded slump-graded sand couplets: evidence for slide generated turbidity currents

    Science.gov (United States)

    Stanley, Daniel Jean

    1982-09-01

    Some massive channelized strata preserved in the rock record are characterized by a lower slump member which evolves upward to a turbidite. This merging is indicative of probable generation of sediment gravity flows from submarine sliding. Conditions essential for deposition of such sequences are short transport distance between point of failure and depositional site, and an environment likely to retain both facies. Fan valleys are a likely setting for welded couplets: flowing sand, initiated by the sliding event, comes to rest at nearly the same time and position as the slump mass deposited near the base of the valley wall and in the axis proper.

  16. Morphological elements of the Lofoten Basin Channel - implications for the properties of the latest turbidity currents

    Science.gov (United States)

    Laberg, J. S.; Forwick, M.; Johannesen, H. B.; Ivanov, M.; Kenyon, N. H.; Vorren, T. O.

    2009-04-01

    A modern turbidite system, the Andøya Canyon - Lofoten Basin Channel and associated deposits, is located on the continental margin offshore northern Norway (Laberg et al., 2005; 2007). Based on swath bathymetry, side-scan sonar records, and high-resolution seismic data, the Lofoten Basin Channel can be followed from the mouth of the canyon at the base of the continental slope into the abyssal plain of the Lofoten Basin. The proximal part of the channel is a straight erosional feature, up to 30 m deep and about 3 km wide with poorly developed levees. Coring retrieved sandy turbidites deposited both on the channel floor and on its levees. Thus, some of the most recent flows were sandy, up to 3 km wide and more than 30 m high in order to overspill the channel. About 50 km off the mouth of the Andøya Canyon, the Lofoten Basin Channel joins with another channel entering from the northeast. Beyond there is a complex sea floor morphology including one main channel, several smaller channels and various erosional features. The main channel terminates 20 - 30 km to the southwest. Further into the basin an elongated, positive lobe-formed deposit is located. In front of it part of an older, smaller lobe is seen. The main channel is continuing into the deepest part of the Lofoten Basin where it terminates at about 3200 m water depth. About 20 - 25 km from its termination the channel splits into several smaller (up to 500 m wide and 10 - 30 m high), meandering channels. The inter-channel areas are dominated by down-flow elongated scour marks, some located near and in parallel with the channels. These were probably formed by smaller flows confined by the meandering channels. Other scour marks are oriented parallel to the overall flow direction and were probably formed by larger unconfined flows that overtopped and moved independently of the meandering channels. The latter may have been up to an order of magnitude wider and higher compared to the confined flows. A depositional lobe is located beyond the mouth of the meandering channels. Its areal extent is yet unknown. High-resolution sub-bottom profiler records show units of some meter thickness that can be followed for several tens of kilometres. They are separated by continuous to slightly discontinuous medium to high amplitude reflections. Recent coring has identified up to 4 m thick intervals of sand between units of mud. Acknowledgement This work is a contribution to the UNESCO Training Through Research (TTR) program (http://ioc.unesco.org/ttr/) and the Democen project (http://www.ig.uit.no/Democen/). Financial support from the Research Council of Norway and StatoilHydro is greatly acknowledged. References Laberg, J.S., Vorren, T.O., Kenyon, N.H., Ivanov, M., Andersen, E.S. 2005. A modern canyon-fed sandy turbidite system of the Norwegian continental margin. Norwegian Journal of Geology 85, 267-277. Laberg, J.S., Guidard, S., Mienert, J., Vorren, T.O., Haflidason, H., Nygård, A. 2007. Morphology and morphogenesis of a high-latitude canyon; the Andøya Canyon, Norwegian Sea. Marine Geology 246, 68-85.

  17. Historical land-use influences the long-term stream turbidity response to a wildfire.

    Science.gov (United States)

    Harrison, Evan T; Dyer, Fiona; Wright, Daniel W; Levings, Chris

    2014-02-01

    Wildfires commonly result in an increase in stream turbidity. However, the influence of pre-fire land-use practices on post-fire stream turbidity is not well understood. The Lower Cotter Catchment (LCC) in south-eastern Australia is part of the main water supply catchment for Canberra with land in the catchment historically managed for a mix of conservation (native eucalypt forest) and pine (Pinus radiata) plantation. In January 2003, wildfires burned almost all of the native and pine forests in the LCC. A study was established in 2005 to determine stream post-fire turbidity recovery within the native and pine forest areas of the catchment. Turbidity data loggers were deployed in two creeks within burned native forest and burned pine forest areas to determine turbidity response to fire in these areas. As a part of the study, we also determined changes in bare soil in the native and pine forest areas since the fire. The results suggest that the time, it takes turbidity levels to decrease following wildfire, is dependent upon the preceding land-use. In the LCC, turbidity levels decreased more rapidly in areas previously with native vegetation compared to areas which were previously used for pine forestry. This is likely because of a higher percentage of bare soil areas for a longer period of time in the ex-pine forest estate and instream stores of fine sediment from catchment erosion during post-fire storm events. The results of our study show that the previous land-use may exert considerable control over on-going turbidity levels following a wildfire.

  18. The association between drinking water turbidity and gastrointestinal illness: a systematic review.

    OpenAIRE

    Mann, AG; Tam, CC; Higgins, CD; Rodrigues, LC

    2007-01-01

    Abstract Background Studies suggest that routine variations in public drinking water turbidity may be associated with endemic gastrointestinal illness. We systematically reviewed the literature on this topic. Methods We searched databases and websites for relevant studies in industrialized countries. Studies investigating the association between temporal variations in drinking water turbidity and incidence of acute gastrointestinal illness were assessed for quality. We reviewed good quality s...

  19. Diel turbidity cycles in a headwater stream: evidence of nocturnal bioturbation?

    OpenAIRE

    Cooper, Richard J.; Outram, Faye; Hiscock, Kevin M.

    2016-01-01

    Purpose: A small number of recent studies have linked daily cycles in stream turbidity to nocturnal bioturbation by aquatic fauna, principally crayfish, and demonstrated this process can significantly impact upon water quality under baseflow conditions. Adding to this limited body of research, we use high-resolution water quality monitoring data to investigate evidence of diel turbidity cycles in a lowland, headwater stream with a known signal crayfish (Pacifastacus leniusculus) population an...

  20. Report Task 2.3: Particulate waste and turbidity in (marine) RAS

    OpenAIRE

    Kals, J.; Schram, E.; Brummelhuis, E.B.M.; Bakel, van, B.

    2006-01-01

    Particulate waste management and removal is one of the most problematic parts of recirculation aquaculture systems (RAS). Particulate waste and thereby turbidity originates from three major sources: fish (faeces), feed and biofilm (heterotrophic bacteria and fungi). Based on size and density there are roughly four categories of particulate waste: settable, suspended, floatable and fine or dissolved solids. Specific problems related to high turbidity are a decreasing feed intake by fish, causi...

  1. Removal of colour, turbidity, oil and grease for slaughterhouse wastewater using electrocoagulation method

    Science.gov (United States)

    Yusoff, Mohd Suffian; Azwan, Azlyza Mohd; Zamri, Mohd Faiz Muaz Ahmad; Aziz, Hamidi Abdul

    2017-10-01

    In this study electrocoagulation method is used to treat slaughterhouse wastewaters. The aim of this study is to determine the efficiency of electrocoagulation method for the removal of colour, turbidity, oil and grease of slaughterhouse wastewaters. The factors of electrode types, and voltage applied during treatment are the study parameters. The types of electrode used are Aluminium (Al) grade 6082 and Iron (Fe) grade 1050. Meanwhile, the ranges of voltage applied are 2, 4, 6, 8 volts at a time interval of 10, 20 and 30 minutes respectively. The effect of these factors on the removal of fat oil and grease (FOG), colour and turbidity are analyzed. The results show maximum removal of FOG, colour and turbidity are recorded using Fe electrode at 8 V of applied voltage with 30 minutes of treatment time. The increase in treatment time of the cell will also increase the amount of hydrogen bubbles at the cathode which results in a greater upwards flux and a faster removal of FOG,, turbidity and colour. The removal of FOG, colour and turbidity are 98%, 92% and 91 % respectively. Meanwhile, by using Al electrodes in the same condition, the removal of FOG, colour and turbidity are 91%, 85% and 87 % respectively. Whereas by using Fe-Al as electrodes pairs, the removal of FOG, colour and turbidity are found to be at 90%, 87% and 76 % respectively. In this case, the Fe-Fe pair electrodes have been proven to provide better performance for FOG, colour and turbidity removals of slaughterhouse wastewaters. Therefore, it is feasible to be considered as an alternative method for wastewater treatment.

  2. Development of a large volume injection method using a programmed temperature vaporization injector - gas chromatography hyphenated to ICP-MS for the simultaneous determination of mercury, tin and lead species at ultra-trace levels in natural waters.

    Science.gov (United States)

    Terán-Baamonde, J; Bouchet, S; Tessier, E; Amouroux, D

    2018-04-27

    The current EU legislation lays down Environmental Quality Standards (EQS) for 45 priority substances in surface waters; among them levels for (organo)metallic species of Hg, Sn and Pb are set between ng L -1 (for Hg and Sn) and μg L -1 (for Pb). To date, only a few analytical methods can reach these very restrictive limits and there is thus a need for comprehensive methods able to analyze these species down to these levels in natural waters. The aim of this work was to develop an online automated pre-concentration method using large volume injections with a Programmed Temperature Vaporization (PTV) injector fitted with a sorbent packed liner coupled to GC-ICP-MS to further improve the detection limits associated to this well-established method. The influence of several parameters such as the PTV transfer temperature and time, carrier gas flow rate and amount of packing material was investigated. Finally, the maximum volume injected through single or multiple injection modes was optimized to obtain the best compromise between chromatographic resolution and sensitivity. After optimization, very satisfactory results in terms of absolute and methodological detection limits were achieved, down to the pg L -1 level for all species studied. The potential of the method was exemplified by determining the concentrations of organometallic compounds in unpolluted river waters samples from the Adour river basin (SW France) and results were compared with conventional (splitless) GC-ICP-MS. The strength of this analytical method lies in the low detection limits reached for the simultaneous analysis of a wide group of organometallic compounds, and the potential to transfer this method to other gas chromatographic applications with inherent lower sensitivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A propidium monoazide–quantitative PCR method for the detection and quantification of viable Enterococcus faecalis in large-volume samples of marine waters

    KAUST Repository

    Salam, Khaled W.; El-Fadel, Mutasem E.; Barbour, Elie K.; Saikaly, Pascal

    2014-01-01

    The development of rapid detection assays of cell viability is essential for monitoring the microbiological quality of water systems. Coupling propidium monoazide with quantitative PCR (PMA-qPCR) has been successfully applied in different studies for the detection and quantification of viable cells in small-volume samples (0.25-1.00 mL), but it has not been evaluated sufficiently in marine environments or in large-volume samples. In this study, we successfully integrated blue light-emitting diodes for photoactivating PMA and membrane filtration into the PMA-qPCR assay for the rapid detection and quantification of viable Enterococcus faecalis cells in 10-mL samples of marine waters. The assay was optimized in phosphate-buffered saline and seawater, reducing the qPCR signal of heat-killed E. faecalis cells by 4 log10 and 3 log10 units, respectively. Results suggest that high total dissolved solid concentration (32 g/L) in seawater can reduce PMA activity. Optimal PMA-qPCR standard curves with a 6-log dynamic range and detection limit of 102 cells/mL were generated for quantifying viable E. faecalis cells in marine waters. The developed assay was compared with the standard membrane filter (MF) method by quantifying viable E. faecalis cells in seawater samples exposed to solar radiation. The results of the developed PMA-qPCR assay did not match that of the standard MF method. This difference in the results reflects the different physiological states of E. faecalis cells in seawater. In conclusion, the developed assay is a rapid (∼5 h) method for the quantification of viable E. faecalis cells in marine recreational waters, which should be further improved and tested in different seawater settings. © 2014 Springer-Verlag Berlin Heidelberg.

  4. Pre-column dilution large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of multi-class pesticides in cabbages.

    Science.gov (United States)

    Zhong, Qisheng; Shen, Lingling; Liu, Jiaqi; Yu, Dianbao; Li, Siming; Yao, Jinting; Zhan, Song; Huang, Taohong; Hashi, Yuki; Kawano, Shin-ichi; Liu, Zhaofeng; Zhou, Ting

    2016-04-15

    Pre-column dilution large volume injection (PD-LVI), a novel sample injection technique for reverse phase ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), was developed in this study. The PD-LVI UHPLC-MS/MS system was designed by slightly modifying the commercial UHPLC-MS/MS equipment with a mixer chamber. During the procedure of PD-LVI, sample solution of 200μL was directly carried by the organic mobile phase to the mixer and diluted with the aqueous mobile phase. After the mixture was introduced to the UHPLC column in a mobile phase of acetonitrile-water (15/85, v/v), the target analytes were stacked on the head of the column until following separation. Using QuEChERS extraction, no additional steps such as solvent evaporation or residue redissolution were needed before injection. The features of PD-LVI UHPLC-MS/MS system were systematically investigated, including the injection volume, the mixer volume, the precondition time and the gradient elution. The efficiency of this approach was demonstrated by direct analysis of 24 pesticides in cabbages. Under the optimized conditions, low limits of detection (0.00074-0.8 ng/kg) were obtained. The recoveries were in the range of 63.3-109% with relative standard deviations less than 8.1%. Compared with common UHPLC-MS/MS technique, PD-LVI UHPLC-MS/MS showed significant advantages such as excellent sensitivity and reliability. The mechanism of PD-LVI was demonstrated to be based on the column-head stacking effect with pre-column dilution. Based on the results, PD-LVI as a simple and effective sample injection technique of reverse phase UHPLC-MS/MS for the analysis of trace analytes in complex samples showed a great promising prospect. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Radio-chemical dosage of {sup 90}Sr in large volumes of drinking water; Dosage radiochimique du {sup 90}Sr sur des volumes importants d'eaux potables

    Energy Technology Data Exchange (ETDEWEB)

    Jeanmaire, L; Patti, F; Bullier, D [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    I. Principle of the method: 1. Fixing on a resin of all the cations present in the water. 2. Elution using 5 N nitric acid and precipitation of strontium as the carbonate. 3. Concentration of the strontium using the fuming nitric acid method. 4. Purification of the strontium on a resin by selective elution with ammonium citrate. 5. The strontium-90 is measured by separation at the {sup 90}Y equilibrium in the form of the oxalate which is then counted. II. Advantages of the method The concentration of the radio-activity starting from large volumes (100 l) is generally tedious but this method which makes use of a fixation on a cationic resin makes it very simple. The rest of the method consists of a series of simple chemical operations using ion-exchange on resins and coprecipitation. Finally, it is possible to dose stable strontium. (authors) [French] I. Principe du dosage 1. Fixation sur resine de tous les cations presents dans l'eau, 2. Elution par l'acide nitrique 5 N et precipitation du strontium sous forme de carbonate. 3. Concentration du strontium par la methode a l'acide nitrique fumant. 4. Purification du strontium sur resine par elution selective au citrate d'ammonium. 5. Le strontium-90 est dose par separation a l'equilibre du {sup 90}Y sous forme d'oxalate qui est compte. II. Interet de la methode La concentration de la radioactivite a partir de volumes importants (100 l) est generalement fastidieuse, la technique proposee rend cette phase tres simple en utilisant une fixation sur resine cationique. Le reste de la technique est une suite d'operations chimiques simples a realiser, faisant appel a l'echange d'ions sur resine et a la coprecipitation. Enfin, il est possible de realiser le dosage du strontium stable. (auteurs)

  6. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-01

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.

  7. A propidium monoazide–quantitative PCR method for the detection and quantification of viable Enterococcus faecalis in large-volume samples of marine waters

    KAUST Repository

    Salam, Khaled W.

    2014-08-23

    The development of rapid detection assays of cell viability is essential for monitoring the microbiological quality of water systems. Coupling propidium monoazide with quantitative PCR (PMA-qPCR) has been successfully applied in different studies for the detection and quantification of viable cells in small-volume samples (0.25-1.00 mL), but it has not been evaluated sufficiently in marine environments or in large-volume samples. In this study, we successfully integrated blue light-emitting diodes for photoactivating PMA and membrane filtration into the PMA-qPCR assay for the rapid detection and quantification of viable Enterococcus faecalis cells in 10-mL samples of marine waters. The assay was optimized in phosphate-buffered saline and seawater, reducing the qPCR signal of heat-killed E. faecalis cells by 4 log10 and 3 log10 units, respectively. Results suggest that high total dissolved solid concentration (32 g/L) in seawater can reduce PMA activity. Optimal PMA-qPCR standard curves with a 6-log dynamic range and detection limit of 102 cells/mL were generated for quantifying viable E. faecalis cells in marine waters. The developed assay was compared with the standard membrane filter (MF) method by quantifying viable E. faecalis cells in seawater samples exposed to solar radiation. The results of the developed PMA-qPCR assay did not match that of the standard MF method. This difference in the results reflects the different physiological states of E. faecalis cells in seawater. In conclusion, the developed assay is a rapid (∼5 h) method for the quantification of viable E. faecalis cells in marine recreational waters, which should be further improved and tested in different seawater settings. © 2014 Springer-Verlag Berlin Heidelberg.

  8. The determination of acrylamide in environmental and drinking waters by large-volume injection - hydrophilic-interaction liquid chromatography and tandem mass spectrometry.

    Science.gov (United States)

    Backe, Will J; Yingling, Virginia; Johnson, Todd

    2014-03-21

    A simple and sensitive analytical method was developed to quantify levels of acrylamide in environmental and drinking waters. The analytical method consisted of solvent exchanging acrylamide from 2mL of water into 2mL of dichloromethane using acetonitrile as an intermediate. The sample was then directly analyzed by large-volume (750μL) injection - hydrophilic-interaction liquid chromatography and tandem mass spectrometry. The method detection limit and reporting level were 2.4ng/L and 17ng/L of acrylamide, respectively. The recovery of acrylamide during solvent exchange was 95±2.8% and the matrix effects were 12±2.2% in river water. The use of atmospheric-pressure chemical ionization reduced matrix effects; however, it also reduced method sensitivity by a factor of 2.2 compared to electrospray ionization. Matrix effects were compensated for by the use of an isotopically-labeled internal standard and the method accuracy was 89±3.0% at 25ng/L of acrylamide and 102±2.6% at 250ng/L of acrylamide. The precision of the method was less than 6% relative standard deviation at both 25ng/L and 250ng/L of acrylamide. Samples from a sand-and-gravel mine and a drinking-water treatment plant were acquired to demonstrate the method. The concentrations of acrylamide at the sand-and-gravel mine were up to 280ng/L. In the drinking-water treatment plant, the concentration of acrylamide was approximately double in the finished drinking water when compared to other stages in the drinking-water treatment process. Disinfection or fluoridation may result in higher concentrations of acrylamide in finished drinking water; however, further research in this area is necessary. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Post-lens tear turbidity and visual quality after scleral lens wear.

    Science.gov (United States)

    Carracedo, Gonzalo; Serramito-Blanco, Maria; Martin-Gil, Alba; Wang, Zicheng; Rodriguez-Pomar, Candela; Pintor, Jesús

    2017-11-01

    The aim was to evaluate the turbidity and thickness of the post-lens tear layer and its effect on visual quality in patients with keratoconus after the beginning of lens wear and before lens removal at the end of eight hours. Twenty-six patients with keratoconus (aged 36.95 ± 8.95 years) participated voluntarily in the study. The sample was divided into two groups: patients with intrastromal corneal ring (ICRS group) and patients without ICRS (KC group). Distance visual acuity (VA), contrast sensitivity, pachymetry, post-lens tear layer height and post-lens tear layer turbidity (percentage area occupied and number of particles per mm 2 ) were evaluated with optical coherence tomography before and after wearing a scleral lens. A significant increase of turbidity was found in all groups assessed (p turbidity parameters with distance VA but no correlation between turbidity and post-lens tear layer thickness at the beginning was found (p > 0.05). A strong correlation in all groups between the post-lens tear layer at the beginning and differences of tear layer thickness between two measures was also found (p turbidity. © 2017 Optometry Australia.

  10. The relationship between turbidity of mouth-rinsed water and oral health status.

    Science.gov (United States)

    Takeuchi, Susumu; Ueno, Masayuki; Takehara, Sachiko; Pham, Thuy Anh Vu; Hakuta, Chiyoko; Morishima, Seiji; Shinada, Kayoko; Kawaguchi, Yoko

    2013-01-01

    The purpose of this study was to examine the relationship between turbidity of mouth rinsed water and oral health status such as dental and periodontal conditions, oral hygiene status, flow rate of saliva and oral bacteria. Subjects were 165 patients who visited the Dental Hospital, Tokyo Medical and Dental University. Oral health status, including dental and periodontal conditions, oral hygiene status and flow rate of saliva, was clinically examined. The turbidity was measured with a turbidimeter. Quantification of Fusobacterium spp, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola and total bacteria levels was performed using real-time PCR. The Pearson correlation and multiple regression analysis were used to explore the associations between the turbidity and oral health parameters. The turbidity showed significant correlations with the number of decayed teeth and deep pockets, the plaque index, extent of tongue coating and Fusobacterium spp, P. gingivalis, T. forsythia, T. denticola and total bacteria levels. In a multiple regression model, the turbidity was negatively associated with the flow rate of saliva and positively associated with the total number of bacteria (p turbidity of mouth rinsed water could be used as an indicator to evaluate oral health condition and the amount of bacteria in the oral cavity. In addition, the turbiditimeter appeared as a simple and objective device for screening abnormality of oral health condition at chair side as well as community-based research.

  11. Relationship of a turbidity of an oral rinse with oral health and malodor in Vietnamese patients.

    Science.gov (United States)

    Pham, Thuy A V

    2014-05-01

    In the present study, the relationship between the turbidity of mouth-rinse water and oral health conditions, including oral malodor, in patients with (n = 148) and without (n = 231) periodontitis was examined. The turbidity of 20 mL distilled water that the patients rinsed in their mouths 10 times was measured using a turbidimeter. Oral malodor was evaluated using an organoleptic test and Oral Chroma. Oral health conditions, including decayed teeth, periodontal status, oral hygiene status, proteolytic activity of the N-benzoyl-dl-arginine-2-napthilamide (BANA) test on the tongue coating, and salivary flow rate, were assessed. Turbidity showed significant correlations with oral malodor and all oral health parameters in the periodontitis group. In the non-periodontitis group, turbidity showed significant correlations with oral malodor and oral health parameters, including dental plaque, tongue coating, BANA test, and salivary flow rate. The regression analysis indicated that turbidity was significantly associated with methyl mercaptan and the BANA test in the periodontitis group, and with hydrogen sulfide, dental plaque, tongue coating, and salivary flow rate in the non-periodontitis group. The findings of the present study indicate that the turbidity of mouth-rinse water could be used as an indicator of oral health conditions, including oral malodor. © 2013 Wiley Publishing Asia Pty Ltd.

  12. Characterization and modeling of turbidity density plume induced into stratified reservoir by flood runoffs.

    Science.gov (United States)

    Chung, S W; Lee, H S

    2009-01-01

    In monsoon climate area, turbidity flows typically induced by flood runoffs cause numerous environmental impacts such as impairment of fish habitat and river attraction, and degradation of water supply efficiency. This study was aimed to characterize the physical dynamics of turbidity plume induced into a stratified reservoir using field monitoring and numerical simulations, and to assess the effect of different withdrawal scenarios on the control of downstream water quality. Three different turbidity models (RUN1, RUN2, RUN3) were developed based on a two-dimensional laterally averaged hydrodynamic and transport model, and validated against field data. RUN1 assumed constant settling velocity of suspended sediment, while RUN2 estimated the settling velocity as a function of particle size, density, and water temperature to consider vertical stratification. RUN3 included a lumped first-order turbidity attenuation rate taking into account the effects of particles aggregation and degradable organic particles. RUN3 showed best performance in replicating the observed variations of in-reservoir and release turbidity. Numerical experiments implemented to assess the effectiveness of different withdrawal depths showed that the alterations of withdrawal depth can modify the pathway and flow regimes of the turbidity plume, but its effect on the control of release water quality could be trivial.

  13. The design of rapid turbidity measurement system based on single photon detection techniques

    Science.gov (United States)

    Yang, Yixin; Wang, Huanqin; Cao, Yangyang; Gui, Huaqiao; Liu, Jianguo; Lu, Liang; Cao, Huibin; Yu, Tongzhu; You, Hui

    2015-10-01

    A new rapid turbidity measurement system has been developed to measure the turbidity of drinking water. To determinate the turbidity quantitatively, the total intensity of scattering light has been measured and quantified as number of photons by adopting the single photon detection techniques (SPDT) which has the advantage of high sensitivity. On the basis of SPDT, the measurement system has been built and series of experiments have been carried out. Combining then the 90° Mie scattering theory with the principle of SPDT, a turbidity measurement model has been proposed to explain the experimental results. The experimental results show that a turbidity, which is as low as 0.1 NTU (Nephelometric Turbidity Units), can be measured steadily within 100 ms. It also shows a good linearity and stability over the range of 0.1-400 NTU and the precision can be controlled within 5% full scale. In order to improve its precision and stability, some key parameters, including the sampling time and incident light intensity, have been discussed. It has been proved that, to guarantee an excellent system performance, a good compromise between the measurement speed and the low power consumption should be considered adequately depending on the practical applications.

  14. Fabrication of an inexpensive photosensitive flow through device for turbidity measurement

    International Nuclear Information System (INIS)

    Morco, Ryan P.; Dawal, Micah S.; Sucgang, Raymond J.

    2014-01-01

    The aim of this study is the construction of a portable, simple to use, on-line photosensitive device which measures turbidity in water. The turbidity measuring device uses a light emitting diode, LED, light source shining on a light dependent resistor, LDR, which is connected in series to a circuit supplying a constant voltage and a digital voltmeter, DVM. Light shine through a tube containing the sample, and onto a photosensitive circuit. A clear tube of water is the BLANK and has zero absorbance. A fraction of the incident light that i obstructed by the turbidity of the sample can be used for calculable determination of turbidity in water. The turbidity is related to the absorbance reading, following Beer's law. The amount of incident and transmitted light are expressed in voltage units, by a voltmeter. The sample is delivered into the sampling chamber by a rubber tubing attached to a power head submersible pump which is immersed in the pool of water to be sampled. The instrument shows excellent response over the range o turbidity values (5NTU to 180 NTU). Linearity (R 2= 0.95) has been achieved using the device, working with 6 trials per particular NTU value. The NTU readings of the urbidity meter were calibrated against solutions of varying NTU's measured using a HORIBA multi-parameter probe. The other features of the device include: simplicity of operation, low-cost, rugged, handy and can be used in on-line and flow mode applications. (author)

  15. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Directory of Open Access Journals (Sweden)

    G. López

    2004-09-01

    Full Text Available Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Ångström turbidity coefficient β is frequently used. In this work, we analyse the performance of three methods based on broad-band solar irradiance measurements in the estimation of β. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of β for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns.

  16. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Directory of Open Access Journals (Sweden)

    G. López

    2004-09-01

    Full Text Available Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Ångström turbidity coefficient β is frequently used. In this work, we analyse the performance of three methods based on broad-band solar irradiance measurements in the estimation of β. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of β for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns.

  17. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, G.; Batlles, F.J. [Dept. de Ingenieria Electrica y Termica, EPS La Rabida, Univ. de Huelva, Huelva (Spain)

    2004-07-01

    Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Aangstroem turbidity coefficient {beta} is frequently used. In this work, we analyse the performance of three methods based on broadband solar irradiance measurements in the estimation of {beta}. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors) means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of {beta} for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns. (orig.)

  18. Evaluation of a turbidity meter for use at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Mahannah, R.N; Edwards, T.B.

    2013-01-01

    Savannah River RemediationÆs (SRRÆs) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ôpeanutö vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the issuance of

  19. EVALUATION OF A TURBIDITY METER FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Mahannah, R.; Edwards, T.

    2013-06-04

    Savannah River Remediation’s (SRR’s) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a “peanut” vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A “go/no-go” decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a “go” decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a “no-go” determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the

  20. Fluorescence correlation spectroscopy: Ultrasensitive detection in clear and turbid media

    Science.gov (United States)

    Tahari, Abdel Kader

    In this work, I describe the development of a simple, inexpensive, and powerful alternative technique to detect and analyze, without enrichment, extremely low concentrations of cells, bacteria, viruses, and protein aggregates in turbid fluids for clinical and biotechnological applications. The anticipated applications of this technique are many. They range from the determination of the somatic cell count in milk for the dairy industry, to the enumeration and characterization of microorganisms in environmental microbiology and the food industry, and to the fast and ultrasensitive detection of protein aggregates for the diagnosis of Alzheimer's and other neurodegenerative diseases in clinical medicine. A prototype instrument has been built and allowed the detection and quantification of particles down to a few per milliliter in short scanning times. It consists of a small microscope that has a horizontal geometry and a mechanical instrument that holds a cylindrical cuvette (1 cm in diameter) with two motors that provide a rotational and a slower vertical inversion motions. The illumination focus is centered about 200 mum from the wall of the cuvette inside the sample. The total volume that is explored is large (˜1ml/min for bright particles). The data is analyzed with a correlation filter program based on particle passage pattern recognition. I will also describe further work on improving the sensitivity of the technique, expanding it for multiple-species discrimination and enumeration, and testing the prototype device in actual clinical and biotechnological applications. The main clinical application of this project seeks to establish conditions and use this new technique to quantify and size-analyze oligomeric complexes of the Alzheimer's disease beta-peptide in cerebrospinal fluid and other body fluids as a molecular biomarker for persons at risk of Alzheimer's disease dementia. The technology could potentially be extended to the diagnosis and therapeutic

  1. Removal of fluoride, SDS, ammonia and turbidity from semiconductor wastewater by combined electrocoagulation-electroflotation.

    Science.gov (United States)

    Aoudj, S; Khelifa, A; Drouiche, N

    2017-08-01

    Semiconductor industry effluents contain organic and inorganic pollutants, such as sodium dodecyl sulfate (SDS), fluoride and ammonia, at high levels which consists a major environmental issue. A combined EC-EF process is proposed as a post-treatment after precipitation for simultaneous clarification and removal of pollutants. In EC step, a hybrid Fe-Al was used as the soluble anode in order to avoid supplementary EC step. EC-Fe is more suitable for SDS removal; EC-Al is more suitable for fluoride removal, while EC with hybrid Al-Fe makes a good compromise. Clarification and ammonia oxidation were achieved in the EF step. Effects of anodic material, initial pH, current, anion nature, chloride concentration and initial pollutant concentration were studied. The final concentrations may reach 0.27, 6.23 and 0.22 mg L -1 for SDS, fluoride and ammonia respectively. These concentrations are far lower than the correspondent discharge limits. Similarly, the final turbidity was found 4.35 NTU which is lower than 5NTU and the treated water does not need further filtration before discharge. Furthermore, the EC-EF process proves to be sufficiently energy-efficient with less soluble electrode consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Turbidity forecasting at a karst spring using combined machine learning and wavelet multiresolution analysis.

    Science.gov (United States)

    Savary, M.; Massei, N.; Johannet, A.; Dupont, J. P.; Hauchard, E.

    2016-12-01

    25% of the world populations drink water extracted from karst aquifer. The comprehension and the protection of these aquifers appear as crucial due to an increase of drinking water needs. In Normandie(North-West of France), the principal exploited aquifer is the chalk aquifer. The chalk aquifer highly karstified is an important water resource, regionally speaking. Connections between surface and underground waters thanks to karstification imply turbidity that decreases water quality. Both numerous parameters and phenomenons, and the non-linearity of the rainfall/turbidity relation influence the turbidity causing difficulties to model and forecast turbidity peaks. In this context, the Yport pumping well provides half of Le Havreconurbation drinking water supply (236 000 inhabitants). The aim of this work is thus to perform prediction of the turbidity peaks in order to help pumping well managers to decrease the impact of turbidity on water treatment. Database consists in hourly rainfalls coming from six rain gauges located on the alimentation basin since 2009 and hourly turbidity since 1993. Because of the lack of accurate physical description of the karst system and its surface basin, the systemic paradigm is chosen and a black box model: a neural network model is chosen. In a first step, correlation analyses are used to design the original model architecture by identifying the relation between output and input. The following optimization phases bring us four different architectures. These models were experimented to forecast 12h ahead turbidity and threshold surpassing. The first model is a simple multilayer perceptron. The second is a two-branches model designed to better represent the fast (rainfall) and low (evapotranspiration) dynamics. Each kind of model is developed using both a recurrent and feed-forward architecture. This work highlights that feed-forward multilayer perceptron is better to predict turbidity peaks when feed-forward two-branches model is

  3. The Impact of High-Turbidity Water's Seasonal and Decadal Variations on Offshore Phytoplankton and Nutrients Dynamics around The Changjiang Estuary

    Science.gov (United States)

    Ge, J.; Torres, R.; Chen, C.; Bellerby, R. G. J.

    2017-12-01

    The Changjiang Estuary is characterized as strong river discharge into the inner shelf of the East China Sea with abundant sediment load, producing significant high-turbidity water coverage from river mouth to deep region. The growth of offshore phytoplankton is dynamically controlled by river flushed low-salinity and high-turbidity water, and salter water from inner shelf of East China Sea. During last decade, the sediment and nutrients from the Changjiang River has significantly changed, which lead to the variation of offshore phytoplankton dynamics. The variations of sediment, nutrients, and their influenced phytoplankton has been simulated through a comprehensive modeling system, which integrated a multi-scale current-wave-sediment FVCOM model and generic marine biogeochemistry and ecosystem ERSEM model through The Framework for Aquatic Biogeochemical Models (FABM). This model system has successfully revealed the seasonal and decadal variations of sediment, nutrients transport around the inner shelf of the East China Sea. The spring and autumn peaks of phytoplankton growth were correctly captured by simulation. The modeling results, as well as MODIS and GOCI remote sensing, shows a strong sediment decreasing from northern to southern region, which creates different patterns of Chlorophyll-a distribution and seasonal variations. These results indicate the high-turbidity water in northern region strongly influenced the light attenuation in the water column and limits the phytoplankton growth in this relatively higher-nutrient area, especially in the wintertime. The relatively low-turbidity southern region has significant productivity of phytoplankton, even during low-temperature winter. The phytoplankton growth increased in the northern region from 2005 to 2010, with the increase of the nutrient load during this period. Then it became a decreasing trend after 2010.

  4. Review of Epidemiological Studies of Drinking-Water Turbidity in Relation to Acute Gastrointestinal Illness.

    Science.gov (United States)

    De Roos, Anneclaire J; Gurian, Patrick L; Robinson, Lucy F; Rai, Arjita; Zakeri, Issa; Kondo, Michelle C

    2017-08-17

    Turbidity has been used as an indicator of microbiological contamination of drinking water in time-series studies attempting to discern the presence of waterborne gastrointestinal illness; however, the utility of turbidity as a proxy exposure measure has been questioned. We conducted a review of epidemiological studies of the association between turbidity of drinking-water supplies and incidence of acute gastrointestinal illness (AGI), including a synthesis of the overall weight of evidence. Our goal was to evaluate the potential for causal inference from the studies. We identified 14 studies on the topic (distinct by region, time period and/or population). We evaluated each study with regard to modeling approaches, potential biases, and the strength of evidence. We also considered consistencies and differences in the collective results. Positive associations between drinking-water turbidity and AGI incidence were found in different cities and time periods, and with both unfiltered and filtered supplies. There was some evidence for a stronger association at higher turbidity levels. The studies appeared to adequately adjust for confounding. There was fair consistency in the notable lags between turbidity measurement and AGI identification, which fell between 6 and 10 d in many studies. The observed associations suggest a detectable incidence of waterborne AGI from drinking water in the systems and time periods studied. However, some discrepant results indicate that the association may be context specific. Combining turbidity with seasonal and climatic factors, additional water quality measures, and treatment data may enhance predictive modeling in future studies. https://doi.org/10.1289/EHP1090.

  5. Changes of turbidity during the phenol oxidation by photo-Fenton treatment.

    Science.gov (United States)

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez, Jonatan

    2014-11-01

    Turbidity presented by phenol solutions oxidized with Fenton reagent shows the tendency of a first order intermediate kinetics. Thus, turbidity can be considered a representative parameter of the presence of intermediate oxidation species, which are generated along the decomposition of toxic and reluctant contaminants, such as phenol. Moreover, that parameter presents a linear dependence with the catalyst dosage, but is also determined by the initial contaminant load. When analyzing the oxidation mechanism of phenol, it is found that the maximum turbidity occurs when the treatment is carried out at oxidant to phenol molar ratios R = 4.0. These oxidation conditions correspond to the presence of a reaction mixture mainly composed of dihydroxylated rings, precursors of the muconic acid formation. The oxidation via "para" comprises the formation reactions of charge transfer complexes (quinhydrone), between the para-dihydroxylated intermediates (hydroquinone) and the para-substituted quinones (p-benzoquinone), which are quite unstable and reactive species, quickly decomposed into hydroxyhydroquinones. Working with oxidant ratios up to R = 6.0, the maximum observed value of turbidity in the oxidized solutions is kept almost constant. It is found that, in these conditions, the pyrogallol formation is maximal, what is generated through the degradation of ortho-species (catechol and ortho-benzoquinone) and meta-substituted (resorcinol). Operating with ratios over R = 6.0, these intermediates are decomposed into biodegradable acids, generating lower turbidity in the solution. Then, the residual turbidity is a function of the molar ratio of the ferrous ions vs. moles of oxidant utilized in the essays, that lets to estimate the stoichiometric dosage of catalyst as 20 mg/L at pH = 3.0, whereas operating in stoichiometric conditions, R = 14.0, the residual turbidity of water results almost null.

  6. Sex in murky waters: algal-induced turbidity increases sexual selection in pipefish.

    Science.gov (United States)

    Sundin, Josefin; Aronsen, Tonje; Rosenqvist, Gunilla; Berglund, Anders

    2017-01-01

    Algal-induced turbidity has been shown to alter several important aspects of reproduction and sexual selection. However, while turbidity has been shown to negatively affect reproduction and sexually selected traits in some species, it may instead enhance reproductive success in others, implying that the impact of eutrophication is far more complex than originally believed. In this study, we aimed to provide more insight into these inconsistent findings. We used molecular tools to investigate the impact of algal turbidity on reproductive success and sexual selection on males in controlled laboratory experiments, allowing mate choice, mating competition, and mate encounter rates to affect reproduction. As study species, we used the broad-nosed pipefish, Syngnathus typhle , a species practicing male pregnancy and where we have previously shown that male mate choice is impaired by turbidity. Here, turbidity instead enhanced sexual selection on male size and mating success as well as reproductive success. Effects from mating competition and mate encounter rates may thus override effects from mate choice based on visual cues, producing an overall stronger sexual selection in turbid waters. Hence, seemingly inconsistent effects of turbidity on sexual selection may depend on which mechanisms of sexual selection that have been under study. Algal blooms are becoming increasingly more common due to eutrophication of freshwater and marine environments. The high density of algae lowers water transparency and reduces the possibility for fish and other aquatic animals to perform behaviors dependent on vision. We have previously shown that pipefish are unable to select the best partner in mate choice trials when water transparency was reduced. However, fish might use other senses than vision to compensate for the reduction in water transparency. In this study, we found that when fish were allowed to freely interact, thereby allowing competition between partners and direct contact

  7. Comparison of environmental forcings affecting suspended sediments variability in two macrotidal, highly-turbid estuaries

    Science.gov (United States)

    Jalón-Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo

    2017-11-01

    The relative contribution of environmental forcing frequencies on turbidity variability is, for the first time, quantified at seasonal and multiannual time scales in tidal estuarine systems. With a decade of high-frequency, multi-site turbidity monitoring, the two nearby, macrotidal and highly-turbid Gironde and Loire estuaries (west France) are excellent natural laboratories for this purpose. Singular Spectrum Analyses, combined with Lomb-Scargle periodograms and Wavelet Transforms, were applied to the continuous multiannual turbidity time series. Frequencies of the main environmental factors affecting turbidity were identified: hydrological regime (high versus low river discharges), river flow variability, tidal range, tidal cycles, and turbulence. Their relative influences show similar patterns in both estuaries and depend on the estuarine region (lower or upper estuary) and the time scale (multiannual or seasonal). On the multiannual time scale, the relative contribution of tidal frequencies (tidal cycles and range) to turbidity variability decreases up-estuary from 68% to 47%, while the influence of river flow frequencies increases from 3% to 42%. On the seasonal time scale, the relative influence of forcings frequencies remains almost constant in the lower estuary, dominated by tidal frequencies (60% and 30% for tidal cycles and tidal range, respectively); in the upper reaches, it is variable depending on hydrological regime, even if tidal frequencies are responsible for up 50% of turbidity variance. These quantifications show the potential of combined spectral analyses to compare the behavior of suspended sediment in tidal estuaries throughout the world and to evaluate long-term changes in environmental forcings, especially in a context of global change. The relevance of this approach to compare nearby and overseas systems and to support management strategies is discussed (e.g., selection of effective operation frequencies/regions, prediction of the most

  8. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.

    Science.gov (United States)

    Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen

    2010-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.

  9. Extraction of natural coagulant from peanut seeds for treatment of turbid water

    International Nuclear Information System (INIS)

    Birima, A H; Desa, M N M; Muda, Z C; Hammad, H A

    2013-01-01

    This study investigates the potential of peanut seeds as an environmental friendly and natural coagulant for the treatment of high turbid water. The peanut seeds have been used after oil extraction; and the active coagulation component was extracted by distilled water and salt solution of different salt concentrations. The salts used were NaCl, KNO 3 , KCl, NH 4 Cl and NaNO 3 . Synthetic water with 200 NTU turbidity was used. Peanut extracted with NaCl (PC-NaCl) could effectively remove 92% of the 200 NTU turbidity using only 20 mg/l, while peanut seeds extracted with distilled water (PC-DW) could remove only 31.5% of the same turbidity with the same dosage. The coagulant dosage did not affected by the concentration of the salt solution, however, residual turbidity decreased with increasing the concentration of the salt; and the relationship was found to be a second order polynomial curve with R 2 of 0.9312. The other salts tested were also found to be good solvents to extract the active coagulation component with no much difference from NaCl solution in terms of efficiency.

  10. Limitations of turbidity process probes and formazine as their calibration standard.

    Science.gov (United States)

    Münzberg, Marvin; Hass, Roland; Dinh Duc Khanh, Ninh; Reich, Oliver

    2017-01-01

    Turbidity measurements are frequently implemented for the monitoring of heterogeneous chemical, physical, or biotechnological processes. However, for quantitative measurements, turbidity probes need calibration, as is requested and regulated by the ISO 7027:1999. Accordingly, a formazine suspension has to be produced. Despite this regulatory demand, no scientific publication on the stability and reproducibility of this polymerization process is available. In addition, no characterization of the optical properties of this calibration material with other optical methods had been achieved so far. Thus, in this contribution, process conditions such as temperature and concentration have been systematically investigated by turbidity probe measurements and Photon Density Wave (PDW) spectroscopy, revealing an influence on the temporal formazine formation onset. In contrast, different reaction temperatures do not lead to different scattering properties for the final formazine suspensions, but give an access to the activation energy for this condensation reaction. Based on PDW spectroscopy data, the synthesis of formazine is reproducible. However, very strong influences of the ambient conditions on the measurements of the turbidity probe have been observed, limiting its applicability. The restrictions of the turbidity probe with respect to scatterer concentration are examined on the basis of formazine and polystyrene suspensions. Compared to PDW spectroscopy data, signal saturation is observed at already low reduced scattering coefficients.

  11. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Science.gov (United States)

    Fernández-Nóvoa, D; Gómez-Gesteira, M; Mendes, R; deCastro, M; Vaz, N; Dias, J M

    2017-01-01

    The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward) winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward) winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  12. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Directory of Open Access Journals (Sweden)

    D Fernández-Nóvoa

    Full Text Available The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  13. A time series study of drug sales and turbidity of tap water in Le Havre, France.

    Science.gov (United States)

    Beaudeau, Pascal; Le Tertre, Alain; Zeghnoun, Abdelkrim; Zanobetti, Antonella; Schwartz, Joel

    2012-06-01

    The 80,000 inhabitants of the lower part of Le Havre obtain their water supply from two karstic springs, Radicatel and Saint-Laurent. Until 2000, the Radicatel water was settled when turbidity exceeded 3 NTU, then filtered and chlorinated, whereas the Saint-Laurent water was simply chlorinated. Our study aimed to characterize the link between water turbidity and the incidence of acute gastroenteritis (AGE). Records on drug sales used for the treatment of AGE were collected from January 1994 to June 1996 (period 1) and from March 1997 to July 2000 (period 2). Daily counts of drug sales were modeled using a Poisson Regression. We used data set 2 as a discovery set, identifying relevant (i.e. both significant and plausible) exposure covariates and lags. We then tested this model on period 1 as a replication dataset. In period 2, the daily drug sales correlated with finished water turbidity at both resources. Settling substantially modified the risk related to turbidity of both raw and finished waters at Radicatel. Correlations were reproducible in period 1 for water from the Radicatel spring. Timeliness of treatment adaptation to turbidity conditions appears to be crucial for reducing the infectious risk due to karstic waters.

  14. Using Coagulation Process in Optimizing Natural Organic Matter Removal from Low Turbidity Waters

    Directory of Open Access Journals (Sweden)

    Alireza Mesdaghinia

    2006-03-01

    Full Text Available Optimization of coagulation process  for efficient removal of Natural Organic Matters (NOM has gained a lot of focus over the last years to meet the requirements of enhanced coagulation. NOM comprises both particulate and soluble components which the latter usually comprises the main portion. Removal of soluble NOM from low turbidity waters by coagulation is not a successful process unless enough attention is paid to stages of formation and development of both micro and macro-flocs. This study, which presents experimental results from pilot scale research studies aimed at optimizing coagulation process applied to synthetic raw waters supplemented by adding commercial humic acid with low turbidity levels, explains how pH and turbidity can be controlled to maximize soluble NOM removal. The removal of NOM at various coagulant doses and coagulation pHs has been assessed through raw and treated (coagulated-settled water measurements of total organic carbon (TOC. For low turbidity waters, essential floc nucleation sites can be provided by creating synthetic turbidities, for example by adding clay. Adjusting the initial pH at 5.5 or adding clay before coagulant addition allows the formation of micro-flocs as well as formation of the insoluble flocs at low coagulant doses.

  15. Using the Surface Reflectance MODIS Terra Product to Estimate Turbidity in Tampa Bay, Florida

    Directory of Open Access Journals (Sweden)

    Douglas L. Rickman

    2010-12-01

    Full Text Available Turbidity is a commonly-used index of the factors that determine light penetration in the water column. Consistent estimation of turbidity is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Traditional methods monitoring fixed geographical locations at fixed intervals may not be representative of the mean water turbidity in estuaries between intervals, and can be expensive and time consuming. Although remote sensing offers a good solution to this limitation, it is still not widely used due in part to required complex processing of imagery. There are satellite-derived products, including the Moderate Resolution Imaging Spectroradiometer (MODIS Terra surface reflectance daily product (MOD09GQ Band 1 (620–670 nm which are now routinely available at 250 m spatial resolution and corrected for atmospheric effect. This study shows this product to be useful to estimate turbidity in Tampa Bay, Florida, after rainfall events (R2 = 0.76, n = 34. Within Tampa Bay, Hillsborough Bay (HB and Old Tampa Bay (OTB presented higher turbidity compared to Middle Tampa Bay (MTB and Lower Tampa Bay (LTB.

  16. Loire and Gironde turbid plumes: Characterization and influence on thermohaline properties

    Science.gov (United States)

    Costoya, X.; Fernández-Nóvoa, D.; deCastro, M.; Gómez-Gesteira, M.

    2017-12-01

    Knowledge and predictability of turbid river plumes is of great importance because they modulate the properties of the seawater adjacent to river mouths. The Loire and Gironde Rivers form the most important plumes in the Bay of Biscay, as they provide > 75% of total runoff. The development of the turbid plume under the influence of its main drivers was analyzed using Moderate Resolution Imaging Spectroradiometer satellite data from the period 2003-2015. River discharge was found to be the main driver, followed by wind, which also had an important effect in modulating the turbid plume during periods of high river discharge. Seaward and upwelling favorable winds enhanced the dispersion of plumes on seawater, whereas landward and downwelling favorable winds limited mixing with the adjacent ocean water. The maximum extension of the turbid plume was reached under landward winds. In addition, the spatio-temporal evolution of the East Atlantic pattern and the North Atlantic Oscillation was observed to affect the dynamics of plumes: positive values of both indices favored a greater extension of the plume. Thermohaline properties differed inside and outside the area affected by both rivers. In particular, these rivers maintain winter stratification inside the turbid plume, which results in a different warming ratio when compared with the adjacent ocean.

  17. Dispersal of suspended sediments in the turbid and highly stratified Red River plume

    Science.gov (United States)

    van Maren, D. S.; Hoekstra, P.

    2005-03-01

    The Red River, annually transporting 100 million tons of sediment, flows into a shallow shelf sea where it rapidly deposits most of its sediment on a prograding delta front. Oceanographic cruises were carried out in February-March and July-August 2000 to determine the vertical structure of the Ba Lat river plume and sediment transport patterns on the delta front. The surface waters in the coastal zone were strongly stratified with a low density and high sediment concentration during the larger part of the wet season, caused by low mixing rates of river plumes with ambient water. The river plume is advected to the south by a well-developed coastal current which originates from the river plumes that enter the Gulf of Tonkin North of the Ba Lat and are deflected southward by the Coriolis force. Sediment predominantly leaves the surface plume by settling from suspension and less by mixing of fresh and marine water. A one-dimensional model for plume deposition valid for fair weather conditions indicates that most sediment is deposited within 10 km and southward of the river mouth. Of prime importance for this depositional pattern is the phase relation between river outflow and tidal currents, in combination with the southward surface flow; alongshore advection is very low during outflow of the turbid river plume. The agreement of modeled plume sedimentation patterns with long-term bathymetric changes strongly suggests that fair weather depositional processes determine delta front development. This may be related to the fact that reworking of sediment mainly occurs several months after the peak deposition period; in the meantime sediment compaction and consolidation have increased the shear strength of deposited sediments.

  18. Formation and entrainment of fluid mud layers in troughs of subtidal dunes in an estuarine turbidity zone

    DEFF Research Database (Denmark)

    Becker, Marius; Schrottke, Kerstin; Bartholomä, Alexander

    2013-01-01

    25 g/L below the lutocline to 70 g/L at the river bed, whereas the gelling concentration was below 70 g/L. Sites of fluid mud formation coincided with the location of the estuarine turbidity zone during slack water. On average, near-bed density gradients were initially observed in dune troughs 1.2 h...... before slack water, and all fluid mud layers were entrained 2.3 h after slack water. No shear instabilities occurred until 1.8 h after slack water. While the flow was oriented in the dune direction, rapid entrainment was related to the development of the turbulent flow field behind dunes and is explained...... to be induced by advection of strong turbulence during accelerating currents. Fluid mud layers in dune troughs were entrained at an earlier point in time after slack water, compared to adjacent layers formed on a comparatively flat bed, where dune crests did not protrude from the lutocline....

  19. Developing a semi/automated protocol to post-process large volume, High-resolution airborne thermal infrared (TIR) imagery for urban waste heat mapping

    Science.gov (United States)

    Rahman, Mir Mustafizur

    In collaboration with The City of Calgary 2011 Sustainability Direction and as part of the HEAT (Heat Energy Assessment Technologies) project, the focus of this research is to develop a semi/automated 'protocol' to post-process large volumes of high-resolution (H-res) airborne thermal infrared (TIR) imagery to enable accurate urban waste heat mapping. HEAT is a free GeoWeb service, designed to help Calgary residents improve their home energy efficiency by visualizing the amount and location of waste heat leaving their homes and communities, as easily as clicking on their house in Google Maps. HEAT metrics are derived from 43 flight lines of TABI-1800 (Thermal Airborne Broadband Imager) data acquired on May 13--14, 2012 at night (11:00 pm--5:00 am) over The City of Calgary, Alberta (˜825 km 2) at a 50 cm spatial resolution and 0.05°C thermal resolution. At present, the only way to generate a large area, high-spatial resolution TIR scene is to acquire separate airborne flight lines and mosaic them together. However, the ambient sensed temperature within, and between flight lines naturally changes during acquisition (due to varying atmospheric and local micro-climate conditions), resulting in mosaicked images with different temperatures for the same scene components (e.g. roads, buildings), and mosaic join-lines arbitrarily bisect many thousands of homes. In combination these effects result in reduced utility and classification accuracy including, poorly defined HEAT Metrics, inaccurate hotspot detection and raw imagery that are difficult to interpret. In an effort to minimize these effects, three new semi/automated post-processing algorithms (the protocol) are described, which are then used to generate a 43 flight line mosaic of TABI-1800 data from which accurate Calgary waste heat maps and HEAT metrics can be generated. These algorithms (presented as four peer-reviewed papers)---are: (a) Thermal Urban Road Normalization (TURN)---used to mitigate the microclimatic

  20. Performance test of filtering system for controlling the turbidity of secondary cooling water in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Jo, Y. K.; Loo, J. S.; Lim, N. Y.

    2001-01-01

    There is about 80 m 3 /h loss of the secondary cooling water by evaporation, windage and blowdown during the operation of HANARO, 30 MW research reactor. When the secondary cooling water is treated by high Ca-hardness treatment program for minimizing the blowdown loss, only the trubidity exceeds the limit. By adding filtering system it was confirned, through the relation of turbidity and filtering rate of secondary cooling water, that the turbidity is reduced below the limit (5 deg.) by 2 % of filtering rate without blowdown. And it was verified, through the field performace test of filtering system under normal operation condition, that the circulation pumps get proper capacity and that filter units reduce the turbidity below the limit. Therefore, the secondary cooling water can be treated by the high Ca-hardness program and filter system without blowdown

  1. Atmospheric turbidity parameters affecting the incident solar solar radiation for two different areas in (Eg))

    International Nuclear Information System (INIS)

    Tadros, M.T.Y.; Mosalam, M.A.; El-metwally, M.

    1999-01-01

    Atmospheric turbidity parameters such as Linke turbidity (L-0) and true Angstrom parameters (Bita o , Alpha 0 ) have been determined from the measurements of direct solar radiation for entire spectrum and for specified spectral bands during one year starting from june 1992 to may 1993. Comparison between the industrial area in Helwan (south Cairo) with that of the agricultural area in Mansoura, in (Eg), was done. Analysis of data revealed that the atmospheric turbidity parameters (L Beta) in Helwan is higher than that in Mansoura, except for hot wet months. The increase of L in Mansoura, in summer, is due to the increase of water vapor content. The wavelength exponent Alpha shows that the size the size of particles in Helwan is larger than that in Mansoura

  2. Speckle suppression via sparse representation for wide-field imaging through turbid media.

    Science.gov (United States)

    Jang, Hwanchol; Yoon, Changhyeong; Chung, Euiheon; Choi, Wonshik; Lee, Heung-No

    2014-06-30

    Speckle suppression is one of the most important tasks in the image transmission through turbid media. Insufficient speckle suppression requires an additional procedure such as temporal ensemble averaging over multiple exposures. In this paper, we consider the image recovery process based on the so-called transmission matrix (TM) of turbid media for the image transmission through the media. We show that the speckle left unremoved in the TM-based image recovery can be suppressed effectively via sparse representation (SR). SR is a relatively new signal reconstruction framework which works well even for ill-conditioned problems. This is the first study to show the benefit of using the SR as compared to the phase conjugation (PC) a de facto standard method to date for TM-based imaging through turbid media including a live cell through tissue slice.

  3. Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates.

    Science.gov (United States)

    Sommaruga, Ruben; Kandolf, Georg

    2014-02-17

    Heterotrophic (phagotrophic) flagellates are key components of planktonic food webs in freshwater and marine ecosystems because they are the main consumers of bacteria. Although they are ubiquitous in aquatic ecosystems, they were numerically undetectable in turbid glacier-fed lakes. Here we show that glacial particles had negative effects on the survival and growth of heterotrophic flagellates. The effect of glacial particles was concentration-dependent and was caused by their interference with bacterial uptake rather than by physical damage. These results are the first to reveal why establishment of heterotrophic flagellates populations is hindered in very turbid glacial lakes. Because glaciers are vanishing around the world, recently formed turbid meltwater lakes represent an excellent opportunity to understand the environmental conditions that probably shaped the establishment of lake communities at the end of the last glaciation.

  4. A note on the comparative turbidity of some estuaries of the Americas

    Science.gov (United States)

    Uncles, R.J.; Smith, R.E.

    2005-01-01

    Field data from 27 estuaries of the Americas are used to show that, in broad terms, there is a large difference in turbidity between the analyzed east and west-coast estuaries and that tidal range and tidal length have an important influence on that turbidity. Generic, numerical sediment-transport modeling is used to illustrate this influence, which exists over a range of space scales from, e.g., the Rogue River Estuary (few km, few mg l-1) to the Bay of Fundy (hundreds of km, few g l-1). The difference in Pacific and Atlantic seaboard estuarine turbidity for the analyzed estuaries is ultimately related to the broad-scale geomorphology of the two continents.

  5. Pyrheliometric determination of atmospheric turbidity in harmattan over Ile-Ife, Nigeria

    International Nuclear Information System (INIS)

    Adeyefa, Z.D.; Adedokun, J.A.

    1990-02-01

    Measurements of direct solar radiation intensity, using an Angstrom compensation pyrheliometer carried out over three harmattan seasons (1985-1987) at Ile-Ife (7.29N, 4.34E) Nigeria, have been used to determine atmospheric turbidity based on five different models of turbidity, viz: Schuepp (B), Angstrom (β), Kastrov (C), Unsworth (τ a ) and Linke (T). The five parameters indicate high aerosol loading of the atmosphere during the period and high correlation is established between them: (0.919 ≤ τ ≤ 0.999). An inverse relationship has been noticed between horizontal visibility and atmospheric turbidity: (-0.80 ≤ τ ≤ -0.76). (author). 35 refs, 15 figs, 4 tabs

  6. Granular activated carbon for removal of organic matter and turbidity from secondary wastewater.

    Science.gov (United States)

    Hatt, J W; Germain, E; Judd, S J

    2013-01-01

    A range of commercial granular activated carbon (GAC) media have been assessed as pretreatment technologies for a downstream microfiltration (MF) process. Media were assessed on the basis of reduction in both organic matter and turbidity, since these are known to cause fouling in MF membranes. Isotherm adsorption analysis through jar testing with supplementary column trials revealed a wide variation between the different adsorbent materials with regard to organics removal and adsorption kinetics. Comparison with previous work using powdered activated carbon (PAC) revealed that for organic removal above 60% the use of GAC media incurs a significantly lower carbon usage rate than PAC. All GACs tested achieved a minimum of 80% turbidity removal. This combination of turbidity and organic removal suggests that GAC would be expected to provide a significant reduction in fouling of a downstream MF process with improved product water quality.

  7. Temperature- and Turbidity-Dependent Competitive Interactions Between Invasive Freshwater Mussels.

    Science.gov (United States)

    Huang, Qihua; Wang, Hao; Ricciardi, Anthony; Lewis, Mark A

    2016-03-01

    We develop a staged-structured population model that describes the competitive dynamics of two functionally similar, congeneric invasive species: zebra mussels and quagga mussels. The model assumes that the population survival rates are functions of temperature and turbidity, and that the two species compete for food. The stability analysis of the model yields conditions on net reproductive rates and intrinsic growth rates that lead to competitive exclusion. The model predicts quagga mussel dominance leading to potential exclusion of zebra mussels at mean water temperatures below [Formula: see text] and over a broad range of turbidities, and a much narrower set of conditions that favor zebra mussel dominance and potential exclusion of quagga mussels at temperatures above [Formula: see text] and turbidities below 35 NTU. We then construct a two-patch dispersal model to examine how the dispersal rates and the environmental factors affect competitive exclusion and coexistence.

  8. Automatic control of the effluent turbidity from a chemically enhanced primary treatment with microsieving.

    Science.gov (United States)

    Väänänen, J; Memet, S; Günther, T; Lilja, M; Cimbritz, M; la Cour Jansen, J

    2017-10-01

    For chemically enhanced primary treatment (CEPT) with microsieving, a feedback proportional integral controller combined with a feedforward compensator was used in large pilot scale to control effluent water turbidity to desired set points. The effluent water turbidity from the microsieve was maintained at various set points in the range 12-80 NTU basically independent for a number of studied variations in influent flow rate and influent wastewater compositions. Effluent turbidity was highly correlated with effluent chemical oxygen demand (COD). Thus, for CEPT based on microsieving, controlling the removal of COD was possible. Thereby incoming carbon can be optimally distributed between biological nitrogen removal and anaerobic digestion for biogas production. The presented method is based on common automation and control strategies; therefore fine tuning and optimization for specific requirements are simplified compared to model-based dosing control.

  9. Extending the turbidity record: making additional use of continuous data from turbidity, acoustic-Doppler, and laser diffraction instruments and suspended-sediment samples in the Colorado River in Grand Canyon

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.

    2014-01-01

    Turbidity is a measure of the scattering and absorption of light in water, which in rivers is primarily caused by particles, usually sediment, suspended in the water. Turbidity varies significantly with differences in the design of the instrument measuring turbidity, a point that is illustrated in this study by side-by-side comparisons of two different models of instruments. Turbidity also varies with changes in the physical parameters of the particles in the water, such as concentration, grain size, grain shape, and color. A turbidity instrument that is commonly used for continuous monitoring of rivers has a light source in the near-infrared range (860±30 nanometers) and a detector oriented 90 degrees from the incident light path. This type of optical turbidity instrument has a limited measurement range (depending on pathlength) that is unable to capture the high turbidity levels of rivers that carry high suspended-sediment loads. The Colorado River in Grand Canyon is one such river, in which approximately 60 percent of the range in suspended-sediment concentration during the study period had unmeasurable turbidity using this type of optical instrument. Although some optical turbidimeters using backscatter or other techniques can measure higher concentrations of suspended sediment than the models used in this study, the maximum turbidity measurable using these other turbidimeters may still be exceeded in conditions of especially high concentrations of suspended silt and clay. In Grand Canyon, the existing optical turbidity instruments remain in use in part to provide consistency over time as new techniques are investigated. As a result, during these periods of high suspended-sediment concentration, turbidity values that could not be measured with the optical turbidity instruments were instead estimated from concurrent acoustic attenuation data collected using side-looking acoustic-Doppler profiler (ADP) instruments. Extending the turbidity record to the full

  10. Effect of substituted hydroxyl groups in the changes of solution turbidity in the oxidation of aromatic contaminants.

    Science.gov (United States)

    Villota, N; Jm, Lomas; Lm, Camarero

    2017-01-01

    This paper deals with the changes of turbidity that are generated in aqueous solutions of phenol when they are oxidized by using different Fenton technologies. Results revealed that if the Fenton reaction was promoted with UV light, the turbidity that was generated in the water doubled. Alternatively, the use of ultrasonic waves produced an increase in turbidity which initially proceeded slowly, reaching intensities eight times higher than in the conventional Fenton treatment. As well, the turbidity showed a high dependence on pH. It is therefore essential to control acidity throughout the reaction. The maximum turbidity was generated when operating at pH = 2.0, and it slowly decreased with increasing to a value of pH = 3.0, at which the turbidity was the lowest. This result was a consequence of the presence of ferric ions in solution. At pH values greater than 3.5, the turbidity increased almost linearly until at pH = 5.0 reached its maximum intensity. In this range, ferrous ions may generate an additional contribution of radicals that promote the degradation of the phenol species that produce turbidity. Turbidity was enhanced at ratios R = 4.0 mol H 2 O 2 /mol C 6 H 6 O. This value corresponds to the stoichiometric ratio that leads to the production of turbidity-precursor species. Therefore, muconic acid would be a species that generate high turbidity in solution according to its isomerism. Also, the results revealed that the turbidity is not a parameter to which species contribute additively since interactions may occur among species that would enhance their individual contributions to it. Analyzing the oxidation of phenol degradation intermediates, the results showed that meta-substituted compounds (resorcinol) generate high turbidity in the wastewater. The presence of polar molecules, such as muconic acid, would provide the structural features that are necessary for resorcinol to act as a clip between two carboxylic groups, thus establishing

  11. Operating Conditions of Coagulation-Flocculation Process for High Turbidity Ceramic Wastewater

    Directory of Open Access Journals (Sweden)

    Sameer Al-Asheh

    2017-04-01

    Full Text Available This work attempted to determine the optimum conditions required for the coagulation and flocculation process as an essential stage of the ceramic wastewater treatment. Coagulation and flocculation is a very necessary step in industries as it lessens turbidity, color, and odor of wastewater. The experimental work was performed in several runs. The volume of wastewater used in each run was 200 mL and was kept at this value throughout. In certain runs, the speed of the mixer was varied while keeping the quantity of coagulant and flocculant constant in order to determine the optimum speed that resulted in the least turbidity. A speed of 5% was chosen as the ideal process speed according to the results obtained. Next, experiments were operated at this optimum speed while changing the dosage of coagulant and flocculant in order to decide the optimum dosage. Coagulant and flocculent amounts of 0.4 g (without booster and 0.2 g (with booster selected after the readings were taken. For all the readings, a turbidity meter was used providing results in Nephelometric Turbidity Units (NTU. Lowest turbidity was achieved when using 5% speed with 0.4 grams of coagulant and 0.4 grams of flocculant, or 5% speed with 0.2 grams of coagulant, 0.2 grams of flocculant and 0.25 g/L of booster coagulant. According to factorial design analysis, such as parameters as impeller speed and dosage have an influential impact on the turbidity; while the booster has insignificant influence and other interactions between parameters are important.

  12. Characterization of the relationship between ceramic pot filter water production and turbidity in source water.

    Science.gov (United States)

    Salvinelli, Carlo; Elmore, A Curt; Reidmeyer, Mary R; Drake, K David; Ahmad, Khaldoun I

    2016-11-01

    Ceramic pot filters represent a common and effective household water treatment technology in developing countries, but factors impacting water production rate are not well-known. Turbidity of source water may be principal indicator in characterizing the filter's lifetime in terms of water production capacity. A flow rate study was conducted by creating four controlled scenarios with different turbidities, and influent and effluent water samples were tested for total suspended solids and particle size distribution. A relationship between average flow rate and turbidity was identified with a negative linear trend of 50 mLh -1 /NTU. Also, a positive linear relationship was found between the initial flow rate of the filters and average flow rate calculated over the 23 day life of the experiment. Therefore, it was possible to establish a method to estimate the average flow rate given the initial flow rate and the turbidity in the influent water source, and to back calculate the maximum average turbidity that would need to be maintained in order to achieve a specific average flow rate. However, long-term investigations should be conducted to assess how these relationships change over the expected CPF lifetime. CPFs rejected fine suspended particles (below 75 μm), especially particles with diameters between 0.375 μm and 10 μm. The results confirmed that ceramic pot filters are able to effectively reduce turbidity, but pretreatment of influent water should be performed to avoid premature failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A label-free fiber-optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring.

    Science.gov (United States)

    Dutt-Ballerstadt, Ralph; Evans, Colton; Pillai, Arun P; Gowda, Ashok

    2014-11-15

    In this paper, we describe the concept of a novel implantable fiber-optic Turbidity Affinity Sensor (TAS) and report on the findings of its in-vitro performance for continuous glucose monitoring. The sensing mechanism of the TAS is based on glucose-specific changes in light scattering (turbidity) of a hydrogel suspension consisting of small particles made of crosslinked dextran (Sephadex G100), and a glucose- and mannose-specific binding protein - Concanavalin A (ConA). The binding of ConA to Sephadex particles results in a significant turbidity increase that is much greater than the turbidity contribution by the individual components. The turbidity of the TAS was measured by determining the intensity of light passing through the suspension enclosed within a small semi-permeable hollow fiber (OD: 220 μm, membrane thickness: 20 μm, molecular weight cut-off: 10 kDa) using fiber optics. The intensity of measured light of the TAS was proportional to the glucose concentration over the concentration range from 50mg/dL to 400mg/dL in PBS and whole blood at 37°C (R>0.96). The response time was approximately 4 min. The stability of the glucose response of the TAS decreased only slightly (by 20%) over an 8-day study period at 37°C. In conclusion, this study demonstrated proof-of-concept of the TAS for interstitial glucose monitoring. Due to the large signal amplitude of the turbidity change, and the lack of need for wavelength-specific emission and excitation filters, a very small, robust and compact TAS device with an extremely short optical pathlength could be feasibly designed and implemented for in-vivo glucose monitoring in people with diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Feasibility of turbidity removal by high-gradient superconducting magnetic separation.

    Science.gov (United States)

    Zeng, Hua; Li, Yiran; Xu, Fengyu; Jiang, Hao; Zhang, Weimin

    2015-01-01

    Several studies have focused on pollutant removal by magnetic seeding and high-gradient superconducting magnetic separation (HGSMS). However, few works reported the application of HGSMS for treating non-magnetic pollutants by an industrial large-scale system. The feasibility of turbidity removal by a 600 mm bore superconducting magnetic separation system was evaluated in this study. The processing parameters were evaluated by using a 102 mm bore superconducting magnetic separation system that was equipped with the same magnetic separation chamber that was used in the 600 mm bore system. The double-canister system was used to process water pollutants. Analytical grade magnetite was used as a magnetic seed and the turbidity of the simulated raw water was approximately 110 NTU, and the effects of polyaluminum chloride (PAC) and magnetic seeds on turbidity removal were evaluated. The use of more PAC and magnetic seeds had few advantages for the HGSMS at doses greater than 8 and 50 mg/l, respectively. A magnetic intensity of 5.0 T was beneficial for HGSMS, and increasing the flow rate through the steel wool matrix decreased the turbidity removal efficiency. In the breakthrough experiments, 90% of the turbidity was removed when 100 column volumes were not reached. The processing capacity of the 600 mm bore industry-scale superconducting magnetic separator for turbidity treatment was approximately 78.0 m(3)/h or 65.5 × 10(4) m(3)/a. The processing cost per ton of water for the 600 mm bore system was 0.1 $/t. Thus, the HGSMS separator could be used in the following special circumstances: (1) when adequate space is not available for traditional water treatment equipment, especially the sedimentation tank, and (2) when decentralized sewage treatment HGSMS systems are easier to transport and install.

  15. Effects of turbidity on predation vulnerability of juvenile humpback chub to rainbow and brown trout

    Science.gov (United States)

    Ward, David L.; Morton-Starner, Rylan; Vaage, Benjamin M.

    2016-01-01

    Predation on juvenile native fish by introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta is considered a significant threat to the persistence of endangered humpback chub Gila cypha in the Colorado River in Grand Canyon. Diet studies of rainbow and brown trout in Glen and Grand canyons indicate that these species eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable depending on the physical conditions under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile humpback chub changes in response to changes in turbidity. In overnight laboratory trials, we exposed hatchery-reared juvenile humpback chub and bonytail Gila elegans (a surrogate for humpback chub) to adult rainbow and brown trout at turbidities ranging from 0 to 1,000 formazin nephlometric units. We found that turbidity as low as 25 formazin nephlometric units significantly reduced predation vulnerability of bonytail to rainbow trout and led to a 36% mean increase in survival (24–60%, 95% CI) compared to trials conducted in clear water. Predation vulnerability of bonytail to brown trout at 25 formazin nephlometric units also decreased with increasing turbidity and resulted in a 25% increase in survival on average (17–32%, 95% CI). Understanding the effects of predation by tr