WorldWideScience

Sample records for large-scale training simulations

  1. Diffusion and Large-Scale Adoption of Computer-Supported Training Simulations in the Military Domain

    Science.gov (United States)

    2013-09-01

    SVET Submerged Vehicle Egress Trainer SWET Shallow Water Egress Trainer TAM Technology Acceptance Model TCP Transmission Control Protocol TEEP...metaphor for food and water , firearms and training, and medical supplies and first aid knowledge), logistical costs (transportation, fuel, and...too long to build new scenarios # 6 3 4 0 % 2.00 4.35 8.70 0.00 Lack of availabilit y when needed # 0 4 0 0 % 0.00 5.80 0.00 0.00 No

  2. Large-scale numerical simulations of plasmas

    International Nuclear Information System (INIS)

    Hamaguchi, Satoshi

    2004-01-01

    The recent trend of large scales simulations of fusion plasma and processing plasmas is briefly summarized. Many advanced simulation techniques have been developed for fusion plasmas and some of these techniques are now applied to analyses of processing plasmas. (author)

  3. Learning from large scale neural simulations

    DEFF Research Database (Denmark)

    Serban, Maria

    2017-01-01

    Large-scale neural simulations have the marks of a distinct methodology which can be fruitfully deployed to advance scientific understanding of the human brain. Computer simulation studies can be used to produce surrogate observational data for better conceptual models and new how...

  4. Large-scale Intelligent Transporation Systems simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

    1995-06-01

    A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  5. Sensitivity technologies for large scale simulation

    International Nuclear Information System (INIS)

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias; Wilcox, Lucas C.; Hill, Judith C.; Ghattas, Omar; Berggren, Martin Olof; Akcelik, Volkan; Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  6. Large scale molecular simulations of nanotoxicity.

    Science.gov (United States)

    Jimenez-Cruz, Camilo A; Kang, Seung-gu; Zhou, Ruhong

    2014-01-01

    The widespread use of nanomaterials in biomedical applications has been accompanied by an increasing interest in understanding their interactions with tissues, cells, and biomolecules, and in particular, on how they might affect the integrity of cell membranes and proteins. In this mini-review, we present a summary of some of the recent studies on this important subject, especially from the point of view of large scale molecular simulations. The carbon-based nanomaterials and noble metal nanoparticles are the main focus, with additional discussions on quantum dots and other nanoparticles as well. The driving forces for adsorption of fullerenes, carbon nanotubes, and graphene nanosheets onto proteins or cell membranes are found to be mainly hydrophobic interactions and the so-called π-π stacking (between aromatic rings), while for the noble metal nanoparticles the long-range electrostatic interactions play a bigger role. More interestingly, there are also growing evidences showing that nanotoxicity can have implications in de novo design of nanomedicine. For example, the endohedral metallofullerenol Gd@C₈₂(OH)₂₂ is shown to inhibit tumor growth and metastasis by inhibiting enzyme MMP-9, and graphene is illustrated to disrupt bacteria cell membranes by insertion/cutting as well as destructive extraction of lipid molecules. These recent findings have provided a better understanding of nanotoxicity at the molecular level and also suggested therapeutic potential by using the cytotoxicity of nanoparticles against cancer or bacteria cells. © 2014 Wiley Periodicals, Inc.

  7. Numerical and experimental simulation of accident processes using KMS large-scale test facility under the program of training university students for nuclear power industry

    International Nuclear Information System (INIS)

    Aniskevich, Yu.N.

    2005-01-01

    The KMS large-scale test facility is being constructed at NITI site and designed to model accident processes in VVER reactor plants and provide experimental data for safety analysis of both existing and future NPPs. The KMS phase I is at the completion stage. This is a containment model of 2000 m3 volume intended for experimentally simulating heat and mass transfers of steam-gas mixtures and aerosols inside containment. The KMS phase II will incorporate a reactor model (1:27 scale) and be used for analysing a number of events including primary and secondary LOCA. The KMS program for background training of university students in the nuclear field will include preparation and conduction of experiments, analysis of experiment data. The KMS program for background training of university students in nuclear will include: participation in the development and application of experiment procedures, preparation and carrying out experiments; carrying out pretest and post-test calculations with different computer codes; on-the-job training as operators of experiment scenarios; training of specialists in measurement and information acquisition technologies. (author)

  8. Proceedings of the meeting on large scale computer simulation research

    International Nuclear Information System (INIS)

    2004-04-01

    The meeting to summarize the collaboration activities for FY2003 on the Large Scale Computer Simulation Research was held January 15-16, 2004 at Theory and Computer Simulation Research Center, National Institute for Fusion Science. Recent simulation results, methodologies and other related topics were presented. (author)

  9. Large Scale Simulations of the Euler Equations on GPU Clusters

    KAUST Repository

    Liebmann, Manfred; Douglas, Craig C.; Haase, Gundolf; Horvá th, Zoltá n

    2010-01-01

    The paper investigates the scalability of a parallel Euler solver, using the Vijayasundaram method, on a GPU cluster with 32 Nvidia Geforce GTX 295 boards. The aim of this research is to enable large scale fluid dynamics simulations with up to one

  10. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  11. Large Scale Simulation Platform for NODES Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Sotorrio, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qin, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Min, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-27

    This report summarizes the Large Scale (LS) simulation platform created for the Eaton NODES project. The simulation environment consists of both wholesale market simulator and distribution simulator and includes the CAISO wholesale market model and a PG&E footprint of 25-75 feeders to validate the scalability under a scenario of 33% RPS in California with additional 17% of DERS coming from distribution and customers. The simulator can generate hourly unit commitment, 5-minute economic dispatch, and 4-second AGC regulation signals. The simulator is also capable of simulating greater than 10k individual controllable devices. Simulated DERs include water heaters, EVs, residential and light commercial HVAC/buildings, and residential-level battery storage. Feeder-level voltage regulators and capacitor banks are also simulated for feeder-level real and reactive power management and Vol/Var control.

  12. Large-scale computing techniques for complex system simulations

    CERN Document Server

    Dubitzky, Werner; Schott, Bernard

    2012-01-01

    Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and

  13. Experimental simulation of microinteractions in large scale explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Luo, R.; Yuen, W.W.; Theofanous, T.G. [California Univ., Santa Barbara, CA (United States). Center for Risk Studies and Safety

    1998-01-01

    This paper presents data and analysis of recent experiments conducted in the SIGMA-2000 facility to simulate microinteractions in large scale explosions. Specifically, the fragmentation behavior of a high temperature molten steel drop under high pressure (beyond critical) conditions are investigated. The current data demonstrate, for the first time, the effect of high pressure in suppressing the thermal effect of fragmentation under supercritical conditions. The results support the microinteractions idea, and the ESPROSE.m prediction of fragmentation rate. (author)

  14. SIMON: Remote collaboration system based on large scale simulation

    International Nuclear Information System (INIS)

    Sugawara, Akihiro; Kishimoto, Yasuaki

    2003-01-01

    Development of SIMON (SImulation MONitoring) system is described. SIMON aims to investigate many physical phenomena of tokamak type nuclear fusion plasma by simulation and to exchange information and to carry out joint researches with scientists in the world using internet. The characteristics of SIMON are followings; 1) decrease load of simulation by trigger sending method, 2) visualization of simulation results and hierarchical structure of analysis, 3) decrease of number of license by using command line when software is used, 4) improvement of support for using network of simulation data output by use of HTML (Hyper Text Markup Language), 5) avoidance of complex built-in work in client part and 6) small-sized and portable software. The visualization method of large scale simulation, remote collaboration system by HTML, trigger sending method, hierarchical analytical method, introduction into three-dimensional electromagnetic transportation code and technologies of SIMON system are explained. (S.Y.)

  15. Accelerating large-scale phase-field simulations with GPU

    Directory of Open Access Journals (Sweden)

    Xiaoming Shi

    2017-10-01

    Full Text Available A new package for accelerating large-scale phase-field simulations was developed by using GPU based on the semi-implicit Fourier method. The package can solve a variety of equilibrium equations with different inhomogeneity including long-range elastic, magnetostatic, and electrostatic interactions. Through using specific algorithm in Compute Unified Device Architecture (CUDA, Fourier spectral iterative perturbation method was integrated in GPU package. The Allen-Cahn equation, Cahn-Hilliard equation, and phase-field model with long-range interaction were solved based on the algorithm running on GPU respectively to test the performance of the package. From the comparison of the calculation results between the solver executed in single CPU and the one on GPU, it was found that the speed on GPU is enormously elevated to 50 times faster. The present study therefore contributes to the acceleration of large-scale phase-field simulations and provides guidance for experiments to design large-scale functional devices.

  16. Robust large-scale parallel nonlinear solvers for simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any

  17. Large Scale Simulations of the Euler Equations on GPU Clusters

    KAUST Repository

    Liebmann, Manfred

    2010-08-01

    The paper investigates the scalability of a parallel Euler solver, using the Vijayasundaram method, on a GPU cluster with 32 Nvidia Geforce GTX 295 boards. The aim of this research is to enable large scale fluid dynamics simulations with up to one billion elements. We investigate communication protocols for the GPU cluster to compensate for the slow Gigabit Ethernet network between the GPU compute nodes and to maintain overall efficiency. A diesel engine intake-port and a nozzle, meshed in different resolutions, give good real world examples for the scalability tests on the GPU cluster. © 2010 IEEE.

  18. Large scale particle simulations in a virtual memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Million, R.; Wagner, J.S.; Tajima, T.

    1983-01-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceeds the computer core size. The required address space is automatically mapped onto slow disc memory the the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Assesses to slow memory significantly reduce the excecution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time. (orig.)

  19. Lightweight computational steering of very large scale molecular dynamics simulations

    International Nuclear Information System (INIS)

    Beazley, D.M.

    1996-01-01

    We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show how this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages

  20. Believability in simplifications of large scale physically based simulation

    KAUST Repository

    Han, Donghui; Hsu, Shu-wei; McNamara, Ann; Keyser, John

    2013-01-01

    We verify two hypotheses which are assumed to be true only intuitively in many rigid body simulations. I: In large scale rigid body simulation, viewers may not be able to perceive distortion incurred by an approximated simulation method. II: Fixing objects under a pile of objects does not affect the visual plausibility. Visual plausibility of scenarios simulated with these hypotheses assumed true are measured using subjective rating from viewers. As expected, analysis of results supports the truthfulness of the hypotheses under certain simulation environments. However, our analysis discovered four factors which may affect the authenticity of these hypotheses: number of collisions simulated simultaneously, homogeneity of colliding object pairs, distance from scene under simulation to camera position, and simulation method used. We also try to find an objective metric of visual plausibility from eye-tracking data collected from viewers. Analysis of these results indicates that eye-tracking does not present a suitable proxy for measuring plausibility or distinguishing between types of simulations. © 2013 ACM.

  1. Remote collaboration system based on large scale simulation

    International Nuclear Information System (INIS)

    Kishimoto, Yasuaki; Sugahara, Akihiro; Li, J.Q.

    2008-01-01

    Large scale simulation using super-computer, which generally requires long CPU time and produces large amount of data, has been extensively studied as a third pillar in various advanced science fields in parallel to theory and experiment. Such a simulation is expected to lead new scientific discoveries through elucidation of various complex phenomena, which are hardly identified only by conventional theoretical and experimental approaches. In order to assist such large simulation studies for which many collaborators working at geographically different places participate and contribute, we have developed a unique remote collaboration system, referred to as SIMON (simulation monitoring system), which is based on client-server system control introducing an idea of up-date processing, contrary to that of widely used post-processing. As a key ingredient, we have developed a trigger method, which transmits various requests for the up-date processing from the simulation (client) running on a super-computer to a workstation (server). Namely, the simulation running on a super-computer actively controls the timing of up-date processing. The server that has received the requests from the ongoing simulation such as data transfer, data analyses, and visualizations, etc. starts operations according to the requests during the simulation. The server makes the latest results available to web browsers, so that the collaborators can monitor the results at any place and time in the world. By applying the system to a specific simulation project of laser-matter interaction, we have confirmed that the system works well and plays an important role as a collaboration platform on which many collaborators work with one another

  2. Simulation of fatigue crack growth under large scale yielding conditions

    Science.gov (United States)

    Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann

    2010-07-01

    A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.

  3. Contextual Compression of Large-Scale Wind Turbine Array Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Potter, Kristin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clyne, John [National Center for Atmospheric Research (NCAR)

    2017-12-04

    Data sizes are becoming a critical issue particularly for HPC applications. We have developed a user-driven lossy wavelet-based storage model to facilitate the analysis and visualization of large-scale wind turbine array simulations. The model stores data as heterogeneous blocks of wavelet coefficients, providing high-fidelity access to user-defined data regions believed the most salient, while providing lower-fidelity access to less salient regions on a block-by-block basis. In practice, by retaining the wavelet coefficients as a function of feature saliency, we have seen data reductions in excess of 94 percent, while retaining lossless information in the turbine-wake regions most critical to analysis and providing enough (low-fidelity) contextual information in the upper atmosphere to track incoming coherent turbulent structures. Our contextual wavelet compression approach has allowed us to deliver interative visual analysis while providing the user control over where data loss, and thus reduction in accuracy, in the analysis occurs. We argue this reduced but contextualized representation is a valid approach and encourages contextual data management.

  4. Large-scale ground motion simulation using GPGPU

    Science.gov (United States)

    Aoi, S.; Maeda, T.; Nishizawa, N.; Aoki, T.

    2012-12-01

    Huge computation resources are required to perform large-scale ground motion simulations using 3-D finite difference method (FDM) for realistic and complex models with high accuracy. Furthermore, thousands of various simulations are necessary to evaluate the variability of the assessment caused by uncertainty of the assumptions of the source models for future earthquakes. To conquer the problem of restricted computational resources, we introduced the use of GPGPU (General purpose computing on graphics processing units) which is the technique of using a GPU as an accelerator of the computation which has been traditionally conducted by the CPU. We employed the CPU version of GMS (Ground motion Simulator; Aoi et al., 2004) as the original code and implemented the function for GPU calculation using CUDA (Compute Unified Device Architecture). GMS is a total system for seismic wave propagation simulation based on 3-D FDM scheme using discontinuous grids (Aoi&Fujiwara, 1999), which includes the solver as well as the preprocessor tools (parameter generation tool) and postprocessor tools (filter tool, visualization tool, and so on). The computational model is decomposed in two horizontal directions and each decomposed model is allocated to a different GPU. We evaluated the performance of our newly developed GPU version of GMS on the TSUBAME2.0 which is one of the Japanese fastest supercomputer operated by the Tokyo Institute of Technology. First we have performed a strong scaling test using the model with about 22 million grids and achieved 3.2 and 7.3 times of the speed-up by using 4 and 16 GPUs. Next, we have examined a weak scaling test where the model sizes (number of grids) are increased in proportion to the degree of parallelism (number of GPUs). The result showed almost perfect linearity up to the simulation with 22 billion grids using 1024 GPUs where the calculation speed reached to 79.7 TFlops and about 34 times faster than the CPU calculation using the same number

  5. Large-scale computer-mediated training for management teachers

    Directory of Open Access Journals (Sweden)

    Gilly Salmon

    1997-01-01

    Full Text Available In 1995/6 the Open University Business School (OUBS trained 187 tutors in the UK and Continental Western Europe in Computer Mediated Conferencing (CMC for management education. The medium chosen for the training was FirstClassTM. In 1996/7 the OUBS trained a further 106 tutors in FirstClassTM using an improved version of the previous years training. The on line training was based on a previously developed model of learning on line. The model was tested both by means of the structure of the training programme and the improvements made. The training programme was evaluated and revised for the second cohort. Comparison was made between the two training programmes.

  6. Large-scale derived flood frequency analysis based on continuous simulation

    Science.gov (United States)

    Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several

  7. Enabling parallel simulation of large-scale HPC network systems

    International Nuclear Information System (INIS)

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.; Carns, Philip

    2016-01-01

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks used in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations

  8. Simulating large-scale spiking neuronal networks with NEST

    OpenAIRE

    Schücker, Jannis; Eppler, Jochen Martin

    2014-01-01

    The Neural Simulation Tool NEST [1, www.nest-simulator.org] is the simulator for spiking neural networkmodels of the HBP that focuses on the dynamics, size and structure of neural systems rather than on theexact morphology of individual neurons. Its simulation kernel is written in C++ and it runs on computinghardware ranging from simple laptops to clusters and supercomputers with thousands of processor cores.The development of NEST is coordinated by the NEST Initiative [www.nest-initiative.or...

  9. Parallel Earthquake Simulations on Large-Scale Multicore Supercomputers

    KAUST Repository

    Wu, Xingfu; Duan, Benchun; Taylor, Valerie

    2011-01-01

    , such as California and Japan, scientists have been using numerical simulations to study earthquake rupture propagation along faults and seismic wave propagation in the surrounding media on ever-advancing modern computers over past several decades. In particular

  10. Manufacturing Process Simulation of Large-Scale Cryotanks

    Science.gov (United States)

    Babai, Majid; Phillips, Steven; Griffin, Brian

    2003-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing

  11. Modeling and Simulation Techniques for Large-Scale Communications Modeling

    National Research Council Canada - National Science Library

    Webb, Steve

    1997-01-01

    .... Tests of random number generators were also developed and applied to CECOM models. It was found that synchronization of random number strings in simulations is easy to implement and can provide significant savings for making comparative studies. If synchronization is in place, then statistical experiment design can be used to provide information on the sensitivity of the output to input parameters. The report concludes with recommendations and an implementation plan.

  12. Parallel Earthquake Simulations on Large-Scale Multicore Supercomputers

    KAUST Repository

    Wu, Xingfu

    2011-01-01

    Earthquakes are one of the most destructive natural hazards on our planet Earth. Hugh earthquakes striking offshore may cause devastating tsunamis, as evidenced by the 11 March 2011 Japan (moment magnitude Mw9.0) and the 26 December 2004 Sumatra (Mw9.1) earthquakes. Earthquake prediction (in terms of the precise time, place, and magnitude of a coming earthquake) is arguably unfeasible in the foreseeable future. To mitigate seismic hazards from future earthquakes in earthquake-prone areas, such as California and Japan, scientists have been using numerical simulations to study earthquake rupture propagation along faults and seismic wave propagation in the surrounding media on ever-advancing modern computers over past several decades. In particular, ground motion simulations for past and future (possible) significant earthquakes have been performed to understand factors that affect ground shaking in populated areas, and to provide ground shaking characteristics and synthetic seismograms for emergency preparation and design of earthquake-resistant structures. These simulation results can guide the development of more rational seismic provisions for leading to safer, more efficient, and economical50pt]Please provide V. Taylor author e-mail ID. structures in earthquake-prone regions.

  13. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    OpenAIRE

    Qiang Liu; Yi Qin; Guodong Li

    2018-01-01

    Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal...

  14. Numerical simulations of a large scale oxy-coal burner

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Taeyoung [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Park, Sanghyun; Ryu, Changkook [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Yang, Won [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group

    2013-07-01

    Oxy-coal combustion is one of promising carbon dioxide capture and storage (CCS) technologies that uses oxygen and recirculated CO{sub 2} as an oxidizer instead of air. Due to difference in physical properties between CO{sub 2} and N{sub 2}, the oxy-coal combustion requires development of burner and boiler based on fundamental understanding of the flame shape, temperature, radiation and heat flux. For design of a new oxy-coal combustion system, computational fluid dynamics (CFD) is an essential tool to evaluate detailed combustion characteristics and supplement experimental results. In this study, CFD analysis was performed to understand the combustion characteristics inside a tangential vane swirl type 30 MW coal burner for air-mode and oxy-mode operations. In oxy-mode operations, various compositions of primary and secondary oxidizers were assessed which depended on the recirculation ratio of flue gas. For the simulations, devolatilization of coal and char burnout by O{sub 2}, CO{sub 2} and H{sub 2}O were predicted with a Lagrangian particle tracking method considering size distribution of pulverized coal and turbulent dispersion. The radiative heat transfer was solved by employing the discrete ordinate method with the weighted sum of gray gases model (WSGGM) optimized for oxy-coal combustion. In the simulation results for oxy-model operation, the reduced swirl strength of secondary oxidizer increased the flame length due to lower specific volume of CO{sub 2} than N{sub 2}. The flame length was also sensitive to the flow rate of primary oxidizer. The oxidizer without N{sub 2} that reduces thermal NO{sub x} formation makes the NO{sub x} lower in oxy-mode than air-mode. The predicted results showed similar trends with measured temperature profiles for various oxidizer compositions. Further numerical investigations are required to improve the burner design combined with more detailed experimental results.

  15. GPU-Accelerated Sparse Matrix Solvers for Large-Scale Simulations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Many large-scale numerical simulations can be broken down into common mathematical routines. While the applications may differ, the need to perform functions such as...

  16. Initial condition effects on large scale structure in numerical simulations of plane mixing layers

    Science.gov (United States)

    McMullan, W. A.; Garrett, S. J.

    2016-01-01

    In this paper, Large Eddy Simulations are performed on the spatially developing plane turbulent mixing layer. The simulated mixing layers originate from initially laminar conditions. The focus of this research is on the effect of the nature of the imposed fluctuations on the large-scale spanwise and streamwise structures in the flow. Two simulations are performed; one with low-level three-dimensional inflow fluctuations obtained from pseudo-random numbers, the other with physically correlated fluctuations of the same magnitude obtained from an inflow generation technique. Where white-noise fluctuations provide the inflow disturbances, no spatially stationary streamwise vortex structure is observed, and the large-scale spanwise turbulent vortical structures grow continuously and linearly. These structures are observed to have a three-dimensional internal geometry with branches and dislocations. Where physically correlated provide the inflow disturbances a "streaky" streamwise structure that is spatially stationary is observed, with the large-scale turbulent vortical structures growing with the square-root of time. These large-scale structures are quasi-two-dimensional, on top of which the secondary structure rides. The simulation results are discussed in the context of the varying interpretations of mixing layer growth that have been postulated. Recommendations are made concerning the data required from experiments in order to produce accurate numerical simulation recreations of real flows.

  17. Large-scale agent-based social simulation : A study on epidemic prediction and control

    NARCIS (Netherlands)

    Zhang, M.

    2016-01-01

    Large-scale agent-based social simulation is gradually proving to be a versatile methodological approach for studying human societies, which could make contributions from policy making in social science, to distributed artificial intelligence and agent technology in computer science, and to theory

  18. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2018-05-01

    Full Text Available Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal computer, a Graphics Processing Unit (GPU-based, high-performance computing method using the OpenACC application was adopted to parallelize the shallow water model. An unstructured data management method was presented to control the data transportation between the GPU and CPU (Central Processing Unit with minimum overhead, and then both computation and data were offloaded from the CPU to the GPU, which exploited the computational capability of the GPU as much as possible. The parallel model was validated using various benchmarks and real-world case studies. The results demonstrate that speed-ups of up to one order of magnitude can be achieved in comparison with the serial model. The proposed parallel model provides a fast and reliable tool with which to quickly assess flood hazards in large-scale areas and, thus, has a bright application prospect for dynamic inundation risk identification and disaster assessment.

  19. Large Scale Monte Carlo Simulation of Neutrino Interactions Using the Open Science Grid and Commercial Clouds

    International Nuclear Information System (INIS)

    Norman, A.; Boyd, J.; Davies, G.; Flumerfelt, E.; Herner, K.; Mayer, N.; Mhashilhar, P.; Tamsett, M.; Timm, S.

    2015-01-01

    Modern long baseline neutrino experiments like the NOvA experiment at Fermilab, require large scale, compute intensive simulations of their neutrino beam fluxes and backgrounds induced by cosmic rays. The amount of simulation required to keep the systematic uncertainties in the simulation from dominating the final physics results is often 10x to 100x that of the actual detector exposure. For the first physics results from NOvA this has meant the simulation of more than 2 billion cosmic ray events in the far detector and more than 200 million NuMI beam spill simulations. Performing these high statistics levels of simulation have been made possible for NOvA through the use of the Open Science Grid and through large scale runs on commercial clouds like Amazon EC2. We details the challenges in performing large scale simulation in these environments and how the computing infrastructure for the NOvA experiment has been adapted to seamlessly support the running of different simulation and data processing tasks on these resources. (paper)

  20. Visual Data-Analytics of Large-Scale Parallel Discrete-Event Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Caitlin; Carothers, Christopher D.; Mubarak, Misbah; Carns, Philip; Ross, Robert; Li, Jianping Kelvin; Ma, Kwan-Liu

    2016-11-13

    Parallel discrete-event simulation (PDES) is an important tool in the codesign of extreme-scale systems because PDES provides a cost-effective way to evaluate designs of highperformance computing systems. Optimistic synchronization algorithms for PDES, such as Time Warp, allow events to be processed without global synchronization among the processing elements. A rollback mechanism is provided when events are processed out of timestamp order. Although optimistic synchronization protocols enable the scalability of large-scale PDES, the performance of the simulations must be tuned to reduce the number of rollbacks and provide an improved simulation runtime. To enable efficient large-scale optimistic simulations, one has to gain insight into the factors that affect the rollback behavior and simulation performance. We developed a tool for ROSS model developers that gives them detailed metrics on the performance of their large-scale optimistic simulations at varying levels of simulation granularity. Model developers can use this information for parameter tuning of optimistic simulations in order to achieve better runtime and fewer rollbacks. In this work, we instrument the ROSS optimistic PDES framework to gather detailed statistics about the simulation engine. We have also developed an interactive visualization interface that uses the data collected by the ROSS instrumentation to understand the underlying behavior of the simulation engine. The interface connects real time to virtual time in the simulation and provides the ability to view simulation data at different granularities. We demonstrate the usefulness of our framework by performing a visual analysis of the dragonfly network topology model provided by the CODES simulation framework built on top of ROSS. The instrumentation needs to minimize overhead in order to accurately collect data about the simulation performance. To ensure that the instrumentation does not introduce unnecessary overhead, we perform a

  1. Characteristics of Tornado-Like Vortices Simulated in a Large-Scale Ward-Type Simulator

    Science.gov (United States)

    Tang, Zhuo; Feng, Changda; Wu, Liang; Zuo, Delong; James, Darryl L.

    2018-02-01

    Tornado-like vortices are simulated in a large-scale Ward-type simulator to further advance the understanding of such flows, and to facilitate future studies of tornado wind loading on structures. Measurements of the velocity fields near the simulator floor and the resulting floor surface pressures are interpreted to reveal the mean and fluctuating characteristics of the flow as well as the characteristics of the static-pressure deficit. We focus on the manner in which the swirl ratio and the radial Reynolds number affect these characteristics. The transition of the tornado-like flow from a single-celled vortex to a dual-celled vortex with increasing swirl ratio and the impact of this transition on the flow field and the surface-pressure deficit are closely examined. The mean characteristics of the surface-pressure deficit caused by tornado-like vortices simulated at a number of swirl ratios compare well with the corresponding characteristics recorded during full-scale tornadoes.

  2. A method of orbital analysis for large-scale first-principles simulations

    International Nuclear Information System (INIS)

    Ohwaki, Tsukuru; Otani, Minoru; Ozaki, Taisuke

    2014-01-01

    An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF 4 )

  3. Copy of Using Emulation and Simulation to Understand the Large-Scale Behavior of the Internet.

    Energy Technology Data Exchange (ETDEWEB)

    Adalsteinsson, Helgi; Armstrong, Robert C.; Chiang, Ken; Gentile, Ann C.; Lloyd, Levi; Minnich, Ronald G.; Vanderveen, Keith; Van Randwyk, Jamie A; Rudish, Don W.

    2008-10-01

    We report on the work done in the late-start LDRDUsing Emulation and Simulation toUnderstand the Large-Scale Behavior of the Internet. We describe the creation of a researchplatform that emulates many thousands of machines to be used for the study of large-scale inter-net behavior. We describe a proof-of-concept simple attack we performed in this environment.We describe the successful capture of a Storm bot and, from the study of the bot and furtherliterature search, establish large-scale aspects we seek to understand via emulation of Storm onour research platform in possible follow-on work. Finally, we discuss possible future work.3

  4. Working memory training mostly engages general-purpose large-scale networks for learning.

    Science.gov (United States)

    Salmi, Juha; Nyberg, Lars; Laine, Matti

    2018-03-21

    The present meta-analytic study examined brain activation changes following working memory (WM) training, a form of cognitive training that has attracted considerable interest. Comparisons with perceptual-motor (PM) learning revealed that WM training engages domain-general large-scale networks for learning encompassing the dorsal attention and salience networks, sensory areas, and striatum. Also the dynamics of the training-induced brain activation changes within these networks showed a high overlap between WM and PM training. The distinguishing feature for WM training was the consistent modulation of the dorso- and ventrolateral prefrontal cortex (DLPFC/VLPFC) activity. The strongest candidate for mediating transfer to similar untrained WM tasks was the frontostriatal system, showing higher striatal and VLPFC activations, and lower DLPFC activations after training. Modulation of transfer-related areas occurred mostly with longer training periods. Overall, our findings place WM training effects into a general perception-action cycle, where some modulations may depend on the specific cognitive demands of a training task. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Establishment of DNS database in a turbulent channel flow by large-scale simulations

    OpenAIRE

    Abe, Hiroyuki; Kawamura, Hiroshi; 阿部 浩幸; 河村 洋

    2008-01-01

    In the present study, we establish statistical DNS (Direct Numerical Simulation) database in a turbulent channel flow with passive scalar transport at high Reynolds numbers and make the data available at our web site (http://murasun.me.noda.tus.ac.jp/turbulence/). The established database is reported together with the implementation of large-scale simulations, representative DNS results and results on turbulence model testing using the DNS data.

  6. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    Science.gov (United States)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; hide

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  7. REIONIZATION ON LARGE SCALES. I. A PARAMETRIC MODEL CONSTRUCTED FROM RADIATION-HYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Battaglia, N.; Trac, H.; Cen, R.; Loeb, A.

    2013-01-01

    We present a new method for modeling inhomogeneous cosmic reionization on large scales. Utilizing high-resolution radiation-hydrodynamic simulations with 2048 3 dark matter particles, 2048 3 gas cells, and 17 billion adaptive rays in a L = 100 Mpc h –1 box, we show that the density and reionization redshift fields are highly correlated on large scales (∼> 1 Mpc h –1 ). This correlation can be statistically represented by a scale-dependent linear bias. We construct a parametric function for the bias, which is then used to filter any large-scale density field to derive the corresponding spatially varying reionization redshift field. The parametric model has three free parameters that can be reduced to one free parameter when we fit the two bias parameters to simulation results. We can differentiate degenerate combinations of the bias parameters by combining results for the global ionization histories and correlation length between ionized regions. Unlike previous semi-analytic models, the evolution of the reionization redshift field in our model is directly compared cell by cell against simulations and performs well in all tests. Our model maps the high-resolution, intermediate-volume radiation-hydrodynamic simulations onto lower-resolution, larger-volume N-body simulations (∼> 2 Gpc h –1 ) in order to make mock observations and theoretical predictions

  8. Review of Dynamic Modeling and Simulation of Large Scale Belt Conveyor System

    Science.gov (United States)

    He, Qing; Li, Hong

    Belt conveyor is one of the most important devices to transport bulk-solid material for long distance. Dynamic analysis is the key to decide whether the design is rational in technique, safe and reliable in running, feasible in economy. It is very important to study dynamic properties, improve efficiency and productivity, guarantee conveyor safe, reliable and stable running. The dynamic researches and applications of large scale belt conveyor are discussed. The main research topics, the state-of-the-art of dynamic researches on belt conveyor are analyzed. The main future works focus on dynamic analysis, modeling and simulation of main components and whole system, nonlinear modeling, simulation and vibration analysis of large scale conveyor system.

  9. Development of the simulation package 'ELSES' for extra-large-scale electronic structure calculation

    International Nuclear Information System (INIS)

    Hoshi, T; Fujiwara, T

    2009-01-01

    An early-stage version of the simulation package 'ELSES' (extra-large-scale electronic structure calculation) is developed for simulating the electronic structure and dynamics of large systems, particularly nanometer-scale and ten-nanometer-scale systems (see www.elses.jp). Input and output files are written in the extensible markup language (XML) style for general users. Related pre-/post-simulation tools are also available. A practical workflow and an example are described. A test calculation for the GaAs bulk system is shown, to demonstrate that the present code can handle systems with more than one atom species. Several future aspects are also discussed.

  10. Simple Model for Simulating Characteristics of River Flow Velocity in Large Scale

    Directory of Open Access Journals (Sweden)

    Husin Alatas

    2015-01-01

    Full Text Available We propose a simple computer based phenomenological model to simulate the characteristics of river flow velocity in large scale. We use shuttle radar tomography mission based digital elevation model in grid form to define the terrain of catchment area. The model relies on mass-momentum conservation law and modified equation of motion of falling body in inclined plane. We assume inelastic collision occurs at every junction of two river branches to describe the dynamics of merged flow velocity.

  11. The effects of large scale processing on caesium leaching from cemented simulant sodium nitrate waste

    International Nuclear Information System (INIS)

    Lee, D.J.; Brown, D.J.

    1982-01-01

    The effects of large scale processing on the properties of cemented simulant sodium nitrate waste have been investigated. Leach tests have been performed on full-size drums, cores and laboratory samples of cement formulations containing Ordinary Portland Cement (OPC), Sulphate Resisting Portland Cement (SRPC) and a blended cement (90% ground granulated blast furnace slag/10% OPC). In addition, development of the cement hydration exotherms with time and the temperature distribution in 220 dm 3 samples have been followed. (author)

  12. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  13. Large-scale micromagnetics simulations with dipolar interaction using all-to-all communications

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2016-05-01

    Full Text Available We implement on our micromagnetics simulator low-complexity parallel fast-Fourier-transform algorithms, which reduces the frequency of all-to-all communications from six to two times. Almost all the computation time of micromagnetics simulation is taken up by the calculation of the magnetostatic field which can be calculated using the fast Fourier transform method. The results show that the simulation time is decreased with good scalability, even if the micromagentics simulation is performed using 8192 physical cores. This high parallelization effect enables large-scale micromagentics simulation using over one billion to be performed. Because massively parallel computing is needed to simulate the magnetization dynamics of real permanent magnets composed of many micron-sized grains, it is expected that our simulator reveals how magnetization dynamics influences the coercivity of the permanent magnet.

  14. ROSA-IV Large Scale Test Facility (LSTF) system description for second simulated fuel assembly

    International Nuclear Information System (INIS)

    1990-10-01

    The ROSA-IV Program's Large Scale Test Facility (LSTF) is a test facility for integral simulation of thermal-hydraulic response of a pressurized water reactor (PWR) during small break loss-of-coolant accidents (LOCAs) and transients. In this facility, the PWR core nuclear fuel rods are simulated using electric heater rods. The simulated fuel assembly which was installed during the facility construction was replaced with a new one in 1988. The first test with this second simulated fuel assembly was conducted in December 1988. This report describes the facility configuration and characteristics as of this date (December 1988) including the new simulated fuel assembly design and the facility changes which were made during the testing with the first assembly as well as during the renewal of the simulated fuel assembly. (author)

  15. The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation.

    Science.gov (United States)

    Tian, Yang; Liu, Zhilin; Li, Xiaoqian; Zhang, Lihua; Li, Ruiqing; Jiang, Ripeng; Dong, Fang

    2018-05-01

    Ultrasonic sonotrodes play an essential role in transmitting power ultrasound into the large-scale metallic casting. However, cavitation erosion considerably impairs the in-service performance of ultrasonic sonotrodes, leading to marginal microstructural refinement. In this work, the cavitation erosion behaviour of ultrasonic sonotrodes in large-scale castings was explored using the industry-level experiments of Al alloy cylindrical ingots (i.e. 630 mm in diameter and 6000 mm in length). When introducing power ultrasound, severe cavitation erosion was found to reproducibly occur at some specific positions on ultrasonic sonotrodes. However, there is no cavitation erosion present on the ultrasonic sonotrodes that were not driven by electric generator. Vibratory examination showed cavitation erosion depended on the vibration state of ultrasonic sonotrodes. Moreover, a finite element (FE) model was developed to simulate the evolution and distribution of acoustic pressure in 3-D solidification volume. FE simulation results confirmed that significant dynamic interaction between sonotrodes and melts only happened at some specific positions corresponding to severe cavitation erosion. This work will allow for developing more advanced ultrasonic sonotrodes with better cavitation erosion-resistance, in particular for large-scale castings, from the perspectives of ultrasonic physics and mechanical design. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Simulation research on the process of large scale ship plane segmentation intelligent workshop

    Science.gov (United States)

    Xu, Peng; Liao, Liangchuang; Zhou, Chao; Xue, Rui; Fu, Wei

    2017-04-01

    Large scale ship plane segmentation intelligent workshop is a new thing, and there is no research work in related fields at home and abroad. The mode of production should be transformed by the existing industry 2.0 or part of industry 3.0, also transformed from "human brain analysis and judgment + machine manufacturing" to "machine analysis and judgment + machine manufacturing". In this transforming process, there are a great deal of tasks need to be determined on the aspects of management and technology, such as workshop structure evolution, development of intelligent equipment and changes in business model. Along with them is the reformation of the whole workshop. Process simulation in this project would verify general layout and process flow of large scale ship plane section intelligent workshop, also would analyze intelligent workshop working efficiency, which is significant to the next step of the transformation of plane segmentation intelligent workshop.

  17. Simulation test of PIUS-type reactor with large scale experimental apparatus

    International Nuclear Information System (INIS)

    Tamaki, M.; Tsuji, Y.; Ito, T.; Tasaka, K.; Kukita, Yutaka

    1995-01-01

    A large scale experimental apparatus for simulating the PIUS-type reactor has been constructed keeping the volumetric scaling ratio to the realistic reactor model. Fundamental experiments such as a steady state operation and a pump trip simulation were performed. Experimental results were compared with those obtained by the small scale apparatus in JAERI. We have already reported the effectiveness of the feedback control for the primary loop pump speed (PI control) for the stable operation. In this paper this feedback system is modified and the PID control is introduced. This new system worked well for the operation of the PIUS-type reactor even in a rapid transient condition. (author)

  18. Large-Scale Brain Simulation and Disorders of Consciousness. Mapping Technical and Conceptual Issues

    Directory of Open Access Journals (Sweden)

    Michele Farisco

    2018-04-01

    Full Text Available Modeling and simulations have gained a leading position in contemporary attempts to describe, explain, and quantitatively predict the human brain’s operations. Computer models are highly sophisticated tools developed to achieve an integrated knowledge of the brain with the aim of overcoming the actual fragmentation resulting from different neuroscientific approaches. In this paper we investigate the plausibility of simulation technologies for emulation of consciousness and the potential clinical impact of large-scale brain simulation on the assessment and care of disorders of consciousness (DOCs, e.g., Coma, Vegetative State/Unresponsive Wakefulness Syndrome, Minimally Conscious State. Notwithstanding their technical limitations, we suggest that simulation technologies may offer new solutions to old practical problems, particularly in clinical contexts. We take DOCs as an illustrative case, arguing that the simulation of neural correlates of consciousness is potentially useful for improving treatments of patients with DOCs.

  19. Cerebral methodology based computing to estimate real phenomena from large-scale nuclear simulation

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2011-01-01

    Our final goal is to estimate real phenomena from large-scale nuclear simulations by using computing processes. Large-scale simulations mean that they include scale variety and physical complexity so that corresponding experiments and/or theories do not exist. In nuclear field, it is indispensable to estimate real phenomena from simulations in order to improve the safety and security of nuclear power plants. Here, the analysis of uncertainty included in simulations is needed to reveal sensitivity of uncertainty due to randomness, to reduce the uncertainty due to lack of knowledge and to lead a degree of certainty by verification and validation (V and V) and uncertainty quantification (UQ) processes. To realize this, we propose 'Cerebral Methodology based Computing (CMC)' as computing processes with deductive and inductive approaches by referring human reasoning processes. Our idea is to execute deductive and inductive simulations contrasted with deductive and inductive approaches. We have established its prototype system and applied it to a thermal displacement analysis of a nuclear power plant. The result shows that our idea is effective to reduce the uncertainty and to get the degree of certainty. (author)

  20. A method of orbital analysis for large-scale first-principles simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ohwaki, Tsukuru [Advanced Materials Laboratory, Nissan Research Center, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523 (Japan); Otani, Minoru [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ozaki, Taisuke [Research Center for Simulation Science (RCSS), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2014-06-28

    An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF{sub 4})

  1. The large-scale environment from cosmological simulations - I. The baryonic cosmic web

    Science.gov (United States)

    Cui, Weiguang; Knebe, Alexander; Yepes, Gustavo; Yang, Xiaohu; Borgani, Stefano; Kang, Xi; Power, Chris; Staveley-Smith, Lister

    2018-01-01

    Using a series of cosmological simulations that includes one dark-matter-only (DM-only) run, one gas cooling-star formation-supernova feedback (CSF) run and one that additionally includes feedback from active galactic nuclei (AGNs), we classify the large-scale structures with both a velocity-shear-tensor code (VWEB) and a tidal-tensor code (PWEB). We find that the baryonic processes have almost no impact on large-scale structures - at least not when classified using aforementioned techniques. More importantly, our results confirm that the gas component alone can be used to infer the filamentary structure of the universe practically un-biased, which could be applied to cosmology constraints. In addition, the gas filaments are classified with its velocity (VWEB) and density (PWEB) fields, which can theoretically connect to the radio observations, such as H I surveys. This will help us to bias-freely link the radio observations with dark matter distributions at large scale.

  2. Parallel Motion Simulation of Large-Scale Real-Time Crowd in a Hierarchical Environmental Model

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2012-01-01

    Full Text Available This paper presents a parallel real-time crowd simulation method based on a hierarchical environmental model. A dynamical model of the complex environment should be constructed to simulate the state transition and propagation of individual motions. By modeling of a virtual environment where virtual crowds reside, we employ different parallel methods on a topological layer, a path layer and a perceptual layer. We propose a parallel motion path matching method based on the path layer and a parallel crowd simulation method based on the perceptual layer. The large-scale real-time crowd simulation becomes possible with these methods. Numerical experiments are carried out to demonstrate the methods and results.

  3. Model abstraction addressing long-term simulations of chemical degradation of large-scale concrete structures

    International Nuclear Information System (INIS)

    Jacques, D.; Perko, J.; Seetharam, S.; Mallants, D.

    2012-01-01

    This paper presents a methodology to assess the spatial-temporal evolution of chemical degradation fronts in real-size concrete structures typical of a near-surface radioactive waste disposal facility. The methodology consists of the abstraction of a so-called full (complicated) model accounting for the multicomponent - multi-scale nature of concrete to an abstracted (simplified) model which simulates chemical concrete degradation based on a single component in the aqueous and solid phase. The abstracted model is verified against chemical degradation fronts simulated with the full model under both diffusive and advective transport conditions. Implementation in the multi-physics simulation tool COMSOL allows simulation of the spatial-temporal evolution of chemical degradation fronts in large-scale concrete structures. (authors)

  4. Military Training Lands Historic Context: Training Village, Mock Sites, And Large Scale Operations Areas

    Science.gov (United States)

    2010-03-01

    and each unit was given regular training in addition to two months of intense ski training from a group that included many of the famous skiers in... knowledge of first aid and care in extreme conditions that came from mountain training were invaluable to troops in the European theater. The 10th Mountain...of conflict between the civilians who had come into the army with superior skills and knowledge of mountaineering, and the military officials over

  5. Large-scale simulations of plastic neural networks on neuromorphic hardware

    Directory of Open Access Journals (Sweden)

    James Courtney Knight

    2016-04-01

    Full Text Available SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Rather than using bespoke analog or digital hardware, the basic computational unit of a SpiNNaker system is a general-purpose ARM processor, allowing it to be programmed to simulate a wide variety of neuron and synapse models. This flexibility is particularly valuable in the study of biological plasticity phenomena. A recently proposed learning rule based on the Bayesian Confidence Propagation Neural Network (BCPNN paradigm offers a generic framework for modeling the interaction of different plasticity mechanisms using spiking neurons. However, it can be computationally expensive to simulate large networks with BCPNN learning since it requires multiple state variables for each synapse, each of which needs to be updated every simulation time-step. We discuss the trade-offs in efficiency and accuracy involved in developing an event-based BCPNN implementation for SpiNNaker based on an analytical solution to the BCPNN equations, and detail the steps taken to fit this within the limited computational and memory resources of the SpiNNaker architecture. We demonstrate this learning rule by learning temporal sequences of neural activity within a recurrent attractor network which we simulate at scales of up to 20000 neurons and 51200000 plastic synapses: the largest plastic neural network ever to be simulated on neuromorphic hardware. We also run a comparable simulation on a Cray XC-30 supercomputer system and find that, if it is to match the run-time of our SpiNNaker simulation, the super computer system uses approximately more power. This suggests that cheaper, more power efficient neuromorphic systems are becoming useful discovery tools in the study of plasticity in large-scale brain models.

  6. Use of a large-scale rainfall simulator reveals novel insights into stemflow generation

    Science.gov (United States)

    Levia, D. F., Jr.; Iida, S. I.; Nanko, K.; Sun, X.; Shinohara, Y.; Sakai, N.

    2017-12-01

    Detailed knowledge of stemflow generation and its effects on both hydrological and biogoechemical cycling is important to achieve a holistic understanding of forest ecosystems. Field studies and a smaller set of experiments performed under laboratory conditions have increased our process-based knowledge of stemflow production. Building upon these earlier works, a large-scale rainfall simulator was employed to deepen our understanding of stemflow generation processes. The use of the large-scale rainfall simulator provides a unique opportunity to examine a range of rainfall intensities under constant conditions that are difficult under natural conditions due to the variable nature of rainfall intensities in the field. Stemflow generation and production was examined for three species- Cryptomeria japonica D. Don (Japanese cedar), Chamaecyparis obtusa (Siebold & Zucc.) Endl. (Japanese cypress), Zelkova serrata Thunb. (Japanese zelkova)- under both leafed and leafless conditions at several different rainfall intensities (15, 20, 30, 40, 50, and 100 mm h-1) using a large-scale rainfall simulator in National Research Institute for Earth Science and Disaster Resilience (Tsukuba, Japan). Stemflow production and rates and funneling ratios were examined in relation to both rainfall intensity and canopy structure. Preliminary results indicate a dynamic and complex response of the funneling ratios of individual trees to different rainfall intensities among the species examined. This is partly the result of different canopy structures, hydrophobicity of vegetative surfaces, and differential wet-up processes across species and rainfall intensities. This presentation delves into these differences and attempts to distill them into generalizable patterns, which can advance our theories of stemflow generation processes and ultimately permit better stewardship of forest resources. ________________ Funding note: This research was supported by JSPS Invitation Fellowship for Research in

  7. An efficient and novel computation method for simulating diffraction patterns from large-scale coded apertures on large-scale focal plane arrays

    Science.gov (United States)

    Shrekenhamer, Abraham; Gottesman, Stephen R.

    2012-10-01

    A novel and memory efficient method for computing diffraction patterns produced on large-scale focal planes by largescale Coded Apertures at wavelengths where diffraction effects are significant has been developed and tested. The scheme, readily implementable on portable computers, overcomes the memory limitations of present state-of-the-art simulation codes such as Zemax. The method consists of first calculating a set of reference complex field (amplitude and phase) patterns on the focal plane produced by a single (reference) central hole, extending to twice the focal plane array size, with one such pattern for each Line-of-Sight (LOS) direction and wavelength in the scene, and with the pattern amplitude corresponding to the square-root of the spectral irradiance from each such LOS direction in the scene at selected wavelengths. Next the set of reference patterns is transformed to generate pattern sets for other holes. The transformation consists of a translational pattern shift corresponding to each hole's position offset and an electrical phase shift corresponding to each hole's position offset and incoming radiance's direction and wavelength. The set of complex patterns for each direction and wavelength is then summed coherently and squared for each detector to yield a set of power patterns unique for each direction and wavelength. Finally the set of power patterns is summed to produce the full waveband diffraction pattern from the scene. With this tool researchers can now efficiently simulate diffraction patterns produced from scenes by large-scale Coded Apertures onto large-scale focal plane arrays to support the development and optimization of coded aperture masks and image reconstruction algorithms.

  8. Oligopolistic competition in wholesale electricity markets: Large-scale simulation and policy analysis using complementarity models

    Science.gov (United States)

    Helman, E. Udi

    This dissertation conducts research into the large-scale simulation of oligopolistic competition in wholesale electricity markets. The dissertation has two parts. Part I is an examination of the structure and properties of several spatial, or network, equilibrium models of oligopolistic electricity markets formulated as mixed linear complementarity problems (LCP). Part II is a large-scale application of such models to the electricity system that encompasses most of the United States east of the Rocky Mountains, the Eastern Interconnection. Part I consists of Chapters 1 to 6. The models developed in this part continue research into mixed LCP models of oligopolistic electricity markets initiated by Hobbs [67] and subsequently developed by Metzler [87] and Metzler, Hobbs and Pang [88]. Hobbs' central contribution is a network market model with Cournot competition in generation and a price-taking spatial arbitrage firm that eliminates spatial price discrimination by the Cournot firms. In one variant, the solution to this model is shown to be equivalent to the "no arbitrage" condition in a "pool" market, in which a Regional Transmission Operator optimizes spot sales such that the congestion price between two locations is exactly equivalent to the difference in the energy prices at those locations (commonly known as locational marginal pricing). Extensions to this model are presented in Chapters 5 and 6. One of these is a market model with a profit-maximizing arbitrage firm. This model is structured as a mathematical program with equilibrium constraints (MPEC), but due to the linearity of its constraints, can be solved as a mixed LCP. Part II consists of Chapters 7 to 12. The core of these chapters is a large-scale simulation of the U.S. Eastern Interconnection applying one of the Cournot competition with arbitrage models. This is the first oligopolistic equilibrium market model to encompass the full Eastern Interconnection with a realistic network representation (using

  9. Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods

    International Nuclear Information System (INIS)

    Gray, S.K.; Noid, D.W.; Sumpter, B.G.

    1994-01-01

    We test the suitability of a variety of explicit symplectic integrators for molecular dynamics calculations on Hamiltonian systems. These integrators are extremely simple algorithms with low memory requirements, and appear to be well suited for large scale simulations. We first apply all the methods to a simple test case using the ideas of Berendsen and van Gunsteren. We then use the integrators to generate long time trajectories of a 1000 unit polyethylene chain. Calculations are also performed with two popular but nonsymplectic integrators. The most efficient integrators of the set investigated are deduced. We also discuss certain variations on the basic symplectic integration technique

  10. Aggregated Representation of Distribution Networks for Large-Scale Transmission Network Simulations

    DEFF Research Database (Denmark)

    Göksu, Ömer; Altin, Müfit; Sørensen, Poul Ejnar

    2014-01-01

    As a common practice of large-scale transmission network analysis the distribution networks have been represented as aggregated loads. However, with increasing share of distributed generation, especially wind and solar power, in the distribution networks, it became necessary to include...... the distributed generation within those analysis. In this paper a practical methodology to obtain aggregated behaviour of the distributed generation is proposed. The methodology, which is based on the use of the IEC standard wind turbine models, is applied on a benchmark distribution network via simulations....

  11. Large-scale simulation of ductile fracture process of microstructured materials

    International Nuclear Information System (INIS)

    Tian Rong; Wang Chaowei

    2011-01-01

    The promise of computational science in the extreme-scale computing era is to reduce and decompose macroscopic complexities into microscopic simplicities with the expense of high spatial and temporal resolution of computing. In materials science and engineering, the direct combination of 3D microstructure data sets and 3D large-scale simulations provides unique opportunity for the development of a comprehensive understanding of nano/microstructure-property relationships in order to systematically design materials with specific desired properties. In the paper, we present a framework simulating the ductile fracture process zone in microstructural detail. The experimentally reconstructed microstructural data set is directly embedded into a FE mesh model to improve the simulation fidelity of microstructure effects on fracture toughness. To the best of our knowledge, it is for the first time that the linking of fracture toughness to multiscale microstructures in a realistic 3D numerical model in a direct manner is accomplished. (author)

  12. Real-world-time simulation of memory consolidation in a large-scale cerebellar model

    Directory of Open Access Journals (Sweden)

    Masato eGosui

    2016-03-01

    Full Text Available We report development of a large-scale spiking network model of thecerebellum composed of more than 1 million neurons. The model isimplemented on graphics processing units (GPUs, which are dedicatedhardware for parallel computing. Using 4 GPUs simultaneously, we achieve realtime simulation, in which computer simulation ofcerebellar activity for 1 sec completes within 1 sec in thereal-world time, with temporal resolution of 1 msec.This allows us to carry out a very long-term computer simulationof cerebellar activity in a practical time with millisecond temporalresolution. Using the model, we carry out computer simulationof long-term gain adaptation of optokinetic response (OKR eye movementsfor 5 days aimed to study the neural mechanisms of posttraining memoryconsolidation. The simulation results are consistent with animal experimentsand our theory of posttraining memory consolidation. These resultssuggest that realtime computing provides a useful means to studya very slow neural process such as memory consolidation in the brain.

  13. Random number generators for large-scale parallel Monte Carlo simulations on FPGA

    Science.gov (United States)

    Lin, Y.; Wang, F.; Liu, B.

    2018-05-01

    Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.

  14. Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations

    Directory of Open Access Journals (Sweden)

    José Gaite

    2013-05-01

    Full Text Available Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.

  15. Plasmonic resonances of nanoparticles from large-scale quantum mechanical simulations

    Science.gov (United States)

    Zhang, Xu; Xiang, Hongping; Zhang, Mingliang; Lu, Gang

    2017-09-01

    Plasmonic resonance of metallic nanoparticles results from coherent motion of its conduction electrons, driven by incident light. For the nanoparticles less than 10 nm in diameter, localized surface plasmonic resonances become sensitive to the quantum nature of the conduction electrons. Unfortunately, quantum mechanical simulations based on time-dependent Kohn-Sham density functional theory are computationally too expensive to tackle metal particles larger than 2 nm. Herein, we introduce the recently developed time-dependent orbital-free density functional theory (TD-OFDFT) approach which enables large-scale quantum mechanical simulations of plasmonic responses of metallic nanostructures. Using TD-OFDFT, we have performed quantum mechanical simulations to understand size-dependent plasmonic response of Na nanoparticles and plasmonic responses in Na nanoparticle dimers and trimers. An outlook of future development of the TD-OFDFT method is also presented.

  16. Large-scale particle simulations in a virtual-memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Wagner, J.S.; Tajima, T.; Million, R.

    1982-08-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceed the computer core size. The required address space is automatically mapped onto slow disc memory by the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Accesses to slow memory significantly reduce the execution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time

  17. Virtual neutron scattering experiments - Training and preparing students for large-scale facility experiments

    Directory of Open Access Journals (Sweden)

    Julie Hougaard Overgaard

    2016-11-01

    Full Text Available Dansk Vi beskriver, hvordan virtuelle eksperimenter kan udnyttes i et læringsdesign ved at forberede de studerende til hands-on-eksperimenter ved storskalafaciliteter. Vi illustrerer designet ved at vise, hvordan virtuelle eksperimenter bruges på Niels Bohr Institutets kandidatkursus om neutronspredning. I den sidste uge af kurset, rejser studerende til et storskala neutronspredningsfacilitet for at udføre neutronspredningseksperimenter. Vi bruger studerendes udsagn om deres oplevelser til at argumentere for, at arbejdet med virtuelle experimenter forbereder de studerende til at engagere sig mere frugtbart med eksperimenter ved at lade dem fokusere på fysikken og relevante data i stedet for instrumenternes funktion. Vi hævder, at det er, fordi de kan overføre deres erfaringer med virtuelle eksperimenter til rigtige eksperimenter. Vi finder dog, at læring stadig er situeret i den forstand, at kun kendskab til bestemte eksperimenter overføres. Vi afslutter med at diskutere de muligheder, som virtuelle eksperimenter giver. English We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering. In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred. We proceed to

  18. Application of parallel computing techniques to a large-scale reservoir simulation

    International Nuclear Information System (INIS)

    Zhang, Keni; Wu, Yu-Shu; Ding, Chris; Pruess, Karsten

    2001-01-01

    Even with the continual advances made in both computational algorithms and computer hardware used in reservoir modeling studies, large-scale simulation of fluid and heat flow in heterogeneous reservoirs remains a challenge. The problem commonly arises from intensive computational requirement for detailed modeling investigations of real-world reservoirs. This paper presents the application of a massive parallel-computing version of the TOUGH2 code developed for performing large-scale field simulations. As an application example, the parallelized TOUGH2 code is applied to develop a three-dimensional unsaturated-zone numerical model simulating flow of moisture, gas, and heat in the unsaturated zone of Yucca Mountain, Nevada, a potential repository for high-level radioactive waste. The modeling approach employs refined spatial discretization to represent the heterogeneous fractured tuffs of the system, using more than a million 3-D gridblocks. The problem of two-phase flow and heat transfer within the model domain leads to a total of 3,226,566 linear equations to be solved per Newton iteration. The simulation is conducted on a Cray T3E-900, a distributed-memory massively parallel computer. Simulation results indicate that the parallel computing technique, as implemented in the TOUGH2 code, is very efficient. The reliability and accuracy of the model results have been demonstrated by comparing them to those of small-scale (coarse-grid) models. These comparisons show that simulation results obtained with the refined grid provide more detailed predictions of the future flow conditions at the site, aiding in the assessment of proposed repository performance

  19. Anatomically detailed and large-scale simulations studying synapse loss and synchrony using NeuroBox

    Directory of Open Access Journals (Sweden)

    Markus eBreit

    2016-02-01

    Full Text Available The morphology of neurons and networks plays an important role in processing electrical and biochemical signals. Based on neuronal reconstructions, which are becoming abundantly available through databases such as NeuroMorpho.org, numerical simulations of Hodgkin-Huxley-type equations, coupled to biochemical models, can be performed in order to systematically investigate the influence of cellular morphology and the connectivity pattern in networks on the underlying function. Development in the area of synthetic neural network generation and morphology reconstruction from microscopy data has brought forth the software tool NeuGen. Coupling this morphology data (either from databases, synthetic or reconstruction to the simulation platform UG 4 (which harbors a neuroscientific portfolio and VRL-Studio, has brought forth the extendible toolbox NeuroBox. NeuroBox allows users to perform numerical simulations on hybrid-dimensional morphology representations. The code basis is designed in a modular way, such that e.g. new channel or synapse types can be added to the library. Workflows can be specified through scripts or through the VRL-Studio graphical workflow representation. Third-party tools, such as ImageJ, can be added to NeuroBox workflows. In this paper, NeuroBox is used to study the electrical and biochemical effects of synapse loss vs. synchrony in neurons, to investigate large morphology data sets within detailed biophysical simulations, and used to demonstrate the capability of utilizing high-performance computing infrastructure for large scale network simulations. Using new synapse distribution methods and Finite Volume based numerical solvers for compartment-type models, our results demonstrate how an increase in synaptic synchronization can compensate synapse loss at the electrical and calcium level, and how detailed neuronal morphology can be integrated in large-scale network simulations.

  20. On the rejection-based algorithm for simulation and analysis of large-scale reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Zunino, Roberto, E-mail: roberto.zunino@unitn.it [Department of Mathematics, University of Trento, Trento (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento, Trento (Italy)

    2015-06-28

    Stochastic simulation for in silico studies of large biochemical networks requires a great amount of computational time. We recently proposed a new exact simulation algorithm, called the rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)], to improve simulation performance by postponing and collapsing as much as possible the propensity updates. In this paper, we analyze the performance of this algorithm in detail, and improve it for simulating large-scale biochemical reaction networks. We also present a new algorithm, called simultaneous RSSA (SRSSA), which generates many independent trajectories simultaneously for the analysis of the biochemical behavior. SRSSA improves simulation performance by utilizing a single data structure across simulations to select reaction firings and forming trajectories. The memory requirement for building and storing the data structure is thus independent of the number of trajectories. The updating of the data structure when needed is performed collectively in a single operation across the simulations. The trajectories generated by SRSSA are exact and independent of each other by exploiting the rejection-based mechanism. We test our new improvement on real biological systems with a wide range of reaction networks to demonstrate its applicability and efficiency.

  1. A Novel CPU/GPU Simulation Environment for Large-Scale Biologically-Realistic Neural Modeling

    Directory of Open Access Journals (Sweden)

    Roger V Hoang

    2013-10-01

    Full Text Available Computational Neuroscience is an emerging field that provides unique opportunities to studycomplex brain structures through realistic neural simulations. However, as biological details are added tomodels, the execution time for the simulation becomes longer. Graphics Processing Units (GPUs are now being utilized to accelerate simulations due to their ability to perform computations in parallel. As such, they haveshown significant improvement in execution time compared to Central Processing Units (CPUs. Most neural simulators utilize either multiple CPUs or a single GPU for better performance, but still show limitations in execution time when biological details are not sacrificed. Therefore, we present a novel CPU/GPU simulation environment for large-scale biological networks,the NeoCortical Simulator version 6 (NCS6. NCS6 is a free, open-source, parallelizable, and scalable simula-tor, designed to run on clusters of multiple machines, potentially with high performance computing devicesin each of them. It has built-in leaky-integrate-and-fire (LIF and Izhikevich (IZH neuron models, but usersalso have the capability to design their own plug-in interface for different neuron types as desired. NCS6is currently able to simulate one million cells and 100 million synapses in quasi real time by distributing dataacross these heterogeneous clusters of CPUs and GPUs.

  2. GENASIS Mathematics : Object-oriented manifolds, operations, and solvers for large-scale physics simulations

    Science.gov (United States)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2018-01-01

    The large-scale computer simulation of a system of physical fields governed by partial differential equations requires some means of approximating the mathematical limit of continuity. For example, conservation laws are often treated with a 'finite-volume' approach in which space is partitioned into a large number of small 'cells,' with fluxes through cell faces providing an intuitive discretization modeled on the mathematical definition of the divergence operator. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of simple meshes and the evolution of generic conserved currents thereon, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes inaugurate the Mathematics division of our developing astrophysics simulation code GENASIS (Gen eral A strophysical Si mulation S ystem), which will be expanded over time to include additional meshing options, mathematical operations, solver types, and solver variations appropriate for many multiphysics applications.

  3. Large Scale Beam-beam Simulations for the CERN LHC using Distributed Computing

    CERN Document Server

    Herr, Werner; McIntosh, E; Schmidt, F

    2006-01-01

    We report on a large scale simulation of beam-beam effects for the CERN Large Hadron Collider (LHC). The stability of particles which experience head-on and long-range beam-beam effects was investigated for different optical configurations and machine imperfections. To cover the interesting parameter space required computing resources not available at CERN. The necessary resources were available in the LHC@home project, based on the BOINC platform. At present, this project makes more than 60000 hosts available for distributed computing. We shall discuss our experience using this system during a simulation campaign of more than six months and describe the tools and procedures necessary to ensure consistent results. The results from this extended study are presented and future plans are discussed.

  4. Automatic Optimization for Large-Scale Real-Time Coastal Water Simulation

    Directory of Open Access Journals (Sweden)

    Shunli Wang

    2016-01-01

    Full Text Available We introduce an automatic optimization approach for the simulation of large-scale coastal water. To solve the singular problem of water waves obtained with the traditional model, a hybrid deep-shallow-water model is estimated by using an automatic coupling algorithm. It can handle arbitrary water depth and different underwater terrain. As a certain feature of coastal terrain, coastline is detected with the collision detection technology. Then, unnecessary water grid cells are simplified by the automatic simplification algorithm according to the depth. Finally, the model is calculated on Central Processing Unit (CPU and the simulation is implemented on Graphics Processing Unit (GPU. We show the effectiveness of our method with various results which achieve real-time rendering on consumer-level computer.

  5. Particle physics and polyedra proximity calculation for hazard simulations in large-scale industrial plants

    Science.gov (United States)

    Plebe, Alice; Grasso, Giorgio

    2016-12-01

    This paper describes a system developed for the simulation of flames inside an open-source 3D computer graphic software, Blender, with the aim of analyzing in virtual reality scenarios of hazards in large-scale industrial plants. The advantages of Blender are of rendering at high resolution the very complex structure of large industrial plants, and of embedding a physical engine based on smoothed particle hydrodynamics. This particle system is used to evolve a simulated fire. The interaction of this fire with the components of the plant is computed using polyhedron separation distance, adopting a Voronoi-based strategy that optimizes the number of feature distance computations. Results on a real oil and gas refining industry are presented.

  6. The TeraShake Computational Platform for Large-Scale Earthquake Simulations

    Science.gov (United States)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  7. System Dynamics Simulation of Large-Scale Generation System for Designing Wind Power Policy in China

    Directory of Open Access Journals (Sweden)

    Linna Hou

    2015-01-01

    Full Text Available This paper focuses on the impacts of renewable energy policy on a large-scale power generation system, including thermal power, hydropower, and wind power generation. As one of the most important clean energy, wind energy has been rapidly developed in the world. But in recent years there is a serious waste of wind power equipment and investment in China leading to many problems in the industry from wind power planning to its integration. One way overcoming the difficulty is to analyze the influence of wind power policy on a generation system. This paper builds a system dynamics (SD model of energy generation to simulate the results of wind energy generation policies based on a complex system. And scenario analysis method is used to compare the effectiveness and efficiency of these policies. The case study shows that the combinations of lower portfolio goal and higher benchmark price and those of higher portfolio goal and lower benchmark price have large differences in both effectiveness and efficiency. On the other hand, the combinations of uniformly lower or higher portfolio goal and benchmark price have similar efficiency, but different effectiveness. Finally, an optimal policy combination can be chosen on the basis of policy analysis in the large-scale power system.

  8. Coupled climate model simulations of Mediterranean winter cyclones and large-scale flow patterns

    Directory of Open Access Journals (Sweden)

    B. Ziv

    2013-03-01

    Full Text Available The study aims to evaluate the ability of global, coupled climate models to reproduce the synoptic regime of the Mediterranean Basin. The output of simulations of the 9 models included in the IPCC CMIP3 effort is compared to the NCEP-NCAR reanalyzed data for the period 1961–1990. The study examined the spatial distribution of cyclone occurrence, the mean Mediterranean upper- and lower-level troughs, the inter-annual variation and trend in the occurrence of the Mediterranean cyclones, and the main large-scale circulation patterns, represented by rotated EOFs of 500 hPa and sea level pressure. The models reproduce successfully the two maxima in cyclone density in the Mediterranean and their locations, the location of the average upper- and lower-level troughs, the relative inter-annual variation in cyclone occurrences and the structure of the four leading large scale EOFs. The main discrepancy is the models' underestimation of the cyclone density in the Mediterranean, especially in its western part. The models' skill in reproducing the cyclone distribution is found correlated with their spatial resolution, especially in the vertical. The current improvement in model spatial resolution suggests that their ability to reproduce the Mediterranean cyclones would be improved as well.

  9. Cloud-enabled large-scale land surface model simulations with the NASA Land Information System

    Science.gov (United States)

    Duffy, D.; Vaughan, G.; Clark, M. P.; Peters-Lidard, C. D.; Nijssen, B.; Nearing, G. S.; Rheingrover, S.; Kumar, S.; Geiger, J. V.

    2017-12-01

    Developed by the Hydrological Sciences Laboratory at NASA Goddard Space Flight Center (GSFC), the Land Information System (LIS) is a high-performance software framework for terrestrial hydrology modeling and data assimilation. LIS provides the ability to integrate satellite and ground-based observational products and advanced modeling algorithms to extract land surface states and fluxes. Through a partnership with the National Center for Atmospheric Research (NCAR) and the University of Washington, the LIS model is currently being extended to include the Structure for Unifying Multiple Modeling Alternatives (SUMMA). With the addition of SUMMA in LIS, meaningful simulations containing a large multi-model ensemble will be enabled and can provide advanced probabilistic continental-domain modeling capabilities at spatial scales relevant for water managers. The resulting LIS/SUMMA application framework is difficult for non-experts to install due to the large amount of dependencies on specific versions of operating systems, libraries, and compilers. This has created a significant barrier to entry for domain scientists that are interested in using the software on their own systems or in the cloud. In addition, the requirement to support multiple run time environments across the LIS community has created a significant burden on the NASA team. To overcome these challenges, LIS/SUMMA has been deployed using Linux containers, which allows for an entire software package along with all dependences to be installed within a working runtime environment, and Kubernetes, which orchestrates the deployment of a cluster of containers. Within a cloud environment, users can now easily create a cluster of virtual machines and run large-scale LIS/SUMMA simulations. Installations that have taken weeks and months can now be performed in minutes of time. This presentation will discuss the steps required to create a cloud-enabled large-scale simulation, present examples of its use, and

  10. Large-scale introduction of wind power stations in the Swedish grid: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, L

    1978-08-01

    This report describes a simulation study on the factors to be considered if wind power were to be introduced to the south Swedish power grid on a large scale. The simulations are based upon a heuristic power generation planning model, developed for the purpose. The heuristic technique reflects the actual running strategies of a big power company with suitable accuracy. All simulations refer to certain typical days in 1976 to which all wind data and system characteristics are related. The installed amount of wind power will not be subject to optimization. All differences between planned and real wind power generation is equalized by regulation of the hydro power. The simulations made differ according to how the installed amount of wind power is handled in the power generation planning. The simulations indicate that the power system examined could well bear an introduction of wind power up to a level of 20% of the total power installed. This result is of course valid only for the days examined and does not necessarily apply to the present day structure of the system.

  11. Large-Scale Modeling of Epileptic Seizures: Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms

    Directory of Open Access Journals (Sweden)

    Lorenzo L. Pesce

    2013-01-01

    Full Text Available Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons and processor pool sizes (1 to 256 processors. Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.

  12. Large-scale modeling of epileptic seizures: scaling properties of two parallel neuronal network simulation algorithms.

    Science.gov (United States)

    Pesce, Lorenzo L; Lee, Hyong C; Hereld, Mark; Visser, Sid; Stevens, Rick L; Wildeman, Albert; van Drongelen, Wim

    2013-01-01

    Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.

  13. Fast Bound Methods for Large Scale Simulation with Application for Engineering Optimization

    Science.gov (United States)

    Patera, Anthony T.; Peraire, Jaime; Zang, Thomas A. (Technical Monitor)

    2002-01-01

    In this work, we have focused on fast bound methods for large scale simulation with application for engineering optimization. The emphasis is on the development of techniques that provide both very fast turnaround and a certificate of Fidelity; these attributes ensure that the results are indeed relevant to - and trustworthy within - the engineering context. The bound methodology which underlies this work has many different instantiations: finite element approximation; iterative solution techniques; and reduced-basis (parameter) approximation. In this grant we have, in fact, treated all three, but most of our effort has been concentrated on the first and third. We describe these below briefly - but with a pointer to an Appendix which describes, in some detail, the current "state of the art."

  14. Large Scale Simulation of Hydrogen Dispersion by a Stabilized Balancing Domain Decomposition Method

    Directory of Open Access Journals (Sweden)

    Qing-He Yao

    2014-01-01

    Full Text Available The dispersion behaviour of leaking hydrogen in a partially open space is simulated by a balancing domain decomposition method in this work. An analogy of the Boussinesq approximation is employed to describe the connection between the flow field and the concentration field. The linear systems of Navier-Stokes equations and the convection diffusion equation are symmetrized by a pressure stabilized Lagrange-Galerkin method, and thus a balancing domain decomposition method is enabled to solve the interface problem of the domain decomposition system. Numerical results are validated by comparing with the experimental data and available numerical results. The dilution effect of ventilation is investigated, especially at the doors, where flow pattern is complicated and oscillations appear in the past research reported by other researchers. The transient behaviour of hydrogen and the process of accumulation in the partially open space are discussed, and more details are revealed by large scale computation.

  15. Commercial applications of large-scale Research and Development computer simulation technologies

    International Nuclear Information System (INIS)

    Kuok Mee Ling; Pascal Chen; Wen Ho Lee

    1998-01-01

    The potential commercial applications of two large-scale R and D computer simulation technologies are presented. One such technology is based on the numerical solution of the hydrodynamics equations, and is embodied in the two-dimensional Eulerian code EULE2D, which solves the hydrodynamic equations with various models for the equation of state (EOS), constitutive relations and fracture mechanics. EULE2D is an R and D code originally developed to design and analyze conventional munitions for anti-armor penetrations such as shaped charges, explosive formed projectiles, and kinetic energy rods. Simulated results agree very well with actual experiments. A commercial application presented here is the design and simulation of shaped charges for oil and gas well bore perforation. The other R and D simulation technology is based on the numerical solution of Maxwell's partial differential equations of electromagnetics in space and time, and is implemented in the three-dimensional code FDTD-SPICE, which solves Maxwell's equations in the time domain with finite-differences in the three spatial dimensions and calls SPICE for information when nonlinear active devices are involved. The FDTD method has been used in the radar cross-section modeling of military aircrafts and many other electromagnetic phenomena. The coupling of FDTD method with SPICE, a popular circuit and device simulation program, provides a powerful tool for the simulation and design of microwave and millimeter-wave circuits containing nonlinear active semiconductor devices. A commercial application of FDTD-SPICE presented here is the simulation of a two-element active antenna system. The simulation results and the experimental measurements are in excellent agreement. (Author)

  16. Large-scale tropospheric transport in the Chemistry-Climate Model Initiative (CCMI) simulations

    Science.gov (United States)

    Orbe, Clara; Yang, Huang; Waugh, Darryn W.; Zeng, Guang; Morgenstern, Olaf; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Plummer, David A.; Scinocca, John F.; Josse, Beatrice; Marecal, Virginie; Jöckel, Patrick; Oman, Luke D.; Strahan, Susan E.; Deushi, Makoto; Tanaka, Taichu Y.; Yoshida, Kohei; Akiyoshi, Hideharu; Yamashita, Yousuke; Stenke, Andreas; Revell, Laura; Sukhodolov, Timofei; Rozanov, Eugene; Pitari, Giovanni; Visioni, Daniele; Stone, Kane A.; Schofield, Robyn; Banerjee, Antara

    2018-05-01

    Understanding and modeling the large-scale transport of trace gases and aerosols is important for interpreting past (and projecting future) changes in atmospheric composition. Here we show that there are large differences in the global-scale atmospheric transport properties among the models participating in the IGAC SPARC Chemistry-Climate Model Initiative (CCMI). Specifically, we find up to 40 % differences in the transport timescales connecting the Northern Hemisphere (NH) midlatitude surface to the Arctic and to Southern Hemisphere high latitudes, where the mean age ranges between 1.7 and 2.6 years. We show that these differences are related to large differences in vertical transport among the simulations, in particular to differences in parameterized convection over the oceans. While stronger convection over NH midlatitudes is associated with slower transport to the Arctic, stronger convection in the tropics and subtropics is associated with faster interhemispheric transport. We also show that the differences among simulations constrained with fields derived from the same reanalysis products are as large as (and in some cases larger than) the differences among free-running simulations, most likely due to larger differences in parameterized convection. Our results indicate that care must be taken when using simulations constrained with analyzed winds to interpret the influence of meteorology on tropospheric composition.

  17. Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI simulations

    Directory of Open Access Journals (Sweden)

    C. Orbe

    2018-05-01

    Full Text Available Understanding and modeling the large-scale transport of trace gases and aerosols is important for interpreting past (and projecting future changes in atmospheric composition. Here we show that there are large differences in the global-scale atmospheric transport properties among the models participating in the IGAC SPARC Chemistry–Climate Model Initiative (CCMI. Specifically, we find up to 40 % differences in the transport timescales connecting the Northern Hemisphere (NH midlatitude surface to the Arctic and to Southern Hemisphere high latitudes, where the mean age ranges between 1.7 and 2.6 years. We show that these differences are related to large differences in vertical transport among the simulations, in particular to differences in parameterized convection over the oceans. While stronger convection over NH midlatitudes is associated with slower transport to the Arctic, stronger convection in the tropics and subtropics is associated with faster interhemispheric transport. We also show that the differences among simulations constrained with fields derived from the same reanalysis products are as large as (and in some cases larger than the differences among free-running simulations, most likely due to larger differences in parameterized convection. Our results indicate that care must be taken when using simulations constrained with analyzed winds to interpret the influence of meteorology on tropospheric composition.

  18. Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study

    Science.gov (United States)

    Li, Jun; Fu, Siyao; He, Haibo; Jia, Hongfei; Li, Yanzhong; Guo, Yi

    2015-11-01

    Large-scale regional evacuation is an important part of national security emergency response plan. Large commercial shopping area, as the typical service system, its emergency evacuation is one of the hot research topics. A systematic methodology based on Cellular Automata with the Dynamic Floor Field and event driven model has been proposed, and the methodology has been examined within context of a case study involving the evacuation within a commercial shopping mall. Pedestrians walking is based on Cellular Automata and event driven model. In this paper, the event driven model is adopted to simulate the pedestrian movement patterns, the simulation process is divided into normal situation and emergency evacuation. The model is composed of four layers: environment layer, customer layer, clerk layer and trajectory layer. For the simulation of movement route of pedestrians, the model takes into account purchase intention of customers and density of pedestrians. Based on evacuation model of Cellular Automata with Dynamic Floor Field and event driven model, we can reflect behavior characteristics of customers and clerks at the situations of normal and emergency evacuation. The distribution of individual evacuation time as a function of initial positions and the dynamics of the evacuation process is studied. Our results indicate that the evacuation model using the combination of Cellular Automata with Dynamic Floor Field and event driven scheduling can be used to simulate the evacuation of pedestrian flows in indoor areas with complicated surroundings and to investigate the layout of shopping mall.

  19. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    Directory of Open Access Journals (Sweden)

    C. M. R. Mateo

    2017-10-01

    Full Text Available Global-scale river models (GRMs are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC is assumed, simulation results deteriorate with finer spatial resolution; Nash–Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  20. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    Science.gov (United States)

    Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan

    2017-10-01

    Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  1. The Roles of Sparse Direct Methods in Large-scale Simulations

    International Nuclear Information System (INIS)

    Li, Xiaoye S.; Gao, Weiguo; Husbands, Parry J.R.; Yang, Chao; Ng, Esmond G.

    2005-01-01

    Sparse systems of linear equations and eigen-equations arise at the heart of many large-scale, vital simulations in DOE. Examples include the Accelerator Science and Technology SciDAC (Omega3P code, electromagnetic problem), the Center for Extended Magnetohydrodynamic Modeling SciDAC(NIMROD and M3D-C1 codes, fusion plasma simulation). The Terascale Optimal PDE Simulations (TOPS)is providing high-performance sparse direct solvers, which have had significant impacts on these applications. Over the past several years, we have been working closely with the other SciDAC teams to solve their large, sparse matrix problems arising from discretization of the partial differential equations. Most of these systems are very ill-conditioned, resulting in extremely poor convergence deployed our direct methods techniques in these applications, which achieved significant scientific results as well as performance gains. These successes were made possible through the SciDAC model of computer scientists and application scientists working together to take full advantage of terascale computing systems and new algorithms research

  2. Representative elements: A step to large-scale fracture system simulation

    International Nuclear Information System (INIS)

    Clemo, T.M.

    1987-01-01

    Large-scale simulation of flow and transport in fractured media requires the development of a technique to represent the effect of a large number of fractures. Representative elements are used as a tool to model a subset of a fracture system as a single distributed entity. Representative elements are part of a modeling concept called dual permeability. Dual permeability modeling combines discrete fracture simulation of the most important fractures with the distributed modeling of the less important fracture of a fracture system. This study investigates the use of stochastic analysis to determine properties of representative elements. Given an assumption of fully developed laminar flow, the net fracture conductivities and hence flow velocities can be determined from descriptive statistics of fracture spacing, orientation, aperture, and extent. The distribution of physical characteristics about their mean leads to a distribution of the associated conductivities. The variance of hydraulic conductivity induces dispersion into the transport process. Simple fracture systems are treated to demonstrate the usefulness of stochastic analysis. Explicit equations for conductivity of an element are developed and the dispersion characteristics are shown. Explicit formulation of the hydraulic conductivity and transport dispersion reveals the dependence of these important characteristics on the parameters used to describe the fracture system. Understanding these dependencies will help to focus efforts to identify the characteristics of fracture systems. Simulations of stochastically generated fracture sets do not provide this explicit functional dependence on the fracture system parameters. 12 refs., 6 figs

  3. Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations

    Science.gov (United States)

    Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.

    1996-07-01

    The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.

  4. The Roles of Sparse Direct Methods in Large-scale Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoye S.; Gao, Weiguo; Husbands, Parry J.R.; Yang, Chao; Ng, Esmond G.

    2005-06-27

    Sparse systems of linear equations and eigen-equations arise at the heart of many large-scale, vital simulations in DOE. Examples include the Accelerator Science and Technology SciDAC (Omega3P code, electromagnetic problem), the Center for Extended Magnetohydrodynamic Modeling SciDAC(NIMROD and M3D-C1 codes, fusion plasma simulation). The Terascale Optimal PDE Simulations (TOPS)is providing high-performance sparse direct solvers, which have had significant impacts on these applications. Over the past several years, we have been working closely with the other SciDAC teams to solve their large, sparse matrix problems arising from discretization of the partial differential equations. Most of these systems are very ill-conditioned, resulting in extremely poor convergence deployed our direct methods techniques in these applications, which achieved significant scientific results as well as performance gains. These successes were made possible through the SciDAC model of computer scientists and application scientists working together to take full advantage of terascale computing systems and new algorithms research.

  5. Proceedings of joint meeting of the 6th simulation science symposium and the NIFS collaboration research 'large scale computer simulation'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Joint meeting of the 6th Simulation Science Symposium and the NIFS Collaboration Research 'Large Scale Computer Simulation' was held on December 12-13, 2002 at National Institute for Fusion Science, with the aim of promoting interdisciplinary collaborations in various fields of computer simulations. The present meeting attended by more than 40 people consists of the 11 invited and 22 contributed papers, of which topics were extended not only to fusion science but also to related fields such as astrophysics, earth science, fluid dynamics, molecular dynamics, computer science etc. (author)

  6. Parallelization of a beam dynamics code and first large scale radio frequency quadrupole simulations

    Directory of Open Access Journals (Sweden)

    J. Xu

    2007-01-01

    Full Text Available The design and operation support of hadron (proton and heavy-ion linear accelerators require substantial use of beam dynamics simulation tools. The beam dynamics code TRACK has been originally developed at Argonne National Laboratory (ANL to fulfill the special requirements of the rare isotope accelerator (RIA accelerator systems. From the beginning, the code has been developed to make it useful in the three stages of a linear accelerator project, namely, the design, commissioning, and operation of the machine. To realize this concept, the code has unique features such as end-to-end simulations from the ion source to the final beam destination and automatic procedures for tuning of a multiple charge state heavy-ion beam. The TRACK code has become a general beam dynamics code for hadron linacs and has found wide applications worldwide. Until recently, the code has remained serial except for a simple parallelization used for the simulation of multiple seeds to study the machine errors. To speed up computation, the TRACK Poisson solver has been parallelized. This paper discusses different parallel models for solving the Poisson equation with the primary goal to extend the scalability of the code onto 1024 and more processors of the new generation of supercomputers known as BlueGene (BG/L. Domain decomposition techniques have been adapted and incorporated into the parallel version of the TRACK code. To demonstrate the new capabilities of the parallelized TRACK code, the dynamics of a 45 mA proton beam represented by 10^{8} particles has been simulated through the 325 MHz radio frequency quadrupole and initial accelerator section of the proposed FNAL proton driver. The results show the benefits and advantages of large-scale parallel computing in beam dynamics simulations.

  7. Large-scale simulations of error-prone quantum computation devices

    International Nuclear Information System (INIS)

    Trieu, Doan Binh

    2009-01-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2±0.2) x 10 -6 . For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431±0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced technology, i

  8. Large-scale simulations of error-prone quantum computation devices

    Energy Technology Data Exchange (ETDEWEB)

    Trieu, Doan Binh

    2009-07-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2{+-}0.2) x 10{sup -6}. For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431{+-}0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced

  9. Development of a self-consistent lightning NOx simulation in large-scale 3-D models

    Science.gov (United States)

    Luo, Chao; Wang, Yuhang; Koshak, William J.

    2017-03-01

    We seek to develop a self-consistent representation of lightning NOx (LNOx) simulation in a large-scale 3-D model. Lightning flash rates are parameterized functions of meteorological variables related to convection. We examine a suite of such variables and find that convective available potential energy and cloud top height give the best estimates compared to July 2010 observations from ground-based lightning observation networks. Previous models often use lightning NOx vertical profiles derived from cloud-resolving model simulations. An implicit assumption of such an approach is that the postconvection lightning NOx vertical distribution is the same for all deep convection, regardless of geographic location, time of year, or meteorological environment. Detailed observations of the lightning channel segment altitude distribution derived from the NASA Lightning Nitrogen Oxides Model can be used to obtain the LNOx emission profile. Coupling such a profile with model convective transport leads to a more self-consistent lightning distribution compared to using prescribed postconvection profiles. We find that convective redistribution appears to be a more important factor than preconvection LNOx profile selection, providing another reason for linking the strength of convective transport to LNOx distribution.

  10. Large-scale and Long-duration Simulation of a Multi-stage Eruptive Solar Event

    Science.gov (United States)

    Jiang, chaowei; Hu, Qiang; Wu, S. T.

    2015-04-01

    We employ a data-driven 3D MHD active region evolution model by using the Conservation Element and Solution Element (CESE) numerical method. This newly developed model retains the full MHD effects, allowing time-dependent boundary conditions and time evolution studies. The time-dependent simulation is driven by measured vector magnetograms and the method of MHD characteristics on the bottom boundary. We have applied the model to investigate the coronal magnetic field evolution of AR11283 which was characterized by a pre-existing sigmoid structure in the core region and multiple eruptions, both in relatively small and large scales. We have succeeded in producing the core magnetic field structure and the subsequent eruptions of flux-rope structures (see https://dl.dropboxusercontent.com/u/96898685/large.mp4 for an animation) as the measured vector magnetograms on the bottom boundary evolve in time with constant flux emergence. The whole process, lasting for about an hour in real time, compares well with the corresponding SDO/AIA and coronagraph imaging observations. From these results, we show the capability of the model, largely data-driven, that is able to simulate complex, topological, and highly dynamic active region evolutions. (We acknowledge partial support of NSF grants AGS 1153323 and AGS 1062050, and data support from SDO/HMI and AIA teams).

  11. Development of large scale fusion plasma simulation and storage grid on JAERI Origin3800 system

    International Nuclear Information System (INIS)

    Idomura, Yasuhiro; Wang, Xin

    2003-01-01

    Under the Numerical EXperiment of Tokamak (NEXT) research project, various fluid, particle, and hybrid codes have been developed. These codes require a computational environment which consists of high performance processors, high speed storage system, and high speed parallelized visualization system. In this paper, the performance of the JAERI Origin3800 system is examined from a point of view of these requests. In the performance tests, it is shown that the representative particle and fluid codes operate with 15 - 40% of processing efficiency up to 512 processors. A storage area network (SAN) provides high speed parallel data transfer. A parallel visualization system enables order to magnitude faster visualization of a large scale simulation data compared with the previous graphic workstations. Accordingly, an extremely advanced simulation environment is realized on the JAERI Origin3800 system. Recently, development of a storage grid is underway in order to improve a computational environment of remote users. The storage grid is constructed by a combination of SAN and a wavelength division multiplexer (WDM). The preliminary tests show that compared with the existing data transfer methods, it enables dramatically high speed data transfer ∼100 Gbps over a wide area network. (author)

  12. Testing of Large-Scale ICV Glasses with Hanford LAW Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Kim, Dong-Sang; Vienna, John D.; Matyas, Josef; Smith, Donald E.; Schweiger, Michael J.; Yeager, John D.

    2005-03-01

    Preliminary glass compositions for immobilizing Hanford low-activity waste (LAW) by the in-container vitrification (ICV) process were initially fabricated at crucible- and engineering-scale, including simulants and actual (radioactive) LAW. Glasses were characterized for vapor hydration test (VHT) and product consistency test (PCT) responses and crystallinity (both quenched and slow-cooled samples). Selected glasses were tested for toxicity characteristic leach procedure (TCLP) responses, viscosity, and electrical conductivity. This testing showed that glasses with LAW loading of 20 mass% can be made readily and meet all product constraints by a far margin. Glasses with over 22 mass% Na2O can be made to meet all other product quality and process constraints. Large-scale testing was performed at the AMEC, Geomelt Division facility in Richland. Three tests were conducted using simulated LAW with increasing loadings of 12, 17, and 20 mass% Na2O. Glass samples were taken from the test products in a manner to represent the full expected range of product performance. These samples were characterized for composition, density, crystalline and non-crystalline phase assemblage, and durability using the VHT, PCT, and TCLP tests. The results, presented in this report, show that the AMEC ICV product with meets all waste form requirements with a large margin. These results provide strong evidence that the Hanford LAW can be successfully vitrified by the ICV technology and can meet all the constraints related to product quality. The economic feasibility of the ICV technology can be further enhanced by subsequent optimization.

  13. Life as an emergent phenomenon: studies from a large-scale boid simulation and web data

    Science.gov (United States)

    Ikegami, Takashi; Mototake, Yoh-ichi; Kobori, Shintaro; Oka, Mizuki; Hashimoto, Yasuhiro

    2017-11-01

    A large group with a special structure can become the mother of emergence. We discuss this hypothesis in relation to large-scale boid simulations and web data. In the boid swarm simulations, the nucleation, organization and collapse dynamics were found to be more diverse in larger flocks than in smaller flocks. In the second analysis, large web data, consisting of shared photos with descriptive tags, tended to group together users with similar tendencies, allowing the network to develop a core-periphery structure. We show that the generation rate of novel tags and their usage frequencies are high in the higher-order cliques. In this case, novelty is not considered to arise randomly; rather, it is generated as a result of a large and structured network. We contextualize these results in terms of adjacent possible theory and as a new way to understand collective intelligence. We argue that excessive information and material flow can become a source of innovation. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  14. Test-particle simulations of SEP propagation in IMF with large-scale fluctuations

    Science.gov (United States)

    Kelly, J.; Dalla, S.; Laitinen, T.

    2012-11-01

    The results of full-orbit test-particle simulations of SEPs propagating through an IMF which exhibits large-scale fluctuations are presented. A variety of propagation conditions are simulated - scatter-free, and scattering with mean free path, λ, of 0.3 and 2.0 AU - and the cross-field transport of SEPs is investigated. When calculating cross-field displacements the Parker spiral geometry is accounted for and the role of magnetic field expansion is taken into account. It is found that transport across the magnetic field is enhanced in the λ =0.3 AU and λ =2 AU cases, compared to the scatter-free case, with the λ =2 AU case in particular containing outlying particles that had strayed a large distance across the IMF. Outliers are catergorized by means of Chauvenet's criterion and it is found that typically between 1 and 2% of the population falls within this category. The ratio of latitudinal to longitudinal diffusion coefficient perpendicular to the magnetic field is typically 0.2, suggesting that transport in latitude is less efficient.

  15. Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    César Augusto F de Oliveira

    2011-10-01

    Full Text Available Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery.

  16. Choosing the best partition of the output from a large-scale simulation

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Chelsea Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Casleton, Emily Michele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-26

    Data partitioning becomes necessary when a large-scale simulation produces more data than can be feasibly stored. The goal is to partition the data, typically so that every element belongs to one and only one partition, and store summary information about the partition, either a representative value plus an estimate of the error or a distribution. Once the partitions are determined and the summary information stored, the raw data is discarded. This process can be performed in-situ; meaning while the simulation is running. When creating the partitions there are many decisions that researchers must make. For instance, how to determine once an adequate number of partitions have been created, how are the partitions created with respect to dividing the data, or how many variables should be considered simultaneously. In addition, decisions must be made for how to summarize the information within each partition. Because of the combinatorial number of possible ways to partition and summarize the data, a method of comparing the different possibilities will help guide researchers into choosing a good partitioning and summarization scheme for their application.

  17. Large-scale Validation of AMIP II Land-surface Simulations: Preliminary Results for Ten Models

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T J; Henderson-Sellers, A; Irannejad, P; McGuffie, K; Zhang, H

    2005-12-01

    This report summarizes initial findings of a large-scale validation of the land-surface simulations of ten atmospheric general circulation models that are entries in phase II of the Atmospheric Model Intercomparison Project (AMIP II). This validation is conducted by AMIP Diagnostic Subproject 12 on Land-surface Processes and Parameterizations, which is focusing on putative relationships between the continental climate simulations and the associated models' land-surface schemes. The selected models typify the diversity of representations of land-surface climate that are currently implemented by the global modeling community. The current dearth of global-scale terrestrial observations makes exacting validation of AMIP II continental simulations impractical. Thus, selected land-surface processes of the models are compared with several alternative validation data sets, which include merged in-situ/satellite products, climate reanalyses, and off-line simulations of land-surface schemes that are driven by observed forcings. The aggregated spatio-temporal differences between each simulated process and a chosen reference data set then are quantified by means of root-mean-square error statistics; the differences among alternative validation data sets are similarly quantified as an estimate of the current observational uncertainty in the selected land-surface process. Examples of these metrics are displayed for land-surface air temperature, precipitation, and the latent and sensible heat fluxes. It is found that the simulations of surface air temperature, when aggregated over all land and seasons, agree most closely with the chosen reference data, while the simulations of precipitation agree least. In the latter case, there also is considerable inter-model scatter in the error statistics, with the reanalyses estimates of precipitation resembling the AMIP II simulations more than to the chosen reference data. In aggregate, the simulations of land-surface latent and

  18. A long-term, continuous simulation approach for large-scale flood risk assessments

    Science.gov (United States)

    Falter, Daniela; Schröter, Kai; Viet Dung, Nguyen; Vorogushyn, Sergiy; Hundecha, Yeshewatesfa; Kreibich, Heidi; Apel, Heiko; Merz, Bruno

    2014-05-01

    The Regional Flood Model (RFM) is a process based model cascade developed for flood risk assessments of large-scale basins. RFM consists of four model parts: the rainfall-runoff model SWIM, a 1D channel routing model, a 2D hinterland inundation model and the flood loss estimation model for residential buildings FLEMOps+r. The model cascade was recently undertaken a proof-of-concept study at the Elbe catchment (Germany) to demonstrate that flood risk assessments, based on a continuous simulation approach, including rainfall-runoff, hydrodynamic and damage estimation models, are feasible for large catchments. The results of this study indicated that uncertainties are significant, especially for hydrodynamic simulations. This was basically a consequence of low data quality and disregarding dike breaches. Therefore, RFM was applied with a refined hydraulic model setup for the Elbe tributary Mulde. The study area Mulde catchment comprises about 6,000 km2 and 380 river-km. The inclusion of more reliable information on overbank cross-sections and dikes considerably improved the results. For the application of RFM for flood risk assessments, long-term climate input data is needed to drive the model chain. This model input was provided by a multi-site, multi-variate weather generator that produces sets of synthetic meteorological data reproducing the current climate statistics. The data set comprises 100 realizations of 100 years of meteorological data. With the proposed continuous simulation approach of RFM, we simulated a virtual period of 10,000 years covering the entire flood risk chain including hydrological, 1D/2D hydrodynamic and flood damage estimation models. This provided a record of around 2.000 inundation events affecting the study area with spatially detailed information on inundation depths and damage to residential buildings on a resolution of 100 m. This serves as basis for a spatially consistent, flood risk assessment for the Mulde catchment presented in

  19. Planetary Structures And Simulations Of Large-scale Impacts On Mars

    Science.gov (United States)

    Swift, Damian; El-Dasher, B.

    2009-09-01

    The impact of large meteroids is a possible cause for isolated orogeny on bodies devoid of tectonic activity. On Mars, there is a significant, but not perfect, correlation between large, isolated volcanoes and antipodal impact craters. On Mercury and the Moon, brecciated terrain and other unusual surface features can be found at the antipodes of large impact sites. On Earth, there is a moderate correlation between long-lived mantle hotspots at opposite sides of the planet, with meteoroid impact suggested as a possible cause. If induced by impacts, the mechanisms of orogeny and volcanism thus appear to vary between these bodies, presumably because of differences in internal structure. Continuum mechanics (hydrocode) simulations have been used to investigate the response of planetary bodies to impacts, requiring assumptions about the structure of the body: its composition and temperature profile, and the constitutive properties (equation of state, strength, viscosity) of the components. We are able to predict theoretically and test experimentally the constitutive properties of matter under planetary conditions, with reasonable accuracy. To provide a reference series of simulations, we have constructed self-consistent planetary structures using simplified compositions (Fe core and basalt-like mantle), which turn out to agree surprisingly well with the moments of inertia. We have performed simulations of large-scale impacts, studying the transmission of energy to the antipodes. For Mars, significant antipodal heating to depths of a few tens of kilometers was predicted from compression waves transmitted through the mantle. Such heating is a mechanism for volcanism on Mars, possibly in conjunction with crustal cracking induced by surface waves. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Lattice models for large-scale simulations of coherent wave scattering

    Science.gov (United States)

    Wang, Shumin; Teixeira, Fernando L.

    2004-01-01

    Lattice approximations for partial differential equations describing physical phenomena are commonly used for the numerical simulation of many problems otherwise intractable by pure analytical approaches. The discretization inevitably leads to many of the original symmetries to be broken or modified. In the case of Maxwell’s equations for example, invariance and isotropy of the speed of light in vacuum is invariably lost because of the so-called grid dispersion. Since it is a cumulative effect, grid dispersion is particularly harmful for the accuracy of results of large-scale simulations of scattering problems. Grid dispersion is usually combated by either increasing the lattice resolution or by employing higher-order schemes with larger stencils for the space and time derivatives. Both alternatives lead to increased computational cost to simulate a problem of a given physical size. Here, we introduce a general approach to develop lattice approximations with reduced grid dispersion error for a given stencil (and hence at no additional computational cost). The present approach is based on first obtaining stencil coefficients in the Fourier domain that minimize the maximum grid dispersion error for wave propagation at all directions (minimax sense). The resulting coefficients are then expanded into a Taylor series in terms of the frequency variable and incorporated into time-domain (update) equations after an inverse Fourier transformation. Maximally flat (Butterworth) or Chebyshev filters are subsequently used to minimize the wave speed variations for a given frequency range of interest. The use of such filters also allows for the adjustment of the grid dispersion characteristics so as to minimize not only the local dispersion error but also the accumulated phase error in a frequency range of interest.

  1. Parallel continuous simulated tempering and its applications in large-scale molecular simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Tianwu; Yu, Linglin; Zhang, Chong [Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas 77005 (United States); Ma, Jianpeng, E-mail: jpma@bcm.tmc.edu [Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas 77005 (United States); Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, Texas 77030 (United States)

    2014-07-28

    In this paper, we introduce a parallel continuous simulated tempering (PCST) method for enhanced sampling in studying large complex systems. It mainly inherits the continuous simulated tempering (CST) method in our previous studies [C. Zhang and J. Ma, J. Chem. Phys. 130, 194112 (2009); C. Zhang and J. Ma, J. Chem. Phys. 132, 244101 (2010)], while adopts the spirit of parallel tempering (PT), or replica exchange method, by employing multiple copies with different temperature distributions. Differing from conventional PT methods, despite the large stride of total temperature range, the PCST method requires very few copies of simulations, typically 2–3 copies, yet it is still capable of maintaining a high rate of exchange between neighboring copies. Furthermore, in PCST method, the size of the system does not dramatically affect the number of copy needed because the exchange rate is independent of total potential energy, thus providing an enormous advantage over conventional PT methods in studying very large systems. The sampling efficiency of PCST was tested in two-dimensional Ising model, Lennard-Jones liquid and all-atom folding simulation of a small globular protein trp-cage in explicit solvent. The results demonstrate that the PCST method significantly improves sampling efficiency compared with other methods and it is particularly effective in simulating systems with long relaxation time or correlation time. We expect the PCST method to be a good alternative to parallel tempering methods in simulating large systems such as phase transition and dynamics of macromolecules in explicit solvent.

  2. A Report on Simulation-Driven Reliability and Failure Analysis of Large-Scale Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Lipeng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Feiyi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oral, H. Sarp [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vazhkudai, Sudharshan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cao, Qing [Univ. of Tennessee, Knoxville, TN (United States)

    2014-11-01

    High-performance computing (HPC) storage systems provide data availability and reliability using various hardware and software fault tolerance techniques. Usually, reliability and availability are calculated at the subsystem or component level using limited metrics such as, mean time to failure (MTTF) or mean time to data loss (MTTDL). This often means settling on simple and disconnected failure models (such as exponential failure rate) to achieve tractable and close-formed solutions. However, such models have been shown to be insufficient in assessing end-to-end storage system reliability and availability. We propose a generic simulation framework aimed at analyzing the reliability and availability of storage systems at scale, and investigating what-if scenarios. The framework is designed for an end-to-end storage system, accommodating the various components and subsystems, their interconnections, failure patterns and propagation, and performs dependency analysis to capture a wide-range of failure cases. We evaluate the framework against a large-scale storage system that is in production and analyze its failure projections toward and beyond the end of lifecycle. We also examine the potential operational impact by studying how different types of components affect the overall system reliability and availability, and present the preliminary results

  3. Properties of liquid clusters in large-scale molecular dynamics nucleation simulations

    International Nuclear Information System (INIS)

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K.; Tanaka, Hidekazu

    2014-01-01

    We have performed large-scale Lennard-Jones molecular dynamics simulations of homogeneous vapor-to-liquid nucleation, with 10 9 atoms. This large number allows us to resolve extremely low nucleation rates, and also provides excellent statistics for cluster properties over a wide range of cluster sizes. The nucleation rates, cluster growth rates, and size distributions are presented in Diemand et al. [J. Chem. Phys. 139, 74309 (2013)], while this paper analyses the properties of the clusters. We explore the cluster temperatures, density profiles, potential energies, and shapes. A thorough understanding of the properties of the clusters is crucial to the formulation of nucleation models. Significant latent heat is retained by stable clusters, by as much as ΔkT = 0.1ε for clusters with size i = 100. We find that the clusters deviate remarkably from spherical—with ellipsoidal axis ratios for critical cluster sizes typically within b/c = 0.7 ± 0.05 and a/c = 0.5 ± 0.05. We examine cluster spin angular momentum, and find that it plays a negligible role in the cluster dynamics. The interfaces of large, stable clusters are thinner than planar equilibrium interfaces by 10%−30%. At the critical cluster size, the cluster central densities are between 5% and 30% lower than the bulk liquid expectations. These lower densities imply larger-than-expected surface areas, which increase the energy cost to form a surface, which lowers nucleation rates

  4. Algebraic mesh generation for large scale viscous-compressible aerodynamic simulation

    International Nuclear Information System (INIS)

    Smith, R.E.

    1984-01-01

    Viscous-compressible aerodynamic simulation is the numerical solution of the compressible Navier-Stokes equations and associated boundary conditions. Boundary-fitted coordinate systems are well suited for the application of finite difference techniques to the Navier-Stokes equations. An algebraic approach to boundary-fitted coordinate systems is one where an explicit functional relation describes a mesh on which a solution is obtained. This approach has the advantage of rapid-precise mesh control. The basic mathematical structure of three algebraic mesh generation techniques is described. They are transfinite interpolation, the multi-surface method, and the two-boundary technique. The Navier-Stokes equations are transformed to a computational coordinate system where boundary-fitted coordinates can be applied. Large-scale computation implies that there is a large number of mesh points in the coordinate system. Computation of viscous compressible flow using boundary-fitted coordinate systems and the application of this computational philosophy on a vector computer are presented

  5. Contextual Compression of Large-Scale Wind Turbine Array Simulations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Potter, Kristin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clyne, John [National Center for Atmospheric Research

    2017-11-03

    Data sizes are becoming a critical issue particularly for HPC applications. We have developed a user-driven lossy wavelet-based storage model to facilitate the analysis and visualization of large-scale wind turbine array simulations. The model stores data as heterogeneous blocks of wavelet coefficients, providing high-fidelity access to user-defined data regions believed the most salient, while providing lower-fidelity access to less salient regions on a block-by-block basis. In practice, by retaining the wavelet coefficients as a function of feature saliency, we have seen data reductions in excess of 94 percent, while retaining lossless information in the turbine-wake regions most critical to analysis and providing enough (low-fidelity) contextual information in the upper atmosphere to track incoming coherent turbulent structures. Our contextual wavelet compression approach has allowed us to deliver interactive visual analysis while providing the user control over where data loss, and thus reduction in accuracy, in the analysis occurs. We argue this reduced but contexualized representation is a valid approach and encourages contextual data management.

  6. Efficient graph-based dynamic load-balancing for parallel large-scale agent-based traffic simulation

    NARCIS (Netherlands)

    Xu, Y.; Cai, W.; Aydt, H.; Lees, M.; Tolk, A.; Diallo, S.Y.; Ryzhov, I.O.; Yilmaz, L.; Buckley, S.; Miller, J.A.

    2014-01-01

    One of the issues of parallelizing large-scale agent-based traffic simulations is partitioning and load-balancing. Traffic simulations are dynamic applications where the distribution of workload in the spatial domain constantly changes. Dynamic load-balancing at run-time has shown better efficiency

  7. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    Science.gov (United States)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  8. Understanding Large-scale Structure in the SSA22 Protocluster Region Using Cosmological Simulations

    Science.gov (United States)

    Topping, Michael W.; Shapley, Alice E.; Steidel, Charles C.; Naoz, Smadar; Primack, Joel R.

    2018-01-01

    We investigate the nature and evolution of large-scale structure within the SSA22 protocluster region at z = 3.09 using cosmological simulations. A redshift histogram constructed from current spectroscopic observations of the SSA22 protocluster reveals two separate peaks at z = 3.065 (blue) and z = 3.095 (red). Based on these data, we report updated overdensity and mass calculations for the SSA22 protocluster. We find {δ }b,{gal}=4.8+/- 1.8 and {δ }r,{gal}=9.5+/- 2.0 for the blue and red peaks, respectively, and {δ }t,{gal}=7.6+/- 1.4 for the entire region. These overdensities correspond to masses of {M}b=(0.76+/- 0.17)× {10}15{h}-1 {M}ȯ , {M}r=(2.15+/- 0.32)× {10}15{h}-1 {M}ȯ , and {M}t=(3.19+/- 0.40)× {10}15{h}-1 {M}ȯ for the red, blue, and total peaks, respectively. We use the Small MultiDark Planck (SMDPL) simulation to identify comparably massive z∼ 3 protoclusters, and uncover the underlying structure and ultimate fate of the SSA22 protocluster. For this analysis, we construct mock redshift histograms for each simulated z∼ 3 protocluster, quantitatively comparing them with the observed SSA22 data. We find that the observed double-peaked structure in the SSA22 redshift histogram corresponds not to a single coalescing cluster, but rather the proximity of a ∼ {10}15{h}-1 {M}ȯ protocluster and at least one > {10}14{h}-1 {M}ȯ cluster progenitor. Such associations in the SMDPL simulation are easily understood within the framework of hierarchical clustering of dark matter halos. We finally find that the opportunity to observe such a phenomenon is incredibly rare, with an occurrence rate of 7.4{h}3 {{{Gpc}}}-3. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W.M. Keck Foundation.

  9. Computing the universe: how large-scale simulations illuminate galaxies and dark energy

    Science.gov (United States)

    O'Shea, Brian

    2015-04-01

    High-performance and large-scale computing is absolutely to understanding astronomical objects such as stars, galaxies, and the cosmic web. This is because these are structures that operate on physical, temporal, and energy scales that cannot be reasonably approximated in the laboratory, and whose complexity and nonlinearity often defies analytic modeling. In this talk, I show how the growth of computing platforms over time has facilitated our understanding of astrophysical and cosmological phenomena, focusing primarily on galaxies and large-scale structure in the Universe.

  10. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    Science.gov (United States)

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscal...

  11. Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory

    Directory of Open Access Journals (Sweden)

    Vashishta P.

    2011-05-01

    Full Text Available A linear-scaling algorithm based on a divide-and-conquer (DC scheme is designed to perform large-scale molecular-dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT. This scheme is applied to the thermite reaction at an Al/Fe2O3 interface. It is found that mass diffusion and reaction rate at the interface are enhanced by a concerted metal-oxygen flip mechanism. Preliminary simulations are carried out for an aluminum particle in water based on the conventional DFT, as a target system for large-scale DC-DFT simulations. A pair of Lewis acid and base sites on the aluminum surface preferentially catalyzes hydrogen production in a low activation-barrier mechanism found in the simulations

  12. Money matters: evidence from a large-scale randomized field experiment with vouchers for adult training

    OpenAIRE

    Messer, Dolores; Wolter, Stefan C.

    2009-01-01

    This paper presents the results of a randomized experiment analyzing the use of vouchers for adult training. In 2006, 2,400 people were issued with a training voucher which they were entitled to use in payment for a training course of their choice. User behavior was compared with a control group of 14,000 people. People in the treatment and in the control group were not aware at any time that they were part of an experiment. The experiment shows that the voucher had a significant causal impac...

  13. Towards Agent-Based Simulation of Emerging and Large-Scale Social Networks. Examples of the Migrant Crisis and MMORPGs

    Directory of Open Access Journals (Sweden)

    Schatten, Markus

    2016-10-01

    Full Text Available Large-scale agent based simulation of social networks is described in the context of the migrant crisis in Syria and the EU as well as massively multi-player on-line role playing games (MMORPG. The recipeWorld system by Terna and Fontana is proposed as a possible solution to simulating large-scale social networks. The initial system has been re-implemented using the Smart Python multi-Agent Development Environment (SPADE and Pyinteractive was used for visualization. We present initial models of simulation that we plan to develop further in future studies. Thus this paper is research in progress that will hopefully establish a novel agent-based modelling system in the context of the ModelMMORPG project.

  14. Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures.

    Science.gov (United States)

    Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana

    2016-01-01

    With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.

  15. Using conversation analysis in data-driven aviation training with large-scale qualitative datasets

    DEFF Research Database (Denmark)

    Tuccio, William A.; Nevile, Maurice Richard

    2017-01-01

    This paper contributes to a growing body of work related to the Conversation Analytic Role-play Method (CARM) by studying the primary flight instruction environment to create training interventions related to radio communications and flight instruction practices. Framed in the context of conversa...

  16. Development of the simulation package 'ELSES' for extra-large-scale electronic structure calculation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, T [Department of Applied Mathematics and Physics, Tottori University, Tottori 680-8550 (Japan); Fujiwara, T [Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (CREST-JST) (Japan)

    2009-02-11

    An early-stage version of the simulation package 'ELSES' (extra-large-scale electronic structure calculation) is developed for simulating the electronic structure and dynamics of large systems, particularly nanometer-scale and ten-nanometer-scale systems (see www.elses.jp). Input and output files are written in the extensible markup language (XML) style for general users. Related pre-/post-simulation tools are also available. A practical workflow and an example are described. A test calculation for the GaAs bulk system is shown, to demonstrate that the present code can handle systems with more than one atom species. Several future aspects are also discussed.

  17. Investigating the dependence of SCM simulated precipitation and clouds on the spatial scale of large-scale forcing at SGP

    Science.gov (United States)

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    2017-08-01

    Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version of the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. Other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.

  18. Electrodynamic levitated train. Erlangen large-scale test plant is being converted to long stator technology

    Energy Technology Data Exchange (ETDEWEB)

    Muckelberg, E

    1976-10-01

    The development work for a future high-power fast train have been marked for years by the competition of two magnetic levitation systems, i.e., the electrodynamic levitation system (EDS) with superconducting magnets and the electromagnetic levitation system (EMS). The present study particularly deals with the EDS system. The vehicle is driven by a linear motor. The levitation height is between 10 cm and 30 cm without any complicated control in the EDS system. The disadvantage with this system, however, is that a starting and landing device is needed as a certain starting speed is required before the levitation process fully begins. The first levitation tests were possible on a round course at the beginning of May 1976. A second test stand is being put into operation at present. The first results are reported. Finally, possible development trends are indicated. It seems possible that the end project 'high-power fast train' will be a combination of the EMS and EDS systems.

  19. Investigation of the Contamination Control in a Cleaning Room with a Moving AGV by 3D Large-Scale Simulation

    Directory of Open Access Journals (Sweden)

    Qing-He Yao

    2013-01-01

    Full Text Available The motions of the airflow induced by the movement of an automatic guided vehicle (AGV in a cleanroom are numerically studied by large-scale simulation. For this purpose, numerical experiments scheme based on domain decomposition method is designed. Compared with the related past research, the high Reynolds number is treated by large-scale computation in this work. A domain decomposition Lagrange-Galerkin method is employed to approximate the Navier-Stokes equations and the convection diffusion equation; the stiffness matrix is symmetric and an incomplete balancing preconditioned conjugate gradient (PCG method is employed to solve the linear algebra system iteratively. The end wall effects are readily viewed, and the necessity of the extension to 3 dimensions is confirmed. The effect of the high efficiency particular air (HEPA filter on contamination control is studied and the proper setting of the speed of the clean air flow is also investigated. More details of the recirculation zones are revealed by the 3D large-scale simulation.

  20. Simulation of buoyancy induced gas mixing tests performed in a large scale containment facility using GOTHIC code

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z.; Chin, Y.S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    This paper compares containment thermal-hydraulics simulations performed using GOTHIC against a past test set of large scale buoyancy induced helium-air-steam mixing experiments that had been performed at the AECL's Chalk River Laboratories. A number of typical post-accident containment phenomena, including thermal/gas stratification, natural convection, cool air entrainment, steam condensation on concrete walls and active local air cooler, were covered. The results provide useful insights into hydrogen gas mixing behaviour following a loss-of-coolant accident and demonstrate GOTHIC's capability in simulating these phenomena. (author)

  1. Simulation of buoyancy induced gas mixing tests performed in a large scale containment facility using GOTHIC code

    International Nuclear Information System (INIS)

    Liang, Z.; Chin, Y.S.

    2014-01-01

    This paper compares containment thermal-hydraulics simulations performed using GOTHIC against a past test set of large scale buoyancy induced helium-air-steam mixing experiments that had been performed at the AECL's Chalk River Laboratories. A number of typical post-accident containment phenomena, including thermal/gas stratification, natural convection, cool air entrainment, steam condensation on concrete walls and active local air cooler, were covered. The results provide useful insights into hydrogen gas mixing behaviour following a loss-of-coolant accident and demonstrate GOTHIC's capability in simulating these phenomena. (author)

  2. The development of a capability for aerodynamic testing of large-scale wing sections in a simulated natural rain environment

    Science.gov (United States)

    Bezos, Gaudy M.; Cambell, Bryan A.; Melson, W. Edward

    1989-01-01

    A research technique to obtain large-scale aerodynamic data in a simulated natural rain environment has been developed. A 10-ft chord NACA 64-210 wing section wing section equipped with leading-edge and trailing-edge high-lift devices was tested as part of a program to determine the effect of highly-concentrated, short-duration rainfall on airplane performance. Preliminary dry aerodynamic data are presented for the high-lift configuration at a velocity of 100 knots and an angle of attack of 18 deg. Also, data are presented on rainfield uniformity and rainfall concentration intensity levels obtained during the calibration of the rain simulation system.

  3. Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion

    International Nuclear Information System (INIS)

    Dobranich, Dean; Blanchat, Thomas K.

    2008-01-01

    Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System

  4. Large-scale numerical simulations of star formation put to the test

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Haugbølle, Troels

    2016-01-01

    (SEDs), calculated from large-scalenumerical simulations, to observational studies, thereby aiding in boththe interpretation of the observations and in testing the fidelity ofthe simulations. Methods: The adaptive mesh refinement code,RAMSES, is used to simulate the evolution of a 5 pc × 5 pc ×5 pc...... to calculate evolutionary tracers Tbol andLsmm/Lbol. It is shown that, while the observeddistributions of the tracers are well matched by the simulation, theygenerally do a poor job of tracking the protostellar ages. Disks formearly in the simulation, with 40% of the Class 0 protostars beingencircled by one...

  5. Challenges in analysing and visualizing large-scale molecular dynamics simulations: domain and defect formation in lung surfactant monolayers

    International Nuclear Information System (INIS)

    Mendez-Villuendas, E; Baoukina, S; Tieleman, D P

    2012-01-01

    Molecular dynamics simulations have rapidly grown in size and complexity, as computers have become more powerful and molecular dynamics software more efficient. Using coarse-grained models like MARTINI system sizes of the order of 50 nm × 50 nm × 50 nm can be simulated on commodity clusters on microsecond time scales. For simulations of biological membranes and monolayers mimicking lung surfactant this enables large-scale transformation and complex mixtures of lipids and proteins. Here we use a simulation of a monolayer with three phospholipid components, cholesterol, lung surfactant proteins, water, and ions on a ten microsecond time scale to illustrate some current challenges in analysis. In the simulation, phase separation occurs followed by formation of a bilayer fold in which lipids and lung surfactant protein form a highly curved structure in the aqueous phase. We use Voronoi analysis to obtain detailed physical properties of the different components and phases, and calculate local mean and Gaussian curvatures of the bilayer fold.

  6. Large-scale simulations with distributed computing: Asymptotic scaling of ballistic deposition

    International Nuclear Information System (INIS)

    Farnudi, Bahman; Vvedensky, Dimitri D

    2011-01-01

    Extensive kinetic Monte Carlo simulations are reported for ballistic deposition (BD) in (1 + 1) dimensions. The large system sizes L observed for the onset of asymptotic scaling (L ≅ 2 12 ) explains the widespread discrepancies in previous reports for exponents of BD in one and likely in higher dimensions. The exponents obtained directly from our simulations, α = 0.499 ± 0.004 and β = 0.336 ± 0.004, capture the exact values α = 1/2 and β = 1/3 for the one-dimensional Kardar-Parisi-Zhang equation. An analysis of our simulations suggests a criterion for identifying the onset of true asymptotic scaling, which enables a more informed evaluation of exponents for BD in higher dimensions. These simulations were made possible by the Simulation through Social Networking project at the Institute for Advanced Studies in Basic Sciences in 2007, which was re-launched in November 2010.

  7. Transforming GIS data into functional road models for large-scale traffic simulation.

    Science.gov (United States)

    Wilkie, David; Sewall, Jason; Lin, Ming C

    2012-06-01

    There exists a vast amount of geographic information system (GIS) data that model road networks around the world as polylines with attributes. In this form, the data are insufficient for applications such as simulation and 3D visualization-tools which will grow in power and demand as sensor data become more pervasive and as governments try to optimize their existing physical infrastructure. In this paper, we propose an efficient method for enhancing a road map from a GIS database to create a geometrically and topologically consistent 3D model to be used in real-time traffic simulation, interactive visualization of virtual worlds, and autonomous vehicle navigation. The resulting representation provides important road features for traffic simulations, including ramps, highways, overpasses, legal merge zones, and intersections with arbitrary states, and it is independent of the simulation methodologies. We test the 3D models of road networks generated by our algorithm on real-time traffic simulation using both macroscopic and microscopic techniques.

  8. Spatio-temporal spike train analysis for large scale networks using the maximum entropy principle and Monte Carlo method

    International Nuclear Information System (INIS)

    Nasser, Hassan; Cessac, Bruno; Marre, Olivier

    2013-01-01

    Understanding the dynamics of neural networks is a major challenge in experimental neuroscience. For that purpose, a modelling of the recorded activity that reproduces the main statistics of the data is required. In the first part, we present a review on recent results dealing with spike train statistics analysis using maximum entropy models (MaxEnt). Most of these studies have focused on modelling synchronous spike patterns, leaving aside the temporal dynamics of the neural activity. However, the maximum entropy principle can be generalized to the temporal case, leading to Markovian models where memory effects and time correlations in the dynamics are properly taken into account. In the second part, we present a new method based on Monte Carlo sampling which is suited for the fitting of large-scale spatio-temporal MaxEnt models. The formalism and the tools presented here will be essential to fit MaxEnt spatio-temporal models to large neural ensembles. (paper)

  9. Large Scale Earth's Bow Shock with Northern IMF as Simulated by ...

    Indian Academy of Sciences (India)

    results with the available MHD simulations under same scaled solar wind. (SW) and (IMF) ... their effects in dissipating flow-energy, in heating matter, in accelerating particles to high, presumably ... such as hybrid models (Omidi et al. 2013 ...

  10. Numerical Simulation of Unsteady Large Scale Separated Flow around Oscillating Airfoil

    OpenAIRE

    Isogai, Koji; 磯貝, 紘二

    1991-01-01

    Numerical simulations of dynamic stall phenomenon of NACA0012 airfoil oscillating in pitch near static stalling angle are performed by using the compressible Navier-Stokes equations. In the present computations, a TVD scheme and an algebraic turbulence model are employed for the simulations of the unsteady separated flows at Reynolds number of 1.1x105. The hysteresis loops of the unsteady pitching moment during dynamic stall are compared with the existing experimental data. The flow pattern a...

  11. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    Science.gov (United States)

    Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

    2016-01-01

    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

  12. Generation of large scale urban environments to support advanced sensor and seeker simulation

    Science.gov (United States)

    Giuliani, Joseph; Hershey, Daniel; McKeown, David, Jr.; Willis, Carla; Van, Tan

    2009-05-01

    One of the key aspects for the design of a next generation weapon system is the need to operate in cluttered and complex urban environments. Simulation systems rely on accurate representation of these environments and require automated software tools to construct the underlying 3D geometry and associated spectral and material properties that are then formatted for various objective seeker simulation systems. Under an Air Force Small Business Innovative Research (SBIR) contract, we have developed an automated process to generate 3D urban environments with user defined properties. These environments can be composed from a wide variety of source materials, including vector source data, pre-existing 3D models, and digital elevation models, and rapidly organized into a geo-specific visual simulation database. This intermediate representation can be easily inspected in the visible spectrum for content and organization and interactively queried for accuracy. Once the database contains the required contents, it can then be exported into specific synthetic scene generation runtime formats, preserving the relationship between geometry and material properties. To date an exporter for the Irma simulation system developed and maintained by AFRL/Eglin has been created and a second exporter to Real Time Composite Hardbody and Missile Plume (CHAMP) simulation system for real-time use is currently being developed. This process supports significantly more complex target environments than previous approaches to database generation. In this paper we describe the capabilities for content creation for advanced seeker processing algorithms simulation and sensor stimulation, including the overall database compilation process and sample databases produced and exported for the Irma runtime system. We also discuss the addition of object dynamics and viewer dynamics within the visual simulation into the Irma runtime environment.

  13. On the Fidelity of Semi-distributed Hydrologic Model Simulations for Large Scale Catchment Applications

    Science.gov (United States)

    Ajami, H.; Sharma, A.; Lakshmi, V.

    2017-12-01

    Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.

  14. Simulation of hydrogen release and combustion in large scale geometries: models and methods

    International Nuclear Information System (INIS)

    Beccantini, A.; Dabbene, F.; Kudriakov, S.; Magnaud, J.P.; Paillere, H.; Studer, E.

    2003-01-01

    The simulation of H2 distribution and combustion in confined geometries such as nuclear reactor containments is a challenging task from the point of view of numerical simulation, as it involves quite disparate length and time scales, which need to resolved appropriately and efficiently. Cea is involved in the development and validation of codes to model such problems, for external clients such as IRSN (TONUS code), Technicatome (NAUTILUS code) or for its own safety studies. This paper provides an overview of the physical and numerical models developed for such applications, as well as some insight into the current research topics which are being pursued. Examples of H2 mixing and combustion simulations are given. (authors)

  15. Crystallisation of a Lennard-Jones fluid by large scale molecular dynamics simulation

    International Nuclear Information System (INIS)

    Snook, I.

    1998-01-01

    Full text: The evolution of the structure of a large system of atoms interacting via a Lennard-Jones pair potential was simulated by the use of the Molecular Dynamics computer simulation technique. The system was initially equilibrated in the one phase region of the phase diagram at a temperature above critical then a temperature quench was performed which placed the system in a region were the single fluid phase was unstable. Quenches to below the triple point temperature gave rise to crystallisation The mechanism and final morphology is shown to depend strongly on the starting conditions e.g. the starting density

  16. Large-scale molecular dynamics simulations of self-assembling systems.

    Science.gov (United States)

    Klein, Michael L; Shinoda, Wataru

    2008-08-08

    Relentless increases in the size and performance of multiprocessor computers, coupled with new algorithms and methods, have led to novel applications of simulations across chemistry. This Perspective focuses on the use of classical molecular dynamics and so-called coarse-grain models to explore phenomena involving self-assembly in complex fluids and biological systems.

  17. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I. (University of California, San Diego); Winey, J. Michael (Washington State University); Gupta, Yogendra Mohan (Washington State University); Lane, J. Matthew D.; Ditmire, Todd (University of Texas at Austin); Quevedo, Hernan J. (University of Texas at Austin)

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  18. The UP modelling system for large scale hydrology: simulation of the Arkansas-Red River basin

    Directory of Open Access Journals (Sweden)

    C. G. Kilsby

    1999-01-01

    Full Text Available The UP (Upscaled Physically-based hydrological modelling system to the Arkansas-Red River basin (USA is designed for macro-scale simulations of land surface processes, and aims for a physical basis and, avoids the use of discharge records in the direct calibration of parameters. This is achieved in a two stage process: in the first stage parametrizations are derived from detailed modelling of selected representative small and then used in a second stage in which a simple distributed model is used to simulate the dynamic behaviour of the whole basin. The first stage of the process is described in a companion paper (Ewen et al., this issue, and the second stage of this process is described here. The model operated at an hourly time-step on 17-km grid squares for a two year simulation period, and represents all the important hydrological processes including regional aquifer recharge, groundwater discharge, infiltration- and saturation-excess runoff, evapotranspiration, snowmelt, overland and channel flow. Outputs from the model are discussed, and include river discharge at gauging stations and space-time fields of evaporation and soil moisture. Whilst the model efficiency assessed by comparison of simulated and observed discharge records is not as good as could be achieved with a model calibrated against discharge, there are considerable advantages in retaining a physical basis in applications to ungauged river basins and assessments of impacts of land use or climate change.

  19. A hybrid Genetic and Simulated Annealing Algorithm for Chordal Ring implementation in large-scale networks

    DEFF Research Database (Denmark)

    Riaz, M. Tahir; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup

    2011-01-01

    The paper presents a hybrid Genetic and Simulated Annealing algorithm for implementing Chordal Ring structure in optical backbone network. In recent years, topologies based on regular graph structures gained a lot of interest due to their good communication properties for physical topology of the...

  20. Large scale statistics for computational verification of grain growth simulations with experiments

    International Nuclear Information System (INIS)

    Demirel, Melik C.; Kuprat, Andrew P.; George, Denise C.; Straub, G.K.; Misra, Amit; Alexander, Kathleen B.; Rollett, Anthony D.

    2002-01-01

    It is known that by controlling microstructural development, desirable properties of materials can be achieved. The main objective of our research is to understand and control interface dominated material properties, and finally, to verify experimental results with computer simulations. We have previously showed a strong similarity between small-scale grain growth experiments and anisotropic three-dimensional simulations obtained from the Electron Backscattered Diffraction (EBSD) measurements. Using the same technique, we obtained 5170-grain data from an Aluminum-film (120 (micro)m thick) with a columnar grain structure. Experimentally obtained starting microstructure and grain boundary properties are input for the three-dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550 C. Characterization of the structures and properties of grain boundary networks (GBN) to produce desirable microstructures is one of the fundamental problems in interface science. There is an ongoing research for the development of new experimental and analytical techniques in order to obtain and synthesize information related to GBN. The grain boundary energy and mobility data were characterized by Electron Backscattered Diffraction (EBSD) technique and Atomic Force Microscopy (AFM) observations (i.e., for ceramic MgO and for the metal Al). Grain boundary energies are extracted from triple junction (TJ) geometry considering the local equilibrium condition at TJ's. Relative boundary mobilities were also extracted from TJ's through a statistical/multiscale analysis. Additionally, there are recent theoretical developments of grain boundary evolution in microstructures. In this paper, a new technique for three-dimensional grain growth simulations was used to simulate interface migration

  1. Large scale simulations of lattice QCD thermodynamics on Columbia Parallel Supercomputers

    International Nuclear Information System (INIS)

    Ohta, Shigemi

    1989-01-01

    The Columbia Parallel Supercomputer project aims at the construction of a parallel processing, multi-gigaflop computer optimized for numerical simulations of lattice QCD. The project has three stages; 16-node, 1/4GF machine completed in April 1985, 64-node, 1GF machine completed in August 1987, and 256-node, 16GF machine now under construction. The machines all share a common architecture; a two dimensional torus formed from a rectangular array of N 1 x N 2 independent and identical processors. A processor is capable of operating in a multi-instruction multi-data mode, except for periods of synchronous interprocessor communication with its four nearest neighbors. Here the thermodynamics simulations on the two working machines are reported. (orig./HSI)

  2. Three-dimensional simulation of large-scale structure in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Centrella, J.; Melott, A.L.

    1983-09-15

    High and low density cloud-in-cell models were used to simulate the nonlinear growth of adiabatic perturbations in collisionless matter to demonstrate the development of a cellular structure in the universe. Account was taken of a short wvelength cutoff in collisionless matter, with a focus on resolving filaments and low density pancakes. The calculations were performed with a Friedmann-Robertson-Walker model, and the gravitational potential of dark matter was obtained through solution of the Poisson equation. The simulation began with z between 100-1000, and initial particle velocities were set at zero. Spherically symmetric voids were observed to form, then colide and interact. Sufficient particles were employed to avoid depletion during nonlinear collapse. No galaxies formed during the epoch studied, which has implications for the significance of dark, baryonic matter in the present universe.

  3. Parallel simulation of tsunami inundation on a large-scale supercomputer

    Science.gov (United States)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2013-12-01

    An accurate prediction of tsunami inundation is important for disaster mitigation purposes. One approach is to approximate the tsunami wave source through an instant inversion analysis using real-time observation data (e.g., Tsushima et al., 2009) and then use the resulting wave source data in an instant tsunami inundation simulation. However, a bottleneck of this approach is the large computational cost of the non-linear inundation simulation and the computational power of recent massively parallel supercomputers is helpful to enable faster than real-time execution of a tsunami inundation simulation. Parallel computers have become approximately 1000 times faster in 10 years (www.top500.org), and so it is expected that very fast parallel computers will be more and more prevalent in the near future. Therefore, it is important to investigate how to efficiently conduct a tsunami simulation on parallel computers. In this study, we are targeting very fast tsunami inundation simulations on the K computer, currently the fastest Japanese supercomputer, which has a theoretical peak performance of 11.2 PFLOPS. One computing node of the K computer consists of 1 CPU with 8 cores that share memory, and the nodes are connected through a high-performance torus-mesh network. The K computer is designed for distributed-memory parallel computation, so we have developed a parallel tsunami model. Our model is based on TUNAMI-N2 model of Tohoku University, which is based on a leap-frog finite difference method. A grid nesting scheme is employed to apply high-resolution grids only at the coastal regions. To balance the computation load of each CPU in the parallelization, CPUs are first allocated to each nested layer in proportion to the number of grid points of the nested layer. Using CPUs allocated to each layer, 1-D domain decomposition is performed on each layer. In the parallel computation, three types of communication are necessary: (1) communication to adjacent neighbours for the

  4. Multi-Scale Fusion of Information for Uncertainty Quantification and Management in Large-Scale Simulations

    Science.gov (United States)

    2015-12-02

    of completely new nonlinear Malliavin calculus . This type of calculus is important for the analysis and simulation of stationary and/or “causal...been limited by the fact that it requires the solution of an optimization problem with noisy gradients . When using deterministic optimization schemes...under uncertainty. We tested new developments on nonlinear Malliavin calculus , combining reduced basis methods with ANOVA, model validation, on

  5. Large scale Direct Numerical Simulation of premixed turbulent jet flames at high Reynolds number

    Science.gov (United States)

    Attili, Antonio; Luca, Stefano; Lo Schiavo, Ermanno; Bisetti, Fabrizio; Creta, Francesco

    2016-11-01

    A set of direct numerical simulations of turbulent premixed jet flames at different Reynolds and Karlovitz numbers is presented. The simulations feature finite rate chemistry with 16 species and 73 reactions and up to 22 Billion grid points. The jet consists of a methane/air mixture with equivalence ratio ϕ = 0 . 7 and temperature varying between 500 and 800 K. The temperature and species concentrations in the coflow correspond to the equilibrium state of the burnt mixture. All the simulations are performed at 4 atm. The flame length, normalized by the jet width, decreases significantly as the Reynolds number increases. This is consistent with an increase of the turbulent flame speed due to the increased integral scale of turbulence. This behavior is typical of flames in the thin-reaction zone regime, which are affected by turbulent transport in the preheat layer. Fractal dimension and topology of the flame surface, statistics of temperature gradients, and flame structure are investigated and the dependence of these quantities on the Reynolds number is assessed.

  6. H1 Grid production tool for large scale Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lobodzinski, B; Wissing, Ch [DESY, Hamburg (Germany); Bystritskaya, E; Vorobiew, M [ITEP, Moscow (Russian Federation); Karbach, T M [University of Dortmund (Germany); Mitsyn, S [JINR, Moscow (Russian Federation); Mudrinic, M, E-mail: bogdan.lobodzinski@desy.d [VINS, Belgrad (Serbia)

    2010-04-01

    The H1 Collaboration at HERA has entered the period of high precision analyses based on the final data sample. These analyses require a massive production of simulated Monte Carlo (MC) events. The H1 MC framework (H1MC) is a software for mass MC production on the LCG Grid infrastructure and on a local batch system created by H1 Collaboration. The aim of the tool is a full automatisation of the MC production workflow including management of the MC jobs on the Grid down to copying of the resulting files from the Grid to the H1 mass storage tape device. The H1 MC framework has modular structure, delegating a specific task to each module, including task specific to the H1 experiment: Automatic building of steer and input files, simulation of the H1 detector, reconstruction of particle tracks and post processing calculation. Each module provides data or functionality needed by other modules via a local database. The Grid jobs created for detector simulation and reconstruction from generated MC input files are fully independent and fault-tolerant for 32 and 64-bit LCG Grid architecture and in Grid running state they can be continuously monitored using Relational Grid Monitoring Architecture (R-GMA) service. To monitor the full production chain and detect potential problems, regular checks of the job state are performed using the local database and the Service Availability Monitoring (SAM) framework. The improved stability of the system has resulted in a dramatic increase in the production rate, which exceeded two billion MC events in 2008.

  7. A large scale software system for simulation and design optimization of mechanical systems

    Science.gov (United States)

    Dopker, Bernhard; Haug, Edward J.

    1989-01-01

    The concept of an advanced integrated, networked simulation and design system is outlined. Such an advanced system can be developed utilizing existing codes without compromising the integrity and functionality of the system. An example has been used to demonstrate the applicability of the concept of the integrated system outlined here. The development of an integrated system can be done incrementally. Initial capabilities can be developed and implemented without having a detailed design of the global system. Only a conceptual global system must exist. For a fully integrated, user friendly design system, further research is needed in the areas of engineering data bases, distributed data bases, and advanced user interface design.

  8. Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations.

    Science.gov (United States)

    Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.

  9. Multi-fidelity uncertainty quantification in large-scale predictive simulations of turbulent flow

    Science.gov (United States)

    Geraci, Gianluca; Jofre-Cruanyes, Lluis; Iaccarino, Gianluca

    2017-11-01

    The performance characterization of complex engineering systems often relies on accurate, but computationally intensive numerical simulations. It is also well recognized that in order to obtain a reliable numerical prediction the propagation of uncertainties needs to be included. Therefore, Uncertainty Quantification (UQ) plays a fundamental role in building confidence in predictive science. Despite the great improvement in recent years, even the more advanced UQ algorithms are still limited to fairly simplified applications and only moderate parameter dimensionality. Moreover, in the case of extremely large dimensionality, sampling methods, i.e. Monte Carlo (MC) based approaches, appear to be the only viable alternative. In this talk we describe and compare a family of approaches which aim to accelerate the convergence of standard MC simulations. These methods are based on hierarchies of generalized numerical resolutions (multi-level) or model fidelities (multi-fidelity), and attempt to leverage the correlation between Low- and High-Fidelity (HF) models to obtain a more accurate statistical estimator without introducing additional HF realizations. The performance of these methods are assessed on an irradiated particle laden turbulent flow (PSAAP II solar energy receiver). This investigation was funded by the United States Department of Energy's (DoE) National Nuclear Security Administration (NNSA) under the Predicitive Science Academic Alliance Program (PSAAP) II at Stanford University.

  10. ActivitySim: large-scale agent based activity generation for infrastructure simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gali, Emmanuel [Los Alamos National Laboratory; Eidenbenz, Stephan [Los Alamos National Laboratory; Mniszewski, Sue [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory; Teuscher, Christof [PORTLAND STATE UNIV

    2008-01-01

    The United States' Department of Homeland Security aims to model, simulate, and analyze critical infrastructure and their interdependencies across multiple sectors such as electric power, telecommunications, water distribution, transportation, etc. We introduce ActivitySim, an activity simulator for a population of millions of individual agents each characterized by a set of demographic attributes that is based on US census data. ActivitySim generates daily schedules for each agent that consists of a sequence of activities, such as sleeping, shopping, working etc., each being scheduled at a geographic location, such as businesses or private residences that is appropriate for the activity type and for the personal situation of the agent. ActivitySim has been developed as part of a larger effort to understand the interdependencies among national infrastructure networks and their demand profiles that emerge from the different activities of individuals in baseline scenarios as well as emergency scenarios, such as hurricane evacuations. We present the scalable software engineering principles underlying ActivitySim, the socia-technical modeling paradigms that drive the activity generation, and proof-of-principle results for a scenario in the Twin Cities, MN area of 2.6 M agents.

  11. Simulation of large-scale soil water systems using groundwater data and satellite based soil moisture

    Science.gov (United States)

    Kreye, Phillip; Meon, Günter

    2016-04-01

    Complex concepts for the physically correct depiction of dominant processes in the hydrosphere are increasingly at the forefront of hydrological modelling. Many scientific issues in hydrological modelling demand for additional system variables besides a simulation of runoff only, such as groundwater recharge or soil moisture conditions. Models that include soil water simulations are either very simplified or require a high number of parameters. Against this backdrop there is a heightened demand of observations to be used to calibrate the model. A reasonable integration of groundwater data or remote sensing data in calibration procedures as well as the identifiability of physically plausible sets of parameters is subject to research in the field of hydrology. Since this data is often combined with conceptual models, the given interfaces are not suitable for such demands. Furthermore, the application of automated optimisation procedures is generally associated with conceptual models, whose (fast) computing times allow many iterations of the optimisation in an acceptable time frame. One of the main aims of this study is to reduce the discrepancy between scientific and practical applications in the field of hydrological modelling. Therefore, the soil model DYVESOM (DYnamic VEgetation SOil Model) was developed as one of the primary components of the hydrological modelling system PANTA RHEI. DYVESOMs structure provides the required interfaces for the calibrations made at runoff, satellite based soil moisture and groundwater level. The model considers spatial and temporal differentiated feedback of the development of the vegetation on the soil system. In addition, small scale heterogeneities of soil properties (subgrid-variability) are parameterized by variation of van Genuchten parameters depending on distribution functions. Different sets of parameters are operated simultaneously while interacting with each other. The developed soil model is innovative regarding concept

  12. Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.; Kotok, E.V.; Novikov, I.D.; Polyudov, A.N.; Shandarin, S.F.; Sigov, Y.S.

    1980-01-01

    The results of a numerical experiment are given that describe the non-linear stages of the development of perturbations in gravitating matter density in the expanding Universe. This process simulates the formation of the large-scale structure of the Universe from an initially almost homogeneous medium. In the one- and two-dimensional cases of this numerical experiment the evolution of the system from 4096 point masses that interact gravitationally only was studied with periodic boundary conditions (simulation of the infinite space). The initial conditions were chosen that resulted from the theory of the evolution of small perturbations in the expanding Universe. The results of numerical experiments are systematically compared with the approximate analytic theory. The results of the calculations show that in the case of collisionless particles, as well as in the gas-dynamic case, the cellular structure appeared at the non-linear stage in the case of the adiabatic perturbations. The greater part of the matter is in thin layers that separate vast regions of low density. In a Robertson-Walker universe the cellular structure exists for a finite time and then fragments into a few compact objects. In the open Universe the cellular structure also exists if the amplitude of initial perturbations is large enough. But the following disruption of the cellular structure is more difficult because of too rapid an expansion of the Universe. The large-scale structure is frozen. (author)

  13. Large-Scale Reactive Atomistic Simulation of Shock-induced Initiation Processes in Energetic Materials

    Science.gov (United States)

    Thompson, Aidan

    2013-06-01

    Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we

  14. Neurite, a finite difference large scale parallel program for the simulation of electrical signal propagation in neurites under mechanical loading.

    Directory of Open Access Journals (Sweden)

    Julián A García-Grajales

    Full Text Available With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon

  15. Timetable-based simulation method for choice set generation in large-scale public transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Kjær; Anderson, Marie Karen; Nielsen, Otto Anker

    2016-01-01

    The composition and size of the choice sets are a key for the correct estimation of and prediction by route choice models. While existing literature has posed a great deal of attention towards the generation of path choice sets for private transport problems, the same does not apply to public...... transport problems. This study proposes a timetable-based simulation method for generating path choice sets in a multimodal public transport network. Moreover, this study illustrates the feasibility of its implementation by applying the method to reproduce 5131 real-life trips in the Greater Copenhagen Area...... and to assess the choice set quality in a complex multimodal transport network. Results illustrate the applicability of the algorithm and the relevance of the utility specification chosen for the reproduction of real-life path choices. Moreover, results show that the level of stochasticity used in choice set...

  16. Contact area of rough spheres: Large scale simulations and simple scaling laws

    Science.gov (United States)

    Pastewka, Lars; Robbins, Mark O.

    2016-05-01

    We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the whole range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.

  17. Contact area of rough spheres: Large scale simulations and simple scaling laws

    Energy Technology Data Exchange (ETDEWEB)

    Pastewka, Lars, E-mail: lars.pastewka@kit.edu [Institute for Applied Materials & MicroTribology Center muTC, Karlsruhe Institute of Technology, Engelbert-Arnold-Straße 4, 76131 Karlsruhe (Germany); Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Robbins, Mark O., E-mail: mr@pha.jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States)

    2016-05-30

    We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the whole range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.

  18. Microfluidic very large scale integration (VLSI) modeling, simulation, testing, compilation and physical synthesis

    CERN Document Server

    Pop, Paul; Madsen, Jan

    2016-01-01

    This book presents the state-of-the-art techniques for the modeling, simulation, testing, compilation and physical synthesis of mVLSI biochips. The authors describe a top-down modeling and synthesis methodology for the mVLSI biochips, inspired by microelectronics VLSI methodologies. They introduce a modeling framework for the components and the biochip architecture, and a high-level microfluidic protocol language. Coverage includes a topology graph-based model for the biochip architecture, and a sequencing graph to model for biochemical application, showing how the application model can be obtained from the protocol language. The techniques described facilitate programmability and automation, enabling developers in the emerging, large biochip market. · Presents the current models used for the research on compilation and synthesis techniques of mVLSI biochips in a tutorial fashion; · Includes a set of "benchmarks", that are presented in great detail and includes the source code of several of the techniques p...

  19. Efficient simulations of large-scale structure in modified gravity cosmologies with comoving Lagrangian acceleration

    Science.gov (United States)

    Valogiannis, Georgios; Bean, Rachel

    2017-05-01

    We implement an adaptation of the cola approach, a hybrid scheme that combines Lagrangian perturbation theory with an N-body approach, to model nonlinear collapse in chameleon and symmetron modified gravity models. Gravitational screening is modeled effectively through the attachment of a suppression factor to the linearized Klein-Gordon equations. The adapted cola approach is benchmarked, with respect to an N-body code both for the Λ cold dark matter (Λ CDM ) scenario and for the modified gravity theories. It is found to perform well in the estimation of the dark matter power spectra, with consistency of 1% to k ˜2.5 h /Mpc . Redshift space distortions are shown to be effectively modeled through a Lorentzian parametrization with a velocity dispersion fit to the data. We find that cola performs less well in predicting the halo mass functions but has consistency, within 1 σ uncertainties of our simulations, in the relative changes to the mass function induced by the modified gravity models relative to Λ CDM . The results demonstrate that cola, proposed to enable accurate and efficient, nonlinear predictions for Λ CDM , can be effectively applied to a wider set of cosmological scenarios, with intriguing properties, for which clustering behavior needs to be understood for upcoming surveys such as LSST, DESI, Euclid, and WFIRST.

  20. Nuclear EMP simulation for large-scale urban environments. FDTD for electrically large problems.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, William S. [Los Alamos National Laboratory; Bull, Jeffrey S. [Los Alamos National Laboratory; Wilcox, Trevor [Los Alamos National Laboratory; Bos, Randall J. [Los Alamos National Laboratory; Shao, Xuan-Min [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory; Costigan, Keeley R. [Los Alamos National Laboratory

    2012-08-13

    In case of a terrorist nuclear attack in a metropolitan area, EMP measurement could provide: (1) a prompt confirmation of the nature of the explosion (chemical or nuclear) for emergency response; and (2) and characterization parameters of the device (reaction history, yield) for technical forensics. However, urban environment could affect the fidelity of the prompt EMP measurement (as well as all other types of prompt measurement): (1) Nuclear EMP wavefront would no longer be coherent, due to incoherent production, attenuation, and propagation of gamma and electrons; and (2) EMP propagation from source region outward would undergo complicated transmission, reflection, and diffraction processes. EMP simulation for electrically-large urban environment: (1) Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach; and (2) FDTD tends to be limited to problems that are not 'too' large compared to the wavelengths of interest because of numerical dispersion and anisotropy. We use a higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.

  1. Large-scale molecular dynamics simulations of shock waves in Laves crystals and icosahedral quasicrystals

    International Nuclear Information System (INIS)

    Roth, Johannes

    2002-01-01

    Quasicrystals and ordinary crystals both possess long-range translational order. But quasicrystals are aperiodic since their symmetry is non-crystallographic. The aim of this project is to study the behavior of shock waves in periodic and aperiodic structures and to compare the results. The expectation is that new types of defects are generated in the aperiodic materials. The materials studied are two models of (AlCu)Li quasicrystals and the C15 Laves phase, a low-order approximant of the quasicrystals. An elastic wave is found in the simulations up to a piston velocity of about up < 0.25 cl. Between 0.5 < up/cl < 0.5 the slope of elastic wave velocity slows down, and a new plastic wave is observed. Extended defect are generated, but no simple two-dimensional walls. The defect bands have finite width and a disordered structure. If the crystal is quenched a polycrystalline phase is obtained. For the quasicrystal the transformation is more complex since ring processes occur in the elastic regime already. Starting at about up < 0.5 cl a single plastic shock wave is observed. In this range all structures are destroyed completely

  2. Simulation of large scale air detritiation operations by computer modeling and bench-scale experimentation

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Land, R.H.; Maroni, V.A.; Mintz, J.M.

    1978-01-01

    Although some experience has been gained in the design and construction of 0.5 to 5 m 3 /s air-detritiation systems, little information is available on the performance of these systems under realistic conditions. Recently completed studies at ANL have attempted to provide some perspective on this subject. A time-dependent computer model was developed to study the effects of various reaction and soaking mechanisms that could occur in a typically-sized fusion reactor building (approximately 10 5 m 3 ) following a range of tritium releases (2 to 200 g). In parallel with the computer study, a small (approximately 50 liter) test chamber was set up to investigate cleanup characteristics under conditions which could also be simulated with the computer code. Whereas results of computer analyses indicated that only approximately 10 -3 percent of the tritium released to an ambient enclosure should be converted to tritiated water, the bench-scale experiments gave evidence of conversions to water greater than 1%. Furthermore, although the amounts (both calculated and observed) of soaked-in tritium are usually only a very small fraction of the total tritium release, the soaked tritium is significant, in that its continuous return to the enclosure extends the cleanup time beyond the predicted value in the absence of any soaking mechanisms

  3. A concurrent visualization system for large-scale unsteady simulations. Parallel vector performance on an NEC SX-4

    International Nuclear Information System (INIS)

    Takei, Toshifumi; Doi, Shun; Matsumoto, Hideki; Muramatsu, Kazuhiro

    2000-01-01

    We have developed a concurrent visualization system RVSLIB (Real-time Visual Simulation Library). This paper shows the effectiveness of the system when it is applied to large-scale unsteady simulations, for which the conventional post-processing approach may no longer work, on high-performance parallel vector supercomputers. The system performs almost all of the visualization tasks on a computation server and uses compressed visualized image data for efficient communication between the server and the user terminal. We have introduced several techniques, including vectorization and parallelization, into the system to minimize the computational costs of the visualization tools. The performance of RVSLIB was evaluated by using an actual CFD code on an NEC SX-4. The computational time increase due to the concurrent visualization was at most 3% for a smaller (1.6 million) grid and less than 1% for a larger (6.2 million) one. (author)

  4. Detached eddy simulation of cyclic large scale fluctuations in a simplified engine setup

    International Nuclear Information System (INIS)

    Hasse, Christian; Sohm, Volker; Durst, Bodo

    2009-01-01

    Computational Fluid Dynamics using RANS-based modelling approaches have become an important tool in the internal combustion engine development and optimization process. However, these models cannot resolve cycle to cycle variations, which are an important aspect in the design of new combustion systems. In this study the feasibility of using a Detached Eddy Simulation (DES) SST model, which is a hybrid RANS/LES model, to predict cycle to cycle variations is investigated. In the near wall region or in regions where the grid resolution is not sufficiently fine to resolve smaller structures, the two-equation RANS SST model is used. In the other regions with higher grid resolution an LES model is applied. The case considered is a geometrically simplified engine, for which detailed experimental data for the ensemble averaged and single cycle velocity field are available from Boree et al. [Boree, J., Maurel, S., Bazile, R., 2002. Disruption of a compressed vortex, Physics of Fluids 14 (7), 2543-2556]. The fluid flow shows a strong tumbling motion, which is a major characteristic for modern turbo-charged, direct-injection gasoline engines. The general flow structure is analyzed first and the extent of the LES region and the amount of resolved fluctuations are discussed. Multiple consecutive cycles are computed and turbulent statistics of DES SST, URANS and the measured velocity field are compared for different piston positions. Cycle to cycle variations of the velocity field are analyzed for both computation and experiment with a special emphasis on the useability of the DES SST model to predict cyclic variations

  5. Backward-in-time methods to simulate large-scale transport and mixing in the ocean

    Science.gov (United States)

    Prants, S. V.

    2015-06-01

    In oceanography and meteorology, it is important to know not only where water or air masses are headed for, but also where they came from as well. For example, it is important to find unknown sources of oil spills in the ocean and of dangerous substance plumes in the atmosphere. It is impossible with the help of conventional ocean and atmospheric numerical circulation models to extrapolate backward from the observed plumes to find the source because those models cannot be reversed in time. We review here recently elaborated backward-in-time numerical methods to identify and study mesoscale eddies in the ocean and to compute where those waters came from to a given area. The area under study is populated with a large number of artificial tracers that are advected backward in time in a given velocity field that is supposed to be known analytically or numerically, or from satellite and radar measurements. After integrating advection equations, one gets positions of each tracer on a fixed day in the past and can identify from known destinations a particle positions at earlier times. The results provided show that the method is efficient, for example, in estimating probabilities to find increased concentrations of radionuclides and other pollutants in oceanic mesoscale eddies. The backward-in-time methods are illustrated in this paper with a few examples. Backward-in-time Lagrangian maps are applied to identify eddies in satellite-derived and numerically generated velocity fields and to document the pathways by which they exchange water with their surroundings. Backward-in-time trapping maps are used to identify mesoscale eddies in the altimetric velocity field with a risk to be contaminated by Fukushima-derived radionuclides. The results of simulations are compared with in situ mesurement of caesium concentration in sea water samples collected in a recent research vessel cruise in the area to the east of Japan. Backward-in-time latitudinal maps and the corresponding

  6. Light Condensation and Localization in Disordered Photonic Media: Theory and Large Scale ab initio Simulations

    KAUST Repository

    Toth, Laszlo Daniel

    2013-05-07

    Disordered photonics is the study of light in random media. In a disordered photonic medium, multiple scattering of light and coherence, together with the fundamental principle of reciprocity, produce a wide range of interesting phenomena, such as enhanced backscattering and Anderson localization of light. They are also responsible for the existence of modes in these random systems. It is known that analogous processes to Bose-Einstein condensation can occur in classical wave systems, too. Classical condensation has been studied in several contexts in photonics: pulse formation in lasers, mode-locking theory and coherent emission of disordered lasers. All these systems have the common theme of possessing a large ensemble of waves or modes, together with nonlinearity, dispersion or gain. In this work, we study light condensation and its connection with light localization in a disordered, passive dielectric medium. We develop a theory for the modes inside the disordered resonator, which combines the Feshbach projection technique with spin-glass theory and statistical physics. In particular, starting from the Maxwell’s equations, we map the system to a spherical p-spin model with p = 2. The spins are replaced by modes and the temperature is related to the fluctuations in the environment. We study the equilibrium thermodynamics of the system in a general framework and show that two distinct phases exist: a paramagnetic phase, where all the modes are randomly oscillating and a condensed phase, where the energy condensates on a single mode. The thermodynamic quantities can be explicitly interpreted and can also be computed from the disorder-averaged time domain correlation function. We launch an ab initio simulation campaign using our own code and the Shaheen supercomputer to test the theoretical predictions. We construct photonic samples of varying disorder and find computationally relevant ways to obtain the thermodynamic quantities. We observe the phase transition

  7. Contribution of large scale coherence to wind turbine power: A large eddy simulation study in periodic wind farms

    Science.gov (United States)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2018-03-01

    Length scales of eddies involved in the power generation of infinite wind farms are studied by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from large eddy simulations (LES). Large-scale structures with an order of magnitude bigger than the turbine rotor diameter (D ) are shown to have substantial contribution to wind power. Varying dynamics in the intermediate scales (D -10 D ) are also observed from a parametric study involving interturbine distances and hub height of the turbines. Further insight about the eddies responsible for the power generation have been provided from the scaling analysis of two-dimensional premultiplied spectra of MKE flux. The LES code is developed in a high Reynolds number near-wall modeling framework, using an open-source spectral element code Nek5000, and the wind turbines have been modelled using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated against the statistical results from the previous literature. The study is expected to improve our understanding of the complex multiscale dynamics in the domain of large wind farms and identify the length scales that contribute to the power. This information can be useful for design of wind farm layout and turbine placement that take advantage of the large-scale structures contributing to wind turbine power.

  8. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    Science.gov (United States)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  9. Comparing the Effectiveness of Self-Paced and Collaborative Frame-of-Reference Training on Rater Accuracy in a Large-Scale Writing Assessment

    Science.gov (United States)

    Raczynski, Kevin R.; Cohen, Allan S.; Engelhard, George, Jr.; Lu, Zhenqiu

    2015-01-01

    There is a large body of research on the effectiveness of rater training methods in the industrial and organizational psychology literature. Less has been reported in the measurement literature on large-scale writing assessments. This study compared the effectiveness of two widely used rater training methods--self-paced and collaborative…

  10. ROSA-V large scale test facility (LSTF) system description for the third and fourth simulated fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mitsuhiro; Nakamura, Hideo; Ohtsu, Iwao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    The Large Scale Test Facility (LSTF) is a full-height and 1/48 volumetrically scaled test facility of the Japan Atomic Energy Research Institute (JAERI) for system integral experiments simulating the thermal-hydraulic responses at full-pressure conditions of a 1100 MWe-class pressurized water reactor (PWR) during small break loss-of-coolant accidents (SBLOCAs) and other transients. The LSTF can also simulate well a next-generation type PWR such as the AP600 reactor. In the fifth phase of the Rig-of-Safety Assessment (ROSA-V) Program, eighty nine experiments have been conducted at the LSTF with the third simulated fuel assembly until June 2001, and five experiments have been conducted with the newly-installed fourth simulated fuel assembly until December 2002. In the ROSA-V program, various system integral experiments have been conducted to certify effectiveness of both accident management (AM) measures in beyond design basis accidents (BDBAs) and improved safety systems in the next-generation reactors. In addition, various separate-effect tests have been conducted to verify and develop computer codes and analytical models to predict non-homogeneous and multi-dimensional phenomena such as heat transfer across the steam generator U-tubes under the presence of non-condensable gases in both current and next-generation reactors. This report presents detailed information of the LSTF system with the third and fourth simulated fuel assemblies for the aid of experiment planning and analyses of experiment results. (author)

  11. Large-scale micromagnetic simulation of Nd-Fe-B sintered magnets with Dy-rich shell structures

    Directory of Open Access Journals (Sweden)

    T. Oikawa

    2016-05-01

    Full Text Available Large-scale micromagnetic simulations have been performed using the energy minimization method on a model with structural features similar to those of Dy grain boundary diffusion (GBD-processed sintered magnets. Coercivity increases as a linear function of the anisotropy field of the Dy-rich shell, which is independent of Dy composition in the core as long as the shell thickness is greater than about 15 nm. This result shows that the Dy contained in the initial sintered magnets prior to the GBD process is not essential for enhancing coercivity. Magnetization reversal patterns indicate that coercivity is strongly influenced by domain wall pinning at the grain boundary. This observation is found to be consistent with the one-dimensional pinning theory.

  12. Tracking of large-scale structures in turbulent channel with direct numerical simulation of low Prandtl number passive scalar

    Science.gov (United States)

    Tiselj, Iztok

    2014-12-01

    Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and

  13. Data for Figures and Tables in "Impacts of Different Characterizations of Large-Scale Background on Simulated Regional-Scale Ozone Over the Continental U.S."

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains the data used in the Figures and Tables of the manuscript "Impacts of Different Characterizations of Large-Scale Background on Simulated...

  14. Simulated pre-industrial climate in Bergen Climate Model (version 2: model description and large-scale circulation features

    Directory of Open Access Journals (Sweden)

    O. H. Otterå

    2009-11-01

    Full Text Available The Bergen Climate Model (BCM is a fully-coupled atmosphere-ocean-sea-ice model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate. Here, a pre-industrial multi-century simulation with an updated version of BCM is described and compared to observational data. The model is run without any form of flux adjustments and is stable for several centuries. The simulated climate reproduces the general large-scale circulation in the atmosphere reasonably well, except for a positive bias in the high latitude sea level pressure distribution. Also, by introducing an updated turbulence scheme in the atmosphere model a persistent cold bias has been eliminated. For the ocean part, the model drifts in sea surface temperatures and salinities are considerably reduced compared to earlier versions of BCM. Improved conservation properties in the ocean model have contributed to this. Furthermore, by choosing a reference pressure at 2000 m and including thermobaric effects in the ocean model, a more realistic meridional overturning circulation is simulated in the Atlantic Ocean. The simulated sea-ice extent in the Northern Hemisphere is in general agreement with observational data except for summer where the extent is somewhat underestimated. In the Southern Hemisphere, large negative biases are found in the simulated sea-ice extent. This is partly related to problems with the mixed layer parametrization, causing the mixed layer in the Southern Ocean to be too deep, which in turn makes it hard to maintain a realistic sea-ice cover here. However, despite some problematic issues, the pre-industrial control simulation presented here should still be appropriate for climate change studies requiring multi-century simulations.

  15. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    Science.gov (United States)

    Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-11-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.

  16. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    International Nuclear Information System (INIS)

    Kurucz, Charles N.; Waite, Thomas D.; Otano, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-01-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1 ) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60 Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater

  17. Multi-parameter decoupling and slope tracking control strategy of a large-scale high altitude environment simulation test cabin

    Directory of Open Access Journals (Sweden)

    Li Ke

    2014-12-01

    Full Text Available A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic control of the temperature–pressure two-parameter and overcome the control difficulties inherent to a large inertia lag link with a complex control system which is composed of turbine refrigeration device, vacuum device and liquid nitrogen cooling device. The system includes multi-parameter decoupling of the cabin itself to avoid equipment damage of air refrigeration turbine caused by improper operation. Based on analysis of the dynamic characteristics and modeling for variations in temperature, pressure and rotation speed, an intelligent controller was implemented that includes decoupling and fuzzy arithmetic combined with an expert PID controller to control test parameters by decoupling and slope tracking control strategy. The control system employed centralized management in an open industrial ethernet architecture with an industrial computer at the core. The simulation and field debugging and running results show that this method can solve the problems of a poor anti-interference performance typical for a conventional PID and overshooting that can readily damage equipment. The steady-state characteristics meet the system requirements.

  18. A large-scale mass casualty simulation to develop the non-technical skills medical students require for collaborative teamwork.

    Science.gov (United States)

    Jorm, Christine; Roberts, Chris; Lim, Renee; Roper, Josephine; Skinner, Clare; Robertson, Jeremy; Gentilcore, Stacey; Osomanski, Adam

    2016-03-08

    There is little research on large-scale complex health care simulations designed to facilitate student learning of non-technical skills in a team-working environment. We evaluated the acceptability and effectiveness of a novel natural disaster simulation that enabled medical students to demonstrate their achievement of the non-technical skills of collaboration, negotiation and communication. In a mixed methods approach, survey data were available from 117 students and a thematic analysis undertaken of both student qualitative comments and tutor observer participation data. Ninety three per cent of students found the activity engaging for their learning. Three themes emerged from the qualitative data: the impact of fidelity on student learning, reflexivity on the importance of non-technical skills in clinical care, and opportunities for collaborative teamwork. Physical fidelity was sufficient for good levels of student engagement, as was sociological fidelity. We demonstrated the effectiveness of the simulation in allowing students to reflect upon and evidence their acquisition of skills in collaboration, negotiation and communication, as well as situational awareness and attending to their emotions. Students readily identified emerging learning opportunities though critical reflection. The scenarios challenged students to work together collaboratively to solve clinical problems, using a range of resources including interacting with clinical experts. A large class teaching activity, framed as a simulation of a natural disaster is an acceptable and effective activity for medical students to develop the non-technical skills of collaboration, negotiation and communication, which are essential to team working. The design could be of value in medical schools in disaster prone areas, including within low resource countries, and as a feasible intervention for learning the non-technical skills that are needed for patient safety.

  19. Proceedings of joint meeting of the 6th simulation science symposium and the NIFS collaboration research 'large scale computer simulation'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Joint meeting of the 6th Simulation Science Symposium and the NIFS Collaboration Research 'Large Scale Computer Simulation' was held on December 12-13, 2002 at National Institute for Fusion Science, with the aim of promoting interdisciplinary collaborations in various fields of computer simulations. The present meeting attended by more than 40 people consists of the 11 invited and 22 contributed papers, of which topics were extended not only to fusion science but also to related fields such as astrophysics, earth science, fluid dynamics, molecular dynamics, computer science etc. (author)

  20. Impacts of different characterizations of large-scale background on simulated regional-scale ozone over the continental United States

    Science.gov (United States)

    Hogrefe, Christian; Liu, Peng; Pouliot, George; Mathur, Rohit; Roselle, Shawn; Flemming, Johannes; Lin, Meiyun; Park, Rokjin J.

    2018-03-01

    from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.

  1. Large Scale Solar Heating

    DEFF Research Database (Denmark)

    Heller, Alfred

    2001-01-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out...... model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors......). Simulation programs are proposed as control supporting tool for daily operation and performance prediction of central solar heating plants. Finaly the CSHP technolgy is put into persepctive with respect to alternatives and a short discussion on the barries and breakthrough of the technology are given....

  2. Simple concentration-dependent pair interaction model for large-scale simulations of Fe-Cr alloys

    International Nuclear Information System (INIS)

    Levesque, Maximilien; Martinez, Enrique; Fu, Chu-Chun; Nastar, Maylise; Soisson, Frederic

    2011-01-01

    This work is motivated by the need for large-scale simulations to extract physical information on the iron-chromium system that is a binary model alloy for ferritic steels used or proposed in many nuclear applications. From first-principles calculations and the experimental critical temperature we build a new energetic rigid lattice model based on pair interactions with concentration and temperature dependence. Density functional theory calculations in both norm-conserving and projector augmented-wave approaches have been performed. A thorough comparison of these two different ab initio techniques leads to a robust parametrization of the Fe-Cr Hamiltonian. Mean-field approximations and Monte Carlo calculations are then used to account for temperature effects. The predictions of the model are in agreement with the most recent phase diagram at all temperatures and compositions. The solubility of Cr in Fe below 700 K remains in the range of about 6 to 12%. It reproduces the transition between the ordering and demixing tendency and the spinodal decomposition limits are also in agreement with the values given in the literature.

  3. Effect of grain boundary phase on the magnetization reversal process of nanocrystalline magnet using large-scale micromagnetic simulation

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2018-05-01

    Full Text Available We investigated the effects of grain boundary phases on magnetization reversal in permanent magnets by performing large-scale micromagnetic simulations based on Landau–Lifshitz–Gilbert equation under a periodic boundary. We considered planar grain boundary phases parallel and perpendicular to an easy axis of the permanent magnet and assumed the saturation magnetization and exchange stiffness constant of the grain boundary phase to be 10% and 1%, respectively, for Nd2Fe14B grains. The grain boundary phase parallel to the easy axis effectively inhibits propagation of magnetization reversal. In contrast, the domain wall moves across the grain boundary perpendicular to the easy axis. These properties of the domain wall motion are explained by dipole interaction, which stabilizes the antiparallel magnetic configuration in the direction perpendicular to the magnetization orientation. On the other hand, the magnetization is aligned in the same direction by the dipole interaction parallel to the magnetization orientation. This anisotropy of the effect of the grain boundary phase shows that improvement of the grain boundary phase perpendicular to the easy axis effectively enhances the coercivity of permanent magnets.

  4. Simulation of the large-scale offshore-wind farms including HVDC-grid connections using the simulation tool VIAvento

    Energy Technology Data Exchange (ETDEWEB)

    Bartelt, R.; Heising, C.; Ni, B. [Avasition GmbH, Dortmund (Germany); Zadeh, M. Koochack; Lebioda, T.J.; Jung, J. [TenneT Offshore GmbH, Bayreuth (Germany)

    2012-07-01

    Within the framework of a research project the stability of the offshore grid especially in terms of sub-harmonic stability for the likely future extension stage of the offshore grids i.e. having parallel connection of two or more HVDC links and for certain operating scenarios e.g. overload scenario will be investigated. For this purpose, a comprehensive scenario-based assessment in time domain is unavoidable. Within this paper, the simulation tool VIAvento is briefly presented which allows for these comprehensive time-domain simulations taking the special characteristics of power-electronic assets into account. The core maxims of VIAvento are presented. Afterwards, the capability of VIAvento is demonstrated with simulation results of two wind farms linked via a HVDC grid connection system (160 converters and two HVDC stations in modular multilevel converter topology). (orig.)

  5. High Performance Simulation of Large-Scale Red Sea Ocean Bottom Seismic Data on the Supercomputer Shaheen II

    KAUST Repository

    Tonellot, Thierry; Etienne, Vincent; Gashawbeza, Ewenet; Curiel, Emesto Sandoval; Khan, Azizur; Feki, Saber; Kortas, Samuel

    2017-01-01

    A combination of both shallow and deepwater, plus islands and coral reefs, are some of the main features contributing to the complexity of subsalt seismic exploration in the Red Sea transition zone. These features often result in degrading effects on seismic images. State-of-the-art ocean bottom acquisition technologies are therefore required to record seismic data with optimal fold and offset, as well as advanced processing and imaging techniques. Numerical simulations of such complex seismic data can help improve acquisition design and also help in customizing, validating and benchmarking the processing and imaging workflows that will be applied on the field data. Subsequently, realistic simulation of wave propagation is a computationally intensive process requiring a realistic model and an efficient 3D wave equation solver. Large-scale computing resources are also required to meet turnaround time compatible with a production time frame. In this work, we present the numerical simulation of an ocean bottom seismic survey to be acquired in the Red Sea transition zone starting in summer 2016. The survey's acquisition geometry comprises nearly 300,000 unique shot locations and 21,000 unique receiver locations, covering about 760 km2. Using well log measurements and legacy 2D seismic lines in this area, a 3D P-wave velocity model was built, with a maximum depth of 7 km. The model was sampled at 10 m in each direction, resulting in more than 5 billion cells. Wave propagation in this model was performed using a 3D finite difference solver in the time domain based on a staggered grid velocity-pressure formulation of acoustodynamics. To ensure that the resulting data could be generated sufficiently fast, the King Abdullah University of Science and Technology (KAUST) supercomputer Shaheen II Cray XC40 was used. A total of 21,000 three-component (pressure and vertical and horizontal velocity) common receiver gathers with a 50 Hz maximum frequency were computed in less than

  6. High Performance Simulation of Large-Scale Red Sea Ocean Bottom Seismic Data on the Supercomputer Shaheen II

    KAUST Repository

    Tonellot, Thierry

    2017-02-27

    A combination of both shallow and deepwater, plus islands and coral reefs, are some of the main features contributing to the complexity of subsalt seismic exploration in the Red Sea transition zone. These features often result in degrading effects on seismic images. State-of-the-art ocean bottom acquisition technologies are therefore required to record seismic data with optimal fold and offset, as well as advanced processing and imaging techniques. Numerical simulations of such complex seismic data can help improve acquisition design and also help in customizing, validating and benchmarking the processing and imaging workflows that will be applied on the field data. Subsequently, realistic simulation of wave propagation is a computationally intensive process requiring a realistic model and an efficient 3D wave equation solver. Large-scale computing resources are also required to meet turnaround time compatible with a production time frame. In this work, we present the numerical simulation of an ocean bottom seismic survey to be acquired in the Red Sea transition zone starting in summer 2016. The survey\\'s acquisition geometry comprises nearly 300,000 unique shot locations and 21,000 unique receiver locations, covering about 760 km2. Using well log measurements and legacy 2D seismic lines in this area, a 3D P-wave velocity model was built, with a maximum depth of 7 km. The model was sampled at 10 m in each direction, resulting in more than 5 billion cells. Wave propagation in this model was performed using a 3D finite difference solver in the time domain based on a staggered grid velocity-pressure formulation of acoustodynamics. To ensure that the resulting data could be generated sufficiently fast, the King Abdullah University of Science and Technology (KAUST) supercomputer Shaheen II Cray XC40 was used. A total of 21,000 three-component (pressure and vertical and horizontal velocity) common receiver gathers with a 50 Hz maximum frequency were computed in less

  7. Mediterranean Thermohaline Response to Large-Scale Winter Atmospheric Forcing in a High-Resolution Ocean Model Simulation

    Science.gov (United States)

    Cusinato, Eleonora; Zanchettin, Davide; Sannino, Gianmaria; Rubino, Angelo

    2018-04-01

    Large-scale circulation anomalies over the North Atlantic and Euro-Mediterranean regions described by dominant climate modes, such as the North Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the East Atlantic/Western Russian (EAWR) and the Mediterranean Oscillation Index (MOI), significantly affect interannual-to-decadal climatic and hydroclimatic variability in the Euro-Mediterranean region. However, whereas previous studies assessed the impact of such climate modes on air-sea heat and freshwater fluxes in the Mediterranean Sea, the propagation of these atmospheric forcing signals from the surface toward the interior and the abyss of the Mediterranean Sea remains unexplored. Here, we use a high-resolution ocean model simulation covering the 1979-2013 period to investigate spatial patterns and time scales of the Mediterranean thermohaline response to winter forcing from NAO, EA, EAWR and MOI. We find that these modes significantly imprint on the thermohaline properties in key areas of the Mediterranean Sea through a variety of mechanisms. Typically, density anomalies induced by all modes remain confined in the upper 600 m depth and remain significant for up to 18-24 months. One of the clearest propagation signals refers to the EA in the Adriatic and northern Ionian seas: There, negative EA anomalies are associated to an extensive positive density response, with anomalies that sink to the bottom of the South Adriatic Pit within a 2-year time. Other strong responses are the thermally driven responses to the EA in the Gulf of Lions and to the EAWR in the Aegean Sea. MOI and EAWR forcing of thermohaline properties in the Eastern Mediterranean sub-basins seems to be determined by reinforcement processes linked to the persistency of these modes in multiannual anomalous states. Our study also suggests that NAO, EA, EAWR and MOI could critically interfere with internal, deep and abyssal ocean dynamics and variability in the Mediterranean Sea.

  8. Temporal sequencing of throughfall drop generation as revealed by use of a large-scale rainfall simulator

    Science.gov (United States)

    Nanko, K.; Levia, D. F., Jr.; Iida, S.; SUN, X.; Shinohara, Y.; Sakai, N.

    2017-12-01

    Scientists have been interested in throughfall drop size and its distribution because of its importance to soil erosion and the forest water balance. An indoor experiment was employed to deepen our understanding of throughfall drop generation processes to promote better management of forested ecosystems. The indoor experiment provides a unique opportunity to examine an array of constant rainfall intensities that are ideal conditions to pick up the effect of changing intensities and not found in the fields. Throughfall drop generation was examined for three species- Cryptomeria japonica D. Don (Japanese cedar), Chamaecyparis obtusa (Siebold & Zucc.) Endl. (Japanese cypress), and Zelkova serrata Thunb. (Japanese zelkova)- under both leafed and leafless conditions in the large-scale rainfall simulator in the National Research Institute for Earth Science and Disaster Resilience (Tsukuba, Japan) at varying rainfall intensities ranging from15 to 100 mm h-1. Drop size distributions of the applied rainfall and throughfall were measured simultaneously by 20 laser disdrometers. Utilizing the drop size dataset, throughfall was separated into three components: free throughfall, canopy drip, and splash throughfall. The temporal sequencing of the throughfall components were analyzed on a 1-min interval during each experimental run. The throughfall component percentage and drop size of canopy drip differed among tree species and rainfall intensities and by elapsed time from the beginning of the rainfall event. Preliminary analysis revealed that the time differences to produce branch drip as compared to leaf (or needle) drip was partly due to differential canopy wet-up processes and the disappearance of branch drips due to canopy saturation, leading to dissimilar throughfall drop size distributions beneath the various tree species examined. This research was supported by JSPS Invitation Fellowship for Research in Japan (Grant No.: S16088) and JSPS KAKENHI (Grant No.: JP15H05626).

  9. Large Scale DD Simulation Results for Crystal Plasticity Parameters in Fe-Cr And Fe-Ni Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zbib, Hussein M.; Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2012-04-30

    shear stress (CRSS) from the evolution of local dislocation and defects. In this report the focus is on the results obtained from large scale dislocation dynamics simulations. The effect of defect density, materials structure was investigated, and evolution laws are obtained. These results will form the bases for the development of evolution and hardening laws for a dislocation-based crystal plasticity framework. The hierarchical upscaling method being developed in this project can provide a guidance tool to evaluate performance of structural materials for next-generation nuclear reactors. Combined with other tools developed in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, the models developed will have more impact in improving the reliability of current reactors and affordability of new reactors.

  10. Large scale electrolysers

    International Nuclear Information System (INIS)

    B Bello; M Junker

    2006-01-01

    Hydrogen production by water electrolysis represents nearly 4 % of the world hydrogen production. Future development of hydrogen vehicles will require large quantities of hydrogen. Installation of large scale hydrogen production plants will be needed. In this context, development of low cost large scale electrolysers that could use 'clean power' seems necessary. ALPHEA HYDROGEN, an European network and center of expertise on hydrogen and fuel cells, has performed for its members a study in 2005 to evaluate the potential of large scale electrolysers to produce hydrogen in the future. The different electrolysis technologies were compared. Then, a state of art of the electrolysis modules currently available was made. A review of the large scale electrolysis plants that have been installed in the world was also realized. The main projects related to large scale electrolysis were also listed. Economy of large scale electrolysers has been discussed. The influence of energy prices on the hydrogen production cost by large scale electrolysis was evaluated. (authors)

  11. Large-scale numerical simulations on two-phase flow behavior in a fuel bundle of RMWR with the earth simulator

    International Nuclear Information System (INIS)

    Kazuyuki, Takase; Hiroyuki, Yoshida; Hidesada, Tamai; Hajime, Akimoto; Yasuo, Ose

    2003-01-01

    Fluid flow characteristics in a fuel bundle of a reduced-moderation light water reactor (RMWR) with a tight-lattice core were analyzed numerically using a newly developed two-phase flow analysis code under the full bundle size condition. Conventional analysis methods such as sub-channel codes need composition equations based on the experimental data. In case that there are no experimental data regarding to the thermal-hydraulics in the tight-lattice core, therefore, it is difficult to obtain high prediction accuracy on the thermal design of the RMWR. Then the direct numerical simulations with the earth simulator were chosen. The axial velocity distribution in a fuel bundle changed sharply around a grid spacer and its quantitative evaluation was obtained from the present preliminary numerical study. The high prospect was acquired on the possibility of establishment of the thermal design procedure of the RMWR by large-scale direct simulations. (authors)

  12. Water uptake by and movement through a Backfilled KBS-3V deposition tunnel: results of large-scale simulations

    International Nuclear Information System (INIS)

    Dixon, D.A.; Ramqvist, G.; Jonsson, E.; Gunnarsson, D.; Hansen, J.

    2010-01-01

    Document available in extended abstract form only. Posiva and SKB initiated a joint programme BACLO (Backfilling and Closure of the Deep repository) in 2003 with the aim to develop methods and clay-based materials for backfilling the deposition tunnels of a repository utilizing the KBS-3V deposition concept. This paper summarises the results obtained in intermediate and large-scale simulations to evaluate water movement into and through backfill consisting of bentonite pellets and pre-compacted clay blocks. The main objectives of Baclo Phase III were related to examining backfill materials, deposition concepts and their importance to the clay-block and pellet backfilling concept. Bench-scale studies produced a large body of information on how various processes (e.g. water inflow, piping, erosion, self-healing, homogenisation and interaction between backfill and buffer), might affect the hydro-mechanical evolution of backfill components. The tests described in this paper examined the movement of water into and through assemblies of clay blocks and bentonite pellets/granules and represent a substantial up-scaling and inclusion of parameters that more closely simulate a field situation. In total, 27 intermediate-scale tests have been completed and 18 large-scale tests (∼ 1/2-tunnel cross-section) will be completed at SKB's Aespoe HRL by mid 2010. At intermediate-scale, point inflow rates ranging from 0.01 to 1.0 l/min were applied to block - dry pellet assemblies and water movement into and through the system was monitored. Tests determined that it is critical to provide clay blocks with lateral support and confinement as quickly as possible following block installation. Exposure of the blocks to even low rates of water ingress can result in rapid loss of block cohesion and subsequent slumping of the block materials into the spaces between the blocks and the tunnel walls. Installation of granular or pelletized bentonite clay between the blocks and the walls

  13. Icing Simulation Research Supporting the Ice-Accretion Testing of Large-Scale Swept-Wing Models

    Science.gov (United States)

    Yadlin, Yoram; Monnig, Jaime T.; Malone, Adam M.; Paul, Bernard P.

    2018-01-01

    The work summarized in this report is a continuation of NASA's Large-Scale, Swept-Wing Test Articles Fabrication; Research and Test Support for NASA IRT contract (NNC10BA05 -NNC14TA36T) performed by Boeing under the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) contract. In the study conducted under RTAPS, a series of icing tests in the Icing Research Tunnel (IRT) have been conducted to characterize ice formations on large-scale swept wings representative of modern commercial transport airplanes. The outcome of that campaign was a large database of ice-accretion geometries that can be used for subsequent aerodynamic evaluation in other experimental facilities and for validation of ice-accretion prediction codes.

  14. Cognitive Flexibility Training: A Large-Scale Multimodal Adaptive Active-Control Intervention Study in Healthy Older Adults

    Directory of Open Access Journals (Sweden)

    Jessika I. V. Buitenweg

    2017-11-01

    Full Text Available As aging is associated with cognitive decline, particularly in the executive functions, it is essential to effectively improve cognition in older adults. Online cognitive training is currently a popular, though controversial method. Although some changes seem possible in older adults through training, far transfer, and longitudinal maintenance are rarely seen. Based on previous literature we created a unique, state-of-the-art intervention study by incorporating frequent sessions and flexible, novel, adaptive training tasks, along with an active control group. We created a program called TAPASS (Training Project Amsterdam Seniors and Stroke, a randomized controlled trial. Healthy older adults (60–80 y.o. were assigned to a frequent- (FS or infrequent switching (IS experimental condition or to the active control group and performed 58 half-hour sessions over the course of 12 weeks. Effects on executive functioning, processing- and psychomotor speed, planning, verbal long term memory, verbal fluency, and reasoning were measured on four time points before, during and after the training. Additionally, we examined the explorative question which individual aspects added to training benefit. Besides improvements on the training, we found significant time effects on multiple transfer tasks in all three groups that likely reflected retest effects. No training-specific improvements were detected, and we did not find evidence of additional benefits of individual characteristics. Judging from these results, the therapeutic value of using commercially available training games to train the aging brain is modest, though any apparent effects should be ascribed more to expectancy and motivation than to the elements in our training protocol. Our results emphasize the importance of using parallel tests as outcome measures for transfer and including both active and passive control conditions. Further investigation into different training methods is advised

  15. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    OpenAIRE

    Xerxes D. Arsiwalla; Riccardo eZucca; Alberto eBetella; Enrique eMartinez; David eDalmazzo; Pedro eOmedas; Gustavo eDeco; Gustavo eDeco; Paul F.M.J. Verschure; Paul F.M.J. Verschure

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  16. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    OpenAIRE

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martínez, Enrique, 1961-; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  17. Uncertainties of Large-Scale Forcing Caused by Surface Turbulence Flux Measurements and the Impacts on Cloud Simulations at the ARM SGP Site

    Science.gov (United States)

    Tang, S.; Xie, S.; Tang, Q.; Zhang, Y.

    2017-12-01

    Two types of instruments, the eddy correlation flux measurement system (ECOR) and the energy balance Bowen ratio system (EBBR), are used at the Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site to measure surface latent and sensible fluxes. ECOR and EBBR typically sample different land surface types, and the domain-mean surface fluxes derived from ECOR and EBBR are not always consistent. The uncertainties of the surface fluxes will have impacts on the derived large-scale forcing data and further affect the simulations of single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulation models (LES), especially for the shallow-cumulus clouds which are mainly driven by surface forcing. This study aims to quantify the uncertainties of the large-scale forcing caused by surface turbulence flux measurements and investigate the impacts on cloud simulations using long-term observations from the ARM SGP site.

  18. Academic Training Lecture Regular Programme: How Large-Scale Civil Engineering Projects Realise the Potential of a City

    CERN Multimedia

    2012-01-01

    How Large-Scale Civil Engineering Projects Realise the Potential of a City (1/3), by Bill Hanway (Excecutive Director of Operations, AECOM Europe).   Wednesday, June 6, 2012 from 11:00 to 12:00 (Europe/Zurich) at CERN ( 80-1-001 - Globe 1st Floor ) In this series of three special lectures, leading experts from AECOM would explore the impact of a trio of major projects on a single city. In common with every metropolis, London has run-down districts and infrastructure in need of upgrading. The lectures propose to cover three of the biggest challenges: regenerating run-down areas; reducing congestion and transporting people more efficiently; and improving water and wastewater systems. Each project contributes to a collective public aim - to realise the potential of a growing city, and ensure its healthy, sustainable and competitive future. Lecture 1: Into the lecture series and The London 2012 Olympic Games Most cities share a group of common complex challenges – growing populations, agei...

  19. Large scale simulation numerical study of transition to turbulence in jets; Etude numerique par simulation des grandes echelles de la transition a la turbulence dans les jets

    Energy Technology Data Exchange (ETDEWEB)

    Urbin, Gerald [Institut National Polytechnique, 38 - Grenoble (France)

    1998-02-02

    This study highlights the potentialities of the numerical technique of large scale simulation in describing and understanding the turbulent flows in a complex geometry. Particularly, it is focussed on flows of free jet, confined jets and multiple jets of high solidity grid. Spatial simulations of the circular zone close to a free jet, of high Reynolds number were performed. In spite of an evident sensitivity to upstream conditions good agreement between our statistical predictions and different experimental measurements was obtained. The multiple coherent vortical structures implied in the transition to turbulence of the jet were found. At the same time, helical or annular axisymmetric vortices were observed. Also, an original vortical arrangement was evidenced, resulting from the alternating inclination and local pairing of these rings. It could been forced through an ad-hoc excitation which modifies subsequently drastically the jet development. When an axisymmetric excitation is imposed after formation of annular structures, pairs of counter-rotative longitudinal vortices occur and generate lateral jets. Their nature and presence in case of a helical excitation are discussed. An efficient method for controlling their number is developed. Then, one is studied the very low frequency periodic phenomenon of backward-facing transition to turbulence which develops in the confined jet and grid multiple jets (a phenomenon generic in numerous flows). It was found to depend not only on the characteristic of the re-circulation (pre-transition) zones but also on the upstream flow (zone of post-transition stagnation, pressure effect). Large scale transversal motions of the fluid have been found beginning from the grid. An interpretation of this phenomenon is suggested 193 refs., 109 figs.

  20. Multilevel parallel strategy on Monte Carlo particle transport for the large-scale full-core pin-by-pin simulations

    International Nuclear Information System (INIS)

    Zhang, B.; Li, G.; Wang, W.; Shangguan, D.; Deng, L.

    2015-01-01

    This paper introduces the Strategy of multilevel hybrid parallelism of JCOGIN Infrastructure on Monte Carlo Particle Transport for the large-scale full-core pin-by-pin simulations. The particle parallelism, domain decomposition parallelism and MPI/OpenMP parallelism are designed and implemented. By the testing, JMCT presents the parallel scalability of JCOGIN, which reaches the parallel efficiency 80% on 120,000 cores for the pin-by-pin computation of the BEAVRS benchmark. (author)

  1. Cost analysis of large-scale implementation of the 'Helping Babies Breathe' newborn resuscitation-training program in Tanzania.

    Science.gov (United States)

    Chaudhury, Sumona; Arlington, Lauren; Brenan, Shelby; Kairuki, Allan Kaijunga; Meda, Amunga Robson; Isangula, Kahabi G; Mponzi, Victor; Bishanga, Dunstan; Thomas, Erica; Msemo, Georgina; Azayo, Mary; Molinier, Alice; Nelson, Brett D

    2016-12-01

    Helping Babies Breathe (HBB) has become the gold standard globally for training birth-attendants in neonatal resuscitation in low-resource settings in efforts to reduce early newborn asphyxia and mortality. The purpose of this study was to do a first-ever activity-based cost-analysis of at-scale HBB program implementation and initial follow-up in a large region of Tanzania and evaluate costs of national scale-up as one component of a multi-method external evaluation of the implementation of HBB at scale in Tanzania. We used activity-based costing to examine budget expense data during the two-month implementation and follow-up of HBB in one of the target regions. Activity-cost centers included administrative, initial training (including resuscitation equipment), and follow-up training expenses. Sensitivity analysis was utilized to project cost scenarios incurred to achieve countrywide expansion of the program across all mainland regions of Tanzania and to model costs of program maintenance over one and five years following initiation. Total costs for the Mbeya Region were $202,240, with the highest proportion due to initial training and equipment (45.2%), followed by central program administration (37.2%), and follow-up visits (17.6%). Within Mbeya, 49 training sessions were undertaken, involving the training of 1,341 health providers from 336 health facilities in eight districts. To similarly expand the HBB program across the 25 regions of mainland Tanzania, the total economic cost is projected to be around $4,000,000 (around $600 per facility). Following sensitivity analyses, the estimated total for all Tanzania initial rollout lies between $2,934,793 to $4,309,595. In order to maintain the program nationally under the current model, it is estimated it would cost $2,019,115 for a further one year and $5,640,794 for a further five years of ongoing program support. HBB implementation is a relatively low-cost intervention with potential for high impact on perinatal

  2. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    Directory of Open Access Journals (Sweden)

    T. Wolf-Grosse

    2017-06-01

    Full Text Available Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s−1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES experiments with the Parallelised Large-Eddy Simulation Model (PALM for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a

  3. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    Science.gov (United States)

    Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim

    2017-06-01

    Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water

  4. Simulators in driver training.

    NARCIS (Netherlands)

    2009-01-01

    In 2010, about 150 driving simulators were being used for the basic driver training in the Netherlands. According to theories about how people learn, simulator training has both advantages and disadvantages. In order to be able to learn something from a simulator, its technical quality must be

  5. Large scale simulation of liquid water transport in a gas diffusion layer of polymer electrolyte membrane fuel cells using the lattice Boltzmann method

    Science.gov (United States)

    Sakaida, Satoshi; Tabe, Yutaka; Chikahisa, Takemi

    2017-09-01

    A method for the large-scale simulation with the lattice Boltzmann method (LBM) is proposed for liquid water movement in a gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells. The LBM is able to analyze two-phase flows in complex structures, however the simulation domain is limited due to heavy computational loads. This study investigates a variety means to reduce computational loads and increase the simulation areas. One is applying an LBM treating two-phases as having the same density, together with keeping numerical stability with large time steps. The applicability of this approach is confirmed by comparing the results with rigorous simulations using actual density. The second is establishing the maximum limit of the Capillary number that maintains flow patterns similar to the precise simulation; this is attempted as the computational load is inversely proportional to the Capillary number. The results show that the Capillary number can be increased to 3.0 × 10-3, where the actual operation corresponds to Ca = 10-5∼10-8. The limit is also investigated experimentally using an enlarged scale model satisfying similarity conditions for the flow. Finally, a demonstration is made of the effects of pore uniformity in GDL as an example of a large-scale simulation covering a channel.

  6. Large-scale hydrological simulations using the soil water assessment tool, protocol development, and application in the danube basin.

    Science.gov (United States)

    Pagliero, Liliana; Bouraoui, Fayçal; Willems, Patrick; Diels, Jan

    2014-01-01

    The Water Framework Directive of the European Union requires member states to achieve good ecological status of all water bodies. A harmonized pan-European assessment of water resources availability and quality, as affected by various management options, is necessary for a successful implementation of European environmental legislation. In this context, we developed a methodology to predict surface water flow at the pan-European scale using available datasets. Among the hydrological models available, the Soil Water Assessment Tool was selected because its characteristics make it suitable for large-scale applications with limited data requirements. This paper presents the results for the Danube pilot basin. The Danube Basin is one of the largest European watersheds, covering approximately 803,000 km and portions of 14 countries. The modeling data used included land use and management information, a detailed soil parameters map, and high-resolution climate data. The Danube Basin was divided into 4663 subwatersheds of an average size of 179 km. A modeling protocol is proposed to cope with the problems of hydrological regionalization from gauged to ungauged watersheds and overparameterization and identifiability, which are usually present during calibration. The protocol involves a cluster analysis for the determination of hydrological regions and multiobjective calibration using a combination of manual and automated calibration. The proposed protocol was successfully implemented, with the modeled discharges capturing well the overall hydrological behavior of the basin. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Practical recipes for the model order reduction, dynamical simulation, and compressive sampling of large-scale open quantum systems

    OpenAIRE

    Sidles, John A.; Garbini, Joseph L.; Harrell, Lee E.; Hero, Alfred O.; Jacky, Jonathan P.; Malcomb, Joseph R.; Norman, Anthony G.; Williamson, Austin M.

    2008-01-01

    This article presents numerical recipes for simulating high-temperature and non-equilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process...

  8. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2007-06-01

    Full Text Available A set of coupled ocean-atmosphere simulations using state of the art climate models is now available for the Last Glacial Maximum and the Mid-Holocene through the second phase of the Paleoclimate Modeling Intercomparison Project (PMIP2. This study presents the large-scale features of the simulated climates and compares the new model results to those of the atmospheric models from the first phase of the PMIP, for which sea surface temperature was prescribed or computed using simple slab ocean formulations. We consider the large-scale features of the climate change, pointing out some of the major differences between the different sets of experiments. We show in particular that systematic differences between PMIP1 and PMIP2 simulations are due to the interactive ocean, such as the amplification of the African monsoon at the Mid-Holocene or the change in precipitation in mid-latitudes at the LGM. Also the PMIP2 simulations are in general in better agreement with data than PMIP1 simulations.

  9. Comparative study of large scale simulation of underground explosions inalluvium and in fractured granite using stochastic characterization

    Science.gov (United States)

    Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.

    2014-12-01

    This work describes a methodology used for large scale modeling of wave propagation fromunderground explosions conducted at the Nevada Test Site (NTS) in two different geological settings:fractured granitic rock mass and in alluvium deposition. We show that the discrete nature of rockmasses as well as the spatial variability of the fabric of alluvium is very important to understand groundmotions induced by underground explosions. In order to build a credible conceptual model of thesubsurface we integrated the geological, geomechanical and geophysical characterizations conductedduring recent test at the NTS as well as historical data from the characterization during the undergroundnuclear test conducted at the NTS. Because detailed site characterization is limited, expensive and, insome instances, impossible we have numerically investigated the effects of the characterization gaps onthe overall response of the system. We performed several computational studies to identify the keyimportant geologic features specific to fractured media mainly the joints; and those specific foralluvium porous media mainly the spatial variability of geological alluvium facies characterized bytheir variances and their integral scales. We have also explored common key features to both geologicalenvironments such as saturation and topography and assess which characteristics affect the most theground motion in the near-field and in the far-field. Stochastic representation of these features based onthe field characterizations have been implemented in Geodyn and GeodynL hydrocodes. Both codeswere used to guide site characterization efforts in order to provide the essential data to the modelingcommunity. We validate our computational results by comparing the measured and computed groundmotion at various ranges. This work performed under the auspices of the U.S. Department of Energy by Lawrence LivermoreNational Laboratory under Contract DE-AC52-07NA27344.

  10. Hybrid simulation methods to perform grid integration studies for large scale offshore wind power connected through VSC-HVDC

    NARCIS (Netherlands)

    Meer, van der A.A.; Hendriks, R.L.; Gibescu, M.; Ferreira, J.A.; Kling, W.L.

    2011-01-01

    This paper deals with the inclusion of VSC-HVdc transmission schemes into stability-type simulations by hybrid methods. These methods allow selected parts of the network to be simulated in detail by including electro-magnetic behaviour of devices and network elements whereas the remainder of the

  11. A NeISS collaboration to develop and use e-infrastructure for large-scale social simulation

    OpenAIRE

    Doherty, Thomas; Skipsey, Samuel; Turner, Andy; Watt, John

    2011-01-01

    The National e-Infrastructure for Social Simulation (NeISS) project is focused on\\ud developing e-Infrastructure to support social simulation research. Part of NeISS aims to\\ud provide an interface for running contemporary dynamic demographic social simulation\\ud models as developed in the GENESIS project. These GENESIS models operate at the\\ud individual person level and are stochastic. This paper focuses on support for a simplistic\\ud demographic change model that has a daily time steps, an...

  12. Advanced Simulation Tool for Improved Damage Assessment 2) Water-Mist Suppression of Large Scale Compartment Fires

    National Research Council Canada - National Science Library

    Prasad, Kuldeep

    2000-01-01

    .... In the first report, we adopted a domain decomposition approach, based on the multiblock Chimera technique, to simulate fires in single uncluttered compartments and predicted spread of smoke in multi...

  13. Numerical simulation for excavation and long-term behavior of large-scale cavern in soft rock

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsuji

    2010-01-01

    Low-level radioactive waste is planned to be disposed at the depth of more than 50 m in Neogene tuff or tuffaceous sandstone. Generally there are few cracks in sedimentary soft rocks, thus it is considered to be easier to determine permeability of soft rocks than that of discontinuous rocks. On the other hand, sedimentary soft rocks show strong time-dependent behavior, and they are more sensitive to heat, groundwater, and their chemical effect. Numerical method for long-term behavior of underground facilities is necessary to their design and safety assessment. Numerical simulations for excavation of test cavern in disposal site are described in this report. Our creep model was applied to these simulations. Although it is able to reproduce the behavior of soft rock observed in laboratory creep test, simulation using parameters obtained from laboratory tests predicts much larger displacement than that of measurement. Simulation using parameters modified based on in-situ elastic wave measurement and back analysis reproduces measured displacements very well. Behavior of the surrounding rock mass during resaturation after setting of the waste and the engineered barrier system is also simulated. We have a plan to investigate chemical and mechanical interaction among soft rock, tunnel supports and engineered barriers, and to make their numerical models. (author)

  14. Coupled large-eddy simulation and morphodynamics of a large-scale river under extreme flood conditions

    Science.gov (United States)

    Khosronejad, Ali; Sotiropoulos, Fotis; Stony Brook University Team

    2016-11-01

    We present a coupled flow and morphodynamic simulations of extreme flooding in 3 km long and 300 m wide reach of the Mississippi River in Minnesota, which includes three islands and hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the VFS-Geophysics model to investigate the flow and bed evolution of the river during a 500 year flood. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. The geometrical data of the river, islands and structures are obtained from LiDAR, sub-aqueous sonar and in-situ surveying to construct a digital map of the river bathymetry. Our simulation results for the bed evolution of the river reveal complex sediment dynamics near the hydraulic structures. The numerically captured scour depth near some of the structures reach a maximum of about 10 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems. This work was funded by a Grant from Minnesota Dept. of Transportation.

  15. Practical recipes for the model order reduction, dynamical simulation and compressive sampling of large-scale open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Sidles, John A; Jacky, Jonathan P [Department of Orthopaedics and Sports Medicine, Box 356500, School of Medicine, University of Washington, Seattle, WA, 98195 (United States); Garbini, Joseph L; Malcomb, Joseph R; Williamson, Austin M [Department of Mechanical Engineering, University of Washington, Seattle, WA 98195 (United States); Harrell, Lee E [Department of Physics, US Military Academy, West Point, NY 10996 (United States); Hero, Alfred O [Department of Electrical Engineering, University of Michigan, MI 49931 (United States); Norman, Anthony G [Department of Bioengineering, University of Washington, Seattle, WA 98195 (United States)], E-mail: sidles@u.washington.edu

    2009-06-15

    Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kaehler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kaehlerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kaehler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candes-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.

  16. Practical recipes for the model order reduction, dynamical simulation and compressive sampling of large-scale open quantum systems

    International Nuclear Information System (INIS)

    Sidles, John A; Jacky, Jonathan P; Garbini, Joseph L; Malcomb, Joseph R; Williamson, Austin M; Harrell, Lee E; Hero, Alfred O; Norman, Anthony G

    2009-01-01

    Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kaehler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kaehlerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kaehler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candes-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.

  17. Practical recipes for the model order reduction, dynamical simulation and compressive sampling of large-scale open quantum systems

    Science.gov (United States)

    Sidles, John A.; Garbini, Joseph L.; Harrell, Lee E.; Hero, Alfred O.; Jacky, Jonathan P.; Malcomb, Joseph R.; Norman, Anthony G.; Williamson, Austin M.

    2009-06-01

    Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kähler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kählerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kähler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candès-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.

  18. Evaluation of the regional climate response in Australia to large-scale climate modes in the historical NARCliM simulations

    Science.gov (United States)

    Fita, L.; Evans, J. P.; Argüeso, D.; King, A.; Liu, Y.

    2017-10-01

    NARCliM (New South Wales (NSW)/Australian Capital Territory (ACT) Regional Climate Modelling project) is a regional climate modeling project for the Australian area. It is providing a comprehensive dynamically downscaled climate dataset for the CORDEX-AustralAsia region at 50-km resolution, and south-East Australia at a resolution of 10 km. The first phase of NARCliM produced 60-year long reanalysis driven regional simulations to allow evaluation of the regional model performance. This long control period (1950-2009) was used so that the model ability to capture the impact of large scale climate modes on Australian climate could be examined. Simulations are evaluated using a gridded observational dataset. Results show that using model independence as a criteria for choosing atmospheric model configuration from different possible sets of parameterizations may contribute to the regional climate models having different overall biases. The regional models generally capture the regional climate response to large-scale modes better than the driving reanalysis, though no regional model improves on all aspects of the simulated climate.

  19. Large-scale grid-enabled lattice-Boltzmann simulations of complex fluid flow in porous media and under shear

    NARCIS (Netherlands)

    Harting, J.D.R.; Venturoli, M.; Coveney, P.V.

    2004-01-01

    Well–designed lattice Boltzmann codes exploit the essentially embarrassingly parallel features of the algorithm and so can be run with considerable efficiency on modern supercomputers. Such scalable codes permit us to simulate the behaviour of increasingly large quantities of complex condensed

  20. A parallel electrostatic Particle-in-Cell method on unstructured tetrahedral grids for large-scale bounded collisionless plasma simulations

    Science.gov (United States)

    Averkin, Sergey N.; Gatsonis, Nikolaos A.

    2018-06-01

    An unstructured electrostatic Particle-In-Cell (EUPIC) method is developed on arbitrary tetrahedral grids for simulation of plasmas bounded by arbitrary geometries. The electric potential in EUPIC is obtained on cell vertices from a finite volume Multi-Point Flux Approximation of Gauss' law using the indirect dual cell with Dirichlet, Neumann and external circuit boundary conditions. The resulting matrix equation for the nodal potential is solved with a restarted generalized minimal residual method (GMRES) and an ILU(0) preconditioner algorithm, parallelized using a combination of node coloring and level scheduling approaches. The electric field on vertices is obtained using the gradient theorem applied to the indirect dual cell. The algorithms for injection, particle loading, particle motion, and particle tracking are parallelized for unstructured tetrahedral grids. The algorithms for the potential solver, electric field evaluation, loading, scatter-gather algorithms are verified using analytic solutions for test cases subject to Laplace and Poisson equations. Grid sensitivity analysis examines the L2 and L∞ norms of the relative error in potential, field, and charge density as a function of edge-averaged and volume-averaged cell size. Analysis shows second order of convergence for the potential and first order of convergence for the electric field and charge density. Temporal sensitivity analysis is performed and the momentum and energy conservation properties of the particle integrators in EUPIC are examined. The effects of cell size and timestep on heating, slowing-down and the deflection times are quantified. The heating, slowing-down and the deflection times are found to be almost linearly dependent on number of particles per cell. EUPIC simulations of current collection by cylindrical Langmuir probes in collisionless plasmas show good comparison with previous experimentally validated numerical results. These simulations were also used in a parallelization

  1. A GPU-based large-scale Monte Carlo simulation method for systems with long-range interactions

    Science.gov (United States)

    Liang, Yihao; Xing, Xiangjun; Li, Yaohang

    2017-06-01

    In this work we present an efficient implementation of Canonical Monte Carlo simulation for Coulomb many body systems on graphics processing units (GPU). Our method takes advantage of the GPU Single Instruction, Multiple Data (SIMD) architectures, and adopts the sequential updating scheme of Metropolis algorithm. It makes no approximation in the computation of energy, and reaches a remarkable 440-fold speedup, compared with the serial implementation on CPU. We further use this method to simulate primitive model electrolytes, and measure very precisely all ion-ion pair correlation functions at high concentrations. From these data, we extract the renormalized Debye length, renormalized valences of constituent ions, and renormalized dielectric constants. These results demonstrate unequivocally physics beyond the classical Poisson-Boltzmann theory.

  2. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  3. Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

    Directory of Open Access Journals (Sweden)

    Pavel V. Komarov

    2013-09-01

    Full Text Available Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic and minority (hydrophilic subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25–50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping mechanism as a significant contributor to the proton conductivity.

  4. Large scale reflood test

    International Nuclear Information System (INIS)

    Hirano, Kemmei; Murao, Yoshio

    1980-01-01

    The large-scale reflood test with a view to ensuring the safety of light water reactors was started in fiscal 1976 based on the special account act for power source development promotion measures by the entrustment from the Science and Technology Agency. Thereafter, to establish the safety of PWRs in loss-of-coolant accidents by joint international efforts, the Japan-West Germany-U.S. research cooperation program was started in April, 1980. Thereupon, the large-scale reflood test is now included in this program. It consists of two tests using a cylindrical core testing apparatus for examining the overall system effect and a plate core testing apparatus for testing individual effects. Each apparatus is composed of the mock-ups of pressure vessel, primary loop, containment vessel and ECCS. The testing method, the test results and the research cooperation program are described. (J.P.N.)

  5. The Neurona at Home project: Simulating a large-scale cellular automata brain in a distributed computing environment

    Science.gov (United States)

    Acedo, L.; Villanueva-Oller, J.; Moraño, J. A.; Villanueva, R.-J.

    2013-01-01

    The Berkeley Open Infrastructure for Network Computing (BOINC) has become the standard open source solution for grid computing in the Internet. Volunteers use their computers to complete an small part of the task assigned by a dedicated server. We have developed a BOINC project called Neurona@Home whose objective is to simulate a cellular automata random network with, at least, one million neurons. We consider a cellular automata version of the integrate-and-fire model in which excitatory and inhibitory nodes can activate or deactivate neighbor nodes according to a set of probabilistic rules. Our aim is to determine the phase diagram of the model and its behaviour and to compare it with the electroencephalographic signals measured in real brains.

  6. Quantifying Hyporheic Exchanges in a Large Scale River Reach Using Coupled 3-D Surface and Subsurface Computational Fluid Dynamics Simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Bao, J; Huang, M; Hou, Z; Perkins, W; Harding, S; Titzler, S; Ren, H; Thorne, P; Suffield, S; Murray, C; Zachara, J

    2017-03-01

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheic exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y+ wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results

  7. Physics-Based Preconditioning of a Compressible Flow Solver for Large-Scale Simulations of Additive Manufacturing Processes

    Science.gov (United States)

    Weston, Brian; Nourgaliev, Robert; Delplanque, Jean-Pierre

    2017-11-01

    We present a new block-based Schur complement preconditioner for simulating all-speed compressible flow with phase change. The conservation equations are discretized with a reconstructed Discontinuous Galerkin method and integrated in time with fully implicit time discretization schemes. The resulting set of non-linear equations is converged using a robust Newton-Krylov framework. Due to the stiffness of the underlying physics associated with stiff acoustic waves and viscous material strength effects, we solve for the primitive-variables (pressure, velocity, and temperature). To enable convergence of the highly ill-conditioned linearized systems, we develop a physics-based preconditioner, utilizing approximate block factorization techniques to reduce the fully-coupled 3×3 system to a pair of reduced 2×2 systems. We demonstrate that our preconditioned Newton-Krylov framework converges on very stiff multi-physics problems, corresponding to large CFL and Fourier numbers, with excellent algorithmic and parallel scalability. Results are shown for the classic lid-driven cavity flow problem as well as for 3D laser-induced phase change. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao

    2015-12-14

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.

  9. Simulation on a proposed large-scale liquid hydrogen plant using a multi-component refrigerant refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Krasae-in, Songwut [Norwegian University of Science and Technology, Kolbjorn Hejes vei 1d, NO-7491 Trondheim (Norway); Stang, Jacob H.; Neksa, Petter [SINTEF Energy Research AS, Kolbjorn Hejes vei 1d, NO-7465 Trondheim (Norway)

    2010-11-15

    A proposed liquid hydrogen plant using a multi-component refrigerant (MR) refrigeration system is explained in this paper. A cycle that is capable of producing 100 tons of liquid hydrogen per day is simulated. The MR system can be used to cool feed normal hydrogen gas from 25 C to the equilibrium temperature of -193 C with a high efficiency. In addition, for the transition from the equilibrium temperature of the hydrogen gas from -193 C to -253 C, the new proposed four H{sub 2} Joule-Brayton cascade refrigeration system is recommended. The overall power consumption of the proposed plant is 5.35 kWh/kg{sub LH2}, with an ideal minimum of 2.89 kWh/kg{sub LH2}. The current plant in Ingolstadt is used as a reference, which has an energy consumption of 13.58 kWh/kg{sub LH2} and an efficiency of 21.28%: the efficiency of the proposed system is 54.02% or more, where this depends on the assumed efficiency values for the compressors and expanders. Moreover, the proposed system has some smaller-size heat exchangers, much smaller compressor motors, and smaller crankcase compressors. Thus, it could represent a plant with the lowest construction cost with respect to the amount of liquid hydrogen produced in comparison to today's plants, e.g., in Ingolstadt and Leuna. Therefore, the proposed system has many improvements that serve as an example for future hydrogen liquefaction plants. (author)

  10. Large scale experiments simulating hydrogen distribution in a spent fuel pool building during a hypothetical fuel uncovery accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Mignot, Guillaume; Paranjape, Sidharth; Paladino, Domenico; Jaeckel, Bernd; Rydl, Adolf [Paul Scherrer Institute, Villigen (Switzerland)

    2016-08-15

    Following the Fukushima accident and its extended station blackout, attention was brought to the importance of the spent fuel pools' (SFPs) behavior in case of a prolonged loss of the cooling system. Since then, many analytical works have been performed to estimate the timing of hypothetical fuel uncovery for various SFP types. Experimentally, however, little was done to investigate issues related to the formation of a flammable gas mixture, distribution, and stratification in the SFP building itself and to some extent assess the capability for the code to correctly predict it. This paper presents the main outcomes of the Experiments on Spent Fuel Pool (ESFP) project carried out under the auspices of Swissnuclear (Framework 2012–2013) in the PANDA facility at the Paul Scherrer Institut in Switzerland. It consists of an experimental investigation focused on hydrogen concentration build-up into a SFP building during a predefined scaled scenario for different venting positions. Tests follow a two-phase scenario. Initially steam is released to mimic the boiling of the pool followed by a helium/steam mixture release to simulate the deterioration of the oxidizing spent fuel. Results shows that while the SFP building would mainly be inerted by the presence of a high concentration of steam, the volume located below the level of the pool in adjacent rooms would maintain a high air content. The interface of the two-gas mixture presents the highest risk of flammability. Additionally, it was observed that the gas mixture could become stagnant leading locally to high hydrogen concentration while steam condenses. Overall, the experiments provide relevant information for the potentially hazardous gas distribution formed in the SFP building and hints on accident management and on eventual retrofitting measures to be implemented in the SFP building.

  11. Evaluating the potential of large-scale simulations to predict carbon fluxes of terrestrial ecosystems over a European Eddy Covariance network

    International Nuclear Information System (INIS)

    Balzarolo, M.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Maignan, F.; Chevallier, F.; Poulter, B.

    2014-01-01

    This paper reports a comparison between large scale simulations of three different land surface models (LSMs), ORCHIDEE, ISBA-A-gs and CTESSEL, forced with the same meteorological data, and compared with the carbon fluxes measured at 32 eddy covariance (EC) flux tower sites in Europe. The results show that the three simulations have the best performance for forest sites and the poorest performance for cropland and grassland sites. In addition, the three simulations have difficulties capturing the seasonality of Mediterranean and sub-tropical biomes, characterized by dry summers. This reduced simulation performance is also reflected in deficiencies in diagnosed light-use efficiency (LUE) and vapour pressure deficit (VPD) dependencies compared to observations. Shortcomings in the forcing data may also play a role. These results indicate that more research is needed on the LUE and VPD functions for Mediterranean and sub-tropical biomes. Finally, this study highlights the importance of correctly representing phenology (i.e. leaf area evolution) and management (i.e. rotation-irrigation for cropland, and grazing-harvesting for grassland) to simulate the carbon dynamics of European ecosystems and the importance of ecosystem-level observations in model development and validation. (authors)

  12. First-principles studies on vacancy-modified interstitial diffusion mechanism of oxygen in nickel, associated with large-scale atomic simulation techniques

    International Nuclear Information System (INIS)

    Fang, H. Z.; Shang, S. L.; Wang, Y.; Liu, Z. K.; Alfonso, D.; Alman, D. E.; Shin, Y. K.; Zou, C. Y.; Duin, A. C. T. van; Lei, Y. K.; Wang, G. F.

    2014-01-01

    This paper is concerned with the prediction of oxygen diffusivities in fcc nickel from first-principles calculations and large-scale atomic simulations. Considering only the interstitial octahedral to tetrahedral to octahedral minimum energy pathway for oxygen diffusion in fcc lattice, greatly underestimates the migration barrier and overestimates the diffusivities by several orders of magnitude. The results indicate that vacancies in the Ni-lattice significantly impact the migration barrier of oxygen in nickel. Incorporation of the effect of vacancies results in predicted diffusivities consistent with available experimental data. First-principles calculations show that at high temperatures the vacancy concentration is comparable to the oxygen solubility, and there is a strong binding energy and a redistribution of charge density between the oxygen atom and vacancy. Consequently, there is a strong attraction between the oxygen and vacancy in the Ni lattice, which impacts diffusion

  13. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study

    Science.gov (United States)

    Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing

    2018-04-01

    Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.

  14. Training by simulation

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, E.

    1984-12-01

    Effective training by simulation is a matter of 1. accurate definition of the training need, 2. selecting the right hardware/software package to do the job cost effectively, 3. careful, methodical building of the training program and 4. an appropriate setting, such as a well-equipped training center. Several points seem clear: 1. ''Computer shock'' or computer phobia -- that is, fear of the simulator, can be a factor with some of the older operators. But it quickly disappears once they're into the program, and learn the versatility and the exciting dynamics of simulators. 2. Operator training is becoming more sophisticated throughout the HPI. Among other things, operators should get out into the plant to learn more about how their actions in the control room impact the plant. Operators are becoming more ''big picture'' oriented. 3. When inexperienced training instructors are used, they should attend a good ''train the trainer'' course emphasizing platform skills and instructional technology. 4. Operators need as much ''hands on'' experience with the plant's actual operating equipment as possible. The cognitive ''linkage'' between that equipment and what they see on the CRT is vitally important.

  15. Large scale model testing

    International Nuclear Information System (INIS)

    Brumovsky, M.; Filip, R.; Polachova, H.; Stepanek, S.

    1989-01-01

    Fracture mechanics and fatigue calculations for WWER reactor pressure vessels were checked by large scale model testing performed using large testing machine ZZ 8000 (with a maximum load of 80 MN) at the SKODA WORKS. The results are described from testing the material resistance to fracture (non-ductile). The testing included the base materials and welded joints. The rated specimen thickness was 150 mm with defects of a depth between 15 and 100 mm. The results are also presented of nozzles of 850 mm inner diameter in a scale of 1:3; static, cyclic, and dynamic tests were performed without and with surface defects (15, 30 and 45 mm deep). During cyclic tests the crack growth rate in the elastic-plastic region was also determined. (author). 6 figs., 2 tabs., 5 refs

  16. [Simulation in surgical training].

    Science.gov (United States)

    Nabavi, A; Schipper, J

    2017-01-01

    Patient safety during operations hinges on the surgeon's skills and abilities. However, surgical training has come under a variety of restrictions. To acquire dexterity with decreasingly "simple" cases, within the legislative time constraints and increasing expectations for surgical results is the future challenge. Are there alternatives to traditional master-apprentice learning? A literature review and analysis of the development, implementation, and evaluation of surgical simulation are presented. Simulation, using a variety of methods, most important physical and virtual (computer-generated) models, provides a safe environment to practice basic and advanced skills without endangering patients. These environments have specific strengths and weaknesses. Simulations can only serve to decrease the slope of learning curves, but cannot be a substitute for the real situation. Thus, they have to be an integral part of a comprehensive training curriculum. Our surgical societies have to take up that challenge to ensure the training of future generations.

  17. Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe

    Directory of Open Access Journals (Sweden)

    A. P. van Ulden

    2006-01-01

    Full Text Available The quality of global sea level pressure patterns has been assessed for simulations by 23 coupled climate models. Most models showed high pattern correlations. With respect to the explained spatial variance, many models showed serious large-scale deficiencies, especially at mid-latitudes. Five models performed well at all latitudes and for each month of the year. Three models had a reasonable skill. We selected the five models with the best pressure patterns for a more detailed assessment of their simulations of the climate in Central Europe. We analysed observations and simulations of monthly mean geostrophic flow indices and of monthly mean temperature and precipitation. We used three geostrophic flow indices: the west component and south component of the geostrophic wind at the surface and the geostrophic vorticity. We found that circulation biases were important, and affected precipitation in particular. Apart from these circulation biases, the models showed other biases in temperature and precipitation, which were for some models larger than the circulation induced biases. For the 21st century the five models simulated quite different changes in circulation, precipitation and temperature. Precipitation changes appear to be primarily caused by circulation changes. Since the models show widely different circulation changes, especially in late summer, precipitation changes vary widely between the models as well. Some models simulate severe drying in late summer, while one model simulates significant precipitation increases in late summer. With respect to the mean temperature the circulation changes were important, but not dominant. However, changes in the distribution of monthly mean temperatures, do show large indirect influences of circulation changes. Especially in late summer, two models simulate very strong warming of warm months, which can be attributed to severe summer drying in the simulations by these models. The models differ also

  18. Large-scale computing with Quantum Espresso

    International Nuclear Information System (INIS)

    Giannozzi, P.; Cavazzoni, C.

    2009-01-01

    This paper gives a short introduction to Quantum Espresso: a distribution of software for atomistic simulations in condensed-matter physics, chemical physics, materials science, and to its usage in large-scale parallel computing.

  19. Probing the Mechanism of pH-Induced Large-Scale Conformational Changes in Dengue Virus Envelope Protein Using Atomistic Simulations

    Science.gov (United States)

    Prakash, Meher K.; Barducci, Alessandro; Parrinello, Michele

    2010-01-01

    Abstract One of the key steps in the infection of the cell by dengue virus is a pH-induced conformational change of the viral envelope proteins. These envelope proteins undergo a rearrangement from a dimer to a trimer, with large conformational changes in the monomeric unit. In this article, metadynamics simulations were used to enable us to understand the mechanism of these large-scale changes in the monomer. By using all-atom, explicit solvent simulations of the monomers, the stability of the protein structure is studied under low and high pH conditions. Free energy profiles obtained along appropriate collective coordinates demonstrate that pH affects the domain interface in both the conformations of E monomer, stabilizing one and destabilizing the other. These simulations suggest a mechanism with an intermediate detached state between the two monomeric structures. Using further analysis, we comment on the key residue interactions responsible for the instability and the pH-sensing role of a histidine that could not otherwise be studied experimentally. The insights gained from this study and methodology can be extended for studying similar mechanisms in the E proteins of the other members of class II flavivirus family. PMID:20643078

  20. Nitrogen-Related Constraints of Carbon Uptake by Large-Scale Forest Expansion: Simulation Study for Climate Change and Management Scenarios

    Science.gov (United States)

    Kracher, Daniela

    2017-11-01

    Increase of forest areas has the potential to increase the terrestrial carbon (C) sink. However, the efficiency for C sequestration depends on the availability of nutrients such as nitrogen (N), which is affected by climatic conditions and management practices. In this study, I analyze how N limitation affects C sequestration of afforestation and how it is influenced by individual climate variables, increased harvest, and fertilizer application. To this end, JSBACH, the land component of the Earth system model of the Max Planck Institute for Meteorology is applied in idealized simulation experiments. In those simulations, large-scale afforestation increases the terrestrial C sink in the 21st century by around 100 Pg C compared to a business as usual land-use scenario. N limitation reduces C sequestration roughly by the same amount. The relevance of compensating effects of uptake and release of carbon dioxide by plant productivity and soil decomposition, respectively, gets obvious from the simulations. N limitation of both fluxes compensates particularly in the tropics. Increased mineralization under global warming triggers forest expansion, which otherwise is restricted by N availability. Due to compensating higher plant productivity and soil respiration, the global net effect of warming for C sequestration is however rather small. Fertilizer application and increased harvest enhance C sequestration as well as boreal expansion. The additional C sequestration achieved by fertilizer application is offset to a large part by additional emissions of nitrous oxide.

  1. Large scale tracking algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Ross L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Joshua Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melgaard, David Kennett [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pitts, Todd Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zollweg, Joshua David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Anderson, Dylan Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nandy, Prabal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitlow, Gary L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bender, Daniel A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrne, Raymond Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  2. The Vertical Structure of Relative Humidity and Ozone in the Tropical Upper Troposphere: Intercomparisons Among In Situ Observations, A-Train Measurements and Large-Scale Models

    Science.gov (United States)

    Selkirk, Henry B.; Manyin, Michael; Douglass, Anne R.; Oman, Luke; Pawson, Steven; Ott, Lesley; Benson, Craig; Stolarski, Richard

    2010-01-01

    In situ measurements in the tropics have shown that in regions of active convection, relative humidity with respect to ice in the upper troposphere is typically close to saturation on average, and supersaturations greater than 20% are not uncommon. Balloon soundings with the cryogenic frost point hygrometer (CFH) at Costa Rica during northern summer, for example, show this tendency to be strongest between 11 and 15.5 km (345-360 K potential temperature, or approximately 250-120 hPa). this is the altitude range of deep convective detrainment. Additionally, simultaneous ozonesonde measurements show that stratospheric air (O3 greater than 150 ppbv) can be found as low as approximately 14 km (350 K/150 hPa). In contrast, results from northern winter show a much drier upper troposphere and little penetration of stratospheric air below the tropopause at 17.5 km (approximately 383 K). We show that these results are consistent with in situ measurements from the Measurement of Ozone and water vapor by Airbus In-service airCraft (MOZAIC) program which samples a wider, though still limited, range of tropical locations. To generalize to the tropics as a whole, we compare our insitu results to data from two A-Train satellite instruments, the Atmospheric Infrared Sounder (AIRS) and the Microwave Limb Sounder (MLS) on the Aqua and Aura satellites respectively. Finally, we examine the vertical structure of water vapor, relative humidity and ozone in the NASA Goddard MERRA analysis, an assimilation dataset, and a new version of the GEOS CCM, a free-running chemistry-climate model. We demonstrate that conditional probability distributions of relative humidity and ozone are a sensitive diagnostic for assessing the representation of deep convection and upper troposphere/lower stratosphere mixing processes in large-scale analyses and climate models.

  3. The ion population of the magnetotail during the 17 April 2002 magnetic storm: Large-scale kinetic simulations and IMAGE/HENA observations

    Science.gov (United States)

    Peroomian, Vahé; El-Alaoui, Mostafa; Brandt, Pontus C.:son

    2011-05-01

    The contribution of solar wind and ionospheric ions to the ion population of the magnetotail during the 17 April 2002 geomagnetic storm was investigated by using large-scale kinetic (LSK) particle tracing calculations. We began our investigation by carrying out a global magnetohydrodynamic simulation of the storm event by using upstream solar wind and interplanetary magnetic field data from the ACE spacecraft. We launched solar wind H+ ions and ionospheric O+ ions beginning at 0900 UT, ˜2 h prior to the sudden storm commencement (SSC), until 2000 UT. We found that during this Dst ˜ -98 nT storm, solar wind ions carried the bulk of the density and energy density in the nightside ring current and plasma sheet, with the notable exception of the 90 min immediately after the SSC when O+ densities in the ring current exceeded those of H+ ions. The LSK simulation did a very good job of reproducing ion densities observed by the Los Alamos National Laboratory spacecraft at geosynchronous orbit and reproduced the changes in the inner magnetosphere and the injection of ions observed by the IMAGE spacecraft during a substorm that occurred at 1900 UT. These comparisons with observations serve to validate our results throughout the magnetotail and allow us to obtain time-dependent maps of H+ and O+ density and energy density where IMAGE cannot make measurements. In essence, this work extends the viewing window of the IMAGE spacecraft far downtail.

  4. Variations in large-scale tropical cyclone genesis factors over the western North Pacific in the PMIP3 last millennium simulations

    Science.gov (United States)

    Yan, Qing; Wei, Ting; Zhang, Zhongshi

    2017-02-01

    Investigation of past tropical cyclone (TC) activity in the Western North Pacific (WNP) is potentially helpful to enable better understanding of future TC behaviors. In this study, we examine variations in large-scale environmental factors important to TC genesis in the last millennium simulations from the Paleoclimate Modelling Intercomparison Project Phase 3 (PMIP3). The results show that potential intensity, a theoretical prediction of the maximum TC intensity, is increased relative to the last millennium in the north part of the WNP in the Medieval Climate Anomaly (MCA; 950-1200 AD) while it is decreased in the Little Ice Age (LIA; 1600-1850 AD). Vertical wind shear that generally inhibits TC genesis is enhanced (reduced) to the south of 20°N and is reduced (enhanced) to the north in the MCA (LIA). Relative humidity (at 600 hPa) that measures the mid-tropospheric moisture content broadly shows an increase (decrease) in the MCA (LIA). A genesis potential index indicates that conditions are generally favorable (unfavorable) for TC formation in the WNP in the MCA (LIA), especially in the northern part. Taking changes in steering flows into account, there may be an increasing (decreasing) favorability for storm strikes in East Asia in the MCA (LIA). The estimated TC activity is consistent with the geological proxies in Japan, but contradicts with the typhoon records in southern China and Taiwan. This model-data discrepancy is attributed to the limitations in both simulations and reconstructions.

  5. Surface flux transport simulations: Effect of inflows toward active regions and random velocities on the evolution of the Sun's large-scale magnetic field

    Science.gov (United States)

    Martin-Belda, D.; Cameron, R. H.

    2016-02-01

    Aims: We aim to determine the effect of converging flows on the evolution of a bipolar magnetic region (BMR), and to investigate the role of these inflows in the generation of poloidal flux. We also discuss whether the flux dispersal due to turbulent flows can be described as a diffusion process. Methods: We developed a simple surface flux transport model based on point-like magnetic concentrations. We tracked the tilt angle, the magnetic flux and the axial dipole moment of a BMR in simulations with and without inflows and compared the results. To test the diffusion approximation, simulations of random walk dispersal of magnetic features were compared against the predictions of the diffusion treatment. Results: We confirm the validity of the diffusion approximation to describe flux dispersal on large scales. We find that the inflows enhance flux cancellation, but at the same time affect the latitudinal separation of the polarities of the bipolar region. In most cases the latitudinal separation is limited by the inflows, resulting in a reduction of the axial dipole moment of the BMR. However, when the initial tilt angle of the BMR is small, the inflows produce an increase in latitudinal separation that leads to an increase in the axial dipole moment in spite of the enhanced flux destruction. This can give rise to a tilt of the BMR even when the BMR was originally aligned parallel to the equator.

  6. Network dynamics with BrainX(3): a large-scale simulation of the human brain network with real-time interaction.

    Science.gov (United States)

    Arsiwalla, Xerxes D; Zucca, Riccardo; Betella, Alberto; Martinez, Enrique; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F M J

    2015-01-01

    BrainX(3) is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX(3) in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX(3) can thus be used as a novel immersive platform for exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas.

  7. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    Science.gov (United States)

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martinez, Enrique; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX3 can thus be used as a novel immersive platform for exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas. PMID:25759649

  8. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    Directory of Open Access Journals (Sweden)

    Xerxes D. Arsiwalla

    2015-02-01

    Full Text Available BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX3 can thus be used as a novel immersive platform for real-time exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably, due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas.

  9. Impact of air-sea drag coefficient for latent heat flux on large scale climate in coupled and atmosphere stand-alone simulations

    Science.gov (United States)

    Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc

    2018-05-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux

  10. Experimental Evaluation of Suitability of Selected Multi-Criteria Decision-Making Methods for Large-Scale Agent-Based Simulations.

    Science.gov (United States)

    Tučník, Petr; Bureš, Vladimír

    2016-01-01

    Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the-server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models.

  11. Local Fitting of the Kohn-Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations.

    Science.gov (United States)

    Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg

    2017-05-09

    A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.

  12. Operator training and the training simulator experience

    International Nuclear Information System (INIS)

    Mills, D.

    The author outlines the approach used by Ontario Hydro to train operators from the day they are hired as Operators-in-Training until they are Authorized Unit First Operators. He describes in detail the use of the simulator in the final year of the authorization program, drawing on experience with the Pickering NGS A simulator. Simulators, he concludes, are important aids to training but by no means all that is required to guarantee capable First Operators

  13. Simulator training effectiveness: instructor training and qualifications

    International Nuclear Information System (INIS)

    Scholand, G.W.

    1985-01-01

    Nuclear power plant simulators have become the most important tool in training nuclear power plant operators. Yet, as these machines continue to become even more sophisticated, highly trained and experienced instructors with unique skills and insights are still essential in order to achieve effective and meaningful training. The making of a qualified simulator instructor involves training and techniques that exceed the traditional programs required of a Senior Reactor Operator (SRO). This paper discusses (i) the training necessary to produce a competent simulator instructor; and (ii) the continuing task of maintaining his or her proficiency. (author)

  14. Full-scope training simulators

    International Nuclear Information System (INIS)

    Ugedo, E.

    1986-01-01

    The following topics to be covered in this report are: Reasons justifying the use of full-scope simulators for operator qualification. Full-scope simulator description: the control room, the physical models, the computer complex, the instructor's console. Main features of full-scope simulators. Merits of simulator training. The role of full-scope simulators in the training programs. The process of ordering and acquiring a full-scope simulator. Maintaining and updating simulator capabilities. (orig./GL)

  15. Training simulator for operations at LNG terminals

    International Nuclear Information System (INIS)

    Tsuta, T.; Yamamoto, K.; Tetsuka, S.; Koyama, K.

    1997-01-01

    The Tokyo Gas LNG terminals are among the major energy centers of the Tokyo area, supplying 8 million customers with city gas, and also supplying fuel for thermal power generation at the neighboring thermal power plant operated by the Tokyo Electric Power Company. For this reason, in the event of an emergency at the terminal operators have to be able to respond quickly and accurately to restore operations and prevent secondary damage. Modern LNG terminals are highly reliable and are equipped with backup systems, and occurrences of major trouble are now almost nil. Operators therefore have to be trained to respond to emergencies using simulators, in order to heighten their emergency response capabilities. Tokyo Gas Co., Ltd. has long been aware of the need for simulators and has used them in training, but a new large-scale, real-time simulator has now developed in response to new training needs, applying previously accumulated expertise to create a model of an entire LNG terminal incorporating new features. The development of this new simulator has made possible training for emergencies affecting an entire terminal, and this has been very effective in raising the standards of operators. (au)

  16. Large-scale solar purchasing

    International Nuclear Information System (INIS)

    1999-01-01

    The principal objective of the project was to participate in the definition of a new IEA task concerning solar procurement (''the Task'') and to assess whether involvement in the task would be in the interest of the UK active solar heating industry. The project also aimed to assess the importance of large scale solar purchasing to UK active solar heating market development and to evaluate the level of interest in large scale solar purchasing amongst potential large scale purchasers (in particular housing associations and housing developers). A further aim of the project was to consider means of stimulating large scale active solar heating purchasing activity within the UK. (author)

  17. Simulator training analysis

    International Nuclear Information System (INIS)

    Hollnagel, E.; Rasmussen, J.

    1981-08-01

    This paper presents a suggestion for systematic collection of data during the normal use of training simulators, with the double purpose of supporting trainee debriefing and providing data for further theoretical studies of operator performance. The method is based on previously described models of operator performance and decision-making, and is a specific instance of the general method for analysis of operator performance data. The method combines a detailed transient-specific description of the expected performance with transient-independent tools for observation of critical activities. (author)

  18. Simulator training for endobronchial ultrasound

    DEFF Research Database (Denmark)

    Konge, Lars; Clementsen, Paul Frost; Ringsted, Charlotte

    2015-01-01

    performance.A total of 16 respiratory physicians, without EBUS experience, were randomised to either virtual-reality simulator training or traditional apprenticeship training on patients, and then each physician performed EBUS-TBNA procedures on three patients. Three blinded, independent assessor assessed......-trained novices and apprenticeship-trained novices failing the test, respectively; pVirtual-reality simulator training was shown to be more...

  19. Metoder for Modellering, Simulering og Regulering af Større Termiske Processer anvendt i Sukkerproduktion. Methods for Modelling, Simulation and Control of Large Scale Thermal Systems Applied in Sugar Production

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    The subject of this Ph.D. thesis is to investigate and develop methods for modelling, simulation and control applicable in large scale termal industrial plants. An ambition has been to evaluate the results in a physical process. Sugar production is well suited for the purpose. In collaboration...... simulator has been developed. The simulator handles the normal working conditions relevant to control engineers. A non-linear dynamic model based on mass and energy balances has been developed. The model parameters have been adjusted to data measured on a Danish sugar plant. The simulator consists...... of a computer, a data terminal and an electric interface corresponding to the interface at the sugar plant. The simulator is operating in realtime and thus a realistic test of controllers is possible. The idiomatic control methodology has been investigated developing a control concept for the evaporation...

  20. Large-scale data analytics

    CERN Document Server

    Gkoulalas-Divanis, Aris

    2014-01-01

    Provides cutting-edge research in large-scale data analytics from diverse scientific areas Surveys varied subject areas and reports on individual results of research in the field Shares many tips and insights into large-scale data analytics from authors and editors with long-term experience and specialization in the field

  1. Training and Simulation in Otolaryngology

    Science.gov (United States)

    Wiet, Gregory J.; Stredney, Don; Wan, Dinah

    2011-01-01

    This article focuses on key issues surrounding the needs and application of simulation technologies for technical skills training in otolaryngology. The discussion includes an overview of key topics in training and learning, the application of these issues in simulation environments, and the subsequent applications of these simulation environments to the field of otolaryngology. Examples of past applications are presented, with discussion of how the interplay of cultural changes in surgical training in general, along with the rapid advancements in technology have shaped and influenced their adoption and adaptation. The authors conclude with emerging trends and potential influences advanced simulation and training will have on technical skills training in otolaryngology. PMID:22032486

  2. Large-scale grid management

    International Nuclear Information System (INIS)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-01-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series

  3. Pressurized water reactor simulation in the training environment

    International Nuclear Information System (INIS)

    Wills, A.G.

    1990-01-01

    The paper gives a brief history of PWR Simulation within the DNST and an outline of the training courses leading to the requirement for the Display Array Simulation System. Focus is then placed upon the flexible use of real time simulation in the teaching of plant dynamics by the use of model generated data. The use of interactive consoles and a large scale colour graphic display has led to the success of the Display Array Simulation System within the DNST. Realisation of the potential of the system has led to many other proposed uses for the installed system and the paper concludes by discussing some of these. (orig./DG)

  4. Dissecting the large-scale galactic conformity

    Science.gov (United States)

    Seo, Seongu

    2018-01-01

    Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.

  5. Large scale structure and baryogenesis

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    2001-08-01

    We discuss a possible connection between the large scale structure formation and the baryogenesis in the universe. An update review of the observational indications for the presence of a very large scale 120h -1 Mpc in the distribution of the visible matter of the universe is provided. The possibility to generate a periodic distribution with the characteristic scale 120h -1 Mpc through a mechanism producing quasi-periodic baryon density perturbations during inflationary stage, is discussed. The evolution of the baryon charge density distribution is explored in the framework of a low temperature boson condensate baryogenesis scenario. Both the observed very large scale of a the visible matter distribution in the universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage. Moreover, for some model's parameters a natural separation of matter superclusters from antimatter ones can be achieved. (author)

  6. LAVA: Large scale Automated Vulnerability Addition

    Science.gov (United States)

    2016-05-23

    LAVA: Large-scale Automated Vulnerability Addition Brendan Dolan -Gavitt∗, Patrick Hulin†, Tim Leek†, Fredrich Ulrich†, Ryan Whelan† (Authors listed...released, and thus rapidly become stale. We can expect tools to have been trained to detect bugs that have been released. Given the commercial price tag...low TCN) and dead (low liveness) program data is a powerful one for vulnera- bility injection. The DUAs it identifies are internal program quantities

  7. Impact of tissue atrophy on high-pass filtered MRI signal phase-based assessment in large-scale group-comparison studies: A simulation study

    Science.gov (United States)

    Schweser, Ferdinand; Dwyer, Michael G.; Deistung, Andreas; Reichenbach, Jürgen R.; Zivadinov, Robert

    2013-10-01

    The assessment of abnormal accumulation of tissue iron in the basal ganglia nuclei and in white matter plaques using the gradient echo magnetic resonance signal phase has become a research focus in many neurodegenerative diseases such as multiple sclerosis or Parkinson’s disease. A common and natural approach is to calculate the mean high-pass-filtered phase of previously delineated brain structures. Unfortunately, the interpretation of such an analysis requires caution: in this paper we demonstrate that regional gray matter atrophy, which is concomitant with many neurodegenerative diseases, may itself directly result in a phase shift seemingly indicative of increased iron concentration even without any real change in the tissue iron concentration. Although this effect is relatively small results of large-scale group comparisons may be driven by anatomical changes rather than by changes of the iron concentration.

  8. Measurement of effectiveness for training simulations

    NARCIS (Netherlands)

    Korteling, J.E.; Oprins, E.A.P.B.; Kallen, V.L.

    2013-01-01

    This paper presents and discusses experimental designs, measures, and measurement methods for determining the effectiveness of training simulators. First, we describe experimental designs in which training effects of training simulators are compared to those of conventional training. Next, the most

  9. Photorealistic large-scale urban city model reconstruction.

    Science.gov (United States)

    Poullis, Charalambos; You, Suya

    2009-01-01

    The rapid and efficient creation of virtual environments has become a crucial part of virtual reality applications. In particular, civil and defense applications often require and employ detailed models of operations areas for training, simulations of different scenarios, planning for natural or man-made events, monitoring, surveillance, games, and films. A realistic representation of the large-scale environments is therefore imperative for the success of such applications since it increases the immersive experience of its users and helps reduce the difference between physical and virtual reality. However, the task of creating such large-scale virtual environments still remains a time-consuming and manual work. In this work, we propose a novel method for the rapid reconstruction of photorealistic large-scale virtual environments. First, a novel, extendible, parameterized geometric primitive is presented for the automatic building identification and reconstruction of building structures. In addition, buildings with complex roofs containing complex linear and nonlinear surfaces are reconstructed interactively using a linear polygonal and a nonlinear primitive, respectively. Second, we present a rendering pipeline for the composition of photorealistic textures, which unlike existing techniques, can recover missing or occluded texture information by integrating multiple information captured from different optical sensors (ground, aerial, and satellite).

  10. Training using power plant simulators

    International Nuclear Information System (INIS)

    Distler, K.; Struss, H.

    1989-01-01

    Simulators which mimick process sequence, control technology and the operator's place of work (the control room, as a rule) are feasible means for filling in gaps in practical experience. The programmes and computers required for the simulation of process sequences are derived from the training requirements and from the processes proper. The authors demonstrate the requirements made for training and on the models and computers to be used. (orig.) [de

  11. A large-scale simulation of climate change effects on flood regime - A case study for the Alabama-Coosa-Tallapoosa River Basin

    Science.gov (United States)

    Dullo, T. T.; Gangrade, S.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.; Kao, S. C.; Kalyanapu, A. J.

    2017-12-01

    The damage and cost of flooding are continuously increasing due to climate change and variability, which compels the development and advance of global flood hazard models. However, due to computational expensiveness, evaluation of large-scale and high-resolution flood regime remains a challenge. The objective of this research is to use a coupled modeling framework that consists of a dynamically downscaled suite of eleven Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models, a distributed hydrologic model called DHSVM, and a computational-efficient 2-dimensional hydraulic model called Flood2D-GPU to study the impacts of climate change on flood regime in the Alabama-Coosa-Tallapoosa (ACT) River Basin. Downscaled meteorologic forcings for 40 years in the historical period (1966-2005) and 40 years in the future period (2011-2050) were used as inputs to drive the calibrated DHSVM to generate annual maximum flood hydrographs. These flood hydrographs along with 30-m resolution digital elevation and estimated surface roughness were then used by Flood2D-GPU to estimate high-resolution flood depth, velocities, duration, and regime. Preliminary results for the Conasauga river basin (an upper subbasin within ACT) indicate that seven of the eleven climate projections show an average increase of 25 km2 in flooded area (between historic and future projections). Future work will focus on illustrating the effects of climate change on flood duration and area for the entire ACT basin.

  12. Selection, Training and Simulation

    Science.gov (United States)

    2000-03-01

    most Neck training, Altitudetehamber, PBG, Gas nixtures, Trampoline , important in flying. In years to come we will have a Statoergometer, Raling...superagile world, are mentioned neck, more if X-tra head worn equipment is used put below. a lot of stress to this system. In addition stress will 6-6 be...acceleration Pilot selection criteria like body-type, heart-cerebral forces, mainly head to foot (Gz). The heart itself is distance, vagal and sympathetic nerve

  13. Japanese large-scale interferometers

    CERN Document Server

    Kuroda, K; Miyoki, S; Ishizuka, H; Taylor, C T; Yamamoto, K; Miyakawa, O; Fujimoto, M K; Kawamura, S; Takahashi, R; Yamazaki, T; Arai, K; Tatsumi, D; Ueda, A; Fukushima, M; Sato, S; Shintomi, T; Yamamoto, A; Suzuki, T; Saitô, Y; Haruyama, T; Sato, N; Higashi, Y; Uchiyama, T; Tomaru, T; Tsubono, K; Ando, M; Takamori, A; Numata, K; Ueda, K I; Yoneda, H; Nakagawa, K; Musha, M; Mio, N; Moriwaki, S; Somiya, K; Araya, A; Kanda, N; Telada, S; Sasaki, M; Tagoshi, H; Nakamura, T; Tanaka, T; Ohara, K

    2002-01-01

    The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry-Perot-Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R and D.

  14. Large-scale matrix-handling subroutines 'ATLAS'

    International Nuclear Information System (INIS)

    Tsunematsu, Toshihide; Takeda, Tatsuoki; Fujita, Keiichi; Matsuura, Toshihiko; Tahara, Nobuo

    1978-03-01

    Subroutine package ''ATLAS'' has been developed for handling large-scale matrices. The package is composed of four kinds of subroutines, i.e., basic arithmetic routines, routines for solving linear simultaneous equations and for solving general eigenvalue problems and utility routines. The subroutines are useful in large scale plasma-fluid simulations. (auth.)

  15. Large scale integration of photovoltaics in cities

    International Nuclear Information System (INIS)

    Strzalka, Aneta; Alam, Nazmul; Duminil, Eric; Coors, Volker; Eicker, Ursula

    2012-01-01

    Highlights: ► We implement the photovoltaics on a large scale. ► We use three-dimensional modelling for accurate photovoltaic simulations. ► We consider the shadowing effect in the photovoltaic simulation. ► We validate the simulated results using detailed hourly measured data. - Abstract: For a large scale implementation of photovoltaics (PV) in the urban environment, building integration is a major issue. This includes installations on roof or facade surfaces with orientations that are not ideal for maximum energy production. To evaluate the performance of PV systems in urban settings and compare it with the building user’s electricity consumption, three-dimensional geometry modelling was combined with photovoltaic system simulations. As an example, the modern residential district of Scharnhauser Park (SHP) near Stuttgart/Germany was used to calculate the potential of photovoltaic energy and to evaluate the local own consumption of the energy produced. For most buildings of the district only annual electrical consumption data was available and only selected buildings have electronic metering equipment. The available roof area for one of these multi-family case study buildings was used for a detailed hourly simulation of the PV power production, which was then compared to the hourly measured electricity consumption. The results were extrapolated to all buildings of the analyzed area by normalizing them to the annual consumption data. The PV systems can produce 35% of the quarter’s total electricity consumption and half of this generated electricity is directly used within the buildings.

  16. Implementation of 3D spatial indexing and compression in a large-scale molecular dynamics simulation database for rapid atomic contact detection.

    Science.gov (United States)

    Toofanny, Rudesh D; Simms, Andrew M; Beck, David A C; Daggett, Valerie

    2011-08-10

    Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns) simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a 'full' simulation trajectory (51 ns) spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes. The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation

  17. Implementation of 3D spatial indexing and compression in a large-scale molecular dynamics simulation database for rapid atomic contact detection

    Directory of Open Access Journals (Sweden)

    Toofanny Rudesh D

    2011-08-01

    Full Text Available Abstract Background Molecular dynamics (MD simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Results Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster. For a 'full' simulation trajectory (51 ns spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster. Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36% was achieved using page level compression on both the data and indexes. Conclusions The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery

  18. Fires in large scale ventilation systems

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; White, B.W.; Nichols, B.D.; Smith, P.R.; Leslie, I.H.; Fenton, D.L.; Gunaji, M.V.; Blythe, J.P.

    1991-01-01

    This paper summarizes the experience gained simulating fires in large scale ventilation systems patterned after ventilation systems found in nuclear fuel cycle facilities. The series of experiments discussed included: (1) combustion aerosol loading of 0.61x0.61 m HEPA filters with the combustion products of two organic fuels, polystyrene and polymethylemethacrylate; (2) gas dynamic and heat transport through a large scale ventilation system consisting of a 0.61x0.61 m duct 90 m in length, with dampers, HEPA filters, blowers, etc.; (3) gas dynamic and simultaneous transport of heat and solid particulate (consisting of glass beads with a mean aerodynamic diameter of 10μ) through the large scale ventilation system; and (4) the transport of heat and soot, generated by kerosene pool fires, through the large scale ventilation system. The FIRAC computer code, designed to predict fire-induced transients in nuclear fuel cycle facility ventilation systems, was used to predict the results of experiments (2) through (4). In general, the results of the predictions were satisfactory. The code predictions for the gas dynamics, heat transport, and particulate transport and deposition were within 10% of the experimentally measured values. However, the code was less successful in predicting the amount of soot generation from kerosene pool fires, probably due to the fire module of the code being a one-dimensional zone model. The experiments revealed a complicated three-dimensional combustion pattern within the fire room of the ventilation system. Further refinement of the fire module within FIRAC is needed. (orig.)

  19. A massively parallel algorithm for the solution of constrained equations of motion with applications to large-scale, long-time molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fijany, A. [Jet Propulsion Lab., Pasadena, CA (United States); Coley, T.R. [Virtual Chemistry, Inc., San Diego, CA (United States); Cagin, T.; Goddard, W.A. III [California Institute of Technology, Pasadena, CA (United States)

    1997-12-31

    Successful molecular dynamics (MD) simulation of large systems (> million atoms) for long times (> nanoseconds) requires the integration of constrained equations of motion (CEOM). Constraints are used to eliminate high frequency degrees of freedom (DOF) and to allow the use of rigid bodies. Solving the CEOM allows for larger integration time-steps and helps focus the simulation on the important collective dynamics of chemical, biological, and materials systems. We explore advances in multibody dynamics which have resulted in O(N) algorithms for propagating the CEOM. However, because of their strictly sequential nature, the computational time required by these algorithms does not scale down with increased numbers of processors. We then present the new constraint force algorithm for solving the CEOM and show that this algorithm is fully parallelizable, leading to a computational cost of O(N/P+IogP) for N DOF on P processors.

  20. Diagnostic evaluation of the Community Earth System Model in simulating mineral dust emission with insight into large-scale dust storm mobilization in the Middle East and North Africa (MENA)

    Science.gov (United States)

    Parajuli, Sagar Prasad; Yang, Zong-Liang; Lawrence, David M.

    2016-06-01

    Large amounts of mineral dust are injected into the atmosphere during dust storms, which are common in the Middle East and North Africa (MENA) where most of the global dust hotspots are located. In this work, we present simulations of dust emission using the Community Earth System Model Version 1.2.2 (CESM 1.2.2) and evaluate how well it captures the spatio-temporal characteristics of dust emission in the MENA region with a focus on large-scale dust storm mobilization. We explicitly focus our analysis on the model's two major input parameters that affect the vertical mass flux of dust-surface winds and the soil erodibility factor. We analyze dust emissions in simulations with both prognostic CESM winds and with CESM winds that are nudged towards ERA-Interim reanalysis values. Simulations with three existing erodibility maps and a new observation-based erodibility map are also conducted. We compare the simulated results with MODIS satellite data, MACC reanalysis data, AERONET station data, and CALIPSO 3-d aerosol profile data. The dust emission simulated by CESM, when driven by nudged reanalysis winds, compares reasonably well with observations on daily to monthly time scales despite CESM being a global General Circulation Model. However, considerable bias exists around known high dust source locations in northwest/northeast Africa and over the Arabian Peninsula where recurring large-scale dust storms are common. The new observation-based erodibility map, which can represent anthropogenic dust sources that are not directly represented by existing erodibility maps, shows improved performance in terms of the simulated dust optical depth (DOD) and aerosol optical depth (AOD) compared to existing erodibility maps although the performance of different erodibility maps varies by region.

  1. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro......-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 mu m. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  2. Conference on Large Scale Optimization

    CERN Document Server

    Hearn, D; Pardalos, P

    1994-01-01

    On February 15-17, 1993, a conference on Large Scale Optimization, hosted by the Center for Applied Optimization, was held at the University of Florida. The con­ ference was supported by the National Science Foundation, the U. S. Army Research Office, and the University of Florida, with endorsements from SIAM, MPS, ORSA and IMACS. Forty one invited speakers presented papers on mathematical program­ ming and optimal control topics with an emphasis on algorithm development, real world applications and numerical results. Participants from Canada, Japan, Sweden, The Netherlands, Germany, Belgium, Greece, and Denmark gave the meeting an important international component. At­ tendees also included representatives from IBM, American Airlines, US Air, United Parcel Serice, AT & T Bell Labs, Thinking Machines, Army High Performance Com­ puting Research Center, and Argonne National Laboratory. In addition, the NSF sponsored attendance of thirteen graduate students from universities in the United States and abro...

  3. Large scale nuclear structure studies

    International Nuclear Information System (INIS)

    Faessler, A.

    1985-01-01

    Results of large scale nuclear structure studies are reported. The starting point is the Hartree-Fock-Bogoliubov solution with angular momentum and proton and neutron number projection after variation. This model for number and spin projected two-quasiparticle excitations with realistic forces yields in sd-shell nuclei similar good results as the 'exact' shell-model calculations. Here the authors present results for a pf-shell nucleus 46 Ti and results for the A=130 mass region where they studied 58 different nuclei with the same single-particle energies and the same effective force derived from a meson exchange potential. They carried out a Hartree-Fock-Bogoliubov variation after mean field projection in realistic model spaces. In this way, they determine for each yrast state the optimal mean Hartree-Fock-Bogoliubov field. They apply this method to 130 Ce and 128 Ba using the same effective nucleon-nucleon interaction. (Auth.)

  4. Large-scale river regulation

    International Nuclear Information System (INIS)

    Petts, G.

    1994-01-01

    Recent concern over human impacts on the environment has tended to focus on climatic change, desertification, destruction of tropical rain forests, and pollution. Yet large-scale water projects such as dams, reservoirs, and inter-basin transfers are among the most dramatic and extensive ways in which our environment has been, and continues to be, transformed by human action. Water running to the sea is perceived as a lost resource, floods are viewed as major hazards, and wetlands are seen as wastelands. River regulation, involving the redistribution of water in time and space, is a key concept in socio-economic development. To achieve water and food security, to develop drylands, and to prevent desertification and drought are primary aims for many countries. A second key concept is ecological sustainability. Yet the ecology of rivers and their floodplains is dependent on the natural hydrological regime, and its related biochemical and geomorphological dynamics. (Author)

  5. Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chuanfu, E-mail: xuchuanfu@nudt.edu.cn [College of Computer Science, National University of Defense Technology, Changsha 410073 (China); Deng, Xiaogang; Zhang, Lilun [College of Computer Science, National University of Defense Technology, Changsha 410073 (China); Fang, Jianbin [Parallel and Distributed Systems Group, Delft University of Technology, Delft 2628CD (Netherlands); Wang, Guangxue; Jiang, Yi [State Key Laboratory of Aerodynamics, P.O. Box 211, Mianyang 621000 (China); Cao, Wei; Che, Yonggang; Wang, Yongxian; Wang, Zhenghua; Liu, Wei; Cheng, Xinghua [College of Computer Science, National University of Defense Technology, Changsha 410073 (China)

    2014-12-01

    Programming and optimizing complex, real-world CFD codes on current many-core accelerated HPC systems is very challenging, especially when collaborating CPUs and accelerators to fully tap the potential of heterogeneous systems. In this paper, with a tri-level hybrid and heterogeneous programming model using MPI + OpenMP + CUDA, we port and optimize our high-order multi-block structured CFD software HOSTA on the GPU-accelerated TianHe-1A supercomputer. HOSTA adopts two self-developed high-order compact definite difference schemes WCNS and HDCS that can simulate flows with complex geometries. We present a dual-level parallelization scheme for efficient multi-block computation on GPUs and perform particular kernel optimizations for high-order CFD schemes. The GPU-only approach achieves a speedup of about 1.3 when comparing one Tesla M2050 GPU with two Xeon X5670 CPUs. To achieve a greater speedup, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present a novel scheme to balance the loads between the store-poor GPU and the store-rich CPU. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per TianHe-1A node for HOSTA by 2.3×, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Further, to scale HOSTA on TianHe-1A, we propose a gather/scatter optimization to minimize PCI-e data transfer times for ghost and singularity data of 3D grid blocks, and overlap the collaborative computation and communication as far as possible using some advanced CUDA and MPI features. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 TianHe-1A nodes. With our method, we have successfully simulated an EET high-lift airfoil configuration containing 800M cells and China's large civil airplane configuration containing 150M cells. To our best knowledge, those are the largest-scale CPU–GPU collaborative simulations

  6. Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer

    International Nuclear Information System (INIS)

    Xu, Chuanfu; Deng, Xiaogang; Zhang, Lilun; Fang, Jianbin; Wang, Guangxue; Jiang, Yi; Cao, Wei; Che, Yonggang; Wang, Yongxian; Wang, Zhenghua; Liu, Wei; Cheng, Xinghua

    2014-01-01

    Programming and optimizing complex, real-world CFD codes on current many-core accelerated HPC systems is very challenging, especially when collaborating CPUs and accelerators to fully tap the potential of heterogeneous systems. In this paper, with a tri-level hybrid and heterogeneous programming model using MPI + OpenMP + CUDA, we port and optimize our high-order multi-block structured CFD software HOSTA on the GPU-accelerated TianHe-1A supercomputer. HOSTA adopts two self-developed high-order compact definite difference schemes WCNS and HDCS that can simulate flows with complex geometries. We present a dual-level parallelization scheme for efficient multi-block computation on GPUs and perform particular kernel optimizations for high-order CFD schemes. The GPU-only approach achieves a speedup of about 1.3 when comparing one Tesla M2050 GPU with two Xeon X5670 CPUs. To achieve a greater speedup, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present a novel scheme to balance the loads between the store-poor GPU and the store-rich CPU. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per TianHe-1A node for HOSTA by 2.3×, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Further, to scale HOSTA on TianHe-1A, we propose a gather/scatter optimization to minimize PCI-e data transfer times for ghost and singularity data of 3D grid blocks, and overlap the collaborative computation and communication as far as possible using some advanced CUDA and MPI features. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 TianHe-1A nodes. With our method, we have successfully simulated an EET high-lift airfoil configuration containing 800M cells and China's large civil airplane configuration containing 150M cells. To our best knowledge, those are the largest-scale CPU–GPU collaborative simulations

  7. [Anesthesia simulators and training devices].

    Science.gov (United States)

    Hartmannsgruber, M; Good, M; Carovano, R; Lampotang, S; Gravenstein, J S

    1993-07-01

    Simulators and training devices are used extensively by educators in 'high-tech' occupations, especially those requiring an understanding of complex systems and co-ordinated psychomotor skills. Because of advances in computer technology, anaesthetised patients can now be realistically simulated. This paper describes several training devices and a simulator currently being employed in the training of anaesthesia personnel at the University of Florida. This Gainesville Anesthesia Simulator (GAS) comprises a patient mannequin, anaesthesia gas machine, and a full set of normally operating monitoring instruments. The patient can spontaneously breathe, has audible heart and breath sounds, and palpable pulses. The mannequin contains a sophisticated lung model that consumes and eliminates gas according to physiological principles. Interconnected computers controlling the physical signs of the mannequin enable the presentation of a multitude of clinical signs. In addition, the anaesthesia machine, which is functionally intact, has hidden fault activators to challenge the user to correct equipment malfunctions. Concealed sensors monitor the users' actions and responses. A robust data acquisition and control system and a user-friendly scripting language for programming simulation scenarios are key features of GAS and make this system applicable for the training of both the beginning resident and the experienced practitioner. GAS enhances clinical education in anaesthesia by providing a non-threatening environment that fosters learning by doing. Exercises with the simulator are supported by sessions on a number of training devices. These present theoretical and practical interactive courses on the anaesthesia machine and on monitors. An extensive system, for example, introduces the student to the physics and clinical application of transoesophageal echocardiography.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Numerical study of Tallinn storm-water system flooding conditions using CFD simulations of multi-phase flow in a large-scale inverted siphon

    Science.gov (United States)

    Kaur, K.; Laanearu, J.; Annus, I.

    2017-10-01

    The numerical experiments are carried out for qualitative and quantitative interpretation of a multi-phase flow processes associated with malfunctioning of the Tallinn storm-water system during rain storms. The investigations are focused on the single-line inverted siphon, which is used as under-road connection of pipes of the storm-water system under interest. A multi-phase flow solver of Computational Fluid Dynamics software OpenFOAM is used for simulating the three-phase flow dynamics in the hydraulic system. The CFD simulations are performed with different inflow rates under same initial conditions. The computational results are compared essentially in two cases 1) design flow rate and 2) larger flow rate, for emptying the initially filled inverted siphon from a slurry-fluid. The larger flow-rate situations are under particular interest to detected possible flooding. In this regard, it is anticipated that the CFD solutions provide an important insight to functioning of inverted siphon under a restricted water-flow conditions at simultaneous presence of air and slurry-fluid.

  9. Simulations of Cyclone Sidr in the Bay of Bengal with a High-Resolution Model: Sensitivity to Large-Scale Boundary Forcing

    Science.gov (United States)

    Kumar, Anil; Done, James; Dudhia, Jimy; Niyogi, Dev

    2011-01-01

    The predictability of Cyclone Sidr in the Bay of Bengal was explored in terms of track and intensity using the Advanced Research Hurricane Weather Research Forecast (AHW) model. This constitutes the first application of the AHW over an area that lies outside the region of the North Atlantic for which this model was developed and tested. Several experiments were conducted to understand the possible contributing factors that affected Sidr s intensity and track simulation by varying the initial start time and domain size. Results show that Sidr s track was strongly controlled by the synoptic flow at the 500-hPa level, seen especially due to the strong mid-latitude westerly over north-central India. A 96-h forecast produced westerly winds over north-central India at the 500-hPa level that were notably weaker; this likely caused the modeled cyclone track to drift from the observed actual track. Reducing the model domain size reduced model error in the synoptic-scale winds at 500 hPa and produced an improved cyclone track. Specifically, the cyclone track appeared to be sensitive to the upstream synoptic flow, and was, therefore, sensitive to the location of the western boundary of the domain. However, cyclone intensity remained largely unaffected by this synoptic wind error at the 500-hPa level. Comparison of the high resolution, moving nested domain with a single coarser resolution domain showed little difference in tracks, but resulted in significantly different intensities. Experiments on the domain size with regard to the total precipitation simulated by the model showed that precipitation patterns and 10-m surface winds were also different. This was mainly due to the mid-latitude westerly flow across the west side of the model domain. The analysis also suggested that the total precipitation pattern and track was unchanged when the domain was extended toward the east, north, and south. Furthermore, this highlights our conclusion that Sidr was influenced from the west

  10. X-ray clusters in a cold dark matter + lambda universe: A direct, large-scale, high-resolution, hydrodynamic simulation

    Science.gov (United States)

    Cen, Renyue; Ostriker, Jeremiah P.

    1994-01-01

    A new, three-dimensional, shock-capturing, hydrodynamic code is utilized to determine the distribution of hot gas in a cold dark matter (CDM) + lambda model universe. Periodic boundary conditions are assumed: a box with size 85/h Mpc, having cell size 0.31/h Mpc, is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. We adopt omega = 0.45, lambda = 0.55, h identically equal to H/100 km/s/Mpc = 0.6, and then, from the cosmic background explorer (COBE) and light element nucleosynthesis, sigma(sub 8) = 0.77, omega(sub b) = 0.043. We identify the X-ray emitting clusters in the simulation box, compute the luminosity function at several wavelength bands, the temperature function and estimated sizes, as well as the evolution of these quantities with redshift. This open model succeeds in matching local observations of clusters in contrast to the standard omega = 1, CDM model, which fails. It predicts an order of magnitude decline in the number density of bright (h nu = 2-10 keV) clusters from z = 0 to z = 2 in contrast to a slight increase in the number density for standard omega = 1, CDM model. This COBE-normalized CDM + lambda model produces approximately the same number of X-ray clusters having L(sub x) greater than 10(exp 43) erg/s as observed. The background radiation field at 1 keV due to clusters is approximately the observed background which, after correction for numerical effects, again indicates that the model is consistent with observations.

  11. Large-Scale Molecular Simulations on the Mechanical Response and Failure Behavior of a defective Graphene: Cases of 5-8-5 Defects

    Science.gov (United States)

    Wang, Shuaiwei; Yang, Baocheng; Yuan, Jinyun; Si, Yubing; Chen, Houyang

    2015-10-01

    Understanding the effect of defects on mechanical responses and failure behaviors of a graphene membrane is important for its applications. As examples, in this paper, a family of graphene with various 5-8-5 defects are designed and their mechanical responses are investigated by employing molecular dynamics simulations. The dependence of fracture strength and strain as well as Young’s moduli on the nearest neighbor distance and defect types is examined. By introducing the 5-8-5 defects into graphene, the fracture strength and strain become smaller. However, the Young’s moduli of DL (Linear arrangement of repeat unit 5-8-5 defect along zigzag-direction of graphene), DS (a Slope angle between repeat unit 5-8-5 defect and zigzag direction of graphene) and DZ (Zigzag-like 5-8-5 defects) defects in the zigzag direction become larger than those in the pristine graphene in the same direction. A maximum increase of 11.8% of Young’s modulus is obtained. Furthermore, the brittle cracking mechanism is proposed for the graphene with 5-8-5 defects. The present work may provide insights in controlling the mechanical properties by preparing defects in the graphene, and give a full picture for the applications of graphene with defects in flexible electronics and nanodevices.

  12. Reviving large-scale projects

    International Nuclear Information System (INIS)

    Desiront, A.

    2003-01-01

    For the past decade, most large-scale hydro development projects in northern Quebec have been put on hold due to land disputes with First Nations. Hydroelectric projects have recently been revived following an agreement signed with Aboriginal communities in the province who recognized the need to find new sources of revenue for future generations. Many Cree are working on the project to harness the waters of the Eastmain River located in the middle of their territory. The work involves building an 890 foot long dam, 30 dikes enclosing a 603 square-km reservoir, a spillway, and a power house with 3 generating units with a total capacity of 480 MW of power for start-up in 2007. The project will require the use of 2,400 workers in total. The Cree Construction and Development Company is working on relations between Quebec's 14,000 Crees and the James Bay Energy Corporation, the subsidiary of Hydro-Quebec which is developing the project. Approximately 10 per cent of the $735-million project has been designated for the environmental component. Inspectors ensure that the project complies fully with environmental protection guidelines. Total development costs for Eastmain-1 are in the order of $2 billion of which $735 million will cover work on site and the remainder will cover generating units, transportation and financial charges. Under the treaty known as the Peace of the Braves, signed in February 2002, the Quebec government and Hydro-Quebec will pay the Cree $70 million annually for 50 years for the right to exploit hydro, mining and forest resources within their territory. The project comes at a time when electricity export volumes to the New England states are down due to growth in Quebec's domestic demand. Hydropower is a renewable and non-polluting source of energy that is one of the most acceptable forms of energy where the Kyoto Protocol is concerned. It was emphasized that large-scale hydro-electric projects are needed to provide sufficient energy to meet both

  13. Atomistic mechanism of graphene growth on a SiC substrate: Large-scale molecular dynamics simulations based on a new charge-transfer bond-order type potential

    Science.gov (United States)

    Takamoto, So; Yamasaki, Takahiro; Nara, Jun; Ohno, Takahisa; Kaneta, Chioko; Hatano, Asuka; Izumi, Satoshi

    2018-03-01

    Thermal decomposition of silicon carbide is a promising approach for the fabrication of graphene. However, the atomistic growth mechanism of graphene remains unclear. This paper describes the development of a new charge-transfer interatomic potential. Carbon bonds with a wide variety of characteristics can be reproduced by the proposed vectorized bond-order term. A large-scale thermal decomposition simulation enables us to observe the continuous growth process of the multiring carbon structure. The annealing simulation reveals the atomistic process by which the multiring carbon structure is transformed to flat graphene involving only six-membered rings. Also, it is found that the surface atoms of the silicon carbide substrate enhance the homogeneous graphene formation.

  14. Large Scale Glazed Concrete Panels

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Today, there is a lot of focus on concrete surface’s aesthitic potential, both globally and locally. World famous architects such as Herzog De Meuron, Zaha Hadid, Richard Meyer and David Chippenfield challenge the exposure of concrete in their architecture. At home, this trend can be seen...... in the crinkly façade of DR-Byen (the domicile of the Danish Broadcasting Company) by architect Jean Nouvel and Zaha Hadid’s Ordrupgård’s black curved smooth concrete surfaces. Furthermore, one can point to initiatives such as “Synlig beton” (visible concrete) that can be seen on the website www.......synligbeton.dk and spæncom’s aesthetic relief effects by the designer Line Kramhøft (www.spaencom.com). It is my hope that the research-development project “Lasting large scale glazed concrete formwork,” I am working on at DTU, department of Architectural Engineering will be able to complement these. It is a project where I...

  15. Large scale cluster computing workshop

    International Nuclear Information System (INIS)

    Dane Skow; Alan Silverman

    2002-01-01

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community

  16. Large scale cross hole testing

    International Nuclear Information System (INIS)

    Ball, J.K.; Black, J.H.; Doe, T.

    1991-05-01

    As part of the Site Characterisation and Validation programme the results of the large scale cross hole testing have been used to document hydraulic connections across the SCV block, to test conceptual models of fracture zones and obtain hydrogeological properties of the major hydrogeological features. The SCV block is highly heterogeneous. This heterogeneity is not smoothed out even over scales of hundreds of meters. Results of the interpretation validate the hypothesis of the major fracture zones, A, B and H; not much evidence of minor fracture zones is found. The uncertainty in the flow path, through the fractured rock, causes sever problems in interpretation. Derived values of hydraulic conductivity were found to be in a narrow range of two to three orders of magnitude. Test design did not allow fracture zones to be tested individually. This could be improved by testing the high hydraulic conductivity regions specifically. The Piezomac and single hole equipment worked well. Few, if any, of the tests ran long enough to approach equilibrium. Many observation boreholes showed no response. This could either be because there is no hydraulic connection, or there is a connection but a response is not seen within the time scale of the pumping test. The fractional dimension analysis yielded credible results, and the sinusoidal testing procedure provided an effective means of identifying the dominant hydraulic connections. (10 refs.) (au)

  17. Large-scale pool fires

    Directory of Open Access Journals (Sweden)

    Steinhaus Thomas

    2007-01-01

    Full Text Available A review of research into the burning behavior of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low source Froude numbers and the radiative interaction with the fire source. In hydrocarbon fires, higher soot levels at increased diameters result in radiation blockage effects around the perimeter of large fire plumes; this yields lower emissive powers and a drastic reduction in the radiative loss fraction; whilst there are simplifying factors with these phenomena, arising from the fact that soot yield can saturate, there are other complications deriving from the intermittency of the behavior, with luminous regions of efficient combustion appearing randomly in the outer surface of the fire according the turbulent fluctuations in the fire plume. Knowledge of the fluid flow instabilities, which lead to the formation of large eddies, is also key to understanding the behavior of large-scale fires. Here modeling tools can be effectively exploited in order to investigate the fluid flow phenomena, including RANS- and LES-based computational fluid dynamics codes. The latter are well-suited to representation of the turbulent motions, but a number of challenges remain with their practical application. Massively-parallel computational resources are likely to be necessary in order to be able to adequately address the complex coupled phenomena to the level of detail that is necessary.

  18. Upgraded operator training by using advanced simulators

    International Nuclear Information System (INIS)

    Iwashita, Akira; Toeda, Susumu; Fujita, Eimitsu; Moriguchi, Iwao; Wada, Kouji

    1991-01-01

    BWR Operator Training Center Corporation (BTC) has been conducting the operator training for all BWR utilities in Japan using fullscope simulators. Corresponding to increasing quantitative demands and higher qualitative needs of operator training, BTC put advanced simulators in operation (BTC-2 simulator in 1983 and BTC-3 simulator in 1989). This paper describes the methods and the effects of upgraded training contents by using these advanced simulators. These training methods are applied to the 'Advanced Operator Training course,' the 'Operator Retraining Course' and also the 'Family (crew) Training Course.' (author)

  19. Large-scale galaxy bias

    Science.gov (United States)

    Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian

    2018-02-01

    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy statistics. We then review the excursion-set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  20. Large-scale galaxy bias

    Science.gov (United States)

    Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian

    2018-01-01

    Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  1. Basic principles simulators - concept training simulators

    International Nuclear Information System (INIS)

    Benkert, J.

    1986-01-01

    Basic Principles Simulators have the purpose of teaching general concepts, demonstrating and displaying the fundamental physical processes of a plant. They are used to illustrate theory to students and also to provide a preliminary training to the operators, to aquaint them with the basic dynamic interactions of the various systems during the normal operation of a plant, and to show the consequences of the most important and common transients and malfunctions. Basic principles simulators may vary in size from small desk cabinets to large panels. They represent with a certain detail the nuclear and thermohydraulic part of the plant. The availability of video displays allows to present detailed information about process parameters which are not shown on the control panels. In general the overall plant behaviour is represented well. Limitations are mostly found in the areas of logic and control. (orig./HP)

  2. Development of training simulator for LWR

    International Nuclear Information System (INIS)

    Sureshbabu, R.M.

    2009-01-01

    A full-scope training simulator was developed for a light water reactor (LWR). This paper describes how the development evolved from a desktop simulator to the full-scope training simulator. It also describes the architecture and features of the simulator including the large number of failures that it simulates. The paper also explains the three-level validation tests that were used to qualify the training simulator. (author)

  3. Solving Large Scale Crew Scheduling Problems in Practice

    NARCIS (Netherlands)

    E.J.W. Abbink (Erwin); L. Albino; T.A.B. Dollevoet (Twan); D. Huisman (Dennis); J. Roussado; R.L. Saldanha

    2010-01-01

    textabstractThis paper deals with large-scale crew scheduling problems arising at the Dutch railway operator, Netherlands Railways (NS). NS operates about 30,000 trains a week. All these trains need a driver and a certain number of guards. Some labor rules restrict the duties of a certain crew base

  4. Astronaut Neil Armstrong participates in simulation training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, participates in simulation training in preparation for the scheduled lunar landing mission. He is in the Apollo Lunar Module Mission SImulator in the Kennedy Space Center's Flight Crew Training Building.

  5. Bayesian hierarchical model for large-scale covariance matrix estimation.

    Science.gov (United States)

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  6. Large-Scale Astrophysical Visualization on Smartphones

    Science.gov (United States)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  7. Twenty-five years of simulator training

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    The first training simulator for nuclear power plant personnel in Germany was commissioned twenty-five years ago. The strategy of training by simulators was developed and pursued consistently and continuously in order to ensure sound training of nuclear power plant personnel. The present thirteen simulators cover a broad range of plants. A systematic training concept also helps to ensure a high level of competence and permanent qualification of plant personnel. The anniversary was marked by a festive event at which Erich K. Steiner read a paper on 'The Importance of Simulator Training', and Professor Dr. Adolf Birkhofer spoke about 'Nuclear Technology Education and Training'. (orig.)

  8. A Classification Framework for Large-Scale Face Recognition Systems

    OpenAIRE

    Zhou, Ziheng; Deravi, Farzin

    2009-01-01

    This paper presents a generic classification framework for large-scale face recognition systems. Within the framework, a data sampling strategy is proposed to tackle the data imbalance when image pairs are sampled from thousands of face images for preparing a training dataset. A modified kernel Fisher discriminant classifier is proposed to make it computationally feasible to train the kernel-based classification method using tens of thousands of training samples. The framework is tested in an...

  9. Measurement of effectiveness for training simulations

    OpenAIRE

    Korteling, J.E.; Oprins, E.A.P.B.; Kallen, V.L.

    2013-01-01

    This paper presents and discusses experimental designs, measures, and measurement methods for determining the effectiveness of training simulators. First, we describe experimental designs in which training effects of training simulators are compared to those of conventional training. Next, the most commonly used metrics for quantifying the potential beneficial effects of training applications are explicated. We also present and discuss three main categories of measurement methods that may be ...

  10. A survey of simulators for palpation training.

    Science.gov (United States)

    Zhang, Yan; Phillips, Roger; Ward, James; Pisharody, Sandhya

    2009-01-01

    Palpation is a widely used diagnostic method in medical practice. The sensitivity of palpation is highly dependent upon the skill of clinicians, which is often difficult to master. There is a need of simulators in palpation training. This paper summarizes important work and the latest achievements in simulation for palpation training. Three types of simulators; physical models, Virtual Reality (VR) based simulations, and hybrid (computerized and physical) simulators, are surveyed. Comparisons among different kinds of simulators are presented.

  11. Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics

    KAUST Repository

    Kumar, Rohit

    2017-08-11

    It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.

  12. Breaking wave impact on offshore tripod structures. Comparison of large scale experiments, CFD simulations, and DIN recommended practice; Wellenbrechen an Offshore Tripod-Gruendungen. Versuche und Simulationen im Vergleich zu Richtlinien

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Arndt; Schlurmann, Torsten [Hannover Univ. (Germany). Franzius-Institut fuer Wasserbau und Kuesteningenieurwesen

    2012-05-15

    Coastal and near shore areas offer a large potential for offshore wind energy production due to strong and steady wind conditions. Thousands of offshore wind energy converters are projected for mass production within the next years. Detailed understanding of the extreme, dynamic wave loads on offshore structures is essential for an efficient design. The impact on structures is a complex process and further studies are required for more detailed load assessments, which is why breaking wave loads were investigated by the research project ''GIGAWIND alpha ventus - Subproject 1'' within the network ''Research at Alpha VEntus'' (RAVE). Large scale laboratory tests (1:12) with breaking waves have been carried out at the Large Wave Flume of the ''Forschungszentrum Kueste'' (FZK, Hanover) to reveal more detailed insights on the impact area, duration and development of the wave induced momentum, and intensity of pressures. In addition, local pressures calculated by a three-dimensional numerical impact simulation are compared to the Large Wave Flume experiments. Slamming coefficients have been derived from the physical model tests and CFD simulations for the comparison to load calculations based on guidelines. (orig.)

  13. Ethics of large-scale change

    OpenAIRE

    Arler, Finn

    2006-01-01

      The subject of this paper is long-term large-scale changes in human society. Some very significant examples of large-scale change are presented: human population growth, human appropriation of land and primary production, the human use of fossil fuels, and climate change. The question is posed, which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, th...

  14. NPP Krsko simulator training for operations personnel

    International Nuclear Information System (INIS)

    Pribozic, F.; Krajnc, J.

    2000-01-01

    Acquisition of a full scope replica simulator represents an important achievement for Nuclear power Plant Krsko. Operating nuclear power plant systems is definitely a set of demanding and complex tasks. The most important element in the goal of assuring capabilities for handling such tasks is efficient training of operations personnel who manipulate controls in the main control room. Use of a simulator during the training process is essential and can not be substituted by other techniques. This article gives an overview of NPP Krsko licensed personnel training historical background, current experience and plans for future training activities. Reactor operator initial training lasts approximately two and a half years. Training is divided into several phases, consisting of theoretical and practical segments, including simulator training. In the past, simulator initial training and annual simulator retraining was contracted, thus operators were trained on non-specific full scope simulators. Use of our own plant specific simulator and associated infrastructure will have a significant effect on the operations personnel training process and, in addition, will also support secondary uses, with the common goal to improve safe and reliable plant operation. A regular annual retraining program has successfully started. Use of the plant specific simulator assures consistent training and good management oversight, enhances conformity of operational practices and supports optimization of operating procedures. (author)

  15. Prediction of etching-shape anomaly due to distortion of ion sheath around a large-scale three-dimensional structure by means of on-wafer monitoring technique and computer simulation

    International Nuclear Information System (INIS)

    Kubota, Tomohiro; Ohtake, Hiroto; Araki, Ryosuke; Yanagisawa, Yuuki; Samukawa, Seiji; Iwasaki, Takuya; Ono, Kohei; Miwa, Kazuhiro

    2013-01-01

    A system for predicting distortion of a profile during plasma etching was developed. The system consists of a combination of measurement and simulation. An ‘on-wafer sheath-shape sensor’ for measuring the plasma-sheath parameters (sheath potential and thickness) on the stage of the plasma etcher was developed. The sensor has numerous small electrodes for measuring sheath potential and saturation ion-current density, from which sheath thickness can be calculated. The results of the measurement show reasonable dependence on source power, bias power and pressure. Based on self-consistent calculation of potential distribution and ion- and electron-density distributions, simulation of the sheath potential distribution around an arbitrary 3D structure and the trajectory of incident ions from the plasma to the structure was developed. To confirm the validity of the distortion prediction by comparing it with experimentally measured distortion, silicon trench etching under chlorine inductively coupled plasma (ICP) was performed using a sample with a vertical step. It was found that the etched trench was distorted when the distance from the step was several millimetres or less. The distortion angle was about 20° at maximum. Measurement was performed using the on-wafer sheath-shape sensor in the same plasma condition as the etching. The ion incident angle, calculated as a function of distance from the step, successfully reproduced the experimentally measured angle, indicating that the combination of measurement by the on-wafer sheath-shape sensor and simulation can predict distortion of an etched structure. This prediction system will be useful for designing devices with large-scale 3D structures (such as those in MEMS) and determining the optimum etching conditions to obtain the desired profiles. (paper)

  16. Large-Scale Machine Learning for Classification and Search

    Science.gov (United States)

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  17. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  18. Automating large-scale reactor systems

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1985-01-01

    This paper conveys a philosophy for developing automated large-scale control systems that behave in an integrated, intelligent, flexible manner. Methods for operating large-scale systems under varying degrees of equipment degradation are discussed, and a design approach that separates the effort into phases is suggested. 5 refs., 1 fig

  19. Decentralized Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad

    2013-01-01

    problem is formulated as a centralized large-scale optimization problem but is then decomposed into smaller subproblems that are solved locally by each unit connected to an aggregator. For large-scale systems the method is faster than solving the full problem and can be distributed to include an arbitrary...

  20. Use of video taping during simulator training

    International Nuclear Information System (INIS)

    Helton, M.; Young, P.

    1987-01-01

    The use of a video camera for training is not a new idea and is used throughout the country for training in such areas as computers, car repair, music and even in such non-technical areas as fishing. Reviewing a taped simulator training session will aid the student in his job performance regardless of the position he holds in his organization. If the student is to be examined on simulator performance, video will aid in this training in many different ways

  1. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    NARCIS (Netherlands)

    Loon, van A.F.; Huijgevoort, van M.H.J.; Lanen, van H.A.J.

    2012-01-01

    Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological

  2. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  3. Large scale solar district heating. Evaluation, modelling and designing - Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    The appendices present the following: A) Cad-drawing of the Marstal CSHP design. B) Key values - large-scale solar heating in Denmark. C) Monitoring - a system description. D) WMO-classification of pyranometers (solarimeters). E) The computer simulation model in TRNSYS. F) Selected papers from the author. (EHS)

  4. Large-scale Homogenization of Bulk Materials in Mammoth Silos

    NARCIS (Netherlands)

    Schott, D.L.

    2004-01-01

    This doctoral thesis concerns the large-scale homogenization of bulk materials in mammoth silos. The objective of this research was to determine the best stacking and reclaiming method for homogenization in mammoth silos. For this purpose a simulation program was developed to estimate the

  5. Superconducting materials for large scale applications

    International Nuclear Information System (INIS)

    Dew-Hughes, D.

    1975-01-01

    Applications of superconductors capable of carrying large current densities in large-scale electrical devices are examined. Discussions are included on critical current density, superconducting materials available, and future prospects for improved superconducting materials. (JRD)

  6. Large-scale regions of antimatter

    International Nuclear Information System (INIS)

    Grobov, A. V.; Rubin, S. G.

    2015-01-01

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era

  7. Large-scale regions of antimatter

    Energy Technology Data Exchange (ETDEWEB)

    Grobov, A. V., E-mail: alexey.grobov@gmail.com; Rubin, S. G., E-mail: sgrubin@mephi.ru [National Research Nuclear University MEPhI (Russian Federation)

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  8. Large-scale grid management; Storskala Nettforvaltning

    Energy Technology Data Exchange (ETDEWEB)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-07-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series.

  9. Political consultation and large-scale research

    International Nuclear Information System (INIS)

    Bechmann, G.; Folkers, H.

    1977-01-01

    Large-scale research and policy consulting have an intermediary position between sociological sub-systems. While large-scale research coordinates science, policy, and production, policy consulting coordinates science, policy and political spheres. In this very position, large-scale research and policy consulting lack of institutional guarantees and rational back-ground guarantee which are characteristic for their sociological environment. This large-scale research can neither deal with the production of innovative goods under consideration of rentability, nor can it hope for full recognition by the basis-oriented scientific community. Policy consulting knows neither the competence assignment of the political system to make decisions nor can it judge succesfully by the critical standards of the established social science, at least as far as the present situation is concerned. This intermediary position of large-scale research and policy consulting has, in three points, a consequence supporting the thesis which states that this is a new form of institutionalization of science: These are: 1) external control, 2) the organization form, 3) the theoretical conception of large-scale research and policy consulting. (orig.) [de

  10. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  11. Advanced technology for BWR operator training simulator

    International Nuclear Information System (INIS)

    Shibuya, Akira; Fujita, Eimitsu; Nakao, Toshihiko; Nakabaru, Mitsugu; Asaoka, Kouchi.

    1991-01-01

    This paper describes an operator training simulator for BWR nuclear power plants which went into service recently. The simulator is a full scope replica type simulator which faithfully replicates the control room environment of the reference plant with six main control panels and twelve auxiliary ones. In comparison with earlier simulators, the scope of the simulation is significantly extended in both width and depth. The simulation model is also refined in order to include operator training according to sympton-based emergency procedure guidelines to mitigate the results in accident cases. In particular, the core model and the calculational model of the radiation intensity distribution, if radioactive materials were released, are improved. As for simulator control capabilities by which efficient and effective training can be achieved, various advanced designs are adopted allowing easy use of the simulators. (author)

  12. The role of large scale motions on passive scalar transport

    Science.gov (United States)

    Dharmarathne, Suranga; Araya, Guillermo; Tutkun, Murat; Leonardi, Stefano; Castillo, Luciano

    2014-11-01

    We study direct numerical simulation (DNS) of turbulent channel flow at Reτ = 394 to investigate effect of large scale motions on fluctuating temperature field which forms a passive scalar field. Statistical description of the large scale features of the turbulent channel flow is obtained using two-point correlations of velocity components. Two-point correlations of fluctuating temperature field is also examined in order to identify possible similarities between velocity and temperature fields. The two-point cross-correlations betwen the velocity and temperature fluctuations are further analyzed to establish connections between these two fields. In addition, we use proper orhtogonal decompotion (POD) to extract most dominant modes of the fields and discuss the coupling of large scale features of turbulence and the temperature field.

  13. Large-Scale Structure and Hyperuniformity of Amorphous Ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto

    2017-09-01

    We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.

  14. Integrated training support system for PWR operator training simulator

    International Nuclear Information System (INIS)

    Sakaguchi, Junichi; Komatsu, Yasuki

    1999-01-01

    The importance of operator training using operator training simulator has been recognized intensively. Since 1986, we have been developing and providing many PWR simulators in Japan. We also have developed some training support systems connected with the simulator and the integrated training support system to improve training effect and to reduce instructor's workload. This paper describes the concept and the effect of the integrated training support system and of the following sub-systems. We have PES (Performance Enhancement System) that evaluates training performance automatically by analyzing many plant parameters and operation data. It can reduce the deviation of training performance evaluation between instructors. PEL (Parameter and Event data Logging system), that is the subset of PES, has some data-logging functions. And we also have TPES (Team Performance Enhancement System) that is used aiming to improve trainees' ability for communication between operators. Trainee can have conversation with virtual trainees that TPES plays automatically. After that, TPES automatically display some advice to be improved. RVD (Reactor coolant system Visual Display) displays the distributed hydraulic-thermal condition of the reactor coolant system in real-time graphically. It can make trainees understand the inside plant condition in more detail. These sub-systems have been used in a training center and have contributed the improvement of operator training and have gained in popularity. (author)

  15. Training for teamwork through in situ simulations

    Science.gov (United States)

    Sorensen, Asta; Poehlman, Jon; Bollenbacher, John; Riggan, Scott; Davis, Stan; Miller, Kristi; Ivester, Thomas; Kahwati, Leila

    2015-01-01

    In situ simulations allow healthcare teams to practice teamwork and communication as well as clinical management skills in a team's usual work setting with typically available resources and equipment. The purpose of this video is to demonstrate how to plan and conduct in situ simulation training sessions, with particular emphasis on how such training can be used to improve communication and teamwork. The video features an in situ simulation conducted at a labour and delivery unit in response to postpartum hemorrhage. PMID:26294962

  16. Physically realistic modeling of maritime training simulation

    OpenAIRE

    Cieutat , Jean-Marc

    2003-01-01

    Maritime training simulation is an important matter of maritime teaching, which requires a lot of scientific and technical skills.In this framework, where the real time constraint has to be maintained, all physical phenomena cannot be studied; the most visual physical phenomena relating to the natural elements and the ship behaviour are reproduced only. Our swell model, based on a surface wave simulation approach, permits to simulate the shape and the propagation of a regular train of waves f...

  17. Helicopter training simulators: Key market factors

    Science.gov (United States)

    Mcintosh, John

    1992-01-01

    Simulators will gain an increasingly important role in training helicopter pilots only if the simulators are of sufficient fidelity to provide positive transfer of skills to the aircraft. This must be done within an economic model of return on investment. Although rotor pilot demand is still only a small percentage of overall pilot requirements, it will grow in significance. This presentation described the salient factors influencing the use of helicopter training simulators.

  18. Recent technology for BWR operator training simulators

    International Nuclear Information System (INIS)

    Sato, Takao; Hashimoto, Shigeo; Kato, Kanji; Mizuno, Toshiyuki; Asaoka, Koichi.

    1990-01-01

    As one of the important factors for maintaining the high capacity ratio in Japanese nuclear power stations, the contribution of excellent operators is pointed out. BWR Operation Training Center has trained many operators using two full scope simulators for operation training modeling BWRs. But in order to meet the demands of the recent increase of training needs and the upgrading of the contents, it was decided to install the third simulator, and Hitachi Ltd. received the order to construct the main part, and delivered it. This simulator obtained the good reputation as its range of simulation is wide, and the characteristics resemble very well those of the actual plants. Besides, various new designs were adopted in the control of the simulator, and its handling became very easy. Japanese nuclear power plants are operated at constant power output, and the unexpected stop is very rare, therefore the chance of operating the plants by operators is very few. Accordingly, the training using the simulators which can simulate the behavior of the plants with computers, and can freely generate abnormal phenomena has become increasingly important. The mode and positioning of the simulators for operation training, the full scope simulator BTC-3 and so on are reported. (K.I.)

  19. Simulators for training nuclear power plant personnel

    International Nuclear Information System (INIS)

    1993-01-01

    Simulator training and retraining of operations personnel is essential for their acquiring the necessary knowledge, skills and qualification for operating a nuclear power plant, and for effective feedback of experience including human based operating errors. Simulator training is the most effective way by far of training operations personnel in co-operation and communication in a team, which also involves instilling attitudes and approaches for achieving excellence and individual responsibility and alertness. This technical document provides guidance to Member States on the procurement, setting up and utilization of a simulator training centre; it will also be useful for organizations with previous experience in the use of simulators for training. The document is the result of a series of advisory and consultants meetings held in the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation in 1989-1992. 17 refs, 2 tabs

  20. GPU-based large-scale visualization

    KAUST Repository

    Hadwiger, Markus

    2013-11-19

    Recent advances in image and volume acquisition as well as computational advances in simulation have led to an explosion of the amount of data that must be visualized and analyzed. Modern techniques combine the parallel processing power of GPUs with out-of-core methods and data streaming to enable the interactive visualization of giga- and terabytes of image and volume data. A major enabler for interactivity is making both the computational and the visualization effort proportional to the amount of data that is actually visible on screen, decoupling it from the full data size. This leads to powerful display-aware multi-resolution techniques that enable the visualization of data of almost arbitrary size. The course consists of two major parts: An introductory part that progresses from fundamentals to modern techniques, and a more advanced part that discusses details of ray-guided volume rendering, novel data structures for display-aware visualization and processing, and the remote visualization of large online data collections. You will learn how to develop efficient GPU data structures and large-scale visualizations, implement out-of-core strategies and concepts such as virtual texturing that have only been employed recently, as well as how to use modern multi-resolution representations. These approaches reduce the GPU memory requirements of extremely large data to a working set size that fits into current GPUs. You will learn how to perform ray-casting of volume data of almost arbitrary size and how to render and process gigapixel images using scalable, display-aware techniques. We will describe custom virtual texturing architectures as well as recent hardware developments in this area. We will also describe client/server systems for distributed visualization, on-demand data processing and streaming, and remote visualization. We will describe implementations using OpenGL as well as CUDA, exploiting parallelism on GPUs combined with additional asynchronous

  1. Growth Limits in Large Scale Networks

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip

    limitations. The rising complexity of network management with the convergence of communications platforms is shown as problematic for both automatic management feasibility and for manpower resource management. In the fourth step the scope is extended to include the present society with the DDN project as its......The Subject of large scale networks is approached from the perspective of the network planner. An analysis of the long term planning problems is presented with the main focus on the changing requirements for large scale networks and the potential problems in meeting these requirements. The problems...... the fundamental technological resources in network technologies are analysed for scalability. Here several technological limits to continued growth are presented. The third step involves a survey of major problems in managing large scale networks given the growth of user requirements and the technological...

  2. Managing large-scale models: DBS

    International Nuclear Information System (INIS)

    1981-05-01

    A set of fundamental management tools for developing and operating a large scale model and data base system is presented. Based on experience in operating and developing a large scale computerized system, the only reasonable way to gain strong management control of such a system is to implement appropriate controls and procedures. Chapter I discusses the purpose of the book. Chapter II classifies a broad range of generic management problems into three groups: documentation, operations, and maintenance. First, system problems are identified then solutions for gaining management control are disucssed. Chapters III, IV, and V present practical methods for dealing with these problems. These methods were developed for managing SEAS but have general application for large scale models and data bases

  3. Accelerating sustainability in large-scale facilities

    CERN Multimedia

    Marina Giampietro

    2011-01-01

    Scientific research centres and large-scale facilities are intrinsically energy intensive, but how can big science improve its energy management and eventually contribute to the environmental cause with new cleantech? CERN’s commitment to providing tangible answers to these questions was sealed in the first workshop on energy management for large scale scientific infrastructures held in Lund, Sweden, on the 13-14 October.   Participants at the energy management for large scale scientific infrastructures workshop. The workshop, co-organised with the European Spallation Source (ESS) and  the European Association of National Research Facilities (ERF), tackled a recognised need for addressing energy issues in relation with science and technology policies. It brought together more than 150 representatives of Research Infrastrutures (RIs) and energy experts from Europe and North America. “Without compromising our scientific projects, we can ...

  4. Large-Scale Analysis of Art Proportions

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2014-01-01

    While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square) and with majo......While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square...

  5. The Expanded Large Scale Gap Test

    Science.gov (United States)

    1987-03-01

    NSWC TR 86-32 DTIC THE EXPANDED LARGE SCALE GAP TEST BY T. P. LIDDIARD D. PRICE RESEARCH AND TECHNOLOGY DEPARTMENT ’ ~MARCH 1987 Ap~proved for public...arises, to reduce the spread in the LSGT 50% gap value.) The worst charges, such as those with the highest or lowest densities, the largest re-pressed...Arlington, VA 22217 PE 62314N INS3A 1 RJ14E31 7R4TBK 11 TITLE (Include Security CIlmsilficatiorn The Expanded Large Scale Gap Test . 12. PEIRSONAL AUTHOR() T

  6. Upgrading BWR training simulators for annual outage operation training

    International Nuclear Information System (INIS)

    Yamakabe, K.; Nakajima, A.; Shiyama, H.; Noji, K.; Okabe, N.; Murata, F.

    2006-01-01

    Based upon the recently developed quality assurance program by the Japanese electric companies, BWR Operator Training Center (BTC) identified the needs to enhance operators' knowledge and skills for operations tasks during annual outage, and started to develop a dedicated operator training course specialized for them. In this paper, we present the total framework of the training course for annual outage operations and the associated typical three functions of our full-scope simulators specially developed and upgraded to conduct the training; namely, (1) Simulation model upgrade for the flow and temperature behavior concerning residual heat removal (RHR) system with shutdown cooling mode, (2) Addition of malfunctions for DC power supply equipment, (3) Simulation model upgrade for water filling operation for reactor pressurization (future development). We have implemented a trial of the training course by using the upgraded 800MW full-scope training simulator with functions (1) and (2) above. As the result of this trial, we are confident that the developed training course is effective for enhancing operators' knowledge and skills for operations tasks during annual outage. (author)

  7. Training and training simulators for emergency situations in France

    International Nuclear Information System (INIS)

    Petit, G.

    1990-01-01

    The aim of this paper is to present principles and means set up by Electricite de France (E.D.F.) to provide the required tailor-made training. Today, recent advantages in computing capacities and software engineering along with the completion of Research and Development Training Division programs in the reactor safety (R+D) field (CATHARE, BETHSY..) give E.D.F. the opportunity to conceive and operate new tools for training which are described in the paper: RTGV-SEPIA: a simulator devoted to self training in SGTR field, thanks to a powerful expert system. SIPA: a 'generator of simulators' aiming at control and engineering studies and training, provided with a software able to give in real time a relevant description of complex topologies with diphasic flow patterns (up to a 12'' break in the primary coolant system of a reactor). (orig./DG) [de

  8. SIMULATORS FOR TRAINING OF ROV OPERATOR

    Directory of Open Access Journals (Sweden)

    B. I. Shakhtarin

    2014-01-01

    Full Text Available In the article issues of the organization of imitating modeling complexes for training operators of Remotely Operated Underwater Vehicle are considered. It is reported about practical development of sea exercise simulation in Bauman MSTU.

  9. Monju operator training report. Training results and upgrade of the operation training simulator in 2002 YF

    International Nuclear Information System (INIS)

    Koyagoshi, Naoki; Sasaki, Kazuichi; Sawada, Makoto; Kawanishi, Tomotake; Yoshida, Kazuo

    2003-09-01

    The prototype fast breeder reactor, Monju, has been performing deliberately the operator training which is composed of the regulated training required by the government and the self-training. The training used a full scope type simulator (MARS: Monju Advanced Reactor Simulator) plays an important role among of the above mentioned trainings and greatly contributes to the Monju operator training for Monju restarting. This report covers the activities of Monju operator training in 2002 FY, i.e. the training results and the remodeling working of the MARS in progress since 1999. (1) Eight simulator training courses were carried out 46 times and 180 trainees participated. Additionally, both the regulated training and self-training were held total 10 times by attended 34 trainees, as besides simulator training. (2) Above training data was reduced compare with the last year's data (69 times (338 trainees)) due to the indispensable training courses in Monju operator training were changed by reorganized operator's number and decreasing of training times owing to remodeling working of the simulator was conducted. (3) By means of upgrading of the MARS completed in 2002 FY, its logic arithmetic time was became speedier and its instructing function was improved remarkably, thus, the simulator training was became to be more effective. Moreover, it's planning to do both remodeling in the next year as the final working: remodeling of reactor core model with the aim of improvement simulating accuracy and corresponding to the sodium leakage measures. Regarding on the Monju training results and simulator's remodeling so far finished, please referring JNC report number of JNC TN 4410 2002-001 Translation of Monju Simulator Training owing Monju Accident and Upgrade of MARS''. (author)

  10. Decision process simulation in training systems

    International Nuclear Information System (INIS)

    Zajtsev, K.S.; Serov, A.A.; Ajnutdinov, V.A.

    1984-01-01

    One of the approaches to arrangement of training process an automated trainning systems (ATS) based on actjve use of knowledge of experienced operators is presented. Problems of mathematical model simulatjon of decision process by people not having special knowledge in mathematics are considered. A language of solution tables based on indistinct tables is suggested to the used as a simulation language. The problem of automation of decision process simulation in ATS is solued

  11. Virtual reality simulation in endovascular surgical training.

    LENUS (Irish Health Repository)

    Tsang, J S

    2008-08-01

    Shortened trainingtimes duetothe European Working Time Directive (EWTD) and increased public scrutiny of surgical competency have led to a move away from the traditional apprenticeship model of training. Virtual reality (VR) simulation is a fascinating innovation allowing surgeons to develop without the need to practice on real patients and it may be a solution to achieve competency within a shortened training period.

  12. Configuration management in large scale infrastructure development

    NARCIS (Netherlands)

    Rijn, T.P.J. van; Belt, H. van de; Los, R.H.

    2000-01-01

    Large Scale Infrastructure (LSI) development projects such as the construction of roads, rail-ways and other civil engineering (water)works is tendered differently today than a decade ago. Traditional workflow requested quotes from construction companies for construction works where the works to be

  13. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    Large-scale Motion of Solar Filaments. Pavel Ambrož, Astronomical Institute of the Acad. Sci. of the Czech Republic, CZ-25165. Ondrejov, The Czech Republic. e-mail: pambroz@asu.cas.cz. Alfred Schroll, Kanzelhöehe Solar Observatory of the University of Graz, A-9521 Treffen,. Austria. e-mail: schroll@solobskh.ac.at.

  14. Sensitivity analysis for large-scale problems

    Science.gov (United States)

    Noor, Ahmed K.; Whitworth, Sandra L.

    1987-01-01

    The development of efficient techniques for calculating sensitivity derivatives is studied. The objective is to present a computational procedure for calculating sensitivity derivatives as part of performing structural reanalysis for large-scale problems. The scope is limited to framed type structures. Both linear static analysis and free-vibration eigenvalue problems are considered.

  15. Ethics of large-scale change

    DEFF Research Database (Denmark)

    Arler, Finn

    2006-01-01

    , which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, the neoclassical economists' approach, and finally the so-called Concentric Circle Theories approach...

  16. The origin of large scale cosmic structure

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Palmer, P.L.

    1985-01-01

    The paper concerns the origin of large scale cosmic structure. The evolution of density perturbations, the nonlinear regime (Zel'dovich's solution and others), the Gott and Rees clustering hierarchy, the spectrum of condensations, and biassed galaxy formation, are all discussed. (UK)

  17. Large-scale multimedia modeling applications

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.; Buck, J.W.; Whelan, G.; Strenge, D.L.; Castleton, K.J.; Gelston, G.M.

    1995-08-01

    Over the past decade, the US Department of Energy (DOE) and other agencies have faced increasing scrutiny for a wide range of environmental issues related to past and current practices. A number of large-scale applications have been undertaken that required analysis of large numbers of potential environmental issues over a wide range of environmental conditions and contaminants. Several of these applications, referred to here as large-scale applications, have addressed long-term public health risks using a holistic approach for assessing impacts from potential waterborne and airborne transport pathways. Multimedia models such as the Multimedia Environmental Pollutant Assessment System (MEPAS) were designed for use in such applications. MEPAS integrates radioactive and hazardous contaminants impact computations for major exposure routes via air, surface water, ground water, and overland flow transport. A number of large-scale applications of MEPAS have been conducted to assess various endpoints for environmental and human health impacts. These applications are described in terms of lessons learned in the development of an effective approach for large-scale applications

  18. Large-scale perspective as a challenge

    NARCIS (Netherlands)

    Plomp, M.G.A.

    2012-01-01

    1. Scale forms a challenge for chain researchers: when exactly is something ‘large-scale’? What are the underlying factors (e.g. number of parties, data, objects in the chain, complexity) that determine this? It appears to be a continuum between small- and large-scale, where positioning on that

  19. Computing in Large-Scale Dynamic Systems

    NARCIS (Netherlands)

    Pruteanu, A.S.

    2013-01-01

    Software applications developed for large-scale systems have always been difficult to de- velop due to problems caused by the large number of computing devices involved. Above a certain network size (roughly one hundred), necessary services such as code updating, topol- ogy discovery and data

  20. Large-Scale Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  1. Stability of large scale interconnected dynamical systems

    International Nuclear Information System (INIS)

    Akpan, E.P.

    1993-07-01

    Large scale systems modelled by a system of ordinary differential equations are considered and necessary and sufficient conditions are obtained for the uniform asymptotic connective stability of the systems using the method of cone-valued Lyapunov functions. It is shown that this model significantly improves the existing models. (author). 9 refs

  2. Surgical simulators in cataract surgery training.

    Science.gov (United States)

    Sikder, Shameema; Tuwairqi, Khaled; Al-Kahtani, Eman; Myers, William G; Banerjee, Pat

    2014-02-01

    Virtual simulators have been widely implemented in medical and surgical training, including ophthalmology. The increasing number of published articles in this field mandates a review of the available results to assess current technology and explore future opportunities. A PubMed search was conducted and a total of 10 articles were reviewed. Virtual simulators have shown construct validity in many modules, successfully differentiating user experience levels during simulated phacoemulsification surgery. Simulators have also shown improvements in wet-lab performance. The implementation of simulators in the residency training has been associated with a decrease in cataract surgery complication rates. Virtual reality simulators are an effective tool in measuring performance and differentiating trainee skill level. Additionally, they may be useful in improving surgical skill and patient outcomes in cataract surgery. Future opportunities rely on taking advantage of technical improvements in simulators for education and research.

  3. Verification and validation methodology of training simulators

    International Nuclear Information System (INIS)

    Hassan, M.W.; Khan, N.M.; Ali, S.; Jafri, M.N.

    1997-01-01

    A full scope training simulator comprising of 109 plant systems of a 300 MWe PWR plant contracted by Pakistan Atomic Energy Commission (PAEC) from China is near completion. The simulator has its distinction in the sense that it will be ready prior to fuel loading. The models for the full scope training simulator have been developed under APROS (Advanced PROcess Simulator) environment developed by the Technical Research Center (VTT) and Imatran Voima (IVO) of Finland. The replicated control room of the plant is contracted from Shanghai Nuclear Engineering Research and Design Institute (SNERDI), China. The development of simulation models to represent all the systems of the target plant that contribute to plant dynamics and are essential for operator training has been indigenously carried out at PAEC. This multifunctional simulator is at present under extensive testing and will be interfaced with the control planes in March 1998 so as to realize a full scope training simulator. The validation of the simulator is a joint venture between PAEC and SNERDI. For the individual components and the individual plant systems, the results have been compared against design data and PSAR results to confirm the faithfulness of the simulator against the physical plant systems. The reactor physics parameters have been validated against experimental results and benchmarks generated using design codes. Verification and validation in the integrated state has been performed against the benchmark transients conducted using the RELAP5/MOD2 for the complete spectrum of anticipated transient covering the well known five different categories. (author)

  4. Phasor Simulator for Operator Training Project

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Jim [Electric Power Group, Llc, Pasadena, CA (United States)

    2016-09-14

    Synchrophasor systems are being deployed in power systems throughout the North American Power Grid and there are plans to integrate this technology and its associated tools into Independent System Operator (ISO)/utility control room operations. A pre-requisite to using synchrophasor technologies in control rooms is for operators to obtain training and understand how to use this technology in real-time situations. The Phasor Simulator for Operator Training (PSOT) project objective was to develop, deploy and demonstrate a pre-commercial training simulator for operators on the use of this technology and to promote acceptance of the technology in utility and ISO/Regional Transmission Owner (RTO) control centers.

  5. Experience with simulator training for emergency conditions

    International Nuclear Information System (INIS)

    1987-12-01

    The training of operators by the use of simulators is common to most countries with nuclear power plants. Simulator training programmes are generally well developed, but their value can be limited by the age, type, size and capability of the simulator. Within these limits, most full scope simulators have a capability of training operators for a range of design basis accidents. It is recognized that human performance under accident conditions is difficult to predict or analyse, particularly in the area of severe accidents. These are rare events and by their very nature, unpredictable. Of importance, therefore, is to investigate the training of operators for severe accident conditions, and to examine ways in which simulators may be used in this task. The International Nuclear Safety Advisory Group (INSAG) has reviewed this field and the associated elements of human behaviour. It has recommended that activities are concentrated on this area. Initially it is encouraging the following objectives: i) To train operators for accident conditions including severe accidents and to strongly encourage the development and use of simulators for this purpose; ii) To improve the man-machine interface by the use of computer aids to the operator; iii) To develop human performance requirements for plant operating staff. As part of this work, the IAEA convened a technical committee on 15-19 September 1986 to review the experience with simulator training for emergency conditions, to review simulator modelling for severe accident training, to examine the role of human cognitive behaviour modelling, and to review guidance on accident scenarios. A substantial deviation may be a major fuel failure, a Loss of Coolant Accident (LOCA), etc. Examples of engineered safety features are: an Emergency Core Cooling System (ECCS), and Containment Systems. This report was prepared by the participants during the meeting and reviewed further in a Consultant's Meeting. It also includes papers which were

  6. Large scale injection test (LASGIT) modelling

    International Nuclear Information System (INIS)

    Arnedo, D.; Olivella, S.; Alonso, E.E.

    2010-01-01

    Document available in extended abstract form only. With the objective of understanding the gas flow processes through clay barriers in schemes of radioactive waste disposal, the Lasgit in situ experiment was planned and is currently in progress. The modelling of the experiment will permit to better understand of the responses, to confirm hypothesis of mechanisms and processes and to learn in order to design future experiments. The experiment and modelling activities are included in the project FORGE (FP7). The in situ large scale injection test Lasgit is currently being performed at the Aespoe Hard Rock Laboratory by SKB and BGS. An schematic layout of the test is shown. The deposition hole follows the KBS3 scheme. A copper canister is installed in the axe of the deposition hole, surrounded by blocks of highly compacted MX-80 bentonite. A concrete plug is placed at the top of the buffer. A metallic lid anchored to the surrounding host rock is included in order to prevent vertical movements of the whole system during gas injection stages (high gas injection pressures are expected to be reached). Hydration of the buffer material is achieved by injecting water through filter mats, two placed at the rock walls and two at the interfaces between bentonite blocks. Water is also injected through the 12 canister filters. Gas injection stages are performed injecting gas to some of the canister injection filters. Since the water pressure and the stresses (swelling pressure development) will be high during gas injection, it is necessary to inject at high gas pressures. This implies mechanical couplings as gas penetrates after the gas entry pressure is achieved and may produce deformations which in turn lead to permeability increments. A 3D hydro-mechanical numerical model of the test using CODE-BRIGHT is presented. The domain considered for the modelling is shown. The materials considered in the simulation are the MX-80 bentonite blocks (cylinders and rings), the concrete plug

  7. Surgical simulation training in orthopedics: current insights.

    Science.gov (United States)

    Kalun, Portia; Wagner, Natalie; Yan, James; Nousiainen, Markku T; Sonnadara, Ranil R

    2018-01-01

    While the knowledge required of residents training in orthopedic surgery continues to increase, various factors, including reductions in work hours, have resulted in decreased clinical learning opportunities. Recent work suggests residents graduate from their training programs without sufficient exposure to key procedures. In response, simulation is increasingly being incorporated into training programs to supplement clinical learning. This paper reviews the literature to explore whether skills learned in simulation-based settings results in improved clinical performance in orthopedic surgery trainees. A scoping review of the literature was conducted to identify papers discussing simulation training in orthopedic surgery. We focused on exploring whether skills learned in simulation transferred effectively to a clinical setting. Experimental studies, systematic reviews, and narrative reviews were included. A total of 15 studies were included, with 11 review papers and four experimental studies. The review articles reported little evidence regarding the transfer of skills from simulation to the clinical setting, strong evidence that simulator models discriminate among different levels of experience, varied outcome measures among studies, and a need to define competent performance in both simulated and clinical settings. Furthermore, while three out of the four experimental studies demonstrated transfer between the simulated and clinical environments, methodological study design issues were identified. Our review identifies weak evidence as to whether skills learned in simulation transfer effectively to clinical practice for orthopedic surgery trainees. Given the increased reliance on simulation, there is an immediate need for comprehensive studies that focus on skill transfer, which will allow simulation to be incorporated effectively into orthopedic surgery training programs.

  8. Severe accident training simulator APROS SA

    International Nuclear Information System (INIS)

    Raiko, Eerikki; Salminen, Kai; Lundstroem, Petra; Harti, Mika; Routamo, Tomi

    2003-01-01

    APROS SA is a severe accident training simulator based on the APROS simulation environment. APROS SA has been developed in Fortum Nuclear Services Ltd to serve as a training tool for the personnel of the Loviisa NPP. Training with APROS SA gives the personnel a deeper understanding of the severe accident phenomena and thus it is an important part of the implementation of the severe accident management strategy. APROS SA consists of two parts, a comprehensive Loviisa plant model and an external severe accident model. The external model is an extension to the Loviisa plant model, which allows the simulation to proceed into the severe accident phase. The severe accident model has three submodels: the core melting and relocation model, corium pool model and fission product model. In addition to these, a new thermal-hydraulic solver is introduced to the core region of the Loviisa plant model to replace the more limited APROS thermal-hydraulic solver. The full APROS SA training simulator has a graphical user interface with visualizations of both severe accident management panels at the operator room and the important physical phenomena during the accident. This paper describes the background of the APROS SA training simulator, the severe accident submodels and the graphical user interface. A short description how APROS SA will be used as a training tool at the Loviisa NPP is also given

  9. Large scale particle image velocimetry with helium filled soap bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Bosbach, Johannes; Kuehn, Matthias; Wagner, Claus [German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Goettingen (Germany)

    2009-03-15

    The application of particle image velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of computational fluid dynamics simulations. (orig.)

  10. Large scale particle image velocimetry with helium filled soap bubbles

    Science.gov (United States)

    Bosbach, Johannes; Kühn, Matthias; Wagner, Claus

    2009-03-01

    The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.

  11. Simulation-Based Training for Thoracoscopy

    DEFF Research Database (Denmark)

    Bjurström, Johanna Margareta; Konge, Lars; Lehnert, Per

    2013-01-01

    An increasing proportion of thoracic procedures are performed using video-assisted thoracic surgery. This minimally invasive technique places special demands on the surgeons. Using simulation-based training on artificial models or animals has been proposed to overcome the initial part of the lear......An increasing proportion of thoracic procedures are performed using video-assisted thoracic surgery. This minimally invasive technique places special demands on the surgeons. Using simulation-based training on artificial models or animals has been proposed to overcome the initial part...... of the learning curve. This study aimed to investigate the effect of simulation-based training and to compare self-guided and educator-guided training....

  12. Training simulator takes to the road

    International Nuclear Information System (INIS)

    Curtis, J.; Moore, R.

    1993-01-01

    A peripatetic approach to technical training is being adopted by Nuclear Electric in the use with its plants to adopt a compact, mobile simulator for certain training applications. Unlike the fixed digital power plant simulators housed at the company's Oldbury Nuclear Training Center near Bristol and the Cliff Quay Training Centre in Ipswich, these are designed to travel around the country to server users. The first of the mobile simulators will be used to train operators in the safe switching of high voltage apparatus between power stations and the UK National Grid transmission system. The simulator comprises a four-piece, four-position suite of equipment, providing power station and sub-station control room panels and a grid control module, all of which are managed by a tutor's station. It is driven by six IBM PC compatibles - four 486 and two 386 machines - operating under MS-DOS 5 and to a program written in Turbo Pascal. The simulator packs away inside a trailer, which can then be towed behind the tutor's car to its next location. One person can unload and set up the equipment in 30 minutes. Fully staffed, the simulator can be used with up to six operators or for individual tuition at each work station. (author)

  13. Large-scale structure of the Universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.

    1978-01-01

    The problems, discussed at the ''Large-scale Structure of the Universe'' symposium are considered on a popular level. Described are the cell structure of galaxy distribution in the Universe, principles of mathematical galaxy distribution modelling. The images of cell structures, obtained after reprocessing with the computer are given. Discussed are three hypothesis - vortical, entropic, adiabatic, suggesting various processes of galaxy and galaxy clusters origin. A considerable advantage of the adiabatic hypothesis is recognized. The relict radiation, as a method of direct studying the processes taking place in the Universe is considered. The large-scale peculiarities and small-scale fluctuations of the relict radiation temperature enable one to estimate the turbance properties at the pre-galaxy stage. The discussion of problems, pertaining to studying the hot gas, contained in galaxy clusters, the interactions within galaxy clusters and with the inter-galaxy medium, is recognized to be a notable contribution into the development of theoretical and observational cosmology

  14. Emerging large-scale solar heating applications

    International Nuclear Information System (INIS)

    Wong, W.P.; McClung, J.L.

    2009-01-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  15. Emerging large-scale solar heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, W.P.; McClung, J.L. [Science Applications International Corporation (SAIC Canada), Ottawa, Ontario (Canada)

    2009-07-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  16. Challenges for Large Scale Structure Theory

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will describe some of the outstanding questions in Cosmology where answers could be provided by observations of the Large Scale Structure of the Universe at late times.I will discuss some of the theoretical challenges which will have to be overcome to extract this information from the observations. I will describe some of the theoretical tools that might be useful to achieve this goal. 

  17. Methods for Large-Scale Nonlinear Optimization.

    Science.gov (United States)

    1980-05-01

    STANFORD, CALIFORNIA 94305 METHODS FOR LARGE-SCALE NONLINEAR OPTIMIZATION by Philip E. Gill, Waiter Murray, I Michael A. Saunden, and Masgaret H. Wright...typical iteration can be partitioned so that where B is an m X m basise matrix. This partition effectively divides the vari- ables into three classes... attention is given to the standard of the coding or the documentation. A much better way of obtaining mathematical software is from a software library

  18. Large scale inhomogeneities and the cosmological principle

    International Nuclear Information System (INIS)

    Lukacs, B.; Meszaros, A.

    1984-12-01

    The compatibility of cosmologic principles and possible large scale inhomogeneities of the Universe is discussed. It seems that the strongest symmetry principle which is still compatible with reasonable inhomogeneities, is a full conformal symmetry in the 3-space defined by the cosmological velocity field, but even in such a case, the standard model is isolated from the inhomogeneous ones when the whole evolution is considered. (author)

  19. Large-scale Complex IT Systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2011-01-01

    This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that identifies the major challen...

  20. Large-scale complex IT systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2012-01-01

    12 pages, 2 figures This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that ident...

  1. Large-Scale Transit Signal Priority Implementation

    OpenAIRE

    Lee, Kevin S.; Lozner, Bailey

    2018-01-01

    In 2016, the District Department of Transportation (DDOT) deployed Transit Signal Priority (TSP) at 195 intersections in highly urbanized areas of Washington, DC. In collaboration with a broader regional implementation, and in partnership with the Washington Metropolitan Area Transit Authority (WMATA), DDOT set out to apply a systems engineering–driven process to identify, design, test, and accept a large-scale TSP system. This presentation will highlight project successes and lessons learned.

  2. Economically viable large-scale hydrogen liquefaction

    Science.gov (United States)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  3. Simulation Training in Health Care

    Science.gov (United States)

    2015-06-01

    Link Trainer, appear crude because they did not provide visual feedback nor did they use accurate physical modeling of aircraft aerodynamics ...laparoscopic environment (Klein et al., 2008), to using an explanted pig’s heart as an ex vivo part-task simulator for car - diac surgery (Fann et al

  4. Operator training simulator for nuclear power plant

    International Nuclear Information System (INIS)

    Shiozuka, Hiromi

    1977-01-01

    In nuclear power plants, training of the operators is important. In Japan, presently there are two training centers, one is BWR operation training center at Okuma-cho, Fukushima Prefecture, and another the nuclear power generation training center in Tsuruga City, Fukui Prefecture, where the operators of PWR nuclear power plants are trained. This report describes the BWR operation training center briefly. Operation of a nuclear power plant is divided into three stages of start-up, steady state operation, and shut down. Start-up is divided into the cold-state start-up after the shut down for prolonged period due to periodical inspection or others and the hot-state start-up from stand-by condition after the shut down for a short time. In the cold-state start-up, the correction of reactivity change and the heating-up control to avoid excessive thermal stress to the primary system components are important. The BWR operation training center offers the next three courses, namely beginner's course, retraining course and specific training course. The training period is 12 weeks and the number of trainees is eight/course in the beginner's course. The simulator was manufactured by modeling No. 3 plant of Fukushima First Nuclear Power Station, Tokyo Electric Power Co. The simulator is composed of the mimic central control panel and the digital computer. The software system comprises the monitor to supervise the whole program execution, the logic model simulating the plant interlock system and the dynamic model simulating the plant physical phenomena. (Wakatsuki, Y.)

  5. Accurately fitting advanced training. Flexible simulator training by modular training course concepts

    International Nuclear Information System (INIS)

    Sickora, Katrin; Cremer, Hans-Peter

    2010-01-01

    Every employee of a power plant contributes with his individual expertise to the success of the enterprise. Certainly personal skills of employees differ from each other as well as power plants are different. With respect to effective simulator training this means that no two simulator training courses can be identical. To exactly meet the requirements of our customers KWS has developed modules for simulation training courses. Each module represents either a technical subject or addresses a topic in the field of soft skills. An accurately fitting combination of several of these modules to the needs of our customers allows for most efficient simulator training courses. (orig.)

  6. Large-scale assembly of colloidal particles

    Science.gov (United States)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  7. Simulation-based training for thoracoscopic lobectomy

    DEFF Research Database (Denmark)

    Jensen, Katrine; Ringsted, Charlotte; Hansen, Henrik Jessen

    2014-01-01

    overcome the first part of the learning curve, but no virtual-reality simulators for thoracoscopy are commercially available. This study aimed to investigate whether training on a laparoscopic simulator enables trainees to perform a thoracoscopic lobectomy. METHODS: Twenty-eight surgical residents were...... randomized to either virtual-reality training on a nephrectomy module or traditional black-box simulator training. After a retention period they performed a thoracoscopic lobectomy on a porcine model and their performance was scored using a previously validated assessment tool. RESULTS: The groups did...... not differ in age or gender. All participants were able to complete the lobectomy. The performance of the black-box group was significantly faster during the test scenario than the virtual-reality group: 26.6 min (SD 6.7 min) versus 32.7 min (SD 7.5 min). No difference existed between the two groups when...

  8. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed

    2017-03-16

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end, cellular networks are indeed a strong first mile candidate to accommodate the data tsunami to be generated by the IoT. However, IoT devices are required in the cellular paradigm to undergo random access procedures as a precursor to resource allocation. Such procedures impose a major bottleneck that hinders cellular networks\\' ability to support large-scale IoT. In this article, we shed light on the random access dilemma and present a case study based on experimental data as well as system-level simulations. Accordingly, a case is built for the latent need to revisit random access procedures. A call for action is motivated by listing a few potential remedies and recommendations.

  9. Next Generation Simulation Training for Pararescue Forces

    Science.gov (United States)

    2014-02-13

    design, and analysis as well as the build out of its information technology systems and training infrastructure at its Design and Development Center...sessions conducted immediately after training. • Written feedback – Obtained through a web-based survey tool (SurveyMonkey) Data Analysis : Analysis of the...brevity, being detailed in a classical Strengths, Weatknesses, Opportunities, Threats ( SWOT ) structure. STRENGTHS: Identified strengths of the simulation

  10. Simulator training and human factor reliability in Kozloduy NPP, Bulgaria

    International Nuclear Information System (INIS)

    Stoychev, Kosta

    2007-01-01

    This is a PowerPoint presentation. Situated in North Bulgaria, in the vicinity of the town of Kozloduy, near the Danube River bank, there is the Bulgarian Kozloduy Nuclear Power plant operating four WWER-440 and two WWER-1000 units. Units 1 and 2 were commissioned in July, 1974 and November, 1975, respectively. These were shut down at the end of 2003. Units 3 and 4 were commissioned in December, 1980 and May, 1982. They were shut down at the end of 2006 as a precondition for Bulgaria's accession to the European Union. The 1000 MW units 5 and 6 of Kozloduy NPP were commissioned in September, 1988 and December, 1993, respectively. Large-scale modernization have been implemented and now the units meet all international safety standards. The paper describes the multifunctional simulator Kozloduy NPP for the operational staff training. The training stages are as follows: - Preparatory; -Theoretical studies; - Training at the Training Centre by means of technical devices; - Preparation and sitting for an exam before a Kozloduy NPP expert commission; - Simulator training ; - Preparation to obtain a permit for a license, corresponding to the position to begin work at the NPP; - Exams before the Nuclear Regulatory Agency (NRA) and licensing; - Shadow training at the working place; - Permission for unaided operation. The following positions are addressed by the simulator training: - Chief Plant Supervisor; - Shift Unit Supervisor; - Senior Reactor Operator; - Simulator Instructor; - Controller physicist; -Senior Turbine Operator; - Senior Operator of Turbine Feedwater Pumps of Kozloduy NPP. Improving of training method led to a reduction of number of significant events while worldwide practice proves that improvement of engineering resulted in an increase in the percentage of events, related to human factor. Analysis of human reliability in 2005 and 2006 in cooperation with representatives from Great Britain and the Technical University in Sofia were worked on the DTI NSP B

  11. Virtual reality simulators for gastrointestinal endoscopy training.

    Science.gov (United States)

    Triantafyllou, Konstantinos; Lazaridis, Lazaros Dimitrios; Dimitriadis, George D

    2014-01-16

    The use of simulators as educational tools for medical procedures is spreading rapidly and many efforts have been made for their implementation in gastrointestinal endoscopy training. Endoscopy simulation training has been suggested for ascertaining patient safety while positively influencing the trainees' learning curve. Virtual simulators are the most promising tool among all available types of simulators. These integrated modalities offer a human-like endoscopy experience by combining virtual images of the gastrointestinal tract and haptic realism with using a customized endoscope. From their first steps in the 1980s until today, research involving virtual endoscopic simulators can be divided in two categories: investigation of the impact of virtual simulator training in acquiring endoscopy skills and measuring competence. Emphasis should also be given to the financial impact of their implementation in endoscopy, including the cost of these state-of-the-art simulators and the potential economic benefits from their usage. Advances in technology will contribute to the upgrade of existing models and the development of new ones; while further research should be carried out to discover new fields of application.

  12. The Software Reliability of Large Scale Integration Circuit and Very Large Scale Integration Circuit

    OpenAIRE

    Artem Ganiyev; Jan Vitasek

    2010-01-01

    This article describes evaluation method of faultless function of large scale integration circuits (LSI) and very large scale integration circuits (VLSI). In the article there is a comparative analysis of factors which determine faultless of integrated circuits, analysis of already existing methods and model of faultless function evaluation of LSI and VLSI. The main part describes a proposed algorithm and program for analysis of fault rate in LSI and VLSI circuits.

  13. Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, Karen [MIT; Marzouk, Youssef [MIT

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to

  14. Immersive Learning Simulations in Aircraft Maintenance Training

    Science.gov (United States)

    2010-02-15

    You might just get a “serious game,” or “as proposed by the eLearning Guild, you could get an Immersive Learning Simulation.”3 Quoting the... eLearning Guild, Caspian Learning, in a report for the United Kingdom Ministry of Defense, defined an Immersive Learning Simulation (ILS) as “an optimized...training is necessary, and will be for the foreseeable future , our current computer systems can provide realistic training that could save substantial time

  15. Collection and analysis of training simulator data

    International Nuclear Information System (INIS)

    Krois, P.A.; Haas, P.M.

    1985-01-01

    The purposes of this paper are: (1) to review the objectives, approach, and results of a series of research experiments performed on nuclear power plant training simulators in support of regulatory and research programs of the US Nuclear Regulatory Commission (NRC), and (2) to identify general research issues that may lead to an improved research methodology using the training simulator as a field setting. Research products consist of a refined field research methodology, a data store on operator performance, and specific results pertinent to NRC regulatory positions. Issues and potential advances in operator performance measurement are discussed

  16. [A large-scale accident in Alpine terrain].

    Science.gov (United States)

    Wildner, M; Paal, P

    2015-02-01

    Due to the geographical conditions, large-scale accidents amounting to mass casualty incidents (MCI) in Alpine terrain regularly present rescue teams with huge challenges. Using an example incident, specific conditions and typical problems associated with such a situation are presented. The first rescue team members to arrive have the elementary tasks of qualified triage and communication to the control room, which is required to dispatch the necessary additional support. Only with a clear "concept", to which all have to adhere, can the subsequent chaos phase be limited. In this respect, a time factor confounded by adverse weather conditions or darkness represents enormous pressure. Additional hazards are frostbite and hypothermia. If priorities can be established in terms of urgency, then treatment and procedure algorithms have proven successful. For evacuation of causalities, a helicopter should be strived for. Due to the low density of hospitals in Alpine regions, it is often necessary to distribute the patients over a wide area. Rescue operations in Alpine terrain have to be performed according to the particular conditions and require rescue teams to have specific knowledge and expertise. The possibility of a large-scale accident should be considered when planning events. With respect to optimization of rescue measures, regular training and exercises are rational, as is the analysis of previous large-scale Alpine accidents.

  17. RESTRUCTURING OF THE LARGE-SCALE SPRINKLERS

    Directory of Open Access Journals (Sweden)

    Paweł Kozaczyk

    2016-09-01

    Full Text Available One of the best ways for agriculture to become independent from shortages of precipitation is irrigation. In the seventies and eighties of the last century a number of large-scale sprinklers in Wielkopolska was built. At the end of 1970’s in the Poznan province 67 sprinklers with a total area of 6400 ha were installed. The average size of the sprinkler reached 95 ha. In 1989 there were 98 sprinklers, and the area which was armed with them was more than 10 130 ha. The study was conducted on 7 large sprinklers with the area ranging from 230 to 520 hectares in 1986÷1998. After the introduction of the market economy in the early 90’s and ownership changes in agriculture, large-scale sprinklers have gone under a significant or total devastation. Land on the State Farms of the State Agricultural Property Agency has leased or sold and the new owners used the existing sprinklers to a very small extent. This involved a change in crop structure, demand structure and an increase in operating costs. There has also been a threefold increase in electricity prices. Operation of large-scale irrigation encountered all kinds of barriers in practice and limitations of system solutions, supply difficulties, high levels of equipment failure which is not inclined to rational use of available sprinklers. An effect of a vision of the local area was to show the current status of the remaining irrigation infrastructure. The adopted scheme for the restructuring of Polish agriculture was not the best solution, causing massive destruction of assets previously invested in the sprinkler system.

  18. Optical interconnect for large-scale systems

    Science.gov (United States)

    Dress, William

    2013-02-01

    This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.

  19. Adaptive visualization for large-scale graph

    International Nuclear Information System (INIS)

    Nakamura, Hiroko; Shinano, Yuji; Ohzahata, Satoshi

    2010-01-01

    We propose an adoptive visualization technique for representing a large-scale hierarchical dataset within limited display space. A hierarchical dataset has nodes and links showing the parent-child relationship between the nodes. These nodes and links are described using graphics primitives. When the number of these primitives is large, it is difficult to recognize the structure of the hierarchical data because many primitives are overlapped within a limited region. To overcome this difficulty, we propose an adaptive visualization technique for hierarchical datasets. The proposed technique selects an appropriate graph style according to the nodal density in each area. (author)

  20. Neutrinos and large-scale structure

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.

    2015-01-01

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos

  1. Puzzles of large scale structure and gravitation

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    2006-01-01

    We consider the puzzle of cosmic voids bounded by two-dimensional structures of galactic clusters as also a puzzle pointed out by Weinberg: How can the mass of a typical elementary particle depend on a cosmic parameter like the Hubble constant? An answer to the first puzzle is proposed in terms of 'Scaled' Quantum Mechanical like behaviour which appears at large scales. The second puzzle can be answered by showing that the gravitational mass of an elementary particle has a Machian character (see Ahmed N. Cantorian small worked, Mach's principle and the universal mass network. Chaos, Solitons and Fractals 2004;21(4))

  2. Neutrinos and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Daniel J. [Daniel J. Eisenstein, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS #20, Cambridge, MA 02138 (United States)

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  3. Concepts for Large Scale Hydrogen Production

    OpenAIRE

    Jakobsen, Daniel; Åtland, Vegar

    2016-01-01

    The objective of this thesis is to perform a techno-economic analysis of large-scale, carbon-lean hydrogen production in Norway, in order to evaluate various production methods and estimate a breakeven price level. Norway possesses vast energy resources and the export of oil and gas is vital to the country s economy. The results of this thesis indicate that hydrogen represents a viable, carbon-lean opportunity to utilize these resources, which can prove key in the future of Norwegian energy e...

  4. Stabilization Algorithms for Large-Scale Problems

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg

    2006-01-01

    The focus of the project is on stabilization of large-scale inverse problems where structured models and iterative algorithms are necessary for computing approximate solutions. For this purpose, we study various iterative Krylov methods and their abilities to produce regularized solutions. Some......-curve. This heuristic is implemented as a part of a larger algorithm which is developed in collaboration with G. Rodriguez and P. C. Hansen. Last, but not least, a large part of the project has, in different ways, revolved around the object-oriented Matlab toolbox MOORe Tools developed by PhD Michael Jacobsen. New...

  5. Large scale phononic metamaterials for seismic isolation

    International Nuclear Information System (INIS)

    Aravantinos-Zafiris, N.; Sigalas, M. M.

    2015-01-01

    In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials

  6. Virtual Reality and Simulation in Neurosurgical Training.

    Science.gov (United States)

    Bernardo, Antonio

    2017-10-01

    Recent biotechnological advances, including three-dimensional microscopy and endoscopy, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging, have continued to mold the surgeon-computer relationship. For developing neurosurgeons, such tools can reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills. We explore the current and future roles and application of virtual reality and simulation in neurosurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The EPR operators are trained on simulator

    International Nuclear Information System (INIS)

    Maincent, G.

    2009-01-01

    Three years before the EPR reactor of Flamanville (Normandie, France) is generating its very first kilowatt hours, Electricite de France has started to train its teams on a simulator which reproduces the man-machine interface of the future nuclear power plant. The simulator used is an evolutive tool specific to the Flamanville reactor and capable to test about 20 different accidental situations. (J.S.)

  8. Training Effectiveness of Visual and Motion Simulation

    Science.gov (United States)

    1981-01-01

    and checkride scores. No statistical differeLes between the two groups were found. Creelman (1959) reported that students trained in theSNJ Link with...simulated and aircraft hvurs or sorsies (Dricisom a Burger, 1976; Brown. Matheny, & Fleaman. 1951; Creelman , 1959; Gray et al., 1969- Payne at al., 1976...reirtionohip between flight simulator motion and trainiag requirmumenia. Human Factors. 1979. 2). 493-50)1. Creelman , J.A. Evaluation of approach

  9. Simulation training for extracorporeal membrane oxygenation

    Directory of Open Access Journals (Sweden)

    Roberta Brum

    2015-01-01

    Full Text Available Background: Extracorporeal membrane oxygenation (ECMO is a complex treatment. Despite this, there are a lack of training programs designed to develop relevant clinical and nonclinical skills required for ECMO specialists. The aim of the current study was to describe the design, implementation and evaluation of a 1-day simulation course for delivering training in ECMO. Methods: A 1-day simulation course was developed with educational and intensive care experts. First, the delegates received a lecture on the principles of simulation training and the importance of human factors. This was, followed by a practical demonstration and discussion of the ECMO circuit, console components, circuit interactions effects and potential complications. There were then five ECMO simulation scenarios with debriefing that covered technical and nontechnical issues. The course culminated in a knowledge-based assessment. Course outcomes were assessed using purpose-designed questionnaires. Results: We held 3 courses with a total of 14 delegates (9 intensive care nurses, 3 adult intensive care consultants and 2 ECMO technicians. Following the course, 8 (57% gained familiarity in troubleshooting an ECMO circuit, 6 (43% increased their familiarity with the ECMO pump and circuit, 8 (57% perceived an improvement in their communication skills and 7 (50% perceived an improvement in their leadership skills. At the end of the course, 13 (93% delegates agreed that they felt more confident in dealing with ECMO. Conclusions: Simulation-training courses may increase knowledge and confidence in dealing with ECMO emergencies. Further studies are indicated to determine whether simulation training improves clinical outcomes and translates to reduced complication rates in patients receiving ECMO.

  10. Dipolar modulation of Large-Scale Structure

    Science.gov (United States)

    Yoon, Mijin

    For the last two decades, we have seen a drastic development of modern cosmology based on various observations such as the cosmic microwave background (CMB), type Ia supernovae, and baryonic acoustic oscillations (BAO). These observational evidences have led us to a great deal of consensus on the cosmological model so-called LambdaCDM and tight constraints on cosmological parameters consisting the model. On the other hand, the advancement in cosmology relies on the cosmological principle: the universe is isotropic and homogeneous on large scales. Testing these fundamental assumptions is crucial and will soon become possible given the planned observations ahead. Dipolar modulation is the largest angular anisotropy of the sky, which is quantified by its direction and amplitude. We measured a huge dipolar modulation in CMB, which mainly originated from our solar system's motion relative to CMB rest frame. However, we have not yet acquired consistent measurements of dipolar modulations in large-scale structure (LSS), as they require large sky coverage and a number of well-identified objects. In this thesis, we explore measurement of dipolar modulation in number counts of LSS objects as a test of statistical isotropy. This thesis is based on two papers that were published in peer-reviewed journals. In Chapter 2 [Yoon et al., 2014], we measured a dipolar modulation in number counts of WISE matched with 2MASS sources. In Chapter 3 [Yoon & Huterer, 2015], we investigated requirements for detection of kinematic dipole in future surveys.

  11. Internationalization Measures in Large Scale Research Projects

    Science.gov (United States)

    Soeding, Emanuel; Smith, Nancy

    2017-04-01

    Internationalization measures in Large Scale Research Projects Large scale research projects (LSRP) often serve as flagships used by universities or research institutions to demonstrate their performance and capability to stakeholders and other interested parties. As the global competition among universities for the recruitment of the brightest brains has increased, effective internationalization measures have become hot topics for universities and LSRP alike. Nevertheless, most projects and universities are challenged with little experience on how to conduct these measures and make internationalization an cost efficient and useful activity. Furthermore, those undertakings permanently have to be justified with the Project PIs as important, valuable tools to improve the capacity of the project and the research location. There are a variety of measures, suited to support universities in international recruitment. These include e.g. institutional partnerships, research marketing, a welcome culture, support for science mobility and an effective alumni strategy. These activities, although often conducted by different university entities, are interlocked and can be very powerful measures if interfaced in an effective way. On this poster we display a number of internationalization measures for various target groups, identify interfaces between project management, university administration, researchers and international partners to work together, exchange information and improve processes in order to be able to recruit, support and keep the brightest heads to your project.

  12. Status: Large-scale subatmospheric cryogenic systems

    International Nuclear Information System (INIS)

    Peterson, T.

    1989-01-01

    In the late 1960's and early 1970's an interest in testing and operating RF cavities at 1.8K motivated the development and construction of four large (300 Watt) 1.8K refrigeration systems. in the past decade, development of successful superconducting RF cavities and interest in obtaining higher magnetic fields with the improved Niobium-Titanium superconductors has once again created interest in large-scale 1.8K refrigeration systems. The L'Air Liquide plant for Tore Supra is a recently commissioned 300 Watt 1.8K system which incorporates new technology, cold compressors, to obtain the low vapor pressure for low temperature cooling. CEBAF proposes to use cold compressors to obtain 5KW at 2.0K. Magnetic refrigerators of 10 Watt capacity or higher at 1.8K are now being developed. The state of the art of large-scale refrigeration in the range under 4K will be reviewed. 28 refs., 4 figs., 7 tabs

  13. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  14. 14 CFR 121.409 - Training courses using airplane simulators and other training devices.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Training courses using airplane simulators... Program § 121.409 Training courses using airplane simulators and other training devices. (a) Training courses utilizing airplane simulators and other training devices may be included in the certificate holder...

  15. Clinical training: a simulation program for phlebotomy

    Directory of Open Access Journals (Sweden)

    Araki Toshitaka

    2008-01-01

    Full Text Available Abstract Background Basic clinical skills training in the Japanese medical education system has traditionally incorporated on-the-job training with patients. Recently, the complementary use of simulation techniques as part of this training has gained popularity. It is not known, however, whether the participants view this new type of education program favorably; nor is the impact of this program known. In this study we developed a new simulation-based training program in phlebotomy for new medical residents and assessed their satisfaction with the program Methods The education program comprised two main components: simulator exercise sessions and the actual drawing of blood from other trainees. At the end of the session, we surveyed participant sentiment regarding the program. Results There were 43 participants in total. In general, they were highly satisfied with the education program, with all survey questions receiving scores of 3 or more on a scale of 1–5 (mean range: 4.3 – 4.8, with 5 indicating the highest level of satisfaction. Additionally, their participation as a 'patient' for their co-trainees was undertaken willingly and was deemed to be a valuable experience. Conclusion We developed and tested an education program using a simulator for blood collection. We demonstrated a high satisfaction level among the participants for this unique educational program and expect that it will improve medical training, patient safety, and quality of care. The development and dissemination of similar educational programs involving simulation for other basic clinical skills will be undertaken in the future.

  16. Radiations: large scale monitoring in Japan

    International Nuclear Information System (INIS)

    Linton, M.; Khalatbari, A.

    2011-01-01

    As the consequences of radioactive leaks on their health are a matter of concern for Japanese people, a large scale epidemiological study has been launched by the Fukushima medical university. It concerns the two millions inhabitants of the Fukushima Prefecture. On the national level and with the support of public funds, medical care and follow-up, as well as systematic controls are foreseen, notably to check the thyroid of 360.000 young people less than 18 year old and of 20.000 pregnant women in the Fukushima Prefecture. Some measurements have already been performed on young children. Despite the sometimes rather low measures, and because they know that some parts of the area are at least as much contaminated as it was the case around Chernobyl, some people are reluctant to go back home

  17. Large-scale digitizer system, analog converters

    International Nuclear Information System (INIS)

    Althaus, R.F.; Lee, K.L.; Kirsten, F.A.; Wagner, L.J.

    1976-10-01

    Analog to digital converter circuits that are based on the sharing of common resources, including those which are critical to the linearity and stability of the individual channels, are described. Simplicity of circuit composition is valued over other more costly approaches. These are intended to be applied in a large-scale processing and digitizing system for use with high-energy physics detectors such as drift-chambers or phototube-scintillator arrays. Signal distribution techniques are of paramount importance in maintaining adequate signal-to-noise ratio. Noise in both amplitude and time-jitter senses is held sufficiently low so that conversions with 10-bit charge resolution and 12-bit time resolution are achieved

  18. Engineering management of large scale systems

    Science.gov (United States)

    Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.

    1989-01-01

    The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

  19. Grid sensitivity capability for large scale structures

    Science.gov (United States)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  20. Large - scale Rectangular Ruler Automated Verification Device

    Science.gov (United States)

    Chen, Hao; Chang, Luping; Xing, Minjian; Xie, Xie

    2018-03-01

    This paper introduces a large-scale rectangular ruler automated verification device, which consists of photoelectric autocollimator and self-designed mechanical drive car and data automatic acquisition system. The design of mechanical structure part of the device refer to optical axis design, drive part, fixture device and wheel design. The design of control system of the device refer to hardware design and software design, and the hardware mainly uses singlechip system, and the software design is the process of the photoelectric autocollimator and the automatic data acquisition process. This devices can automated achieve vertical measurement data. The reliability of the device is verified by experimental comparison. The conclusion meets the requirement of the right angle test procedure.

  1. Large Scale Landform Mapping Using Lidar DEM

    Directory of Open Access Journals (Sweden)

    Türkay Gökgöz

    2015-08-01

    Full Text Available In this study, LIDAR DEM data was used to obtain a primary landform map in accordance with a well-known methodology. This primary landform map was generalized using the Focal Statistics tool (Majority, considering the minimum area condition in cartographic generalization in order to obtain landform maps at 1:1000 and 1:5000 scales. Both the primary and the generalized landform maps were verified visually with hillshaded DEM and an orthophoto. As a result, these maps provide satisfactory visuals of the landforms. In order to show the effect of generalization, the area of each landform in both the primary and the generalized maps was computed. Consequently, landform maps at large scales could be obtained with the proposed methodology, including generalization using LIDAR DEM.

  2. Constructing sites on a large scale

    DEFF Research Database (Denmark)

    Braae, Ellen Marie; Tietjen, Anne

    2011-01-01

    Since the 1990s, the regional scale has regained importance in urban and landscape design. In parallel, the focus in design tasks has shifted from master plans for urban extension to strategic urban transformation projects. A prominent example of a contemporary spatial development approach...... for setting the design brief in a large scale urban landscape in Norway, the Jaeren region around the city of Stavanger. In this paper, we first outline the methodological challenges and then present and discuss the proposed method based on our teaching experiences. On this basis, we discuss aspects...... is the IBA Emscher Park in the Ruhr area in Germany. Over a 10 years period (1988-1998), more than a 100 local transformation projects contributed to the transformation from an industrial to a post-industrial region. The current paradigm of planning by projects reinforces the role of the design disciplines...

  3. Large scale study of tooth enamel

    International Nuclear Information System (INIS)

    Bodart, F.; Deconninck, G.; Martin, M.T.

    Human tooth enamel contains traces of foreign elements. The presence of these elements is related to the history and the environment of the human body and can be considered as the signature of perturbations which occur during the growth of a tooth. A map of the distribution of these traces on a large scale sample of the population will constitute a reference for further investigations of environmental effects. On hundred eighty samples of teeth were first analyzed using PIXE, backscattering and nuclear reaction techniques. The results were analyzed using statistical methods. Correlations between O, F, Na, P, Ca, Mn, Fe, Cu, Zn, Pb and Sr were observed and cluster analysis was in progress. The techniques described in the present work have been developed in order to establish a method for the exploration of very large samples of the Belgian population. (author)

  4. Testing Einstein's Gravity on Large Scales

    Science.gov (United States)

    Prescod-Weinstein, Chandra

    2011-01-01

    A little over a decade has passed since two teams studying high redshift Type Ia supernovae announced the discovery that the expansion of the universe was accelerating. After all this time, we?re still not sure how cosmic acceleration fits into the theory that tells us about the large-scale universe: General Relativity (GR). As part of our search for answers, we have been forced to question GR itself. But how will we test our ideas? We are fortunate enough to be entering the era of precision cosmology, where the standard model of gravity can be subjected to more rigorous testing. Various techniques will be employed over the next decade or two in the effort to better understand cosmic acceleration and the theory behind it. In this talk, I will describe cosmic acceleration, current proposals to explain it, and weak gravitational lensing, an observational effect that allows us to do the necessary precision cosmology.

  5. Large-scale sequential quadratic programming algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Eldersveld, S.K.

    1992-09-01

    The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.

  6. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  7. Surgical simulation in orthopaedic skills training.

    Science.gov (United States)

    Atesok, Kivanc; Mabrey, Jay D; Jazrawi, Laith M; Egol, Kenneth A

    2012-07-01

    Mastering rapidly evolving orthopaedic surgical techniques requires a lengthy period of training. Current work-hour restrictions and cost pressures force trainees to face the challenge of acquiring more complex surgical skills in a shorter amount of time. As a result, alternative methods to improve the surgical skills of orthopaedic trainees outside the operating room have been developed. These methods include hands-on training in a laboratory setting using synthetic bones or cadaver models as well as software tools and computerized simulators that enable trainees to plan and simulate orthopaedic operations in a three-dimensional virtual environment. Laboratory-based training offers potential benefits in the development of basic surgical skills, such as using surgical tools and implants appropriately, achieving competency in procedures that have a steep learning curve, and assessing already acquired skills while minimizing concerns for patient safety, operating room time, and financial constraints. Current evidence supporting the educational advantages of surgical simulation in orthopaedic skills training is limited. Despite this, positive effects on the overall education of orthopaedic residents, and on maintaining the proficiency of practicing orthopaedic surgeons, are anticipated.

  8. Advanced training simulator models. Implementation and validation

    International Nuclear Information System (INIS)

    Borkowsky, Jeffrey; Judd, Jerry; Belblidia, Lotfi; O'farrell, David; Andersen, Peter

    2008-01-01

    Modern training simulators are required to replicate plant data for both thermal-hydraulic and neutronic response. Replication is required such that reactivity manipulation on the simulator properly trains the operator for reactivity manipulation at the plant. This paper discusses advanced models which perform this function in real-time using the coupled code system THOR/S3R. This code system models the all fluids systems in detail using an advanced, two-phase thermal-hydraulic a model. The nuclear core is modeled using an advanced, three-dimensional nodal method and also by using cycle-specific nuclear data. These models are configured to run interactively from a graphical instructor station or handware operation panels. The simulator models are theoretically rigorous and are expected to replicate the physics of the plant. However, to verify replication, the models must be independently assessed. Plant data is the preferred validation method, but plant data is often not available for many important training scenarios. In the absence of data, validation may be obtained by slower-than-real-time transient analysis. This analysis can be performed by coupling a safety analysis code and a core design code. Such a coupling exists between the codes RELAP5 and SIMULATE-3K (S3K). RELAP5/S3K is used to validate the real-time model for several postulated plant events. (author)

  9. Introduction of the computer-based operation training tools in classrooms to support simulator training

    International Nuclear Information System (INIS)

    Noji, K.; Suzuki, K.; Kobayashi, A.

    1997-01-01

    Operation training with full-scope simulators is effective to improve trainees operation competency. To obtain more effective results of simulator training, roles of the ''classroom operation training'' closely cooperated to simulator training are important. The ''classroom operation training'' is aimed at pre- and post-studies for operation knowledge related to operation training using full-scope simulators. We have been developing computer-based operation training tools which are used in classroom training sessions. As the first step, we developed the Simulator Training Replay System. This is an aiding tool in the classroom used to enhance trainees operation performance. This system can synchronously replay plant behavior on CRT display with operators action on a video monitor in the simulator training sessions. This system is used to review plant behavior - trainees response after simulator training sessions and to understand plant behavior - operation procedure before operation training. (author)

  10. Deep Feature Learning and Cascaded Classifier for Large Scale Data

    DEFF Research Database (Denmark)

    Prasoon, Adhish

    from data rather than having a predefined feature set. We explore deep learning approach of convolutional neural network (CNN) for segmenting three dimensional medical images. We propose a novel system integrating three 2D CNNs, which have a one-to-one association with the xy, yz and zx planes of 3D......This thesis focuses on voxel/pixel classification based approaches for image segmentation. The main application is segmentation of articular cartilage in knee MRIs. The first major contribution of the thesis deals with large scale machine learning problems. Many medical imaging problems need huge...... amount of training data to cover sufficient biological variability. Learning methods scaling badly with number of training data points cannot be used in such scenarios. This may restrict the usage of many powerful classifiers having excellent generalization ability. We propose a cascaded classifier which...

  11. Analysis using large-scale ringing data

    Directory of Open Access Journals (Sweden)

    Baillie, S. R.

    2004-06-01

    survival and recruitment estimates from the French CES scheme to assess the relative contributions of survival and recruitment to overall population changes. He develops a novel approach to modelling survival rates from such multi–site data by using within–year recaptures to provide a covariate of between–year recapture rates. This provided parsimonious models of variation in recapture probabilities between sites and years. The approach provides promising results for the four species investigated and can potentially be extended to similar data from other CES/MAPS schemes. The final paper by Blandine Doligez, David Thomson and Arie van Noordwijk (Doligez et al., 2004 illustrates how large-scale studies of population dynamics can be important for evaluating the effects of conservation measures. Their study is concerned with the reintroduction of White Stork populations to the Netherlands where a re–introduction programme started in 1969 had resulted in a breeding population of 396 pairs by 2000. They demonstrate the need to consider a wide range of models in order to account for potential age, time, cohort and “trap–happiness” effects. As the data are based on resightings such trap–happiness must reflect some form of heterogeneity in resighting probabilities. Perhaps surprisingly, the provision of supplementary food did not influence survival, but it may havehad an indirect effect via the alteration of migratory behaviour. Spatially explicit modelling of data gathered at many sites inevitably results in starting models with very large numbers of parameters. The problem is often complicated further by having relatively sparse data at each site, even where the total amount of data gathered is very large. Both Julliard (2004 and Doligez et al. (2004 give explicit examples of problems caused by needing to handle very large numbers of parameters and show how they overcame them for their particular data sets. Such problems involve both the choice of appropriate

  12. An advanced simulator for orthopedic surgical training.

    Science.gov (United States)

    Cecil, J; Gupta, Avinash; Pirela-Cruz, Miguel

    2018-02-01

    The purpose of creating the virtual reality (VR) simulator is to facilitate and supplement the training opportunities provided to orthopedic residents. The use of VR simulators has increased rapidly in the field of medical surgery for training purposes. This paper discusses the creation of the virtual surgical environment (VSE) for training residents in an orthopedic surgical process called less invasive stabilization system (LISS) surgery which is used to address fractures of the femur. The overall methodology included first obtaining an understanding of the LISS plating process through interactions with expert orthopedic surgeons and developing the information centric models. The information centric models provided a structured basis to design and build the simulator. Subsequently, the haptic-based simulator was built. Finally, the learning assessments were conducted in a medical school. The results from the learning assessments confirm the effectiveness of the VSE for teaching medical residents and students. The scope of the assessment was to ensure (1) the correctness and (2) the usefulness of the VSE. Out of 37 residents/students who participated in the test, 32 showed improvements in their understanding of the LISS plating surgical process. A majority of participants were satisfied with the use of teaching Avatars and haptic technology. A paired t test was conducted to test the statistical significance of the assessment data which showed that the data were statistically significant. This paper demonstrates the usefulness of adopting information centric modeling approach in the design and development of the simulator. The assessment results underscore the potential of using VR-based simulators in medical education especially in orthopedic surgery.

  13. Otoscopy simulation training in a classroom setting: a novel approach to teaching otoscopy to medical students.

    Science.gov (United States)

    Davies, Joel; Djelic, Lucas; Campisi, Paolo; Forte, Vito; Chiodo, Albino

    2014-11-01

    To determine the effectiveness of using of an otoscopy stimulator to teach medical students the primary principles of otoscopy in large group training sessions and improve their confidence in making otologic diagnoses. Cross-sectional survey design. In March 2013, the Department of Otolaryngology-Head and Neck Surgery held a large-scale otoscopy simulator teaching session at the MaRS Innovation Center for 92 first and second year University of Toronto medical students. Following the training session, students were provided with an optional electronic, nine-question survey related to their experience with learning otoscopy using the simulators alone, and in comparison to traditional methods of teaching. Thirty-four medical students completed the survey. Ninety-one percent of the respondents indicated that the overall quality of the event was either very good or excellent. A total of 71% of respondents either agreed, or strongly agreed, that the otoscopy simulator training session improved their confidence in diagnosing pathologies of the ear. The majority (70%) of students indicated that the training session had stimulated their interest in otolaryngology-head and neck surgery as a medical specialty. Organizing large-group otoscopy simulator training sessions is one method whereby students can become familiar with a wide variety of pathologies of the ear and improve both their diagnostic accuracy and their confidence in making otologic diagnoses. NA © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Simulation-based training in echocardiography.

    Science.gov (United States)

    Biswas, Monodeep; Patel, Rajendrakumar; German, Charles; Kharod, Anant; Mohamed, Ahmed; Dod, Harvinder S; Kapoor, Poonam Malhotra; Nanda, Navin C

    2016-10-01

    The knowledge gained from echocardiography is paramount for the clinician in diagnosing, interpreting, and treating various forms of disease. While cardiologists traditionally have undergone training in this imaging modality during their fellowship, many other specialties are beginning to show interest as well, including intensive care, anesthesia, and primary care trainees, in both transesophageal and transthoracic echocardiography. Advances in technology have led to the development of simulation programs accessible to trainees to help gain proficiency in the nuances of obtaining quality images, in a low stress, pressure free environment, often with a functioning ultrasound probe and mannequin that can mimic many of the pathologies seen in living patients. Although there are various training simulation programs each with their own benefits and drawbacks, it is clear that these programs are a powerful tool in educating the trainee and likely will lead to improved patient outcomes. © 2016, Wiley Periodicals, Inc.

  15. Large-scale stochasticity in Hamiltonian systems

    International Nuclear Information System (INIS)

    Escande, D.F.

    1982-01-01

    Large scale stochasticity (L.S.S.) in Hamiltonian systems is defined on the paradigm Hamiltonian H(v,x,t) =v 2 /2-M cos x-P cos k(x-t) which describes the motion of one particle in two electrostatic waves. A renormalization transformation Tsub(r) is described which acts as a microscope that focusses on a given KAM (Kolmogorov-Arnold-Moser) torus in phase space. Though approximate, Tsub(r) yields the threshold of L.S.S. in H with an error of 5-10%. The universal behaviour of KAM tori is predicted: for instance the scale invariance of KAM tori and the critical exponent of the Lyapunov exponent of Cantori. The Fourier expansion of KAM tori is computed and several conjectures by L. Kadanoff and S. Shenker are proved. Chirikov's standard mapping for stochastic layers is derived in a simpler way and the width of the layers is computed. A simpler renormalization scheme for these layers is defined. A Mathieu equation for describing the stability of a discrete family of cycles is derived. When combined with Tsub(r), it allows to prove the link between KAM tori and nearby cycles, conjectured by J. Greene and, in particular, to compute the mean residue of a torus. The fractal diagrams defined by G. Schmidt are computed. A sketch of a methodology for computing the L.S.S. threshold in any two-degree-of-freedom Hamiltonian system is given. (Auth.)

  16. Large-scale tides in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Ip, Hiu Yan; Schmidt, Fabian, E-mail: iphys@mpa-garching.mpg.de, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-02-01

    Density perturbations in cosmology, i.e. spherically symmetric adiabatic perturbations of a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) spacetime, are locally exactly equivalent to a different FLRW solution, as long as their wavelength is much larger than the sound horizon of all fluid components. This fact is known as the 'separate universe' paradigm. However, no such relation is known for anisotropic adiabatic perturbations, which correspond to an FLRW spacetime with large-scale tidal fields. Here, we provide a closed, fully relativistic set of evolutionary equations for the nonlinear evolution of such modes, based on the conformal Fermi (CFC) frame. We show explicitly that the tidal effects are encoded by the Weyl tensor, and are hence entirely different from an anisotropic Bianchi I spacetime, where the anisotropy is sourced by the Ricci tensor. In order to close the system, certain higher derivative terms have to be dropped. We show that this approximation is equivalent to the local tidal approximation of Hui and Bertschinger [1]. We also show that this very simple set of equations matches the exact evolution of the density field at second order, but fails at third and higher order. This provides a useful, easy-to-use framework for computing the fully relativistic growth of structure at second order.

  17. Food appropriation through large scale land acquisitions

    International Nuclear Information System (INIS)

    Cristina Rulli, Maria; D’Odorico, Paolo

    2014-01-01

    The increasing demand for agricultural products and the uncertainty of international food markets has recently drawn the attention of governments and agribusiness firms toward investments in productive agricultural land, mostly in the developing world. The targeted countries are typically located in regions that have remained only marginally utilized because of lack of modern technology. It is expected that in the long run large scale land acquisitions (LSLAs) for commercial farming will bring the technology required to close the existing crops yield gaps. While the extent of the acquired land and the associated appropriation of freshwater resources have been investigated in detail, the amount of food this land can produce and the number of people it could feed still need to be quantified. Here we use a unique dataset of land deals to provide a global quantitative assessment of the rates of crop and food appropriation potentially associated with LSLAs. We show how up to 300–550 million people could be fed by crops grown in the acquired land, should these investments in agriculture improve crop production and close the yield gap. In contrast, about 190–370 million people could be supported by this land without closing of the yield gap. These numbers raise some concern because the food produced in the acquired land is typically exported to other regions, while the target countries exhibit high levels of malnourishment. Conversely, if used for domestic consumption, the crops harvested in the acquired land could ensure food security to the local populations. (letter)

  18. Large Scale EOF Analysis of Climate Data

    Science.gov (United States)

    Prabhat, M.; Gittens, A.; Kashinath, K.; Cavanaugh, N. R.; Mahoney, M.

    2016-12-01

    We present a distributed approach towards extracting EOFs from 3D climate data. We implement the method in Apache Spark, and process multi-TB sized datasets on O(1000-10,000) cores. We apply this method to latitude-weighted ocean temperature data from CSFR, a 2.2 terabyte-sized data set comprising ocean and subsurface reanalysis measurements collected at 41 levels in the ocean, at 6 hour intervals over 31 years. We extract the first 100 EOFs of this full data set and compare to the EOFs computed simply on the surface temperature field. Our analyses provide evidence of Kelvin and Rossy waves and components of large-scale modes of oscillation including the ENSO and PDO that are not visible in the usual SST EOFs. Further, they provide information on the the most influential parts of the ocean, such as the thermocline, that exist below the surface. Work is ongoing to understand the factors determining the depth-varying spatial patterns observed in the EOFs. We will experiment with weighting schemes to appropriately account for the differing depths of the observations. We also plan to apply the same distributed approach to analysis of analysis of 3D atmospheric climatic data sets, including multiple variables. Because the atmosphere changes on a quicker time-scale than the ocean, we expect that the results will demonstrate an even greater advantage to computing 3D EOFs in lieu of 2D EOFs.

  19. Mirror dark matter and large scale structure

    International Nuclear Information System (INIS)

    Ignatiev, A.Yu.; Volkas, R.R.

    2003-01-01

    Mirror matter is a dark matter candidate. In this paper, we reexamine the linear regime of density perturbation growth in a universe containing mirror dark matter. Taking adiabatic scale-invariant perturbations as the input, we confirm that the resulting processed power spectrum is richer than for the more familiar cases of cold, warm and hot dark matter. The new features include a maximum at a certain scale λ max , collisional damping below a smaller characteristic scale λ S ' , with oscillatory perturbations between the two. These scales are functions of the fundamental parameters of the theory. In particular, they decrease for decreasing x, the ratio of the mirror plasma temperature to that of the ordinary. For x∼0.2, the scale λ max becomes galactic. Mirror dark matter therefore leads to bottom-up large scale structure formation, similar to conventional cold dark matter, for x(less-or-similar sign)0.2. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime. The differences pertain to scales smaller than λ S ' in the linear regime, and generally in the nonlinear regime because mirror dark matter is chemically complex and to some extent dissipative. Lyman-α forest data and the early reionization epoch established by WMAP may hold the key to distinguishing mirror dark matter from WIMP-style cold dark matter

  20. 14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. (a) Each airplane simulator and other training device that is used in a training course permitted under § 121.409...

  1. DEMNUni: massive neutrinos and the bispectrum of large scale structures

    Science.gov (United States)

    Ruggeri, Rossana; Castorina, Emanuele; Carbone, Carmelita; Sefusatti, Emiliano

    2018-03-01

    The main effect of massive neutrinos on the large-scale structure consists in a few percent suppression of matter perturbations on all scales below their free-streaming scale. Such effect is of particular importance as it allows to constraint the value of the sum of neutrino masses from measurements of the galaxy power spectrum. In this work, we present the first measurements of the next higher-order correlation function, the bispectrum, from N-body simulations that include massive neutrinos as particles. This is the simplest statistics characterising the non-Gaussian properties of the matter and dark matter halos distributions. We investigate, in the first place, the suppression due to massive neutrinos on the matter bispectrum, comparing our measurements with the simplest perturbation theory predictions, finding the approximation of neutrinos contributing at quadratic order in perturbation theory to provide a good fit to the measurements in the simulations. On the other hand, as expected, a linear approximation for neutrino perturbations would lead to Script O(fν) errors on the total matter bispectrum at large scales. We then attempt an extension of previous results on the universality of linear halo bias in neutrino cosmologies, to non-linear and non-local corrections finding consistent results with the power spectrum analysis.

  2. Interactive Anatomy-Augmented Virtual Simulation Training.

    Science.gov (United States)

    Aebersold, Michelle; Voepel-Lewis, Terri; Cherara, Leila; Weber, Monica; Khouri, Christina; Levine, Robert; Tait, Alan R

    2018-02-01

    Traditionally, clinical psychomotor skills are taught through videos and demonstration by faculty which does not allow for the visualization of internal structures and anatomical landmarks that would enhance the learner skill performance. Sophomore and junior nursing students attending a large Midwestern Institution (N=69) participated in this mixed methods study. Students demonstrated their ability to place a nasogastric tube (NGT) after being randomly assigned to usual training (Control group) or an iPad anatomy-augmented virtual simulation training module (AR group). The ability of the participants to demonstrate competence in placing the NGT was assessed using a 17-item competency checklist. After the demonstration, students completed a survey to elicit information about students' level of training, prior experience with NGT placement, satisfaction with the AR technology, and perceptions of AR as a potential teaching tool for clinical skills training. The ability to correctly place the NGT through all the checklist items was statistically significant in the AR group compared with the control group (P = 0.011). Eighty-six percent of participants in the AR group rated AR as superior/far superior to other procedural training programs to which they had been exposed, whereas, only 5.9% of participants in the control group rated the control program as superior/far superior (P < 0.001). Overall the AR module was better received compared with the control group with regards to realism, identifying landmarks, visualization of internal organs, ease of use, usefulness, and promoting learning and understanding.

  3. Large-Scale Traveling Weather Systems in Mars’ Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-10-01

    Between late fall and early spring, Mars’ middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  4. Large-Scale Traveling Weather Systems in Mars Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-01-01

    Between late fall and early spring, Mars' middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  5. Nonlinear evolution of large-scale structure in the universe

    International Nuclear Information System (INIS)

    Frenk, C.S.; White, S.D.M.; Davis, M.

    1983-01-01

    Using N-body simulations we study the nonlinear development of primordial density perturbation in an Einstein--de Sitter universe. We compare the evolution of an initial distribution without small-scale density fluctuations to evolution from a random Poisson distribution. These initial conditions mimic the assumptions of the adiabatic and isothermal theories of galaxy formation. The large-scale structures which form in the two cases are markedly dissimilar. In particular, the correlation function xi(r) and the visual appearance of our adiabatic (or ''pancake'') models match better the observed distribution of galaxies. This distribution is characterized by large-scale filamentary structure. Because the pancake models do not evolve in a self-similar fashion, the slope of xi(r) steepens with time; as a result there is a unique epoch at which these models fit the galaxy observations. We find the ratio of cutoff length to correlation length at this time to be lambda/sub min//r 0 = 5.1; its expected value in a neutrino dominated universe is 4(Ωh) -1 (H 0 = 100h km s -1 Mpc -1 ). At early epochs these models predict a negligible amplitude for xi(r) and could explain the lack of measurable clustering in the Lyα absorption lines of high-redshift quasars. However, large-scale structure in our models collapses after z = 2. If this collapse precedes galaxy formation as in the usual pancake theory, galaxies formed uncomfortably recently. The extent of this problem may depend on the cosmological model used; the present series of experiments should be extended in the future to include models with Ω<1

  6. Large-scale patterns in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Hardenberg, J. von; Parodi, A.; Passoni, G.; Provenzale, A.; Spiegel, E.A.

    2008-01-01

    Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 10 5 and 10 8 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied

  7. Distributed system for large-scale remote research

    International Nuclear Information System (INIS)

    Ueshima, Yutaka

    2002-01-01

    In advanced photon research, large-scale simulations and high-resolution observations are powerfull tools. In numerical and real experiments, the real-time visualization and steering system is considered as a hopeful method of data analysis. This approach is valid in the typical analysis at one time or low cost experiment and simulation. In research of an unknown problem, it is necessary that the output data be analyzed many times because conclusive analysis is difficult at one time. Consequently, output data should be filed to refer and analyze at any time. To support research, we need the automatic functions, transporting data files from data generator to data storage, analyzing data, tracking history of data handling, and so on. The supporting system will be a functionally distributed system. (author)

  8. A large-scale computer facility for computational aerodynamics

    International Nuclear Information System (INIS)

    Bailey, F.R.; Balhaus, W.F.

    1985-01-01

    The combination of computer system technology and numerical modeling have advanced to the point that computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. To provide for further advances in modeling of aerodynamic flow fields, NASA has initiated at the Ames Research Center the Numerical Aerodynamic Simulation (NAS) Program. The objective of the Program is to develop a leading-edge, large-scale computer facility, and make it available to NASA, DoD, other Government agencies, industry and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. The Program will establish an initial operational capability in 1986 and systematically enhance that capability by incorporating evolving improvements in state-of-the-art computer system technologies as required to maintain a leadership role. This paper briefly reviews the present and future requirements for computational aerodynamics and discusses the Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans

  9. Large Scale Self-Organizing Information Distribution System

    National Research Council Canada - National Science Library

    Low, Steven

    2005-01-01

    This project investigates issues in "large-scale" networks. Here "large-scale" refers to networks with large number of high capacity nodes and transmission links, and shared by a large number of users...

  10. Distributed large-scale dimensional metrology new insights

    CERN Document Server

    Franceschini, Fiorenzo; Maisano, Domenico

    2011-01-01

    Focuses on the latest insights into and challenges of distributed large scale dimensional metrology Enables practitioners to study distributed large scale dimensional metrology independently Includes specific examples of the development of new system prototypes

  11. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  12. Probes of large-scale structure in the Universe

    International Nuclear Information System (INIS)

    Suto, Yasushi; Gorski, K.; Juszkiewicz, R.; Silk, J.

    1988-01-01

    Recent progress in observational techniques has made it possible to confront quantitatively various models for the large-scale structure of the Universe with detailed observational data. We develop a general formalism to show that the gravitational instability theory for the origin of large-scale structure is now capable of critically confronting observational results on cosmic microwave background radiation angular anisotropies, large-scale bulk motions and large-scale clumpiness in the galaxy counts. (author)

  13. Large scale Brownian dynamics of confined suspensions of rigid particles

    Science.gov (United States)

    Sprinkle, Brennan; Balboa Usabiaga, Florencio; Patankar, Neelesh A.; Donev, Aleksandar

    2017-12-01

    We introduce methods for large-scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method [F. Balboa Usabiaga et al., Commun. Appl. Math. Comput. Sci. 11(2), 217-296 (2016)] at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and its "square" root are available for the given boundary conditions. These kernel operations can be computed with near linear scaling for periodic domains using the positively split Ewald method. Here we study particles partially confined by gravity above a no-slip bottom wall using a graphical processing unit implementation of the mobility matrix-vector product, combined with a preconditioned Lanczos iteration for generating Brownian displacements. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large-scale simulations, an Euler-Maruyama traction scheme and a trapezoidal slip scheme, which minimize the number of mobility problems to be solved per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang-shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in dense suspensions of confined microrollers, whose

  14. Simulation and computation in health physics training

    International Nuclear Information System (INIS)

    Lakey, S.R.A.; Gibbs, D.C.C.; Marchant, C.P.

    1980-01-01

    The Royal Naval College has devised a number of computer aided learning programmes applicable to health physics which include radiation shield design and optimisation, environmental impact of a reactor accident, exposure levels produced by an inert radioactive gas cloud, and the prediction of radiation detector response in various radiation field conditions. Analogue computers are used on reduced or fast time scales because time dependent phenomenon are not always easily assimilated in real time. The build-up and decay of fission products, the dynamics of intake of radioactive material and reactor accident dynamics can be effectively simulated. It is essential to relate these simulations to real time and the College applies a research reactor and analytical phantom to this end. A special feature of the reactor is a chamber which can be supplied with Argon-41 from reactor exhaust gases to create a realistic gaseous contamination environment. Reactor accident situations are also taught by using role playing sequences carried out in real time in the emergency facilities associated with the research reactor. These facilities are outlined and the training technique illustrated with examples of the calculations and simulations. The training needs of the future are discussed, with emphasis on optimisation and cost-benefit analysis. (H.K.)

  15. Large scale dynamics of protoplanetary discs

    Science.gov (United States)

    Béthune, William

    2017-08-01

    Planets form in the gaseous and dusty disks orbiting young stars. These protoplanetary disks are dispersed in a few million years, being accreted onto the central star or evaporated into the interstellar medium. To explain the observed accretion rates, it is commonly assumed that matter is transported through the disk by turbulence, although the mechanism sustaining turbulence is uncertain. On the other side, irradiation by the central star could heat up the disk surface and trigger a photoevaporative wind, but thermal effects cannot account for the observed acceleration and collimation of the wind into a narrow jet perpendicular to the disk plane. Both issues can be solved if the disk is sensitive to magnetic fields. Weak fields lead to the magnetorotational instability, whose outcome is a state of sustained turbulence. Strong fields can slow down the disk, causing it to accrete while launching a collimated wind. However, the coupling between the disk and the neutral gas is done via electric charges, each of which is outnumbered by several billion neutral molecules. The imperfect coupling between the magnetic field and the neutral gas is described in terms of "non-ideal" effects, introducing new dynamical behaviors. This thesis is devoted to the transport processes happening inside weakly ionized and weakly magnetized accretion disks; the role of microphysical effects on the large-scale dynamics of the disk is of primary importance. As a first step, I exclude the wind and examine the impact of non-ideal effects on the turbulent properties near the disk midplane. I show that the flow can spontaneously organize itself if the ionization fraction is low enough; in this case, accretion is halted and the disk exhibits axisymmetric structures, with possible consequences on planetary formation. As a second step, I study the launching of disk winds via a global model of stratified disk embedded in a warm atmosphere. This model is the first to compute non-ideal effects from

  16. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  17. Large-scale fuel cycle centres

    International Nuclear Information System (INIS)

    Smiley, S.H.; Black, K.M.

    1977-01-01

    The US Nuclear Regulatory Commission (NRC) has considered the nuclear energy centre concept for fuel cycle plants in the Nuclear Energy Centre Site Survey 1975 (NECSS-75) Rep. No. NUREG-0001, an important study mandated by the US Congress in the Energy Reorganization Act of 1974 which created the NRC. For this study, the NRC defined fuel cycle centres as consisting of fuel reprocessing and mixed-oxide fuel fabrication plants, and optional high-level waste and transuranic waste management facilities. A range of fuel cycle centre sizes corresponded to the fuel throughput of power plants with a total capacity of 50,000-300,000MW(e). The types of fuel cycle facilities located at the fuel cycle centre permit the assessment of the role of fuel cycle centres in enhancing the safeguard of strategic special nuclear materials - plutonium and mixed oxides. Siting fuel cycle centres presents a smaller problem than siting reactors. A single reprocessing plant of the scale projected for use in the USA (1500-2000t/a) can reprocess fuel from reactors producing 50,000-65,000MW(e). Only two or three fuel cycle centres of the upper limit size considered in the NECSS-75 would be required in the USA by the year 2000. The NECSS-75 fuel cycle centre evaluation showed that large-scale fuel cycle centres present no real technical siting difficulties from a radiological effluent and safety standpoint. Some construction economies may be achievable with fuel cycle centres, which offer opportunities to improve waste-management systems. Combined centres consisting of reactors and fuel reprocessing and mixed-oxide fuel fabrication plants were also studied in the NECSS. Such centres can eliminate shipment not only of Pu but also mixed-oxide fuel. Increased fuel cycle costs result from implementation of combined centres unless the fuel reprocessing plants are commercial-sized. Development of Pu-burning reactors could reduce any economic penalties of combined centres. The need for effective fissile

  18. A spectrum of power plant simulators for effective training

    International Nuclear Information System (INIS)

    Foulke, L.R.

    1987-01-01

    This paper discusses the subject of training simulator fidelity and describes a spectrum of fidelity levels of power plant simulators to optimize training effectiveness. The body of knowledge about the relationship between power plant simulator fidelity and training effectiveness is reviewed, and a number of conjectures about this relationship are made based on the perspective of over 20 simulator-years of experience in training nuclear power plant operators. Developments are described for a new class of emerging simulator which utilize high resolution graphics to emphasize the visualization step of effective training

  19. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  20. Detecting differential protein expression in large-scale population proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Soyoung; Qian, Weijun; Camp, David G.; Smith, Richard D.; Tompkins, Ronald G.; Davis, Ronald W.; Xiao, Wenzhong

    2014-06-17

    Mass spectrometry-based high-throughput quantitative proteomics shows great potential in clinical biomarker studies, identifying and quantifying thousands of proteins in biological samples. However, methods are needed to appropriately handle issues/challenges unique to mass spectrometry data in order to detect as many biomarker proteins as possible. One issue is that different mass spectrometry experiments generate quite different total numbers of quantified peptides, which can result in more missing peptide abundances in an experiment with a smaller total number of quantified peptides. Another issue is that the quantification of peptides is sometimes absent, especially for less abundant peptides and such missing values contain the information about the peptide abundance. Here, we propose a Significance Analysis for Large-scale Proteomics Studies (SALPS) that handles missing peptide intensity values caused by the two mechanisms mentioned above. Our model has a robust performance in both simulated data and proteomics data from a large clinical study. Because varying patients’ sample qualities and deviating instrument performances are not avoidable for clinical studies performed over the course of several years, we believe that our approach will be useful to analyze large-scale clinical proteomics data.

  1. Large scale CMB anomalies from thawing cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Ringeval, Christophe [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); Yamauchi, Daisuke; Yokoyama, Jun' ichi [Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Bouchet, François R., E-mail: christophe.ringeval@uclouvain.be, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp, E-mail: bouchet@iap.fr [Institut d' Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris (France)

    2016-02-01

    Cosmic strings formed during inflation are expected to be either diluted over super-Hubble distances, i.e., invisible today, or to have crossed our past light cone very recently. We discuss the latter situation in which a few strings imprint their signature in the Cosmic Microwave Background (CMB) Anisotropies after recombination. Being almost frozen in the Hubble flow, these strings are quasi static and evade almost all of the previously derived constraints on their tension while being able to source large scale anisotropies in the CMB sky. Using a local variance estimator on thousand of numerically simulated Nambu-Goto all sky maps, we compute the expected signal and show that it can mimic a dipole modulation at large angular scales while being negligible at small angles. Interestingly, such a scenario generically produces one cold spot from the thawing of a cosmic string loop. Mixed with anisotropies of inflationary origin, we find that a few strings of tension GU = O(1) × 10{sup −6} match the amplitude of the dipole modulation reported in the Planck satellite measurements and could be at the origin of other large scale anomalies.

  2. Extending SME to Handle Large-Scale Cognitive Modeling.

    Science.gov (United States)

    Forbus, Kenneth D; Ferguson, Ronald W; Lovett, Andrew; Gentner, Dedre

    2017-07-01

    Analogy and similarity are central phenomena in human cognition, involved in processes ranging from visual perception to conceptual change. To capture this centrality requires that a model of comparison must be able to integrate with other processes and handle the size and complexity of the representations required by the tasks being modeled. This paper describes extensions to Structure-Mapping Engine (SME) since its inception in 1986 that have increased its scope of operation. We first review the basic SME algorithm, describe psychological evidence for SME as a process model, and summarize its role in simulating similarity-based retrieval and generalization. Then we describe five techniques now incorporated into the SME that have enabled it to tackle large-scale modeling tasks: (a) Greedy merging rapidly constructs one or more best interpretations of a match in polynomial time: O(n 2 log(n)); (b) Incremental operation enables mappings to be extended as new information is retrieved or derived about the base or target, to model situations where information in a task is updated over time; (c) Ubiquitous predicates model the varying degrees to which items may suggest alignment; (d) Structural evaluation of analogical inferences models aspects of plausibility judgments; (e) Match filters enable large-scale task models to communicate constraints to SME to influence the mapping process. We illustrate via examples from published studies how these enable it to capture a broader range of psychological phenomena than before. Copyright © 2016 Cognitive Science Society, Inc.

  3. The HTR-PM Plant Full Scope Training Simulator

    International Nuclear Information System (INIS)

    Wang Junsan; Wang Yuding; Zhou Shuyong; Cai Ruizhong; Cao Jianting

    2014-01-01

    This paper describes the technical aspects of the Full Scope Training Simulator developed for HTR-PM Plant in Shidao Bay, Shandong Province, China. An overview of the HTR-PM plant and simulator structure is presented. The models developed for the simulator are discussed in detail. Some important verification tests have been conducted on the HTR-PM Plant Training Simulator. (author)

  4. Simulation game provides financial management training.

    Science.gov (United States)

    Uhles, Neville; Weimer-Elder, Barbette; Lee, James G

    2008-01-01

    Adventist HealthCare developed a workshop with a reality simulation game as an engaging means to teach nonfinancial managers about the relationships between cash flow, income statements, and balance sheets. Thirty AHC staff, about half financial and half nonfinancial, were trained as workshop facilitators, and all managers with budget oversight were asked to complete the workshop. The workshop was very positively received; participants' average scores on workshop questionnaires increased from 77.4 percent correct on a presession questionnaire to 91.3 percent correct on a postsession questionnaire.

  5. The Effect of Large Scale Salinity Gradient on Langmuir Turbulence

    Science.gov (United States)

    Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.

    2017-12-01

    Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by

  6. A virtual radiation therapy workflow training simulation

    International Nuclear Information System (INIS)

    Bridge, P.; Crowe, S.B.; Gibson, G.; Ellemor, N.J.; Hargrave, C.; Carmichael, M.

    2016-01-01

    Aim: Simulation forms an increasingly vital component of clinical skills development in a wide range of professional disciplines. Simulation of clinical techniques and equipment is designed to better prepare students for placement by providing an opportunity to learn technical skills in a “safe” academic environment. In radiotherapy training over the last decade or so this has predominantly comprised treatment planning software and small ancillary equipment such as mould room apparatus. Recent virtual reality developments have dramatically changed this approach. Innovative new simulation applications and file processing and interrogation software have helped to fill in the gaps to provide a streamlined virtual workflow solution. This paper outlines the innovations that have enabled this, along with an evaluation of the impact on students and educators. Method: Virtual reality software and workflow applications have been developed to enable the following steps of radiation therapy to be simulated in an academic environment: CT scanning using a 3D virtual CT scanner simulation; batch CT duplication; treatment planning; 3D plan evaluation using a virtual linear accelerator; quantitative plan assessment, patient setup with lasers; and image guided radiotherapy software. Results: Evaluation of the impact of the virtual reality workflow system highlighted substantial time saving for academic staff as well as positive feedback from students relating to preparation for clinical placements. Students valued practice in the “safe” environment and the opportunity to understand the clinical workflow ahead of clinical department experience. Conclusion: Simulation of most of the radiation therapy workflow and tasks is feasible using a raft of virtual reality simulation applications and supporting software. Benefits of this approach include time-saving, embedding of a case-study based approach, increased student confidence, and optimal use of the clinical environment

  7. To improve training methods in an engine room simulator-based training

    OpenAIRE

    Lin, Chingshin

    2016-01-01

    The simulator based training are used widely in both industry and school education to reduce the accidents nowadays. This study aims to suggest the improved training methods to increase the effectiveness of engine room simulator training. The effectiveness of training in engine room will be performance indicators and the self-evaluation by participants. In the first phase of observation, the aim is to find out the possible shortcomings of current training methods based on train...

  8. Large-scale fuel cycle centers

    International Nuclear Information System (INIS)

    Smiley, S.H.; Black, K.M.

    1977-01-01

    The United States Nuclear Regulatory Commission (NRC) has considered the nuclear energy center concept for fuel cycle plants in the Nuclear Energy Center Site Survey - 1975 (NECSS-75) -- an important study mandated by the U.S. Congress in the Energy Reorganization Act of 1974 which created the NRC. For the study, NRC defined fuel cycle centers to consist of fuel reprocessing and mixed oxide fuel fabrication plants, and optional high-level waste and transuranic waste management facilities. A range of fuel cycle center sizes corresponded to the fuel throughput of power plants with a total capacity of 50,000 - 300,000 MWe. The types of fuel cycle facilities located at the fuel cycle center permit the assessment of the role of fuel cycle centers in enhancing safeguarding of strategic special nuclear materials -- plutonium and mixed oxides. Siting of fuel cycle centers presents a considerably smaller problem than the siting of reactors. A single reprocessing plant of the scale projected for use in the United States (1500-2000 MT/yr) can reprocess the fuel from reactors producing 50,000-65,000 MWe. Only two or three fuel cycle centers of the upper limit size considered in the NECSS-75 would be required in the United States by the year 2000 . The NECSS-75 fuel cycle center evaluations showed that large scale fuel cycle centers present no real technical difficulties in siting from a radiological effluent and safety standpoint. Some construction economies may be attainable with fuel cycle centers; such centers offer opportunities for improved waste management systems. Combined centers consisting of reactors and fuel reprocessing and mixed oxide fuel fabrication plants were also studied in the NECSS. Such centers can eliminate not only shipment of plutonium, but also mixed oxide fuel. Increased fuel cycle costs result from implementation of combined centers unless the fuel reprocessing plants are commercial-sized. Development of plutonium-burning reactors could reduce any

  9. Virtual reality simulators and training in laparoscopic surgery.

    Science.gov (United States)

    Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos

    2015-01-01

    Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Laparoscopic skills acquisition: a study of simulation and traditional training.

    Science.gov (United States)

    Marlow, Nicholas; Altree, Meryl; Babidge, Wendy; Field, John; Hewett, Peter; Maddern, Guy J

    2014-12-01

    Training in basic laparoscopic skills can be undertaken using traditional methods, where trainees are educated by experienced surgeons through a process of graduated responsibility or by simulation-based training. This study aimed to assess whether simulation trained individuals reach the same level of proficiency in basic laparoscopic skills as traditional trained participants when assessed in a simulated environment. A prospective study was undertaken. Participants were allocated to one of two cohorts according to surgical experience. Participants from the inexperienced cohort were randomized to receive training in basic laparoscopic skills on either a box trainer or a virtual reality simulator. They were then assessed on the simulator on which they did not receive training. Participants from the experienced cohort, considered to have received traditional training in basic laparoscopic skills, did not receive simulation training and were randomized to either the box trainer or virtual reality simulator for skills assessment. The assessment scores from different cohorts on either simulator were then compared. A total of 138 participants completed the assessment session, 101 in the inexperienced simulation-trained cohort and 37 on the experienced traditionally trained cohort. There was no statistically significant difference between the training outcomes of simulation and traditionally trained participants, irrespective of the simulator type used. The results demonstrated that participants trained on either a box trainer or virtual reality simulator achieved a level of basic laparoscopic skills assessed in a simulated environment that was not significantly different from participants who had been traditionally trained in basic laparoscopic skills. © 2013 Royal Australasian College of Surgeons.

  11. Coordinated SLNR based Precoding in Large-Scale Heterogeneous Networks

    KAUST Repository

    Boukhedimi, Ikram; Kammoun, Abla; Alouini, Mohamed-Slim

    2017-01-01

    This work focuses on the downlink of large-scale two-tier heterogeneous networks composed of a macro-cell overlaid by micro-cell networks. Our interest is on the design of coordinated beamforming techniques that allow to mitigate the inter-cell interference. Particularly, we consider the case in which the coordinating base stations (BSs) have imperfect knowledge of the channel state information. Under this setting, we propose a regularized SLNR based precoding design in which the regularization factor is used to allow better resilience with respect to the channel estimation errors. Based on tools from random matrix theory, we provide an analytical analysis of the SINR and SLNR performances. These results are then exploited to propose a proper setting of the regularization factor. Simulation results are finally provided in order to validate our findings and to confirm the performance of the proposed precoding scheme.

  12. Coordinated SLNR based Precoding in Large-Scale Heterogeneous Networks

    KAUST Repository

    Boukhedimi, Ikram

    2017-03-06

    This work focuses on the downlink of large-scale two-tier heterogeneous networks composed of a macro-cell overlaid by micro-cell networks. Our interest is on the design of coordinated beamforming techniques that allow to mitigate the inter-cell interference. Particularly, we consider the case in which the coordinating base stations (BSs) have imperfect knowledge of the channel state information. Under this setting, we propose a regularized SLNR based precoding design in which the regularization factor is used to allow better resilience with respect to the channel estimation errors. Based on tools from random matrix theory, we provide an analytical analysis of the SINR and SLNR performances. These results are then exploited to propose a proper setting of the regularization factor. Simulation results are finally provided in order to validate our findings and to confirm the performance of the proposed precoding scheme.

  13. Challenges and options for large scale integration of wind power

    International Nuclear Information System (INIS)

    Tande, John Olav Giaever

    2006-01-01

    Challenges and options for large scale integration of wind power are examined. Immediate challenges are related to weak grids. Assessment of system stability requires numerical simulation. Models are being developed - validation is essential. Coordination of wind and hydro generation is a key for allowing more wind power capacity in areas with limited transmission corridors. For the case study grid depending on technology and control the allowed wind farm size is increased from 50 to 200 MW. The real life example from 8 January 2005 demonstrates that existing marked based mechanisms can handle large amounts of wind power. In wind integration studies it is essential to take account of the controllability of modern wind farms, the power system flexibility and the smoothing effect of geographically dispersed wind farms. Modern wind farms contribute to system adequacy - combining wind and hydro constitutes a win-win system (ml)

  14. Hierarchical optimal control of large-scale nonlinear chemical processes.

    Science.gov (United States)

    Ramezani, Mohammad Hossein; Sadati, Nasser

    2009-01-01

    In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.

  15. Experimental Investigation of Large-Scale Bubbly Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Zboray, R.; Simiano, M.; De Cachard, F

    2004-03-01

    Carefully planned and instrumented experiments under well-defined boundary conditions have been carried out on large-scale, isothermal, bubbly plumes. The data obtained is meant to validate newly developed, high-resolution numerical tools for 3D transient, two-phase flow modelling. Several measurement techniques have been utilised to collect data from the experiments: particle image velocimetry, optical probes, electromagnetic probes, and visualisation. Bubble and liquid velocity fields, void-fraction distributions, bubble size and interfacial-area-concentration distributions have all been measured in the plume region, as well as recirculation velocities in the surrounding pool. The results obtained from the different measurement techniques have been compared. In general, the two-phase flow data obtained from the different techniques are found to be consistent, and of high enough quality for validating numerical simulation tools for 3D bubbly flows. (author)

  16. Experimental Investigation of Large-Scale Bubbly Plumes

    International Nuclear Information System (INIS)

    Zboray, R.; Simiano, M.; De Cachard, F.

    2004-01-01

    Carefully planned and instrumented experiments under well-defined boundary conditions have been carried out on large-scale, isothermal, bubbly plumes. The data obtained is meant to validate newly developed, high-resolution numerical tools for 3D transient, two-phase flow modelling. Several measurement techniques have been utilised to collect data from the experiments: particle image velocimetry, optical probes, electromagnetic probes, and visualisation. Bubble and liquid velocity fields, void-fraction distributions, bubble size and interfacial-area-concentration distributions have all been measured in the plume region, as well as recirculation velocities in the surrounding pool. The results obtained from the different measurement techniques have been compared. In general, the two-phase flow data obtained from the different techniques are found to be consistent, and of high enough quality for validating numerical simulation tools for 3D bubbly flows. (author)

  17. Complex Formation Control of Large-Scale Intelligent Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Lei

    2012-01-01

    Full Text Available A new formation framework of large-scale intelligent autonomous vehicles is developed, which can realize complex formations while reducing data exchange. Using the proposed hierarchy formation method and the automatic dividing algorithm, vehicles are automatically divided into leaders and followers by exchanging information via wireless network at initial time. Then, leaders form formation geometric shape by global formation information and followers track their own virtual leaders to form line formation by local information. The formation control laws of leaders and followers are designed based on consensus algorithms. Moreover, collision-avoiding problems are considered and solved using artificial potential functions. Finally, a simulation example that consists of 25 vehicles shows the effectiveness of theory.

  18. Exploiting large-scale correlations to detect continuous gravitational waves.

    Science.gov (United States)

    Pletsch, Holger J; Allen, Bruce

    2009-10-30

    Fully coherent searches (over realistic ranges of parameter space and year-long observation times) for unknown sources of continuous gravitational waves are computationally prohibitive. Less expensive hierarchical searches divide the data into shorter segments which are analyzed coherently, then detection statistics from different segments are combined incoherently. The novel method presented here solves the long-standing problem of how best to do the incoherent combination. The optimal solution exploits large-scale parameter-space correlations in the coherent detection statistic. Application to simulated data shows dramatic sensitivity improvements compared with previously available (ad hoc) methods, increasing the spatial volume probed by more than 2 orders of magnitude at lower computational cost.

  19. Large scale computing in theoretical physics: Example QCD

    International Nuclear Information System (INIS)

    Schilling, K.

    1986-01-01

    The limitations of the classical mathematical analysis of Newton and Leibniz appear to be more and more overcome by the power of modern computers. Large scale computing techniques - which resemble closely the methods used in simulations within statistical mechanics - allow to treat nonlinear systems with many degrees of freedom such as field theories in nonperturbative situations, where analytical methods do fail. The computation of the hadron spectrum within the framework of lattice QCD sets a demanding goal for the application of supercomputers in basic science. It requires both big computer capacities and clever algorithms to fight all the numerical evils that one encounters in the Euclidean world. The talk will attempt to describe both the computer aspects and the present state of the art of spectrum calculations within lattice QCD. (orig.)

  20. The impact of university provided nurse electronic medical record training on health care organizations: an exploratory simulation approach.

    Science.gov (United States)

    Abrahamson, Kathleen; Anderson, James G; Borycki, Elizabeth M; Kushniruk, Andre W; Malovec, Shannon; Espejo, Angela; Anderson, Marilyn

    2015-01-01

    Training providers appropriately, particularly early in their caregiving careers, is an important aspect of electronic medical record (EMR) implementation. Considerable time and resources are needed to bring the newly hired providers 'up to speed' with the actual use practices of the organization. Similarly, universities lose valuable clinical training hours when students are required to spend those hours learning organization-specific EMR systems in order to participate in care during clinical rotations. Although there are multiple real-world barriers to university/health care organization training partnerships, the investment these entities share in training care providers, specifically nurses, to use and understand EMR technology encourages a question: What would be the cumulative effect of integrating a mutually agreed upon EMR system training program in to nursing classroom training on downstream hospital costs in terms of hours of direct caregiving lost, and benefits in terms of number of overall EMR trained nurses hired? In order to inform the development of a large scale study, we employed a dynamic systems modeling approach to simulate the theoretical relationships between key model variables and determine the possible effect of integrating EMR training into nursing classrooms on hospital outcomes. The analysis indicated that integrating EMR training into the nursing classroom curriculum results in more available time for nurse bedside care. Also, the simulation suggests that efficiency of clinical training can be potentially improved by centralizing EMR training within the nursing curriculum.