WorldWideScience

Sample records for large-scale planetary circulations

  1. Large-scale circulation departures related to wet episodes in northeast Brazil

    Science.gov (United States)

    Sikdar, D. N.; Elsner, J. B.

    1985-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season season is devided into dry and wet periods, the FGGE and geostationary satellite data was averaged and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLP's have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  2. Large-scale circulation departures related to wet episodes in north-east Brazil

    Science.gov (United States)

    Sikdar, Dhirendra N.; Elsner, James B.

    1987-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season is divided into dry and wet periods; the FGGE and geostationary satellite data was averaged; and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLPs have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  3. Large scale atmospheric tropical circulation changes and consequences during global warming

    International Nuclear Information System (INIS)

    Gastineau, G.

    2008-01-01

    The changes of the tropical large scale circulation during climate change can have large impacts on human activities. In a first part, the meridional atmospheric tropical circulation was studied in the different coupled models. During climate change, we find, on the one hand, that the Hadley meridional circulation and the subtropical jet are significantly shifted poleward, and on the other hand, that the intensity of the tropical circulation weakens. The slow down of the atmospheric circulation results from the dry static stability changes affecting the tropical troposphere. Secondly, idealized simulations are used to explain the tropical circulation changes. Ensemble simulation using the model LMDZ4 are set up to study the results from the coupled model IPSLCM4. The weakening of the large scale tropical circulation and the poleward shift of the Hadley cells are explained by both the uniform change and the meridional gradient change of the sea surface temperature. Then, we used the atmospheric model LMDZ4 in an aqua-planet configuration. The Hadley circulation changes are explained in a simple framework by the required poleward energy transport. In a last part, we focus on the water vapor distribution and feedback in the climate models. The Hadley circulation changes were shown to have a significant impact on the water vapour feedback during climate change. (author)

  4. The Hamburg large scale geostrophic ocean general circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Mikolajewicz, U.

    1992-02-01

    The rationale for the Large Scale Geostrophic ocean circulation model (LSG-OGCM) is based on the observations that for a large scale ocean circulation model designed for climate studies, the relevant characteristic spatial scales are large compared with the internal Rossby radius throughout most of the ocean, while the characteristic time scales are large compared with the periods of gravity modes and barotropic Rossby wave modes. In the present version of the model, the fast modes have been filtered out by a conventional technique of integrating the full primitive equations, including all terms except the nonlinear advection of momentum, by an implicit time integration method. The free surface is also treated prognostically, without invoking a rigid lid approximation. The numerical scheme is unconditionally stable and has the additional advantage that it can be applied uniformly to the entire globe, including the equatorial and coastal current regions. (orig.)

  5. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    Science.gov (United States)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  6. Breakdown of large-scale circulation in turbulent rotating convection

    NARCIS (Netherlands)

    Kunnen, R.P.J.; Clercx, H.J.H.; Geurts, Bernardus J.

    2008-01-01

    Turbulent rotating convection in a cylinder is investigated both numerically and experimentally at Rayleigh number Ra = $10^9$ and Prandtl number $\\sigma$ = 6.4. In this Letter we discuss two topics: the breakdown under rotation of the domain-filling large-scale circulation (LSC) typical for

  7. Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle

    Directory of Open Access Journals (Sweden)

    M. Löfverström

    2014-07-01

    Full Text Available We present modelling results of the atmospheric circulation at the cold periods of marine isotope stage 5b (MIS 5b, MIS 4 and the Last Glacial Maximum (LGM, as well as the interglacial. The palaeosimulations are forced by ice-sheet reconstructions consistent with geological evidence and by appropriate insolation and greenhouse gas concentrations. The results suggest that the large-scale atmospheric winter circulation remained largely similar to the interglacial for a significant part of the glacial cycle. The proposed explanation is that the ice sheets were located in areas where their interaction with the mean flow is limited. However, the LGM Laurentide Ice Sheet induces a much larger planetary wave that leads to a zonalisation of the Atlantic jet. In summer, the ice-sheet topography dynamically induces warm temperatures in Alaska and central Asia that inhibits the expansion of the ice sheets into these regions. The warm temperatures may also serve as an explanation for westward propagation of the Eurasian Ice Sheet from MIS 4 to the LGM.

  8. Planetary Structures And Simulations Of Large-scale Impacts On Mars

    Science.gov (United States)

    Swift, Damian; El-Dasher, B.

    2009-09-01

    The impact of large meteroids is a possible cause for isolated orogeny on bodies devoid of tectonic activity. On Mars, there is a significant, but not perfect, correlation between large, isolated volcanoes and antipodal impact craters. On Mercury and the Moon, brecciated terrain and other unusual surface features can be found at the antipodes of large impact sites. On Earth, there is a moderate correlation between long-lived mantle hotspots at opposite sides of the planet, with meteoroid impact suggested as a possible cause. If induced by impacts, the mechanisms of orogeny and volcanism thus appear to vary between these bodies, presumably because of differences in internal structure. Continuum mechanics (hydrocode) simulations have been used to investigate the response of planetary bodies to impacts, requiring assumptions about the structure of the body: its composition and temperature profile, and the constitutive properties (equation of state, strength, viscosity) of the components. We are able to predict theoretically and test experimentally the constitutive properties of matter under planetary conditions, with reasonable accuracy. To provide a reference series of simulations, we have constructed self-consistent planetary structures using simplified compositions (Fe core and basalt-like mantle), which turn out to agree surprisingly well with the moments of inertia. We have performed simulations of large-scale impacts, studying the transmission of energy to the antipodes. For Mars, significant antipodal heating to depths of a few tens of kilometers was predicted from compression waves transmitted through the mantle. Such heating is a mechanism for volcanism on Mars, possibly in conjunction with crustal cracking induced by surface waves. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. On unravelling mechanism of interplay between cloud and large scale circulation: a grey area in climate science

    Science.gov (United States)

    De, S.; Agarwal, N. K.; Hazra, Anupam; Chaudhari, Hemantkumar S.; Sahai, A. K.

    2018-04-01

    The interaction between cloud and large scale circulation is much less explored area in climate science. Unfolding the mechanism of coupling between these two parameters is imperative for improved simulation of Indian summer monsoon (ISM) and to reduce imprecision in climate sensitivity of global climate model. This work has made an effort to explore this mechanism with CFSv2 climate model experiments whose cloud has been modified by changing the critical relative humidity (CRH) profile of model during ISM. Study reveals that the variable CRH in CFSv2 has improved the nonlinear interactions between high and low frequency oscillations in wind field (revealed as internal dynamics of monsoon) and modulates realistically the spatial distribution of interactions over Indian landmass during the contrasting monsoon season compared to the existing CRH profile of CFSv2. The lower tropospheric wind error energy in the variable CRH simulation of CFSv2 appears to be minimum due to the reduced nonlinear convergence of error to the planetary scale range from long and synoptic scales (another facet of internal dynamics) compared to as observed from other CRH experiments in normal and deficient monsoons. Hence, the interplay between cloud and large scale circulation through CRH may be manifested as a change in internal dynamics of ISM revealed from scale interactive quasi-linear and nonlinear kinetic energy exchanges in frequency as well as in wavenumber domain during the monsoon period that eventually modify the internal variance of CFSv2 model. Conversely, the reduced wind bias and proper modulation of spatial distribution of scale interaction between the synoptic and low frequency oscillations improve the eastward and northward extent of water vapour flux over Indian landmass that in turn give feedback to the realistic simulation of cloud condensates attributing improved ISM rainfall in CFSv2.

  10. Meridional overturning and large-scale circulation of the Indian Ocean

    Science.gov (United States)

    Ganachaud, Alexandre; Wunsch, Carl; Marotzke, Jochem; Toole, John

    2000-11-01

    The large scale Indian Ocean circulation is estimated from a global hydrographic inverse geostrophic box model with a focus on the meridional overturning circulation (MOC). The global model is based on selected recent World Ocean Circulation Experiment (WOCE) sections which in the Indian Basin consist of zonal sections at 32°S, 20°S and 8°S, and a section between Bali and Australia from the Java-Australia Dynamic Experiment (JADE). The circulation is required to conserve mass, salinity, heat, silica and "PO" (170PO4+O2). Near-conservation is imposed within layers bounded by neutral surfaces, while permitting advective and diffusive exchanges between the layers. Conceptually, the derived circulation is an estimate of the average circulation for the period 1987-1995. A deep inflow into the Indian Basin of 11±4 Sv is found, which is in the lower range of previous estimates, but consistent with conservation requirements and the global data set. The Indonesian Throughflow (ITF) is estimated at 15±5 Sv. The flow in the Mozambique Channel is of the same magnitude, implying a weak net flow between Madagascar and Australia. A net evaporation of -0.6±0.4 Sv is found between 32°S and 8°S, consistent with independent estimates. No net heat gain is found over the Indian Basin (0.1 ± 0.2PW north of 32°S) as a consequence of the large warm water influx from the ITF. Through the use of anomaly equations, the average dianeutral upwelling and diffusion between the sections are required and resolved, with values in the range 1-3×10-5 cm s-1 for the upwelling and 2-10 cm2 s-1 for the diffusivity.

  11. RELATIONSHIPS BETWEEN SEA SURFACE TEMPERATURE, LARGE-SCALE ATMOSPHERIC CIRCULATION, AND CONVECTION OVER THE TROPICAL INDIAN AND PACIFIC OCEANS

    Directory of Open Access Journals (Sweden)

    Orbita Roswintiarti

    2008-07-01

    Full Text Available In this paper, the quantitative estimates of the effect of large-scale circulations on the sea surface temperature (SST-tropical convection relationship and the effect of SST on the large-scale circulation-convection relationship over the tropical Indian and Pacific Oceans are presented. Although convection tends to maximize at warm SSTs, increased deep convection is also determined by the divergence (DIV associated with large-scale circulation. An analysis of the relationship between SST and deep convection shows that under subsidence and clear conditions, there is a decrease in convection or increase in Outgoing Longwave Radiation (OLR at a maximum rate of 3.4 Wm-2 °C-1. In the SST range of 25°C to 29.5°C, a large increase in deep convection (decrease in OLR occurs in the tropical Indian and Pacific Oceans. The OLR reduction is found to be a strong function of the large-scale circulation in the Indian and western Pacific Oceans. Under a weak large-scale circulation, the rate of OLR reduction is about    -3.5 Wm-2 °C-1 to -8.1 Wm-2 °C-1. Under the influence of strong rising motions, the rate can increase to about -12.5 Wm-2 °C-1 for the same SST range. The overall relationship between large-scale circulation and deep convection is nearly linear. A maximum rate of OLR reduction with respect to DIV is -6.1 Wm-2 (10-6 s-1 in the western Pacific Ocean. It is also found that the DIV-OLR relationship is less dependent on SST. For example, the rate of OLR reduction over the western Pacific Ocean for 26°C < SST £ 27°C is -4.2 Wm-2 (10-6 s-1, while that for 28°C < SST £ 29°C is  -5.1 Wm-2 (10-6 s-1. These results are expected to have a great importance for climate feedback mechanisms associated with clouds and SST and for climate predictability.

  12. Application of a planetary wave breaking parameterization to stratospheric circulation statistics

    Science.gov (United States)

    Randel, William J.; Garcia, Rolando R.

    1994-01-01

    The planetary wave parameterization scheme developed recently by Garcia is applied to statospheric circulation statistics derived from 12 years of National Meteorological Center operational stratospheric analyses. From the data a planetary wave breaking criterion (based on the ratio of the eddy to zonal mean meridional potential vorticity (PV) gradients), a wave damping rate, and a meridional diffusion coefficient are calculated. The equatorward flank of the polar night jet during winter is identified as a wave breaking region from the observed PV gradients; the region moves poleward with season, covering all high latitudes in spring. Derived damping rates maximize in the subtropical upper stratosphere (the 'surf zone'), with damping time scales of 3-4 days. Maximum diffusion coefficients follow the spatial patterns of the wave breaking criterion, with magnitudes comparable to prior published estimates. Overall, the observed results agree well with the parameterized calculations of Garcia.

  13. Diversity in the representation of large-scale circulation associated with ENSO-Indian summer monsoon teleconnections in CMIP5 models

    Science.gov (United States)

    Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.

    2018-04-01

    Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are

  14. Planetary-scale circulations in the presence of climatological and wave-induced heating

    Science.gov (United States)

    Salby, Murry L; Garcia, Rolando R.; Hendon, Harry H.

    1994-01-01

    Interaction between the large-scale circulation and the convective pattern is investigated in a coupled system governed by the linearized primitive equations. Convection is represented in terms of two components of heating: A 'climatological component' is prescribed stochastically to represent convection that is maintained by fixed distributions of land and sea and sea surface temperature (SST). An 'induced component' is defined in terms of the column-integrated moisture flux convergence to represent convection that is produced through feedback with the circulation. Each component describes the envelope organizing mesoscale convective activity. As SST on the equator is increased, induced heating amplifies in the gravest zonal wavenumbers at eastward frequencies, where positive feedback offsets dissipation. Under barotropic stratification, a critical SST of 29.5 C results in positive feedback exactly cancelling dissipation in wavenumber 1 for an eastward phase speed of 6 m/s. Sympathetic interaction between the circulation and the induced heating is the basis for 'frictional wave-Conditional Instability of the Second Kind (CISK)', which is distinguished from classical wave-CISK by rendering the gravest zonal dimensions most unstable. Under baroclinic stratification, the coupled system exhibits similar behavior. The critical SST is only 26.5 C for conditions representative of equinox, but in excess of 30 C for conditions representative of solstice. Having the form of an unsteady Walker circulation, the disturbance produced by frictional wave-CISK compares favorably with the observed life cycle of the Madden-Julian oscillation (MJO). SST above the critical value produces an amplifying disturbance in which enhanced convection coincides with upper-tropospheric westerlies and is positively correlated with temperature and surface convergence. Conversely, SST below the critical value produces a decaying disturbance in which enhanced convection coincides with upper

  15. Effect of plumes on measuring the large scale circulation in turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Clercx, H.J.H.; Lohse, Detlef

    2011-01-01

    We studied the properties of the large-scale circulation (LSC) in turbulent Rayleigh-Bénard (RB) convection by using results from direct numerical simulations in which we placed a large number of numerical probes close to the sidewall. The LSC orientation is determined by either a cosine or a

  16. The circulation pattern and day-night heat transport in the atmosphere of a synchronously rotating aquaplanet: Dependence on planetary rotation rate

    Science.gov (United States)

    Noda, S.; Ishiwatari, M.; Nakajima, K.; Takahashi, Y. O.; Takehiro, S.; Onishi, M.; Hashimoto, G. L.; Kuramoto, K.; Hayashi, Y.-Y.

    2017-01-01

    In order to investigate a possible variety of atmospheric states realized on a synchronously rotating aquaplanet, an experiment studying the impact of planetary rotation rate is performed using an atmospheric general circulation model (GCM) with simplified hydrological and radiative processes. The entire planetary surface is covered with a swamp ocean. The value of planetary rotation rate is varied from zero to the Earth's, while other parameters such as planetary radius, mean molecular weight and total mass of atmospheric dry components, and solar constant are set to the present Earth's values. The integration results show that the atmosphere reaches statistically equilibrium states for all runs; none of the calculated cases exemplifies the runaway greenhouse state. The circulation patterns obtained are classified into four types: Type-I characterized by the dominance of a day-night thermally direct circulation, Type-II characterized by a zonal wave number one resonant Rossby wave over a meridionally broad westerly jet on the equator, Type-III characterized by a long time scale north-south asymmetric variation, and Type-IV characterized by a pair of mid-latitude westerly jets. With the increase of planetary rotation rate, the circulation evolves from Type-I to Type-II and then to Type-III gradually and smoothly, whereas the change from Type-III to Type-IV is abrupt and discontinuous. Over a finite range of planetary rotation rate, both Types-III and -IV emerge as statistically steady states, constituting multiple equilibria. In spite of the substantial changes in circulation, the net energy transport from the day side to the night side remains almost insensitive to planetary rotation rate, although the partition into dry static energy and latent heat energy transports changes. The reason for this notable insensitivity is that the outgoing longwave radiation over the broad area of the day side is constrained by the radiation limit of a moist atmosphere, so that the

  17. Extreme Temperature Regimes during the Cool Season and their Associated Large-Scale Circulations

    Science.gov (United States)

    Xie, Z.

    2015-12-01

    In the cool season (November-March), extreme temperature events (ETEs) always hit the continental United States (US) and provide significant societal impacts. According to the anomalous amplitudes of the surface air temperature (SAT), there are two typical types of ETEs, e.g. cold waves (CWs) and warm waves (WWs). This study used cluster analysis to categorize both CWs and WWs into four distinct regimes respectively and investigated their associated large-scale circulations on intra-seasonal time scale. Most of the CW regimes have large areal impact over the continental US. However, the distribution of cold SAT anomalies varies apparently in four regimes. In the sea level, the four CW regimes are characterized by anomalous high pressure over North America (near and to west of cold anomaly) with different extension and orientation. As a result, anomalous northerlies along east flank of anomalous high pressure convey cold air into the continental US. To the middle troposphere, the leading two groups feature large-scale and zonally-elongated circulation anomaly pattern, while the other two regimes exhibit synoptic wavetrain pattern with meridionally elongated features. As for the WW regimes, there are some patterns symmetry and anti-symmetry with respect to CW regimes. The WW regimes are characterized by anomalous low pressure and southerlies wind over North America. The first and fourth groups are affected by remote forcing emanating from North Pacific, while the others appear mainly locally forced.

  18. Large-Scale Atmospheric Circulation Patterns Associated with Temperature Extremes as a Basis for Model Evaluation: Methodological Overview and Results

    Science.gov (United States)

    Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.

    2015-12-01

    Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are

  19. Large-scale and synoptic meteorology in the south-east Pacific during the observations campaign VOCALS-REx in austral Spring 2008

    Directory of Open Access Journals (Sweden)

    T. Toniazzo

    2011-05-01

    Full Text Available We present a descriptive overview of the meteorology in the south eastern subtropical Pacific (SEP during the VOCALS-REx intensive observations campaign which was carried out between October and November 2008. Mainly based on data from operational analyses, forecasts, reanalysis, and satellite observations, we focus on spatio-temporal scales from synoptic to planetary. A climatological context is given within which the specific conditions observed during the campaign are placed, with particular reference to the relationships between the large-scale and the regional circulations. The mean circulations associated with the diurnal breeze systems are also discussed. We then provide a summary of the day-to-day synoptic-scale circulation, air-parcel trajectories, and cloud cover in the SEP during VOCALS-REx. Three meteorologically distinct periods of time are identified and the large-scale causes for their different character are discussed. The first period was characterised by significant variability associated with synoptic-scale systems interesting the SEP; while the two subsequent phases were affected by planetary-scale disturbances with a slower evolution. The changes between initial and later periods can be partly explained from the regular march of the annual cycle, but contributions from subseasonal variability and its teleconnections were important. Across the whole of the two months under consideration we find a significant correlation between the depth of the inversion-capped marine boundary layer (MBL and the amount of low cloud in the area of study. We discuss this correlation and argue that at least as a crude approximation a typical scaling may be applied relating MBL and cloud properties with the large-scale parameters of SSTs and tropospheric temperatures. These results are consistent with previously found empirical relationships involving lower-tropospheric stability.

  20. Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using Genetic Programming

    Science.gov (United States)

    Kashid, Satishkumar S.; Maity, Rajib

    2012-08-01

    SummaryPrediction of Indian Summer Monsoon Rainfall (ISMR) is of vital importance for Indian economy, and it has been remained a great challenge for hydro-meteorologists due to inherent complexities in the climatic systems. The Large-scale atmospheric circulation patterns from tropical Pacific Ocean (ENSO) and those from tropical Indian Ocean (EQUINOO) are established to influence the Indian Summer Monsoon Rainfall. The information of these two large scale atmospheric circulation patterns in terms of their indices is used to model the complex relationship between Indian Summer Monsoon Rainfall and the ENSO as well as EQUINOO indices. However, extracting the signal from such large-scale indices for modeling such complex systems is significantly difficult. Rainfall predictions have been done for 'All India' as one unit, as well as for five 'homogeneous monsoon regions of India', defined by Indian Institute of Tropical Meteorology. Recent 'Artificial Intelligence' tool 'Genetic Programming' (GP) has been employed for modeling such problem. The Genetic Programming approach is found to capture the complex relationship between the monthly Indian Summer Monsoon Rainfall and large scale atmospheric circulation pattern indices - ENSO and EQUINOO. Research findings of this study indicate that GP-derived monthly rainfall forecasting models, that use large-scale atmospheric circulation information are successful in prediction of All India Summer Monsoon Rainfall with correlation coefficient as good as 0.866, which may appears attractive for such a complex system. A separate analysis is carried out for All India Summer Monsoon rainfall for India as one unit, and five homogeneous monsoon regions, based on ENSO and EQUINOO indices of months of March, April and May only, performed at end of month of May. In this case, All India Summer Monsoon Rainfall could be predicted with 0.70 as correlation coefficient with somewhat lesser Correlation Coefficient (C.C.) values for different

  1. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    Science.gov (United States)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach

  2. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    Science.gov (United States)

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscal...

  3. Impact of variations of gravitational acceleration on the general circulation of the planetary atmosphere

    Science.gov (United States)

    Kilic, Cevahir; Raible, Christoph C.; Stocker, Thomas F.; Kirk, Edilbert

    2017-01-01

    Fundamental to the redistribution of energy in a planetary atmosphere is the general circulation and its meridional structure. We use a general circulation model of the atmosphere in an aquaplanet configuration with prescribed sea surface temperature and investigate the influence of the gravitational acceleration g on the structure of the circulation. For g =g0 = 9.81 ms-2 , three meridional cells exist in each hemisphere. Up to about g /g0 = 1.4 all cells increase in strength. Further increasing this ratio results in a weakening of the thermally indirect cell, such that a two- and finally a one-cell structure of the meridional circulation develops in each hemisphere. This transition is explained by the primary driver of the thermally direct Hadley cell: the diabatic heating at the equator which is proportional to g. The analysis of the energetics of the atmospheric circulation based on the Lorenz energy cycle supports this finding. For Earth-like gravitational accelerations transient eddies are primarily responsible for the meridional heat flux. For large gravitational accelerations, the direct zonal mean conversion of energy dominates the meridional heat flux.

  4. The impact of changes in parameterizations of surface drag and vertical diffusion on the large-scale circulation in the Community Atmosphere Model (CAM5)

    Science.gov (United States)

    Lindvall, Jenny; Svensson, Gunilla; Caballero, Rodrigo

    2017-06-01

    Simulations with the Community Atmosphere Model version 5 (CAM5) are used to analyze the sensitivity of the large-scale circulation to changes in parameterizations of orographic surface drag and vertical diffusion. Many GCMs and NWP models use enhanced turbulent mixing in stable conditions to improve simulations, while CAM5 cuts off all turbulence at high stabilities and instead employs a strong orographic surface stress parameterization, known as turbulent mountain stress (TMS). TMS completely dominates the surface stress over land and reduces the near-surface wind speeds compared to simulations without TMS. It is found that TMS is generally beneficial for the large-scale circulation as it improves zonal wind speeds, Arctic sea level pressure and zonal anomalies of the 500-hPa stream function, compared to ERA-Interim. It also alleviates atmospheric blocking frequency biases in the Northern Hemisphere. Using a scheme that instead allows for a modest increase of turbulent diffusion at higher stabilities only in the planetary boundary layer (PBL) appears to in some aspects have a similar, although much smaller, beneficial effect as TMS. Enhanced mixing throughout the atmospheric column, however, degrades the CAM5 simulation. Evaluating the simulations in comparison with detailed measurements at two locations reveals that TMS is detrimental for the PBL at the flat grassland ARM Southern Great Plains site, giving too strong wind turning and too deep PBLs. At the Sodankylä forest site, the effect of TMS is smaller due to the larger local vegetation roughness. At both sites, all simulations substantially overestimate the boundary layer ageostrophic flow.

  5. Wintertime westward-traveling planetary-scale perturbations over the Euro-Atlantic region

    Energy Technology Data Exchange (ETDEWEB)

    Doblas-Reyes, F.J. [Centro de Astrobiologia, INTA, Madrid (Spain); Pastor, M.A.; Casado, M.J. [Instituto Nacional de Meteorologia, Madrid (Spain); Deque, M. [CNRM, Meteo-France, Toulouse (France)

    2001-07-01

    The features of the wintertime westward-traveling planetary scale perturbations over the Euro-Atlantic region are examined through the use of space-time spectral analysis applied to the 500 hPa geopotential height field. The intention is to understand the nature of these phenomena and the performance of climate models. Data from both ECMWF re-analyses and a simulation from the ARPEGE general circulation model are used. Westward-traveling planetary scale transients are found over the region as local perturbations resembling Rossby normal modes, with a maximum power over the Eastern Atlantic. The westward-traveling planetary scale transients north of 40 {sup circle} N have periods larger than 20 days. South of this latitude, wave periods are shifted to a band around 10 days, so that they can be related to subtropical transient waves. The atmospheric model used, like other models which exhibit reasonable mean climatic properties, tend to have less overall intraseasonal variability than observed. Nevertheless, the model is able to capture most of the features of the westward-traveling low-frequency transients. The differences in basic state, partially produced by scale interactions, would lead to the generation of westward-traveling waves in the model distinct from the observed. However, it is suggested that the improvement of the present model version with regard to previous model versions is due to a better simulation of the time-mean state. The reasonable simulation of the synoptic-scale variability south of 50 {sup circle} N, and thus of its barotropic forcing on the basic state, may also help to explain the realistic westward-traveling transients in the model. (orig.)

  6. Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations

    Science.gov (United States)

    Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan

    2017-11-01

    Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of

  7. Planetary-Scale Inertio Gravity Waves in the Numerical Spectral Model

    Science.gov (United States)

    Mayr, H. G.; Mengel, J. R.; Talaat, E. R.; Porter, H. S.

    2004-01-01

    In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours. Waves with such a period are generated in our Numerical Spectral Model (NSM), and they are identified as planetary-scale inertio gravity waves (IGW). These IGWs have periods between 9 and 11 hours and appear above 60 km in the zonal mean (m = 0), as well as in zonal wavenumbers m = 1 to 4. The waves can propagate eastward and westward and have vertical wavelengths around 25 km. The amplitudes in the wind field are typically between 10 and 20 m/s and can reach 30 m/s in the westward propagating component for m = 1 at the poles. In the temperature perturbations, the wave amplitudes above 100 km are typically 5 K and as large as 10 K for m = 0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. In the NSM, the IGW are generated like the planetary waves (PW). They are produced apparently by the instabilities that arise in the zonal mean circulation. Relative to the PWs, however, the IGWs propagate zonally with much larger velocities, such that they are not affected much by interactions with the background zonal winds. Since the IGWs can propagate through the mesosphere without much interaction, except for viscous dissipation, one should then expect that they reach the thermosphere with significant and measurable amplitudes.

  8. Interannual Variability in the Position and Strength of the East Asian Jet Stream and Its Relation to Large - scale Circulation

    Science.gov (United States)

    Chan, Duo; Zhang, Yang; Wu, Qigang

    2013-04-01

    East Asian Jet Stream (EASJ) is charactered by obvious interannual variability in strength and position (latitude), with wide impacts on East Asian climate in all seasons. In this study, two indices are established to measure the interannual variability in intensity and position of EAJS. Possible causing factors, including both local signals and non-local large-scale circulation, are examined using NCAP-NCAR reanalysis data to investigate their relations with jet variation. Our analysis shows that the relationship between the interannual variations of EASJ and these factors depends on seasons. In the summer, both the intensity and position of EASJ are closely related to the meridional gradient of local surface temperature, but display no apparent relationship with the larg-scale circulation. In cold seasons (autumn, winter and spring), both the local factor and the large-scale circulation, i.e. the Pacific/North American teleconnection pattern (PNA), play important roles in the interannual variability of the jet intensity. The variability in the jet position, however, is more correlated to the Arctic Oscillation (AO), especially in winter. Diagnostic analysis indicates that transient eddy activity plays an important role in connecting the interannual variability of EASJ position with AO.

  9. Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation

    Directory of Open Access Journals (Sweden)

    D. Handorf

    2012-01-01

    Full Text Available The response of the Arctic atmosphere to low and high sea ice concentration phases based on European Center for Medium-Range Weather Forecast (ECMWF Re-Analysis Interim (ERA-Interim atmospheric data and Hadley Centre's sea ice dataset (HadISST1 from 1989 until 2010 has been studied. Time slices of winter atmospheric circulation with high (1990–2000 and low (2001–2010 sea ice concentration in the preceding August/September have been analysed with respect to tropospheric interactions between planetary and baroclinic waves. It is shown that a changed sea ice concentration over the Arctic Ocean impacts differently the development of synoptic and planetary atmospheric circulation systems. During the low ice phase, stronger heat release to the atmosphere over the Arctic Ocean reduces the atmospheric vertical static stability. This leads to an earlier onset of baroclinic instability that further modulates the non-linear interactions between baroclinic wave energy fluxes on time scales of 2.5–6 d and planetary scales of 10–90 d. Our analysis suggests that Arctic sea ice concentration changes exert a remote impact on the large-scale atmospheric circulation during winter, exhibiting a barotropic structure with similar patterns of pressure anomalies at the surface and in the mid-troposphere. These are connected to pronounced planetary wave train changes notably over the North Pacific.

  10. Large-scale impact cratering on the terrestrial planets

    International Nuclear Information System (INIS)

    Grieve, R.A.F.

    1982-01-01

    The crater densities on the earth and moon form the basis for a standard flux-time curve that can be used in dating unsampled planetary surfaces and constraining the temporal history of endogenic geologic processes. Abundant evidence is seen not only that impact cratering was an important surface process in planetary history but also that large imapact events produced effects that were crucial in scale. By way of example, it is noted that the formation of multiring basins on the early moon was as important in defining the planetary tectonic framework as plate tectonics is on the earth. Evidence from several planets suggests that the effects of very-large-scale impacts go beyond the simple formation of an impact structure and serve to localize increased endogenic activity over an extended period of geologic time. Even though no longer occurring with the frequency and magnitude of early solar system history, it is noted that large scale impact events continue to affect the local geology of the planets. 92 references

  11. The impact of large-scale circulation patterns on summer crop yields in IP

    Science.gov (United States)

    Capa Morocho, Mirian; Rodríguez Fonseca, Belén; Ruiz Ramos, Margarita

    2014-05-01

    Large-scale circulations patterns (ENSO, NAO) have been shown to have a significant impact on seasonal weather, and therefore on crop yield over many parts of the world(Garnett and Khandekar, 1992; Aasa et al., 2004; Rozas and Garcia-Gonzalez, 2012). In this study, we analyze the influence of large-scale circulation patterns and regional climate on the principal components of maize yield variability in Iberian Peninsula (IP) using reanalysis datasets. Additionally, we investigate the modulation of these relationships by multidecadal patterns. This study is performed analyzing long time series of maize yield, only climate dependent, computed with the crop model CERES-maize (Jones and Kiniry, 1986) included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5). To simulate yields, reanalysis daily data of radiation, maximum and minimum temperature and precipitation were used. The reanalysis climate data were obtained from National Center for Environmental Prediction (20th Century and NCEP) and European Centre for Medium-Range Weather Forecasts (ECMWF) data server (ERA 40 and ERA Interim). Simulations were run at five locations: Lugo (northwestern), Lerida (NE), Madrid (central), Albacete (southeastern) and Córdoba (S IP) (Gabaldón et al., 2013). From these time series standardized anomalies were calculated. Afterwards, time series were time filtered to focus on the interannual-to-multiannual variability, splitting up in two components: low frequency (LF) and high frequency (HF) time scales. The principal components of HF yield anomalies in IP were compared with a set of documented patterns. These relationships were compared with multidecadal patterns, as Atlanctic Multidecadal Oscillations (AMO) and Interdecadal Pacific Oscillations (IPO). The results of this study have important implications in crop forecasting. In this way, it may have a positive impact on both public (agricultural planning) and private (decision support to farmers, insurance

  12. The role of nonlinear self-interaction in the dynamics of planetary-scale atmospheric fluctuations

    International Nuclear Information System (INIS)

    Saffioti, C; Malguzzi, P; Speranza, A

    2016-01-01

    A central role in the general circulation of the atmosphere is played by planetary-scale inertial fluctuations with zonal wavenumber in the range k  = 1–4. Geopotential variance in this range is markedly non-gaussian and a great fraction of it is non-propagating, in contrast with the normal distribution of amplitudes and the basically propagating character of fluctuations in the baroclinic range (3 <  k  < 15). While a wave dispersion relationship can be identified in the baroclinic range, no clear relationship between time and space scales emerges in the ultra-long regime ( k  < 5, period >10 days). We investigate the hypothesis that nonlinear self-interaction of planetary waves influences the mobility (and, therefore, the dispersion) of ultra-long planetary fluctuations. By means of a perturbation expansion of the barotropic vorticity equation we derive a minimal analytic description of the impact of self-nonlinearity on mobility and we show that this is responsible for a correction term to phase speed, with the prevalent effect of slowing down the propagation of waves. The intensity of nonlinear self-interaction is shown to increase with the complexity of the flow, depending on both its zonal and meridional modulations. Reanalysis data of geopotential height and zonal wind are analysed in order to test the effect of self-nonlinearity on observed planetary flows. (paper)

  13. The Influence of Large-Scale Circulation on Fire Outbreaks in the Amazon Region

    Science.gov (United States)

    Pires, L. B. M.; Romao, M.; Freitas, A. C. V.

    2017-12-01

    The combination of alterations in land use cover and severe droughts may dramatically increase fire outbreaks. Tropical convection in the Amazon Basin is regulated mainly by large-scale atmospheric systems such as the Walker circulation. Many of the documented drought episodes in the Amazon occurred during intense El Niño events such as those recorded in 1926, 1983, 1997-1998, and 2010. However, not all El Niño events are related to drought in the Amazon. Recent studies have also pointed out the importance of the tropical Atlantic Ocean in the modulation of the Amazonian climate, as observed during the drought episodes in 2005 and 2010. This work investigates the fire outbreak tendency in the Amazon region, and the influence of large-scale circulation on these events. Data from the Fire Program of the Center for Weather Forecasting and Climate Studies (CPTEC/INPE) show a substantial increase in the number of fire outbreaks in the last few years, especially during 2016. However, in the 2017 year a sharp drop in fire outbreaks reaching levels similar to the years prior to 2016 is being noted, already showing a reduction of 54% in relation to the preceding 2016 year. The 2015-2016 period was marked by one of the strongest El Niño in history. This was reflected in the increase of the number of fire outbreaks due to the increase of the drought and temperature elevation period. On the other hand, the 2017 year is being characterized by a condition of neutrality in relation to the El Niño-Southern Oscillation (ENSO) phenomena, and have overall presented positive sea surface temperature (SST) anomalies in the tropical Atlantic. Variations of these systems and their relation to fire outbreaks is demonstrated.

  14. Large scale circulation in the convection zone and solar differential rotation

    Energy Technology Data Exchange (ETDEWEB)

    Belvedere, G [Instituto di Astronomia dell' Universita di Catania, 95125 Italy; Paterno, L [Osservatorio Astrofisico di Catania, 95125 Italy

    1976-04-01

    In this paper the dependence on depth and latitude of the solar angular velocity produced by a meridian circulation in the convection zone is studied assuming that the main mechanism responsible for setting up and driving the circulation is the interaction of rotation with convection. The first order equations (perturbation of the spherically symmetric state are solved in the Boussinesq approximation and in the steady state for the axissymmetric case. The interaction of convection with rotation is modelled by a convective transport coefficient. The model is consistent with the fact that the interaction of convection with rotation sets up a circulation (driven by the temperature gradient) which carries angular momentum toward the equator against the viscous friction. Unfortunately also a large flux variation at the surface is obtained. Nevertheless it seems that the model has the basic requisites for correct dynamo action.

  15. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    OpenAIRE

    Robert Petroski; Lowell Wood

    2012-01-01

    A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole d...

  16. Properties of internal planetary-scale inertio gravity waves in the mesosphere

    Directory of Open Access Journals (Sweden)

    H. G. Mayr

    2004-11-01

    Full Text Available At high latitudes in the upper mesosphere, horizontal wind oscillations have been observed with periods around 10h. Waves with such a period are generated in our Numerical Spectral Model (NSM, and they are identified as planetary-scale inertio gravity waves (IGW. These IGWs have periods between 9 and 11h and appear above 60km in the zonal mean (m=0, as well as in m=1 to 4, propagating eastward and westward. Under the influence of the Coriolis force, the amplitudes of the waves propagating westward are larger at high latitudes than those propagating eastward. The waves grow in magnitude at least up to about 100km and have vertical wavelengths around 25km. Applying a running window of 15 days for spectral analysis, the amplitudes in the wind field are typically between 10 and 20m/s and can reach 30m/s in the westward propagating component for m=1 at the poles. In the temperature perturbations, the wave amplitudes above 100km are typically 5K and as large as 10K for m=0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. Numerical experiments show that such waves are also generated without excitation of the migrating tides. The amplitudes and periods then are similar, indicating that the tides are not essential to generate the waves. However, the seasonal variations without tides are significantly different, which leads to the conclusion that non linear interactions between the semidiurnal tide and planetary waves must contribute to the excitation of the IGWs. Directly or indirectly through the planetary waves, the IGWs are apparently excited by the instabilities that arise in the zonal mean circulation. When the solar heating is turned off for m=0, both the PWs and IGWs essentially disappear. That the IGWs and PWs have common roots in their excitation mechanism is also indicated by the striking similarity of their seasonal variations in the

  17. Uranus atmospheric dynamics and circulation

    Science.gov (United States)

    Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.

    1991-01-01

    The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.

  18. Forced synchronization of large-scale circulation to increase predictability of surface states

    Science.gov (United States)

    Shen, Mao-Lin; Keenlyside, Noel; Selten, Frank; Wiegerinck, Wim; Duane, Gregory

    2016-04-01

    Numerical models are key tools in the projection of the future climate change. The lack of perfect initial condition and perfect knowledge of the laws of physics, as well as inherent chaotic behavior limit predictions. Conceptually, the atmospheric variables can be decomposed into a predictable component (signal) and an unpredictable component (noise). In ensemble prediction the anomaly of ensemble mean is regarded as the signal and the ensemble spread the noise. Naturally the prediction skill will be higher if the signal-to-noise ratio (SNR) is larger in the initial conditions. We run two ensemble experiments in order to explore a way to reduce the SNR of surface winds and temperature. One ensemble experiment is AGCM with prescribing sea surface temperature (SST); the other is AGCM with both prescribing SST and nudging the high-level temperature and winds to ERA-Interim. Each ensemble has 30 members. Larger SNR is expected and found over the tropical ocean in the first experiment because the tropical circulation is associated with the convection and the associated surface wind convergence as these are to a large extent driven by the SST. However, small SNR is found over high latitude ocean and land surface due to the chaotic and non-synchronized atmosphere states. In the second experiment the higher level temperature and winds are forced to be synchronized (nudged to reanalysis) and hence a larger SNR of surface winds and temperature is expected. Furthermore, different nudging coefficients are also tested in order to understand the limitation of both synchronization of large-scale circulation and the surface states. These experiments will be useful for the developing strategies to synchronize the 3-D states of atmospheric models that can be later used to build a super model.

  19. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    Science.gov (United States)

    Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim

    2017-06-01

    Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water

  20. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    Directory of Open Access Journals (Sweden)

    T. Wolf-Grosse

    2017-06-01

    Full Text Available Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s−1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES experiments with the Parallelised Large-Eddy Simulation Model (PALM for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a

  1. Impact of cloud microphysics on cloud-radiation interactions in the CSU general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, L.D.; Randall, D.A.

    1995-04-01

    Our ability to study and quantify the impact of cloud-radiation interactions in studying global scale climate variations strongly relies upon the ability of general circulation models (GCMs) to simulate the coupling between the spatial and temporal variations of the model-generated cloudiness and atmospheric moisture budget components. In particular, the ability of GCMs to reproduce the geographical distribution of the sources and sinks of the planetary radiation balance depends upon their representation of the formation and dissipation of cloudiness in conjunction with cloud microphysics processes, and the fractional amount and optical characteristics of cloudiness in conjunction with the mass of condensate stored in the atmosphere. A cloud microphysics package which encompasses five prognostic variables for the mass of water vapor, cloud water, cloud ice, rain, and snow has been implemented in the Colorado State University General Circulation Model (CSU GCM) to simulate large-scale condensation processes. Convection interacts with the large-scale environment through the detrainment of cloud water and cloud ice at the top of cumulus towers. The cloud infrared emissivity and cloud optical depth of the model-generated cloudiness are interactive and depend upon the mass of cloud water and cloud ice suspended in the atmosphere. The global atmospheric moisture budget and planetary radiation budget of the CSU GCM obtained from a perpetual January simulation are discussed. Geographical distributions of the atmospheric moisture species are presented. Global maps of the top-of-atmosphere outgoing longwave radiation and planetary albedo are compared against Earth Radiation Budget Experiment (ERBE) satellite data.

  2. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    Directory of Open Access Journals (Sweden)

    Robert Petroski

    2012-11-01

    Full Text Available A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole disposal of nuclear waste. In addition to these technological components, it also possesses the sociopolitical quality of manifest safety, which involves engineering to a very high degree of safety in a straightforward manner, while concurrently making the safety characteristics of the resulting nuclear systems continually manifest to society as a whole. Near-term aspects of this nuclear system are outlined, and representative parameters given for a system of global scale capable of supplying energy to a planetary population of 10 billion people at a per capita level enjoyed by contemporary Americans, i.e., of a type which might be seen a half-century hence. In addition to being sustainable from a resource standpoint, the described nuclear system is also sustainable with respect to environmental and human health impacts, including those resulting from severe accidents.

  3. The role of large-scale, extratropical dynamics in climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, T.G. [ed.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

  4. The role of large-scale, extratropical dynamics in climate change

    International Nuclear Information System (INIS)

    Shepherd, T.G.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop's University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database

  5. Planetary circulations in the presence of transient and self-induced heating

    Science.gov (United States)

    Salby, Murry L.; Garcia, Rolando R.

    1993-01-01

    The research program focuses on large-scale circulations and their interaction with the global convective pattern. An 11-year record of global cloud imagery and contemporaneous fields of motion and temperature have been used to investigate organized convection and coherent variability of the tropical circulation operating on intraseasonal time scales. This study provides a detailed portrait of tropical variability associated with the so-called Madden-Julian Oscillation (MJO). It reveals the nature, geographical distribution, and seasonality of discrete convective signal, which is a measure of feedback between the circulation and the convective pattern. That discrete spectral behavior has been evaluated in light of natural variability of the ITCZ associated with climatological convection. A composite signature of the MJO, based on cross-covariance statistics of cloud cover, motion, and temperature, has been constructed to characterize the lifecycle of the disturbance in terms of these properties. The composite behavior has also been used to investigate the influence the MJO exerts on the zonal-mean circulation and the involvement of the MJO in transfers of momentum between the atmosphere and the solid Earth. The aforementioned observational studies have led to the production of two animations. One reveals the convective signal in band-pass filtered OLR and compares it to climatological convection. The other is a 3-dimensional visualization of the composite lifecycle of the MJO. With a clear picture of the MJO in hand, feedback between the circulation and the convective pattern can be diagnosed meaningfully in numerical simulations. This process is being explored in calculations with the linearized primitive equations on the sphere in the presence of realistic stability and shear. The numerical framework represents climatological convection as a space-time stochastic process and wave-induced convection in terms of the vertically-integrated moisture flux convergence

  6. Climate dynamics of South America during summer: Connections between the large-scale circulation and regional precipitation

    Science.gov (United States)

    Lenters, Johh Derick

    1997-05-01

    Relationships between the large-scale circulation and regional precipitation over South America during austral summer are examined using a GCM, linear model, and observational analyses. Emphasis is placed on understanding the origin of upper-tropospheric circulation features such as the Bolivian high and its effects on South American precipitation variability, particularly on the Central Andean Altiplano. Results from the linear model indicate that the Bolivian high and 'Nordeste low' are generated in response to precipitation over the Amazon basin, Central Andes, and South Atlantic convergence zone (SACZ), with African precipitation also playing a crucial role in the formation of the low. The direct mechanical and sensible heating effects of the Andes are minimal, acting only to induce a weak lee trough in midlatitudes and a shallow monsoonal circulation over the Central Andes. In the GCM the effects of the Andes include a strengthening of the Bolivian high and northward shift of the Nordeste low, primarily through changes in the precipitation field. The position of the Bolivian high is primarily determined by Amazonian precipitation and is little affected by the removal of the Andes. Strong subsidence to the west of the high is found to be important for the maintenance of the high's warm core, while large-scale convective overshooting to the east is responsible for a layer of cold air above the high. Observations from eight summer seasons reveal a close relationship between precipitation variability in the Central Andes and the position and intensity of the Bolivian high. The physical mechanisms of this connection are explored using composite, EOF, and correlation techniques. On intraseasonal to interannual timescales, rainy episodes on the Altiplano are found to be associated with warm, moist, poleward flow along the eastern flank of the Andes, often in conjunction with extratropical disturbances and a westward displacement of the SACZ. Corresponding to this

  7. Interannual variability of Central European mean temperature in January / February and its relation to the large-scale circulation

    International Nuclear Information System (INIS)

    Werner, P.C.; Storch, H. von

    1993-01-01

    The Central European temperature distribution field, as given by 11 stations (Fanoe, Hamburg, Potsdam, Jena, Frankfurt, Uccle, Hohenpeissenberg, Praha, Wien, Zuerich and Geneve), is analysed with respect to its year-to-year variability. January-February (JF) average temperatures are considered for the interval 1901-80. An Orthogonal Function (EOF) analysis reveals that the JF temperature variability is almost entirely controlled by one EOF with uniform sign. The second EOF represents only 7% of the total variance and describes a north-south gradient. The time coefficient of the first EOF is almost stationary whereas the second pattern describes a slight downward trend at the northern stations and a slight upward trend at the southern stations. The relationship of the temperature field to the large-scale circulation, represented by the North Atlantic/European sea-level pressure (SLP) field, is investigated by means of a Canonical Correlation (CCA) Analysis. Two CCA pairs are identified which account for most of the temperature year-to-year variance and which suggest plausible mechanisms. The CCA pairs fail, however, to consistently link the long-term temperature trends to changes in the large-scale circulation. In the output of a 100-year run with a coupled atmosphere-ocean model (ECHAM1/LSG), the same CCA pairs are found but the strength of the link between Central European temperature and North Atlantic SLP is markedly weaker than in the observed data. (orig.)

  8. Large-scale connection between aerosol optical depth and summer monsoon circulation, and precipitation over northeast Asia

    Science.gov (United States)

    Kim, Sang-Woo; Yoon, Soon-Chang; Choi, Suk-Jin; Choi, In-Jin

    2010-05-01

    We investigated the large-scale connection between columnar aerosol loads and summer monsoon circulation, and also the precipitation over northeast Asia using aerosol optical depth (AOD) data obtained from the 8-year MODIS, AERONET Sun/sky radiometer, and precipitation data acquired under the Global Precipitation Climatology Project (GPCP). These high-quality data revealed the large-scale link between AOD and summer monsoon circulation, precipitation in July over northeast Asian countries, and their distinct spatial and annual variabilities. Compared to the mean AOD for the entire period of 2001-2008, the increase of almost 40-50% in the AOD value in July 2005 and July 2007 was found over the downwind regions of China (Yellow Sea, Korean peninsula, and East Sea), with negative precipitation anomalies. This can be attributable to the strong westerly confluent flows, between cyclone flows by continental thermal low centered over the northern China and anti-cyclonic flows by the western North Pacific High, which transport anthropogenic pollution aerosols emitted from east China to aforementioned downwind high AOD regions along the rim of the Pacific marine airmass. In July 2002, however, the easterly flows transported anthropogenic aerosols from east China to the southwestern part of China in July 2002. As a result, the AOD off the coast of China was dramatically reduced in spite of decreasing rainfall. From the calculation of the cross-correlation coefficient between MODIS-derived AOD anomalies and GPCP precipitation anomalies over the period 2001-2008, we found negative correlations over the areas encompassed by 105-115E and 30-35N and by 120-140E and 35-40N (Yellow Sea, Korean peninsula, and East Sea). This suggests that aerosol loads over these regions are easily influenced by the Asian monsoon flow system and associated precipitation.

  9. Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia

    Science.gov (United States)

    Seim, Andrea; Schultz, Johannes A.; Leland, Caroline; Davi, Nicole; Byambasuren, Oyunsanaa; Liang, Eryuan; Wang, Xiaochun; Beck, Christoph; Linderholm, Hans W.; Pederson, Neil

    2017-09-01

    Understanding past and recent climate and atmospheric circulation variability is vital for regions that are affected by climate extremes. In mid-latitude Asia, however, the synoptic climatology is complex and not yet fully understood. The aim of this study was to investigate dominant synoptic-scale circulation patterns during the summer season using a multi-species tree-ring width (TRW) network comprising 78 sites from mid-latitude Asia. For each TRW chronology, we calculated an atmospheric circulation tree-ring index (ACTI), based on 1000 hPa geopotential height data, to directly link tree growth to 13 summertime weather types and their associated local climate conditions for the period 1871-1993. Using the ACTI, three groups of similarly responding tree-ring sites can be associated with distinct large-scale atmospheric circulation patterns: 1. growth of drought sensitive trees is positively affected by a cyclone over northern Russia; 2. temperature sensitive trees show positive associations to a cyclone over northwestern Russia and an anticyclone over Mongolia; 3. trees at two high elevation sites show positive relations to a zonal cyclone extending from mid-latitude Eurasia to the West Pacific. The identified synoptic-scale circulation patterns showed spatiotemporal variability in their intensity and position, causing temporally varying climate conditions in mid-latitude Asia. Our results highlight that for regions with less pronounced atmospheric action centers during summer such as the occurrence of large-scale cyclones and anticyclones, synoptic-scale circulation patterns can be extracted and linked to the Northern Hemisphere circulation system. Thus, we provide a new and solid envelope for climate studies covering the past to the future.

  10. Cessations and reversals of the large-scale circulation in turbulent thermal convection.

    Science.gov (United States)

    Xi, Heng-Dong; Xia, Ke-Qing

    2007-06-01

    We present an experimental study of cessations and reversals of the large-scale circulation (LSC) in turbulent thermal convection in a cylindrical cell of aspect ratio (Gamma) 1/2 . It is found that cessations and reversals of the LSC occur in Gamma = 1/2 geometry an order-of-magnitude more frequently than they do in Gamma=1 cells, and that after a cessation the LSC is most likely to restart in the opposite direction, i.e., reversals of the LSC are the most probable cessation events. This contrasts sharply to the finding in Gamma=1 geometry and implies that cessations in the two geometries are governed by different dynamics. It is found that the occurrence of reversals is a Poisson process and that a stronger rebound of the flow strength after a reversal or cessation leads to a longer period of stability of the LSC. Several properties of reversals and cessations in this system are found to be statistically similar to those of geomagnetic reversals. A direct measurement of the velocity field reveals that a cessation corresponds to a momentary decoherence of the LSC.

  11. A Thermodynamically General Theory for Convective Circulations and Vortices

    Science.gov (United States)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  12. Dominant Large-Scale Atmospheric Circulation Systems for the Extreme Precipitation over the Western Sichuan Basin in Summer 2013

    Directory of Open Access Journals (Sweden)

    Yamin Hu

    2015-01-01

    Full Text Available The western Sichuan Basin (WSB is a rainstorm center influenced by complicated factors such as topography and circulation. Based on multivariable empirical orthogonal function technique for extreme precipitation processes (EPP in WSB in 2013, this study reveals the dominant circulation patterns. Results indicate that the leading modes are characterized by “Saddle” and “Sandwich” structures, respectively. In one mode, a TC from the South China Sea (SCS converts into the inverted trough and steers warm moist airflow northward into the WSB. At the same time, WPSH extends westward over the Yangtze River and conveys a southeasterly warm humid flow. In the other case, WPSH is pushed westward by TC in the Western Pacific and then merges with an anomalous anticyclone over SCS. The anomalous anticyclone and WPSH form a conjunction belt and convey the warm moist southwesterly airflow to meet with the cold flow over the WSB. The configurations of WPSH and TC in the tropic and the blocking and trough in the midhigh latitudes play important roles during the EPPs over the WSB. The persistence of EPPs depends on the long-lived large-scale circulation configuration steady over the suitable positions.

  13. Large Scale Processes and Extreme Floods in Brazil

    Science.gov (United States)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  14. Application of seeding and automatic differentiation in a large scale ocean circulation model

    Directory of Open Access Journals (Sweden)

    Frode Martinsen

    2005-07-01

    Full Text Available Computation of the Jacobian in a 3-dimensional general ocean circulation model is considered in this paper. The Jacobian matrix considered in this paper is square, large and sparse. When a large and sparse Jacobian is being computed, proper seeding is essential to reduce computational times. This paper presents a manually designed seeding motivated by the Arakawa-C staggered grid, and gives results for the manually designed seeding as compated to identity seeding and optimal seeding. Finite differences are computed for reference.

  15. Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation

    Energy Technology Data Exchange (ETDEWEB)

    Pauling, Andreas [University of Bern, Institute of Geography, Bern (Switzerland); Luterbacher, Juerg; Wanner, Heinz [University of Bern, Institute of Geography, Bern (Switzerland); National Center of Competence in Research (NCCR) in Climate, Bern (Switzerland); Casty, Carlo [University of Bern, Climate and Environmental Physics Institute, Bern (Switzerland)

    2006-03-15

    We present seasonal precipitation reconstructions for European land areas (30 W to 40 E/30-71 N; given on a 0.5 x 0.5 resolved grid) covering the period 1500-1900 together with gridded reanalysis from 1901 to 2000 (Mitchell and Jones 2005). Principal component regression techniques were applied to develop this dataset. A large variety of long instrumental precipitation series, precipitation indices based on documentary evidence and natural proxies (tree-ring chronologies, ice cores, corals and a speleothem) that are sensitive to precipitation signals were used as predictors. Transfer functions were derived over the 1901-1983 calibration period and applied to 1500-1900 in order to reconstruct the large-scale precipitation fields over Europe. The performance (quality estimation based on unresolved variance within the calibration period) of the reconstructions varies over centuries, seasons and space. Highest reconstructive skill was found for winter over central Europe and the Iberian Peninsula. Precipitation variability over the last half millennium reveals both large interannual and decadal fluctuations. Applying running correlations, we found major non-stationarities in the relation between large-scale circulation and regional precipitation. For several periods during the last 500 years, we identified key atmospheric modes for southern Spain/northern Morocco and central Europe as representations of two precipitation regimes. Using scaled composite analysis, we show that precipitation extremes over central Europe and southern Spain are linked to distinct pressure patterns. Due to its high spatial and temporal resolution, this dataset allows detailed studies of regional precipitation variability for all seasons, impact studies on different time and space scales, comparisons with high-resolution climate models as well as analysis of connections with regional temperature reconstructions. (orig.)

  16. Combinations of large-scale circulation anomalies conducive to precipitation extremes in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kašpar, Marek; Müller, Miloslav

    2014-01-01

    Roč. 138, March 2014 (2014), s. 205-212 ISSN 0169-8095 R&D Projects: GA ČR(CZ) GAP209/11/1990 Institutional support: RVO:68378289 Keywords : precipitation extreme * synoptic-scale cause * re-analysis * circulation anomaly Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.844, year: 2014 http://www.sciencedirect.com/science/article/pii/S0169809513003372

  17. Multi-Scale Models for the Scale Interaction of Organized Tropical Convection

    Science.gov (United States)

    Yang, Qiu

    Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.

  18. Arctic Climate and Atmospheric Planetary Waves

    Science.gov (United States)

    Cavalieri, D. J.; Haekkinen, S.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave 1 pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach for determining significant forcing patterns of sea ice and high-latitude variability.

  19. Diurnal circulations and their multi-scale interaction leading to rainfall over the South China Sea upstream of the Philippines during intraseasonal monsoon westerly wind bursts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myung-Sook; Elsberry, Russell L. [Naval Postgraduate School, Department of Meteorology, Monterey, CA (United States); Ho, Chang-Hoi [Seoul National University, School of Earth and Environmental Sciences, Seoul (Korea, Republic of); Kim, Jinwon [University of California in Los Angeles, Department of Meteorology, Berkeley, CA (United States)

    2011-10-15

    The morning diurnal precipitation maximum over the coastal sea upstream of the Philippines during intraseasonal westerly wind bursts is examined from observations and numerical model simulations. A well-defined case of precipitation and large-scale circulation over the coastal sea west of the Philippines during 17-27 June 2004 is selected as a representative case. The hypothesis is that the mesoscale diurnal circulation over the Philippines and a large-scale diurnal circulation that is induced by large-scale differential heating over Asian continent and the surrounding ocean interact to produce the offshore precipitation maximum during the morning. Three-hourly combined satellite microwave and infrared rainfall retrievals define the morning rainfall peak during this period, and then later the stratiform rain area extends toward the open sea. A control numerical simulation in which a grid-nudging four-dimensional data assimilation (FDDA) is applied to force the large-scale diurnal circulation represents reasonably well the morning rainfall maximum. An enhanced low-level convergence similar to observations is simulated due to the interaction of the local- and large-scale diurnal circulations. The essential role of the local-scale diurnal circulation is illustrated in a sensitivity test in which the solar zenith angle is fixed at 7 am to suppress this diurnal circulation. The implication for climate diagnosis or modeling of such upstream coastal sea precipitation maxima is that the diurnal variations of both the local- and the large-scale circulations must be taken into consideration. (orig.)

  20. Single and two-phase natural circulation in Westinghouse pressurized water reactor simulators: Phenomena, analysis and scaling

    International Nuclear Information System (INIS)

    Schultz, R.R.; Chapman, J.C.; Kukita, Y.; Motley, F.E.; Stumpf, H.; Chen, Y.S.; Tasaka, K.

    1987-01-01

    Natural circulation data obtained in the 1/48 scale W four loop PWR simulator - the Large Scale Test Facility (LSTF) are discussed and summarized. Core cooling modes, the primary fluid state, the primary loop mass flow and localized natural circulation phenomena occurring in the steam generator are presented. TRAC-PF1 LSTF model (using both a 1 U-tube and a 3 U-tube steam generator model) analyses of the LSTF natural circulation data including the SG recirculation patterns are presented and compared to the data. The LSTF data are then compared to similar natural circulation data obtained in the Primarkreislaufe (PKL) and the Semiscale facilities. Based on the 1/48 to 1/1705 scaling range which exists between the facilities, the implications of these data towrard natural circulation behavior in commercial plants are briefly discussed

  1. The Effect of Large Scale Salinity Gradient on Langmuir Turbulence

    Science.gov (United States)

    Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.

    2017-12-01

    Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by

  2. Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe

    Directory of Open Access Journals (Sweden)

    A. P. van Ulden

    2006-01-01

    Full Text Available The quality of global sea level pressure patterns has been assessed for simulations by 23 coupled climate models. Most models showed high pattern correlations. With respect to the explained spatial variance, many models showed serious large-scale deficiencies, especially at mid-latitudes. Five models performed well at all latitudes and for each month of the year. Three models had a reasonable skill. We selected the five models with the best pressure patterns for a more detailed assessment of their simulations of the climate in Central Europe. We analysed observations and simulations of monthly mean geostrophic flow indices and of monthly mean temperature and precipitation. We used three geostrophic flow indices: the west component and south component of the geostrophic wind at the surface and the geostrophic vorticity. We found that circulation biases were important, and affected precipitation in particular. Apart from these circulation biases, the models showed other biases in temperature and precipitation, which were for some models larger than the circulation induced biases. For the 21st century the five models simulated quite different changes in circulation, precipitation and temperature. Precipitation changes appear to be primarily caused by circulation changes. Since the models show widely different circulation changes, especially in late summer, precipitation changes vary widely between the models as well. Some models simulate severe drying in late summer, while one model simulates significant precipitation increases in late summer. With respect to the mean temperature the circulation changes were important, but not dominant. However, changes in the distribution of monthly mean temperatures, do show large indirect influences of circulation changes. Especially in late summer, two models simulate very strong warming of warm months, which can be attributed to severe summer drying in the simulations by these models. The models differ also

  3. Impact of small-scale structures on estuarine circulation

    Science.gov (United States)

    Liu, Zhuo; Zhang, Yinglong J.; Wang, Harry V.; Huang, Hai; Wang, Zhengui; Ye, Fei; Sisson, Mac

    2018-05-01

    We present a novel and challenging application of a 3D estuary-shelf model to the study of the collective impact of many small-scale structures (bridge pilings of 1 m × 2 m in size) on larger-scale circulation in a tributary (James River) of Chesapeake Bay. We first demonstrate that the model is capable of effectively transitioning grid resolution from 400 m down to 1 m near the pilings without introducing undue numerical artifact. We then show that despite their small sizes and collectively small area as compared to the total channel cross-sectional area, the pilings exert a noticeable impact on the large-scale circulation, and also create a rich structure of vortices and wakes around the pilings. As a result, the water quality and local sedimentation patterns near the bridge piling area are likely to be affected as well. However, when evaluating over the entire waterbody of the project area, the near field effects are weighed with the areal percentage which is small compared to that for the larger unaffected area, and therefore the impact on the lower James River as a whole becomes relatively insignificant. The study highlights the importance of the use of high resolution in assessing the near-field impact of structures.

  4. Potential vorticity dynamics for global scale circulations

    International Nuclear Information System (INIS)

    Lu, C.; Schubert, W.

    1994-01-01

    One of the most notable advances in extratropical dynamics this decade has been the understanding of large-scale atmospheric and oceanic processes by using potential vorticity dynamics, the so called open-quotes IPV thinking.close quotes This analysis method has also been successfully extended to some tropical atmospheric circulation systems such as hurricanes and the Hadley circulation. The fundamental idea behind such a dynamic system rests with the fact that PV is a tracer-like quantity since it is conserved (in the absence of friction and diabatic heating) following a fluid particle and carries both significant dynamic and thermodynamic information regarding fluid motion. Thus, the prediction and inversion of PV form the most succinct dynamic view of atmospheric and oceanic motions. Furthermore, PV dynamics provides access to many insightful dynamic analyses such as: Propagation of Rossby waves, barotropic and baroclinic instabilities for shear flows, and wave-mean flow interactions. All these features make IPV analysis a very attractive tool for studying geophysical fluid systems

  5. Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models

    Science.gov (United States)

    Avissar, Roni; Chen, Fei

    1993-01-01

    Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes

  6. Dynamics of large scale 3-dimensional circulation of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Swapna, P.

    -diagnostic and prognostic modes. Such a model could identify both the local and remote forcing of the Indian Ocean circulation. The other objectives of the thesis are the following: (i) To study the steady state 3-dimensional circulation of Indian Ocean based on semi...

  7. United States Temperature and Precipitation Extremes: Phenomenology, Large-Scale Organization, Physical Mechanisms and Model Representation

    Science.gov (United States)

    Black, R. X.

    2017-12-01

    We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.

  8. Intermediate Models of Planetary Circulations in the Atmosphere and Ocean.

    Science.gov (United States)

    McWilliams, James C.; Gent, Peter R.

    1980-08-01

    Large-scale extratropical motions (with dimensions comparable to, or somewhat smaller than, the planetary radius) in the atmosphere and ocean exhibit a more restricted range of phenomena than are admissible in the primitive equations for fluid motions, and there have been many previous proposals for simpler, more phenomenologically limited models of these motions. The oldest and most successful of these is the quasi-geostrophic model. An extensive discussion is made of models intermediate between the quasi-geostrophic and primitive ones, some of which have been previously proposed [e.g., the balance equations (BE), where tendencies in the equation for the divergent component of velocity are neglected, or the geostrophic momentum approximation (GM), where ageostrophic accelerations are neglected relative to geostrophic ones] and some of which are derived here. Virtues of these models are assessed in the dual measure of nearly geostrophic momentum balance (i.e., small Rossby number) and approximate frontal structure (i.e., larger along-axis velocities and length scales than their cross-axis counterparts), since one or both of these circumstances is usually characteristic of planetary motions. Consideration is also given to various coordinate transformations, since they can yield simpler expressions for the governing differential equations of the intermediate models. In particular, a new set of coordinates is proposed, isentropic geostrophic coordinates,(IGC), which has the advantage of making implicit the advections due to ageostrophic horizontal and vertical velocities under various approximations. A generalization of quasi-geostrophy is made. named hypo-geostrophy (HG), which is an asymptotic approximation of one higher order accuracy in Rossby number. The governing equations are simplest in IGC for both HG and GM; we name the latter in these coordinates isentropic semi-geostrophy (ISG), in analogy to Hoskins' (1975) semi-geostrophy (SG). HG, GM and BE are, in our

  9. Simulated pre-industrial climate in Bergen Climate Model (version 2: model description and large-scale circulation features

    Directory of Open Access Journals (Sweden)

    O. H. Otterå

    2009-11-01

    Full Text Available The Bergen Climate Model (BCM is a fully-coupled atmosphere-ocean-sea-ice model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate. Here, a pre-industrial multi-century simulation with an updated version of BCM is described and compared to observational data. The model is run without any form of flux adjustments and is stable for several centuries. The simulated climate reproduces the general large-scale circulation in the atmosphere reasonably well, except for a positive bias in the high latitude sea level pressure distribution. Also, by introducing an updated turbulence scheme in the atmosphere model a persistent cold bias has been eliminated. For the ocean part, the model drifts in sea surface temperatures and salinities are considerably reduced compared to earlier versions of BCM. Improved conservation properties in the ocean model have contributed to this. Furthermore, by choosing a reference pressure at 2000 m and including thermobaric effects in the ocean model, a more realistic meridional overturning circulation is simulated in the Atlantic Ocean. The simulated sea-ice extent in the Northern Hemisphere is in general agreement with observational data except for summer where the extent is somewhat underestimated. In the Southern Hemisphere, large negative biases are found in the simulated sea-ice extent. This is partly related to problems with the mixed layer parametrization, causing the mixed layer in the Southern Ocean to be too deep, which in turn makes it hard to maintain a realistic sea-ice cover here. However, despite some problematic issues, the pre-industrial control simulation presented here should still be appropriate for climate change studies requiring multi-century simulations.

  10. Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation

    Energy Technology Data Exchange (ETDEWEB)

    Touchan, Ramzi; Funkhouser, Gary; Hughes, Malcolm K. [The University of Arizona, Laboratory of Tree-Ring Research, Tucson, AZ (United States); Xoplaki, Elena; Luterbacher, Juerg [University of Bern, Institute of Geography and NCCR Climate, Bern (Switzerland); Erkan, Nesat [Southwest Anatolia Forest Research Institute (SAFRI), Antalya (Turkey); Akkemik, Uenal [University of Istanbul, Faculty of Forestry, Department of Forest Botany, Bahcekoey-Istanbul (Turkey); Stephan, Jean [Ministry of Agriculture, Forestry Department, Beirut (Lebanon)

    2005-07-01

    This study represents the first large-scale systematic dendroclimatic sampling focused on developing chronologies from different species in the eastern Mediterranean region. Six reconstructions were developed from chronologies ranging in length from 115 years to 600 years. The first reconstruction (1885-2000) was derived from principal components (PCs) of 36 combined chronologies. The remaining five, 1800-2000, 1700-2000, 1600-2000, 1500-2000 and 1400-2000 were developed from PCs of 32, 18, 14, 9, and 7 chronologies, respectively. Calibration and verification statistics for the period 1931-2000 show good levels of skill for all reconstructions. The longest period of consecutive dry years, defined as those with less than 90% of the mean of the observed May-August precipitation, was 5 years (1591-1595) and occurred only once during the last 600 years. The longest reconstructed wet period was 5 years (1601-1605 and 1751-1755). No long term trends were found in May-August precipitation during the last few centuries. Regression maps are used to identify the influence of large-scale atmospheric circulation on regional precipitation. In general, tree-ring indices are influenced by May-August precipitation, which is driven by anomalous below (above) normal pressure at all atmospheric levels and by convection (subsidence) and small pressure gradients at sea level. These atmospheric conditions also control the anomaly surface air temperature distribution which indicates below (above) normal values in the southern regions and warmer (cooler) conditions north of around 40 N. A compositing technique is used to extract information on large-scale climate signals from extreme wet and dry summers for the second half of the twentieth century and an independent reconstruction over the last 237 years. Similar main modes of atmospheric patterns and surface air temperature distribution related to extreme dry and wet summers were identified both for the most recent 50 years and the last

  11. Preliminary Study of Single-Phase Natural Circulation for Lab-scaled Molten Salt Application

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yukyung; Kang, Sarah; Kim, In Guk; Seo, Seok Bin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Park, Seong Dae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Advanced reactors such as MSR (FHR), VHTR and AHTR utilized molten salt as a coolant for efficiency and safety which has advantages in higher heat capacity, lower pumping power and scale compared to liquid metal. It becomes more necessary to study on the characteristics of molten salt. However, due to several characteristics such as high operating temperature, large-scale facility and preventing solidification, satisfying that condition for study has difficulties. Thus simulant fluid was used with scaling method for lab-scale experiment. Scaled experiment enables simulant fluid to simulate fluid mechanics and heat transfer behavior of molten salt on lower operating temperature and reduced scale. In this paper, as a proof test of the scaled experiment, simplified single-phase natural circulation loop was designed in a lab-scale and applied to the passive safety system in advanced reactor in which molten salt is considered as a major coolant of the system. For the application of the improved safety system, prototype was based on the primary loop of the test-scale DRACS, the main passive safety system in FHR, developed at the OSU. For preliminary experiment, single-phase natural circulation under low power was performed. DOWTHERM A and DOWTHERM RP were selected as simulant candidates. Then, study of feasibility with simulant was conducted based on the scaling law for heat transfer characteristics and geometric parameters. Additionally, simulation with MARS code and ANSYS-CFX with the same condition of natural circulation was carried out as verification. For the accurate code simulation, thermo-physical properties of DOWTHERM A and RP were developed and implemented into MARS code. In this study, single-phase natural circulation experiment was performed with simulant oil, DOWTHERM RP, based on the passive safety system of FHR. Feasibility of similarity experiment for molten salt with oil simulant was confirmed by scaling method. In addition, simulation with two

  12. Variability of cold season surface air temperature over northeastern China and its linkage with large-scale atmospheric circulations

    Science.gov (United States)

    Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin

    2018-05-01

    Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.

  13. A large planetary body inferred from diamond inclusions in a ureilite meteorite.

    Science.gov (United States)

    Nabiei, Farhang; Badro, James; Dennenwaldt, Teresa; Oveisi, Emad; Cantoni, Marco; Hébert, Cécile; El Goresy, Ahmed; Barrat, Jean-Alix; Gillet, Philippe

    2018-04-17

    Planetary formation models show that terrestrial planets are formed by the accretion of tens of Moon- to Mars-sized planetary embryos through energetic giant impacts. However, relics of these large proto-planets are yet to be found. Ureilites are one of the main families of achondritic meteorites and their parent body is believed to have been catastrophically disrupted by an impact during the first 10 million years of the solar system. Here we studied a section of the Almahata Sitta ureilite using transmission electron microscopy, where large diamonds were formed at high pressure inside the parent body. We discovered chromite, phosphate, and (Fe,Ni)-sulfide inclusions embedded in diamond. The composition and morphology of the inclusions can only be explained if the formation pressure was higher than 20 GPa. Such pressures suggest that the ureilite parent body was a Mercury- to Mars-sized planetary embryo.

  14. Time-scale and extent at which large-scale circulation modes determine the wind and solar potential in the Iberian Peninsula

    International Nuclear Information System (INIS)

    Jerez, Sonia; Trigo, Ricardo M

    2013-01-01

    The North Atlantic Oscillation (NAO), the East Atlantic (EA) and the Scandinavian (SCAND) modes are the three main large-scale circulation patterns driving the climate variability of the Iberian Peninsula. This study assesses their influence in terms of solar (photovoltaic) and wind power generation potential (SP and WP) and evaluates their skill as predictors. For that we use a hindcast regional climate simulation to retrieve the primary meteorological variables involved, surface solar radiation and wind speed. First we identify that the maximum influence of the various modes occurs on the interannual variations of the monthly mean SP and WP series, being generally more relevant in winter. Second we find that in this time-scale and season, SP (WP) varies up to 30% (40%) with respect to the mean climatology between years with opposite phases of the modes, although the strength and the spatial distribution of the signals differ from one month to another. Last, the skill of a multi-linear regression model (MLRM), built using the NAO, EA and SCAND indices, to reconstruct the original wintertime monthly series of SP and WP was investigated. The reconstructed series (when the MLRM is calibrated for each month individually) correlate with the original ones up to 0.8 at the interannual time-scale. Besides, when the modeled series for each individual month are merged to construct an October-to-March monthly series, and after removing the annual cycle in order to account for monthly anomalies, these correlate 0.65 (0.55) with the original SP (WP) series in average. These values remain fairly stable when the calibration and reconstruction periods differ, thus supporting up to a point the predictive potential of the method at the time-scale assessed here. (letter)

  15. The problem of scale in planetary geomorphology

    Science.gov (United States)

    Rossbacher, L. A.

    1985-01-01

    Recent planetary exploration has shown that specific landforms exhibit a significant range in size between planets. Similar features on Earth and Mars offer some of the best examples of this scale difference. The difference in heights of volcanic features between the two planets has been cited often; the Martian volcano Olympus Mons stands approximately 26 km high, but Mauna Loa rises only 11 km above the Pacific Ocean floor. Polygonally fractured ground in the northern plains of Mars has diameters up to 20 km across; the largest terrestrial polygons are only 500 m in diameter. Mars also has landslides, aeolian features, and apparent rift valleys larger than any known on Earth. No single factor can explain the variations in landform size between planets. Controls on variation on Earth, related to climate, lithology, or elevation, have seldom been considered in detail. The size differences between features on Earth and other planets seem to be caused by a complex group of interacting relationships. The major planetary parameters that may affect landform size are discussed.

  16. Scaling properties of planetary calderas and terrestrial volcanic eruptions

    Directory of Open Access Journals (Sweden)

    L. Sanchez

    2012-11-01

    Full Text Available Volcanism plays an important role in transporting internal heat of planetary bodies to their surface. Therefore, volcanoes are a manifestation of the planet's past and present internal dynamics. Volcanic eruptions as well as caldera forming processes are the direct manifestation of complex interactions between the rising magma and the surrounding host rock in the crust of terrestrial planetary bodies. Attempts have been made to compare volcanic landforms throughout the solar system. Different stochastic models have been proposed to describe the temporal sequences of eruptions on individual or groups of volcanoes. However, comprehensive understanding of the physical mechanisms responsible for volcano formation and eruption and more specifically caldera formation remains elusive. In this work, we propose a scaling law to quantify the distribution of caldera sizes on Earth, Mars, Venus, and Io, as well as the distribution of calderas on Earth depending on their surrounding crustal properties. We also apply the same scaling analysis to the distribution of interevent times between eruptions for volcanoes that have the largest eruptive history as well as groups of volcanoes on Earth. We find that when rescaled with their respective sample averages, the distributions considered show a similar functional form. This result implies that similar processes are responsible for caldera formation throughout the solar system and for different crustal settings on Earth. This result emphasizes the importance of comparative planetology to understand planetary volcanism. Similarly, the processes responsible for volcanic eruptions are independent of the type of volcanism or geographical location.

  17. Boundary layer circulation in disk-halo galaxies. III. The dispersion relation for local disturbances and large-scale spiral waves

    International Nuclear Information System (INIS)

    Waxman, A.M.

    1980-01-01

    This paper concerns the geometry and physical properties of waves which arise from a shear-flow (i.e. inflection point) instability of the galactic boundary layer circulation. This circulation was shown to exist in the meridional plane of a model galaxy containing a gaseous disk embedded in a rotating gaseous halo. Previously derived equations describe the local effects of Boussinesq perturbations, in the form of spiral waves with aribitrary pitch angle, on the model disk-halo system. The equations are solved asymptotically for large values of the local Reynolds number. In passing to the limit of inviscid waves, it is possible to derive a locally valid dispersion relation. A perturbation technique is developed whereby the inviscid wave eigenvalues can be corrected for the effects of small but finite viscosity. In this way the roles of the buoyancy force, Coriolis acceleration, viscous stresses, and their interactions can be studied. It is found that, locally, the most unstable inviscid waves are leading and open with large azimuthal wavenumbers. However, these waves display little or no coherence over the face of the disk and so would not emerge as modes in a global analysis.The geometry of the dominant inviscid waves is found to be leading, tightly wound spirals. Viscous corrections shift the dominant wave form to trailing, tightly wound spirals with small azimuthal wavenumbers. These waves grow on a time scale of about 10 7 years. It is suggested that these waves can initiate spiral structure in galaxies during disk formation and that a subsequent transition to a self-gravitating acoustical mode with the same spiral geometry may occur. This transition becomes possible once the contrast in gas densities between the disk and surrounding halo becomes sufficiently large

  18. Evaluation of the Atlantic Multidecadal Oscillation Impact on Large-Scale Atmospheric Circulation in the Atlantic Region in Summer

    Science.gov (United States)

    Semenov, V. A.; Cherenkova, E. A.

    2018-02-01

    The influence of the Atlantic Multidecadal Oscillation (AMO) on large-scale atmospheric circulation in the Atlantic region in summer for the period of 1950-2015 is investigated. It is shown that the intensification of the summer North Atlantic Oscillation (NAO) with significant changes in sea level pressure anomalies in the main centers of action (over Greenland and the British Isles) occurred while the North Atlantic was cooler. Sea surface temperature anomalies, which are linked to the AMO in the summer season, affect both the NAO index and fluctuations of the Eastern Atlantic/Western Russia (EAWR) centers of action. The positive (negative) phase of the AMO is characterized by a combination of negative (positive) values of the NAO and EAWR indices. The dominance of the opposite phases of the teleconnection indices in summer during the warm North Atlantic and in its colder period resulted in differences in the regional climate in Europe.

  19. Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy

    Science.gov (United States)

    Canuto, V. M.

    1994-01-01

    The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The

  20. On the distance scale of planetary nebulae and white dwarf birth rates

    International Nuclear Information System (INIS)

    Weidemann, V.

    1977-01-01

    Arguments are presented which favor an increase of the distance scale of planetary nebulae by 30% compared to the Seaton-Webster scale. The consequences for evolutionary tracks, PN and white dwarf relations, and birth rates are discussed. It is concluded that opposite to Smith jr. (1976) underestimated, and that the proposed change in distance scale of PN brings white dwarf and PN birth rates into almost complete agreement. (orig.) [de

  1. An ecological compass for planetary engineering.

    Science.gov (United States)

    Haqq-Misra, Jacob

    2012-10-01

    Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.

  2. Titius--Bode law and the possibility of recent large-scale evolution in the solar system

    International Nuclear Information System (INIS)

    Neito, M.M.

    1974-01-01

    Although it is by no means clear that the Titius--Bode law of planetary distances is indeed a ''law'' (even though there are enticing indications), it is proposed that if one assumes that the law is a ''law'' and that the planets obey it, then this argues against recent large-scale evolution in the solar system. Put another way: one can believe in the Titius--Bode law or in recent large-scale evolution or in neither of them. But it appears difficult to believe in both of them

  3. Advanced circulating fluidised bed technology (CFB) for large-scale solid biomass fuel firing power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jaentti, Timo; Zabetta, Edgardo Coda; Nuortimo, Kalle [Foster Wheeler Energia Oy, Varkaus (Finland)

    2013-04-01

    Worldwide the nations are taking initiatives to counteract global warming by reducing their greenhouse gas emissions. Efforts to increase boiler efficiency and the use of biomass and other solid renewable fuels are well in line with these objectives. Circulating fluidised bed boilers (CFB) are ideal for efficient power generation, capable to fire a broad variety of solid biomass fuels from small CHP plants to large utility power plants. Relevant boiler references in commercial operation are made for Finland and Poland.

  4. From Planetary Boundaries to national fair shares of the global safe operating space - How can the scales be bridged?

    Science.gov (United States)

    Häyhä, Tiina; Cornell, Sarah; Lucas, Paul; van Vuuren, Detlef; Hoff, Holger

    2016-04-01

    The planetary boundaries framework proposes precautionary quantitative global limits to the anthropogenic perturbation of crucial Earth system processes. In this way, it marks out a planetary 'safe operating space' for human activities. However, decisions regarding resource use and emissions are mostly made at much smaller scales, mostly by (sub-)national and regional governments, businesses, and other local actors. To operationalize the planetary boundaries, they need to be translated into and aligned with targets that are relevant at these smaller scales. In this paper, we develop a framework that addresses the three dimension of bridging across scales: biophysical, socio-economic and ethical, to provide a consistent universally applicable approach for translating the planetary boundaries into national level context-specific and fair shares of the safe operating space. We discuss our findings in the context of previous studies and their implications for future analyses and policymaking. In this way, we help link the planetary boundaries framework to widely- applied operational and policy concepts for more robust strong sustainability decision-making.

  5. The influence of Seychelles Dome on the large scale Tropical Variability

    Science.gov (United States)

    Manola, Iris; Selten, Frank; Hazeleger, Wilco

    2013-04-01

    The Seychelles Dome (SD) is the thermocline ridge just South of the equator in the Western Indian Ocean basin. It is characterized by strong atmospheric convection and a shallow thermocline and is associated with large intraseasonal convection and SST variability (Harrison and Vecchi 2001). The SD is influenced by surface and subsurface processes, such as air-sea fluxes, Ekman upwelling from wind stress curl, ocean dynamics (vertical mixing) and oceanic Rossby waves from southeastern Indian Ocean. The favoring season for a strong SD is the boreal winter, where the thermocline is most shallow. Then the southeasterly trade winds converge with the northwesterly monsoonal winds over the intertropical convergence zone and cause cyclonic wind stress curl that drives Ekman divergence and a ridging of the thermocline. It is found that the subseasonal and interranual variability of the SD is influenced by large scale events, such as the Indian Ocean Dipole (IOD), the ENSO and the Madden-Julian Oscillation (MJO) (Tozuka et al., 2010, Lloyd and Vecchi, 2010). The SD is enhanced by cooling events in the Western Indian Ocean and easterly winds that raise the thermocline and increase the upwelling. This can be associated with a strong Walker circulation, like negative IOD conditions or La Nina-like conditions. So far the studies focus on the origins of the SD variability, but the influence of the SD itself on regional or large scale climate is largely unknown. In this study we focus on the influence of the SD variations on the large scale tropical circulation. We analyze the covariance of the SD variations and the tropical circulation in a 200 year control imulation of the climate model EC-EARTH and perform idealized SST forced simulations to study the character of the atmospheric response and its relation to ENSO, IOD and MJO. References -Harrison, D. E. and G. A. Vecchi, 2001: January 1999 Indian Ocean cooling event. Geophys. Res. Lett., 28, 3717-3720. -Lloyd, I. D., and G. A

  6. Sub-scale Inverse Wind Turbine Blade Design Using Bound Circulation

    Science.gov (United States)

    Kelley, Christopher; Berg, Jonathan

    2014-11-01

    A goal of the National Rotor Testbed project at Sandia is to design a sub-scale wind turbine blade that has similitude to a modern, commercial size blade. However, a smaller diameter wind turbine operating at the same tip-speed-ratio exhibits a different range of operating Reynolds numbers across the blade span, thus changing the local lift and drag coefficients. Differences to load distribution also affect the wake dynamics and stability. An inverse wind turbine blade design tool has been implemented which uses a target, dimensionless circulation distribution from a full-scale blade to find the chord and twist along a sub-scale blade. In addition, airfoil polar data are interpolated from a few specified span stations leading to a smooth, manufacturable blade. The iterative process perturbs chord and twist, after running a blade element momentum theory code, to reduce the residual sum of the squares between the modeled sub-scale circulation and the target full-scale circulation. It is shown that the converged sub-scale design also leads to performance similarity in thrust and power coefficients. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy under Contract DE-AC04-94AL85000.

  7. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION MODELS OF HD 189733b AND HD 209458b WITH CONSISTENT MAGNETIC DRAG AND OHMIC DISSIPATION

    International Nuclear Information System (INIS)

    Rauscher, Emily; Menou, Kristen

    2013-01-01

    We present the first three-dimensional circulation models for extrasolar gas giant atmospheres with geometrically and energetically consistent treatments of magnetic drag and ohmic dissipation. Atmospheric resistivities are continuously updated and calculated directly from the flow structure, strongly coupling the magnetic effects with the circulation pattern. We model the hot Jupiters HD 189733b (T eq ≈ 1200 K) and HD 209458b (T eq ≈ 1500 K) and test planetary magnetic field strengths from 0 to 30 G. We find that even at B = 3 G the atmospheric structure and circulation of HD 209458b are strongly influenced by magnetic effects, while the cooler HD 189733b remains largely unaffected, even in the case of B = 30 G and super-solar metallicities. Our models of HD 209458b indicate that magnetic effects can substantially slow down atmospheric winds, change circulation and temperature patterns, and alter observable properties. These models establish that longitudinal and latitudinal hot spot offsets, day-night flux contrasts, and planetary radius inflation are interrelated diagnostics of the magnetic induction process occurring in the atmospheres of hot Jupiters and other similarly forced exoplanets. Most of the ohmic heating occurs high in the atmosphere and on the dayside of the planet, while the heating at depth is strongly dependent on the internal heat flux assumed for the planet, with more heating when the deep atmosphere is hot. We compare the ohmic power at depth in our models, and estimates of the ohmic dissipation in the bulk interior (from general scaling laws), to evolutionary models that constrain the amount of heating necessary to explain the inflated radius of HD 209458b. Our results suggest that deep ohmic heating can successfully inflate the radius of HD 209458b for planetary magnetic field strengths of B ≥ 3-10 G.

  8. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Science.gov (United States)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  9. Nature of global large-scale sea level variability in relation to atmospheric forcing: A modeling study

    Science.gov (United States)

    Fukumori, Ichiro; Raghunath, Ramanujam; Fu, Lee-Lueng

    1998-03-01

    The relation between large-scale sea level variability and ocean circulation is studied using a numerical model. A global primitive equation model of the ocean is forced by daily winds and climatological heat fluxes corresponding to the period from January 1992 to January 1994. The physical nature of sea level's temporal variability from periods of days to a year is examined on the basis of spectral analyses of model results and comparisons with satellite altimetry and tide gauge measurements. The study elucidates and diagnoses the inhomogeneous physics of sea level change in space and frequency domain. At midlatitudes, large-scale sea level variability is primarily due to steric changes associated with the seasonal heating and cooling cycle of the surface layer. In comparison, changes in the tropics and high latitudes are mainly wind driven. Wind-driven variability exhibits a strong latitudinal dependence in itself. Wind-driven changes are largely baroclinic in the tropics but barotropic at higher latitudes. Baroclinic changes are dominated by the annual harmonic of the first baroclinic mode and is largest off the equator; variabilities associated with equatorial waves are smaller in comparison. Wind-driven barotropic changes exhibit a notable enhancement over several abyssal plains in the Southern Ocean, which is likely due to resonant planetary wave modes in basins semienclosed by discontinuities in potential vorticity. Otherwise, barotropic sea level changes are typically dominated by high frequencies with as much as half the total variance in periods shorter than 20 days, reflecting the frequency spectra of wind stress curl. Implications of the findings with regards to analyzing observations and data assimilation are discussed.

  10. Extended general relativity: Large-scale antigravity and short-scale gravity with ω=-1 from five-dimensional vacuum

    International Nuclear Information System (INIS)

    Madriz Aguilar, Jose Edgar; Bellini, Mauricio

    2009-01-01

    Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with ω=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.

  11. Extended general relativity: Large-scale antigravity and short-scale gravity with ω=-1 from five-dimensional vacuum

    Science.gov (United States)

    Madriz Aguilar, José Edgar; Bellini, Mauricio

    2009-08-01

    Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with ω=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.

  12. Extended general relativity: Large-scale antigravity and short-scale gravity with {omega}=-1 from five-dimensional vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Madriz Aguilar, Jose Edgar [Instituto de Fisica de la Universidad de Guanajuato, C.P. 37150, Leon Guanajuato (Mexico); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina)], E-mail: madriz@mdp.edu.ar; Bellini, Mauricio [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)], E-mail: mbellini@mdp.edu.ar

    2009-08-31

    Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with {omega}=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.

  13. Mesoscale to Synoptic Scale Cloud Variability

    Science.gov (United States)

    Rossow, William B.

    1998-01-01

    The atmospheric circulation and its interaction with the oceanic circulation involve non-linear and non-local exchanges of energy and water over a very large range of space and time scales. These exchanges are revealed, in part, by the related variations of clouds, which occur on a similar range of scales as the atmospheric motions that produce them. Collection of comprehensive measurements of the properties of the atmosphere, clouds and surface allows for diagnosis of some of these exchanges. The use of a multi-satellite-network approach by the International Satellite Cloud Climatology Project (ISCCP) comes closest to providing complete coverage of the relevant range space and time scales over which the clouds, atmosphere and ocean vary. A nearly 15-yr dataset is now available that covers the range from 3 hr and 30 km to decade and planetary. This paper considers three topics: (1) cloud variations at the smallest scales and how they may influence radiation-cloud interactions, and (2) cloud variations at "moderate" scales and how they may cause natural climate variability, and (3) cloud variations at the largest scales and how they affect the climate. The emphasis in this discussion is on the more mature subject of cloud-radiation interactions. There is now a need to begin similar detailed diagnostic studies of water exchange processes.

  14. Large scale electrolysers

    International Nuclear Information System (INIS)

    B Bello; M Junker

    2006-01-01

    Hydrogen production by water electrolysis represents nearly 4 % of the world hydrogen production. Future development of hydrogen vehicles will require large quantities of hydrogen. Installation of large scale hydrogen production plants will be needed. In this context, development of low cost large scale electrolysers that could use 'clean power' seems necessary. ALPHEA HYDROGEN, an European network and center of expertise on hydrogen and fuel cells, has performed for its members a study in 2005 to evaluate the potential of large scale electrolysers to produce hydrogen in the future. The different electrolysis technologies were compared. Then, a state of art of the electrolysis modules currently available was made. A review of the large scale electrolysis plants that have been installed in the world was also realized. The main projects related to large scale electrolysis were also listed. Economy of large scale electrolysers has been discussed. The influence of energy prices on the hydrogen production cost by large scale electrolysis was evaluated. (authors)

  15. 2012/13 abnormal cold winter in Japan associated with Large-scale Atmospheric Circulation and Local Sea Surface Temperature over the Sea of Japan

    Science.gov (United States)

    Ando, Y.; Ogi, M.; Tachibana, Y.

    2013-12-01

    On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For

  16. Temperature oscillation and the sloshing motion of the large-scale circulation in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Xi, Heng-Dong; Chen, Xin; Xia, Ke-Qing

    2017-11-01

    We report an experimental study of the temperature oscillation and the sloshing motion of the large-scale circulation (LSC) in turbulent Rayleigh-Bénard convection in water. Temperature measurements were made in aspect ratio one cylindrical cell by probes put in fluid and embedded in the sidewall simultaneously, and located at the 1/4, 1/2 and 3/4 heights of the convection cell. The results show that the temperature measured in fluid contains information of both the LSC and the signature of the hot and cold plumes, while the temperature measured in sidewall only contains information of the LSC. It is found that the sloshing motion of the LSC can be measured by both the temperatures in fluid and in sidewall. We also studies the effect of cell tilting on the temperature oscillation and sloshing motion of the LSC. It is found that both the amplitude and the frequency of the temperature oscillation (and the sloshing motion) increase when the tilt angle increases, while the off-center distance of the sloshing motion of the LSC remains unchanged. This work is supported by the NSFC of China (Grant Nos. 11472094 and U1613227), the RGC of Hong Kong SAR (Grant No. 403712) and the 111 project of China (Grant No. B17037).

  17. Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields

    Science.gov (United States)

    Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration

    2011-10-01

    Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection

  18. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto; Watson, James R.; Jö nsson, Bror; Gasol, Josep M.; Salazar, Guillem; Acinas, Silvia G.; Estrada, Marta; Massana, Ramó n; Logares, Ramiro; Giner, Caterina R.; Pernice, Massimo C.; Olivar, M. Pilar; Citores, Leire; Corell, Jon; Rodrí guez-Ezpeleta, Naiara; Acuñ a, José Luis; Molina-Ramí rez, Axayacatl; Gonzá lez-Gordillo, J. Ignacio; Có zar, André s; Martí , Elisa; Cuesta, José A.; Agusti, Susana; Fraile-Nuez, Eugenio; Duarte, Carlos M.; Irigoien, Xabier; Chust, Guillem

    2018-01-01

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  19. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto

    2018-01-04

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  20. Prolonged effect of the stratospheric pathway in linking Barents-Kara Sea sea ice variability to the midlatitude circulation in a simplified model

    Science.gov (United States)

    Zhang, Pengfei; Wu, Yutian; Smith, Karen L.

    2018-01-01

    To better understand the dynamical mechanism that accounts for the observed lead-lag correlation between the early winter Barents-Kara Sea (BKS) sea ice variability and the later winter midlatitude circulation response, a series of experiments are conducted using a simplified atmospheric general circulation model with a prescribed idealized near-surface heating over the BKS. A prolonged effect is found in the idealized experiments following the near-surface heating and can be explicitly attributed to the stratospheric pathway and the long time scale in the stratosphere. The analysis of the Eliassen-Palm flux shows that, as a result of the imposed heating and linear constructive interference, anomalous upward propagating planetary-scale waves are excited and weaken the stratospheric polar vortex. This stratospheric response persists for approximately 1-2 months accompanied by downward migration to the troposphere and the surface. This downward migration largely amplifies and extends the low-level jet deceleration in the midlatitudes and cold air advection over central Asia. The idealized model experiments also suggest that the BKS region is the most effective in affecting the midlatitude circulation than other regions over the Arctic.

  1. Impact of large-scale circulation changes in the North Atlantic sector on the current and future Mediterranean winter hydroclimate

    Science.gov (United States)

    Barcikowska, Monika J.; Kapnick, Sarah B.; Feser, Frauke

    2018-03-01

    The Mediterranean region, located in the transition zone between the dry subtropical and wet European mid-latitude climate, is very sensitive to changes in the global mean climate state. Projecting future changes of the Mediterranean hydroclimate under global warming therefore requires dynamic climate models to reproduce the main mechanisms controlling regional hydroclimate with sufficiently high resolution to realistically simulate climate extremes. To assess future winter precipitation changes in the Mediterranean region we use the Geophysical Fluid Dynamics Laboratory high-resolution general circulation model for control simulations with pre-industrial greenhouse gas and aerosol concentrations which are compared to future scenario simulations. Here we show that the coupled model is able to reliably simulate the large-scale winter circulation, including the North Atlantic Oscillation and Eastern Atlantic patterns of variability, and its associated impacts on the mean Mediterranean hydroclimate. The model also realistically reproduces the regional features of daily heavy rainfall, which are absent in lower-resolution simulations. A five-member future projection ensemble, which assumes comparatively high greenhouse gas emissions (RCP8.5) until 2100, indicates a strong winter decline in Mediterranean precipitation for the coming decades. Consistent with dynamical and thermodynamical consequences of a warming atmosphere, derived changes feature a distinct bipolar behavior, i.e. wetting in the north—and drying in the south. Changes are most pronounced over the northwest African coast, where the projected winter precipitation decline reaches 40% of present values. Despite a decrease in mean precipitation, heavy rainfall indices show drastic increases across most of the Mediterranean, except the North African coast, which is under the strong influence of the cold Canary Current.

  2. 20th century trends of drought conditions in the Mediterranean: the influence of large-scale circulation patterns.

    Science.gov (United States)

    Sousa, Pedro; Trigo, Ricardo; Garcia-Herrera, Ricardo

    2010-05-01

    Here we have used the Self Calibrated PDSI (scPDSI) proposed by Wells et al (2004) as a more appropriate approach to characterize drought conditions in the Mediterranean area. The scPDSI has been shown to perform better (than the original PDSI) when evaluating spatial and temporal drought characteristics for regions outside the USA (Schrier et al, 2005). Seasonal and annual trends for the 1901-2000, 1901-1950 and 1951-2000 periods were computed using the standard Mann-Kendall test for trend significance evaluation. However, statistical significance obtained with this test can be highly misleading because it does not take into account the low variability nature that dominates the seasonal evolution of scPDSI fields. We have now improved these results by employing a modified Mann-Kendall test for auto-correlated series (Hamed and Ramachandra, 1997), such as the scPDSI case. This development allowed for a better definition of the Mediterranean areas characterized by significant changes in the scPDSI, namely the largely negative trends that dominate the Mediterranean basin, with the exceptions of parts of eastern Turkey and northwestern Iberia, since initially these areas were overestimated. The spatio-temporal variability of these indices was evaluated with an EOF analysis, in order to reduce the large dimensionality of the fields under analysis. Spatial representation of the first EOF patterns shows that EOF 1 covers the entire Mediterranean basin (16.4% of EV), while EOF2 is dominated by a W-E dipole (10% EV). The following EOF patterns present smaller scale features, and explain smaller amounts of variance. The EOF patterns have also facilitated the definition of four sub-regions with large socio-economic relevance: 1) Iberia, 2) Italian Peninsula, 3) Balkans and 4) Turkey. Afterwards we perform a comprehensive analysis on the links between the scPDSI and the large-scale atmospheric circulation indices that affect the Mediterranean basin, namely; NAO, EA, and SCAND

  3. Interannual Variability of the Meridional Width of the Baiu Rainband in June and the Associated Large-Scale Atmospheric Circulations

    Science.gov (United States)

    Tsuji, K.; Tomita, T.

    2016-12-01

    Baiu front, which is defined as a boundary between tropical and polar air masses in the East Asia-western North Pacific sector in boreal early summer, slowly migrates northward with the daily meridional swings. Thus, the interannual variability of meridional width of the baiu rainband reflects the slow northward migration and the daily meridional swings of the baiu front. This study focuses on the meridional width of baiu rainband only in June when the baiu front extends on Japan, and investigates how the width is related to the rainfall of Japan with discussions of associated anomalous large-scale atmospheric circulations. The meridional width of baiu rainband is defined based on the monthly-mean precipitation rate of June, whose threshold is 5mm day-1 that is averaged in 130°-150°E. There is a significant positive correlation between the variations of southern and northern edges of the baiu rainband in June. However, the interannual variance of the southern edge is almost twice larger than that of the northern one. That is, the interannual variability of the meridional width is chiefly caused by the variations of southern edge, and the contribution of northern ones is small. When the meridonal width is narrow (wide), an anomalous anticyclonic (cyclonic) circulation appears to the south of Japan, and the precipitation rate increases (decreases) in the western part of Japan while decreases (increases) in the counterpart. In other words, a local dipole with a node at 140°E appears around Japan in the baiu rainfall anomalies. The anomalous anticyclonic (cyclonic) circulation to the south of Japan, which controls the interannual variability of meridional width of the baiu rainband, is induced by the strength of Indian summer monsoon. When the convective activity of Indian summer monsoon is strong (week), the Tibetan high in the upper troposphere extends more (less) eastward. The induced stronger (weaker) descent leads stronger (weaker) Bonin high in the western

  4. Breakdown of the large-scale circulation in Γ=1/2 rotating Rayleigh-Bénard flow.

    Science.gov (United States)

    Stevens, Richard J A M; Clercx, Herman J H; Lohse, Detlef

    2012-11-01

    Experiments and simulations of rotating Rayleigh-Bénard convection in cylindrical samples have revealed an increase in heat transport with increasing rotation rate. This heat transport enhancement is intimately related to a transition in the turbulent flow structure from a regime dominated by a large-scale circulation (LSC), consisting of a single convection roll, at no or weak rotation to a regime dominated by vertically aligned vortices at strong rotation. For a sample with an aspect ratio Γ=D/L=1 (D is the sample diameter and L is its height) the transition between the two regimes is indicated by a strong decrease in the LSC strength. In contrast, for Γ=1/2, Weiss and Ahlers [J. Fluid Mech. 688, 461 (2011)] revealed the presence of a LSC-like sidewall temperature signature beyond the critical rotation rate. They suggested that this might be due to the formation of a two-vortex state, in which one vortex extends vertically from the bottom into the sample interior and brings up warm fluid while another vortex brings down cold fluid from the top; this flow field would yield a sidewall temperature signature similar to that of the LSC. Here we show by direct numerical simulations for Γ=1/2 and parameters that allow direct comparison with experiment that the spatial organization of the vertically aligned vortical structures in the convection cell do indeed yield (for the time average) a sinusoidal variation of the temperature near the sidewall, as found in the experiment. This is also the essential and nontrivial difference with the Γ=1 sample, where the vertically aligned vortices are distributed randomly.

  5. Various approaches to the modelling of large scale 3-dimensional circulation in the Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Rao, A.D.; Dube, S.K.

    In this paper, the three different approaches to the modelling of large scale 3-dimensional flow in the ocean such as the diagnostic, semi-diagnostic (adaptation) and the prognostic are discussed in detail. Three-dimensional solutions are obtained...

  6. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  7. Scaling Analysis of the Single-Phase Natural Circulation: the Hydraulic Similarity

    International Nuclear Information System (INIS)

    Yu, Xin-Guo; Choi, Ki-Yong

    2015-01-01

    These passive safety systems all rely on the natural circulation to cool down the reactor cores during an accident. Thus, a robust and accurate scaling methodology must be developed and employed to both assist in the design of a scaled-down test facility and guide the tests in order to mimic the natural circulation flow of its prototype. The natural circulation system generally consists of a heat source, the connecting pipes and several heat sinks. Although many applauding scaling methodologies have been proposed during last several decades, few works have been dedicated to systematically analyze and exactly preserve the hydraulic similarity. In the present study, the hydraulic similarity analyses are performed at both system and local level. By this mean, the scaling criteria for the exact hydraulic similarity in a full-pressure model have been sought. In other words, not only the system-level but also the local-level hydraulic similarities are pursued. As the hydraulic characteristics of a fluid system is governed by the momentum equation, the scaling analysis starts with it. A dimensionless integral loop momentum equation is derived to obtain the dimensionless numbers. In the dimensionless momentum equation, two dimensionless numbers, the dimensionless flow resistance number and the dimensionless gravitational force number, are identified along with a unique hydraulic time scale, characterizing the system hydraulic response. A full-height full-pressure model is also made to see which model among the full-height model and reduced-height model can preserve the hydraulic behavior of the prototype. From the dimensionless integral momentum equation, a unique hydraulic time scale, which characterizes the hydraulic response of a single-phase natural circulation system, is identified along with two dimensionless parameters: the dimensionless flow resistance number and the dimensionless gravitational force number. By satisfying the equality of both dimensionless numbers

  8. Scaling Analysis of the Single-Phase Natural Circulation: the Hydraulic Similarity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xin-Guo; Choi, Ki-Yong [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    These passive safety systems all rely on the natural circulation to cool down the reactor cores during an accident. Thus, a robust and accurate scaling methodology must be developed and employed to both assist in the design of a scaled-down test facility and guide the tests in order to mimic the natural circulation flow of its prototype. The natural circulation system generally consists of a heat source, the connecting pipes and several heat sinks. Although many applauding scaling methodologies have been proposed during last several decades, few works have been dedicated to systematically analyze and exactly preserve the hydraulic similarity. In the present study, the hydraulic similarity analyses are performed at both system and local level. By this mean, the scaling criteria for the exact hydraulic similarity in a full-pressure model have been sought. In other words, not only the system-level but also the local-level hydraulic similarities are pursued. As the hydraulic characteristics of a fluid system is governed by the momentum equation, the scaling analysis starts with it. A dimensionless integral loop momentum equation is derived to obtain the dimensionless numbers. In the dimensionless momentum equation, two dimensionless numbers, the dimensionless flow resistance number and the dimensionless gravitational force number, are identified along with a unique hydraulic time scale, characterizing the system hydraulic response. A full-height full-pressure model is also made to see which model among the full-height model and reduced-height model can preserve the hydraulic behavior of the prototype. From the dimensionless integral momentum equation, a unique hydraulic time scale, which characterizes the hydraulic response of a single-phase natural circulation system, is identified along with two dimensionless parameters: the dimensionless flow resistance number and the dimensionless gravitational force number. By satisfying the equality of both dimensionless numbers

  9. Extreme hydrometeorological events in the Peruvian Central Andes during austral summer and their relationship with the large-scale circulation

    Science.gov (United States)

    Sulca, Juan C.

    In this Master's dissertation, atmospheric circulation patterns associated with extreme hydrometeorological events in the Mantaro Basin, Peruvian Central Andes, and their teleconnections during the austral summer (December-January-February-March) are addressed. Extreme rainfall events in the Mantaro basin are related to variations of the large-scale circulation as indicated by the changing strength of the Bolivian High-Nordeste Low (BH-NL) system. Dry (wet) spells are associated with a weakening (strengthening) of the BH-NL system and reduced (enhanced) influx of moist air from the lowlands to the east due to strengthened westerly (easterly) wind anomalies at mid- and upper-tropospheric levels. At the same time extreme rainfall events of the opposite sign occur over northeastern Brazil (NEB) due to enhanced (inhibited) convective activity in conjunction with a strengthened (weakened) Nordeste Low. Cold episodes in the Mantaro Basin are grouped in three types: weak, strong and extraordinary cold episodes. Weak and strong cold episodes in the MB are mainly associated with a weakening of the BH-NL system due to tropical-extratropical interactions. Both types of cold episodes are associated with westerly wind anomalies at mid- and upper-tropospheric levels aloft the Peruvian Central Andes, which inhibit the influx of humid air masses from the lowlands to the east and hence limit the potential for development of convective cloud cover. The resulting clear sky conditions cause nighttime temperatures to drop, leading to cold extremes below the 10-percentile. Extraordinary cold episodes in the MB are associated with cold and dry polar air advection at all tropospheric levels toward the central Peruvian Andes. Therefore, weak and strong cold episodes in the MB appear to be caused by radiative cooling associated with reduced cloudiness, rather than cold air advection, while the latter plays an important role for extraordinary cold episodes only.

  10. Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations

    Directory of Open Access Journals (Sweden)

    S. Nishizawa

    2015-10-01

    Full Text Available We examine the influence of the grid aspect ratio of horizontal to vertical grid spacing on turbulence in the planetary boundary layer (PBL in a large-eddy simulation (LES. In order to clarify and distinguish them from other artificial effects caused by numerical schemes, we used a fully compressible meteorological LES model with a fully explicit scheme of temporal integration. The influences are investigated with a series of sensitivity tests with parameter sweeps of spatial resolution and grid aspect ratio. We confirmed that the mixing length of the eddy viscosity and diffusion due to sub-grid-scale turbulence plays an essential role in reproducing the theoretical −5/3 slope of the energy spectrum. If we define the filter length in LES modeling based on consideration of the numerical scheme, and introduce a corrective factor for the grid aspect ratio into the mixing length, the theoretical slope of the energy spectrum can be obtained; otherwise, spurious energy piling appears at high wave numbers. We also found that the grid aspect ratio has influence on the turbulent statistics, especially the skewness of the vertical velocity near the top of the PBL, which becomes spuriously large with large aspect ratio, even if a reasonable spectrum is obtained.

  11. Adequacy of power-to-volume scaling philosophy to simulate natural circulation in Integral Test Facilities

    International Nuclear Information System (INIS)

    Nayak, A.K.; Vijayan, P.K.; Saha, D.; Venkat Raj, V.; Aritomi, Masanori

    1998-01-01

    Theoretical and experimental investigations were carried out to study the adequacy of power-to-volume scaling philosophy for the simulation of natural circulation and to establish the scaling philosophy applicable for the design of the Integral Test Facility (ITF-AHWR) for the Indian Advanced Heavy Water Reactor (AHWR). The results indicate that a reduction in the flow channel diameter of the scaled facility as required by the power-to-volume scaling philosophy may affect the simulation of natural circulation behaviour of the prototype plants. This is caused by the distortions due to the inability to simulate the frictional resistance of the scaled facility. Hence, it is recommended that the flow channel diameter of the scaled facility should be as close as possible to the prototype. This was verified by comparing the natural circulation behaviour of a prototype 220 MWe Indian PHWR and its scaled facility (FISBE-1) designed based on power-to-volume scaling philosophy. It is suggested from examinations using a mathematical model and a computer code that the FISBE-1 simulates the steady state and the general trend of transient natural circulation behaviour of the prototype reactor adequately. Finally the proposed scaling method was applied for the design of the ITF-AHWR. (author)

  12. Study on scaling law of PWR natural circulation with motion condition

    International Nuclear Information System (INIS)

    Lu Donghua; Xiao Zejun; Chen Bingde

    2009-01-01

    For some nuclear reactors installed on automobiles, boats or deep sea vehicles, it is an important way to investigate their system safety by performing natural circulation experiments under motion condition. This paper studied the natural circulation on moving plants based on work of static natural circulation scaling method. With rigid motion theory, acceleration at each point was obtained on primary system and introduced to momentum equation. Thus a set of motion similar criteria were obtained. Furthermore, equal and unequal height simulation were analyzed. As to the unequal one, non isochronous simulation was needed for displacement and angular acceleration. (authors)

  13. Present and future connection of Asian-Pacific Oscillation to large-scale atmospheric circulations and East Asian rainfall: results of CMIP5

    Science.gov (United States)

    Zhou, Botao; Xu, Ying; Shi, Ying

    2018-01-01

    The summer Asian-Pacific oscillation (APO), one of the major modes of climate variability over the Asian-Pacific sector, has a pronounced effect on variations of large-scale atmospheric circulations and climate. This study evaluated the capability of 30 state-of-the-art climate models among the Coupled Model Intercomparison Project Phase 5 (CMIP5) in simulating its association with the atmospheric circulations over the Asian-Pacific region and the precipitation over East Asia. Furthermore, their future connections under the RCP8.5 scenario were examined. The evaluation results show that 5 out of 30 climate models can well capture the observed APO-related features in a comprehensive way, including the strengthened South Asian high (SAH), deepened North Pacific trough (NPT) and northward East Asian jet (EAJ) in the upper troposphere; an intensification of the Asian low and the North Pacific subtropical high (NPSH) as well as a northward shift of the western Pacific subtropical high (WPSH) in the lower troposphere; and a decrease in East Asian summer rainfall (EASR) under the positive APO phase. Based on the five CMIP5 models' simulations, the dynamic linkages of the APO to the SAH, NPT, AL, and NPSH are projected to maintain during the second half of the twenty-first century. However, its connection with the EASR tends to reduce significantly. Such a reduction might result from the weakening of the linkage of the APO to the meridional displacement of the EAJ and WPSH as a response to the warming scenario.

  14. On the response of the tropical atmosphere to large-scale deforestation

    Science.gov (United States)

    Eltahir, E. A. B.; Bras, R. L.

    1993-01-01

    Recent studies on the Amazon deforestation problem predict that removal of the forest will result in a higher surface temperature, a significant reduction in evaporation and precipitation, and possibly significant changes in the tropical circulation. Here, we discuss the basic mechanisms contributing to the response of the tropical atmosphere to deforestation. A simple linear model of the tropical atmosphere is used in studying the effects of deforestation on climate. It is suggested that the impact of large-scale deforestation on the circulation of the tropical atmosphere consists of two components: the response of the tropical circulation to the negative change in precipitation (heating), and the response of the same circulation to the positive change in surface temperature. Owing to their different signs, the changes in predicted temperature and precipitation excite competing responses working in opposite directions. The predicted change in tropical circulation determines the change, if any, in atmospheric moisture convergence, which is equivalent to the change in run-off. The dependence of run-off predictions on the relative magnitudes of the predicted changes in precipitation and surface temperature implies that the predictions about run-off are highly sensitive, which explains, at least partly, the disagreement between the different models concerning the sign of the predicted change in Amazonian run-off.

  15. Hydroclimatic variability in the Lake Mondsee region and its relationships with large-scale climate anomaly patterns

    Science.gov (United States)

    Rimbu, Norel; Ionita, Monica; Swierczynski, Tina; Brauer, Achim; Kämpf, Lucas; Czymzik, Markus

    2017-04-01

    Flood triggered detrital layers in varved sediments of Lake Mondsee, located at the northern fringe of the European Alps (47°48'N,13°23'E), provide an important archive of regional hydroclimatic variability during the mid- to late Holocene. To improve the interpretation of the flood layer record in terms of large-scale climate variability, we investigate the relationships between observational hydrological records from the region, like the Mondsee lake level, the runoff of the lake's main inflow Griesler Ache, with observed precipitation and global climate patterns. The lake level shows a strong positive linear trend during the observational period in all seasons. Additionally, lake level presents important interannual to multidecadal variations. These variations are associated with distinct seasonal atmospheric circulation patterns. A pronounced anomalous anticyclonic center over the Iberian Peninsula is associated with high lake levels values during winter. This center moves southwestward during spring, summer and autumn. In the same time, a cyclonic anomaly center is recorded over central and western Europe. This anomalous circulation extends southwestward from winter to autumn. Similar atmospheric circulation patterns are associated with river runoff and precipitation variability from the region. High lake levels are associated with positive local precipitation anomalies in all seasons as well as with negative local temperature anomalies during spring, summer and autumn. A correlation analysis reveals that lake level, runoff and precipitation variability is related to large-scale sea surface temperature anomaly patterns in all seasons suggesting a possible impact of large-scale climatic modes, like the North Atlantic Oscillation and Atlantic Multidecadal Oscillation on hydroclimatic variability in the Lake Mondsee region. The results presented in this study can be used for a more robust interpretation of the long flood layer record from Lake Mondsee sediments

  16. Large-Scale Flows and Magnetic Fields Produced by Rotating Convection in a Quasi-Geostrophic Model of Planetary Cores

    Science.gov (United States)

    Guervilly, C.; Cardin, P.

    2017-12-01

    Convection is the main heat transport process in the liquid cores of planets. The convective flows are thought to be turbulent and constrained by rotation (corresponding to high Reynolds numbers Re and low Rossby numbers Ro). Under these conditions, and in the absence of magnetic fields, the convective flows can produce coherent Reynolds stresses that drive persistent large-scale zonal flows. The formation of large-scale flows has crucial implications for the thermal evolution of planets and the generation of large-scale magnetic fields. In this work, we explore this problem with numerical simulations using a quasi-geostrophic approximation to model convective and zonal flows at Re 104 and Ro 10-4 for Prandtl numbers relevant for liquid metals (Pr 0.1). The formation of intense multiple zonal jets strongly affects the convective heat transport, leading to the formation of a mean temperature staircase. We also study the generation of magnetic fields by the quasi-geostrophic flows at low magnetic Prandtl numbers.

  17. Cascade of circulations in fluid turbulence.

    Science.gov (United States)

    Eyink, Gregory L

    2006-12-01

    Kelvin's theorem on conservation of circulations is an essential ingredient of Taylor's theory of turbulent energy dissipation by the process of vortex-line stretching. In previous work, we have proposed a nonlinear mechanism for the breakdown of Kelvin's theorem in ideal turbulence at infinite Reynolds number. We develop here a detailed physical theory of this cascade of circulations. Our analysis is based upon an effective equation for large-scale coarse-grained velocity, which contains a turbulent-induced vortex force that can violate Kelvin's theorem. We show that singularities of sufficient strength, which are observed to exist in turbulent flow, can lead to nonvanishing dissipation of circulation for an arbitrarily small coarse-graining length in the effective equations. This result is an analog for circulation of Onsager's theorem on energy dissipation for singular Euler solutions. The physical mechanism of the breakdown of Kelvin's theorem is diffusion of lines of large-scale vorticity out of the advected loop. This phenomenon can be viewed as a classical analog of the Josephson-Anderson phase-slip phenomenon in superfluids due to quantized vortex lines. We show that the circulation cascade is local in scale and use this locality to develop concrete expressions for the turbulent vortex force by a multiscale gradient expansion. We discuss implications for Taylor's theory of turbulent dissipation and we point out some related cascade phenomena, in particular for magnetic flux in magnetohydrodynamic turbulence.

  18. Planetary Magnetism

    International Nuclear Information System (INIS)

    Russell, C.T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io

  19. An iterative procedure for estimating areally averaged heat flux using planetary boundary layer mixed layer height and locally measured heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, R. L.; Gao, W.; Lesht, B. M.

    2000-04-04

    Measurements at the central facility of the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) are intended to verify, improve, and develop parameterizations in radiative flux models that are subsequently used in General Circulation Models (GCMs). The reliability of this approach depends upon the representativeness of the local measurements at the central facility for the site as a whole or on how these measurements can be interpreted so as to accurately represent increasingly large scales. The variation of surface energy budget terms over the SGP CART site is extremely large. Surface layer measurements of the sensible heat flux (H) often vary by a factor of 2 or more at the CART site (Coulter et al. 1996). The Planetary Boundary Layer (PBL) effectively integrates the local inputs across large scales; because the mixed layer height (h) is principally driven by H, it can, in principal, be used for estimates of surface heat flux over scales on the order of tens of kilometers. By combining measurements of h from radiosondes or radar wind profiles with a one-dimensional model of mixed layer height, they are investigating the ability of diagnosing large-scale heat fluxes. The authors have developed a procedure using the model described by Boers et al. (1984) to investigate the effect of changes in surface sensible heat flux on the mixed layer height. The objective of the study is to invert the sense of the model.

  20. Millennial-scale interaction between ice sheets and ocean circulation during marine isotope stage 100

    Directory of Open Access Journals (Sweden)

    Masao eOhno

    2016-05-01

    Full Text Available Waxing/waning of the ice sheets and the associated change in thermohaline circulation have played an important role in global climate change since major continental ice sheets appeared in the northern hemisphere about 2.75 million years ago. In the earliest glacial stages, however, establishment of the linkage between ice sheet development and ocean circulation remain largely unclear. Here we show new high-resolution records of marine isotope stage 100 recovered from deep-sea sediments on the Gardar Drift, in the subpolar North Atlantic. Results of a wide range of analyses clearly reveal the influence of millennial-scale variability in iceberg discharge on ocean surface condition and bottom current variability in the subpolar North Atlantic during marine isotope stage 100. We identified eight events of ice-rafted debris, which occurred mostly with decreases in sea surface temperature and in current components indicating North Atlantic Deep Water. These decreases are interpreted by weakened deep water formation linked to iceberg discharge, similarly to observations from the last glacial period. Dolomite fraction of the ice-rafted events in early MIS 100 like the last glacial Heinrich events suggests massive collapse of the Laurentide ice sheet in North America. At the same time, our early glacial data suggest differences from the last glacial period: absence of 1470-year periodicity in the interactions between ice sheets and ocean, and northerly shift of the ice-rafted debris belt. Our high-resolution data largely improve the picture of ice-sheet/ocean interactions on millennial time scales in the early glacial period after major Northern Hemisphere glaciation.

  1. Utilizing a scale model solar system project to visualize important planetary science concepts and develop technology and spatial reasoning skills

    Science.gov (United States)

    Kortenkamp, Stephen J.; Brock, Laci

    2016-10-01

    Scale model solar systems have been used for centuries to help educate young students and the public about the vastness of space and the relative sizes of objects. We have adapted the classic scale model solar system activity into a student-driven project for an undergraduate general education astronomy course at the University of Arizona. Students are challenged to construct and use their three dimensional models to demonstrate an understanding of numerous concepts in planetary science, including: 1) planetary obliquities, eccentricities, inclinations; 2) phases and eclipses; 3) planetary transits; 4) asteroid sizes, numbers, and distributions; 5) giant planet satellite and ring systems; 6) the Pluto system and Kuiper belt; 7) the extent of space travel by humans and robotic spacecraft; 8) the diversity of extrasolar planetary systems. Secondary objectives of the project allow students to develop better spatial reasoning skills and gain familiarity with technology such as Excel formulas, smart-phone photography, and audio/video editing.During our presentation we will distribute a formal description of the project and discuss our expectations of the students as well as present selected highlights from preliminary submissions.

  2. Large-scale structure of the middle atmosphere during the winter 1983/84

    Science.gov (United States)

    Petzoldt, K.

    The circulation of the stratosphere and mesosphere in the winter 83/84 is shown as an example of the dynamical processes which lead to the fluctuations in the middle atmosphere over high latitudes. Winds and temperatures measured by rockets, radiosondes, and satellites during the MAP/WINE campaign are combined. The coupling of the atmosphere over high latitudes with the transient planetary waves over middle and low latitudes can be seen by the flux of wave activity. The connected eddy heat and momentum transports are essential for the interaction with the mean zonal wind.

  3. Large-scale solar purchasing

    International Nuclear Information System (INIS)

    1999-01-01

    The principal objective of the project was to participate in the definition of a new IEA task concerning solar procurement (''the Task'') and to assess whether involvement in the task would be in the interest of the UK active solar heating industry. The project also aimed to assess the importance of large scale solar purchasing to UK active solar heating market development and to evaluate the level of interest in large scale solar purchasing amongst potential large scale purchasers (in particular housing associations and housing developers). A further aim of the project was to consider means of stimulating large scale active solar heating purchasing activity within the UK. (author)

  4. THE EFFECT OF LARGE-SCALE MAGNETIC TURBULENCE ON THE ACCELERATION OF ELECTRONS BY PERPENDICULAR COLLISIONLESS SHOCKS

    International Nuclear Information System (INIS)

    Guo Fan; Giacalone, Joe

    2010-01-01

    We study the physics of electron acceleration at collisionless shocks that move through a plasma containing large-scale magnetic fluctuations. We numerically integrate the trajectories of a large number of electrons, which are treated as test particles moving in the time-dependent electric and magnetic fields determined from two-dimensional hybrid simulations (kinetic ions and fluid electron). The large-scale magnetic fluctuations effect the electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to cross the shock front several times, leading to efficient acceleration. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The current study is also helpful in understanding the injection problem for electron acceleration by collisionless shocks. It is also shown that the spatial distribution of energetic electrons is similar to in situ observations. The process may be important to our understanding of energetic electrons in planetary bow shocks and interplanetary shocks, and explaining herringbone structures seen in some type II solar radio bursts.

  5. Impacts of large-scale circulation on urban ambient concentrations of gaseous elemental mercury in New York, USA

    Directory of Open Access Journals (Sweden)

    H. Mao

    2017-09-01

    Full Text Available The impact of large-scale circulation on urban gaseous elemental mercury (GEM was investigated through analysis of 2008–2015 measurement data from an urban site in New York City (NYC, New York, USA. Distinct annual cycles were observed in 2009–2010 with mixing ratios in warm seasons (i.e., spring–summer 10–20 ppqv ( ∼  10–25 % higher than in cool seasons (i.e., fall–winter. This annual cycle was disrupted in 2011 by an anomalously strong influence of the US East Coast trough in that warm season and was reproduced in 2014 associated with a particularly strong Bermuda High. The US East Coast trough axis index (TAI and intensity index (TII were used to characterize the effect of the US East Coast trough on NYC GEM, especially in winter and summer. The intensity and position of the Bermuda High appeared to have a significant impact on GEM in warm seasons. Regional influence on NYC GEM was supported by the GEM–carbon monoxide (CO correlation with r of 0.17–0.69 (p ∼  0 in most seasons. Simulated regional and local anthropogenic contributions to wintertime NYC anthropogenically induced GEM concentrations were averaged at  ∼  75 % and 25 %, with interannual variation ranging over 67 %–83 % and 17 %–33 %, respectively. Results from this study suggest the possibility that the increasingly strong Bermuda High over the past decades could dominate over anthropogenic mercury emission control in affecting ambient concentrations of mercury via regional buildup and possibly enhancing natural and legacy emissions.

  6. A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy

    Science.gov (United States)

    Li, Yongbo; Li, Guoyan; Yang, Yuantao; Liang, Xihui; Xu, Minqiang

    2018-05-01

    The fault diagnosis of planetary gearboxes is crucial to reduce the maintenance costs and economic losses. This paper proposes a novel fault diagnosis method based on adaptive multi-scale morphological filter (AMMF) and modified hierarchical permutation entropy (MHPE) to identify the different health conditions of planetary gearboxes. In this method, AMMF is firstly adopted to remove the fault-unrelated components and enhance the fault characteristics. Second, MHPE is utilized to extract the fault features from the denoised vibration signals. Third, Laplacian score (LS) approach is employed to refine the fault features. In the end, the obtained features are fed into the binary tree support vector machine (BT-SVM) to accomplish the fault pattern identification. The proposed method is numerically and experimentally demonstrated to be able to recognize the different fault categories of planetary gearboxes.

  7. Atmospheric Circulations of Rocky Planets as Heat Engines

    Science.gov (United States)

    Koll, D. D. B.

    2017-12-01

    Rocky planets are extremely common in the galaxy and include Earth, Mars, Venus, and hundreds of exoplanets. To understand and compare the climates of these planets, we need theories that are general enough to accommodate drastically different atmospheric and planetary properties. Unfortunately, few such theories currently exist.For Earth, there is a well-known principle that its atmosphere resembles a heat engine - the atmosphere absorbs heat near the surface, at a hot temperature, and emits heat to space in the upper troposphere, at a cold temperature, which allows it to perform work and balance dissipative processes such as friction. However, previous studies also showed that Earth's hydrological cycle uses up a large fraction of the heat engine's work output, which makes it difficult to view other atmospheres as heat engines.In this work I extend the heat engine principle from Earth towards other rocky planets. I explore both dry and moist atmospheres in an idealized general circulation model (GCM), and quantify their work output using entropy budgets. First, I show that convection and turbulent heat diffusion are important entropy sources in dry atmospheres. I develop a scaling that accounts for its effects, which allows me to predict the strength of frictional dissipation in dry atmospheres. There are strong parallels between my scaling and so-called potential intensity theory, which is a seminal theory for understanding tropical cyclones on Earth. Second, I address how moisture affects atmospheric heat engines. Moisture modifies both the thermodynamic properties of air and releases latent heat when water vapor condenses. I explore the impact of both effects, and use numerical simulations to explore the difference between dry and moist atmospheric circulations across a wide range of climates.

  8. Large-Scale Traveling Weather Systems in Mars’ Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-10-01

    Between late fall and early spring, Mars’ middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  9. Large-Scale Traveling Weather Systems in Mars Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-01-01

    Between late fall and early spring, Mars' middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  10. Modeling the impact of large-scale energy conversion systems on global climate

    International Nuclear Information System (INIS)

    Williams, J.

    There are three energy options which could satisfy a projected energy requirement of about 30 TW and these are the solar, nuclear and (to a lesser extent) coal options. Climate models can be used to assess the impact of large scale deployment of these options. The impact of waste heat has been assessed using energy balance models and general circulation models (GCMs). Results suggest that the impacts are significant when the heat imput is very high and studies of more realistic scenarios are required. Energy balance models, radiative-convective models and a GCM have been used to study the impact of doubling the atmospheric CO 2 concentration. State-of-the-art models estimate a surface temperature increase of 1.5-3.0 0 C with large amplification near the poles, but much uncertainty remains. Very few model studies have been made of the impact of particles on global climate, more information on the characteristics of particle input are required. The impact of large-scale deployment of solar energy conversion systems has received little attention but model studies suggest that large scale changes in surface characteristics associated with such systems (surface heat balance, roughness and hydrological characteristics and ocean surface temperature) could have significant global climatic effects. (Auth.)

  11. Inter-comparison of stratospheric mean-meridional circulation and eddy mixing among six reanalysis data sets

    Directory of Open Access Journals (Sweden)

    K. Miyazaki

    2016-05-01

    Full Text Available The stratospheric mean-meridional circulation (MMC and eddy mixing are compared among six meteorological reanalysis data sets: NCEP-NCAR, NCEP-CFSR, ERA-40, ERA-Interim, JRA-25, and JRA-55 for the period 1979–2012. The reanalysis data sets produced using advanced systems (i.e., NCEP-CFSR, ERA-Interim, and JRA-55 generally reveal a weaker MMC in the Northern Hemisphere (NH compared with those produced using older systems (i.e., NCEP/NCAR, ERA-40, and JRA-25. The mean mixing strength differs largely among the data products. In the NH lower stratosphere, the contribution of planetary-scale mixing is larger in the new data sets than in the old data sets, whereas that of small-scale mixing is weaker in the new data sets. Conventional data assimilation techniques introduce analysis increments without maintaining physical balance, which may have caused an overly strong MMC and spurious small-scale eddies in the old data sets. At the NH mid-latitudes, only ERA-Interim reveals a weakening MMC trend in the deep branch of the Brewer–Dobson circulation (BDC. The relative importance of the eddy mixing compared with the mean-meridional transport in the subtropical lower stratosphere shows increasing trends in ERA-Interim and JRA-55; this together with the weakened MMC in the deep branch may imply an increasing age-of-air (AoA in the NH middle stratosphere in ERA-Interim. Overall, discrepancies between the different variables and trends therein as derived from the different reanalyses are still relatively large, suggesting that more investments in these products are needed in order to obtain a consolidated picture of observed changes in the BDC and the mechanisms that drive them.

  12. Regime Behavior in Paleo-Reconstructed Streamflow: Attributions to Atmospheric Dynamics, Synoptic Circulation and Large-Scale Climate Teleconnection Patterns

    Science.gov (United States)

    Ravindranath, A.; Devineni, N.

    2017-12-01

    Studies have shown that streamflow behavior and dynamics have a significant link with climate and climate variability. Patterns of persistent regime behavior from extended streamflow records in many watersheds justify investigating large-scale climate mechanisms as potential drivers of hydrologic regime behavior and streamflow variability. Understanding such streamflow-climate relationships is crucial to forecasting/simulation systems and the planning and management of water resources. In this study, hidden Markov models are used with reconstructed streamflow to detect regime-like behaviors - the hidden states - and state transition phenomena. Individual extreme events and their spatial variability across the basin are then verified with the identified states. Wavelet analysis is performed to examine the signals over time in the streamflow records. Joint analyses of the climatic data in the 20th century and the identified states are undertaken to better understand the hydroclimatic connections within the basin as well as important teleconnections that influence water supply. Compositing techniques are used to identify atmospheric circulation patterns associated with identified states of streamflow. The grouping of such synoptic patterns and their frequency are then examined. Sliding time-window correlation analysis and cross-wavelet spectral analysis are performed to establish the synchronicity of basin flows to the identified synoptic and teleconnection patterns. The Missouri River Basin (MRB) is examined in this study, both as a means of better understanding the synoptic climate controls in this important watershed and as a case study for the techniques developed here. Initial wavelet analyses of reconstructed streamflow at major gauges in the MRB show multidecadal cycles in regime behavior.

  13. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003

    Energy Technology Data Exchange (ETDEWEB)

    You, Qinglong [Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); Friedrich-Schiller University Jena, Department of Geoinformatics, Jena (Germany); Graduate University of Chinese Academy of Sciences, Beijing (China); Kang, Shichang [Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences, Lanzhou (China); Aguilar, Enric [Universitat Rovirai Virgili de Tarragona, Climate Change Research Group, Geography Unit, Tarragona (Spain); Pepin, Nick [University of Portsmouth, Department of Geography, Portsmouth (United Kingdom); Fluegel, Wolfgang-Albert [Friedrich-Schiller University Jena, Department of Geoinformatics, Jena (Germany); Yan, Yuping [National Climate Center, Beijing (China); Xu, Yanwei; Huang, Jie [Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Zhang, Yongjun [Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China)

    2011-06-15

    negative magnitudes. This is inconsistent with changes of water vapor flux calculated from NCEP/NCAR reanalysis. Large scale atmospheric circulation changes derived from NCEP/NCAR reanalysis grids show that a strengthening anticyclonic circulation, increasing geopotential height and rapid warming over the Eurasian continent have contributed to the changes in climate extremes in China. (orig.)

  14. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  15. A climatological analysis of high-precipitation events in Dronning Maud Land, Antarctica, and associated large-scale atmospheric conditions

    NARCIS (Netherlands)

    Welker, Christoph; Martius, Olivia; Froidevaux, Paul; Reijmer, Carleen H.; Fischer, Hubertus

    2014-01-01

    The link between high precipitation in Dronning Maud Land (DML), Antarctica, and the large-scale atmospheric circulation is investigated using ERA-Interim data for 1979-2009. High-precipitation events are analyzed at Halvfarryggen situated in the coastal region of DML and at Kohnen Station located

  16. A see-saw of pre-Columbian boom regions in southern Peru, determined by large-scale circulation changes

    Science.gov (United States)

    Mächtle, B.; Schittek, K.; Forbriger, M.; Schäbitz, F.; Eitel, B.

    2012-04-01

    Environmental changes and cultural transitions during several periods of Peruvian history show a strong coincidence between humid and dry climatic oscillations and the rise and decline of cultures. It is noteworthy, that alternating periods of geo-ecological fragility and stability occurred in time and space between the coastal Nasca region (14.5° S) and the high Andean northern Titicaca basin, just a few hundred kilometers to the east. Based on a multi-proxy palynological and sedimentological approach to reconstruct palaeoenvironmental changes, we found that the Nasca region received a maximum of precipitation during the archaeological boom times of the Early Horizon and the Early Intermediate Period (800 BC - 650 AD, Paracas and Nasca cultures) as well as during the late intermediate period (1150-1450 AD), whereas, in contrast, the Titicaca region further to the south-east experienced drought and cultural depression during that times. During the Middle Horizon (650 - 1150 AD), the Tiwanaku agronomy and culture boomed in the Titicaca region and expanded to the west, contemporaneous with a raised lake level and more humid conditions. In the Nasca region, runoff for irrigation purposes was reduced and less reliable due to drought. Considering a coincidence between environmental and cultural changes, we state that success and decline of civilizations were controlled by hydrological oscillations, triggering fertility as well as a critical loss of natural resources. In response to spatial changing resources, cultural foci were shifted. Therefore, the success of pre-Columbian civilizations was closely coupled to areas of geo-ecological favorability, which were directly controlled by distinct regional impacts of large-scale circulation mechanisms, including El Niño - Southern Oscillation (ENSO). Changes in the position of the intertropical convergence zone (ITCZ) and the Bolivian anticyclone determined meridional shifts in moisture transport across the Andes, which

  17. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  18. How large-scale subsidence affects stratocumulus transitions

    Directory of Open Access Journals (Sweden)

    J. J. van der Dussen

    2016-01-01

    Full Text Available Some climate modeling results suggest that the Hadley circulation might weaken in a future climate, causing a subsequent reduction in the large-scale subsidence velocity in the subtropics. In this study we analyze the cloud liquid water path (LWP budget from large-eddy simulation (LES results of three idealized stratocumulus transition cases, each with a different subsidence rate. As shown in previous studies a reduced subsidence is found to lead to a deeper stratocumulus-topped boundary layer, an enhanced cloud-top entrainment rate and a delay in the transition of stratocumulus clouds into shallow cumulus clouds during its equatorwards advection by the prevailing trade winds. The effect of a reduction of the subsidence rate can be summarized as follows. The initial deepening of the stratocumulus layer is partly counteracted by an enhanced absorption of solar radiation. After some hours the deepening of the boundary layer is accelerated by an enhancement of the entrainment rate. Because this is accompanied by a change in the cloud-base turbulent fluxes of moisture and heat, the net change in the LWP due to changes in the turbulent flux profiles is negligibly small.

  19. Reduced scaling of thermal-hydraulic circuits for studies of PWR reactors natural circulation

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1993-01-01

    The Ishii et al. hydrodynamic similarity criteria for natural circulation were used for scaling reduced models of prototype passive residual heat removal system of a 600 M We PWR. The physical scales of the thermohydraulic parameters obtained presented a reasonable agreement when compared with simplified analytic models of the systems. (author)

  20. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  1. Luminosity function for planetary nebulae and the number of planetary nebulae in local group galaxies

    International Nuclear Information System (INIS)

    Jacoby, G.H.

    1980-01-01

    Identifications of 19 and 34 faint planetary nebulae have been made in the central regions of the SMC and LMC, respectively, using on-line/off-line filter photography at [O III] and Hα. The previously known brighter planetary nebulae in these fields, eight in both the SMC and the LMC, were also identified. On the basis of the ratio of the numbers of faint to bright planetary nebulae in these fields and the numbers of bright planetary nebulae in the surrounding fields, the total numbers of planetary nebulae in the SMC and LMC are estimated to be 285 +- 78 and 996 +- 253, respectively. Corrections have been applied to account for omissions due to crowding confusion in previous surveys, spatial and detectability incompleteness, and obscuration by dust.Equatorial coordinates and finding charts are presented for all the identified planetary nebulae. The coordinates have uncertainties smaller than 0.''6 relative to nearby bright stars, thereby allowing acquisition of the planetary nebulae by bling offsetting.Monochromatic fluxes are derived photographically and used to determine the luminosity function for Magellanic Cloud planetary nebulae as faint as 6 mag below the brightest. The luminosity function is used to estimate the total numbers of planetary nebulae in eight Local Group galaxies in which only bright planetary nebulae have been identified. The dervied luminosity specific number of planetary nebulae per unit luminosity is nearly constant for all eight galaxies, having a value of 6.1 x 10 -7 planetary nebulae L -1 /sub sun/. The mass specific number, based on the three galaxies with well-determined masses, is 2.1 x 10 -7 planetary nebulae M -1 /sub sun/. With estimates for the luminosity and mass of our Galaxy, its total number of planetary nebulae is calculated to be 10,000 +- 4000, in support of the Cudworth distance scale

  2. A modeling study of the thermosphere-ionosphere interactions during the boreal winter and spring 2015-2016: Tidal and planetary-scale waves effect on the ionospheric structure.

    Science.gov (United States)

    Sassi, F.; McDonald, S. E.; McCormack, J. P.; Tate, J.; Liu, H.; Kuhl, D.

    2017-12-01

    The 2015-2016 boreal winter and spring is a dynamically very interesting time in the lower atmosphere: a minor high latitude stratospheric warming occurred in February 2016; an interrupted descent of the QBO was found in the tropical stratosphere; and a large warm ENSO took place in the tropical Pacific Ocean. The stratospheric warming, the QBO and ENSO are known to affect in different ways the meteorology of the upper atmosphere in different ways: low latitude solar tides and high latitude planetary-scale waves have potentially important implications on the structure of the ionosphere. In this study, we use global atmospheric analyses from a high-altitude version of the High-Altitude Navy Global Environmental Model (HA-NAVGEM) to constrain the meteorology of numerical simulations of the Specified Dynamics Whole Atmosphere Community Climate Model, extended version (SD-WACCM-X). We describe the large-scale behavior of tropical tides and mid-latitude planetary waves that emerge in the lower thermosphere. The effect on the ionosphere is captured by numerical simulations of the Navy Highly Integrated Thermosphere Ionosphere Demonstration System (Navy-HITIDES) that uses the meteorology generated by SD-WACCM-X to drive ionospheric simulations during this time period. We will analyze the impact of various dynamical fields on the zonal behavior of the ionosphere by selectively filtering the relevant dynamical modes.

  3. Planetary boundary layer and circulation dynamics at Gale Crater, Mars

    Science.gov (United States)

    Fonseca, Ricardo M.; Zorzano-Mier, María-Paz; Martín-Torres, Javier

    2018-03-01

    The Mars implementation of the Planet Weather Research and Forecasting (PlanetWRF) model, MarsWRF, is used here to simulate the atmospheric conditions at Gale Crater for different seasons during a period coincident with the Curiosity rover operations. The model is first evaluated with the existing single-point observations from the Rover Environmental Monitoring Station (REMS), and is then used to provide a larger scale interpretation of these unique measurements as well as to give complementary information where there are gaps in the measurements. The variability of the planetary boundary layer depth may be a driver of the changes in the local dust and trace gas content within the crater. Our results show that the average time when the PBL height is deeper than the crater rim increases and decreases with the same rate and pattern as Curiosity's observations of the line-of-sight of dust within the crater and that the season when maximal (minimal) mixing is produced is Ls 225°-315° (Ls 90°-110°). Thus the diurnal and seasonal variability of the PBL depth seems to be the driver of the changes in the local dust content within the crater. A comparison with the available methane measurements suggests that changes in the PBL depth may also be one of the factors that accounts for the observed variability, with the model results pointing towards a local source to the north of the MSL site. The interaction between regional and local flows at Gale Crater is also investigated assuming that the meridional wind, the dynamically important component of the horizontal wind at Gale, anomalies with respect to the daily mean can be approximated by a sinusoidal function as they typically oscillate between positive (south to north) and negative (north to south) values that correspond to upslope/downslope or downslope/upslope regimes along the crater rim and Mount Sharp slopes and the dichotomy boundary. The smallest magnitudes are found in the northern crater floor in a region that

  4. Large-scale data analytics

    CERN Document Server

    Gkoulalas-Divanis, Aris

    2014-01-01

    Provides cutting-edge research in large-scale data analytics from diverse scientific areas Surveys varied subject areas and reports on individual results of research in the field Shares many tips and insights into large-scale data analytics from authors and editors with long-term experience and specialization in the field

  5. Global Ocean Circulation in Thermohaline Coordinates and Small-scale and Mesoscale mixing: An Inverse Estimate.

    Science.gov (United States)

    Groeskamp, S.; Zika, J. D.; McDougall, T. J.; Sloyan, B.

    2016-02-01

    I will present results of a new inverse technique that infers small-scale turbulent diffusivities and mesoscale eddy diffusivities from an ocean climatology of Salinity (S) and Temperature (T) in combination with surface freshwater and heat fluxes.First, the ocean circulation is represented in (S,T) coordinates, by the diathermohaline streamfunction. Framing the ocean circulation in (S,T) coordinates, isolates the component of the circulation that is directly related to water-mass transformation.Because water-mass transformation is directly related to fluxes of salt and heat, this framework allows for the formulation of an inverse method in which the diathermohaline streamfunction is balanced with known air-sea forcing and unknown mixing. When applying this inverse method to observations, we obtain observationally based estimates for both the streamfunction and the mixing. The results reveal new information about the component of the global ocean circulation due to water-mass transformation and its relation to surface freshwater and heat fluxes and small-scale and mesoscale mixing. The results provide global constraints on spatially varying patterns of diffusivities, in order to obtain a realistic overturning circulation. We find that mesoscale isopycnal mixing is much smaller than expected. These results are important for our understanding of the relation between global ocean circulation and mixing and may lead to improved parameterisations in numerical ocean models.

  6. Large-scale grid management

    International Nuclear Information System (INIS)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-01-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series

  7. Wind-induced circulation in a large tropical lagoon: Chetumal Bay

    Science.gov (United States)

    Palacios, E.; Carrillo, L.

    2013-05-01

    Chetumal Bay is a large tropical lagoon located at the Mesoamerican Reef System. Windinduced circulation in this basin was investigated by using direct measurements of current, sea level, and 2d barotropic numerical model. Acoustic Doppler Profiler (ADP) transects covering the north of Chetumal Bay during two campaigns September 2006 and March 2007 were used. The 2d barotropic numerical model was ROMs based and wind forced. Wind information was obtained from a meteorological station located at ECOSUR Chetumal. Sea level data was collected from a pressure sensor deployed in the lagoon. A seasonal pattern of circulation was observed. From observations, during September 2006, a northward flow was shown in most part of the bay and a southward flow in the eastern coast was observed with velocities ranged from 6 cm s-1 to 36 cm s-1. In March 2007, the current pattern was more complex; divergences and converges were identified. The dominant circulation was northward in eastern portion, and southward in the central and western zone. The average current speed was 6 cm s-1 with maximum values of 26 -34 cm s-1. During September 2006 predominant wind was easternsoutheastern and during March 2007, northerly wind events were recorded. Sea level amplitude responded quickly to changes in the magnitude and direction of the wind. Results of sea level and circulation from the 2d barotropic numerical model agreed with observations at first approximation.

  8. A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures

    Science.gov (United States)

    Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.

    2014-01-01

    While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.

  9. The real-time control of planetary rovers through behavior modification

    Science.gov (United States)

    Miller, David P.

    1991-01-01

    It is not yet clear of what type, and how much, intelligence is needed for a planetary rover to function semi-autonomously on a planetary surface. Current designs assume an advanced AI system that maintains a detailed map of its journeys and the surroundings, and that carefully calculates and tests every move in advance. To achieve these abilities, and because of the limitations of space-qualified electronics, the supporting rover is quite sizable, massing a large fraction of a ton, and requiring technology advances in everything from power to ground operations. An alternative approach is to use a behavior driven control scheme. Recent research has shown that many complex tasks may be achieved by programming a robot with a set of behaviors and activation or deactivating a subset of those behaviors as required by the specific situation in which the robot finds itself. Behavior control requires much less computation than is required by tradition AI planning techniques. The reduced computation requirements allows the entire rover to be scaled down as appropriate (only down-link communications and payload do not scale under these circumstances). The missions that can be handled by the real-time control and operation of a set of small, semi-autonomous, interacting, behavior-controlled planetary rovers are discussed.

  10. Large- to submesoscale surface circulation and its implications on biogeochemical/biological horizontal distributions during the OUTPACE cruise (southwest Pacific)

    Science.gov (United States)

    Rousselet, Louise; de Verneil, Alain; Doglioli, Andrea M.; Petrenko, Anne A.; Duhamel, Solange; Maes, Christophe; Blanke, Bruno

    2018-04-01

    The patterns of the large-scale, meso- and submesoscale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE cruise (February-April 2015). Multi-disciplinary original in situ observations were achieved along a zonal transect through the WTSP and their analysis was coupled with satellite data. The use of Lagrangian diagnostics allows for the identification of water mass pathways, mesoscale structures, and submesoscale features such as fronts. In particular, we confirmed the existence of a global wind-driven southward circulation of surface waters in the entire WTSP, using a new high-resolution altimetry-derived product, validated by in situ drifters, that includes cyclogeostrophy and Ekman components with geostrophy. The mesoscale activity is shown to be responsible for counter-intuitive water mass trajectories in two subregions: (i) the Coral Sea, with surface exchanges between the North Vanuatu Jet and the North Caledonian Jet, and (ii) around 170° W, with an eastward pathway, whereas a westward general direction dominates. Fronts and small-scale features, detected with finite-size Lyapunov exponents (FSLEs), are correlated with 25 % of surface tracer gradients, which reveals the significance of such structures in the generation of submesoscale surface gradients. Additionally, two high-frequency sampling transects of biogeochemical parameters and microorganism abundances demonstrate the influence of fronts in controlling the spatial distribution of bacteria and phytoplankton, and as a consequence the microbial community structure. All circulation scales play an important role that has to be taken into account not only when analysing the data from OUTPACE but also, more generally, for understanding the global distribution of biogeochemical components.

  11. Coastal circulation in the North Indian Ocean: Coastal segment (14,S-W)

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Gouveia, A.D.

    and as a result the circulation shows a distinct seasonal character. The nature of winds, precipitation, runoff, and tides in the region are summarized. Characteristics of large-scale near surface circulation and of water masses in the North Indian Basin...

  12. Relations between overturning length scales at the Spanish planetary boundary layer

    Science.gov (United States)

    López, Pilar; Cano, José L.

    2016-04-01

    We analyze the behavior of the maximum Thorpe displacement (dT)max and the Thorpe scale LTat the atmospheric boundary layer (ABL), extending previous research with new data and improving our studies related to the novel use of the Thorpe method applied to ABL. The maximum Thorpe displacements vary between -900 m and 950 m for the different field campaigns. The maximum Thorpe displacement is always greater under convective conditions than under stable ones, independently of its sign. The Thorpe scale LT ranges between 0.2 m and 680 m for the different data sets which cover different stratified mixing conditions (turbulence shear-driven and convective regions). The Thorpe scale does not exceed several tens of meters under stable and neutral stratification conditions related to instantaneous density gradients. In contrast, under convective conditions, Thorpe scales are relatively large, they exceed hundreds of meters which may be related to convective bursts. We analyze the relation between (dT)max and the Thorpe scale LT and we deduce that they verify a power law. We also deduce that there is a difference in exponents of the power laws for convective conditions and shear-driven conditions. These different power laws could identify overturns created under different mechanisms. References Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M., Infante, C., Buenestado, P., Espinalt, Joergensen, H., Rees, J., Vilà, J., Redondo, J., Cantalapiedra, I. and Conangla, L.: Stable atmospheric boundary-layer experiment in Spain (Sables 98). A report, Boundary-Layer Meteorology, 96, 337-370, 2000. Dillon, T. M.: Vertical Overturns: A Comparison of Thorpe and Ozmidov Length Scales, J. Geophys. Res., 87(C12), 9601-9613, 1982. Itsweire, E. C.: Measurements of vertical overturns in stably stratified turbulent flow, Phys. Fluids, 27(4), 764-766, 1984. Kitade, Y., Matsuyama, M. and Yoshida, J.: Distribution of overturn induced by internal

  13. Ethics of large-scale change

    OpenAIRE

    Arler, Finn

    2006-01-01

      The subject of this paper is long-term large-scale changes in human society. Some very significant examples of large-scale change are presented: human population growth, human appropriation of land and primary production, the human use of fossil fuels, and climate change. The question is posed, which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, th...

  14. The restructuring of analogical reasoning in planetary science

    Science.gov (United States)

    Soare, Richard J.

    Despite its ubiquity in planetary science, analogue-based reasoning largely has geomorphology and posit rules of use that facilitate the evaluation of Q y, I present four hypotheses concerning aeolian, fluvial and periglacial processes on Mars. Each of these hypotheses is evaluated in terms of the analogical rules presented. The fourth hypothesis is original to this thesis and suggests that a periglacial landscape comprising pingos and small-scale polygonal ground exists in an impact crater located in northwest Utopia Planitia.

  15. The Record Los Angeles Heat Event of September 2010: 1. Synoptic-Scale-Meso-β-Scale Analyses of Interactive Planetary Wave Breaking, Terrain- and Coastal-Induced Circulations

    Science.gov (United States)

    Kaplan, Michael L.; Tilley, Jeffrey S.; Hatchett, Benjamin J.; Smith, Craig M.; Walston, Joshua M.; Shourd, Kacie N.; Lewis, John M.

    2017-10-01

    On 27 September 2010 the Los Angeles Civic Center reached its all-time record maximum temperature of 45°C before 1330 local daylight time with several other regional stations observing all-time record breaking heat early in that afternoon. This record event is associated with a general circulation pattern predisposed to hemispheric wave breaking. Three days before the event, wave breaking organizes complex terrain- and coastal-induced processes that lead to isentropic surface folding into the Los Angeles Basin. The first wave break occurs over the western two thirds of North America leading to trough elongation across the southwestern U.S. Collocated with this trough is an isentropic potential vorticity filament that is the locus of a thermally indirect circulation central to warming and associated thickness increases and ridging westward across the Great Basin. In response to this circulation, two subsynoptic wave breaks are triggered along the Pacific coast. The isentropic potential vorticity filament is coupled to the breaking waves and the interaction produces a subsynoptic low-pressure center and a deep vortex aloft over the southeastern California desert. This coupling leads to advection of an elevated mixed layer over Point Conception the night before the record-breaking heat that creates a coastally trapped low-pressure area southwest of Los Angeles. The two low-pressure centers create a low-level pressure gradient and east-southeasterly jet directed offshore over the Los Angeles Basin by sunrise on 27 September. This allows the advection of low-level warm air from the inland terrain toward the coastally trapped disturbance and descending circulation resulting in record heating.

  16. Planetary Data Archiving Plan at JAXA

    Science.gov (United States)

    Shinohara, Iku; Kasaba, Yasumasa; Yamamoto, Yukio; Abe, Masanao; Okada, Tatsuaki; Imamura, Takeshi; Sobue, Shinichi; Takashima, Takeshi; Terazono, Jun-Ya

    After the successful rendezvous of Hayabusa with the small-body planet Itokawa, and the successful launch of Kaguya to the moon, Japanese planetary community has gotten their own and full-scale data. However, at this moment, these datasets are only available from the data sites managed by each mission team. The databases are individually constructed in the different formats, and the user interface of these data sites is not compatible with foreign databases. To improve the usability of the planetary archives at JAXA and to enable the international data exchange smooth, we are investigating to make a new planetary database. Within a coming decade, Japan will have fruitful datasets in the planetary science field, Venus (Planet-C), Mercury (BepiColombo), and several missions in planning phase (small-bodies). In order to strongly assist the international scientific collaboration using these mission archive data, the planned planetary data archive at JAXA should be managed in an unified manner and the database should be constructed in the international planetary database standard style. In this presentation, we will show the current status and future plans of the planetary data archiving at JAXA.

  17. Probabilistic Water Availability Prediction in the Rio Grande Basin using Large-scale Circulation Indices as Precursor

    Science.gov (United States)

    Khedun, C. P.; Mishra, A. K.; Giardino, J. R.; Singh, V. P.

    2011-12-01

    Hydrometeorological conditions, and therefore water availability, is affected by large-scale circulation indices. In the Rio Grande, which is a transboundary basin shared between the United States and Mexico, the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO) influence local hydrological conditions. Different sub-regions of the basin exhibit varying degrees of correlation, but in general, an increase (decrease) in runoff during El Niños (La Niñas) is noted. Positive PDO enhances the effect of El Niño and dampens the negative effect of La Niña, and when it is in its neutral/transition phase, La Niña dominates climatic conditions and reduces water availability. Further, lags of up to 3 months have been found between ENSO and precipitation in the basin. We hypothesize that (1) a trivariate statistical relationship can be established between the two climate indices and water availability, and (2) the relationship can be used to predict water availability based on projected PDO and ENSO conditions. We use copula to establish the dependence between climate indices and water availability. Water availability is generated from Noah land surface model (LSM), forced with the North American Land Data Assimilation System Phase 2 (NLDAS-2). The model is run within NASA GSFC's Land Information System. LSM generated runoff gives a more realistic picture of available surface water as it is not affected by anthropogenic changes, such as the construction of dams, diversions, and other land use land cover changes, which may obscure climatic influences. Marginals from climate indices and runoff are from different distribution families, thus conventional functional forms of multivariate frequency distributions cannot be employed. Copulas offer a viable alternative as marginals from different families can be combined into a joint distribution. Uncertainties in the statistical relationship can be determined and the statistical model can be used for

  18. Demarcating Circulation Regimes of Synchronously Rotating Terrestrial Planets within the Habitable Zone

    Science.gov (United States)

    Haqq-Misra, Jacob; Wolf, Eric. T.; Joshi, Manoj; Zhang, Xi; Kopparapu, Ravi Kumar

    2018-01-01

    We investigate the atmospheric dynamics of terrestrial planets in synchronous rotation within the habitable zone of low-mass stars using the Community Atmosphere Model. The surface temperature contrast between the day and night hemispheres decreases with an increase in incident stellar flux, which is opposite the trend seen in gas giants. We define three dynamical regimes in terms of the equatorial Rossby deformation radius and the Rhines length. The slow rotation regime has a mean zonal circulation that spans from the day to the night sides, which occurs for planets around stars with effective temperatures of 3300–4500 K (rotation period > 20 days), with both the Rossby deformation radius and the Rhines length exceeding the planetary radius. Rapid rotators have a mean zonal circulation that partially spans a hemisphere and with banded cloud formation beneath the substellar point, which occurs for planets orbiting stars with effective temperatures of less than 3000 K (rotation period days), with the Rossby deformation radius less than the planetary radius. In between is the Rhines rotation regime, which retains a thermally direct circulation from the day side to the night side but also features midlatitude turbulence-driven zonal jets. Rhines rotators occur for planets around stars in the range of 3000–3300 K (rotation period ∼5–20 days), where the Rhines length is greater than the planetary radius but the Rossby deformation radius is less than the planetary radius. The dynamical state can be observationally inferred from a comparison of the morphologies of the thermal emission phase curves of synchronously rotating planets.

  19. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  20. Simulation of Synoptic Scale Circulation Features over Southern Africa Using GCMS

    International Nuclear Information System (INIS)

    Browne, Nana Ama Kum; Abiodun, Babatunde Joseph; Tadross, Mark; Hewitson, Bruce

    2009-11-01

    Two global models (HadAM3: The Hadley Centre Atmospheric Model version 3 and CAM3: The Community Atmospheric model version 3) have been studied regarding their capabilities in reproducing the small scale features over southern Africa compared with the NCEP reanalysis. In this study, geopotential height at 500hPa and 850hPa pressure levels are used to investigate the variability of small scale circulation features over southern Africa. The investigation took into consideration the magnitude of the models standard deviations. Most of the results were linked with rainfall and temperature over the region. It was found that the standardized anomalies in the geopotential height at the 500hPa pressure level are in phase with that of rainfall. In contrast, the standardized anomalies of 850hPa pressure level geopotential height are out of phase with the standardized anomalies of rainfall and temperature. In addition, the models are able to capture the variation in the mean cut-off lows, number of days with deep tropical lows and number of days with Tropical Temperate Troughs (TTTs) quite well. However, the models could not capture the number of days with temperate lows very well. Generally, the models are able to reproduce the synoptic scale circulation features which are crucial for reliable seasonal forecast over southern Africa. (author)

  1. A Dynamic Analysis of the Role of the Planetary- and Synoptic-Scale in the Summer of 2010 Blocking Episodes over the European Part of Russia

    Directory of Open Access Journals (Sweden)

    Anthony R. Lupo

    2012-01-01

    Full Text Available During the summer of 2010, an unusually persistent blocking episode resulted in anomalously warm dry weather over the European part of Russia. The excessive heat resulted in forest and peat fires, impacted terrestrial ecosystems, greatly increased pollution in urban areas, and increased mortality rates in the region. Using the National Centers for Atmospheric Research (NCAR, National Centers for Environmental Prediction (NCEP reanalysis datasets, the climatological and dynamic character of blocking events for summer 2010 and a precursor May blocking event were examined. We found that these events were stronger and longer lived than typical warm season events. Using dynamic methods, we demonstrate that the July 2010 event was a synoptic-scale dominant blocking event; unusual in the summer season. An analysis of phase diagrams demonstrated that the planetary-scale did not become stable until almost one week after block onset. For all other blocking events studied here and previously, the planetary-scale became stable around onset. Analysis using area integrated regional enstrophy (IRE demonstrated that for the July 2010 event, synoptic-scale IRE increased at block onset. This was similar for the May 2010 event, but different from case studies examined previously that demonstrated the planetary-scale IRE was prominent at block onset.

  2. HESS Opinions: A planetary boundary on freshwater use is misleading

    Science.gov (United States)

    Heistermann, Maik

    2017-07-01

    In 2009, a group of prominent Earth scientists introduced the planetary boundaries (PB) framework: they suggested nine global control variables, and defined corresponding thresholds which, if crossed, could generate unacceptable environmental change. The concept builds on systems theory, and views Earth as a complex adaptive system in which anthropogenic disturbances may trigger non-linear, abrupt, and irreversible changes at the global scale, and push the Earth system outside the stable environmental state of the Holocene. While the idea has been remarkably successful in both science and policy circles, it has also raised fundamental concerns, as the majority of suggested processes and their corresponding planetary boundaries do not operate at the global scale, and thus apparently lack the potential to trigger abrupt planetary changes. This paper picks up the debate with specific regard to the planetary boundary on global freshwater use. While the bio-physical impacts of excessive water consumption are typically confined to the river basin scale, the PB proponents argue that water-induced environmental disasters could build up to planetary-scale feedbacks and system failures. So far, however, no evidence has been presented to corroborate that hypothesis. Furthermore, no coherent approach has been presented to what extent a planetary threshold value could reflect the risk of regional environmental disaster. To be sure, the PB framework was revised in 2015, extending the planetary freshwater boundary with a set of basin-level boundaries inferred from environmental water flow assumptions. Yet, no new evidence was presented, either with respect to the ability of those basin-level boundaries to reflect the risk of regional regime shifts or with respect to a potential mechanism linking river basins to the planetary scale. So while the idea of a planetary boundary on freshwater use appears intriguing, the line of arguments presented so far remains speculative and

  3. Modeling Tides, Planetary Waves, and Equatorial Oscillations in the MLT

    Science.gov (United States)

    Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Applying Hines Doppler Spread Parameterization for gravity waves (GW), our 3D model reproduces some essential features that characterize the observed seasonal variations of tides and planetary waves in the upper mesosphere. In 2D, our model also reproduces the large Semi-Annual Oscillation (SAO) and Quasi Biennial Oscillation (QBO) observed in this region at low latitudes. It is more challenging to describe these features combined in a more comprehensive self consistent model, and we give a progress report that outlines the difficulties and reports some success. In 3D, the GW's are partially absorbed by tides and planetary waves to amplify them. Thus the waves are less efficient in generating the QBO and SAO at equatorial latitudes. Some of this deficiency is compensated by the fact that the GW activity is observed to be enhanced at low latitudes. Increasing the GW source has the desired effect to boost the QBO, but the effect is confined primarily to the stratosphere. With increasing altitude, the meridional circulation becomes more important in redistributing the momentum deposited in the background flow by the GW's. Another factor involved is the altitude at which the GW's originate, which we had originally chosen to be the surface. Numerical experiments show that moving this source altitude to the top of the troposphere significantly increases the efficiency for generating the QBO without affecting much the tides and planetary waves in the model. Attention to the details in which the GW source comes into play thus appears to be of critical importance in modeling the phenomenology of the MLT. Among the suite of numerical experiments reported, we present a simulation that produced significant variations of tides and planetary waves in the upper mesosphere. The effect is related to the QBO generated in the model, and GW filtering is the likely cause.

  4. Simulation and analysis of the mesoscale circulation in the northwestern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    V. Echevin

    Full Text Available The large-scale and mesoscale circulation of the northwestern Mediterranean Sea are simulated with an eddy-resolving primitive-equation regional model (RM of 1/16° resolution embedded in a general circulation model (GM of the Mediterranean Sea of 1/8° resolution. The RM is forced by a monthly climatology of heat fluxes, precipitation and wind stress. The GM, which uses the same atmospheric forcing, provides initial and boundary conditions for the RM. Analysis of the RM results shows that several realistic features of the large-scale and mesoscale circulation are evident in this region. The mean cyclonic circulation is in good agreement with observations. Mesoscale variability is intense along the coasts of Sardinia and Corsica, in the Gulf of Lions and in the Catalan Sea. The length scales of the Northern Current meanders along the Provence coast and in the Gulf of Lions’ shelf are in good agreement with observations. Winter Intermediate Water is formed along most of the north-coast shelves, between the Gulf of Genoa and Cape Creus. Advection of this water by the mean cyclonic circulation generates a complex eddy field in the Catalan Sea. Intense anticyclonic eddies are generated northeast of the Balearic Islands. These results are in good agreement with mesoscale activity inferred from satellite altimetric data. This work demonstrates the feasibility of a down-scaling system composed of a general-circulation, a regional and a coastal model, which is one of the goals of the Mediterranean Forecasting System Pilot Project.

    Key words. Oceanography: physical (currents; eddies and mesoscale processes; general circulation

  5. Political consultation and large-scale research

    International Nuclear Information System (INIS)

    Bechmann, G.; Folkers, H.

    1977-01-01

    Large-scale research and policy consulting have an intermediary position between sociological sub-systems. While large-scale research coordinates science, policy, and production, policy consulting coordinates science, policy and political spheres. In this very position, large-scale research and policy consulting lack of institutional guarantees and rational back-ground guarantee which are characteristic for their sociological environment. This large-scale research can neither deal with the production of innovative goods under consideration of rentability, nor can it hope for full recognition by the basis-oriented scientific community. Policy consulting knows neither the competence assignment of the political system to make decisions nor can it judge succesfully by the critical standards of the established social science, at least as far as the present situation is concerned. This intermediary position of large-scale research and policy consulting has, in three points, a consequence supporting the thesis which states that this is a new form of institutionalization of science: These are: 1) external control, 2) the organization form, 3) the theoretical conception of large-scale research and policy consulting. (orig.) [de

  6. PSYM-WIDE: A Survey for Large-separation Planetary-mass Companions to Late Spectral Type Members of Young Moving Groups

    Science.gov (United States)

    Naud, Marie-Eve; Artigau, Étienne; Doyon, René; Malo, Lison; Gagné, Jonathan; Lafrenière, David; Wolf, Christian; Magnier, Eugene A.

    2017-09-01

    We present the results of a direct imaging survey for very large separation (>100 au), low-mass companions around 95 nearby young K5-L5 stars and brown dwarfs. They are high-likelihood candidates or confirmed members of the young (≲150 Myr) β Pictoris and AB Doradus moving groups (ABDMG) and the TW Hya, Tucana-Horologium, Columba, Carina, and Argus associations. Images in I\\prime and z\\prime filters were obtained with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South to search for companions down to an apparent magnitude of z\\prime ˜ 22-24 at separations ≳20″ from the targets and in the remainder of the wide 5.‧5 × 5.‧5 GMOS field of view. This allowed us to probe the most distant region where planetary-mass companions could be gravitationally bound to the targets. This region was left largely unstudied by past high-contrast imaging surveys, which probed much closer-in separations. This survey led to the discovery of a planetary-mass (9-13 {M}{Jup}) companion at 2000 au from the M3V star GU Psc, a highly probable member of ABDMG. No other substellar companions were identified. These results allowed us to constrain the frequency of distant planetary-mass companions (5-13 {M}{Jup}) to {0.84}-0.66+6.73% (95% confidence) at semimajor axes between 500 and 5000 au around young K5-L5 stars and brown dwarfs. This is consistent with other studies suggesting that gravitationally bound planetary-mass companions at wide separations from low-mass stars are relatively rare.

  7. The Climate Potentials and Side-Effects of Large-Scale terrestrial CO2 Removal - Insights from Quantitative Model Assessments

    Science.gov (United States)

    Boysen, L.; Heck, V.; Lucht, W.; Gerten, D.

    2015-12-01

    Terrestrial carbon dioxide removal (tCDR) through dedicated biomass plantations is considered as one climate engineering (CE) option if implemented at large-scale. While the risks and costs are supposed to be small, the effectiveness depends strongly on spatial and temporal scales of implementation. Based on simulations with a dynamic global vegetation model (LPJmL) we comprehensively assess the effectiveness, biogeochemical side-effects and tradeoffs from an earth system-analytic perspective. We analyzed systematic land-use scenarios in which all, 25%, or 10% of natural and/or agricultural areas are converted to tCDR plantations including the assumption that biomass plantations are established once the 2°C target is crossed in a business-as-usual climate change trajectory. The resulting tCDR potentials in year 2100 include the net accumulated annual biomass harvests and changes in all land carbon pools. We find that only the most spatially excessive, and thus undesirable, scenario would be capable to restore the 2° target by 2100 under continuing high emissions (with a cooling of 3.02°C). Large-scale biomass plantations covering areas between 1.1 - 4.2 Gha would produce a climate reduction potential of 0.8 - 1.4°C. tCDR plantations at smaller scales do not build up enough biomass over this considered period and the potentials to achieve global warming reductions are substantially lowered to no more than 0.5-0.6°C. Finally, we demonstrate that the (non-economic) costs for the Earth system include negative impacts on the water cycle and on ecosystems, which are already under pressure due to both land use change and climate change. Overall, tCDR may lead to a further transgression of land- and water-related planetary boundaries while not being able to set back the crossing of the planetary boundary for climate change. tCDR could still be considered in the near-future mitigation portfolio if implemented on small scales on wisely chosen areas.

  8. On the evolution of central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Yahel, R.Z.

    1977-01-01

    The evolution of nuclei of planetary nebulae has been calculated from the end of the ejection stage that produces the nebulae to the white dwarf stage. The structure of the central star is in agreement with the general picture of Finzi (1973) about the mass ejection from the progenitors of planetary nebulae. It has been found that in order to obtain evolutionary track consistent with the Harman-Seaton track (O'Dell, 1968) one has to assume that the masses of the nuclei stars are less than approximately 0.7 solar masses. The calculated evolutionary time scale of the central stars of planetary nebulae is approximately 2 x 10 4 yr. This time scale is negatively correlated with the stellar mass: the heavier the stellar mass, the shorter the evolutionary time scale. (Auth.)

  9. Evaluating cloud processes in large-scale models: Of idealized case studies, parameterization testbeds and single-column modelling on climate time-scales

    Science.gov (United States)

    Neggers, Roel

    2016-04-01

    Boundary-layer schemes have always formed an integral part of General Circulation Models (GCMs) used for numerical weather and climate prediction. The spatial and temporal scales associated with boundary-layer processes and clouds are typically much smaller than those at which GCMs are discretized, which makes their representation through parameterization a necessity. The need for generally applicable boundary-layer parameterizations has motivated many scientific studies, which in effect has created its own active research field in the atmospheric sciences. Of particular interest has been the evaluation of boundary-layer schemes at "process-level". This means that parameterized physics are studied in isolated mode from the larger-scale circulation, using prescribed forcings and excluding any upscale interaction. Although feedbacks are thus prevented, the benefit is an enhanced model transparency, which might aid an investigator in identifying model errors and understanding model behavior. The popularity and success of the process-level approach is demonstrated by the many past and ongoing model inter-comparison studies that have been organized by initiatives such as GCSS/GASS. A red line in the results of these studies is that although most schemes somehow manage to capture first-order aspects of boundary layer cloud fields, there certainly remains room for improvement in many areas. Only too often are boundary layer parameterizations still found to be at the heart of problems in large-scale models, negatively affecting forecast skills of NWP models or causing uncertainty in numerical predictions of future climate. How to break this parameterization "deadlock" remains an open problem. This presentation attempts to give an overview of the various existing methods for the process-level evaluation of boundary-layer physics in large-scale models. This includes i) idealized case studies, ii) longer-term evaluation at permanent meteorological sites (the testbed approach

  10. Large-scale multimedia modeling applications

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.; Buck, J.W.; Whelan, G.; Strenge, D.L.; Castleton, K.J.; Gelston, G.M.

    1995-08-01

    Over the past decade, the US Department of Energy (DOE) and other agencies have faced increasing scrutiny for a wide range of environmental issues related to past and current practices. A number of large-scale applications have been undertaken that required analysis of large numbers of potential environmental issues over a wide range of environmental conditions and contaminants. Several of these applications, referred to here as large-scale applications, have addressed long-term public health risks using a holistic approach for assessing impacts from potential waterborne and airborne transport pathways. Multimedia models such as the Multimedia Environmental Pollutant Assessment System (MEPAS) were designed for use in such applications. MEPAS integrates radioactive and hazardous contaminants impact computations for major exposure routes via air, surface water, ground water, and overland flow transport. A number of large-scale applications of MEPAS have been conducted to assess various endpoints for environmental and human health impacts. These applications are described in terms of lessons learned in the development of an effective approach for large-scale applications

  11. Revisiting Gill's Circulation. Dynamic Response to Diabatic Heating of Different Horizontal Extents

    Science.gov (United States)

    Reboredo, B.; Bellon, G.

    2017-12-01

    The horizontal extent of diabatic heating associated with the MJO is thought to be crucial to its development, and the inability of GCMs to simulate the spatial, horizontal organization of clouds is considered a leading hypothesis to explain their limited capacity to simulate MJO events. This prevents the MJO large-circulation response from developing and feeding back on the development of clouds. We apply mid-tropospheric heating of different size in simple linear and non-linear models of the tropical atmosphere following Gill's seminal work on heat-induced tropical circulations. Results show that there is a scale for which the characteristic circulation {Γ c} for the vertical advection of moisture to produce the latent heat mean {Q} gives a rough estimate of the real world MJO scale. Overturning circulation flow rates above {Γ c} account for a circulation that transports more moisture than necessary to be maintained, and below {Γ c}, circulation would not transport enough moisture to maintain circulation. This dynamic scale might constrain the size of the spatially-organised convection necessary to the development of an MJO event. However, other effects are expected to modulate this scale, such as vertical advection of moisture anomalies, horizontal advection, evaporation, radiative heating, and sensible heat fluxes.

  12. Planetary climates (princeton primers in climate)

    CERN Document Server

    Ingersoll, Andrew

    2013-01-01

    This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.

  13. Scaling of the steady state and stability behaviour of single and two-phase natural circulation systems

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Nayak, A.K.; Bade, M.H.; Kumar, N.; Saha, D.; Sinha, R.K.

    2002-01-01

    Scaling methods for both single-phase and two-phase natural circulation systems have been presented. For single-phase systems, simulation of the steady state flow can be achieved by preserving just one nondimensional parameter. For uniform diameter two-phase systems also, it is possible to simulate the steady state behaviour with just one non-dimensional parameter. Simulation of the stability behaviour requires geometric similarity in addition to the similarity of the physical parameters appearing in the governing equations. The scaling laws proposed have been tested with experimental data in case of single-phase natural circulation. (author)

  14. Decentralized Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad

    2013-01-01

    problem is formulated as a centralized large-scale optimization problem but is then decomposed into smaller subproblems that are solved locally by each unit connected to an aggregator. For large-scale systems the method is faster than solving the full problem and can be distributed to include an arbitrary...

  15. Simulation of Venus polar vortices with the non-hydrostatic general circulation model

    Science.gov (United States)

    Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin

    2012-07-01

    The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending

  16. Automating large-scale reactor systems

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1985-01-01

    This paper conveys a philosophy for developing automated large-scale control systems that behave in an integrated, intelligent, flexible manner. Methods for operating large-scale systems under varying degrees of equipment degradation are discussed, and a design approach that separates the effort into phases is suggested. 5 refs., 1 fig

  17. Fluvial geomorphology on Earth-like planetary surfaces: A review.

    Science.gov (United States)

    Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P

    2015-09-15

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.

  18. Large-scale circulation associated with moisture intrusions into the Arctic during winter

    Science.gov (United States)

    Woods, Cian; Caballero, Rodrigo; Svensson, Gunilla

    2014-05-01

    Observations during recent decades show that there is a greater near surface warming occurring in the Arctic, particularly during winter, than at lower latitudes. Understanding the mechanisms controlling surface temperature in the Arctic is therefore an important priority in climate research. The surface energy budget is a key proximate control on Arctic surface temperature. During winter, insolation is low or absent and the atmospheric boundary layer is typically very stable, limiting turbulent hear exchange, so that the surface energy budget is almost entirely governed by longwave radiation. The net surface longwave radiation (NetLW) at this time has a strikingly bimodal distribution: conditions oscillate between a 'radiatively clear' state with rapid surface heat loss and a "moist cloudy" state with NetLW ˜ 0 W m-2. Each state can persist for days or weeks at a time but transitions between them happen in a matter of hours. This distribution of NetLW has important implications for the Arctic climate, as even a small shift in the frequency of occupancy of each state would be enough to significantly affect the overall surface energy budget and thus winter sea ice thickness. The clear and cloudy states typically occur during periods of relatively high and low surface pressure respectively, suggesting a link with synoptic-scale dynamics. This suggestion is consistent with previous studies indicating that the formation of low-level and mid-level clouds over the Arctic Ocean is typically associated with cyclonic activity and passing frontal systems . More recent work has shown that intense filamentary moisture intrusion events are a common feature in the Arctic and can induce large episodic increases of longwave radiation into the surface. The poleward transport of water vapor across 70N during boreal winter is examined in the ERA-Interim reanalysis product and 16 of the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, focusing on intense moisture

  19. Potential climatic impacts and reliability of large-scale offshore wind farms

    International Nuclear Information System (INIS)

    Wang Chien; Prinn, Ronald G

    2011-01-01

    The vast availability of wind power has fueled substantial interest in this renewable energy source as a potential near-zero greenhouse gas emission technology for meeting future world energy needs while addressing the climate change issue. However, in order to provide even a fraction of the estimated future energy needs, a large-scale deployment of wind turbines (several million) is required. The consequent environmental impacts, and the inherent reliability of such a large-scale usage of intermittent wind power would have to be carefully assessed, in addition to the need to lower the high current unit wind power costs. Our previous study (Wang and Prinn 2010 Atmos. Chem. Phys. 10 2053) using a three-dimensional climate model suggested that a large deployment of wind turbines over land to meet about 10% of predicted world energy needs in 2100 could lead to a significant temperature increase in the lower atmosphere over the installed regions. A global-scale perturbation to the general circulation patterns as well as to the cloud and precipitation distribution was also predicted. In the later study reported here, we conducted a set of six additional model simulations using an improved climate model to further address the potential environmental and intermittency issues of large-scale deployment of offshore wind turbines for differing installation areas and spatial densities. In contrast to the previous land installation results, the offshore wind turbine installations are found to cause a surface cooling over the installed offshore regions. This cooling is due principally to the enhanced latent heat flux from the sea surface to lower atmosphere, driven by an increase in turbulent mixing caused by the wind turbines which was not entirely offset by the concurrent reduction of mean wind kinetic energy. We found that the perturbation of the large-scale deployment of offshore wind turbines to the global climate is relatively small compared to the case of land

  20. Laser anemometry measurements of natural circulation flow in a scale model PWR system

    International Nuclear Information System (INIS)

    Kadambi, J.R.; Schneider, S.J.

    1990-01-01

    This paper reports on experimental studies conducted to investigate the natural circulation of a single-phase fluid in a scale model pressurized water reactor system during a postulated degraded core accident. A half-section of a 1/7 scale model with a plexiglass adiabatic window was used. Water and sulfurhexafluoride (SF 6 ) were used as the fluid. Laser-Doppler anemometry (LDA) was used in marking the velocity measurements along the center plane of the model at five elevations

  1. The Software Reliability of Large Scale Integration Circuit and Very Large Scale Integration Circuit

    OpenAIRE

    Artem Ganiyev; Jan Vitasek

    2010-01-01

    This article describes evaluation method of faultless function of large scale integration circuits (LSI) and very large scale integration circuits (VLSI). In the article there is a comparative analysis of factors which determine faultless of integrated circuits, analysis of already existing methods and model of faultless function evaluation of LSI and VLSI. The main part describes a proposed algorithm and program for analysis of fault rate in LSI and VLSI circuits.

  2. Rocky Planetary Debris Around Young WDs

    Science.gov (United States)

    Gaensicke, B.

    2014-04-01

    The vast majority of all known planet host stars, including the Sun, will eventually evolve into red giants and finally end their lives as white dwarfs: extremely dense Earth-sized stellar embers. Only close-in planets will be devoured during the red-giant phase. In the solar system, Mars, the asteroid belt, and all the giant planets will escape evaporation, and the same is true for many of the known exo-planets. It is hence certain that a significant fraction of the known white dwarfs were once host stars to planets, and it is very likely that many of them still have remnants of planetary systems. The detection of metals in the atmospheres of white dwarfs is the unmistakable signpost of such evolved planetary systems. The strong surface gravity of white dwarfs causes metals to sink out of the atmosphere on time-scales much shorter than their cooling ages, leading unavoidably to pristine H/He atmospheres. Therefore any metals detected in the atmosphere of a white dwarf imply recent or ongoing accretion of planetary debris. In fact, planetary debris is also detected as circumstellar dust and gas around a number of white dwarfs. These debris disks are formed from the tidal disruption of asteroids or Kuiper belt-like objects, stirred up by left-over planets, and are subsequently accreted onto the white dwarf, imprinting their abundance pattern into its atmosphere. Determining the photospheric abundances of debris-polluted white dwarfs is hence entirely analogue to the use of meteorites, "rocks that fell from the sky", for measuring the abundances of planetary material in the solar system. I will briefly review this new field of exo-planet science, and then focus on the results of a large, unbiased COS snapshot survey of relatively young ( 20-100Myr) white dwarfs that we carried out in Cycle 18/19. * At least 30% of all white dwarfs in our sample are accreting planetary debris, and that fraction may be as high as 50%. * In most cases where debris pollution is detected

  3. Natural circulation in a scaled PWR integral test facility

    International Nuclear Information System (INIS)

    Kiang, R.L.; Jeuck, P.R. III

    1987-01-01

    Natural circulation is an important mechanism for cooling a nuclear power plant under abnormal operating conditions. To study natural circulation, we modeled a type of pressurized water reactor (PWR) that incorporates once-through steam generators. We conducted tests of single-phase natural circulations, two-phase natural circulations, and a boiler condenser mode. Because of complex geometry, the natural circulations observed in this facility exhibit some phenomena not commonly seen in a simple thermosyphon loop

  4. The diversity of planetary system architectures: contrasting theory with observations

    Science.gov (United States)

    Miguel, Y.; Guilera, O. M.; Brunini, A.

    2011-10-01

    In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the

  5. Scaling and Numerical Model Evaluation of Snow-Cover Effects on the Generation and Modification of Daytime Mesoscale Circulations.

    Science.gov (United States)

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Ye, Z.

    1991-04-01

    Consideration of the sensible heat flux characteristics over a snow surface suggests a significant diminution in the magnitude of the flux, compared to that over a snow-free surface under the same environmental conditions. Consequently, the existence of snow-covered mesoscale areas adjacent to snow-free areas produces horizontal thermal gradients in the lower atmosphere during the daytime, possibly resulting in a `snow breeze.' In addition, suppression of the daytime thermally induced upslope flow over snow-covered slopes is likely to occur. The present paper provides scaling and modeling evaluations of these situations, with quantification of the generated and modified circulations. These evaluations suggest that under ideal situations involved with uniform snow cover over large areas, particularly in late winter and early spring, a noticeable `snow breeze' is likely to develop. Additionally: suppression of the daytime thermally induced upslope flow is significant and may even result in a daytime drainage flow. The effects of bare ground patchiness in the snow cover on these circulations are also explored, both for flat terrain and slope-flow situations. A patchiness fraction greater than 0.5 is found to result in a noticeably reduced snow-breeze circulation, while a patchiness fraction of only 0.1 caused the simulated daytime drainage flow over slopes to he reversed.

  6. The vertical structure of Jupiter and Saturn zonal winds from nonlinear simulations of major vortices and planetary-scale disturbances

    Science.gov (United States)

    Garcia-Melendo, E.; Legarreta, J.; Sanchez-Lavega, A.

    2012-12-01

    Direct measurements of the structure of the zonal winds of Jupiter and Saturn below the upper cloud layer are very difficult to retrieve. Except from the vertical profile at a Jupiter hot spot obtained from the Galileo probe in 1995 and measurements from cloud tracking by Cassini instruments just below the upper cloud, no other data are available. We present here our inferences of the vertical structure of Jupiter and Saturn zonal wind across the upper troposphere (deep down to about 10 bar level) obtained from nonlinear simulations using the EPIC code of the stability and interactions of large-scale vortices and planetary-scale disturbances in both planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] García-Melendo E., Sánchez-Lavega A., Dowling T.., Icarus, 176, 272-282 (2005). [2] García-Melendo E., Sánchez-Lavega A., Hueso R., Icarus, 191, 665-677 (2007). [3] Sánchez-Lavega A., et al., Nature, 451, 437- 440 (2008). [4] Sánchez-Lavega A., et al., Nature, 475, 71-74 (2011).

  7. Phylogenetic distribution of large-scale genome patchiness

    Directory of Open Access Journals (Sweden)

    Hackenberg Michael

    2008-04-01

    Full Text Available Abstract Background The phylogenetic distribution of large-scale genome structure (i.e. mosaic compositional patchiness has been explored mainly by analytical ultracentrifugation of bulk DNA. However, with the availability of large, good-quality chromosome sequences, and the recently developed computational methods to directly analyze patchiness on the genome sequence, an evolutionary comparative analysis can be carried out at the sequence level. Results The local variations in the scaling exponent of the Detrended Fluctuation Analysis are used here to analyze large-scale genome structure and directly uncover the characteristic scales present in genome sequences. Furthermore, through shuffling experiments of selected genome regions, computationally-identified, isochore-like regions were identified as the biological source for the uncovered large-scale genome structure. The phylogenetic distribution of short- and large-scale patchiness was determined in the best-sequenced genome assemblies from eleven eukaryotic genomes: mammals (Homo sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus, and Canis familiaris, birds (Gallus gallus, fishes (Danio rerio, invertebrates (Drosophila melanogaster and Caenorhabditis elegans, plants (Arabidopsis thaliana and yeasts (Saccharomyces cerevisiae. We found large-scale patchiness of genome structure, associated with in silico determined, isochore-like regions, throughout this wide phylogenetic range. Conclusion Large-scale genome structure is detected by directly analyzing DNA sequences in a wide range of eukaryotic chromosome sequences, from human to yeast. In all these genomes, large-scale patchiness can be associated with the isochore-like regions, as directly detected in silico at the sequence level.

  8. Managing large-scale models: DBS

    International Nuclear Information System (INIS)

    1981-05-01

    A set of fundamental management tools for developing and operating a large scale model and data base system is presented. Based on experience in operating and developing a large scale computerized system, the only reasonable way to gain strong management control of such a system is to implement appropriate controls and procedures. Chapter I discusses the purpose of the book. Chapter II classifies a broad range of generic management problems into three groups: documentation, operations, and maintenance. First, system problems are identified then solutions for gaining management control are disucssed. Chapters III, IV, and V present practical methods for dealing with these problems. These methods were developed for managing SEAS but have general application for large scale models and data bases

  9. Large Scale Self-Organizing Information Distribution System

    National Research Council Canada - National Science Library

    Low, Steven

    2005-01-01

    This project investigates issues in "large-scale" networks. Here "large-scale" refers to networks with large number of high capacity nodes and transmission links, and shared by a large number of users...

  10. Impact of air-sea drag coefficient for latent heat flux on large scale climate in coupled and atmosphere stand-alone simulations

    Science.gov (United States)

    Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc

    2018-05-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux

  11. Large scale structure and baryogenesis

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    2001-08-01

    We discuss a possible connection between the large scale structure formation and the baryogenesis in the universe. An update review of the observational indications for the presence of a very large scale 120h -1 Mpc in the distribution of the visible matter of the universe is provided. The possibility to generate a periodic distribution with the characteristic scale 120h -1 Mpc through a mechanism producing quasi-periodic baryon density perturbations during inflationary stage, is discussed. The evolution of the baryon charge density distribution is explored in the framework of a low temperature boson condensate baryogenesis scenario. Both the observed very large scale of a the visible matter distribution in the universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage. Moreover, for some model's parameters a natural separation of matter superclusters from antimatter ones can be achieved. (author)

  12. Automatic management software for large-scale cluster system

    International Nuclear Information System (INIS)

    Weng Yunjian; Chinese Academy of Sciences, Beijing; Sun Gongxing

    2007-01-01

    At present, the large-scale cluster system faces to the difficult management. For example the manager has large work load. It needs to cost much time on the management and the maintenance of large-scale cluster system. The nodes in large-scale cluster system are very easy to be chaotic. Thousands of nodes are put in big rooms so that some managers are very easy to make the confusion with machines. How do effectively carry on accurate management under the large-scale cluster system? The article introduces ELFms in the large-scale cluster system. Furthermore, it is proposed to realize the large-scale cluster system automatic management. (authors)

  13. Atmospheric Diabatic Heating in Different Weather States and the General Circulation

    Science.gov (United States)

    Rossow, William B.; Zhang, Yuanchong; Tselioudis, George

    2016-01-01

    Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.

  14. Stratospheric Influence on Summer Monsoon and Associated Planetary Wave Breaking and Mixing in the Subtropical Tropopause Region

    Science.gov (United States)

    Lubis, S. W.; Nakamura, N.

    2017-12-01

    Previous studies have shown that the monsoonal circulation plays an important role in planetary wave breaking (PWB). The highest frequency of breaking events occurs just downstream (east) of the monsoon region in summer. PWB induces mixing of potential vorticity (PV) and hence, alter the horizontal mixing in the atmosphere. Here, the authors hypothesize that the stratospheric easterlies in the boreal summer also play a significant role in the PWB and mixing associated with the summer monsoon. If the stratospheric winds were westerly in boreal summer, the frequency of PWB would be decreased due to more waves penetrating in the stratosphere, resulting in less horizontal PWB and thus reduced mixing in the subtropical tropopause region. The hypothesis is examined by using a set of idealized moist GFDL simulations. The monsoon circulation is produced by adding a land-sea contrast with a Gaussian-shaped mountains positioned in the midlatitudes. Other key ingredients for the monsoon, including albedo, oceanic warm pool, and Q-flux, were also ideally imposed in all simulations. Our control simulation produces a summer monsoon-like circulation similar to the observation. In particular, the thermally forced monsoonal circulation forms a prominent closed upper-level anticyclone that dominates the summertime upper-level flow. Associated with this circulation is an upward-bulging tropopause that forms a large reservoir of anomalously low PV. Consistent with previous studies, the well-defined tropospheric jet lies just poleward of the upper-level anticyclone, and acts as a dynamical barrier between the low-PV reservoir over the monsoonal region and the high-PV reservoir in the extratropics. This barrier disappears just northeast of the monsoon area in the jet exit region, allowing more quasi-planetary waves to break in this region. Repetitive wave breaking further weakens the PV gradient, leading to the formation of the surf zone and stronger mixing in this region. To quantify

  15. Is Planetary-Scale High Tech Civilization Climatically Sustainable?: The Geophysics v Economics Paradigm War

    Science.gov (United States)

    Hoffert, M.

    2012-12-01

    Climate/energy policy is gridlocked between (1) a geophysics perspective revealing long-term instabilities from continued energy consumption growth, of which the fossil fuel greenhouse an early symptom; and (2) short-term, fossil-fuel energized-rapid-economic-growth-driven policies likely adaptive for hunter-gatherers competing for scarce food, but climatically fatal to planetary-scale economies dependent on agriculture and "energy slaves." Incorporating social science into climate/energy policy formulation has focused on integrated assessment models (IAMs) exploring scenarios (parallel universes making different social choices) depicting the evolution of GDP, energy consumed, the energy technology mixture, land use, greenhouse gas and aerosol emissions, and radiative forcing). Representative concentration pathways (RCP) scenarios developed for the IPCC AR5 report imply 5-10 degree C warming from fossil fuel burning unless unprecedentedly fast decarbonization rates ~ 7 %/yr are implemented from 2020 to 2100. A massive transition to carbon neutrality by midcentury is needed to keep warming use continues growing at 2%/year, fossil-fuel-greenhouse level warming would be generated by heat rejecting in only 200-300 years underscoring that sustainability implies a steady state planetary economy (FIG.2). Evolutionary psychology and neuroeconomics are emergent disciplines that may illuminate the physical v social science paradigm conflict threatening human survivability.

  16. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  17. Large-Scale Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  18. Optical spectra of radio planetary nebulae in the large Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne J.L.

    2008-01-01

    Full Text Available We present 11 spectra from 12 candidate radio sources co-identified with known planetary nebulae (PNe in the Large Magellanic Cloud (LMC. Originally found in Australia Telescope Compact Array (ATCA LMC surveys at 1.4, 4.8 and 8.64 GHz and confirmed by new high resolution ATCA images at 6 and 3 cm (4' /2' , these complement data recently presented for candidate radio PNe in the Small Magellanic Cloud (SMC. Their spectra were obtained using the Radcliff 1.9-meter telescope in Sutherland (South Africa. All of the optical PNe and radio candidates are within 2' and may represent a population of selected radio bright sample only. Nebular ionized masses of these objects are estimated to be as high as 1.8 Mfi, supporting the idea that massive PNe progenitor central stars lose much of their mass in the asymptotic giant branch (AGB phase or prior. We also identify a sub-population (33% of radio PNe candidates with prominent ionized iron emission lines.

  19. The Kinematics of the Permitted C ii λ 6578 Line in a Large Sample of Planetary Nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Richer, Michael G.; Suárez, Genaro; López, José Alberto; García Díaz, María Teresa, E-mail: richer@astrosen.unam.mx, E-mail: gsuarez@astro.unam.mx, E-mail: jal@astrosen.unam.mx, E-mail: tere@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California (Mexico)

    2017-03-01

    We present spectroscopic observations of the C ii λ 6578 permitted line for 83 lines of sight in 76 planetary nebulae at high spectral resolution, most of them obtained with the Manchester Echelle Spectrograph on the 2.1 m telescope at the Observatorio Astronómico Nacional on the Sierra San Pedro Mártir. We study the kinematics of the C ii λ 6578 permitted line with respect to other permitted and collisionally excited lines. Statistically, we find that the kinematics of the C ii λ 6578 line are not those expected if this line arises from the recombination of C{sup 2+} ions or the fluorescence of C{sup +} ions in ionization equilibrium in a chemically homogeneous nebular plasma, but instead its kinematics are those appropriate for a volume more internal than expected. The planetary nebulae in this sample have well-defined morphology and are restricted to a limited range in H α line widths (no large values) compared to their counterparts in the Milky Way bulge; both these features could be interpreted as the result of young nebular shells, an inference that is also supported by nebular modeling. Concerning the long-standing discrepancy between chemical abundances inferred from permitted and collisionally excited emission lines in photoionized nebulae, our results imply that multiple plasma components occur commonly in planetary nebulae.

  20. Equations of State: Gateway to Planetary Origin and Evolution (Invited)

    Science.gov (United States)

    Melosh, J.

    2013-12-01

    Research over the past decades has shown that collisions between solid bodies govern many crucial phases of planetary origin and evolution. The accretion of the terrestrial planets was punctuated by planetary-scale impacts that generated deep magma oceans, ejected primary atmospheres and probably created the moons of Earth and Pluto. Several extrasolar planetary systems are filled with silicate vapor and condensed 'tektites', probably attesting to recent giant collisions. Even now, long after the solar system settled down from its violent birth, a large asteroid impact wiped out the dinosaurs, while other impacts may have played a role in the origin of life on Earth and perhaps Mars, while maintaining a steady exchange of small meteorites between the terrestrial planets and our moon. Most of these events are beyond the scale at which experiments are possible, so that our main research tool is computer simulation, constrained by the laws of physics and the behavior of materials during high-speed impact. Typical solar system impact velocities range from a few km/s in the outer solar system to 10s of km/s in the inner system. Extrasolar planetary systems expand that range to 100s of km/sec typical of the tightly clustered planetary systems now observed. Although computer codes themselves are currently reaching a high degree of sophistication, we still rely on experimental studies to determine the Equations of State (EoS) of materials critical for the correct simulation of impact processes. The recent expansion of the range of pressures available for study, from a few 100 GPa accessible with light gas guns up to a few TPa from current high energy accelerators now opens experimental access to the full velocity range of interest in our solar system. The results are a surprise: several groups in both the USA and Japan have found that silicates and even iron melt and vaporize much more easily in an impact than previously anticipated. The importance of these findings is

  1. Responses of Cloud Type Distributions to the Large-Scale Dynamical Circulation: Water Budget-Related Dynamical Phase Space and Dynamical Regimes

    Science.gov (United States)

    Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.

    2015-01-01

    Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.

  2. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele

    2015-08-23

    The interaction between scales is investigated in a turbulent mixing layer. The large-scale amplitude modulation of the small scales already observed in other works depends on the crosswise location. Large-scale positive fluctuations correlate with a stronger activity of the small scales on the low speed-side of the mixing layer, and a reduced activity on the high speed-side. However, from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  3. The Nature of Global Large-scale Sea Level Variability in Relation to Atmospheric Forcing: A Modeling Study

    Science.gov (United States)

    Fukumori, I.; Raghunath, R.; Fu, L. L.

    1996-01-01

    The relation between large-scale sea level variability and ocean circulation is studied using a numerical model. A global primitive equaiton model of the ocean is forced by daily winds and climatological heat fluxes corresponding to the period from January 1992 to February 1996. The physical nature of the temporal variability from periods of days to a year, are examined based on spectral analyses of model results and comparisons with satellite altimetry and tide gauge measurements.

  4. Dissecting the large-scale galactic conformity

    Science.gov (United States)

    Seo, Seongu

    2018-01-01

    Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.

  5. Large-scale perspective as a challenge

    NARCIS (Netherlands)

    Plomp, M.G.A.

    2012-01-01

    1. Scale forms a challenge for chain researchers: when exactly is something ‘large-scale’? What are the underlying factors (e.g. number of parties, data, objects in the chain, complexity) that determine this? It appears to be a continuum between small- and large-scale, where positioning on that

  6. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  7. Algorithm 896: LSA: Algorithms for Large-Scale Optimization

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan

    2009-01-01

    Roč. 36, č. 3 (2009), 16-1-16-29 ISSN 0098-3500 R&D Pro jects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : algorithms * design * large-scale optimization * large-scale nonsmooth optimization * large-scale nonlinear least squares * large-scale nonlinear minimax * large-scale systems of nonlinear equations * sparse pro blems * partially separable pro blems * limited-memory methods * discrete Newton methods * quasi-Newton methods * primal interior-point methods Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.904, year: 2009

  8. Scale interactions in a mixing layer – the role of the large-scale gradients

    KAUST Repository

    Fiscaletti, D.

    2016-02-15

    © 2016 Cambridge University Press. The interaction between the large and the small scales of turbulence is investigated in a mixing layer, at a Reynolds number based on the Taylor microscale of , via direct numerical simulations. The analysis is performed in physical space, and the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale activity. It is found that positive large-scale velocity fluctuations correspond to large vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to low vorticity r.m.s. on the high-speed side. The relationship between large and small scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale velocity fluctuations. On the contrary, the correlation coefficient is nearly constant throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with the large-scale velocity gradients. Therefore, the small-scale activity appears closely related to large-scale gradients, while the correlation between the small-scale activity and the large-scale velocity fluctuations is shown to reflect a property of the large scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass filtered (large scales) velocity fields tend to be aligned when examined within vortical tubes. These results provide evidence for the so-called \\'scale invariance\\' (Meneveau & Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1-32), and suggest that some of the large-scale characteristics are not lost at the small scales, at least at the Reynolds number achieved in the present simulation.

  9. Planetary boundaries: exploring the safe operating space for humanity

    Science.gov (United States)

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan Foley

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due...

  10. On the parametrization of the planetary boundary layer of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, D. [Bulgarian Academy of Sciences, Geophysical Inst., Sofia (Bulgaria); Syrakov, D.; Kolarova, M. [Bulgarian Academy of Sciences, National Inst. of Meteorology and Hydrology, Sofia (United Kingdom)

    1997-10-01

    The investigation of the dynamic processes in the planetary boundary layer presents a definite theoretical challenge and plays a growing role for the solution of a number of practical tasks. The improvement of large-scale atmospheric weather forecast depends, to a certain degree, on the proper inclusion of the planetary boundary layer dynamics in the numerical models. The modeling of the transport and the diffusion of air pollutants is connected with estimation of the different processes in the Planetary Boundary Layer (PBL) and needs also a proper PBL parametrization. For the solution of these practical tasks the following PBL models;(i) a baroclinic PBL model with its barotropic version, and (ii) a convective PBL model were developed. Both models are one dimensional and are based on the similarity theory and the resistance lows extended for the whole PBL. Two different PBL parametrizations under stable and under convective conditions are proposed, on the basis of which the turbulent surface heat and momentum fluxes are estimated using generalized similarity theory. By the proposed parametrizations the internal parameters are calculated from the synoptic scale parameters as geostrophyc wind, potential temperature and humidity given at two levels (ground level and at 850 hPa) and from them - the PBL profiles. The models consists of two layers: a surface layer (SL) with a variable height and a second (Ekman layer) over it with a constant with height turbulent exchange coefficient. (au) 14 refs.

  11. Large-scale matrix-handling subroutines 'ATLAS'

    International Nuclear Information System (INIS)

    Tsunematsu, Toshihide; Takeda, Tatsuoki; Fujita, Keiichi; Matsuura, Toshihiko; Tahara, Nobuo

    1978-03-01

    Subroutine package ''ATLAS'' has been developed for handling large-scale matrices. The package is composed of four kinds of subroutines, i.e., basic arithmetic routines, routines for solving linear simultaneous equations and for solving general eigenvalue problems and utility routines. The subroutines are useful in large scale plasma-fluid simulations. (auth.)

  12. Did Large-Scale Vaccination Drive Changes in the Circulating Rotavirus Population in Belgium?

    Science.gov (United States)

    Pitzer, Virginia E.; Bilcke, Joke; Heylen, Elisabeth; Crawford, Forrest W.; Callens, Michael; De Smet, Frank; Van Ranst, Marc; Zeller, Mark; Matthijnssens, Jelle

    2015-01-01

    Vaccination can place selective pressures on viral populations, leading to changes in the distribution of strains as viruses evolve to escape immunity from the vaccine. Vaccine-driven strain replacement is a major concern after nationwide rotavirus vaccine introductions. However, the distribution of the predominant rotavirus genotypes varies from year to year in the absence of vaccination, making it difficult to determine what changes can be attributed to the vaccines. To gain insight in the underlying dynamics driving changes in the rotavirus population, we fitted a hierarchy of mathematical models to national and local genotype-specific hospitalization data from Belgium, where large-scale vaccination was introduced in 2006. We estimated that natural- and vaccine-derived immunity was strongest against completely homotypic strains and weakest against fully heterotypic strains, with an intermediate immunity amongst partially heterotypic strains. The predominance of G2P[4] infections in Belgium after vaccine introduction can be explained by a combination of natural genotype fluctuations and weaker natural and vaccine-induced immunity against infection with strains heterotypic to the vaccine, in the absence of significant variation in strain-specific vaccine effectiveness against disease. However, the incidence of rotavirus gastroenteritis is predicted to remain low despite vaccine-driven changes in the distribution of genotypes. PMID:26687288

  13. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  14. Local and regional effects of large scale atmospheric circulation patterns on winter wind power output in Western Europe

    Science.gov (United States)

    Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark

    2014-05-01

    Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power

  15. Probes of large-scale structure in the Universe

    International Nuclear Information System (INIS)

    Suto, Yasushi; Gorski, K.; Juszkiewicz, R.; Silk, J.

    1988-01-01

    Recent progress in observational techniques has made it possible to confront quantitatively various models for the large-scale structure of the Universe with detailed observational data. We develop a general formalism to show that the gravitational instability theory for the origin of large-scale structure is now capable of critically confronting observational results on cosmic microwave background radiation angular anisotropies, large-scale bulk motions and large-scale clumpiness in the galaxy counts. (author)

  16. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.

    1985-01-01

    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  17. Large-scale grid management; Storskala Nettforvaltning

    Energy Technology Data Exchange (ETDEWEB)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-07-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series.

  18. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    Science.gov (United States)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional

  19. FFTLasso: Large-Scale LASSO in the Fourier Domain

    KAUST Repository

    Bibi, Adel Aamer

    2017-11-09

    In this paper, we revisit the LASSO sparse representation problem, which has been studied and used in a variety of different areas, ranging from signal processing and information theory to computer vision and machine learning. In the vision community, it found its way into many important applications, including face recognition, tracking, super resolution, image denoising, to name a few. Despite advances in efficient sparse algorithms, solving large-scale LASSO problems remains a challenge. To circumvent this difficulty, people tend to downsample and subsample the problem (e.g. via dimensionality reduction) to maintain a manageable sized LASSO, which usually comes at the cost of losing solution accuracy. This paper proposes a novel circulant reformulation of the LASSO that lifts the problem to a higher dimension, where ADMM can be efficiently applied to its dual form. Because of this lifting, all optimization variables are updated using only basic element-wise operations, the most computationally expensive of which is a 1D FFT. In this way, there is no need for a linear system solver nor matrix-vector multiplication. Since all operations in our FFTLasso method are element-wise, the subproblems are completely independent and can be trivially parallelized (e.g. on a GPU). The attractive computational properties of FFTLasso are verified by extensive experiments on synthetic and real data and on the face recognition task. They demonstrate that FFTLasso scales much more effectively than a state-of-the-art solver.

  20. FFTLasso: Large-Scale LASSO in the Fourier Domain

    KAUST Repository

    Bibi, Adel Aamer; Itani, Hani; Ghanem, Bernard

    2017-01-01

    In this paper, we revisit the LASSO sparse representation problem, which has been studied and used in a variety of different areas, ranging from signal processing and information theory to computer vision and machine learning. In the vision community, it found its way into many important applications, including face recognition, tracking, super resolution, image denoising, to name a few. Despite advances in efficient sparse algorithms, solving large-scale LASSO problems remains a challenge. To circumvent this difficulty, people tend to downsample and subsample the problem (e.g. via dimensionality reduction) to maintain a manageable sized LASSO, which usually comes at the cost of losing solution accuracy. This paper proposes a novel circulant reformulation of the LASSO that lifts the problem to a higher dimension, where ADMM can be efficiently applied to its dual form. Because of this lifting, all optimization variables are updated using only basic element-wise operations, the most computationally expensive of which is a 1D FFT. In this way, there is no need for a linear system solver nor matrix-vector multiplication. Since all operations in our FFTLasso method are element-wise, the subproblems are completely independent and can be trivially parallelized (e.g. on a GPU). The attractive computational properties of FFTLasso are verified by extensive experiments on synthetic and real data and on the face recognition task. They demonstrate that FFTLasso scales much more effectively than a state-of-the-art solver.

  1. Japanese large-scale interferometers

    CERN Document Server

    Kuroda, K; Miyoki, S; Ishizuka, H; Taylor, C T; Yamamoto, K; Miyakawa, O; Fujimoto, M K; Kawamura, S; Takahashi, R; Yamazaki, T; Arai, K; Tatsumi, D; Ueda, A; Fukushima, M; Sato, S; Shintomi, T; Yamamoto, A; Suzuki, T; Saitô, Y; Haruyama, T; Sato, N; Higashi, Y; Uchiyama, T; Tomaru, T; Tsubono, K; Ando, M; Takamori, A; Numata, K; Ueda, K I; Yoneda, H; Nakagawa, K; Musha, M; Mio, N; Moriwaki, S; Somiya, K; Araya, A; Kanda, N; Telada, S; Sasaki, M; Tagoshi, H; Nakamura, T; Tanaka, T; Ohara, K

    2002-01-01

    The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry-Perot-Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R and D.

  2. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Marashdeh, Qussai [Tech4imaging LLC, Columbus, OH (United States)

    2013-02-01

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi

  3. Optical Spectra of Radio Planetary Nebulae in the Large Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne, J. L.

    2008-12-01

    Full Text Available We present 11 spectra from 12 candidate radio sources co-identified with known planetary nebulae (PNe in the Large Magellanic Cloud (LMC. Originally found in Australia Telescope Compact Array (ATCA LMC surveys at 1.4, 4.8 and 8.64~GHz and confirmed by new high resolution ATCA images at 6 and 3~cm (4arcsec/2arcsec, these complement data recently presented for candidate radio PNe in the Small Magellanic Cloud (SMC. Their spectra were obtained using the Radcliffe 1.9-meter telescope in Sutherland (South Africa. All of the optical PNe and radio candidates are within 2arcsec and may represent a population of selected radio bright sample only. Nebular ionized masses of these objects are estimated to be as high as 1.8~$M_odot$, supporting the idea that massive PNe progenitor central stars lose much of their mass in the asymptotic giant branch (AGB phase or prior. We also identify a sub-population (33\\% of radio PNe candidates with prominent ionized iron emission lines.

  4. Large scale model testing

    International Nuclear Information System (INIS)

    Brumovsky, M.; Filip, R.; Polachova, H.; Stepanek, S.

    1989-01-01

    Fracture mechanics and fatigue calculations for WWER reactor pressure vessels were checked by large scale model testing performed using large testing machine ZZ 8000 (with a maximum load of 80 MN) at the SKODA WORKS. The results are described from testing the material resistance to fracture (non-ductile). The testing included the base materials and welded joints. The rated specimen thickness was 150 mm with defects of a depth between 15 and 100 mm. The results are also presented of nozzles of 850 mm inner diameter in a scale of 1:3; static, cyclic, and dynamic tests were performed without and with surface defects (15, 30 and 45 mm deep). During cyclic tests the crack growth rate in the elastic-plastic region was also determined. (author). 6 figs., 2 tabs., 5 refs

  5. Why small-scale cannabis growers stay small: five mechanisms that prevent small-scale growers from going large scale.

    Science.gov (United States)

    Hammersvik, Eirik; Sandberg, Sveinung; Pedersen, Willy

    2012-11-01

    Over the past 15-20 years, domestic cultivation of cannabis has been established in a number of European countries. New techniques have made such cultivation easier; however, the bulk of growers remain small-scale. In this study, we explore the factors that prevent small-scale growers from increasing their production. The study is based on 1 year of ethnographic fieldwork and qualitative interviews conducted with 45 Norwegian cannabis growers, 10 of whom were growing on a large-scale and 35 on a small-scale. The study identifies five mechanisms that prevent small-scale indoor growers from going large-scale. First, large-scale operations involve a number of people, large sums of money, a high work-load and a high risk of detection, and thus demand a higher level of organizational skills than for small growing operations. Second, financial assets are needed to start a large 'grow-site'. Housing rent, electricity, equipment and nutrients are expensive. Third, to be able to sell large quantities of cannabis, growers need access to an illegal distribution network and knowledge of how to act according to black market norms and structures. Fourth, large-scale operations require advanced horticultural skills to maximize yield and quality, which demands greater skills and knowledge than does small-scale cultivation. Fifth, small-scale growers are often embedded in the 'cannabis culture', which emphasizes anti-commercialism, anti-violence and ecological and community values. Hence, starting up large-scale production will imply having to renegotiate or abandon these values. Going from small- to large-scale cannabis production is a demanding task-ideologically, technically, economically and personally. The many obstacles that small-scale growers face and the lack of interest and motivation for going large-scale suggest that the risk of a 'slippery slope' from small-scale to large-scale growing is limited. Possible political implications of the findings are discussed. Copyright

  6. Distributed large-scale dimensional metrology new insights

    CERN Document Server

    Franceschini, Fiorenzo; Maisano, Domenico

    2011-01-01

    Focuses on the latest insights into and challenges of distributed large scale dimensional metrology Enables practitioners to study distributed large scale dimensional metrology independently Includes specific examples of the development of new system prototypes

  7. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    Science.gov (United States)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  8. An Ion-Propelled Cubesat for Planetary Defense and Planetary Science

    Science.gov (United States)

    Russell, Christopher T.; Wirz, Richard; Lai, Hairong; Li, Jian-Yang; Connors, Martin

    2017-04-01

    Small satellites can reduce the cost of launch by riding along with other payloads on a large rocket or being launched on a small rocket, but are perceived as having limited capabilities. This perception can be at least partially overcome by innovative design, including ample in-flight propulsion. This allows achieving multiple targets and adaptive exploration. Ion propulsion has been pioneered on Deep Space 1 and honed on the long-duration, multiple-planetary body mission Dawn. Most importantly, the operation of such a mission is now well- understood, including navigation, communication, and science operations for remote sensing. We examined different mission concepts that can be used for both planetary defense and planetary science near 1 AU. Such a spacecraft would travel in the region between Venus and Mars, allowing a complete inventory of material above, including objects down to about 10m diameter to be inventoried. The ion engines could be used to approach these bodies slowly and carefully and allow the spacecraft to map debris and follow its collisional evolution throughout its orbit around the Sun, if so desired. The heritage of Dawn operations experience enables the mission to be operated inexpensively, and the engineering heritage will allow it to be operated for many trips around the Sun.

  9. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele; Attili, Antonio; Bisetti, Fabrizio; Elsinga, Gerrit E.

    2015-01-01

    from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  10. A new planetary nebula in the outer reaches of the Galaxy

    DEFF Research Database (Denmark)

    Viironen, K.; Mampaso, A.; L. M. Corradi, R.

    2011-01-01

    of a new planetary nebula towards the Anticentre direction, IPHASX J052531.19+281945.1 (PNG 178.1-04.0), is presented. The planetary nebula was discovered from the IPHAS survey. Long-slit follow-up spectroscopy was carried out to confirm its planetary nebula nature and to calculate its physical...... and chemical characteristics. The newly discovered planetary nebula turned out to be located at a very large galactocentric distance (D_GC=20.8+-3.8 kpc), larger than any previously known planetary nebula with measured abundances. Its relatively high oxygen abundance (12+log(O/H) = 8.36+-0.03) supports...

  11. Trends in large-scale testing of reactor structures

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    2003-01-01

    Large-scale tests of reactor structures have been conducted at Sandia National Laboratories since the late 1970s. This paper describes a number of different large-scale impact tests, pressurization tests of models of containment structures, and thermal-pressure tests of models of reactor pressure vessels. The advantages of large-scale testing are evident, but cost, in particular limits its use. As computer models have grown in size, such as number of degrees of freedom, the advent of computer graphics has made possible very realistic representation of results - results that may not accurately represent reality. A necessary condition to avoiding this pitfall is the validation of the analytical methods and underlying physical representations. Ironically, the immensely larger computer models sometimes increase the need for large-scale testing, because the modeling is applied to increasing more complex structural systems and/or more complex physical phenomena. Unfortunately, the cost of large-scale tests is a disadvantage that will likely severely limit similar testing in the future. International collaborations may provide the best mechanism for funding future programs with large-scale tests. (author)

  12. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    Science.gov (United States)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  13. Fluid-to-fluid scaling for a gravity- and flashing-driven natural circulation loop

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Zeller, M.

    1994-01-01

    In certain natural-circulation reactor systems proposed recently, vapor generation takes place by flashing in an adiabatic riser above the core. A step-by-step facility design procedure was used to define suitable scaling criteria for a refrigerant-113 (R-113) experiment simulating the dynamics and stability of such a loop. The fact that vapor generation does not normally take place in the core allows additional flexibility in designing the model; almost perfect simulation can be achieved, mainly by reducing the height of the facility according to the liquid density ratio and scaling for similar void fraction distributions in the prototype and the model. ((orig.))

  14. Large-scale application of highly-diluted bacteria for Leptospirosis epidemic control.

    Science.gov (United States)

    Bracho, Gustavo; Varela, Enrique; Fernández, Rolando; Ordaz, Barbara; Marzoa, Natalia; Menéndez, Jorge; García, Luis; Gilling, Esperanza; Leyva, Richard; Rufín, Reynaldo; de la Torre, Rubén; Solis, Rosa L; Batista, Niurka; Borrero, Reinier; Campa, Concepción

    2010-07-01

    Leptospirosis is a zoonotic disease of major importance in the tropics where the incidence peaks in rainy seasons. Natural disasters represent a big challenge to Leptospirosis prevention strategies especially in endemic regions. Vaccination is an effective option but of reduced effectiveness in emergency situations. Homeoprophylactic interventions might help to control epidemics by using highly-diluted pathogens to induce protection in a short time scale. We report the results of a very large-scale homeoprophylaxis (HP) intervention against Leptospirosis in a dangerous epidemic situation in three provinces of Cuba in 2007. Forecast models were used to estimate possible trends of disease incidence. A homeoprophylactic formulation was prepared from dilutions of four circulating strains of Leptospirosis. This formulation was administered orally to 2.3 million persons at high risk in an epidemic in a region affected by natural disasters. The data from surveillance were used to measure the impact of the intervention by comparing with historical trends and non-intervention regions. After the homeoprophylactic intervention a significant decrease of the disease incidence was observed in the intervention regions. No such modifications were observed in non-intervention regions. In the intervention region the incidence of Leptospirosis fell below the historic median. This observation was independent of rainfall. The homeoprophylactic approach was associated with a large reduction of disease incidence and control of the epidemic. The results suggest the use of HP as a feasible tool for epidemic control, further research is warranted. 2010 Elsevier Ltd. All rights reserved.

  15. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  16. Coupled climate model simulations of Mediterranean winter cyclones and large-scale flow patterns

    Directory of Open Access Journals (Sweden)

    B. Ziv

    2013-03-01

    Full Text Available The study aims to evaluate the ability of global, coupled climate models to reproduce the synoptic regime of the Mediterranean Basin. The output of simulations of the 9 models included in the IPCC CMIP3 effort is compared to the NCEP-NCAR reanalyzed data for the period 1961–1990. The study examined the spatial distribution of cyclone occurrence, the mean Mediterranean upper- and lower-level troughs, the inter-annual variation and trend in the occurrence of the Mediterranean cyclones, and the main large-scale circulation patterns, represented by rotated EOFs of 500 hPa and sea level pressure. The models reproduce successfully the two maxima in cyclone density in the Mediterranean and their locations, the location of the average upper- and lower-level troughs, the relative inter-annual variation in cyclone occurrences and the structure of the four leading large scale EOFs. The main discrepancy is the models' underestimation of the cyclone density in the Mediterranean, especially in its western part. The models' skill in reproducing the cyclone distribution is found correlated with their spatial resolution, especially in the vertical. The current improvement in model spatial resolution suggests that their ability to reproduce the Mediterranean cyclones would be improved as well.

  17. Impact of rapid condensations of large vapor spaces on natural circulation in integral systems

    International Nuclear Information System (INIS)

    Wang, Z.; Almenas, K.; DiMarzo, M.; Hsu, Y.Y.; Unal, C.

    1992-01-01

    In this study we demonstrated that the Interruption-Resumption flow mode (IRM) observed in the University of Maryland 2x4 loop is a unique and effective natural circulation cooling mode. The IRM flow mode consists of a series of large flow cycles which are initiated from a quiescent steady-state flow condition by periodic rapid condensation of large vapor spaces. The significance of this mass/energy transport mechanism is that it cannot be evaluated using the techniques developed for the commonly known density-driven natural circulation cooling mode. We also demonstrated that the rapid condensation mechanism essentially acts as a strong amplifier which will augment small perturbations and will activate several flow phenomena. The interplay of the phenomena involves a degree of randomness. This poses two important implications. First, the study of an isolated flow phenomenon is not sufficient for the understanding of the system-wide IRM fluid movement. Second, the duplication of reactor transients which involves randomness can be achieved only within certain bounds. The modeling of such transients by deterministic computer codes requires recognition of this physical reality. (orig.)

  18. Large-Scale 3D Printing: The Way Forward

    Science.gov (United States)

    Jassmi, Hamad Al; Najjar, Fady Al; Ismail Mourad, Abdel-Hamid

    2018-03-01

    Research on small-scale 3D printing has rapidly evolved, where numerous industrial products have been tested and successfully applied. Nonetheless, research on large-scale 3D printing, directed to large-scale applications such as construction and automotive manufacturing, yet demands a great a great deal of efforts. Large-scale 3D printing is considered an interdisciplinary topic and requires establishing a blended knowledge base from numerous research fields including structural engineering, materials science, mechatronics, software engineering, artificial intelligence and architectural engineering. This review article summarizes key topics of relevance to new research trends on large-scale 3D printing, particularly pertaining (1) technological solutions of additive construction (i.e. the 3D printers themselves), (2) materials science challenges, and (3) new design opportunities.

  19. Growth Limits in Large Scale Networks

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip

    limitations. The rising complexity of network management with the convergence of communications platforms is shown as problematic for both automatic management feasibility and for manpower resource management. In the fourth step the scope is extended to include the present society with the DDN project as its......The Subject of large scale networks is approached from the perspective of the network planner. An analysis of the long term planning problems is presented with the main focus on the changing requirements for large scale networks and the potential problems in meeting these requirements. The problems...... the fundamental technological resources in network technologies are analysed for scalability. Here several technological limits to continued growth are presented. The third step involves a survey of major problems in managing large scale networks given the growth of user requirements and the technological...

  20. Accelerating sustainability in large-scale facilities

    CERN Multimedia

    Marina Giampietro

    2011-01-01

    Scientific research centres and large-scale facilities are intrinsically energy intensive, but how can big science improve its energy management and eventually contribute to the environmental cause with new cleantech? CERN’s commitment to providing tangible answers to these questions was sealed in the first workshop on energy management for large scale scientific infrastructures held in Lund, Sweden, on the 13-14 October.   Participants at the energy management for large scale scientific infrastructures workshop. The workshop, co-organised with the European Spallation Source (ESS) and  the European Association of National Research Facilities (ERF), tackled a recognised need for addressing energy issues in relation with science and technology policies. It brought together more than 150 representatives of Research Infrastrutures (RIs) and energy experts from Europe and North America. “Without compromising our scientific projects, we can ...

  1. 'Downward control' of the mean meridional circulation and temperature distribution of the polar winter stratosphere

    Science.gov (United States)

    Garcia, Rolando R.; Boville, Byron A.

    1994-01-01

    According to the 'downward control' principle, the extratropical mean vertical velocity on a given pressure level is approximately proportional to the meridional gradient of the vertically integrated zonal force per unit mass exerted by waves above that level. In this paper, a simple numerical model that includes parameterizations of both planetary and gravity wave breaking is used to explore the influence of gravity wave breaking in the mesosphere on the mean meridional circulation and temperature distribution at lower levels in the polar winter stratosphere. The results of these calculations suggest that gravity wave drag in the mesosphere can affect the state of the polar winter stratosphere down to altitudes below 30 km. The effect is most important when planetary wave driving is relatively weak: that is, during southern winter and in early northern winter. In southern winter, downwelling weakens by a factor of 2 near the stratospause and by 20% at 30 km when gravity wave drag is not included in the calculations. As a consequence, temperatures decrease considerably throughout the polar winter stratosphere (over 20 K above 40 km and as much as 8 K at 30 km, where the effect is enhanced by the long radiative relaxation timescale). The polar winter states obtained when gravity wave drag is omitted in this simple model resemble the results of simulations with some general circulation models and suggest that some of the shortcomings of the latter may be due to a deficit in mesospheric momentum deposition by small-scale gravity waves.

  2. PLANETARY-SCALE STRONTIUM ISOTOPIC HETEROGENEITY AND THE AGE OF VOLATILE DEPLETION OF EARLY SOLAR SYSTEM MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Moynier, Frederic; Podosek, Frank A. [Department of Earth and Planetary Science and McDonnell Center for Space Sciences, Washington University, St. Louis, MO 63130 (United States); Day, James M. D. [Geosciences Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0244 (United States); Okui, Wataru; Yokoyama, Tetsuya [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Bouvier, Audrey [Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455-0231 (United States); Walker, Richard J., E-mail: moynier@levee.wustl.edu, E-mail: fap@levee.wustl.edu, E-mail: jmdday@ucsd.edu, E-mail: rjwalker@umd.edu, E-mail: okui.w.aa@m.titech.ac.jp, E-mail: tetsuya.yoko@geo.titech.ac.jp, E-mail: abouvier@umn.edu [Department of Geology, University of Maryland, College Park, MD 20742 (United States)

    2012-10-10

    Isotopic anomalies in planetary materials reflect both early solar nebular heterogeneity inherited from presolar stellar sources and processes that generated non-mass-dependent isotopic fractionations. The characterization of isotopic variations in heavy elements among early solar system materials yields important insight into the stellar environment and formation of the solar system, and about initial isotopic ratios relevant to long-term chronological applications. One such heavy element, strontium, is a central element in the geosciences due to wide application of the long-lived {sup 87}Rb-{sup 87}Sr radioactive as a chronometer. We show that the stable isotopes of Sr were heterogeneously distributed at both the mineral scale and the planetary scale in the early solar system, and also that the Sr isotopic heterogeneities correlate with mass-independent oxygen isotope variations, with only CI chondrites plotting outside of this correlation. The correlation implies that most solar system material formed by mixing of at least two isotopically distinct components: a CV-chondrite-like component and an O-chondrite-like component, and possibly a distinct CI-chondrite-like component. The heterogeneous distribution of Sr isotopes may indicate that variations in initial {sup 87}Sr/{sup 86}Sr of early solar system materials reflect isotopic heterogeneity instead of having chronological significance, as interpreted previously. For example, given the differences in {sup 84}Sr/{sup 86}Sr between calcium aluminum inclusions and eucrites ({epsilon}{sup 84}Sr > 2), the difference in age between these materials would be {approx}6 Ma shorter than previously interpreted, placing the Sr chronology in agreement with other long- and short-lived isotope systems, such as U-Pb and Mn-Cr.

  3. Large scale reflood test

    International Nuclear Information System (INIS)

    Hirano, Kemmei; Murao, Yoshio

    1980-01-01

    The large-scale reflood test with a view to ensuring the safety of light water reactors was started in fiscal 1976 based on the special account act for power source development promotion measures by the entrustment from the Science and Technology Agency. Thereafter, to establish the safety of PWRs in loss-of-coolant accidents by joint international efforts, the Japan-West Germany-U.S. research cooperation program was started in April, 1980. Thereupon, the large-scale reflood test is now included in this program. It consists of two tests using a cylindrical core testing apparatus for examining the overall system effect and a plate core testing apparatus for testing individual effects. Each apparatus is composed of the mock-ups of pressure vessel, primary loop, containment vessel and ECCS. The testing method, the test results and the research cooperation program are described. (J.P.N.)

  4. Lessons learned from planetary science archiving

    Science.gov (United States)

    Zender, J.; Grayzeck, E.

    2006-01-01

    The need for scientific archiving of past, current, and future planetary scientific missions, laboratory data, and modeling efforts is indisputable. To quote from a message by G. Santayama carved over the entrance of the US Archive in Washington DC “Those who can not remember the past are doomed to repeat it.” The design, implementation, maintenance, and validation of planetary science archives are however disputed by the involved parties. The inclusion of the archives into the scientific heritage is problematic. For example, there is the imbalance between space agency requirements and institutional and national interests. The disparity of long-term archive requirements and immediate data analysis requests are significant. The discrepancy between the space missions archive budget and the effort required to design and build the data archive is large. An imbalance exists between new instrument development and existing, well-proven archive standards. The authors present their view on the problems and risk areas in the archiving concepts based on their experience acquired within NASA’s Planetary Data System (PDS) and ESA’s Planetary Science Archive (PSA). Individual risks and potential problem areas are discussed based on a model derived from a system analysis done upfront. The major risk for a planetary mission science archive is seen in the combination of minimal involvement by Mission Scientists and inadequate funding. The authors outline how the risks can be reduced. The paper ends with the authors view on future planetary archive implementations including the archive interoperability aspect.

  5. Conformal Ablative Thermal Protection System for Small and Large Scale Missions: Approaching TRL 6 for Planetary and Human Exploration Missions and TRL 9 for Small Probe Missions

    Science.gov (United States)

    Beck, R. A. S.; Gasch, M. J.; Milos, F. S.; Stackpoole, M. M.; Smith, B. P.; Switzer, M. R.; Venkatapathy, E.; Wilder, M. C.; Boghhozian, T.; Chavez-Garcia, J. F.

    2015-01-01

    In 2011, NASAs Aeronautics Research Mission Directorate (ARMD) funded an effort to develop an ablative thermal protection system (TPS) material that would have improved properties when compared to Phenolic Impregnated Carbon Ablator (PICA) and AVCOAT. Their goal was a conformal material, processed with a flexible reinforcement that would result in similar or better thermal characteristics and higher strain-to-failure characteristics that would allow for easier integration on flight aeroshells than then-current rigid ablative TPS materials. In 2012, NASAs Space Technology Mission Directorate (STMD) began funding the maturation of the best formulation of the game changing conformal ablator, C-PICA. Progress has been reported at IPPW over the past three years, describing C-PICA with a density and recession rates similar to PICA, but with a higher strain-to-failure which allows for direct bonding and no gap fillers, and even more important, with thermal characteristics resulting in half the temperature rise of PICA. Overall, C-PICA should be able to replace PICA with a thinner, lighter weight, less complicated design. These characteristics should be particularly attractive for use as backshell TPS on high energy planetary entry vehicles. At the end of this year, the material should be ready for missions to consider including in their design, in fact, NASAs Science Mission Directorate (SMD) is considering incentivizing the use of C-PICA in the next Discovery Proposal call. This year both scale up of the material to large (1-m) sized pieces and the design and build of small probe heatshields for flight tests will be completed. NASA, with an industry partner, will build a 1-m long manufacturing demonstration unit (MDU) with a shape based on a mid LD lifting body. In addition, in an effort to fly as you test and test as you fly, NASA, with a second industry partner, will build a small probe to test in the Interactive Heating Facility (IHF) arc jet and, using nearly the

  6. Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy

    Directory of Open Access Journals (Sweden)

    Leandros Perivolaropoulos

    2014-01-01

    Full Text Available A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”, the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole” and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.

  7. Large-scale patterns in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Hardenberg, J. von; Parodi, A.; Passoni, G.; Provenzale, A.; Spiegel, E.A.

    2008-01-01

    Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 10 5 and 10 8 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied

  8. Seasonal distributions of diabatic heating during the First GARP Global Experiment

    OpenAIRE

    Ying Wei, Ming; Johnson, Donald R.; Townsend, Ronald D.

    2011-01-01

    The seasonal and annual global distributions of diabatic heating during the First GARP Global Experiment (FGGE) are estimated using the isentropic mass continuity equation. The data used are from the FGGE Level IIIa analyses generated by the United States National Meteorological Center. Spatially and temporally coherent diabatic heating distributions are obtained from the isentropic planetary scale mass circulation that is forced by large-scale heat sources and sinks. The diabatic heating in...

  9. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.

    1978-01-01

    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  10. Can preferred atmospheric circulation patterns over the North-Atlantic-Eurasian region be associated with arctic sea ice loss?

    Science.gov (United States)

    Crasemann, Berit; Handorf, Dörthe; Jaiser, Ralf; Dethloff, Klaus; Nakamura, Tetsu; Ukita, Jinro; Yamazaki, Koji

    2017-12-01

    In the framework of atmospheric circulation regimes, we study whether the recent Arctic sea ice loss and Arctic Amplification are associated with changes in the frequency of occurrence of preferred atmospheric circulation patterns during the extended winter season from December to March. To determine regimes we applied a cluster analysis to sea-level pressure fields from reanalysis data and output from an atmospheric general circulation model. The specific set up of the two analyzed model simulations for low and high ice conditions allows for attributing differences between the simulations to the prescribed sea ice changes only. The reanalysis data revealed two circulation patterns that occur more frequently for low Arctic sea ice conditions: a Scandinavian blocking in December and January and a negative North Atlantic Oscillation pattern in February and March. An analysis of related patterns of synoptic-scale activity and 2 m temperatures provides a synoptic interpretation of the corresponding large-scale regimes. The regimes that occur more frequently for low sea ice conditions are resembled reasonably well by the model simulations. Based on those results we conclude that the detected changes in the frequency of occurrence of large-scale circulation patterns can be associated with changes in Arctic sea ice conditions.

  11. Agriculture production as a major driver of the earth system exceeding planetary boundaries

    DEFF Research Database (Denmark)

    Campbell, Bruce Morgan; Beare, Douglas J.; Bennett, Elena M.

    2017-01-01

    We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or “safe limits”: land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone...

  12. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    DEFF Research Database (Denmark)

    Richardson, Katherine; Rockström, Johan; Steffen, Will

    2009-01-01

    boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance...... and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure...

  13. Extinction of planetary nebulae and the turbulent structure of the galaxy

    International Nuclear Information System (INIS)

    Lerche, I.; Milne, D.K.

    1980-01-01

    Fluctuations in the extinction of planetary nebulae provide strong support for the concept of a turbulent interstellar medium. We have analyzed theoretically the mean extinction and its variance as a function of height, z, above the galactic plane. The mean increases monotonically, and exponentially, to a saturation level. The variance increases as z 2 for small z and has damped oscillations for intermediate z, before levelling off at large z. The observed mean extinction and the observed variance are found to be in excellent agreement with these theoretical deductions. The spatial scale of the mean extinction is estimated to be 100 pc; the oscillation scale of the variance and the damping scale of the oscillations are estimated to be about 200 +- 100 pc. The rms level of density fluctuations in the absorbing material causing the extinction is about equal to the mean value

  14. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  15. Remote Sensing Data Analytics for Planetary Science with PlanetServer/EarthServer

    Science.gov (United States)

    Rossi, Angelo Pio; Figuera, Ramiro Marco; Flahaut, Jessica; Martinot, Melissa; Misev, Dimitar; Baumann, Peter; Pham Huu, Bang; Besse, Sebastien

    2016-04-01

    Planetary Science datasets, beyond the change in the last two decades from physical volumes to internet-accessible archives, still face the problem of large-scale processing and analytics (e.g. Rossi et al., 2014, Gaddis and Hare, 2015). PlanetServer, the Planetary Science Data Service of the EC-funded EarthServer-2 project (#654367) tackles the planetary Big Data analytics problem with an array database approach (Baumann et al., 2014). It is developed to serve a large amount of calibrated, map-projected planetary data online, mainly through Open Geospatial Consortium (OGC) Web Coverage Processing Service (WCPS) (e.g. Rossi et al., 2014; Oosthoek et al., 2013; Cantini et al., 2014). The focus of the H2020 evolution of PlanetServer is still on complex multidimensional data, particularly hyperspectral imaging and topographic cubes and imagery. In addition to hyperspectral and topographic from Mars (Rossi et al., 2014), the use of WCPS is applied to diverse datasets on the Moon, as well as Mercury. Other Solar System Bodies are going to be progressively available. Derived parameters such as summary products and indices can be produced through WCPS queries, as well as derived imagery colour combination products, dynamically generated and accessed also through OGC Web Coverage Service (WCS). Scientific questions translated into queries can be posed to a large number of individual coverages (data products), locally, regionally or globally. The new PlanetServer system uses the the Open Source Nasa WorldWind (e.g. Hogan, 2011) virtual globe as visualisation engine, and the array database Rasdaman Community Edition as core server component. Analytical tools and client components of relevance for multiple communities and disciplines are shared across service such as the Earth Observation and Marine Data Services of EarthServer. The Planetary Science Data Service of EarthServer is accessible on http://planetserver.eu. All its code base is going to be available on GitHub, on

  16. Contribution of large-scale circulation anomalies to changes in extreme precipitation frequency in the United States

    International Nuclear Information System (INIS)

    Yu, Lejiang; Zhong, Shiyuan; Pei, Lisi; Bian, Xindi; Heilman, Warren E

    2016-01-01

    The mean global climate has warmed as a result of the increasing emission of greenhouse gases induced by human activities. This warming is considered the main reason for the increasing number of extreme precipitation events in the US. While much attention has been given to extreme precipitation events occurring over several days, which are usually responsible for severe flooding over a large region, little is known about how extreme precipitation events that cause flash flooding and occur at sub-daily time scales have changed over time. Here we use the observed hourly precipitation from the North American Land Data Assimilation System Phase 2 forcing datasets to determine trends in the frequency of extreme precipitation events of short (1 h, 3 h, 6 h, 12 h and 24 h) duration for the period 1979–2013. The results indicate an increasing trend in the central and eastern US. Over most of the western US, especially the Southwest and the Intermountain West, the trends are generally negative. These trends can be largely explained by the interdecadal variability of the Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation (AMO), with the AMO making a greater contribution to the trends in both warm and cold seasons. (letter)

  17. Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics

    KAUST Repository

    Kumar, Rohit

    2017-08-11

    It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.

  18. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  19. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    Science.gov (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  20. Superconducting materials for large scale applications

    International Nuclear Information System (INIS)

    Dew-Hughes, D.

    1975-01-01

    Applications of superconductors capable of carrying large current densities in large-scale electrical devices are examined. Discussions are included on critical current density, superconducting materials available, and future prospects for improved superconducting materials. (JRD)

  1. Multiscale regime shifts and planetary boundaries

    NARCIS (Netherlands)

    Hughes, T.P.; Carpenter, S.; Rockstrom, J.; Scheffer, M.; Walker, B.

    2013-01-01

    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a

  2. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained

  3. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained.

  4. Antibodies, synthetic peptides and related constructs for planetary health based on green chemistry in the Anthropocene.

    Science.gov (United States)

    C Caoili, Salvador Eugenio

    2018-03-01

    The contemporary Anthropocene is characterized by rapidly evolving complex global challenges to planetary health vis-a-vis sustainable development, yet innovation is constrained under the prevailing precautionary regime that regulates technological change. Small-molecule xenobiotic drugs are amenable to efficient large-scale industrial synthesis; but their pharmacokinetics, pharmacodynamics, interactions and ultimate ecological impact are difficult to predict, raising concerns over initial testing and environmental contamination. Antibodies and similar agents can serve as antidotes and drug buffers or vehicles to address patient safety and decrease dosing requirements. More generally, peptidic agents including synthetic peptide-based constructs exemplified by vaccines can be used together with or instead of nonpeptidic xenobiotics, thus enabling advances in planetary health based on principles of green chemistry from manufacturing through final disposition.

  5. Large-scale influences in near-wall turbulence.

    Science.gov (United States)

    Hutchins, Nicholas; Marusic, Ivan

    2007-03-15

    Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.

  6. PKI security in large-scale healthcare networks.

    Science.gov (United States)

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2012-06-01

    During the past few years a lot of PKI (Public Key Infrastructures) infrastructures have been proposed for healthcare networks in order to ensure secure communication services and exchange of data among healthcare professionals. However, there is a plethora of challenges in these healthcare PKI infrastructures. Especially, there are a lot of challenges for PKI infrastructures deployed over large-scale healthcare networks. In this paper, we propose a PKI infrastructure to ensure security in a large-scale Internet-based healthcare network connecting a wide spectrum of healthcare units geographically distributed within a wide region. Furthermore, the proposed PKI infrastructure facilitates the trust issues that arise in a large-scale healthcare network including multi-domain PKI infrastructures.

  7. Natural Circulation Characteristics at Low-Pressure Conditions through PANDA Experiments and ATHLET Simulations

    OpenAIRE

    Paladino, Domenico; Huggenberger, Max; Schäfer, Frank

    2008-01-01

    Natural circulation characteristics at low pressure/low power have been studied by performing experimental investigations and numerical simulations. The PANDA large-scale facility was used to provide valuable, high quality data on natural circulation characteristics as a function of several parameters and for a wide range of operating conditions. The new experimental data allow for testing and improving the capabilities of the thermal-hydraulic computer codes to be used for treating natural c...

  8. Emerging large-scale solar heating applications

    International Nuclear Information System (INIS)

    Wong, W.P.; McClung, J.L.

    2009-01-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  9. Emerging large-scale solar heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, W.P.; McClung, J.L. [Science Applications International Corporation (SAIC Canada), Ottawa, Ontario (Canada)

    2009-07-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  10. A scaling study of the natural circulation flow of the ex-vessel core catcher cooling system of a 1400MW PWR for designing a scale-down test facility

    International Nuclear Information System (INIS)

    Rhee, Bo. W.; Ha, K. S.; Park, R. J.; Song, J. H.

    2012-01-01

    A scaling study on the steady state natural circulation flow along the flow path of the ex-vessel core catcher cooling system of 1400MWe PWR is described. The scaling criteria for reproducing the same thermalhydraulic characteristics of the natural circulation flow as the prototype core catcher cooling system in the scale-down test facility is derived and the resulting natural circulation flow characteristics of the prototype and scale-down facility analyzed and compared. The purpose of this study is to apply the similarity law to the prototype EU-APR1400 core catcher cooling system and the model test facility of this prototype system and derive a relationship between the heating channel characteristics and the down-comer piping characteristics so as to determine the down-comer pipe size and the orifice size of the model test facility. As the geometry and the heating wall heat flux of the heating channel of the model test facility will be the same as those of the prototype core catcher cooling system except the width of the heating channel is reduced, the axial distribution of the coolant quality (or void fraction) is expected to resemble each other between the prototype and model facility. Thus using this fact, the down-comer piping design characteristics of the model facility can be determined from the relationship derived from the similarity law

  11. The MIND PALACE: A Multi-Spectral Imaging and Spectroscopy Database for Planetary Science

    Science.gov (United States)

    Eshelman, E.; Doloboff, I.; Hara, E. K.; Uckert, K.; Sapers, H. M.; Abbey, W.; Beegle, L. W.; Bhartia, R.

    2017-12-01

    The Multi-Instrument Database (MIND) is the web-based home to a well-characterized set of analytical data collected by a suite of deep-UV fluorescence/Raman instruments built at the Jet Propulsion Laboratory (JPL). Samples derive from a growing body of planetary surface analogs, mineral and microbial standards, meteorites, spacecraft materials, and other astrobiologically relevant materials. In addition to deep-UV spectroscopy, datasets stored in MIND are obtained from a variety of analytical techniques obtained over multiple spatial and spectral scales including electron microscopy, optical microscopy, infrared spectroscopy, X-ray fluorescence, and direct fluorescence imaging. Multivariate statistical analysis techniques, primarily Principal Component Analysis (PCA), are used to guide interpretation of these large multi-analytical spectral datasets. Spatial co-referencing of integrated spectral/visual maps is performed using QGIS (geographic information system software). Georeferencing techniques transform individual instrument data maps into a layered co-registered data cube for analysis across spectral and spatial scales. The body of data in MIND is intended to serve as a permanent, reliable, and expanding database of deep-UV spectroscopy datasets generated by this unique suite of JPL-based instruments on samples of broad planetary science interest.

  12. Circulation shedding in viscous starting flow past a flat plate

    International Nuclear Information System (INIS)

    Nitsche, Monika; Xu, Ling

    2014-01-01

    Numerical simulations of viscous flow past a flat plate moving in the direction normal to itself reveal details of the vortical structure of the flow. At early times, most of the vorticity is attached to the plate. This paper introduces a definition of the shed circulation at all times and shows that it indeed represents vorticity that separates and remains separated from the plate. During a large initial time period, the shed circulation satisfies the scaling laws predicted for self-similar inviscid separation. Various contributions to the circulation shedding rate are presented. The results show that during this initial time period, viscous diffusion of vorticity out of the vortex is significant but appears to be independent of the value of the Reynolds number. At later times, the departure of the shed circulation from its large Reynolds number behaviour is significantly affected by diffusive loss of vorticity through the symmetry axis. A timescale is proposed that describes when the viscous loss through the axis becomes relevant. The simulations provide benchmark results to evaluate simpler separation models such as point vortex and vortex sheet models. A comparison with vortex sheet results is included. (paper)

  13. Impact of the intraseasonal variability of large-scale circulation over the Western North Pacific on the characteristics of tropical cyclone track

    OpenAIRE

    Chen, T. C.; Wang, Shih-Yu (Simon); Yen, M. C.; Clark, A. J.

    2009-01-01

    The life cycle of the Southeast Asian–western North Pacific monsoon circulation is established by the northward migrations of the monsoon trough and the western Pacific subtropical anticyclone, and is reflected by the intraseasonal variations of mo nsoon westerlies and trad e easterlies in the form of an east–west seesaw oscillation. In this paper, an effort is made to disclose the influence of this monsoon circulation on tropical cyclone tracks during its different ph ases using composite ch...

  14. Large-scale regions of antimatter

    International Nuclear Information System (INIS)

    Grobov, A. V.; Rubin, S. G.

    2015-01-01

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era

  15. Large-scale regions of antimatter

    Energy Technology Data Exchange (ETDEWEB)

    Grobov, A. V., E-mail: alexey.grobov@gmail.com; Rubin, S. G., E-mail: sgrubin@mephi.ru [National Research Nuclear University MEPhI (Russian Federation)

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  16. Nearshore circulation on a sea breeze dominated beach during intense wind events

    Science.gov (United States)

    Torres-Freyermuth, Alec; Puleo, Jack A.; DiCosmo, Nick; Allende-Arandía, Ma. Eugenia; Chardón-Maldonado, Patricia; López, José; Figueroa-Espinoza, Bernardo; de Alegria-Arzaburu, Amaia Ruiz; Figlus, Jens; Roberts Briggs, Tiffany M.; de la Roza, Jacobo; Candela, Julio

    2017-12-01

    A field experiment was conducted on the northern Yucatan coast from April 1 to April 12, 2014 to investigate the role of intense wind events on coastal circulation from the inner shelf to the swash zone. The study area is characterized by a micro-tidal environment, low-energy wave conditions, and a wide and shallow continental shelf. Furthermore, easterly trade winds, local breezes, and synoptic-scale events, associated with the passage of cold-fronts known as Nortes, are ubiquitous in this region. Currents were measured concurrently at different cross-shore locations during both local and synoptic-scale intense wind events to investigate the influence of different forcing mechanisms (i.e., large-scale currents, winds, tides, and waves) on the nearshore circulation. Field observations revealed that nearshore circulation across the shelf is predominantly alongshore-directed (westward) during intense winds. However, the mechanisms responsible for driving instantaneous spatial and temporal current variability depend on the weather conditions and the across-shelf location. During local strong sea breeze events (W > 10 m s-1 from the NE) occurring during spring tide, westward circulation is controlled by the tides, wind, and waves at the inner-shelf, shallow waters, and inside the surf/swash zone, respectively. The nearshore circulation is relaxed during intense land breeze events (W ≈ 9 m s-1 from the SE) associated with the low atmospheric pressure system that preceded a Norte event. During the Norte event (Wmax≈ 15 m s-1 from the NNW), westward circulation dominated outside the surf zone and was correlated to the Yucatan Current, whereas wave breaking forces eastward currents inside the surf/swash zone. The latter finding implies the existence of large alongshore velocity shear at the offshore edge of the surf zone during the Norte event, which enhances mixing between the surf zone and the inner shelf. These findings suggest that both sea breezes and Nortes play

  17. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS

    NARCIS (Netherlands)

    Kuai, Moshen; Cheng, Gang; Pang, Y.; Li, Yong

    2018-01-01

    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear

  18. Best Practices in the Evaluation of Large-scale STEM-focused Events: A Review of Recent Literature

    Science.gov (United States)

    Shebby, S.; Cobb, W. H.; Buxner, S.; Shipp, S. S.

    2015-12-01

    Each year, the National Aeronautics and Space Administration (NASA) sponsors a variety of educational events to share information with educators, students, and the general public. Intended outcomes of these events include increased interest in and awareness of the mission and goals of NASA. Events range in size from relatively small family science nights at a local school to large-scale mission and celestial event celebrations involving thousands of members of the general public. To support community members in designing event evaluations, the Science Mission Directorate (SMD) Planetary Science Forum sponsored the creation of a Best Practices Guide. The guide was generated by reviewing published large-scale event evaluation reports; however, the best practices described within are pertinent for all event organizers and evaluators regardless of event size. Each source included in the guide identified numerous challenges to conducting their event evaluation. These included difficulty in identifying extant instruments or items, collecting representative data, and disaggregating data to inform different evaluation questions. Overall, the guide demonstrates that evaluations of the large-scale events are generally done at a very basic level, with the types of data collected limited to observable demographic information and participant reactions collected via online survey. In addition to these findings, this presentation will describe evaluation best practices that will help practitioners move beyond these basic indicators and examine how to make the evaluation process an integral—and valuable—element of event planning, ultimately informing event outcomes and impacts. It will provide detailed information on five recommendations presented in the guide: 1) consider evaluation methodology, including data analysis, in advance; 2) design data collection instruments well in advance of the event; 3) collect data at different times and from multiple sources; 4) use

  19. Large-Scale Analysis of Art Proportions

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2014-01-01

    While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square) and with majo......While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square...

  20. The Expanded Large Scale Gap Test

    Science.gov (United States)

    1987-03-01

    NSWC TR 86-32 DTIC THE EXPANDED LARGE SCALE GAP TEST BY T. P. LIDDIARD D. PRICE RESEARCH AND TECHNOLOGY DEPARTMENT ’ ~MARCH 1987 Ap~proved for public...arises, to reduce the spread in the LSGT 50% gap value.) The worst charges, such as those with the highest or lowest densities, the largest re-pressed...Arlington, VA 22217 PE 62314N INS3A 1 RJ14E31 7R4TBK 11 TITLE (Include Security CIlmsilficatiorn The Expanded Large Scale Gap Test . 12. PEIRSONAL AUTHOR() T

  1. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  2. Mechanical Thrombectomy for Minor and Mild Stroke Patients Harboring Large Vessel Occlusion in the Anterior Circulation: A Multicenter Cohort Study.

    Science.gov (United States)

    Dargazanli, Cyril; Arquizan, Caroline; Gory, Benjamin; Consoli, Arturo; Labreuche, Julien; Redjem, Hocine; Eker, Omer; Decroix, Jean-Pierre; Corlobé, Astrid; Mourand, Isabelle; Gaillard, Nicolas; Ayrignac, Xavier; Charif, Mahmoud; Duhamel, Alain; Labeyrie, Paul-Emile; Riquelme, Carlos; Ciccio, Gabriele; Smajda, Stanislas; Desilles, Jean-Philippe; Gascou, Grégory; Lefèvre, Pierre-Henri; Mantilla-García, Daniel; Cagnazzo, Federico; Coskun, Oguzhan; Mazighi, Mikael; Riva, Roberto; Bourdain, Frédéric; Labauge, Pierre; Rodesch, Georges; Obadia, Michael; Bonafé, Alain; Turjman, Francis; Costalat, Vincent; Piotin, Michel; Blanc, Raphaël; Lapergue, Bertrand

    2017-12-01

    Proximal large vessel occlusion (LVO) is present in up to 30% of minor strokes. The effectiveness of mechanical thrombectomy (MT) in the subgroup of minor stroke with LVO in the anterior circulation is still open to debate. Data about MT in this subgroup of patients are sparse, and their optimal management has not yet been defined. The purpose of this multicenter cohort study was to evaluate the effectiveness of MT in patients experiencing acute ischemic stroke (AIS) because of LVO in the anterior circulation, presenting with minor-to-mild stroke symptoms (National Institutes of Health Stroke Scale score of stroke centers having 2 therapeutic approaches (urgent thrombectomy associated with best medical treatment [BMT] versus BMT first and MT if worsening occurs) about management of patients with minor and mild acute ischemic stroke harboring LVO in the anterior circulation. An intention-to-treat analysis was conducted. The primary end point was the rate of excellent outcome defined as the achievement of a modified Rankin Scale score of 0 to 1 at 3 months. Three hundred one patients were included, 170 with urgent MT associated with BMT, and 131 with BMT alone as first-line treatment. Patients treated with MT were younger, more often received intravenous thrombolysis, and had shorter time to imaging. Twenty-four patients (18.0%) in the medical group had rescue MT because of neurological worsening. Overall, excellent outcome was achieved in 64.5% of patients, with no difference between the 2 groups. Stratified analysis according to key subgroups did not find heterogeneity in the treatment effect size. Minor-to-mild stroke patients with LVO achieved excellent and favorable functional outcomes at 3 months in similar proportions between urgent MT versus delayed MT associated with BMT. There is thus an urgent need for randomized trials to define the effectiveness of MT in this patient subgroup. © 2017 American Heart Association, Inc.

  3. Large scale and big data processing and management

    CERN Document Server

    Sakr, Sherif

    2014-01-01

    Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments.The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-bas

  4. Large scale cluster computing workshop

    International Nuclear Information System (INIS)

    Dane Skow; Alan Silverman

    2002-01-01

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community

  5. LBT observations of the HR8799 planetary system

    Science.gov (United States)

    Mesa, D.; Arcidiacono, C.; Claudi, R. U.; Desidera, S.; Esposito, S.; Gratton, R.; Masciadri, E.

    2013-09-01

    We present here observations of the HR8799 planetary system performed in H and Ks band exploiting the AO system at the Large Binocular Telescope and the PISCES camera. Thanks to the excellent performence of the instrument we were able to detect for the first time the inner known planet of the system (HR8799) in the H band. Precise photometric and astrometric measures have been taken for all the four planets. Further, exploiting ours and previous astrometric results, we were able to put some limits on the planetary orbits of the four planets. The analysis of the dinamical stability of the system seems to show lower planetary masses than the ones adopted until now.

  6. Non-planetary Science from Planetary Missions

    Science.gov (United States)

    Elvis, M.; Rabe, K.; Daniels, K.

    2015-12-01

    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or

  7. Relation between radius and expansion velocity in planetary nebulae

    International Nuclear Information System (INIS)

    Chu, Y.H.; Kwitter, K.B.; Kaler, J.B.

    1984-01-01

    The expansion velocity-radius (R-V) relation for planetary nebulae is examined using the existing measurements of expansion velocities and recent calculations of radii. It is found that some of the previously alleged R-V relations for PN are not convincingly established. The scatter in the R-V plots may be due largely to stratification of ions in individual nebulae and to heterogeneity in the planetary nebula population. In addition, from new echelle/CCD observations of planetary nebulae, it is found that spatial information is essential in deriving the internal kinematic properties. Future investigations of R-V relations should be pursued separately for groups of planetaries with similar physical properties, and they should employ observations of appropriate low excitation lines in order to measure the expansion velocity at the surface of the nebula. 26 references

  8. Large-Scale Agriculture and Outgrower Schemes in Ethiopia

    DEFF Research Database (Denmark)

    Wendimu, Mengistu Assefa

    , the impact of large-scale agriculture and outgrower schemes on productivity, household welfare and wages in developing countries is highly contentious. Chapter 1 of this thesis provides an introduction to the study, while also reviewing the key debate in the contemporary land ‘grabbing’ and historical large...... sugarcane outgrower scheme on household income and asset stocks. Chapter 5 examines the wages and working conditions in ‘formal’ large-scale and ‘informal’ small-scale irrigated agriculture. The results in Chapter 2 show that moisture stress, the use of untested planting materials, and conflict over land...... commands a higher wage than ‘formal’ large-scale agriculture, while rather different wage determination mechanisms exist in the two sectors. Human capital characteristics (education and experience) partly explain the differences in wages within the formal sector, but play no significant role...

  9. Economically viable large-scale hydrogen liquefaction

    Science.gov (United States)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  10. Contributions of Heterogeneous Ice Nucleation, Large-Scale Circulation, and Shallow Cumulus Detrainment to Cloud Phase Transition in Mixed-Phase Clouds with NCAR CAM5

    Science.gov (United States)

    Liu, X.; Wang, Y.; Zhang, D.; Wang, Z.

    2016-12-01

    Mixed-phase clouds consisting of both liquid and ice water occur frequently at high-latitudes and in mid-latitude storm track regions. This type of clouds has been shown to play a critical role in the surface energy balance, surface air temperature, and sea ice melting in the Arctic. Cloud phase partitioning between liquid and ice water determines the cloud optical depth of mixed-phase clouds because of distinct optical properties of liquid and ice hydrometeors. The representation and simulation of cloud phase partitioning in state-of-the-art global climate models (GCMs) are associated with large biases. In this study, the cloud phase partition in mixed-phase clouds simulated from the NCAR Community Atmosphere Model version 5 (CAM5) is evaluated against satellite observations. Observation-based supercooled liquid fraction (SLF) is calculated from CloudSat, MODIS and CPR radar detected liquid and ice water paths for clouds with cloud-top temperatures between -40 and 0°C. Sensitivity tests with CAM5 are conducted for different heterogeneous ice nucleation parameterizations with respect to aerosol influence (Wang et al., 2014), different phase transition temperatures for detrained cloud water from shallow convection (Kay et al., 2016), and different CAM5 model configurations (free-run versus nudged winds and temperature, Zhang et al., 2015). A classical nucleation theory-based ice nucleation parameterization in mixed-phase clouds increases the SLF especially at temperatures colder than -20°C, and significantly improves the model agreement with observations in the Arctic. The change of transition temperature for detrained cloud water increases the SLF at higher temperatures and improves the SLF mostly over the Southern Ocean. Even with the improved SLF from the ice nucleation and shallow cumulus detrainment, the low SLF biases in some regions can only be improved through the improved circulation with the nudging technique. Our study highlights the challenges of

  11. Large scale chromatographic separations using continuous displacement chromatography (CDC)

    International Nuclear Information System (INIS)

    Taniguchi, V.T.; Doty, A.W.; Byers, C.H.

    1988-01-01

    A process for large scale chromatographic separations using a continuous chromatography technique is described. The process combines the advantages of large scale batch fixed column displacement chromatography with conventional analytical or elution continuous annular chromatography (CAC) to enable large scale displacement chromatography to be performed on a continuous basis (CDC). Such large scale, continuous displacement chromatography separations have not been reported in the literature. The process is demonstrated with the ion exchange separation of a binary lanthanide (Nd/Pr) mixture. The process is, however, applicable to any displacement chromatography separation that can be performed using conventional batch, fixed column chromatography

  12. Probability of US Heat Waves Affected by a Subseasonal Planetary Wave Pattern

    Science.gov (United States)

    Teng, Haiyan; Branstator, Grant; Wang, Hailan; Meehl, Gerald A.; Washington, Warren M.

    2013-01-01

    Heat waves are thought to result from subseasonal atmospheric variability. Atmospheric phenomena driven by tropical convection, such as the Asian monsoon, have been considered potential sources of predictability on subseasonal timescales. Mid-latitude atmospheric dynamics have been considered too chaotic to allow significant prediction skill of lead times beyond the typical 10-day range of weather forecasts. Here we use a 12,000-year integration of an atmospheric general circulation model to identify a pattern of subseasonal atmospheric variability that can help improve forecast skill for heat waves in the United States. We find that heat waves tend to be preceded by 15-20 days by a pattern of anomalous atmospheric planetary waves with a wavenumber of 5. This circulation pattern can arise as a result of internal atmospheric dynamics and is not necessarily linked to tropical heating.We conclude that some mid-latitude circulation anomalies that increase the probability of heat waves are predictable beyond the typical weather forecast range.

  13. A radio search for planetary nebulae near the galactic center

    International Nuclear Information System (INIS)

    Isaacman, R.B.

    1980-01-01

    Because of galactic center is a hostile environment, and because planetaries are weak radio emitters, it is not clear a priori that one expects to detect any planetary nebulae at all in the nuclear region of the Galaxy. Therefore the expected lifetime and flux density distribution of galactic center nebulae is considered. The principal observational results from the Westerbork data, and the results of some pilot observations with the Very Large Array, which were intended to distinguish planetaries from other radio sources on an individual basis are given. (Auth.)

  14. Computing in Large-Scale Dynamic Systems

    NARCIS (Netherlands)

    Pruteanu, A.S.

    2013-01-01

    Software applications developed for large-scale systems have always been difficult to de- velop due to problems caused by the large number of computing devices involved. Above a certain network size (roughly one hundred), necessary services such as code updating, topol- ogy discovery and data

  15. Fires in large scale ventilation systems

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; White, B.W.; Nichols, B.D.; Smith, P.R.; Leslie, I.H.; Fenton, D.L.; Gunaji, M.V.; Blythe, J.P.

    1991-01-01

    This paper summarizes the experience gained simulating fires in large scale ventilation systems patterned after ventilation systems found in nuclear fuel cycle facilities. The series of experiments discussed included: (1) combustion aerosol loading of 0.61x0.61 m HEPA filters with the combustion products of two organic fuels, polystyrene and polymethylemethacrylate; (2) gas dynamic and heat transport through a large scale ventilation system consisting of a 0.61x0.61 m duct 90 m in length, with dampers, HEPA filters, blowers, etc.; (3) gas dynamic and simultaneous transport of heat and solid particulate (consisting of glass beads with a mean aerodynamic diameter of 10μ) through the large scale ventilation system; and (4) the transport of heat and soot, generated by kerosene pool fires, through the large scale ventilation system. The FIRAC computer code, designed to predict fire-induced transients in nuclear fuel cycle facility ventilation systems, was used to predict the results of experiments (2) through (4). In general, the results of the predictions were satisfactory. The code predictions for the gas dynamics, heat transport, and particulate transport and deposition were within 10% of the experimentally measured values. However, the code was less successful in predicting the amount of soot generation from kerosene pool fires, probably due to the fire module of the code being a one-dimensional zone model. The experiments revealed a complicated three-dimensional combustion pattern within the fire room of the ventilation system. Further refinement of the fire module within FIRAC is needed. (orig.)

  16. Outcomes of early carotid stenting and angioplasty in large-vessel anterior circulation strokes treated with mechanical thrombectomy and intravenous thrombolytics.

    Science.gov (United States)

    Mehta, T; Desai, N; Mehta, K; Parikh, R; Male, S; Hussain, M; Ollenschleger, M; Spiegel, G; Grande, A; Ezzeddine, M; Jagadeesan, B; Tummala, R; McCullough, L

    2018-01-01

    Introduction Proximal cervical internal carotid artery stenosis greater than 50% merits revascularization to mitigate the risk of stroke recurrence among large-vessel anterior circulation strokes undergoing mechanical thrombectomy. Carotid artery stenting necessitates the use of antiplatelets, and there is a theoretical increased risk of hemorrhagic transformation given that such patients may already have received intravenous thrombolytics and have a significant infarct burden. We investigate the outcomes of large-vessel anterior circulation stroke patients treated with intravenous thrombolytics receiving same-day carotid stenting or selective angioplasty compared to no carotid intervention. Materials and methods The study cohort was obtained from the National (Nationwide) Inpatient Sample database between 2006 and 2014, using International Statistical Classification of Diseases, ninth revision discharge diagnosis and procedure codes. A total of 11,825 patients with large-vessel anterior circulation stroke treated with intravenous thrombolytic and mechanical thrombectomy on the same day were identified. The study population was subdivided into three subgroups: no carotid intervention, same-day carotid angioplasty without carotid stenting, and same-day carotid stenting. Outcomes were assessed with respect to mortality, significant disability at discharge, hemorrhagic transformation, and requirement of percutaneous endoscopic gastronomy tube placement, prolonged mechanical ventilation, or craniotomy. Results This study found no statistically significant difference in patient outcomes in those treated with concurrent carotid stenting compared to no carotid intervention in terms of morbidity or mortality. Conclusions If indicated, it is reasonable to consider concurrent carotid stenting and/or angioplasty for large-vessel anterior circulation stroke patients treated with mechanical thrombectomy who also receive intravenous thrombolytics.

  17. Large-scale Complex IT Systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2011-01-01

    This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that identifies the major challen...

  18. Large-scale complex IT systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2012-01-01

    12 pages, 2 figures This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that ident...

  19. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed; Elsawy, Hesham; Gharbieh, Mohammad; Alouini, Mohamed-Slim; Adinoyi, Abdulkareem; Alshaalan, Furaih

    2017-01-01

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end

  20. Mixed convection around calandria tubes in a ¼ scale CANDU-6 moderator circulation tank

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, M.D.; Rossouw, D.J.; Boer, M. [Nuclear Science Division, School of Mechanical and Aeronautical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Kim, T., E-mail: tong.kim@wits.ac.za [Nuclear Science Division, School of Mechanical and Aeronautical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Rhee, B.W.; Kim, H.T. [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    Highlights: • A secondary jet is formed at a stagnation region and is directed towards the center of the MCT. • The secondary jet undergoes the significant dissipation and mixing due to calandria tubes (CTs). • Its cooling effectiveness is reduced on the CTs in the bottom of the MCT. • With forced convection dominance, peak heat transfer is on the upper CT surface. • With natural convection dominance, peak heat transfer is on the lower CT surface. - Abstract: This study experimentally characterizes mixed convection around calandria tubes (CTs) in a ¼ scale CANDU-6 moderator circulation tank (MCT) that uses air as the working fluid. In a full scale CANDU-6 reactor that undergoes a postulated dual failure with a loss-of-coolant accident without the emergency core cooling system available, mixed convection heat transfer occurs around the CTs. The cooling effectiveness of the moderator is diminished as an emergency heat sink if overheating eventually leads to film boiling. To prevent the onset of film boiling, local sub-cooling margins of the moderator needs to be maintained or else the critical heat flux should be increased. Circulating the moderator which interacts with the overheated CTs increases the heat transfer into the moderator which may suppress film boiling. The present experimental results demonstrate that the cooling effectiveness of the circulating moderator, in particular the secondary jet, is attenuated substantially as it is convected away from the inner wall towards the center of the MCT. The momentum of the secondary jet is diffused through the CTs. At a low jet Reynolds number, the secondary jet becomes ineffective so that some overheated CTs positioned in the other half of the MCT are cooled only by natural convection.

  1. Turbulent Convection Insights from Small-Scale Thermal Forcing with Zero Net Heat Flux at a Horizontal Boundary.

    Science.gov (United States)

    Griffiths, Ross W; Gayen, Bishakhdatta

    2015-11-13

    A large-scale circulation, a turbulent boundary layer, and a turbulent plume are noted features of convection at large Rayleigh numbers under differential heating on a single horizontal boundary. These might be attributed to the forcing, which in all studies has been limited to a unidirectional gradient over the domain scale. We instead apply forcing on a length scale smaller than the domain, and with variation in both horizontal directions. Direct numerical simulations show turbulence throughout the domain, a regime transition to a dominant domain-scale circulation, and a region of logarithmic velocity in the boundary layer, despite zero net heat flux. The results show significant similarities to Rayleigh-Bénard convection, demonstrate the significance of plume merging, support the hypothesis that the key driver of convection is the production of available potential energy without necessarily supplying total potential energy, and imply that contributions to domain-scale circulation in the oceans need not be solely from the large-scale gradients of forcing.

  2. Impact of the Dominant Large-scale Teleconnections on Winter Temperature Variability over East Asia

    Science.gov (United States)

    Lim, Young-Kwon; Kim, Hae-Dong

    2013-01-01

    Monthly mean geopotential height for the past 33 DJF seasons archived in Modern Era Retrospective analysis for Research and Applications reanalysis is decomposed into the large-scale teleconnection patterns to explain their impacts on winter temperature variability over East Asia. Following Arctic Oscillation (AO) that explains the largest variance, East Atlantic/West Russia (EA/WR), West Pacific (WP) and El Nino-Southern Oscillation (ENSO) are identified as the first four leading modes that significantly explain East Asian winter temperature variation. While the northern part of East Asia north of 50N is prevailed by AO and EA/WR impacts, temperature in the midlatitudes (30N-50N), which include Mongolia, northeastern China, Shandong area, Korea, and Japan, is influenced by combined effect of the four leading teleconnections. ENSO impact on average over 33 winters is relatively weaker than the impact of the other three teleconnections. WP impact, which has received less attention than ENSO in earlier studies, characterizes winter temperatures over Korea, Japan, and central to southern China region south of 30N mainly by advective process from the Pacific. Upper level wave activity fluxes reveal that, for the AO case, the height and circulation anomalies affecting midlatitude East Asian winter temperature is mainly located at higher latitudes north of East Asia. Distribution of the fluxes also explains that the stationary wave train associated with EA/WR propagates southeastward from the western Russia, affecting the East Asian winter temperature. Investigation on the impact of each teleconnection for the selected years reveals that the most dominant teleconnection over East Asia is not the same at all years, indicating a great deal of interannual variability. Comparison in temperature anomaly distributions between observation and temperature anomaly constructed using the combined effect of four leading teleconnections clearly show a reasonable consistency between

  3. Prospects for large scale electricity storage in Denmark

    DEFF Research Database (Denmark)

    Krog Ekman, Claus; Jensen, Søren Højgaard

    2010-01-01

    In a future power systems with additional wind power capacity there will be an increased need for large scale power management as well as reliable balancing and reserve capabilities. Different technologies for large scale electricity storage provide solutions to the different challenges arising w...

  4. Machine Learning Algorithms For Predicting the Instability Timescales of Compact Planetary Systems

    Science.gov (United States)

    Tamayo, Daniel; Ali-Dib, Mohamad; Cloutier, Ryan; Huang, Chelsea; Van Laerhoven, Christa L.; Leblanc, Rejean; Menou, Kristen; Murray, Norman; Obertas, Alysa; Paradise, Adiv; Petrovich, Cristobal; Rachkov, Aleksandar; Rein, Hanno; Silburt, Ari; Tacik, Nick; Valencia, Diana

    2016-10-01

    The Kepler mission has uncovered hundreds of compact multi-planet systems. The dynamical pathways to instability in these compact systems and their associated timescales are not well understood theoretically. However, long-term stability is often used as a constraint to narrow down the space of orbital solutions from the transit data. This requires a large suite of N-body integrations that can each take several weeks to complete. This computational bottleneck is therefore an important limitation in our ability to characterize compact multi-planet systems.From suites of numerical simulations, previous studies have fit simple scaling relations between the instability timescale and various system parameters. However, the numerically simulated systems can deviate strongly from these empirical fits.We present a new approach to the problem using machine learning algorithms that have enjoyed success across a broad range of high-dimensional industry applications. In particular, we have generated large training sets of direct N-body integrations of synthetic compact planetary systems to train several regression models (support vector machine, gradient boost) that predict the instability timescale. We find that ensembling these models predicts the instability timescale of planetary systems better than previous approaches using the simple scaling relations mentioned above.Finally, we will discuss how these models provide a powerful tool for not only understanding the current Kepler multi-planet sample, but also for characterizing and shaping the radial-velocity follow-up strategies of multi-planet systems from the upcoming Transiting Exoplanet Survey Satellite (TESS) mission, given its shorter observation baselines.

  5. Low-frequency variability of the atmospheric circulation: a comparison of statistical properties in both hemispheres and extreme seasons

    International Nuclear Information System (INIS)

    Buzzi, A.; Tosi, E.

    1988-01-01

    A statistical investigation is presented of the main variables characterizing the tropospheric general circulation in both hemispheres and extreme season, Winter and Summer. This gives up the opportunity of comparing four distinct realizations of the planetary circulation, as function of different orographic and thermal forcing conditions. Our approach is made possible by the availability of 6 years of global daily analyses prepared by ECMWF (European Centre for Medium-range Weather Forecast). The variables taken into account are the zonal geostrophic wind, the zonal thermal wind and various large-scala wave components, averaged over the tropospheric depth between 1000 and 200 hPa. The mean properties of the analysed quantities in each hemisphere and season are compared and their principal characteristics are discussed. The probability density estimates for the same variables, filtered in order to eliminate the seasonal cycle and the high frequency 'noise', are then presented. The distributions are examined, in particular, with respect of their unimodal or multimodal nature and with reference to the recent discussion in the literature on the bimodality which has been found for some indicators of planetary wave activity in the Nothern Hemisphere Winter. Our results indicate the presence of nonunimodally distributed wave and zonal flow components in both hemispheres and extreme season. The most frequent occurrence of nonunimodal behaviour is found for those wave components which exhibit an almost vanishing zonal phase speed and a larger 'response' to orographic forcing

  6. Experimental investigation on natural circulation and air-injection enhanced circulation in a simple loop

    International Nuclear Information System (INIS)

    Walter Ambrosini; Nicola Forgione; Francesco Oriolo; Filippo Pellacani; Mariano Tarantino; Claudio Struckmann

    2005-01-01

    Full text of publication follows: Natural circulation represents an interesting phenomenon because of both the complex aspects characterising it and for the widespread application in industry. On the other hand, injection of a gas into a rising branch of a loop represents a means to establish or to enhance a circulation flow, as it occurs in the so-called 'air-lift' loops. Both natural circulation and gas-injection enhanced circulation are presently considered for cooling Accelerator Driven System (ADS) reactors. These are subcritical reactors in which the fission reaction chain is maintained by the injection of neutrons obtained by spallation reactions in a target through a high energy proton beam generated in an external accelerator. The capability of such reactors to be used as incinerators of long lived fission products makes them particularly interesting in the light of the closure of the nuclear fuel cycle. Some of the fluids proposed as coolants for these reactors are liquid metals, with main interest for lead and lead-bismuth eutectic (LBE). Experimental activities are being performed in support to the design of the reactor prototype by different organisations. The university of Pisa, in addition to provide cooperation in these large scale activities performed with LBE has set up a specific experimental program aimed at studying the fundamental mechanisms involved in natural circulation and gas-injection enhanced circulation. The adopted experimental facility consists in a simple loop, having a rectangular lay-out (roughly, 4 m tall and 1 m wide), equipped with a 5 kW, 1 m tall heater, a 2 m long pipe-in-pipe heat exchanger, an air injection device and a separator. The fluid adopted in the tests performed up to now is water, though studies for evaluating the feasibility of the adoption of different fluids have been undertaken. Experimental data reported in previous publications concerning this research were related to a relatively high range of gas

  7. Planetary Data Archiving Activities of ISRO

    Science.gov (United States)

    Gopala Krishna, Barla; D, Rao J.; Thakkar, Navita; Prashar, Ajay; Manthira Moorthi, S.

    ISRO has launched its first planetary mission to moon viz., Chandrayaan-1 on October 22, 2008. This mission carried eleven instruments; a wealth of science data has been collected during its mission life (November 2008 to August 2009), which is archived at Indian Space Science Data Centre (ISSDC). The data centre ISSDC is responsible for the Ingest, storage, processing, Archive, and dissemination of the payload and related ancillary data in addition to real-time spacecraft operations support. ISSDC is designed to provide high computation power, large storage and hosting a variety of applications necessary to support all the planetary and space science missions of ISRO. State-of-the-art architecture of ISSDC provides the facility to ingest the raw payload data of all the science payloads of the science satellites in automatic manner, processes raw data and generates payload specific processed outputs, generate higher level products and disseminates the data sets to principal investigators, guest observers, payload operations centres (POC) and to general public. The data archive makes use of the well-proven archive standards of the Planetary Data System (PDS). The long term Archive for five payloads of Chandrayaan-1 data viz., TMC, HySI, SARA, M3 and MiniSAR is released from ISSDC on19th April 2013 (http://www.issdc.gov.in) to the users. Additionally DEMs generated from possible passes of Chandrayaan-1 TMC stereo data and sample map sheets of Lunar Atlas are also archived and released from ISSDC along with the LTA. Mars Orbiter Mission (MOM) is the recent planetary mission launched on October 22, 2013; currently enroute to MARS, carrying five instruments (http://www.isro.org) viz., Mars Color Camera (MCC) to map various morphological features on Mars with varying resolution and scales using the unique elliptical orbit, Methane Sensor for Mars (MSM) to measure total column of methane in the Martian atmosphere, Thermal Infrared Imaging Spectrometer (TIS) to map surface

  8. Evolution of scaling emergence in large-scale spatial epidemic spreading.

    Science.gov (United States)

    Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan

    2011-01-01

    Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.

  9. Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability

    Science.gov (United States)

    Lazio, T. Joseph

    2018-06-01

    Ground-based observations showed that Jupiter's radio emission is linked to its planetary-scale magnetic field, and subsequent spacecraft observations have shown that most planets, and some moons, have or had a global magnetic field. Generated by internal dynamos, magnetic fields are one of the few remote sensing means of constraining the properties of planetary interiors. For the Earth, its magnetic field has been speculated to be partially responsible for its habitability, and knowledge of an extrasolar planet's magnetic field may be necessary to assess its habitability. The radio emission from Jupiter and other solar system planets is produced by an electron cyclotron maser, and detections of extrasolar planetary electron cyclotron masers will enable measurements of extrasolar planetary magnetic fields. Based on experience from the solar system, such observations will almost certainly require space-based observations, but they will also be guided by on-going and near-future ground-based observations.This work has benefited from the discussion and participants of the W. M. Keck Institute of Space Studies "Planetary Magnetic Fields: Planetary Interiors and Habitability" and content within a white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  10. Miniaturisation of imaging spectrometer for planetary exploration

    Science.gov (United States)

    Drossart, Pierre; Sémery, Alain; Réess, Jean-Michel; Combes, Michel

    2017-11-01

    Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

  11. AutoCNet: A Python library for sparse multi-image correspondence identification for planetary data

    Science.gov (United States)

    Laura, Jason; Rodriguez, Kelvin; Paquette, Adam C.; Dunn, Evin

    2018-01-01

    In this work we describe the AutoCNet library, written in Python, to support the application of computer vision techniques for n-image correspondence identification in remotely sensed planetary images and subsequent bundle adjustment. The library is designed to support exploratory data analysis, algorithm and processing pipeline development, and application at scale in High Performance Computing (HPC) environments for processing large data sets and generating foundational data products. We also present a brief case study illustrating high level usage for the Apollo 15 Metric camera.

  12. Large-Scale Structure and Hyperuniformity of Amorphous Ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto

    2017-09-01

    We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.

  13. ENA of heterocyclic hydrocarbons by adding hydrogen peroxide in groundwater circulation wells - a field-based study on a large physical model scale

    International Nuclear Information System (INIS)

    Sagner, A.; Tiehm, A.; Trotschler, O.; Haslwimmer, Th.; Koschitzky, H.P.

    2005-01-01

    Heterocyclic Hydrocarbons (NSO-HET) are ingredients of tar oil, commonly found down-gradient of former gasworks sites. Typical NSO-HET are benzofurans, methyl-benzofurans, methylquinoline, acridine or carbazole. During investigations of MNA (monitored natural attenuation) remediation strategies, it was found that most NSO-HET are highly mobile due to their high water solubility and low biodegradation rates. In addition, some were found to be highly toxic and carcinogenic. In particular under anaerobic conditions, NSO-HET biodegradation rates are low. However, aerobic biological degradation was found to be effective. Based on the extension and contaminant distribution of the plume (∼ 800 m long) down-gradient of a former gasworks 'Testfeld Sued' (TFS) in Southern Germany, the most applicable technology for enhancing the natural degradation of PAH, BTEX and NSO-HET was selected and tested under controlled conditions in a large physical model (Large Flume of VEGAS). The investigations focused on a technology for a homogeneous infiltration of electron acceptor solutions such as oxygen and hydrogen peroxide to provide the bacteria with molecular oxygen. An initial infiltration of oxygen (air-saturated water) during the adaptation of microorganism to aerobic biodegradation was followed by a time-limited addition of hydrogen peroxide to achieve an oxygen concentration up to 23 mg/L in the model aquifer. An almost complete degradation of NSO-HET was found. On the basis of numerical simulations and lab experiments, it was found that natural dispersion will not lead to a wide-ranging homogeneous distribution and mixing of the oxygen in the aquifer. The Groundwater Circulation Wells technology (GCW) can be applied to achieve a maximum mixing of the electron acceptor solution with the groundwater. A spherical groundwater circulation is induced by means of ex- and infiltration ports in vertical wells. Infiltration and ex-filtration ports are located in hydraulically separated

  14. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    Science.gov (United States)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  15. Robots and Humans in Planetary Exploration: Working Together?

    Science.gov (United States)

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

  16. Mid-latitude afforestation shifts general circulation and tropical precipitation.

    Science.gov (United States)

    Swann, Abigail L S; Fung, Inez Y; Chiang, John C H

    2012-01-17

    We show in climate model experiments that large-scale afforestation in northern mid-latitudes warms the Northern Hemisphere and alters global circulation patterns. An expansion of dark forests increases the absorption of solar energy and increases surface temperature, particularly in regions where the land surface is unable to compensate with latent heat flux due to water limitation. Atmospheric circulation redistributes the anomalous energy absorbed in the northern hemisphere, in particular toward the south, through altering the Hadley circulation, resulting in the northward displacement of the tropical rain bands. Precipitation decreases over parts of the Amazon basin affecting productivity and increases over the Sahel and Sahara regions in Africa. We find that the response of climate to afforestation in mid-latitudes is determined by the amount of soil moisture available to plants with the greatest warming found in water-limited regions. Mid-latitude afforestation is found to have a small impact on modeled global temperatures and on global CO(2), but regional heating from the increase in forest cover is capable of driving unintended changes in circulation and precipitation. The ability of vegetation to affect remote circulation has implications for strategies for climate mitigation.

  17. Algorithms for large scale singular value analysis of spatially variant tomography systems

    International Nuclear Information System (INIS)

    Cao-Huu, Tuan; Brownell, G.; Lachiver, G.

    1996-01-01

    The problem of determining the eigenvalues of large matrices occurs often in the design and analysis of modem tomography systems. As there is an interest in solving systems containing an ever-increasing number of variables, current research effort is being made to create more robust solvers which do not depend on some special feature of the matrix for convergence (e.g. block circulant), and to improve the speed of already known and understood solvers so that solving even larger systems in a reasonable time becomes viable. Our standard techniques for singular value analysis are based on sparse matrix factorization and are not applicable when the input matrices are large because the algorithms cause too much fill. Fill refers to the increase of non-zero elements in the LU decomposition of the original matrix A (the system matrix). So we have developed iterative solutions that are based on sparse direct methods. Data motion and preconditioning techniques are critical for performance. This conference paper describes our algorithmic approaches for large scale singular value analysis of spatially variant imaging systems, and in particular of PCR2, a cylindrical three-dimensional PET imager 2 built at the Massachusetts General Hospital (MGH) in Boston. We recommend the desirable features and challenges for the next generation of parallel machines for optimal performance of our solver

  18. A Synoptic- and Planetary-Scale Analysis of Widespread North American Ice Storms

    Science.gov (United States)

    McCray, C.; Gyakum, J. R.; Atallah, E.

    2017-12-01

    Freezing rain can have devastating impacts, particularly when it persists for many hours. Predicting the precise temperature stratification necessary for long duration freezing rain events remains an important forecast challenge. To better elucidate the conditions responsible for the most severe events, we concentrate on surface observations of long-duration (6 or more hours) freezing rain events over North America from 1979-2016. Furthermore, we analyze cases in which multiple stations observe long-duration events simultaneously. Following these cases over successive days allows us to generate maps of freezing rain "tracks." We then categorize recurring geographic patterns to examine the meteorological conditions leading to these events. While freezing rain is most frequently observed in the northeastern United States and southeastern Canada, long-duration events have affected areas as far south as the Gulf Coast. Notably, a disproportionately large number of very long duration (18 or more hours) events have occurred in the Southern Plains states relative to the climatological annual frequency of freezing rain there. Classification of individual cases shows that most of these very long duration events are associated with a recurring pattern which produces freezing rain along a southwest-northeast swath from Texas/Oklahoma into the northeastern U.S. and eastern Canada. Storms classified within this pattern include the January 1998 and December 2013 ice storms. While this pattern is the most widespread, additional spatially extensive patterns occur. One of these areas extends from the Southern Plains eastward along the Gulf Coast to Georgia and the Carolinas. A third category of events extends from the Upper Midwest into the northeastern U.S. and southeastern Canada. The expansive areal extent and long duration of these events make them especially problematic. An analysis of the planetary- to synoptic-scale settings responsible for these cases and the differences

  19. Double inflation: A possible resolution of the large-scale structure problem

    International Nuclear Information System (INIS)

    Turner, M.S.; Villumsen, J.V.; Vittorio, N.; Silk, J.; Juszkiewicz, R.

    1986-11-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Ω = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of ∼100 Mpc, while the small-scale structure over ≤ 10 Mpc resembles that in a low density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations. 38 refs., 6 figs

  20. Large-scale fracture mechancis testing -- requirements and possibilities

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1993-01-01

    Application of fracture mechanics to very important and/or complicated structures, like reactor pressure vessels, brings also some questions about the reliability and precision of such calculations. These problems become more pronounced in cases of elastic-plastic conditions of loading and/or in parts with non-homogeneous materials (base metal and austenitic cladding, property gradient changes through material thickness) or with non-homogeneous stress fields (nozzles, bolt threads, residual stresses etc.). For such special cases some verification by large-scale testing is necessary and valuable. This paper discusses problems connected with planning of such experiments with respect to their limitations, requirements to a good transfer of received results to an actual vessel. At the same time, an analysis of possibilities of small-scale model experiments is also shown, mostly in connection with application of results between standard, small-scale and large-scale experiments. Experience from 30 years of large-scale testing in SKODA is used as an example to support this analysis. 1 fig

  1. Planetary Sciences, Geodynamics, Impacts, Mass Extinctions, and Evolution: Developments and Interconnections

    Directory of Open Access Journals (Sweden)

    Jaime Urrutia-Fucugauchi

    2016-01-01

    Full Text Available Research frontiers in geophysics are being expanded, with development of new fields resulting from technological advances such as the Earth observation satellite network, global positioning system, high pressure-temperature physics, tomographic methods, and big data computing. Planetary missions and enhanced exoplanets detection capabilities, with discovery of a wide range of exoplanets and multiple systems, have renewed attention to models of planetary system formation and planet’s characteristics, Earth’s interior, and geodynamics, highlighting the need to better understand the Earth system, processes, and spatio-temporal scales. Here we review the emerging interconnections resulting from advances in planetary sciences, geodynamics, high pressure-temperature physics, meteorite impacts, and mass extinctions.

  2. Ethics of large-scale change

    DEFF Research Database (Denmark)

    Arler, Finn

    2006-01-01

    , which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, the neoclassical economists' approach, and finally the so-called Concentric Circle Theories approach...

  3. The signatures of the parental cluster on field planetary systems

    Science.gov (United States)

    Cai, Maxwell Xu; Portegies Zwart, Simon; van Elteren, Arjen

    2018-03-01

    Due to the high stellar densities in young clusters, planetary systems formed in these environments are likely to have experienced perturbations from encounters with other stars. We carry out direct N-body simulations of multiplanet systems in star clusters to study the combined effects of stellar encounters and internal planetary dynamics. These planetary systems eventually become part of the Galactic field population as the parental cluster dissolves, which is where most presently known exoplanets are observed. We show that perturbations induced by stellar encounters lead to distinct signatures in the field planetary systems, most prominently, the excited orbital inclinations and eccentricities. Planetary systems that form within the cluster's half-mass radius are more prone to such perturbations. The orbital elements are most strongly excited in the outermost orbit, but the effect propagates to the entire planetary system through secular evolution. Planet ejections may occur long after a stellar encounter. The surviving planets in these reduced systems tend to have, on average, higher inclinations and larger eccentricities compared to systems that were perturbed less strongly. As soon as the parental star cluster dissolves, external perturbations stop affecting the escaped planetary systems, and further evolution proceeds on a relaxation time-scale. The outer regions of these ejected planetary systems tend to relax so slowly that their state carries the memory of their last strong encounter in the star cluster. Regardless of the stellar density, we observe a robust anticorrelation between multiplicity and mean inclination/eccentricity. We speculate that the `Kepler dichotomy' observed in field planetary systems is a natural consequence of their early evolution in the parental cluster.

  4. Galactic planetary nebulae and evolution of their nuclei

    International Nuclear Information System (INIS)

    Khromov, G.S.

    1980-01-01

    The galactic system of planetary nebulae is investigated using previously constructed distance scale and kinematics data. A strong effect of observational selection is established, which has the consequence that with increasing distance, ever brighter and younger objects are observed. More accurate determinations of the spatial and surface densities of the planetary nebulae system are obtained as well as a new estimate of their total number in the Galaxy, which is approximately 200,000. New estimates are also made of the masses of the nebulae, the absolute magnitudes of the nebulae and their nuclei, and other physical parameters of these objects. The spatial and kinematic characteristics of the planetary nebulae indicate that they are objects of the old type I population. It is possible that their remote ancestors are main sequence stars of the type B8-A5-F or as yet unidentified objects of the same galactic subsystem

  5. Comparison Between Overtopping Discharge in Small and Large Scale Models

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, Hans F.

    2006-01-01

    The present paper presents overtopping measurements from small scale model test performed at the Haudraulic & Coastal Engineering Laboratory, Aalborg University, Denmark and large scale model tests performed at the Largde Wave Channel,Hannover, Germany. Comparison between results obtained from...... small and large scale model tests show no clear evidence of scale effects for overtopping above a threshold value. In the large scale model no overtopping was measured for waveheights below Hs = 0.5m as the water sunk into the voids between the stones on the crest. For low overtopping scale effects...

  6. Planetary magnetospheres

    International Nuclear Information System (INIS)

    Hill, T.W.; Michel, F.C.

    1975-01-01

    Recent planetary probes have resulted in the realization of the generality of magnetospheric interactions between the solar wind and the planets. The three categories of planetary magnetospheres are discussed: intrinsic slowly rotating magnetospheres, intrinsic rapidly rotating magnetospheres, and induced magnetospheres. (BJG)

  7. A comparison of large scale changes in surface humidity over land in observations and CMIP3 general circulation models

    International Nuclear Information System (INIS)

    Willett, Katharine M; Thorne, Peter W; Jones, Philip D; Gillett, Nathan P

    2010-01-01

    Observed changes in the HadCRUH global land surface specific humidity and CRUTEM3 surface temperature from 1973 to 1999 are compared to CMIP3 archive climate model simulations with 20th Century forcings. Observed humidity increases are proportionately largest in the Northern Hemisphere, especially in winter. At the largest spatio-temporal scales moistening is close to the Clausius-Clapeyron scaling of the saturated specific humidity (∼7% K -1 ). At smaller scales in water-limited regions, changes in specific humidity are strongly inversely correlated with total changes in temperature. Conversely, in some regions increases are faster than implied by the Clausius-Clapeyron relation. The range of climate model specific humidity seasonal climatology and variance encompasses the observations. The models also reproduce the magnitude of observed interannual variance over all large regions. Observed and modelled trends and temperature-humidity relationships are comparable except for the extratropical Southern Hemisphere where observations exhibit no trend but models exhibit moistening. This may arise from: long-term biases remaining in the observations; the relative paucity of observational coverage; or common model errors. The overall degree of consistency of anthropogenically forced models with the observations is further evidence for anthropogenic influence on the climate of the late 20th century.

  8. Using Primary Literature for Teaching Undergraduate Planetary Sciences

    Science.gov (United States)

    Levine, J.

    2013-05-01

    Articles from the primary scientific literature can be a valuable teaching tool in undergraduate classrooms. At Colgate University, I emphasize selected research articles in an upper-level undergraduate course in planetary sciences. In addition to their value for conveying specific scientific content, I find that they also impart larger lessons which are especially apt in planetary sciences and allied fields. First, because of the interdisciplinary nature of planetary sciences, students discover that contributions to outstanding problems may arrive from unexpected directions, so they need to be aware of the multi-faceted nature of scientific problems. For instance, after millennia of astrometric attempts, the scale of the Solar System was determined with extraordinary precision with emerging radar technology in the 1960's. Second, students learn the importance of careful work, with due attention to detail. After all, the timescales of planetary formation are encoded in systematic isotopic variations of a few parts in 10,000; in students' own experiences with laboratory data they might well overlook such a small effect. Third, students identify the often-tortuous connections between measured and inferred quantities, which corrects a common student misconception that all quantities of interest (e.g., the age of a meteorite) can be measured directly. Fourth, research articles provide opportunities for students to practice the interpretation of graphical data, since figures often represent a large volume of data in succinct form. Fifth, and perhaps of greatest importance, by considering the uncertainties inherent in reported data, students come to recognize the limits of scientific understanding, the extent to which scientific conclusions are justified (or not), and the lengths to which working scientists go to mitigate their uncertainties. These larger lessons are best mediated by students' own encounters with the articles they read, but require instructors to make

  9. Needs, opportunities, and options for large scale systems research

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  10. Immersive Interaction, Manipulation and Analysis of Large 3D Datasets for Planetary and Earth Sciences

    Science.gov (United States)

    Pariser, O.; Calef, F.; Manning, E. M.; Ardulov, V.

    2017-12-01

    We will present implementation and study of several use-cases of utilizing Virtual Reality (VR) for immersive display, interaction and analysis of large and complex 3D datasets. These datasets have been acquired by the instruments across several Earth, Planetary and Solar Space Robotics Missions. First, we will describe the architecture of the common application framework that was developed to input data, interface with VR display devices and program input controllers in various computing environments. Tethered and portable VR technologies will be contrasted and advantages of each highlighted. We'll proceed to presenting experimental immersive analytics visual constructs that enable augmentation of 3D datasets with 2D ones such as images and statistical and abstract data. We will conclude by presenting comparative analysis with traditional visualization applications and share the feedback provided by our users: scientists and engineers.

  11. Large-scale structure of the Universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.

    1978-01-01

    The problems, discussed at the ''Large-scale Structure of the Universe'' symposium are considered on a popular level. Described are the cell structure of galaxy distribution in the Universe, principles of mathematical galaxy distribution modelling. The images of cell structures, obtained after reprocessing with the computer are given. Discussed are three hypothesis - vortical, entropic, adiabatic, suggesting various processes of galaxy and galaxy clusters origin. A considerable advantage of the adiabatic hypothesis is recognized. The relict radiation, as a method of direct studying the processes taking place in the Universe is considered. The large-scale peculiarities and small-scale fluctuations of the relict radiation temperature enable one to estimate the turbance properties at the pre-galaxy stage. The discussion of problems, pertaining to studying the hot gas, contained in galaxy clusters, the interactions within galaxy clusters and with the inter-galaxy medium, is recognized to be a notable contribution into the development of theoretical and observational cosmology

  12. The economics and environmental impacts of large-scale wind power in a carbon constrained world

    Science.gov (United States)

    Decarolis, Joseph Frank

    increase as wind is developed on a large scale. Finally, this thesis summarizes collaborative work utilizing general circulation models to determine whether wind turbines have an impact of climate. The results suggest that the climatic impact is non-negligible at continental scales, but further research is warranted.

  13. Seismic safety in conducting large-scale blasts

    Science.gov (United States)

    Mashukov, I. V.; Chaplygin, V. V.; Domanov, V. P.; Semin, A. A.; Klimkin, M. A.

    2017-09-01

    In mining enterprises to prepare hard rocks for excavation a drilling and blasting method is used. With the approach of mining operations to settlements the negative effect of large-scale blasts increases. To assess the level of seismic impact of large-scale blasts the scientific staff of Siberian State Industrial University carried out expertise for coal mines and iron ore enterprises. Determination of the magnitude of surface seismic vibrations caused by mass explosions was performed using seismic receivers, an analog-digital converter with recording on a laptop. The registration results of surface seismic vibrations during production of more than 280 large-scale blasts at 17 mining enterprises in 22 settlements are presented. The maximum velocity values of the Earth’s surface vibrations are determined. The safety evaluation of seismic effect was carried out according to the permissible value of vibration velocity. For cases with exceedance of permissible values recommendations were developed to reduce the level of seismic impact.

  14. International Space Science Institute Workshop on Shallow Clouds, Water Vapor, Circulation and Climate Sensitivity

    CERN Document Server

    Winker, David; Bony, Sandrine; Stevens, Bjorn

    2018-01-01

    This volume presents a series of overview articles arising from a workshop exploring the links among shallow clouds, water vapor, circulation, and climate sensitivity. It provides a state-of-the art synthesis of understanding about the coupling of clouds and water vapor to the large-scale circulation. The emphasis is on two phenomena, namely the self-aggregation of deep convection and interactions between low clouds and the large-scale environment, with direct links to the sensitivity of climate to radiative perturbations. Each subject is approached using simulations, observations, and synthesizing theory; particular attention is paid to opportunities offered by new remote-sensing technologies, some still prospective. The collection provides a thorough grounding in topics representing one of the World Climate Research Program’s Grand Challenges. Previously published in Surveys in Geophysics, Volume 38, Issue 6, 2017 The articles “Observing Convective Aggregation”, “An Observational View of Relationshi...

  15. Causes and impacts of changes in the stratospheric meridional circulation in a chemistry-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Hella

    2011-05-13

    The stratospheric meridional circulation is projected to be subject to changes due to enhanced greenhouse-gas concentrations in the atmosphere. This study aims to diagnose and explain long-term changes in the stratospheric meridional circulation using the chemistry-climate model E39CA. The diagnosed strengthening of the circulation is found to be driven by increases in tropical sea surface temperatures which lead to a strengthening and upward shift of the subtropical jets. This enables enhanced vertical propagation of large scale waves into the lower stratosphere, and therefore stronger local wave forcing of the meridional circulation in the tropical lower stratosphere. The impact of changes in transport on the ozone layer is analysed using a newly developed method that allows the separation of the effects of transport and chemistry changes on ozone. It is found that future changes of mean stratospheric ozone concentrations are largely determined by changes in chemistry, while changes in transport of ozone play a minor role. (orig.)

  16. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  17. Homogenization of Large-Scale Movement Models in Ecology

    Science.gov (United States)

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  18. Spring soil moisture-precipitation feedback in the Southern Great Plains: How is it related to large-scale atmospheric conditions?

    KAUST Repository

    Su, Hua

    2014-02-22

    The Southern Great Plains (SGP) has been shown as a region of significant soil moisture-precipitation (S-P) coupling. However, how strong evapotranspiration (ET) can affect regional precipitation remains largely unclear, impeding a full grasp of the S-P feedback in that area. The current study seeks to unravel, in a spring month (April), the potential role played by large-scale atmospheric conditions in shaping S (ET)-P feedback. Our regional climate modeling experiments demonstrate that the presence of anomalous low (high) pressure and cyclonic (anticyclonic) flows at the upper/middle troposphere over the relevant areas is associated with strongest (minimum) positive S-P feedback in the SGP. Their impacts are interpreted in terms of large-scale atmospheric dynamical disturbance, including the intensity and location of synoptic eddies. Further analyses of the vertical velocity fields corroborate these interpretations. In addition, the relationship between lower tropospheric moisture conditions (including winds) and feedback composites is evaluated. Key Points The S-P feedback strength in SGP in April varies inter-annually The atmospheric dynamic features affect significantly the feedback strength composite moisture conditions are related to atmospheric circulation structure ©2014. American Geophysical Union. All Rights Reserved.

  19. Spring soil moisture-precipitation feedback in the Southern Great Plains: How is it related to large-scale atmospheric conditions?

    KAUST Repository

    Su, Hua; Yang, Zong-Liang; Dickinson, Robert E.; Wei, Jiangfeng

    2014-01-01

    The Southern Great Plains (SGP) has been shown as a region of significant soil moisture-precipitation (S-P) coupling. However, how strong evapotranspiration (ET) can affect regional precipitation remains largely unclear, impeding a full grasp of the S-P feedback in that area. The current study seeks to unravel, in a spring month (April), the potential role played by large-scale atmospheric conditions in shaping S (ET)-P feedback. Our regional climate modeling experiments demonstrate that the presence of anomalous low (high) pressure and cyclonic (anticyclonic) flows at the upper/middle troposphere over the relevant areas is associated with strongest (minimum) positive S-P feedback in the SGP. Their impacts are interpreted in terms of large-scale atmospheric dynamical disturbance, including the intensity and location of synoptic eddies. Further analyses of the vertical velocity fields corroborate these interpretations. In addition, the relationship between lower tropospheric moisture conditions (including winds) and feedback composites is evaluated. Key Points The S-P feedback strength in SGP in April varies inter-annually The atmospheric dynamic features affect significantly the feedback strength composite moisture conditions are related to atmospheric circulation structure ©2014. American Geophysical Union. All Rights Reserved.

  20. Status: Large-scale subatmospheric cryogenic systems

    International Nuclear Information System (INIS)

    Peterson, T.

    1989-01-01

    In the late 1960's and early 1970's an interest in testing and operating RF cavities at 1.8K motivated the development and construction of four large (300 Watt) 1.8K refrigeration systems. in the past decade, development of successful superconducting RF cavities and interest in obtaining higher magnetic fields with the improved Niobium-Titanium superconductors has once again created interest in large-scale 1.8K refrigeration systems. The L'Air Liquide plant for Tore Supra is a recently commissioned 300 Watt 1.8K system which incorporates new technology, cold compressors, to obtain the low vapor pressure for low temperature cooling. CEBAF proposes to use cold compressors to obtain 5KW at 2.0K. Magnetic refrigerators of 10 Watt capacity or higher at 1.8K are now being developed. The state of the art of large-scale refrigeration in the range under 4K will be reviewed. 28 refs., 4 figs., 7 tabs

  1. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  2. Large-scale weakly supervised object localization via latent category learning.

    Science.gov (United States)

    Chong Wang; Kaiqi Huang; Weiqiang Ren; Junge Zhang; Maybank, Steve

    2015-04-01

    Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain useful latent information, e.g., the sky in the aeroplane class. If this latent information can be learned, object-background ambiguity can be largely reduced and background can be suppressed effectively. In this paper, we propose the latent category learning (LCL) in large-scale cluttered conditions. LCL is an unsupervised learning method which requires only image-level class labels. First, we use the latent semantic analysis with semantic object representation to learn the latent categories, which represent objects, object parts or backgrounds. Second, to determine which category contains the target object, we propose a category selection strategy by evaluating each category's discrimination. Finally, we propose the online LCL for use in large-scale conditions. Evaluation on the challenging PASCAL Visual Object Class (VOC) 2007 and the large-scale imagenet large-scale visual recognition challenge 2013 detection data sets shows that the method can improve the annotation precision by 10% over previous methods. More importantly, we achieve the detection precision which outperforms previous results by a large margin and can be competitive to the supervised deformable part model 5.0 baseline on both data sets.

  3. Evolution of the Large Scale Circulation, Cloud Structure and Regional Water Cycle Associated with the South China Sea Monsoon During May-June, 1998

    Science.gov (United States)

    Lau, William K.-M.; Li, Xiao-Fan

    2001-01-01

    In this paper, changes in the large-scale circulation, cloud structures and regional water cycle associated with the evolution of the South China Sea (SCS) monsoon in May-June 1998 were investigated using data from the Tropical Rainfall Measuring Mission (TRMM) and field data from the South China Sea Monsoon Experiment (SCSMEX). Results showed that both tropical and extratropical processes strongly influenced the onset and evolution of the SCS monsoon. Prior to the onset of the SCS monsoon, enhanced convective activities associated with the Madden and Julian Oscillation were detected over the Indian Ocean, and the SCS was under the influence of the West Pacific Anticyclone (WPA) with prevailing low level easterlies and suppressed convection. Establishment of low-level westerlies across Indo-China, following the development of a Bay of Bengal depression played an important role in building up convective available potential energy over the SCS. The onset of SCS monsoon appeared to be triggered by the equatorward penetration of extratropical frontal system, which was established over the coastal region of southern China and Taiwan in early May. Convective activities over the SCS were found to vary inversely with those over the Yangtze River Valley (YRV). Analysis of TRMM microwave and precipitation radar data revealed that during the onset phase, convection over the northern SCS consisted of squall-type rain cell embedded in meso-scale complexes similar to extratropical systems. The radar Z-factor intensity indicated that SCS clouds possessed a bimodal distribution, with a pronounced signal (less than 30dBz) at a height of 2-3 km, and another one (less than 25 dBz) at the 8-10 km level, separated by a well-defined melting level indicated by a bright band at around 5-km level. The stratiform-to-convective cloud ratio was approximately 1:1 in the pre-onset phase, but increased to 5:1 in the active phase. Regional water budget calculations indicated that during the

  4. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  5. 3D General Circulation Model of the Middle Atmosphere of Jupiter

    Science.gov (United States)

    Zube, Nicholas Gerard; Zhang, Xi; Li, Cheng; Le, Tianhao

    2017-10-01

    The characteristics of Jupiter’s large-scale stratospheric circulation remain largely unknown. Detailed distributions of temperature and photochemical species have been provided by recent observations [1], but have not yet been accurately reproduced by middle atmosphere general circulation models (GCM). Jupiter’s stratosphere and upper troposphere are influenced by radiative forcing from solar insolation and infrared cooling from hydrogen and hydrocarbons, as well as waves propagating from the underlying troposphere [2]. The relative significance of radiative and mechanical forcing on stratospheric circulation is still being debated [3]. Here we present a 3D GCM of Jupiter’s atmosphere with a correlated-k radiative transfer scheme. The simulation results are compared with observations. We analyze the impact of model parameters on the stratospheric temperature distribution and dynamical features. Finally, we discuss future tracer transport and gravity wave parameterization schemes that may be able to accurately simulate the middle atmosphere dynamics of Jupiter and other giant planets.[1] Kunde et al. 2004, Science 305, 1582.[2] Zhang et al. 2013a, EGU General Assembly, EGU2013-5797-2.[3] Conrath 1990, Icarus, 83, 255-281.

  6. Formation of Planetary Populations I: Metallicity & Envelope Opacity Effects

    Science.gov (United States)

    Alessi, Matthew; Pudritz, Ralph E.

    2018-05-01

    We present a comprehensive body of simulations of the formation of exoplanetary populations that incorporate the role of planet traps in slowing planetary migration. The traps we include in our model are the water ice line, the disk heat transition, and the dead zone outer edge. We reduce our model parameter set to two physical parameters: the opacity of the accreting planetary atmospheres (κenv) and a measure of the efficiency of planetary accretion after gap opening (fmax). We perform planet population synthesis calculations based on the initial observed distributions of host star and disk properties - their disk masses, lifetimes, and stellar metallicities. We find the frequency of giant planet formation scales with disk metallicity, in agreement with the observed Jovian planet frequency-metallicity relation. We consider both X-ray and cosmic ray disk ionization models, whose differing ionization rates lead to different dead zone trap locations. In both cases, Jovian planets form in our model out to 2-3 AU, with a distribution at smaller radii dependent on the disk ionization source and the setting of envelope opacity. We find that low values of κenv (0.001-0.002 cm2 g-1) and X-ray disk ionization are necessary to obtain a separation between hot Jupiters near 0.1 AU, and warm Jupiters outside 0.6 AU, a feature present in the data. Our model also produces a large number of super Earths, but the majority are outside of 2 AU. As our model assumes a constant dust to gas ratio, we suggest that radial dust evolution must be taken into account to reproduce the observed super Earth population.

  7. A south equatorial African precipitation dipole and the associated atmospheric circulation

    Science.gov (United States)

    Dezfuli, A. K.; Zaitchik, B.; Gnanadesikan, A.

    2013-12-01

    South Equatorial Africa (SEA) is a climatically diverse region that includes a dramatic topographic and vegetation contrast between the lowland, humid Congo basin to the west and the East African Plateau to the east. Due to lack of conventional weather data and a tendency for researchers to treat East and western Africa as separate regions, dynamics of the atmospheric water cycle across SEA have received relatively little attention, particularly at subseasonal timescales. Both western and eastern sectors of SEA are affected by large-scale drivers of the water cycle associated with Atlantic variability (western sector), Indian Ocean variability (eastern sector) and Pacific variability (both sectors). However, a specific characteristic of SEA is strong heterogeneity in interannual rainfall variability that cannot be explained by large-scale climatic phenomena. For this reason, this study examines regional climate dynamics on daily time-scale with a focus on the role that the abrupt topographic contrast between the lowland Congo and the East African highlands plays in driving rainfall behavior on short timescales. Analysis of daily precipitation data during November-March reveals a zonally-oriented dipole mode over SEA that explains the leading pattern of weather-scale precipitation variability in the region. The separating longitude of the two poles is coincident with the zonal variation of topography. An anomalous counter-clockwise atmospheric circulation associated with the dipole mode appears over the entire SEA. The circulation is triggered by its low-level westerly component, which is in turn generated by an interhemispheric pressure gradient. These enhanced westerlies hit the East African highlands and produce topographically-driven low-level convergence and convection that further intensifies the circulation. Recent studies have shown that under climate change the position and intensity of subtropical highs in both hemispheres and the intensity of

  8. An Novel Architecture of Large-scale Communication in IOT

    Science.gov (United States)

    Ma, Wubin; Deng, Su; Huang, Hongbin

    2018-03-01

    In recent years, many scholars have done a great deal of research on the development of Internet of Things and networked physical systems. However, few people have made the detailed visualization of the large-scale communications architecture in the IOT. In fact, the non-uniform technology between IPv6 and access points has led to a lack of broad principles of large-scale communications architectures. Therefore, this paper presents the Uni-IPv6 Access and Information Exchange Method (UAIEM), a new architecture and algorithm that addresses large-scale communications in the IOT.

  9. Benefits of transactive memory systems in large-scale development

    OpenAIRE

    Aivars, Sablis

    2016-01-01

    Context. Large-scale software development projects are those consisting of a large number of teams, maybe even spread across multiple locations, and working on large and complex software tasks. That means that neither a team member individually nor an entire team holds all the knowledge about the software being developed and teams have to communicate and coordinate their knowledge. Therefore, teams and team members in large-scale software development projects must acquire and manage expertise...

  10. Study of a large scale neutron measurement channel

    International Nuclear Information System (INIS)

    Amarouayache, Anissa; Ben Hadid, Hayet.

    1982-12-01

    A large scale measurement channel allows the processing of the signal coming from an unique neutronic sensor, during three different running modes: impulses, fluctuations and current. The study described in this note includes three parts: - A theoretical study of the large scale channel and its brief description are given. The results obtained till now in that domain are presented. - The fluctuation mode is thoroughly studied and the improvements to be done are defined. The study of a fluctuation linear channel with an automatic commutation of scales is described and the results of the tests are given. In this large scale channel, the method of data processing is analogical. - To become independent of the problems generated by the use of a an analogical processing of the fluctuation signal, a digital method of data processing is tested. The validity of that method is improved. The results obtained on a test system realized according to this method are given and a preliminary plan for further research is defined [fr

  11. From global circulation to flood loss: Coupling models across the scales

    Science.gov (United States)

    Felder, Guido; Gomez-Navarro, Juan Jose; Bozhinova, Denica; Zischg, Andreas; Raible, Christoph C.; Ole, Roessler; Martius, Olivia; Weingartner, Rolf

    2017-04-01

    The prediction and the prevention of flood losses requires an extensive understanding of underlying meteorological, hydrological, hydraulic and damage processes. Coupled models help to improve the understanding of such underlying processes and therefore contribute the understanding of flood risk. Using such a modelling approach to determine potentially flood-affected areas and damages requires a complex coupling between several models operating at different spatial and temporal scales. Although the isolated parts of the single modelling components are well established and commonly used in the literature, a full coupling including a mesoscale meteorological model driven by a global circulation one, a hydrologic model, a hydrodynamic model and a flood impact and loss model has not been reported so far. In the present study, we tackle the application of such a coupled model chain in terms of computational resources, scale effects, and model performance. From a technical point of view, results show the general applicability of such a coupled model, as well as good model performance. From a practical point of view, such an approach enables the prediction of flood-induced damages, although some future challenges have been identified.

  12. Statistical and physical study of one-sided planetary nebulae.

    Science.gov (United States)

    Ali, A.; El-Nawawy, M. S.; Pfleiderer, J.

    The authors have investigated the spatial orientation of one-sided planetary nebulae. Most of them if not all are interacting with the interstellar medium. Seventy percent of the nebulae in the sample have inclination angles larger than 45° to the Galactic plane and 30% of the inclination angles are less than 45°. Most of the selected objects are old, evolved planetary nebulae with large dimensions, and not far away from the Galactic plane. Seventy-five percent of the objects are within 160 pc from the Galactic plane. The enhanced concavity arc can be explained physically as a result of the 'planetary nebulae-interstellar matter' interaction. The authors discuss the possible effect of the interstellar magnetic field in the concavity regions.

  13. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology

    Science.gov (United States)

    Che, James; Yu, Victor; Dhar, Manjima; Renier, Corinne; Matsumoto, Melissa; Heirich, Kyra; Garon, Edward B.; Goldman, Jonathan; Rao, Jianyu; Sledge, George W.; Pegram, Mark D.; Sheth, Shruti; Jeffrey, Stefanie S.; Kulkarni, Rajan P.; Sollier, Elodie; Di Carlo, Dino

    2016-01-01

    Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells. PMID:26863573

  14. Capabilities of the Large-Scale Sediment Transport Facility

    Science.gov (United States)

    2016-04-01

    pump flow meters, sediment trap weigh tanks , and beach profiling lidar. A detailed discussion of the original LSTF features and capabilities can be...ERDC/CHL CHETN-I-88 April 2016 Approved for public release; distribution is unlimited. Capabilities of the Large-Scale Sediment Transport...describes the Large-Scale Sediment Transport Facility (LSTF) and recent upgrades to the measurement systems. The purpose of these upgrades was to increase

  15. Spatiotemporal property and predictability of large-scale human mobility

    Science.gov (United States)

    Zhang, Hai-Tao; Zhu, Tao; Fu, Dongfei; Xu, Bowen; Han, Xiao-Pu; Chen, Duxin

    2018-04-01

    Spatiotemporal characteristics of human mobility emerging from complexity on individual scale have been extensively studied due to the application potential on human behavior prediction and recommendation, and control of epidemic spreading. We collect and investigate a comprehensive data set of human activities on large geographical scales, including both websites browse and mobile towers visit. Numerical results show that the degree of activity decays as a power law, indicating that human behaviors are reminiscent of scale-free random walks known as Lévy flight. More significantly, this study suggests that human activities on large geographical scales have specific non-Markovian characteristics, such as a two-segment power-law distribution of dwelling time and a high possibility for prediction. Furthermore, a scale-free featured mobility model with two essential ingredients, i.e., preferential return and exploration, and a Gaussian distribution assumption on the exploration tendency parameter is proposed, which outperforms existing human mobility models under scenarios of large geographical scales.

  16. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    Science.gov (United States)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  17. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    Science.gov (United States)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https

  18. Problems of large-scale vertically-integrated aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Webber, H H; Riordan, P F

    1976-01-01

    The problems of vertically-integrated aquaculture are outlined; they are concerned with: species limitations (in the market, biological and technological); site selection, feed, manpower needs, and legal, institutional and financial requirements. The gaps in understanding of, and the constraints limiting, large-scale aquaculture are listed. Future action is recommended with respect to: types and diversity of species to be cultivated, marketing, biotechnology (seed supply, disease control, water quality and concerted effort), siting, feed, manpower, legal and institutional aids (granting of water rights, grants, tax breaks, duty-free imports, etc.), and adequate financing. The last of hard data based on experience suggests that large-scale vertically-integrated aquaculture is a high risk enterprise, and with the high capital investment required, banks and funding institutions are wary of supporting it. Investment in pilot projects is suggested to demonstrate that large-scale aquaculture can be a fully functional and successful business. Construction and operation of such pilot farms is judged to be in the interests of both the public and private sector.

  19. Natural Circulation Characteristics at Low-Pressure Conditions through PANDA Experiments and ATHLET Simulations

    Directory of Open Access Journals (Sweden)

    Domenico Paladino

    2008-01-01

    Full Text Available Natural circulation characteristics at low pressure/low power have been studied by performing experimental investigations and numerical simulations. The PANDA large-scale facility was used to provide valuable, high quality data on natural circulation characteristics as a function of several parameters and for a wide range of operating conditions. The new experimental data allow for testing and improving the capabilities of the thermal-hydraulic computer codes to be used for treating natural circulation loops in a range with increased attention. This paper presents a synthesis of a part of the results obtained within the EU-Project NACUSP “natural circulation and stability performance of boiling water reactors.” It does so by using the experimental results produced in PANDA and by showing some examples of numerical simulations performed with the thermal-hydraulic code ATHLET.

  20. Large-scale computing with Quantum Espresso

    International Nuclear Information System (INIS)

    Giannozzi, P.; Cavazzoni, C.

    2009-01-01

    This paper gives a short introduction to Quantum Espresso: a distribution of software for atomistic simulations in condensed-matter physics, chemical physics, materials science, and to its usage in large-scale parallel computing.

  1. VESPA: Very large-scale Evolutionary and Selective Pressure Analyses

    Directory of Open Access Journals (Sweden)

    Andrew E. Webb

    2017-06-01

    Full Text Available Background Large-scale molecular evolutionary analyses of protein coding sequences requires a number of preparatory inter-related steps from finding gene families, to generating alignments and phylogenetic trees and assessing selective pressure variation. Each phase of these analyses can represent significant challenges, particularly when working with entire proteomes (all protein coding sequences in a genome from a large number of species. Methods We present VESPA, software capable of automating a selective pressure analysis using codeML in addition to the preparatory analyses and summary statistics. VESPA is written in python and Perl and is designed to run within a UNIX environment. Results We have benchmarked VESPA and our results show that the method is consistent, performs well on both large scale and smaller scale datasets, and produces results in line with previously published datasets. Discussion Large-scale gene family identification, sequence alignment, and phylogeny reconstruction are all important aspects of large-scale molecular evolutionary analyses. VESPA provides flexible software for simplifying these processes along with downstream selective pressure variation analyses. The software automatically interprets results from codeML and produces simplified summary files to assist the user in better understanding the results. VESPA may be found at the following website: http://www.mol-evol.org/VESPA.

  2. Influence of Planetary Protection Guidelines on Waste Management Operations

    Science.gov (United States)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  3. RESTRUCTURING OF THE LARGE-SCALE SPRINKLERS

    Directory of Open Access Journals (Sweden)

    Paweł Kozaczyk

    2016-09-01

    Full Text Available One of the best ways for agriculture to become independent from shortages of precipitation is irrigation. In the seventies and eighties of the last century a number of large-scale sprinklers in Wielkopolska was built. At the end of 1970’s in the Poznan province 67 sprinklers with a total area of 6400 ha were installed. The average size of the sprinkler reached 95 ha. In 1989 there were 98 sprinklers, and the area which was armed with them was more than 10 130 ha. The study was conducted on 7 large sprinklers with the area ranging from 230 to 520 hectares in 1986÷1998. After the introduction of the market economy in the early 90’s and ownership changes in agriculture, large-scale sprinklers have gone under a significant or total devastation. Land on the State Farms of the State Agricultural Property Agency has leased or sold and the new owners used the existing sprinklers to a very small extent. This involved a change in crop structure, demand structure and an increase in operating costs. There has also been a threefold increase in electricity prices. Operation of large-scale irrigation encountered all kinds of barriers in practice and limitations of system solutions, supply difficulties, high levels of equipment failure which is not inclined to rational use of available sprinklers. An effect of a vision of the local area was to show the current status of the remaining irrigation infrastructure. The adopted scheme for the restructuring of Polish agriculture was not the best solution, causing massive destruction of assets previously invested in the sprinkler system.

  4. Large-scale synthesis of YSZ nanopowder by Pechini method

    Indian Academy of Sciences (India)

    Administrator

    structure and chemical purity of 99⋅1% by inductively coupled plasma optical emission spectroscopy on a large scale. Keywords. Sol–gel; yttria-stabilized zirconia; large scale; nanopowder; Pechini method. 1. Introduction. Zirconia has attracted the attention of many scientists because of its tremendous thermal, mechanical ...

  5. Pressure-gradient-driven nearshore circulation on a beach influenced by a large inlet-tidal shoal system

    Science.gov (United States)

    Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.

    2011-01-01

    The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.

  6. The Phoenix series large scale LNG pool fire experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  7. Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast

    Science.gov (United States)

    Agel, Laurie; Barlow, Mathew; Feldstein, Steven B.; Gutowski, William J.

    2018-03-01

    Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. The tropopause height provides a compact representation of the upper-tropospheric potential vorticity, which is closely related to the overall evolution and intensity of weather systems. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into the overall context of patterns for all days. Six tropopause patterns are identified through KMC for extreme day precipitation: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong moisture transport preceding, and upward motion during, extreme precipitation events.

  8. Large-scale laboratory study of breaking wave hydrodynamics over a fixed bar

    Science.gov (United States)

    van der A, Dominic A.; van der Zanden, Joep; O'Donoghue, Tom; Hurther, David; Cáceres, Iván.; McLelland, Stuart J.; Ribberink, Jan S.

    2017-04-01

    A large-scale wave flume experiment has been carried out involving a T = 4 s regular wave with H = 0.85 m wave height plunging over a fixed barred beach profile. Velocity profiles were measured at 12 locations along the breaker bar using LDA and ADV. A strong undertow is generated reaching magnitudes of 0.8 m/s on the shoreward side of the breaker bar. A circulation pattern occurs between the breaking area and the inner surf zone. Time-averaged turbulent kinetic energy (TKE) is largest in the breaking area on the shoreward side of the bar where the plunging jet penetrates the water column. At this location, and on the bar crest, TKE generated at the water surface in the breaking process reaches the bottom boundary layer. In the breaking area, TKE does not reduce to zero within a wave cycle which leads to a high level of "residual" turbulence and therefore lower temporal variation in TKE compared to previous studies of breaking waves on plane beach slopes. It is argued that this residual turbulence results from the breaker bar-trough geometry, which enables larger length scales and time scales of breaking-generated vortices and which enhances turbulence production within the water column compared to plane beaches. Transport of TKE is dominated by the undertow-related flux, whereas the wave-related and turbulent fluxes are approximately an order of magnitude smaller. Turbulence production and dissipation are largest in the breaker zone and of similar magnitude, but in the shoaling zone and inner surf zone production is negligible and dissipation dominates.

  9. Correction of Excessive Precipitation over Steep Mountains in a General Circulation Model (GCM)

    Science.gov (United States)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and regional climate models even at a resolution as high as 19km. The affected regions include the Andes, the Himalayas, Sierra Madre, New Guinea and others. This problem also shows up in some data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime subgrid-scale upslope winds, which in turn is forced by heated boundary layer on the slopes. These upslope winds are associated with large subgrid-scale topographic variance, which is found over steep mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow in the boundary layer combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to excessive precipitation over the affected regions. We have parameterized the effects of subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-5 GCM have shown that the EPSM problem is largely solved.

  10. Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2014-05-01

    The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.

  11. Storm-tracks interannual variability and large-scale climate modes

    Science.gov (United States)

    Liberato, Margarida L. R.; Trigo, Isabel F.; Trigo, Ricardo M.

    2013-04-01

    In this study we focus on the interannual variability and observed changes in northern hemisphere mid-latitude storm-tracks and relate them to large scale atmospheric circulation variability modes. Extratropical storminess, cyclones dominant paths, frequency and intensity have long been the object of climatological studies. The analysis of storm characteristics and historical trends presented here is based on the cyclone detecting and tracking algorithm first developed for the Mediterranean region (Trigo et al. 1999) and recently extended to a larger Euro-Atlantic region (Trigo 2006). The objective methodology, which identifies and follows individual lows as minima in SLP fields, fulfilling a set of conditions regarding the central pressure and the pressure gradient, is applied to the northern hemisphere 6-hourly geopotential data at 1000 hPa from the 20th Century Reanalyses (20CRv2) project and from reanalyses datasets provided by the European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-40 and ERA Interim reanalyses. First, we assess the interannual variability and cyclone frequency trends for each of the datasets, for the 20th century and for the period between 1958 and 2002 using the highest spatial resolution available (1.125° x 1.125°) from the ERA-40 data. Results show that winter variability of storm paths, cyclone frequency and travel times is in agreement with the reported variability in a number of large-scale climate patterns (including the North Atlantic Oscillation, the East Atlantic Pattern and the Scandinavian Pattern). In addition, three storm-track databases are built spanning the common available extended winter seasons from October 1979 to March 2002. Although relatively short, this common period allows a comparison of systems represented in reanalyses datasets with distinct horizontal resolutions. This exercise is mostly focused on the key areas of cyclogenesis and cyclolysis and main cyclone characteristics over the northern

  12. Agriculture production as a major driver of the Earth system exceeding planetary boundaries

    Directory of Open Access Journals (Sweden)

    Bruce M. Campbell

    2017-12-01

    Full Text Available We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or "safe limits": land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone depletion, atmospheric aerosol loading, and introduction of novel entities. Two planetary boundaries have been fully transgressed, i.e., are at high risk, biosphere integrity and biogeochemical flows, and agriculture has been the major driver of the transgression. Three are in a zone of uncertainty i.e., at increasing risk, with agriculture the major driver of two of those, land-system change and freshwater use, and a significant contributor to the third, climate change. Agriculture is also a significant or major contributor to change for many of those planetary boundaries still in the safe zone. To reduce the role of agriculture in transgressing planetary boundaries, many interventions will be needed, including those in broader food systems.

  13. Geospatial Optimization of Siting Large-Scale Solar Projects

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Quinby, Ted [National Renewable Energy Lab. (NREL), Golden, CO (United States); Caulfield, Emmet [Stanford Univ., CA (United States); Gerritsen, Margot [Stanford Univ., CA (United States); Diffendorfer, Jay [U.S. Geological Survey, Boulder, CO (United States); Haines, Seth [U.S. Geological Survey, Boulder, CO (United States)

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  14. Large-scale Agricultural Land Acquisitions in West Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will examine large-scale agricultural land acquisitions in nine West African countries -Burkina Faso, Guinea-Bissau, Guinea, Benin, Mali, Togo, Senegal, Niger, and Côte d'Ivoire. ... They will use the results to increase public awareness and knowledge about the consequences of large-scale land acquisitions.

  15. Large-scale motions in the universe: a review

    International Nuclear Information System (INIS)

    Burstein, D.

    1990-01-01

    The expansion of the universe can be retarded in localised regions within the universe both by the presence of gravity and by non-gravitational motions generated in the post-recombination universe. The motions of galaxies thus generated are called 'peculiar motions', and the amplitudes, size scales and coherence of these peculiar motions are among the most direct records of the structure of the universe. As such, measurements of these properties of the present-day universe provide some of the severest tests of cosmological theories. This is a review of the current evidence for large-scale motions of galaxies out to a distance of ∼5000 km s -1 (in an expanding universe, distance is proportional to radial velocity). 'Large-scale' in this context refers to motions that are correlated over size scales larger than the typical sizes of groups of galaxies, up to and including the size of the volume surveyed. To orient the reader into this relatively new field of study, a short modern history is given together with an explanation of the terminology. Careful consideration is given to the data used to measure the distances, and hence the peculiar motions, of galaxies. The evidence for large-scale motions is presented in a graphical fashion, using only the most reliable data for galaxies spanning a wide range in optical properties and over the complete range of galactic environments. The kinds of systematic errors that can affect this analysis are discussed, and the reliability of these motions is assessed. The predictions of two models of large-scale motion are compared to the observations, and special emphasis is placed on those motions in which our own Galaxy directly partakes. (author)

  16. State of the Art in Large-Scale Soil Moisture Monitoring

    Science.gov (United States)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  17. The planetary water drama: Dual task of feeding humanity and curbing climate change

    Science.gov (United States)

    Rockström, J.; Falkenmark, M.; Lannerstad, M.; Karlberg, L.

    2012-08-01

    This paper analyses the potential conflict between resilience of the Earth system and global freshwater requirements for the dual task of carbon sequestration to reduce CO2 in the atmosphere, and food production to feed humanity by 2050. It makes an attempt to assess the order of magnitude of the increased consumptive water use involved and analyses the implications as seen from two parallel perspectives; the global perspective of human development within a “safe operating space” with regard to the definition of the Planetary Boundary for freshwater; and the social-ecological implications at the regional river basin scale in terms of sharpening water shortages and threats to aquatic ecosystems. The paper shows that the consumptive water use involved in the dual task would both transgress the proposed planetary boundary range for global consumptive freshwater use and would further exacerbate already severe river depletion, causing societal problems related to water shortage and water allocation. Thus, strategies to rely on sequestration of CO2 as a mitigation strategy must recognize the high freshwater costs involved, implying that the key climate mitigation strategy must be to reduce emissions. The paper finally highlights the need to analyze both water and carbon tradeoffs from anticipated large scale biofuel production climate change mitigation strategy, to reveal gains and impact of this in contrast to carbon sequestration strategies.

  18. The Strength Analysis of Differential Planetary Gears of Gearbox for Concrete Mixer Truck

    Science.gov (United States)

    Bae, M. H.; Bae, T. Y.; Kim, D. J.

    2018-03-01

    The power train of mixer gearbox for concrete mixer truck includes differential planetary gears to get large reduction ratio for operating mixer a drum and simple structure. The planetary gears are very important part of a mixer gearbox where strength problems namely gear bending stress, gear compressive stress and scoring failure are the main concern. In the present study, calculating specifications of the differential planetary gears and analyzing the gear bending and compressive stresses as well as scoring factor of the differential planetary gears gearbox for an optimal design of the mixer gearbox in respect to cost and reliability are investigated. The analyses of actual gear bending and compressive stresses of the differential planetary gears using Lewes & Hertz equation and verifications of the calculated specifications of the differential planetary gears evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears. In addition, we also analyze actual gear scoring factor as well as evaluate the possibility of scoring failure of the differential planetary gear.

  19. A route to explosive large-scale magnetic reconnection in a super-ion-scale current sheet

    Directory of Open Access Journals (Sweden)

    K. G. Tanaka

    2009-01-01

    Full Text Available How to trigger magnetic reconnection is one of the most interesting and important problems in space plasma physics. Recently, electron temperature anisotropy (αeo=Te⊥/Te|| at the center of a current sheet and non-local effect of the lower-hybrid drift instability (LHDI that develops at the current sheet edges have attracted attention in this context. In addition to these effects, here we also study the effects of ion temperature anisotropy (αio=Ti⊥/Ti||. Electron anisotropy effects are known to be helpless in a current sheet whose thickness is of ion-scale. In this range of current sheet thickness, the LHDI effects are shown to weaken substantially with a small increase in thickness and the obtained saturation level is too low for a large-scale reconnection to be achieved. Then we investigate whether introduction of electron and ion temperature anisotropies in the initial stage would couple with the LHDI effects to revive quick triggering of large-scale reconnection in a super-ion-scale current sheet. The results are as follows. (1 The initial electron temperature anisotropy is consumed very quickly when a number of minuscule magnetic islands (each lateral length is 1.5~3 times the ion inertial length form. These minuscule islands do not coalesce into a large-scale island to enable large-scale reconnection. (2 The subsequent LHDI effects disturb the current sheet filled with the small islands. This makes the triggering time scale to be accelerated substantially but does not enhance the saturation level of reconnected flux. (3 When the ion temperature anisotropy is added, it survives through the small island formation stage and makes even quicker triggering to happen when the LHDI effects set-in. Furthermore the saturation level is seen to be elevated by a factor of ~2 and large-scale reconnection is achieved only in this case. Comparison with two-dimensional simulations that exclude the LHDI effects confirms that the saturation level

  20. Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications

    Science.gov (United States)

    Maskey, M.; Ramachandran, R.; Miller, J.

    2017-12-01

    Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.

  1. Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for Modern Human dispersal.

    Science.gov (United States)

    Obreht, Igor; Hambach, Ulrich; Veres, Daniel; Zeeden, Christian; Bösken, Janina; Stevens, Thomas; Marković, Slobodan B; Klasen, Nicole; Brill, Dominik; Burow, Christoph; Lehmkuhl, Frank

    2017-07-19

    Understanding the past dynamics of large-scale atmospheric systems is crucial for our knowledge of the palaeoclimate conditions in Europe. Southeastern Europe currently lies at the border between Atlantic, Mediterranean, and continental climate zones. Past changes in the relative influence of associated atmospheric systems must have been recorded in the region's palaeoarchives. By comparing high-resolution grain-size, environmental magnetic and geochemical data from two loess-palaeosol sequences in the Lower Danube Basin with other Eurasian palaeorecords, we reconstructed past climatic patterns over Southeastern Europe and the related interaction of the prevailing large-scale circulation modes over Europe, especially during late Marine Isotope Stage 3 (40,000-27,000 years ago). We demonstrate that during this time interval, the intensification of the Siberian High had a crucial influence on European climate causing the more continental conditions over major parts of Europe, and a southwards shift of the Westerlies. Such a climatic and environmental change, combined with the Campanian Ignimbrite/Y-5 volcanic eruption, may have driven the Anatomically Modern Human dispersal towards Central and Western Europe, pointing to a corridor over the Eastern European Plain as an important pathway in their dispersal.

  2. A Cross-Scale Model for 3D Baroclinic Circulation in Estuary-Plume-Shelf Systems. 2. Application to the Columbia River

    National Research Council Canada - National Science Library

    Baptista, Antonio M; Zhang, Yinglong; Chawla, Arun; Zulauf, Mike; Seaton, Charles; Myers, III, Edward P; Kindle, John; Wilkin, Michael; Burla, Michaela; Turner, Paul J

    2005-01-01

    This article is the second of a two-part paper on ELCIRC, an Eulerian-Lagrangian finite difference/finite volume model designed to simulate 3D baroclinic circulation across river-to-ocean scales. In part one (Zhang et al., 2004...

  3. 3He Abundances in Planetary Nebulae

    Science.gov (United States)

    Guzman-Ramirez, Lizette

    2017-10-01

    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  4. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection

    Energy Technology Data Exchange (ETDEWEB)

    Hourdin, Frederic; Musat, Ionela; Bony, Sandrine; Codron, Francis; Dufresne, Jean-Louis; Fairhead, Laurent; Grandpeix, Jean-Yves; LeVan, Phu; Li, Zhao-Xin; Lott, Francois [CNRS/UPMC, Laboratoire de Meteorologie Dynamique (LMD/IPSL), Paris Cedex 05 (France); Braconnot, Pascale; Friedlingstein, Pierre [Laboratoire des Sciences du Climat et de l' Environnement (LSCE/IPSL), Saclay (France); Filiberti, Marie-Angele [Institut Pierre Simon Laplace (IPSL), Paris (France); Krinner, Gerhard [Laboratoire de Glaciologie et Geophysique de l' Environnement, Grenoble (France)

    2006-12-15

    The LMDZ4 general circulation model is the atmospheric component of the IPSL-CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley-Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke's convection scheme, used in previous versions, the Emanuel's scheme improves the representation of the Hadley-Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke's parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model. (orig.)

  5. Large-scale structure observables in general relativity

    International Nuclear Information System (INIS)

    Jeong, Donghui; Schmidt, Fabian

    2015-01-01

    We review recent studies that rigorously define several key observables of the large-scale structure of the Universe in a general relativistic context. Specifically, we consider (i) redshift perturbation of cosmic clock events; (ii) distortion of cosmic rulers, including weak lensing shear and magnification; and (iii) observed number density of tracers of the large-scale structure. We provide covariant and gauge-invariant expressions of these observables. Our expressions are given for a linearly perturbed flat Friedmann–Robertson–Walker metric including scalar, vector, and tensor metric perturbations. While we restrict ourselves to linear order in perturbation theory, the approach can be straightforwardly generalized to higher order. (paper)

  6. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  7. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  8. Aberrant methylation of cell-free circulating DNA in plasma predicts poor outcome in diffuse large B cell lymphoma

    DEFF Research Database (Denmark)

    Sommer Kristensen, Lasse; Hansen, Jakob Werner; Kristensen, Søren Sommer

    2016-01-01

    BACKGROUND: The prognostic value of aberrant DNA methylation of cell-free circulating DNA in plasma has not previously been evaluated in diffuse large B cell lymphoma (DLBCL). The aim of this study was to investigate if aberrant promoter DNA methylation can be detected in plasma from DLBCL patients...

  9. Atmospheric HT and HTO: V. distribution and large-scale circulation

    International Nuclear Information System (INIS)

    Mason, A.S.; Oestlund, H.G.

    1979-01-01

    The two major chemical forms of atmospheric tritium are water vapour (HTO) and hydrogen gas (HT). These forms have quite different sources, distributions and sinks. The chemical conversion from HT to HTO in the atmosphere proceeds with a characteristic time of 6.5 years. Combined with the radioactive decay, a net lifetime of 4.8 years is estimated for atmospheric HT. HT is released predominately at the surface in mid- to high latitudes in the northern hemisphere. A negative gradient southward has been found from aircraft transects and from sampling at surface stations. After many years of a relatively constant global inventory of 1.1 kg of tritium gas, the HT mixing ratios decreased during 1977, with the sharpest drop at high latitudes. The estimated decline in annual production was 100 g. At the end of 1977, the atmospheric HT burden was 1.0 kg, and the estimated annual release was 200 g. An unknown portion is present as T 2 gas. The effect of T 2 is to decrease the net lifetime to 3.7 years. In the troposphere, the cycle of HTO has been treated exhaustively by others. The stratospheric distribution of HTO has been sampled from aircraft, and found to increase rapidly with height above the troposphere. An annual cycle has been observed, in which the lower stratosphere is depleted during the spring, and replenished by subsidence from higher levels during summer and fall. The effects of a nuclear test by the People's Republic of China in November 1976 have been clearly observed in the stratospheric HTO; however, no HT deposition was found. Presumably, the HTO at higher levels was originally deposited by the large nuclear weapons tests of the 1960s. An estimated 5 kg of tritium are now present in the stratosphere below 19 km. (author)

  10. The Hamburg oceanic carbon cycle circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Heinze, C.

    1992-02-01

    The carbon cycle model calculates the prognostic fields of oceanic geochemical carbon cycle tracers making use of a 'frozen' velocity field provided by a run of the LSG oceanic circulation model (see the corresponding manual, LSG=Large Scale Geostrophic). The carbon cycle model includes a crude approximation of interactions between sediment and bottom layer water. A simple (meridionally diffusive) one layer atmosphere model allows to calculate the CO 2 airborne fraction resulting from the oceanic biogeochemical interactions. (orig.)

  11. Adaptation of a general circulation model to ocean dynamics

    Science.gov (United States)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  12. Large-scale numerical simulations of plasmas

    International Nuclear Information System (INIS)

    Hamaguchi, Satoshi

    2004-01-01

    The recent trend of large scales simulations of fusion plasma and processing plasmas is briefly summarized. Many advanced simulation techniques have been developed for fusion plasmas and some of these techniques are now applied to analyses of processing plasmas. (author)

  13. Nearly incompressible fluids: Hydrodynamics and large scale inhomogeneity

    International Nuclear Information System (INIS)

    Hunana, P.; Zank, G. P.; Shaikh, D.

    2006-01-01

    A system of hydrodynamic equations in the presence of large-scale inhomogeneities for a high plasma beta solar wind is derived. The theory is derived under the assumption of low turbulent Mach number and is developed for the flows where the usual incompressible description is not satisfactory and a full compressible treatment is too complex for any analytical studies. When the effects of compressibility are incorporated only weakly, a new description, referred to as 'nearly incompressible hydrodynamics', is obtained. The nearly incompressible theory, was originally applied to homogeneous flows. However, large-scale gradients in density, pressure, temperature, etc., are typical in the solar wind and it was unclear how inhomogeneities would affect the usual incompressible and nearly incompressible descriptions. In the homogeneous case, the lowest order expansion of the fully compressible equations leads to the usual incompressible equations, followed at higher orders by the nearly incompressible equations, as introduced by Zank and Matthaeus. With this work we show that the inclusion of large-scale inhomogeneities (in this case time-independent and radially symmetric background solar wind) modifies the leading-order incompressible description of solar wind flow. We find, for example, that the divergence of velocity fluctuations is nonsolenoidal and that density fluctuations can be described to leading order as a passive scalar. Locally (for small lengthscales), this system of equations converges to the usual incompressible equations and we therefore use the term 'locally incompressible' to describe the equations. This term should be distinguished from the term 'nearly incompressible', which is reserved for higher-order corrections. Furthermore, we find that density fluctuations scale with Mach number linearly, in contrast to the original homogeneous nearly incompressible theory, in which density fluctuations scale with the square of Mach number. Inhomogeneous nearly

  14. Performance Health Monitoring of Large-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajamony, Ram [IBM Research, Austin, TX (United States)

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  15. Responses of the Tropical Atmospheric Circulation to Climate Change and Connection to the Hydrological Cycle

    Science.gov (United States)

    Ma, Jian; Chadwick, Robin; Seo, Kyong-Hwan; Dong, Changming; Huang, Gang; Foltz, Gregory R.; Jiang, Jonathan H.

    2018-05-01

    This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.

  16. Fisher Grading Scale Associated with Language Disorders in Patients with Anterior Circulation Aneurysmal Subarachnoid Hemorrhage.

    Science.gov (United States)

    de Souza, Moysés Loiola Ponte; Vieira, Ana Cláudia C; Andrade, Gustavo; Quinino, Saul; de Fátima Leal Griz, Maria; Azevedo-Filho, Hildo R C

    2015-08-01

    To associate the presence of language deficits with varying scores of the Fisher grading scale in patients with subarachnoid hemorrhage in the period preceding the treatment of aneurysm in the anterior circulation, as well as to compare the scores of this scale, identifying the grades more associated with the decline of language. Database analysis of 185 preoperative evaluations of language, through the Montreal Toulouse Protocol Alpha version and verbal fluency through CERAD battery, of patients from "Hospital da Restauração" with aneurysmal subarachnoid hemorrhage, divided according to the Fisher grading scale (Fisher I, II, III, or IV) and compared with a control group of individuals considered normal. The various scores of the Fisher grading scale have different levels of language deficits, more pronounced as the amount of blood increases. Fisher III and IV scores are most associated with the decline of language. Our study made it possible to obtain information not yet available in the literature, by correlating the various scores of the Fisher grading scale with language yet in the period preceding treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Atmospheric Rivers across Multi-scales of the Hydrologic cycle

    Science.gov (United States)

    Hu, H.

    2017-12-01

    Atmospheric Rivers (ARs) are defined as filamentary structures with strong water vapor transport in the atmosphere, moving as much water as is discharged by the Amazon River. As a large-scale phenomenon, ARs are embedded in the planetary-scale Rossby waves and account for the majority of poleward moisture transport in the midlatitudes. On the other hand, AR is the fundamental physical mechanism leading to extreme basin-scale precipitation and flooding over the U.S. West Coast in the winter season. The moisture transported by ARs is forced to rise and generate precipitation when it impinges on the mountainous coastal lands. My goal is to build the connection between the multi-scale features associated with ARs with their impacts on local hydrology, with particular focus on the U.S. West Coast. Moving across the different scales I have: (1) examined the planetary-scale dynamics in the upper-troposphere, and established a robust relationship between the two regimes of Rossby wave breaking and AR-precipitation and streamflow along the West Coast; (2) quantified the contribution from the tropics/subtropics to AR-related precipitation intensity and found a significant modulation from the large-scale thermodynamics; (3) developed a water tracer tool in a land surface model to track the lifecycle of the water collected from AR precipitation over the terrestrial system, so that the role of catchment-scale factors in modulating ARs' hydrological consequences could be examined. Ultimately, the information gather from these studies will indicate how the dynamic and thermodynamic changes as a response to climate change could affect the local flooding and water resource, which would be helpful in decision making.

  18. Planetary Defense

    Science.gov (United States)

    2016-05-01

    4 Abstract Planetary defense against asteroids should be a major concern for every government in the world . Millions of asteroids and...helps make Planetary Defense viable because defending the Earth against asteroids benefits from all the above technologies. So if our planet security...information about their physical characteristics so we can employ the right strategies. It is a crucial difference if asteroids are made up of metal

  19. Learning from large scale neural simulations

    DEFF Research Database (Denmark)

    Serban, Maria

    2017-01-01

    Large-scale neural simulations have the marks of a distinct methodology which can be fruitfully deployed to advance scientific understanding of the human brain. Computer simulation studies can be used to produce surrogate observational data for better conceptual models and new how...

  20. Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing

    KAUST Repository

    Kumar, Abhishek; Verma, Mahendra K.; Sukhatme, Jai

    2017-01-01

    In this paper, we characterise the scaling of energy spectra, and the interscale transfer of energy and enstrophy, for strongly, moderately and weakly stably stratified two-dimensional (2D) turbulence, restricted in a vertical plane, under large-scale random forcing. In the strongly stratified case, a large-scale vertically sheared horizontal flow (VSHF) coexists with small scale turbulence. The VSHF consists of internal gravity waves and the turbulent flow has a kinetic energy (KE) spectrum that follows an approximate k−3 scaling with zero KE flux and a robust positive enstrophy flux. The spectrum of the turbulent potential energy (PE) also approximately follows a k−3 power-law and its flux is directed to small scales. For moderate stratification, there is no VSHF and the KE of the turbulent flow exhibits Bolgiano–Obukhov scaling that transitions from a shallow k−11/5 form at large scales, to a steeper approximate k−3 scaling at small scales. The entire range of scales shows a strong forward enstrophy flux, and interestingly, large (small) scales show an inverse (forward) KE flux. The PE flux in this regime is directed to small scales, and the PE spectrum is characterised by an approximate k−1.64 scaling. Finally, for weak stratification, KE is transferred upscale and its spectrum closely follows a k−2.5 scaling, while PE exhibits a forward transfer and its spectrum shows an approximate k−1.6 power-law. For all stratification strengths, the total energy always flows from large to small scales and almost all the spectral indicies are well explained by accounting for the scale-dependent nature of the corresponding flux.

  1. Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing

    KAUST Repository

    Kumar, Abhishek

    2017-01-11

    In this paper, we characterise the scaling of energy spectra, and the interscale transfer of energy and enstrophy, for strongly, moderately and weakly stably stratified two-dimensional (2D) turbulence, restricted in a vertical plane, under large-scale random forcing. In the strongly stratified case, a large-scale vertically sheared horizontal flow (VSHF) coexists with small scale turbulence. The VSHF consists of internal gravity waves and the turbulent flow has a kinetic energy (KE) spectrum that follows an approximate k−3 scaling with zero KE flux and a robust positive enstrophy flux. The spectrum of the turbulent potential energy (PE) also approximately follows a k−3 power-law and its flux is directed to small scales. For moderate stratification, there is no VSHF and the KE of the turbulent flow exhibits Bolgiano–Obukhov scaling that transitions from a shallow k−11/5 form at large scales, to a steeper approximate k−3 scaling at small scales. The entire range of scales shows a strong forward enstrophy flux, and interestingly, large (small) scales show an inverse (forward) KE flux. The PE flux in this regime is directed to small scales, and the PE spectrum is characterised by an approximate k−1.64 scaling. Finally, for weak stratification, KE is transferred upscale and its spectrum closely follows a k−2.5 scaling, while PE exhibits a forward transfer and its spectrum shows an approximate k−1.6 power-law. For all stratification strengths, the total energy always flows from large to small scales and almost all the spectral indicies are well explained by accounting for the scale-dependent nature of the corresponding flux.

  2. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  3. Updating the planetary time scale: focus on Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Quantin-Nataf, Cathy

    2013-01-01

    Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.

  4. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  5. A blood circulation model for reference man

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, R.W.; Eckerman, K.F. [Oak Ridge National Lab., TN (United States); Williams, L.R. [Indiana Univ., South Bend, IN (United States). Div. of Liberal Arts and Sciences

    1996-12-31

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86.

  6. A blood circulation model for reference man

    International Nuclear Information System (INIS)

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    1996-01-01

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86

  7. Improvement in understanding of natural circulation phenomena in water cooled nuclear power plants

    International Nuclear Information System (INIS)

    Choi, Jong-Ho; Cleveland, John; Aksan, Nusret

    2011-01-01

    Highlights: ► Phenomena influencing natural circulation in passive systems. ► Behaviour in large pools of liquid. ► Effect of non-condensable gas on condensation heat transfer. ► Behaviour of containment emergency systems. ► Natural circulation flow and pressure drop in various geometries. - Abstract: The IAEA has organized a coordinated research project (CRP) on “Natural Circulation Phenomena, Modelling, and Reliability of Passive Systems That Utilize Natural Circulation.” Specific objectives of CRP were to (i) establish the status of knowledge: reactor start-up and operation, passive system initiation and operation, flow stability, 3-D effects, and scaling laws, (ii) investigate phenomena influencing reliability of passive natural circulation systems, (iii) review experimental databases for the phenomena, (iv) examine the ability of computer codes to predict natural circulation and related phenomena, and (v) apply methodologies for examining the reliability of passive systems. Sixteen institutes from 13 IAEA Member States have participated in this CRP. Twenty reference advanced water cooled reactor designs including evolutionary and innovative designs were selected to examine the use of natural circulation and passive systems in their designs. Twelve phenomena influencing natural circulation were identified and characterized: (1) behaviour in large pools of liquid, (2) effect of non-condensable gases on condensation heat transfer, (3) condensation on the containment structures, (4) behaviour of containment emergency systems, (5) thermo-fluid dynamics and pressure drops in various geometrical configurations, (6) natural circulation in closed loop, (7) steam liquid interaction, (8) gravity driven cooling and accumulator behaviour, (9) liquid temperature stratification, (10) behaviour of emergency heat exchangers and isolation condensers, (11) stratification and mixing of boron, and (12) core make-up tank behaviour. This paper summarizes the

  8. Solar planetary systems stardust to terrestrial and extraterrestrial planetary sciences

    CERN Document Server

    Bhattacharya, Asit B

    2017-01-01

    The authors have put forth great efforts in gathering present day knowledge about different objects within our solar system and universe. This book features the most current information on the subject with information acquired from noted scientists in this area. The main objective is to convey the importance of the subject and provide detailed information on the physical makeup of our planetary system and technologies used for research. Information on educational projects has also been included in the Radio Astronomy chapters.This information is a real plus for students and educators considering a career in Planetary Science or for increasing their knowledge about our planetary system

  9. Influence of weathering and pre-existing large scale fractures on gravitational slope failure: insights from 3-D physical modelling

    Directory of Open Access Journals (Sweden)

    D. Bachmann

    2004-01-01

    Full Text Available Using a new 3-D physical modelling technique we investigated the initiation and evolution of large scale landslides in presence of pre-existing large scale fractures and taking into account the slope material weakening due to the alteration/weathering. The modelling technique is based on the specially developed properly scaled analogue materials, as well as on the original vertical accelerator device enabling increases in the 'gravity acceleration' up to a factor 50. The weathering primarily affects the uppermost layers through the water circulation. We simulated the effect of this process by making models of two parts. The shallower one represents the zone subject to homogeneous weathering and is made of low strength material of compressive strength σl. The deeper (core part of the model is stronger and simulates intact rocks. Deformation of such a model subjected to the gravity force occurred only in its upper (low strength layer. In another set of experiments, low strength (σw narrow planar zones sub-parallel to the slope surface (σwl were introduced into the model's superficial low strength layer to simulate localized highly weathered zones. In this configuration landslides were initiated much easier (at lower 'gravity force', were shallower and had smaller horizontal size largely defined by the weak zone size. Pre-existing fractures were introduced into the model by cutting it along a given plan. They have proved to be of small influence on the slope stability, except when they were associated to highly weathered zones. In this latter case the fractures laterally limited the slides. Deep seated rockslides initiation is thus directly defined by the mechanical structure of the hillslope's uppermost levels and especially by the presence of the weak zones due to the weathering. The large scale fractures play a more passive role and can only influence the shape and the volume of the sliding units.

  10. Large-scale preparation of hollow graphitic carbon nanospheres

    International Nuclear Information System (INIS)

    Feng, Jun; Li, Fu; Bai, Yu-Jun; Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning; Lu, Xi-Feng

    2013-01-01

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 °C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g −1 after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 °C, which exhibit superior electrochemical performance to graphite. Highlights: ► Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 °C ► The preparation is simple, effective and eco-friendly. ► The in situ yielded MgO nanocrystals promote the graphitization. ► The HGCNSs exhibit superior electrochemical performance to graphite.

  11. Accelerating large-scale phase-field simulations with GPU

    Directory of Open Access Journals (Sweden)

    Xiaoming Shi

    2017-10-01

    Full Text Available A new package for accelerating large-scale phase-field simulations was developed by using GPU based on the semi-implicit Fourier method. The package can solve a variety of equilibrium equations with different inhomogeneity including long-range elastic, magnetostatic, and electrostatic interactions. Through using specific algorithm in Compute Unified Device Architecture (CUDA, Fourier spectral iterative perturbation method was integrated in GPU package. The Allen-Cahn equation, Cahn-Hilliard equation, and phase-field model with long-range interaction were solved based on the algorithm running on GPU respectively to test the performance of the package. From the comparison of the calculation results between the solver executed in single CPU and the one on GPU, it was found that the speed on GPU is enormously elevated to 50 times faster. The present study therefore contributes to the acceleration of large-scale phase-field simulations and provides guidance for experiments to design large-scale functional devices.

  12. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed

    2017-03-16

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end, cellular networks are indeed a strong first mile candidate to accommodate the data tsunami to be generated by the IoT. However, IoT devices are required in the cellular paradigm to undergo random access procedures as a precursor to resource allocation. Such procedures impose a major bottleneck that hinders cellular networks\\' ability to support large-scale IoT. In this article, we shed light on the random access dilemma and present a case study based on experimental data as well as system-level simulations. Accordingly, a case is built for the latent need to revisit random access procedures. A call for action is motivated by listing a few potential remedies and recommendations.

  13. Reverse primary-side flow in steam generators during natural circulation cooling

    International Nuclear Information System (INIS)

    Stumpf, H.; Motley, F.; Schultz, R.; Chapman, J.; Kukita, Y.

    1987-01-01

    A TRAC model of the Large Scale Test Facility with a 3-tube steam-generator model was used to analyze natural-circulation test ST-NC-02. For the steady state at 100% primary mass inventory, TRAC was in excellent agreement with the natural-circulation flow rate, the temperature distribution in the steam-generator tubes, and the temperature drop from the hot leg to the steam-generator inlet plenum. TRAC also predicted reverse flow in the long tubes. At reduced primary mass inventories, TRAC predicted the three natural-circulation flow regimes: single phase, two phase, and reflux condensation. TRAC did not predict the cyclic fill-and-dump phenomenon seen briefly in the test. TRAC overpredicted the two-phase natural-circulation flow rate. Since the core is well cooled at this time, the result is conservative. An important result of the analysis is that TRAC was able to predict the core dryout and heatup at approximately the same primary mass inventory as in the test. 4 refs., 8 figs., 2 tabs

  14. Large-scale overview of the summer monsoon over West Africa during the AMMA field experiment in 2006

    Directory of Open Access Journals (Sweden)

    S. Janicot

    2008-09-01

    Full Text Available The AMMA (African Monsoon Multidisciplinary Analysis program is dedicated to providing a better understanding of the West African monsoon and its influence on the physical, chemical and biological environment regionally and globally, as well as relating variability of this monsoon system to issues of health, water resources, food security and demography for West African nations. Within this framework, an intensive field campaign took place during the summer of 2006 to better document specific processes and weather systems at various key stages of this monsoon season. This campaign was embedded within a longer observation period that documented the annual cycle of surface and atmospheric conditions between 2005 and 2007. The present paper provides a large and regional scale overview of the 2006 summer monsoon season, that includes consideration of of the convective activity, mean atmospheric circulation and synoptic/intraseasonal weather systems, oceanic and land surface conditions, continental hydrology, dust concentration and ozone distribution. The 2006 African summer monsoon was a near-normal rainy season except for a large-scale rainfall excess north of 15° N. This monsoon season was also characterized by a 10-day delayed onset compared to climatology, with convection becoming developed only after 10 July. This onset delay impacted the continental hydrology, soil moisture and vegetation dynamics as well as dust emission. More details of some less-well-known atmospheric features in the African monsoon at intraseasonal and synoptic scales are provided in order to promote future research in these areas.

  15. Exploring the planetary boundary for chemical pollution.

    Science.gov (United States)

    Diamond, Miriam L; de Wit, Cynthia A; Molander, Sverker; Scheringer, Martin; Backhaus, Thomas; Lohmann, Rainer; Arvidsson, Rickard; Bergman, Åke; Hauschild, Michael; Holoubek, Ivan; Persson, Linn; Suzuki, Noriyuki; Vighi, Marco; Zetzsch, Cornelius

    2015-05-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social

  16. Annual review of earth and planetary sciences. Volume 16

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Albee, A.L.; Stehli, F.G.

    1988-01-01

    Various papers on earth and planetary science topics are presented. The subjects addressed include: role and status of earth science field work; phase relations of prealuminous granitic rocks and their petrogenetic implications; chondritic meteorites and the solar nebula; volcanic winters; mass wasting on continental margins; earthquake ground motions; ore deposits as guides to geologic history of the earth; geology of high-level nuclear waste disposal; and tectonic evolution of the Caribbean. Also discussed are: the earth's rotation; the geophysics of a restless caldera (Long Valley, California); observations of cometary nuclei; geology of Venus; seismic stratigraphy; in situ-produced cosmogenic isotopes in terrestrial rocks; time variations of the earth's magnetic field; deep slabs, geochemical heterogeneity, and the large-scale structure of mantle convection; early proterozoic assembly and growth of Laurentia; concepts and methods of high-resolution event stratigraphy

  17. Thermal power generation projects ``Large Scale Solar Heating``; EU-Thermie-Projekte ``Large Scale Solar Heating``

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, R.; Fisch, M.N. [Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik, Stuttgart (Germany)

    1998-12-31

    The aim of this project is the preparation of the ``Large-Scale Solar Heating`` programme for an Europe-wide development of subject technology. The following demonstration programme was judged well by the experts but was not immediately (1996) accepted for financial subsidies. In November 1997 the EU-commission provided 1,5 million ECU which allowed the realisation of an updated project proposal. By mid 1997 a small project was approved, that had been requested under the lead of Chalmes Industriteteknik (CIT) in Sweden and is mainly carried out for the transfer of technology. (orig.) [Deutsch] Ziel dieses Vorhabens ist die Vorbereitung eines Schwerpunktprogramms `Large Scale Solar Heating`, mit dem die Technologie europaweit weiterentwickelt werden sollte. Das daraus entwickelte Demonstrationsprogramm wurde von den Gutachtern positiv bewertet, konnte jedoch nicht auf Anhieb (1996) in die Foerderung aufgenommen werden. Im November 1997 wurden von der EU-Kommission dann kurzfristig noch 1,5 Mio ECU an Foerderung bewilligt, mit denen ein aktualisierter Projektvorschlag realisiert werden kann. Bereits Mitte 1997 wurde ein kleineres Vorhaben bewilligt, das unter Federfuehrung von Chalmers Industriteknik (CIT) in Schweden beantragt worden war und das vor allem dem Technologietransfer dient. (orig.)

  18. The dynamical core of the Aeolus 1.0 statistical-dynamical atmosphere model: validation and parameter optimization

    Science.gov (United States)

    Totz, Sonja; Eliseev, Alexey V.; Petri, Stefan; Flechsig, Michael; Caesar, Levke; Petoukhov, Vladimir; Coumou, Dim

    2018-02-01

    We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical-dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies.Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0.We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983-2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño-Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function.With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation.The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower

  19. Large-scale retrieval for medical image analytics: A comprehensive review.

    Science.gov (United States)

    Li, Zhongyu; Zhang, Xiaofan; Müller, Henning; Zhang, Shaoting

    2018-01-01

    Over the past decades, medical image analytics was greatly facilitated by the explosion of digital imaging techniques, where huge amounts of medical images were produced with ever-increasing quality and diversity. However, conventional methods for analyzing medical images have achieved limited success, as they are not capable to tackle the huge amount of image data. In this paper, we review state-of-the-art approaches for large-scale medical image analysis, which are mainly based on recent advances in computer vision, machine learning and information retrieval. Specifically, we first present the general pipeline of large-scale retrieval, summarize the challenges/opportunities of medical image analytics on a large-scale. Then, we provide a comprehensive review of algorithms and techniques relevant to major processes in the pipeline, including feature representation, feature indexing, searching, etc. On the basis of existing work, we introduce the evaluation protocols and multiple applications of large-scale medical image retrieval, with a variety of exploratory and diagnostic scenarios. Finally, we discuss future directions of large-scale retrieval, which can further improve the performance of medical image analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Exploring the planetary boundary for chemical pollution

    DEFF Research Database (Denmark)

    Diamond, Miriam L.; de Wit, Cynthia A.; Molander, Sverker

    2015-01-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience...... of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales......, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient...

  1. West Florida shelf circulation and temperature budget for the 1998 fall transition

    Science.gov (United States)

    He, Ruoying; Weisberg, Robert H.

    2003-05-01

    Mid-latitude continental shelves undergo a fall transition as the net heat flux changes from warming to cooling. Using in situ data and a numerical model we investigate the circulation on the west Florida shelf (WFS) for the fall transition of 1998. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind, air pressure, and heat flux fields, plus river inflows. After comparison with observations the model is used to draw inferences on the seasonal and synoptic scale features of the shelf circulation. By running twin experiments, one without and the other with an idealized Loop Current (LC), we explore the relative importance of local versus deep-ocean forcing. We find that local forcing largely controls the inner-shelf circulation, including changes from the Florida Panhandle in the north to regions farther south. The effects of the LC in fall 1998 are to reinforce the mid-shelf currents and to increase the across-shelf transports in the bottom Ekman layer, thereby accentuating the shoreward transport of cold, nutrient rich water of deep-ocean origin. A three-dimensional analysis of the temperature budget reveals that surface heat flux largely controls both the seasonal and synoptic scale temperature variations. Surface cooling leads to convective mixing that rapidly alters temperature gradients. One interesting consequence is that upwelling can result in near-shore warming as warmer offshore waters are advected landward. The temperature balances on the shelf are complex and fully three-dimensional.

  2. Photorealistic large-scale urban city model reconstruction.

    Science.gov (United States)

    Poullis, Charalambos; You, Suya

    2009-01-01

    The rapid and efficient creation of virtual environments has become a crucial part of virtual reality applications. In particular, civil and defense applications often require and employ detailed models of operations areas for training, simulations of different scenarios, planning for natural or man-made events, monitoring, surveillance, games, and films. A realistic representation of the large-scale environments is therefore imperative for the success of such applications since it increases the immersive experience of its users and helps reduce the difference between physical and virtual reality. However, the task of creating such large-scale virtual environments still remains a time-consuming and manual work. In this work, we propose a novel method for the rapid reconstruction of photorealistic large-scale virtual environments. First, a novel, extendible, parameterized geometric primitive is presented for the automatic building identification and reconstruction of building structures. In addition, buildings with complex roofs containing complex linear and nonlinear surfaces are reconstructed interactively using a linear polygonal and a nonlinear primitive, respectively. Second, we present a rendering pipeline for the composition of photorealistic textures, which unlike existing techniques, can recover missing or occluded texture information by integrating multiple information captured from different optical sensors (ground, aerial, and satellite).

  3. Effect of rotation on fingering convection in stellar and planetary interiors

    Science.gov (United States)

    Sengupta, Sutirtha; Garaud, Pascale

    2018-01-01

    We study the effects of global rotation on the growth and saturation of the fingering (double-diffusive) instability at low Prandtl numbers and estimate the compositional transport rates as a function of the relevant non-dimensional parameters - the Taylor number, Ta^* (defined in terms of the rotation rate, Ω, thermal diffusivity κ_T and associated finger length scale d) and density ratio through direct numerical simulations. Within our explored range of parameters, we find rotation to have very little effect on vertical transport apart for an exceptional case where a cyclonic large scale vortex (LSV) is observed at low density ratio and fairly high Taylor number. The LSV leads to significant enhancement in the fingering transport rates by concentrating high composition fluid at its core which moves downward. The formation of such LSVs is of particular interest for solving the missing mixing problem in the astrophysical context of RGB stars though the parameter regime in which we observe the emergence of this LSV seems to be quite far from the stellar scenario. However, understanding the basic mechanism driving such large scale structures as observed frequently in polar regions of planets (e.g. those seen by Juno near the poles of Jupiter) is important in general for studies of rotating turbulence and its applications to stellar and planetary interior studies, and will be investigated in further detail in a forthcoming work.

  4. The ScaLIng Macroweather Model (SLIMM): using scaling to forecast global-scale macroweather from months to decades

    Science.gov (United States)

    Lovejoy, S.; del Rio Amador, L.; Hébert, R.

    2015-09-01

    On scales of ≈ 10 days (the lifetime of planetary-scale structures), there is a drastic transition from high-frequency weather to low-frequency macroweather. This scale is close to the predictability limits of deterministic atmospheric models; thus, in GCM (general circulation model) macroweather forecasts, the weather is a high-frequency noise. However, neither the GCM noise nor the GCM climate is fully realistic. In this paper we show how simple stochastic models can be developed that use empirical data to force the statistics and climate to be realistic so that even a two-parameter model can perform as well as GCMs for annual global temperature forecasts. The key is to exploit the scaling of the dynamics and the large stochastic memories that we quantify. Since macroweather temporal (but not spatial) intermittency is low, we propose using the simplest model based on fractional Gaussian noise (fGn): the ScaLIng Macroweather Model (SLIMM). SLIMM is based on a stochastic ordinary differential equation, differing from usual linear stochastic models (such as the linear inverse modelling - LIM) in that it is of fractional rather than integer order. Whereas LIM implicitly assumes that there is no low-frequency memory, SLIMM has a huge memory that can be exploited. Although the basic mathematical forecast problem for fGn has been solved, we approach the problem in an original manner, notably using the method of innovations to obtain simpler results on forecast skill and on the size of the effective system memory. A key to successful stochastic forecasts of natural macroweather variability is to first remove the low-frequency anthropogenic component. A previous attempt to use fGn for forecasts had disappointing results because this was not done. We validate our theory using hindcasts of global and Northern Hemisphere temperatures at monthly and annual resolutions. Several nondimensional measures of forecast skill - with no adjustable parameters - show excellent

  5. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  6. G25.5 + 0.2: a very young supernova remnant or a galactic planetary nebula?

    International Nuclear Information System (INIS)

    White, R.L.; Becker, R.H.

    1990-01-01

    G25.5 + 0.2, a radio source suggested by previous authors to be a very young galactic supernova remnant, is more likely to be a planetary nebula. Its IRAS colours and fluxes and its radio spectrum and morphology are all consistent with the properties of planetary nebulae; its radio flux and distance imply a large mass of ionized gas, which is expected from a Type I planetary nebula lying in the galactic plane. We suggest some definitive observations which should be able to determine whether this interesting object is a planetary nebula or a supernova remnant. (author)

  7. The final fate of planetary systems

    Science.gov (United States)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  8. New and misclassified planetary nebulae

    International Nuclear Information System (INIS)

    Kohoutek, L.

    1978-01-01

    Since the 'Catalogue of Galactic Planetary Nebulae' 226 new objects have been classified as planetary nebulae. They are summarized in the form of designations, names, coordinates and the references to the discovery. Further 9 new objects have been added and called 'proto-planetary nebulae', but their status is still uncertain. Only 34 objects have been included in the present list of misclassified planetary nebulae although the number of doubtful cases is much larger. (Auth.)

  9. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  10. Modulation of surface meteorological parameters by extratropical planetary-scale Rossby waves

    Directory of Open Access Journals (Sweden)

    K. Niranjan Kumar

    2016-01-01

    Full Text Available This study examines the link between upper-tropospheric planetary-scale Rossby waves and surface meteorological parameters based on the observations made in association with the Ganges Valley Aerosol Experiment (GVAX campaign at an extratropical site at Aryabhatta Research Institute of Observational Sciences, Nainital (29.45° N, 79.5° E during November–December 2011. The spectral analysis of the tropospheric wind field from radiosonde measurements indicates a predominance power of around 8 days in the upper troposphere during the observational period. An analysis of the 200 hPa meridional wind (v200 hPa anomalies from the Modern-Era Retrospective Analysis for Research and Applications (MERRA reanalysis shows distinct Rossby-wave-like structures over a high-altitude site in the central Himalayan region. Furthermore, the spectral analysis of global v200 hPa anomalies indicates the Rossby waves are characterized by zonal wave number 6. The amplification of the Rossby wave packets over the site leads to persistent subtropical jet stream (STJ patterns, which further affects the surface weather conditions. The propagating Rossby waves in the upper troposphere along with the undulations in the STJ create convergence and divergence regions in the mid-troposphere. Therefore, the surface meteorological parameters such as the relative humidity, wind speeds, and temperature are synchronized with the phase of the propagating Rossby waves. Moreover, the present study finds important implications for medium-range forecasting through the upper-level Rossby waves over the study region.

  11. Large scale dynamics of protoplanetary discs

    Science.gov (United States)

    Béthune, William

    2017-08-01

    Planets form in the gaseous and dusty disks orbiting young stars. These protoplanetary disks are dispersed in a few million years, being accreted onto the central star or evaporated into the interstellar medium. To explain the observed accretion rates, it is commonly assumed that matter is transported through the disk by turbulence, although the mechanism sustaining turbulence is uncertain. On the other side, irradiation by the central star could heat up the disk surface and trigger a photoevaporative wind, but thermal effects cannot account for the observed acceleration and collimation of the wind into a narrow jet perpendicular to the disk plane. Both issues can be solved if the disk is sensitive to magnetic fields. Weak fields lead to the magnetorotational instability, whose outcome is a state of sustained turbulence. Strong fields can slow down the disk, causing it to accrete while launching a collimated wind. However, the coupling between the disk and the neutral gas is done via electric charges, each of which is outnumbered by several billion neutral molecules. The imperfect coupling between the magnetic field and the neutral gas is described in terms of "non-ideal" effects, introducing new dynamical behaviors. This thesis is devoted to the transport processes happening inside weakly ionized and weakly magnetized accretion disks; the role of microphysical effects on the large-scale dynamics of the disk is of primary importance. As a first step, I exclude the wind and examine the impact of non-ideal effects on the turbulent properties near the disk midplane. I show that the flow can spontaneously organize itself if the ionization fraction is low enough; in this case, accretion is halted and the disk exhibits axisymmetric structures, with possible consequences on planetary formation. As a second step, I study the launching of disk winds via a global model of stratified disk embedded in a warm atmosphere. This model is the first to compute non-ideal effects from

  12. Accelerating Relevance Vector Machine for Large-Scale Data on Spark

    Directory of Open Access Journals (Sweden)

    Liu Fang

    2017-01-01

    Full Text Available Relevance vector machine (RVM is a machine learning algorithm based on a sparse Bayesian framework, which performs well when running classification and regression tasks on small-scale datasets. However, RVM also has certain drawbacks which restricts its practical applications such as (1 slow training process, (2 poor performance on training large-scale datasets. In order to solve these problem, we propose Discrete AdaBoost RVM (DAB-RVM which incorporate ensemble learning in RVM at first. This method performs well with large-scale low-dimensional datasets. However, as the number of features increases, the training time of DAB-RVM increases as well. To avoid this phenomenon, we utilize the sufficient training samples of large-scale datasets and propose all features boosting RVM (AFB-RVM, which modifies the way of obtaining weak classifiers. In our experiments we study the differences between various boosting techniques with RVM, demonstrating the performance of the proposed approaches on Spark. As a result of this paper, two proposed approaches on Spark for different types of large-scale datasets are available.

  13. UNSTABLE PLANETARY SYSTEMS EMERGING OUT OF GAS DISKS

    International Nuclear Information System (INIS)

    Matsumura, Soko; Thommes, Edward W.; Chatterjee, Sourav; Rasio, Frederic A.

    2010-01-01

    The discovery of over 400 extrasolar planets allows us to statistically test our understanding of the formation and dynamics of planetary systems via numerical simulations. Traditional N-body simulations of multiple-planet systems without gas disks have successfully reproduced the eccentricity (e) distribution of the observed systems by assuming that the planetary systems are relatively closely packed when the gas disk dissipates, so that they become dynamically unstable within the stellar lifetime. However, such studies cannot explain the small semimajor axes a of extrasolar planetary systems, if planets are formed, as the standard planet formation theory suggests, beyond the ice line. In this paper, we numerically study the evolution of three-planet systems in dissipating gas disks, and constrain the initial conditions that reproduce the observed a and e distributions simultaneously. We adopt initial conditions that are motivated by the standard planet formation theory, and self-consistently simulate the disk evolution and planet migration, by using a hybrid N-body and one-dimensional gas disk code. We also take into account eccentricity damping, and investigate the effect of saturation of corotation resonances on the evolution of planetary systems. We find that the a distribution is largely determined in a gas disk, while the e distribution is determined after the disk dissipation. We also find that there may be an optimum disk mass which leads to the observed a-e distribution. Our simulations generate a larger fraction of planetary systems trapped in mean-motion resonances (MMRs) than the observations, indicating that the disk's perturbation to the planetary orbits may be important to explain the observed rate of MMRs. We also find a much lower occurrence of planets on retrograde orbits than the current observations of close-in planets suggest.

  14. Bayesian hierarchical model for large-scale covariance matrix estimation.

    Science.gov (United States)

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  15. A case study of the intraseasonal oscillation traversing the TOGA-COARE LSD. [large-scale domain

    Science.gov (United States)

    Vincent, Dayton G.; Schrage, Jon M.; Sliwinski, L. D.

    1993-01-01

    The paper presents examination of tree intraseasonal (30-60 day) oscillations (ISOs) that occurred during the southern summer season (December 1, 1985 - February 28, 1986) traversing the Large-Scale Domain (LSD) TOGA-COARE, the region which also plays an important role in ENSO, Australian monsoon, and extratropical circulations. Data presented include Hovmoeller diagrams of 5-day running means of 250-mb velocity potential anomalies and OLR anomalies; graphs of five-day running means of OLR in precipitable water (W) per sq m, averaged over 10 x 10 deg boxes centered on 5 S and (1) 145 E, (2) 155 E, (3) 165 E, and (4) 165 D, indicating the midpoint of each ISO; and vertical profiles of zonal wind in m/s averaged over the time period that each ISO spends in the 10 x 10 deg box centered at 5 S, and 175 E and 145 E.

  16. Creating Large Scale Database Servers

    International Nuclear Information System (INIS)

    Becla, Jacek

    2001-01-01

    The BaBar experiment at the Stanford Linear Accelerator Center (SLAC) is designed to perform a high precision investigation of the decays of the B-meson produced from electron-positron interactions. The experiment, started in May 1999, will generate approximately 300TB/year of data for 10 years. All of the data will reside in Objectivity databases accessible via the Advanced Multi-threaded Server (AMS). To date, over 70TB of data have been placed in Objectivity/DB, making it one of the largest databases in the world. Providing access to such a large quantity of data through a database server is a daunting task. A full-scale testbed environment had to be developed to tune various software parameters and a fundamental change had to occur in the AMS architecture to allow it to scale past several hundred terabytes of data. Additionally, several protocol extensions had to be implemented to provide practical access to large quantities of data. This paper will describe the design of the database and the changes that we needed to make in the AMS for scalability reasons and how the lessons we learned would be applicable to virtually any kind of database server seeking to operate in the Petabyte region

  17. Creating Large Scale Database Servers

    Energy Technology Data Exchange (ETDEWEB)

    Becla, Jacek

    2001-12-14

    The BaBar experiment at the Stanford Linear Accelerator Center (SLAC) is designed to perform a high precision investigation of the decays of the B-meson produced from electron-positron interactions. The experiment, started in May 1999, will generate approximately 300TB/year of data for 10 years. All of the data will reside in Objectivity databases accessible via the Advanced Multi-threaded Server (AMS). To date, over 70TB of data have been placed in Objectivity/DB, making it one of the largest databases in the world. Providing access to such a large quantity of data through a database server is a daunting task. A full-scale testbed environment had to be developed to tune various software parameters and a fundamental change had to occur in the AMS architecture to allow it to scale past several hundred terabytes of data. Additionally, several protocol extensions had to be implemented to provide practical access to large quantities of data. This paper will describe the design of the database and the changes that we needed to make in the AMS for scalability reasons and how the lessons we learned would be applicable to virtually any kind of database server seeking to operate in the Petabyte region.

  18. Large-scale pool fires

    Directory of Open Access Journals (Sweden)

    Steinhaus Thomas

    2007-01-01

    Full Text Available A review of research into the burning behavior of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low source Froude numbers and the radiative interaction with the fire source. In hydrocarbon fires, higher soot levels at increased diameters result in radiation blockage effects around the perimeter of large fire plumes; this yields lower emissive powers and a drastic reduction in the radiative loss fraction; whilst there are simplifying factors with these phenomena, arising from the fact that soot yield can saturate, there are other complications deriving from the intermittency of the behavior, with luminous regions of efficient combustion appearing randomly in the outer surface of the fire according the turbulent fluctuations in the fire plume. Knowledge of the fluid flow instabilities, which lead to the formation of large eddies, is also key to understanding the behavior of large-scale fires. Here modeling tools can be effectively exploited in order to investigate the fluid flow phenomena, including RANS- and LES-based computational fluid dynamics codes. The latter are well-suited to representation of the turbulent motions, but a number of challenges remain with their practical application. Massively-parallel computational resources are likely to be necessary in order to be able to adequately address the complex coupled phenomena to the level of detail that is necessary.

  19. Fine-scale heat flow, shallow heat sources, and decoupled circulation systems at two sea-floor hydrothermal sites, Middle Valley, northern Juan de Fuca Ridge

    Science.gov (United States)

    Stein, J. S.; Fisher, A. T.; Langseth, M.; Jin, W.; Iturrino, G.; Davis, E.

    1998-12-01

    Fine-scale heat-flow patterns at two areas of active venting in Middle Valley, a sedimented rift on the northern Juan de Fuca Ridge, provide thermal evidence of shallow hydrothermal reservoirs beneath the vent fields. The extreme variability of heat flow is explained by conductive heating immediately adjacent to vents and shallow circulation within sediments above the reservoir. This secondary circulation is hydrologically separated from the deeper system feeding the vents by a shallow conductive lid within the sediments. A similar separation of shallow and deep circulation may also occur at sediment-free ridge-crest hydrothermal environments.

  20. Decentralised stabilising controllers for a class of large-scale linear ...

    Indian Academy of Sciences (India)

    subsystems resulting from a new aggregation-decomposition technique. The method has been illustrated through a numerical example of a large-scale linear system consisting of three subsystems each of the fourth order. Keywords. Decentralised stabilisation; large-scale linear systems; optimal feedback control; algebraic ...

  1. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  2. Large Scale Survey Data in Career Development Research

    Science.gov (United States)

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  3. Similitude and scaling of large structural elements: Case study

    Directory of Open Access Journals (Sweden)

    M. Shehadeh

    2015-06-01

    Full Text Available Scaled down models are widely used for experimental investigations of large structures due to the limitation in the capacities of testing facilities along with the expenses of the experimentation. The modeling accuracy depends upon the model material properties, fabrication accuracy and loading techniques. In the present work the Buckingham π theorem is used to develop the relations (i.e. geometry, loading and properties between the model and a large structural element as that is present in the huge existing petroleum oil drilling rigs. The model is to be designed, loaded and treated according to a set of similitude requirements that relate the model to the large structural element. Three independent scale factors which represent three fundamental dimensions, namely mass, length and time need to be selected for designing the scaled down model. Numerical prediction of the stress distribution within the model and its elastic deformation under steady loading is to be made. The results are compared with those obtained from the full scale structure numerical computations. The effect of scaled down model size and material on the accuracy of the modeling technique is thoroughly examined.

  4. Large-scale preparation of hollow graphitic carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jun; Li, Fu [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bai, Yu-Jun, E-mail: byj97@126.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); State Key laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Lu, Xi-Feng [Lunan Institute of Coal Chemical Engineering, Jining 272000 (China)

    2013-01-15

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 Degree-Sign C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g{sup -1} after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 Degree-Sign C, which exhibit superior electrochemical performance to graphite. Highlights: Black-Right-Pointing-Pointer Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 Degree-Sign C Black-Right-Pointing-Pointer The preparation is simple, effective and eco-friendly. Black-Right-Pointing-Pointer The in situ yielded MgO nanocrystals promote the graphitization. Black-Right-Pointing-Pointer The HGCNSs exhibit superior electrochemical performance to graphite.

  5. Optical interconnect for large-scale systems

    Science.gov (United States)

    Dress, William

    2013-02-01

    This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.

  6. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies

    Science.gov (United States)

    Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei

    2015-04-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus

  7. [A large-scale accident in Alpine terrain].

    Science.gov (United States)

    Wildner, M; Paal, P

    2015-02-01

    Due to the geographical conditions, large-scale accidents amounting to mass casualty incidents (MCI) in Alpine terrain regularly present rescue teams with huge challenges. Using an example incident, specific conditions and typical problems associated with such a situation are presented. The first rescue team members to arrive have the elementary tasks of qualified triage and communication to the control room, which is required to dispatch the necessary additional support. Only with a clear "concept", to which all have to adhere, can the subsequent chaos phase be limited. In this respect, a time factor confounded by adverse weather conditions or darkness represents enormous pressure. Additional hazards are frostbite and hypothermia. If priorities can be established in terms of urgency, then treatment and procedure algorithms have proven successful. For evacuation of causalities, a helicopter should be strived for. Due to the low density of hospitals in Alpine regions, it is often necessary to distribute the patients over a wide area. Rescue operations in Alpine terrain have to be performed according to the particular conditions and require rescue teams to have specific knowledge and expertise. The possibility of a large-scale accident should be considered when planning events. With respect to optimization of rescue measures, regular training and exercises are rational, as is the analysis of previous large-scale Alpine accidents.

  8. On the Effect of IMF Turning on Ion Dynamics at Mercury

    Science.gov (United States)

    Delcourt, D. C.; Moore, T. E.; Fok, M.-C. H.

    2011-01-01

    We investigate the effect of a rotation of the Interplanetary Magnetic Field (IMF) on the transport of magnetospheric ion populations at Mercury. We focus on ions of planetary origin and investigate their large-scale circulation using three-dimensional single-particle simulations. We show that a nonzero Bx component of the IMF leads to a pronounced asymmetry in the overall circulation pattern . In particular, we demonstrate that the centrifugal acceleration due to curvature of the E x B drift paths is more pronounced in one hemisphere than the other, leading to filling of the magnetospheric lobes and plasma sheet with more or less energetic material depending upon the hemisphere of origin. Using a time-varying electric and magnetic field model, we investigate the response of ions to rapid (a few tens of seconds) re-orientation of the IMF. We show that, for ions with gyroperiods comparable to the field variation time scale, the inductive electric field should lead to significant nonadiabatic energization, up to several hundreds of eVs or a few keVs. It thus appears that IMP turning at Mercury should lead to localized loading of the magnetosphere with energetic material of planetary origin (e.g., Na+).

  9. Hierarchical Cantor set in the large scale structure with torus geometry

    Energy Technology Data Exchange (ETDEWEB)

    Murdzek, R. [Physics Department, ' Al. I. Cuza' University, Blvd. Carol I, Nr. 11, Iassy 700506 (Romania)], E-mail: rmurdzek@yahoo.com

    2008-12-15

    The formation of large scale structures is considered within a model with string on toroidal space-time. Firstly, the space-time geometry is presented. In this geometry, the Universe is represented by a string describing a torus surface. Thereafter, the large scale structure of the Universe is derived from the string oscillations. The results are in agreement with the cellular structure of the large scale distribution and with the theory of a Cantorian space-time.

  10. Planet gaps in the dust layer of 3D proto-planetary disks: Observability with ALMA

    OpenAIRE

    Gonzalez, Jean-François; Pinte, Christophe; Maddison, Sarah T.; Ménard, François

    2013-01-01

    2 pages, 2 figures, to appear in the Proceedings of IAU Symp. 299: Exploring the Formation and Evolution of Planetary Systems (Victoria, Canada); International audience; Among the numerous known extrasolar planets, only a handful have been imaged directly so far, at large orbital radii and in rather evolved systems. The Atacama Large Millimeter/submillimeter Array (ALMA) will have the capacity to observe these wide planetary systems at a younger age, thus bringing a better understanding of th...

  11. Planetary Atmospheres and Evolution of Complex Life

    Science.gov (United States)

    Catling, D.

    2014-04-01

    Let us define "complex life" as actively mobile organisms exceeding tens of centimeter size scale with specialized, differentiated anatomy comparable to advanced metazoans. Such organisms on any planet will need considerable energy for growth and metabolism, and an atmosphere is likely to play a key role. The history of life on Earth suggests that there were at least two major hurdles to overcome before complex life developed. The first was biological. Large, three-dimensional multicellular animals and plants are made only of eukaryotic cells, which are the only type that can develop into a large, diverse range of cell types unlike the cells of microbes. Exactly how eukaryotes allow 3D multicellularity and how they originated are matters of debate. But the internal structure and bigger and more modular genomes of eukaryotes are important factors. The second obstacle for complex life was having sufficient free, diatomic oxygen (O2). Aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism, so anaerobes don't grow multicellular beyond filaments because of prohibitive growth efficiencies. A precursor to a 2.4 Ga rise of oxygen was the evolution of water-splitting, oxygen-producing photosynthesis. But although the atmosphere became oxidizing at 2.4 Ga, sufficient atmospheric O2 did not occur until about 0.6 Ga. Earth-system factors were involved including planetary outgassing (as affected by size and composition), hydrogen escape, and processing of organic carbon. An atmosphere rich in O2 provides the largest feasible energy source per electron transfer in the Periodic Table, which suggests that O2 would be important for complex life on exoplanets. But plentiful O2 is unusual in a planetary atmosphere because O2 is easily consumed in chemical reactions with reducing gases or surface materials. Even with aerobic metabolism, the partial pressure of O2 (pO2) must exceed 10^3 Pa to allow organisms that rely on

  12. Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop

    Science.gov (United States)

    Evans, N.

    1984-09-01

    Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.

  13. Planetary Data System (PDS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  14. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    Large-scale Motion of Solar Filaments. Pavel Ambrož, Astronomical Institute of the Acad. Sci. of the Czech Republic, CZ-25165. Ondrejov, The Czech Republic. e-mail: pambroz@asu.cas.cz. Alfred Schroll, Kanzelhöehe Solar Observatory of the University of Graz, A-9521 Treffen,. Austria. e-mail: schroll@solobskh.ac.at.

  15. Sensitivity analysis for large-scale problems

    Science.gov (United States)

    Noor, Ahmed K.; Whitworth, Sandra L.

    1987-01-01

    The development of efficient techniques for calculating sensitivity derivatives is studied. The objective is to present a computational procedure for calculating sensitivity derivatives as part of performing structural reanalysis for large-scale problems. The scope is limited to framed type structures. Both linear static analysis and free-vibration eigenvalue problems are considered.

  16. Topology Optimization of Large Scale Stokes Flow Problems

    DEFF Research Database (Denmark)

    Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan

    2008-01-01

    This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....

  17. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  18. Prehospital Acute Stroke Severity Scale to Predict Large Artery Occlusion: Design and Comparison With Other Scales.

    Science.gov (United States)

    Hastrup, Sidsel; Damgaard, Dorte; Johnsen, Søren Paaske; Andersen, Grethe

    2016-07-01

    We designed and validated a simple prehospital stroke scale to identify emergent large vessel occlusion (ELVO) in patients with acute ischemic stroke and compared the scale to other published scales for prediction of ELVO. A national historical test cohort of 3127 patients with information on intracranial vessel status (angiography) before reperfusion therapy was identified. National Institutes of Health Stroke Scale (NIHSS) items with the highest predictive value of occlusion of a large intracranial artery were identified, and the most optimal combination meeting predefined criteria to ensure usefulness in the prehospital phase was determined. The predictive performance of Prehospital Acute Stroke Severity (PASS) scale was compared with other published scales for ELVO. The PASS scale was composed of 3 NIHSS scores: level of consciousness (month/age), gaze palsy/deviation, and arm weakness. In derivation of PASS 2/3 of the test cohort was used and showed accuracy (area under the curve) of 0.76 for detecting large arterial occlusion. Optimal cut point ≥2 abnormal scores showed: sensitivity=0.66 (95% CI, 0.62-0.69), specificity=0.83 (0.81-0.85), and area under the curve=0.74 (0.72-0.76). Validation on 1/3 of the test cohort showed similar performance. Patients with a large artery occlusion on angiography with PASS ≥2 had a median NIHSS score of 17 (interquartile range=6) as opposed to PASS <2 with a median NIHSS score of 6 (interquartile range=5). The PASS scale showed equal performance although more simple when compared with other scales predicting ELVO. The PASS scale is simple and has promising accuracy for prediction of ELVO in the field. © 2016 American Heart Association, Inc.

  19. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    Science.gov (United States)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  20. Analysis using large-scale ringing data

    Directory of Open Access Journals (Sweden)

    Baillie, S. R.

    2004-06-01

    Full Text Available Birds are highly mobile organisms and there is increasing evidence that studies at large spatial scales are needed if we are to properly understand their population dynamics. While classical metapopulation models have rarely proved useful for birds, more general metapopulation ideas involving collections of populations interacting within spatially structured landscapes are highly relevant (Harrison, 1994. There is increasing interest in understanding patterns of synchrony, or lack of synchrony, between populations and the environmental and dispersal mechanisms that bring about these patterns (Paradis et al., 2000. To investigate these processes we need to measure abundance, demographic rates and dispersal at large spatial scales, in addition to gathering data on relevant environmental variables. There is an increasing realisation that conservation needs to address rapid declines of common and widespread species (they will not remain so if such trends continue as well as the management of small populations that are at risk of extinction. While the knowledge needed to support the management of small populations can often be obtained from intensive studies in a few restricted areas, conservation of widespread species often requires information on population trends and processes measured at regional, national and continental scales (Baillie, 2001. While management prescriptions for widespread populations may initially be developed from a small number of local studies or experiments, there is an increasing need to understand how such results will scale up when applied across wider areas. There is also a vital role for monitoring at large spatial scales both in identifying such population declines and in assessing population recovery. Gathering data on avian abundance and demography at large spatial scales usually relies on the efforts of large numbers of skilled volunteers. Volunteer studies based on ringing (for example Constant Effort Sites [CES

  1. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    OpenAIRE

    Qiang Liu; Yi Qin; Guodong Li

    2018-01-01

    Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal...

  2. Managing Risk and Uncertainty in Large-Scale University Research Projects

    Science.gov (United States)

    Moore, Sharlissa; Shangraw, R. F., Jr.

    2011-01-01

    Both publicly and privately funded research projects managed by universities are growing in size and scope. Complex, large-scale projects (over $50 million) pose new management challenges and risks for universities. This paper explores the relationship between project success and a variety of factors in large-scale university projects. First, we…

  3. Parallel clustering algorithm for large-scale biological data sets.

    Science.gov (United States)

    Wang, Minchao; Zhang, Wu; Ding, Wang; Dai, Dongbo; Zhang, Huiran; Xie, Hao; Chen, Luonan; Guo, Yike; Xie, Jiang

    2014-01-01

    Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies.

  4. Impact of Tropical Volcanic Eruptions on Hadley Circulation Using a High-Resolution AGCM

    KAUST Repository

    Dogar, Muhammad Mubashar

    2018-03-31

    The direct radiative effects of volcanic eruptions resulting in solar dimming, stratospheric warming, global surface cooling and reduction in rainfall are well documented. However, eruptions also cause indirect climatic impacts that are not well understood. For example, solar dimming induced by volcanic aerosols could cause changes in tropical Hadley circulation that in turn largely affect evaporation and precipitation patterns. Therefore, understanding the sensitivity of HC to volcanism is essential, as this circulation is directly related to precipitation changes in the tropics and with other large-scale circulations. Hence, to better understand the post-eruption sensitivity of HC and associated changes in the hydrologic cycle, simulations for the El Chichón and Pinatubo tropical eruptions were conducted using a high-resolution atmospheric model (HIRAM), effectively at 25 and 50 km grid spacing. The model simulated results are then compared with observational and reanalysis products. Both the model and observational analysis show posteruption weakening, shrinking and equatorward displacement of the updraft branch of HC caused by the equatorward shift of midlatitude jets and hemispheric land-sea thermal gradient. The Intertropical Convergence Zone (ITCZ) is tightly coupled to the rising branch of HC, hence, post-eruption weakening and equatorward displacement of HC cause weakening of ITCZ that adversely affects rainfall distribution in the monsoon-fed regions, especially the South Asian and African tropical rain-belt regions. The modelproduced post-eruption distribution of cloud contents suggests a southward shift of ITCZ. The HIRAM results are largely in agreement with the reanalysis, observations and previous studies indicating that this model performs reasonably well in reproducing the global and regional-scale dynamic changes caused by volcanic radiative forcing.

  5. Impact of Tropical Volcanic Eruptions on Hadley Circulation Using a High-Resolution AGCM

    KAUST Repository

    Dogar, Muhammad Mubashar

    2018-01-01

    The direct radiative effects of volcanic eruptions resulting in solar dimming, stratospheric warming, global surface cooling and reduction in rainfall are well documented. However, eruptions also cause indirect climatic impacts that are not well understood. For example, solar dimming induced by volcanic aerosols could cause changes in tropical Hadley circulation that in turn largely affect evaporation and precipitation patterns. Therefore, understanding the sensitivity of HC to volcanism is essential, as this circulation is directly related to precipitation changes in the tropics and with other large-scale circulations. Hence, to better understand the post-eruption sensitivity of HC and associated changes in the hydrologic cycle, simulations for the El Chichón and Pinatubo tropical eruptions were conducted using a high-resolution atmospheric model (HIRAM), effectively at 25 and 50 km grid spacing. The model simulated results are then compared with observational and reanalysis products. Both the model and observational analysis show posteruption weakening, shrinking and equatorward displacement of the updraft branch of HC caused by the equatorward shift of midlatitude jets and hemispheric land-sea thermal gradient. The Intertropical Convergence Zone (ITCZ) is tightly coupled to the rising branch of HC, hence, post-eruption weakening and equatorward displacement of HC cause weakening of ITCZ that adversely affects rainfall distribution in the monsoon-fed regions, especially the South Asian and African tropical rain-belt regions. The modelproduced post-eruption distribution of cloud contents suggests a southward shift of ITCZ. The HIRAM results are largely in agreement with the reanalysis, observations and previous studies indicating that this model performs reasonably well in reproducing the global and regional-scale dynamic changes caused by volcanic radiative forcing.

  6. Understanding Changes in Water Availability in the Rio Grande/Rio Bravo del Norte Basin Under the Influence of Large-Scale Circulation Indices Using the Noah Land Surface Model

    Science.gov (United States)

    Khedun, C. Prakash; Mishra, Ashok K.; Bolten, John D.; Beaudoing, Hiroko K.; Kaiser, Ronald A.; Giardino, J. Richard; Singh, Vijay P.

    2012-01-01

    Water availability plays an important role in the socio-economic development of a region. It is however, subject to the influence of large-scale circulation indices, resulting in periodic excesses and deficits. An assessment of the degree of correlation between climate indices and water availability, and the quantification of changes with respect to major climate events is important for long-term water resources planning and management, especially in transboundary basins as it can help in conflict avoidance. In this study we first establish the correlation of the Pacific Decadal Oscillation (PDO) and El Nino-Southern Oscillation (ENSO) with gauged precipitation in the Rio Grande basin, and quantify the changes in water availability using runoff generated from the Noah land surface model. Both spatial and temporal variations are noted, with winter and spring being most influenced by conditions in the Pacific Ocean. Negative correlation is observed at the headwaters and positive correlation across the rest of the basin. The influence of individual ENSO events, classified using four different criteria, is also examined. El Ninos (La Ninas) generally cause an increase (decrease) in runoff, but the pattern is not consistent; percentage change in water availability varies across events. Further, positive PDO enhances the effect of El Nino and dampens that of La Nina, but during neutral/transitioning PDO, La Nina dominates meteorological conditions. Long El Ninos have more influence on water availability than short duration high intensity events. We also note that the percentage increase during El Ninos significantly offsets the drought-causing effect of La Ninas.

  7. Scientific management and implementation of the geophysical fluid flow cell for Spacelab missions

    Science.gov (United States)

    Hart, J.; Toomre, J.

    1980-01-01

    Scientific support for the spherical convection experiment to be flown on Spacelab 3 was developed. This experiment takes advantage of the zero gravity environment of the orbiting space laboratory to conduct fundamental fluid flow studies concerned with thermally driven motions inside a rotating spherical shell with radial gravity. Such a system is a laboratory analog of large scale atmospheric and solar circulations. The radial body force necessary to model gravity correctly is obtained by using dielectric polarization forces in a radially varying electric field to produce radial accelerations proportional to temperature. This experiment will answer fundamental questions concerned with establishing the preferred modes of large scale motion in planetary and stellar atmospheres.

  8. Experimental observations of natural circulation flow in the NSTF

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, Darius D., E-mail: dlisowski@anl.gov; Kraus, Adam R.; Bucknor, Matthew D.; Hu, Rui; Farmer, Mitch T.

    2016-09-15

    A 1/2 scale test facility has been constructed at Argonne National Laboratory to study the heat removal performance and natural circulation flow patterns in a Reactor Cavity Cooling System (RCCS). Our test facility, the Natural convection Shutdown heat removal Test Facility (NSTF), supports the broader goal of developing an inherently safe and fully passive ex-vessel decay heat removal for advanced reactor designs. The project, initiated in 2010 to support the Advanced Reactor Technologies (ART), Small Modular Reactor (SMR), and Next Generation Nuclear Plant (NGNP) programs, has been conducting experimental operations since early 2014. The following paper provides a summary of some primary design features of the 26-m tall test facility along with a description of the data acquisition suite that guides our experimental practices. Specifics of the distributed fiber optic temperature measurements will be discussed, which introduces an unparalleled level of data density that has never before been implemented in a large scale natural circulation test facility. Results from our test series will then be presented, which provide insight into the thermal hydraulic behavior at steady-state and transient conditions for varying heat flux levels and exhaust chimney configuration states.

  9. Adaptive visualization for large-scale graph

    International Nuclear Information System (INIS)

    Nakamura, Hiroko; Shinano, Yuji; Ohzahata, Satoshi

    2010-01-01

    We propose an adoptive visualization technique for representing a large-scale hierarchical dataset within limited display space. A hierarchical dataset has nodes and links showing the parent-child relationship between the nodes. These nodes and links are described using graphics primitives. When the number of these primitives is large, it is difficult to recognize the structure of the hierarchical data because many primitives are overlapped within a limited region. To overcome this difficulty, we propose an adaptive visualization technique for hierarchical datasets. The proposed technique selects an appropriate graph style according to the nodal density in each area. (author)

  10. Stabilization Algorithms for Large-Scale Problems

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg

    2006-01-01

    The focus of the project is on stabilization of large-scale inverse problems where structured models and iterative algorithms are necessary for computing approximate solutions. For this purpose, we study various iterative Krylov methods and their abilities to produce regularized solutions. Some......-curve. This heuristic is implemented as a part of a larger algorithm which is developed in collaboration with G. Rodriguez and P. C. Hansen. Last, but not least, a large part of the project has, in different ways, revolved around the object-oriented Matlab toolbox MOORe Tools developed by PhD Michael Jacobsen. New...

  11. The interannual precipitation variability in the southern part of Iran as linked to large-scale climate modes

    Energy Technology Data Exchange (ETDEWEB)

    Pourasghar, Farnaz; Jahanbakhsh, Saeed; Sari Sarraf, Behrooz [The University of Tabriz, Department of Physical Geography, Faculty of Humanities and Social Science, Tabriz (Iran, Islamic Republic of); Tozuka, Tomoki [The University of Tokyo, Department of Earth and Planetary Science, Graduate School of Science, Tokyo (Japan); Ghaemi, Hooshang [Iran Meteorological Organization, Tehran (Iran, Islamic Republic of); Yamagata, Toshio [The University of Tokyo, Department of Earth and Planetary Science, Graduate School of Science, Tokyo (Japan); Application Laboratory/JAMSTEC, Yokohama, Kanagawa (Japan)

    2012-11-15

    The interannual variation of precipitation in the southern part of Iran and its link with the large-scale climate modes are examined using monthly data from 183 meteorological stations during 1974-2005. The majority of precipitation occurs during the rainy season from October to May. The interannual variation in fall and early winter during the first part of the rainy season shows apparently a significant positive correlation with the Indian Ocean Dipole (IOD) and El Nino-Southern Oscillation (ENSO). However, a partial correlation analysis used to extract the respective influence of IOD and ENSO shows a significant positive correlation only with the IOD and not with ENSO. The southeasterly moisture flux anomaly over the Arabian Sea turns anti-cyclonically and transport more moisture to the southern part of Iran from the Arabian Sea, the Red Sea, and the Persian Gulf during the positive IOD. On the other hand, the moisture flux has northerly anomaly over Iran during the negative IOD, which results in reduced moisture supply from the south. During the latter part of the rainy season in late winter and spring, the interannual variation of precipitation is more strongly influenced by modes of variability over the Mediterranean Sea. The induced large-scale atmospheric circulation anomaly controls moisture supply from the Red Sea and the Persian Gulf. (orig.)

  12. Evaluation of water vapor distribution in general circulation models using satellite observations

    Science.gov (United States)

    Soden, Brian J.; Bretherton, Francis P.

    1994-01-01

    This paper presents a comparison of the water vapor distribution obtained from two general circulation models, the European Centre for Medium-Range Weather Forecasts (ECMWF) model and the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM), with satellite observations of total precipitable water (TPW) from Special Sensor Microwave/Imager (SSM/I) and upper tropospheric relative humidity (UTH) from GOES. Overall, both models are successful in capturing the primary features of the observed water vapor distribution and its seasonal variation. For the ECMWF model, however, a systematic moist bias in TPW is noted over well-known stratocumulus regions in the eastern subtropical oceans. Comparison with radiosonde profiles suggests that this problem is attributable to difficulties in modeling the shallowness of the boundary layer and large vertical water vapor gradients which characterize these regions. In comparison, the CCM is more successful in capturing the low values of TPW in the stratocumulus regions, although it tends to exhibit a dry bias over the eastern half of the subtropical oceans and a corresponding moist bias in the western half. The CCM also significantly overestimates the daily variability of the moisture fields in convective regions, suggesting a problem in simulating the temporal nature of moisture transport by deep convection. Comparison of the monthly mean UTH distribution indicates generally larger discrepancies than were noted for TPW owing to the greater influence of large-scale dynamical processes in determining the distribution of UTH. In particular, the ECMWF model exhibits a distinct dry bias along the Intertropical Convergence Zone (ITCZ) and a moist bias over the subtropical descending branches of the Hadley cell, suggesting an underprediction in the strength of the Hadley circulation. The CCM, on the other hand, demonstrates greater discrepancies in UTH than are observed for the ECMWF model, but none that are as

  13. West Florida shelf circulation and temperature budget for the 1999 spring transition

    Science.gov (United States)

    He, Ruoying; Weisberg, Robert H.

    2002-01-01

    Mid-latitude continental shelves undergo a spring transition as the net surface heat flux changes from cooling to warming. Using in situ data and a numerical circulation model we investigate the circulation and temperature budget on the West Florida Continental Shelf (WFS) for the spring transition of 1999. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind and heat flux fields and by river inflows. Based on agreements between the modeled and observed fields we use the model to draw inferences on how the surface momentum and heat fluxes affect the seasonal and synoptic scale variability. We account for a strong southeastward current at mid-shelf by the baroclinic response to combined wind and buoyancy forcing, and we show how this local forcing leads to annually occurring cold and low salinity tongues. Through term-by-term analyses of the temperature budget we describe the WFS temperature evolution in spring. Heat flux largely controls the seasonal transition, whereas ocean circulation largely controls the synoptic scale variability. These two processes, however, are closely linked. Bottom topography and coastline geometry are important in generating regions of convergence and divergence. Rivers contribute to the local hydrography and are important ecologically. Along with upwelling, river inflows facilitate frontal aggregation of nutrients and the spring formation of a high concentration chlorophyll plume near the shelf break (the so-called ‘Green River’) coinciding with the cold, low salinity tongues. These features originate by local, shelf-wide forcing; the Loop Current is not an essential ingredient.

  14. Design study on sodium cooled large-scale reactor

    International Nuclear Information System (INIS)

    Murakami, Tsutomu; Hishida, Masahiko; Kisohara, Naoyuki

    2004-07-01

    In Phase 1 of the 'Feasibility Studies on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2, design improvement for further cost reduction of establishment of the plant concept has been performed. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2003, which is the third year of Phase 2. In the JFY2003 design study, critical subjects related to safety, structural integrity and thermal hydraulics which found in the last fiscal year has been examined and the plant concept has been modified. Furthermore, fundamental specifications of main systems and components have been set and economy has been evaluated. In addition, as the interim evaluation of the candidate concept of the FBR fuel cycle is to be conducted, cost effectiveness and achievability for the development goal were evaluated and the data of the three large-scale reactor candidate concepts were prepared. As a results of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  15. Design study on sodium-cooled large-scale reactor

    International Nuclear Information System (INIS)

    Shimakawa, Yoshio; Nibe, Nobuaki; Hori, Toru

    2002-05-01

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled large-scale reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2001, which is the first year of Phase 2. In the JFY2001 design study, a plant concept has been constructed based on the design of the advanced loop type reactor, and fundamental specifications of main systems and components have been set. Furthermore, critical subjects related to safety, structural integrity, thermal hydraulics, operability, maintainability and economy have been examined and evaluated. As a result of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  16. Improving Prediction of Large-scale Regime Transitions

    Science.gov (United States)

    Gyakum, J. R.; Roebber, P.; Bosart, L. F.; Honor, A.; Bunker, E.; Low, Y.; Hart, J.; Bliankinshtein, N.; Kolly, A.; Atallah, E.; Huang, Y.

    2017-12-01

    Cool season atmospheric predictability over the CONUS on subseasonal times scales (1-4 weeks) is critically dependent upon the structure, configuration, and evolution of the North Pacific jet stream (NPJ). The NPJ can be perturbed on its tropical side on synoptic time scales by recurving and transitioning tropical cyclones (TCs) and on subseasonal time scales by longitudinally varying convection associated with the Madden-Julian Oscillation (MJO). Likewise, the NPJ can be perturbed on its poleward side on synoptic time scales by midlatitude and polar disturbances that originate over the Asian continent. These midlatitude and polar disturbances can often trigger downstream Rossby wave propagation across the North Pacific, North America, and the North Atlantic. The project team is investigating the following multiscale processes and features: the spatiotemporal distribution of cyclone clustering over the Northern Hemisphere; cyclone clustering as influenced by atmospheric blocking and the phases and amplitudes of the major teleconnection indices, ENSO and the MJO; composite and case study analyses of representative cyclone clustering events to establish the governing dynamics; regime change predictability horizons associated with cyclone clustering events; Arctic air mass generation and modification; life cycles of the MJO; and poleward heat and moisture transports of subtropical air masses. A critical component of the study is weather regime classification. These classifications are defined through: the spatiotemporal clustering of surface cyclogenesis; a general circulation metric combining data at 500-hPa and the dynamic tropopause; Self Organizing Maps (SOM), constructed from dynamic tropopause and 850 hPa equivalent potential temperature data. The resultant lattice of nodes is used to categorize synoptic classes and their predictability, as well as to determine the robustness of the CFSv2 model climate relative to observations. Transition pathways between these

  17. Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Sterl, S.H.; Li, H.M.; Zhong, J.Q.

    2016-01-01

    In this paper, we present results from an experimental study into turbulent Rayleigh-Bénard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity θ(t) and thermal amplitude δ(t) of the large-scale circulation (LSC) are

  18. Preparing Planetary Scientists to Engage Audiences

    Science.gov (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  19. Large scale CMB anomalies from thawing cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Ringeval, Christophe [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); Yamauchi, Daisuke; Yokoyama, Jun' ichi [Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Bouchet, François R., E-mail: christophe.ringeval@uclouvain.be, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp, E-mail: bouchet@iap.fr [Institut d' Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris (France)

    2016-02-01

    Cosmic strings formed during inflation are expected to be either diluted over super-Hubble distances, i.e., invisible today, or to have crossed our past light cone very recently. We discuss the latter situation in which a few strings imprint their signature in the Cosmic Microwave Background (CMB) Anisotropies after recombination. Being almost frozen in the Hubble flow, these strings are quasi static and evade almost all of the previously derived constraints on their tension while being able to source large scale anisotropies in the CMB sky. Using a local variance estimator on thousand of numerically simulated Nambu-Goto all sky maps, we compute the expected signal and show that it can mimic a dipole modulation at large angular scales while being negligible at small angles. Interestingly, such a scenario generically produces one cold spot from the thawing of a cosmic string loop. Mixed with anisotropies of inflationary origin, we find that a few strings of tension GU = O(1) × 10{sup −6} match the amplitude of the dipole modulation reported in the Planck satellite measurements and could be at the origin of other large scale anomalies.

  20. NASA Goddard Earth Sciences Graduate Student Program. [FIRE CIRRUS-II examination of coupling between an upper tropospheric cloud system and synoptic-scale dynamics

    Science.gov (United States)

    Ackerman, Thomas P.

    1994-01-01

    The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.

  1. Regional-scale relationships between aerosol and summer monsoon circulation, and precipitation over northeast Asia

    Science.gov (United States)

    Yoon, Soon-Chang; Kim, Sang-Woo; Choi, Suk-Jin; Choi, In-Jin

    2010-08-01

    We investigated the regional-scale relationships between columnar aerosol loads and summer monsoon circulation, and also the precipitation over northeast Asia using aerosol optical depth (AOD) data obtained from the 8-year MODIS, AERONET Sun/sky radiometer, and precipitation data acquired under the Global Precipitation Climatology Project (GPCP). These high-quality data revealed the regional-scale link between AOD and summer monsoon circulation, precipitation in July over northeast Asian countries, and their distinct spatial and annual variabilities. Compared to the mean AOD for the entire period of 2001-2008, the increase of almost 40-50% in the AOD value in July 2005 and July 2007 was found over the downwind regions of China (Yellow Sea, Korean peninsula, and East Sea), with negative precipitation anomalies. This can be attributable to the strong westerly confluent flows, between cyclone flows by continental thermal low centered over the northern China and anticyclonic flows by the western North Pacific High, which transport anthropogenic pollution aerosols emitted from east China to aforementioned downwind high AOD regions along the rim of the Pacific marine airmass. In July 2002, however, the easterly flows transported anthropogenic aerosols from east China to the southwestern part of China in July 2002. As a result, the AOD off the coast of China was dramatically reduced in spite of decreasing rainfall. From the calculation of the cross-correlation coefficient between MODIS-derived AOD anomalies and GPCP precipitation anomalies in July over the period 2001-2008, we found negative correlations over the areas encompassed by 105-115°E and 30-35°N and by 120-140°E and 35-40°N (Yellow Sea, Korean peninsula, and East Sea). This suggests that aerosol loads over these regions are easily influenced by the Asian monsoon flow system and associated precipitation.

  2. Evaluations of two-phase natural circulation flow induced in the reactor vessel annular gap under ERVC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwang Soon, E-mail: tomo@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Cheung, Fan-Bill [The Pennsylvania State University, University Park, PA 16802 (United States); Park, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Two-phase natural circulation flow induced in insulation gap was investigated. Black-Right-Pointing-Pointer Half-scaled non-heating experiments were performed to evaluate flow behavior. Black-Right-Pointing-Pointer The loop-integrated momentum equation was formulated and solved asymptotically. Black-Right-Pointing-Pointer First-order approximate solution was obtained and agreed with experimental data. - Abstract: The process of two-phase natural circulation flow induced in the annular gap between the reactor vessel and the insulation under external reactor vessel cooling conditions was investigated experimentally and analytically in this study. HERMES-HALF experiments were performed to observe and quantify the induced two-phase natural circulation flow in the annular gap. A half-scaled non-heating experimental facility was designed by utilizing the results of a scaling analysis to simulate the APR1400 reactor and its insulation system. The behavior of the boiling-induced two-phase natural circulation flow in the annular gap was observed, and the liquid mass flow rates driven by the natural circulation loop and the void fraction distribution were measured. Direct flow visualization revealed that choking would occur under certain flow conditions in the minimum gap region near the shear keys. Specifically, large recirculation flows were observed in the minimum gap region for large air injection rates and small outlet areas. Under such conditions, the injected air could not pass through the minimum gap region, resulting in the occurrence of choking near the minimum gap with a periodical air back flow being generated. Therefore, a design modification of the minimum gap region needs to be done to facilitate steam venting and to prevent choking from occurring. To complement the HERMES-HALF experimental effort, an analytical study of the dependence of the induced natural circulation mass flow rate on the inlet area and the

  3. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators

    International Nuclear Information System (INIS)

    Fonseca, R A; Vieira, J; Silva, L O; Fiuza, F; Davidson, A; Tsung, F S; Mori, W B

    2013-01-01

    A new generation of laser wakefield accelerators (LWFA), supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modelling to further understand the underlying physics and identify optimal regimes, but large scale modelling of these scenarios is computationally heavy and requires the efficient use of state-of-the-art petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed/shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modelling of LWFA, demonstrating speedups of over 1 order of magnitude on the same hardware. Finally, scalability to over ∼10 6 cores and sustained performance over ∼2 P Flops is demonstrated, opening the way for large scale modelling of LWFA scenarios. (paper)

  4. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  5. From Planetary Boundaries to national fair shares of the global safe operating space — How can the scales be bridged?

    NARCIS (Netherlands)

    Häyhä, Tiina; Lucas, Paul L.|info:eu-repo/dai/nl/272607444; van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X; Cornell, Sarah E.; Hoff, Holger

    2016-01-01

    The planetary boundaries framework proposes quantitative global limits to the anthropogenic perturbation of crucial Earth system processes, and thus marks out a planetary safe operating space for human activities. Yet, decisions regarding resource use and emissions are mostly made at less aggregated

  6. Regional climate modeling: Should one attempt improving on the large scales? Lateral boundary condition scheme: Any impact?

    Energy Technology Data Exchange (ETDEWEB)

    Veljovic, Katarina; Rajkovic, Borivoj [Belgrade Univ. (RS). Inst. of Meteorology; Fennessy, Michael J.; Altshuler, Eric L. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Mesinger, Fedor [Maryland Univ., College Park (United States). Earth System Science Interdisciplinary Center; Serbian Academy of Science and Arts, Belgrade (RS)

    2010-06-15

    A considerable number of authors presented experiments in which degradation of large scale circulation occurred in regional climate integrations when large-scale nudging was not used (e.g., von Storch et al., 2000; Biner et al., 2000; Rockel et al., 2008; Sanchez-Gomez et al., 2008; Alexandru et al., 2009; among others). We here show an earlier 9-member ensemble result of the June-August precipitation difference over the contiguous United States between the ''flood year'' of 1993 and the ''drought year'' of 1988, in which the Eta model nested in the COLA AGCM gave a rather accurate depiction of the analyzed difference, even though the driver AGCM failed in doing so to the extent of having a minimum in the area where the maximum ought to be. It is suggested that this could hardly have been possible without an RCM's improvement in the large scales of the driver AGCM. We further revisit the issue by comparing the large scale skill of the Eta RCM against that of a global ECMWF 32-day ensemble forecast used as its driver. Another issue we are looking into is that of the lateral boundary condition (LBC) scheme. The question we ask is whether the almost universally used but somewhat costly relaxation scheme is necessary for a desirable RCM performance? We address this by running the Eta in two versions differing in the lateral boundary scheme used. One of these is the traditional relaxation scheme and the other is the Eta model scheme in which information is used at the outermost boundary only and not all variables are prescribed at the outflow boundary. The skills of these two sets of RCM forecasts are compared against each other and also against that of their driver. A novelty in our experiments is the verification used. In order to test the large scale skill we are looking at the forecast position accuracy of the strongest winds at the jet stream level, which we have taken as 250 hPa. We do this by calculating bias adjusted

  7. Large-Scale Graph Processing Using Apache Giraph

    KAUST Repository

    Sakr, Sherif

    2017-01-07

    This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms.

  8. Large-Scale Graph Processing Using Apache Giraph

    KAUST Repository

    Sakr, Sherif; Orakzai, Faisal Moeen; Abdelaziz, Ibrahim; Khayyat, Zuhair

    2017-01-01

    This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms.

  9. Biomass-based negative emissions difficult to reconcile with planetary boundaries

    Science.gov (United States)

    Heck, Vera; Gerten, Dieter; Lucht, Wolfgang; Popp, Alexander

    2018-01-01

    Under the Paris Agreement, 195 nations have committed to holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and to strive to limit the increase to 1.5 °C (ref. 1). It is noted that this requires "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of the century"1. This either calls for zero greenhouse gas (GHG) emissions or a balance between positive and negative emissions (NE)2,3. Roadmaps and socio-economic scenarios compatible with a 2 °C or 1.5 °C goal depend upon NE via bioenergy with carbon capture and storage (BECCS) to balance remaining GHG emissions4-7. However, large-scale deployment of BECCS would imply significant impacts on many Earth system components besides atmospheric CO2 concentrations8,9. Here we explore the feasibility of NE via BECCS from dedicated plantations and potential trade-offs with planetary boundaries (PBs)10,11 for multiple socio-economic pathways. We show that while large-scale BECCS is intended to lower the pressure on the PB for climate change, it would most likely steer the Earth system closer to the PB for freshwater use and lead to further transgression of the PBs for land-system change, biosphere integrity and biogeochemical flows.

  10. An interactive display system for large-scale 3D models

    Science.gov (United States)

    Liu, Zijian; Sun, Kun; Tao, Wenbing; Liu, Liman

    2018-04-01

    With the improvement of 3D reconstruction theory and the rapid development of computer hardware technology, the reconstructed 3D models are enlarging in scale and increasing in complexity. Models with tens of thousands of 3D points or triangular meshes are common in practical applications. Due to storage and computing power limitation, it is difficult to achieve real-time display and interaction with large scale 3D models for some common 3D display software, such as MeshLab. In this paper, we propose a display system for large-scale 3D scene models. We construct the LOD (Levels of Detail) model of the reconstructed 3D scene in advance, and then use an out-of-core view-dependent multi-resolution rendering scheme to realize the real-time display of the large-scale 3D model. With the proposed method, our display system is able to render in real time while roaming in the reconstructed scene and 3D camera poses can also be displayed. Furthermore, the memory consumption can be significantly decreased via internal and external memory exchange mechanism, so that it is possible to display a large scale reconstructed scene with over millions of 3D points or triangular meshes in a regular PC with only 4GB RAM.

  11. Persistence of the planetary wave type oscillations in foF2 over Europe

    Directory of Open Access Journals (Sweden)

    J. Laštovička

    2003-07-01

    Full Text Available Planetary waves are oscillations of very predominantly tropospheric origin with typical periods of about 2–30 days. Their dominant zonal wave numbers are 1, 2 and 3, i.e. the waves are of large-scale (global character. The planetary wave type oscillations have been observed in the lower and middle atmosphere but also in the ionosphere, including the ionospheric F2-layer. Here, we deal only with the oscillations analyzed for four European stations over a solar cycle with the use of the Meyer and Morlet wavelet transforms. Waves with periods near 5, 10 and 16 days are studied. Only events with a duration of three wave-cycles and more are considered. The 5-day period wave events display a typical duration of 4 cycles, while 10- and 16-day wave events are less persistent, with a typical duration of about 3.5 cycles and 3 cycles, respectively. The persistence pattern in terms of number of cycles and in terms of number of days is different. In terms of number of cycles, the typical persistence of oscillations decreases with increasing period. On the other hand, in terms of number of days the typical persistence evidently increases with increasing period. The spectral distribution of event duration is too broad to allow for a reasonable prediction of event duration. Thus, the predictability of the planetary wave type oscillations in foF2 seems to be very questionable.Key words. Ionosphere (ionosphere-atmosphere interaction, mid-latitude ionosphere, ionospheric disturbances – Meteorology and atmospheric dynamics (waves and tides

  12. Large-scale hydrology in Europe : observed patterns and model performance

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, Lukas

    2011-06-15

    In a changing climate, terrestrial water storages are of great interest as water availability impacts key aspects of ecosystem functioning. Thus, a better understanding of the variations of wet and dry periods will contribute to fully grasp processes of the earth system such as nutrient cycling and vegetation dynamics. Currently, river runoff from small, nearly natural, catchments is one of the few variables of the terrestrial water balance that is regularly monitored with detailed spatial and temporal coverage on large scales. River runoff, therefore, provides a foundation to approach European hydrology with respect to observed patterns on large scales, with regard to the ability of models to capture these.The analysis of observed river flow from small catchments, focused on the identification and description of spatial patterns of simultaneous temporal variations of runoff. These are dominated by large-scale variations of climatic variables but also altered by catchment processes. It was shown that time series of annual low, mean and high flows follow the same atmospheric drivers. The observation that high flows are more closely coupled to large scale atmospheric drivers than low flows, indicates the increasing influence of catchment properties on runoff under dry conditions. Further, it was shown that the low-frequency variability of European runoff is dominated by two opposing centres of simultaneous variations, such that dry years in the north are accompanied by wet years in the south.Large-scale hydrological models are simplified representations of our current perception of the terrestrial water balance on large scales. Quantification of the models strengths and weaknesses is the prerequisite for a reliable interpretation of simulation results. Model evaluations may also enable to detect shortcomings with model assumptions and thus enable a refinement of the current perception of hydrological systems. The ability of a multi model ensemble of nine large-scale

  13. Large-scale perturbations from the waterfall field in hybrid inflation

    International Nuclear Information System (INIS)

    Fonseca, José; Wands, David; Sasaki, Misao

    2010-01-01

    We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explosive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual δN formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10 −54 on cosmological scales

  14. Decoupling local mechanics from large-scale structure in modular metamaterials

    Science.gov (United States)

    Yang, Nan; Silverberg, Jesse L.

    2017-04-01

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  15. The origin of large scale cosmic structure

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Palmer, P.L.

    1985-01-01

    The paper concerns the origin of large scale cosmic structure. The evolution of density perturbations, the nonlinear regime (Zel'dovich's solution and others), the Gott and Rees clustering hierarchy, the spectrum of condensations, and biassed galaxy formation, are all discussed. (UK)

  16. Experience of more than 1000 h of operation with oxygen carriers and solid biomass at large scale

    International Nuclear Information System (INIS)

    Berdugo Vilches, Teresa; Lind, Fredrik; Rydén, Magnus; Thunman, Henrik

    2017-01-01

    Highlights: • First large scale experience (MW) of biomass combustion at CLC-relevant conditions. • Manganese and ilmenite were applied successfully at semi-industrial scale. • 60% combustion under challenging conditions: 830 °C, over-bed fuel feeding. • Volatiles conversion limited by mixing to a significant extent. - Abstract: This paper presents an overview of the experience gained from operating a dual fluidized bed system with oxygen carriers and biomass for more than 1000 h. The tests were carried out in the Chalmers boiler/gasifier loop (with inputs of 12 MW_t_h and 2–4 MW_t_h, respectively), which is 2–4 orders of magnitude larger than most existing CLC units. Coarse biomass particles (i.e., commercial wood pellets) were fed as fuel onto the surface of a mild fluidized bed. This limits significantly the contacts between the volatiles and the oxygen carrier particles, as the flotsam fuel tends to remain on the surface of the bed while the volatiles are released. The oxygen carrier materials tested were ilmenite and a manganese ore. The influences on biomass conversion of fluidization velocity, fuel feeding rate, and circulation rate of the bed material were investigated. Both bed materials efficiently transported oxygen between the reactors, achieving up to 60% combustion of the gases released in the reactor at a relatively low temperature, i.e., 830 °C. The ilmenite outperformed the manganese ore under the conditions investigated. With oxygen carriers, the yield of hydrocarbons heavier than benzene was in the range of 10–11 g/N m"3, which was 70% (w/w) lower than that obtained in a reference case with silica-sand as the bed material. The conversion of volatile species to CO_2 was limited by gas-solids mixing, which could be enhanced by altering the fluidization velocity. The circulation rate of the bed material and the fuel feeding rate were found to have important influences on the rate of char gasification. Given the relatively low

  17. A practical process for light-water detritiation at large scales

    Energy Technology Data Exchange (ETDEWEB)

    Boniface, H.A. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Robinson, J., E-mail: jr@tyne-engineering.com [Tyne Engineering, Burlington, ON (Canada); Gnanapragasam, N.V.; Castillo, I.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    AECL and Tyne Engineering have recently completed a preliminary engineering design for a modest-scale tritium removal plant for light water, intended for installation at AECL's Chalk River Laboratories (CRL). This plant design was based on the Combined Electrolysis and Catalytic Exchange (CECE) technology developed at CRL over many years and demonstrated there and elsewhere. The general features and capabilities of this design have been reported as well as the versatility of the design for separating any pair of the three hydrogen isotopes. The same CECE technology could be applied directly to very large-scale wastewater detritiation, such as the case at Fukushima Daiichi Nuclear Power Station. However, since the CECE process scales linearly with throughput, the required capital and operating costs are substantial for such large-scale applications. This paper discusses some options for reducing the costs of very large-scale detritiation. Options include: Reducing tritium removal effectiveness; Energy recovery; Improving the tolerance of impurities; Use of less expensive or more efficient equipment. A brief comparison with alternative processes is also presented. (author)

  18. Extrasolar Planetary Imaging Coronagraph (EPIC)

    Science.gov (United States)

    Clampin, Mark

    2009-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Exoplanet Probe mission to image and characterize extrasolar giant planets. EPIC will provide insights into the physical nature and architecture of a variety of planets in other solar systems. Initially, it will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses and characterize the atmospheres around A and F type stars which cannot be found with RV techniques. It will also observe the inner spatial structure of exozodiacal disks. EPIC has a heliocentric Earth trailing drift-away orbit, with a 5 year mission lifetime. The robust mission design is simple and flexible ensuring mission success while minimizing cost and risk. The science payload consists of a heritage optical telescope assembly (OTA), and visible nulling coronagraph (VNC) instrument. The instrument achieves a contrast ratio of 10^9 over a 5 arcsecond field-of-view with an unprecedented inner working angle of 0.13 arcseconds over the spectral range of 440-880 nm. The telescope is a 1.65 meter off-axis Cassegrain with an OTA wavefront error of lambda/9, which when coupled to the VNC greatly reduces the requirements on the large scale optics.

  19. OffshoreDC DC grids for integration of large scale wind power

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Endegnanew, Atsede Gualu; Stamatiou, Georgios

    The present report summarizes the main findings of the Nordic Energy Research project “DC grids for large scale integration of offshore wind power – OffshoreDC”. The project is been funded by Nordic Energy Research through the TFI programme and was active between 2011 and 2016. The overall...... objective of the project was to drive the development of the VSC based HVDC technology for future large scale offshore grids, supporting a standardised and commercial development of the technology, and improving the opportunities for the technology to support power system integration of large scale offshore...

  20. Low-Complexity Transmit Antenna Selection and Beamforming for Large-Scale MIMO Communications

    Directory of Open Access Journals (Sweden)

    Kun Qian

    2014-01-01

    Full Text Available Transmit antenna selection plays an important role in large-scale multiple-input multiple-output (MIMO communications, but optimal large-scale MIMO antenna selection is a technical challenge. Exhaustive search is often employed in antenna selection, but it cannot be efficiently implemented in large-scale MIMO communication systems due to its prohibitive high computation complexity. This paper proposes a low-complexity interactive multiple-parameter optimization method for joint transmit antenna selection and beamforming in large-scale MIMO communication systems. The objective is to jointly maximize the channel outrage capacity and signal-to-noise (SNR performance and minimize the mean square error in transmit antenna selection and minimum variance distortionless response (MVDR beamforming without exhaustive search. The effectiveness of all the proposed methods is verified by extensive simulation results. It is shown that the required antenna selection processing time of the proposed method does not increase along with the increase of selected antennas, but the computation complexity of conventional exhaustive search method will significantly increase when large-scale antennas are employed in the system. This is particularly useful in antenna selection for large-scale MIMO communication systems.