WorldWideScience

Sample records for large-scale oscillatory network

  1. Large Amplitude Oscillatory Extension of Soft Polymeric Networks

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Rasmussen, Henrik K.; Skov, Anne Ladegaard

    2010-01-01

    sing a filament stretching rheometer (FSR) surrounded by a thermostatic chamber and equipped with a micrometric laser it is possible to measure large amplitude oscillatory elongation (LAOE) on elastomeric based networks with no base flow as in the LAOE method for polymer melts. Poly(dimethylsilox...

  2. Synchronization in oscillatory networks

    CERN Document Server

    Osipov, Grigory V; Zhou, Changsong

    2007-01-01

    The formation of collective behavior in large ensembles or networks of coupled oscillatory elements is one of the oldest and most fundamental aspects of dynamical systems theory. Potential and present applications span a vast spectrum of fields ranging from physics, chemistry, geoscience, through life- and neurosciences to engineering, the economic and the social sciences. This work systematically investigates a large number of oscillatory network configurations that are able to describe many real systems such as electric power grids, lasers or the heart muscle - to name but a few. This book is conceived as an introduction to the field for graduate students in physics and applied mathematics as well as being a compendium for researchers from any field of application interested in quantitative models.

  3. A learning algorithm for oscillatory cellular neural networks.

    Science.gov (United States)

    Ho, C Y.; Kurokawa, H

    1999-07-01

    We present a cellular type oscillatory neural network for temporal segregation of stationary input patterns. The model comprises an array of locally connected neural oscillators with connections limited to a 4-connected neighborhood. The architecture is reminiscent of the well-known cellular neural network that consists of local connection for feature extraction. By means of a novel learning rule and an initialization scheme, global synchronization can be accomplished without incurring any erroneous synchrony among uncorrelated objects. Each oscillator comprises two mutually coupled neurons, and neurons share a piecewise-linear activation function characteristic. The dynamics of traditional oscillatory models is simplified by using only one plastic synapse, and the overall complexity for hardware implementation is reduced. Based on the connectedness of image segments, it is shown that global synchronization and desynchronization can be achieved by means of locally connected synapses, and this opens up a tremendous application potential for the proposed architecture. Furthermore, by using special grouping synapses it is demonstrated that temporal segregation of overlapping gray-level and color segments can also be achieved. Finally, simulation results show that the learning rule proposed circumvents the problem of component mismatches, and hence facilitates a large-scale integration.

  4. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  5. Large-scale functional networks connect differently for processing words and symbol strings.

    Science.gov (United States)

    Liljeström, Mia; Vartiainen, Johanna; Kujala, Jan; Salmelin, Riitta

    2018-01-01

    Reconfigurations of synchronized large-scale networks are thought to be central neural mechanisms that support cognition and behavior in the human brain. Magnetoencephalography (MEG) recordings together with recent advances in network analysis now allow for sub-second snapshots of such networks. In the present study, we compared frequency-resolved functional connectivity patterns underlying reading of single words and visual recognition of symbol strings. Word reading emphasized coherence in a left-lateralized network with nodes in classical perisylvian language regions, whereas symbol processing recruited a bilateral network, including connections between frontal and parietal regions previously associated with spatial attention and visual working memory. Our results illustrate the flexible nature of functional networks, whereby processing of different form categories, written words vs. symbol strings, leads to the formation of large-scale functional networks that operate at distinct oscillatory frequencies and incorporate task-relevant regions. These results suggest that category-specific processing should be viewed not so much as a local process but as a distributed neural process implemented in signature networks. For words, increased coherence was detected particularly in the alpha (8-13 Hz) and high gamma (60-90 Hz) frequency bands, whereas increased coherence for symbol strings was observed in the high beta (21-29 Hz) and low gamma (30-45 Hz) frequency range. These findings attest to the role of coherence in specific frequency bands as a general mechanism for integrating stimulus-dependent information across brain regions.

  6. Large-scale network dynamics of beta-band oscillations underlie auditory perceptual decision-making

    Directory of Open Access Journals (Sweden)

    Mohsen Alavash

    2017-06-01

    Full Text Available Perceptual decisions vary in the speed at which we make them. Evidence suggests that translating sensory information into perceptual decisions relies on distributed interacting neural populations, with decision speed hinging on power modulations of the neural oscillations. Yet the dependence of perceptual decisions on the large-scale network organization of coupled neural oscillations has remained elusive. We measured magnetoencephalographic signals in human listeners who judged acoustic stimuli composed of carefully titrated clouds of tone sweeps. These stimuli were used in two task contexts, in which the participants judged the overall pitch or direction of the tone sweeps. We traced the large-scale network dynamics of the source-projected neural oscillations on a trial-by-trial basis using power-envelope correlations and graph-theoretical network discovery. In both tasks, faster decisions were predicted by higher segregation and lower integration of coupled beta-band (∼16–28 Hz oscillations. We also uncovered the brain network states that promoted faster decisions in either lower-order auditory or higher-order control brain areas. Specifically, decision speed in judging the tone sweep direction critically relied on the nodal network configurations of anterior temporal, cingulate, and middle frontal cortices. Our findings suggest that global network communication during perceptual decision-making is implemented in the human brain by large-scale couplings between beta-band neural oscillations. The speed at which we make perceptual decisions varies. This translation of sensory information into perceptual decisions hinges on dynamic changes in neural oscillatory activity. However, the large-scale neural-network embodiment supporting perceptual decision-making is unclear. We addressed this question by experimenting two auditory perceptual decision-making situations. Using graph-theoretical network discovery, we traced the large-scale network

  7. Growth Limits in Large Scale Networks

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip

    limitations. The rising complexity of network management with the convergence of communications platforms is shown as problematic for both automatic management feasibility and for manpower resource management. In the fourth step the scope is extended to include the present society with the DDN project as its......The Subject of large scale networks is approached from the perspective of the network planner. An analysis of the long term planning problems is presented with the main focus on the changing requirements for large scale networks and the potential problems in meeting these requirements. The problems...... the fundamental technological resources in network technologies are analysed for scalability. Here several technological limits to continued growth are presented. The third step involves a survey of major problems in managing large scale networks given the growth of user requirements and the technological...

  8. PKI security in large-scale healthcare networks.

    Science.gov (United States)

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2012-06-01

    During the past few years a lot of PKI (Public Key Infrastructures) infrastructures have been proposed for healthcare networks in order to ensure secure communication services and exchange of data among healthcare professionals. However, there is a plethora of challenges in these healthcare PKI infrastructures. Especially, there are a lot of challenges for PKI infrastructures deployed over large-scale healthcare networks. In this paper, we propose a PKI infrastructure to ensure security in a large-scale Internet-based healthcare network connecting a wide spectrum of healthcare units geographically distributed within a wide region. Furthermore, the proposed PKI infrastructure facilitates the trust issues that arise in a large-scale healthcare network including multi-domain PKI infrastructures.

  9. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  10. Capacity of oscillatory associative-memory networks with error-free retrieval

    International Nuclear Information System (INIS)

    Nishikawa, Takashi; Lai Yingcheng; Hoppensteadt, Frank C.

    2004-01-01

    Networks of coupled periodic oscillators (similar to the Kuramoto model) have been proposed as models of associative memory. However, error-free retrieval states of such oscillatory networks are typically unstable, resulting in a near zero capacity. This puts the networks at disadvantage as compared with the classical Hopfield network. Here we propose a simple remedy for this undesirable property and show rigorously that the error-free capacity of our oscillatory, associative-memory networks can be made as high as that of the Hopfield network. They can thus not only provide insights into the origin of biological memory, but can also be potentially useful for applications in information science and engineering

  11. Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.

    Science.gov (United States)

    Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Proskovec, Amy L; McDermott, Timothy J; Wilson, Tony W

    2017-10-01

    The dynamic allocation of neural resources to discrete features within a visual scene enables us to react quickly and accurately to salient environmental circumstances. A network of bilateral cortical regions is known to subserve such visuospatial attention functions; however the oscillatory and functional connectivity dynamics of information coding within this network are not fully understood. Particularly, the coding of information within prototypical attention-network hubs and the subsecond functional connections formed between these hubs have not been adequately characterized. Herein, we use the precise temporal resolution of magnetoencephalography (MEG) to define spectrally specific functional nodes and connections that underlie the deployment of attention in visual space. Twenty-three healthy young adults completed a visuospatial discrimination task designed to elicit multispectral activity in visual cortex during MEG, and the resulting data were preprocessed and reconstructed in the time-frequency domain. Oscillatory responses were projected to the cortical surface using a beamformer, and time series were extracted from peak voxels to examine their temporal evolution. Dynamic functional connectivity was then computed between nodes within each frequency band of interest. We find that visual attention network nodes are defined functionally by oscillatory frequency, that the allocation of attention to the visual space dynamically modulates functional connectivity between these regions on a millisecond timescale, and that these modulations significantly correlate with performance on a spatial discrimination task. We conclude that functional hubs underlying visuospatial attention are segregated not only anatomically but also by oscillatory frequency, and importantly that these oscillatory signatures promote dynamic communication between these hubs. Hum Brain Mapp 38:5128-5140, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Oscillatory mechanisms of process binding in memory.

    Science.gov (United States)

    Klimesch, Wolfgang; Freunberger, Roman; Sauseng, Paul

    2010-06-01

    A central topic in cognitive neuroscience is the question, which processes underlie large scale communication within and between different neural networks. The basic assumption is that oscillatory phase synchronization plays an important role for process binding--the transient linking of different cognitive processes--which may be considered a special type of large scale communication. We investigate this question for memory processes on the basis of different types of oscillatory synchronization mechanisms. The reviewed findings suggest that theta and alpha phase coupling (and phase reorganization) reflect control processes in two large memory systems, a working memory and a complex knowledge system that comprises semantic long-term memory. It is suggested that alpha phase synchronization may be interpreted in terms of processes that coordinate top-down control (a process guided by expectancy to focus on relevant search areas) and access to memory traces (a process leading to the activation of a memory trace). An analogous interpretation is suggested for theta oscillations and the controlled access to episodic memories. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Comparative Analysis of Different Protocols to Manage Large Scale Networks

    OpenAIRE

    Anil Rao Pimplapure; Dr Jayant Dubey; Prashant Sen

    2013-01-01

    In recent year the numbers, complexity and size is increased in Large Scale Network. The best example of Large Scale Network is Internet, and recently once are Data-centers in Cloud Environment. In this process, involvement of several management tasks such as traffic monitoring, security and performance optimization is big task for Network Administrator. This research reports study the different protocols i.e. conventional protocols like Simple Network Management Protocol and newly Gossip bas...

  14. Two-scale approach to oscillatory singularly perturbed transport equations

    CERN Document Server

    Frénod, Emmanuel

    2017-01-01

    This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.

  15. Selective vulnerability related to aging in large-scale resting brain networks.

    Science.gov (United States)

    Zhang, Hong-Ying; Chen, Wen-Xin; Jiao, Yun; Xu, Yao; Zhang, Xiang-Rong; Wu, Jing-Tao

    2014-01-01

    Normal aging is associated with cognitive decline. Evidence indicates that large-scale brain networks are affected by aging; however, it has not been established whether aging has equivalent effects on specific large-scale networks. In the present study, 40 healthy subjects including 22 older (aged 60-80 years) and 18 younger (aged 22-33 years) adults underwent resting-state functional MRI scanning. Four canonical resting-state networks, including the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN) and salience network, were extracted, and the functional connectivities in these canonical networks were compared between the younger and older groups. We found distinct, disruptive alterations present in the large-scale aging-related resting brain networks: the ECN was affected the most, followed by the DAN. However, the DMN and salience networks showed limited functional connectivity disruption. The visual network served as a control and was similarly preserved in both groups. Our findings suggest that the aged brain is characterized by selective vulnerability in large-scale brain networks. These results could help improve our understanding of the mechanism of degeneration in the aging brain. Additional work is warranted to determine whether selective alterations in the intrinsic networks are related to impairments in behavioral performance.

  16. A Topology Visualization Early Warning Distribution Algorithm for Large-Scale Network Security Incidents

    Directory of Open Access Journals (Sweden)

    Hui He

    2013-01-01

    Full Text Available It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system’s emergency response capabilities, alleviate the cyber attacks’ damage, and strengthen the system’s counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system’s plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks’ topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  17. The application of large amplitude oscillatory stress in a study of fully formed fibrin clots

    Science.gov (United States)

    Lamer, T. F.; Thomas, B. R.; Curtis, D. J.; Badiei, N.; Williams, P. R.; Hawkins, K.

    2017-12-01

    The suitability of controlled stress large amplitude oscillatory shear (LAOStress) for the characterisation of the nonlinear viscoelastic properties of fully formed fibrin clots is investigated. Capturing the rich nonlinear viscoelastic behaviour of the fibrin network is important for understanding the structural behaviour of clots formed in blood vessels which are exposed to a wide range of shear stresses. We report, for the first time, that artefacts due to ringing exist in both the sample stress and strain waveforms of a LAOStress measurement which will lead to errors in the calculation of nonlinear viscoelastic properties. The process of smoothing the waveforms eliminates these artefacts whilst retaining essential rheological information. Furthermore, we demonstrate the potential of LAOStress for characterising the nonlinear viscoelastic properties of fibrin clots in response to incremental increases of applied stress up to the point of fracture. Alternating LAOStress and small amplitude oscillatory shear measurements provide detailed information of reversible and irreversible structural changes of the fibrin clot as a consequence of elevated levels of stress. We relate these findings to previous studies involving large scale deformations of fibrin clots. The LAOStress technique may provide useful information to help understand why some blood clots formed in vessels are stable (such as in deep vein thrombosis) and others break off (leading to a life threatening pulmonary embolism).

  18. Decomposing neural synchrony: toward an explanation for near-zero phase-lag in cortical oscillatory networks.

    Directory of Open Access Journals (Sweden)

    Rajasimhan Rajagovindan

    Full Text Available BACKGROUND: Synchronized oscillation in cortical networks has been suggested as a mechanism for diverse functions ranging from perceptual binding to memory formation to sensorimotor integration. Concomitant with synchronization is the occurrence of near-zero phase-lag often observed between network components. Recent theories have considered the importance of this phenomenon in establishing an effective communication framework among neuronal ensembles. METHODOLOGY/PRINCIPAL FINDINGS: Two factors, among possibly others, can be hypothesized to contribute to the near-zero phase-lag relationship: (1 positively correlated common input with no significant relative time delay and (2 bidirectional interaction. Thus far, no empirical test of these hypotheses has been possible for lack of means to tease apart the specific causes underlying the observed synchrony. In this work simulation examples were first used to illustrate the ideas. A quantitative method that decomposes the statistical interdependence between two cortical areas into a feed-forward, a feed-back and a common-input component was then introduced and applied to test the hypotheses on multichannel local field potential recordings from two behaving monkeys. CONCLUSION/SIGNIFICANCE: The near-zero phase-lag phenomenon is important in the study of large-scale oscillatory networks. A rigorous mathematical theorem is used for the first time to empirically examine the factors that contribute to this phenomenon. Given the critical role that oscillatory activity is likely to play in the regulation of biological processes at all levels, the significance of the proposed method may extend beyond systems neuroscience, the level at which the present analysis is conceived and performed.

  19. PKI security in large-scale healthcare networks

    OpenAIRE

    Mantas, G.; Lymberopoulos, D.; Komninos, N.

    2012-01-01

    During the past few years a lot of PKI (Public Key Infrastructures) infrastructures have been proposed for healthcare networks in order to ensure secure communication services and exchange of data among healthcare professionals. However, there is a plethora of challenges in these healthcare PKI infrastructures. Especially, there are a lot of challenges for PKI infrastructures deployed over large-scale healthcare networks. In this paper, we propose a PKI infrastructure to ensure security in a ...

  20. New Visions for Large Scale Networks: Research and Applications

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This paper documents the findings of the March 12-14, 2001 Workshop on New Visions for Large-Scale Networks: Research and Applications. The workshops objectives were...

  1. Group Centric Networking: Large Scale Over the Air Testing of Group Centric Networking

    Science.gov (United States)

    2016-11-01

    Large Scale Over-the-Air Testing of Group Centric Networking Logan Mercer, Greg Kuperman, Andrew Hunter, Brian Proulx MIT Lincoln Laboratory...performance of Group Centric Networking (GCN), a networking protocol developed for robust and scalable communications in lossy networks where users are...devices, and the ad-hoc nature of the network . Group Centric Networking (GCN) is a proposed networking protocol that addresses challenges specific to

  2. Aggregated Representation of Distribution Networks for Large-Scale Transmission Network Simulations

    DEFF Research Database (Denmark)

    Göksu, Ömer; Altin, Müfit; Sørensen, Poul Ejnar

    2014-01-01

    As a common practice of large-scale transmission network analysis the distribution networks have been represented as aggregated loads. However, with increasing share of distributed generation, especially wind and solar power, in the distribution networks, it became necessary to include...... the distributed generation within those analysis. In this paper a practical methodology to obtain aggregated behaviour of the distributed generation is proposed. The methodology, which is based on the use of the IEC standard wind turbine models, is applied on a benchmark distribution network via simulations....

  3. Synchronization enhancement via an oscillatory bath in a network of ...

    Indian Academy of Sciences (India)

    2015-02-05

    Feb 5, 2015 ... The possibility of using a dynamic environment to achieve and optimize phase synchronization in a network of self-excited cells with free-end boundary conditions is addressed in this paper. The dynamic environment is an oscillatory bath coupled linearly to a network of four cells. The boundaries of the ...

  4. A simple mechanical system for studying adaptive oscillatory neural networks

    DEFF Research Database (Denmark)

    Jouffroy, Guillaume; Jouffroy, Jerome

    Central Pattern Generators (CPG) are oscillatory systems that are responsible for generating rhythmic patterns at the origin of many biological activities such as for example locomotion or digestion. These systems are generally modelled as recurrent neural networks whose parameters are tuned so...... that the network oscillates in a suitable way, this tuning being a non trivial task. It also appears that the link with the physical body that these oscillatory entities control has a fundamental importance, and it seems that most bodies used for experimental validation in the literature (walking robots, lamprey...... a brief description of the Roller-Racer, we present as a preliminary study an RNN-based feed-forward controller whose parameters are obtained through the well-known teacher forcing learning algorithm, extended to learn signals with a continuous component....

  5. Integration and segregation of large-scale brain networks during short-term task automatization.

    Science.gov (United States)

    Mohr, Holger; Wolfensteller, Uta; Betzel, Richard F; Mišić, Bratislav; Sporns, Olaf; Richiardi, Jonas; Ruge, Hannes

    2016-11-03

    The human brain is organized into large-scale functional networks that can flexibly reconfigure their connectivity patterns, supporting both rapid adaptive control and long-term learning processes. However, it has remained unclear how short-term network dynamics support the rapid transformation of instructions into fluent behaviour. Comparing fMRI data of a learning sample (N=70) with a control sample (N=67), we find that increasingly efficient task processing during short-term practice is associated with a reorganization of large-scale network interactions. Practice-related efficiency gains are facilitated by enhanced coupling between the cingulo-opercular network and the dorsal attention network. Simultaneously, short-term task automatization is accompanied by decreasing activation of the fronto-parietal network, indicating a release of high-level cognitive control, and a segregation of the default mode network from task-related networks. These findings suggest that short-term task automatization is enabled by the brain's ability to rapidly reconfigure its large-scale network organization involving complementary integration and segregation processes.

  6. Base Station Placement Algorithm for Large-Scale LTE Heterogeneous Networks.

    Science.gov (United States)

    Lee, Seungseob; Lee, SuKyoung; Kim, Kyungsoo; Kim, Yoon Hyuk

    2015-01-01

    Data traffic demands in cellular networks today are increasing at an exponential rate, giving rise to the development of heterogeneous networks (HetNets), in which small cells complement traditional macro cells by extending coverage to indoor areas. However, the deployment of small cells as parts of HetNets creates a key challenge for operators' careful network planning. In particular, massive and unplanned deployment of base stations can cause high interference, resulting in highly degrading network performance. Although different mathematical modeling and optimization methods have been used to approach various problems related to this issue, most traditional network planning models are ill-equipped to deal with HetNet-specific characteristics due to their focus on classical cellular network designs. Furthermore, increased wireless data demands have driven mobile operators to roll out large-scale networks of small long term evolution (LTE) cells. Therefore, in this paper, we aim to derive an optimum network planning algorithm for large-scale LTE HetNets. Recently, attempts have been made to apply evolutionary algorithms (EAs) to the field of radio network planning, since they are characterized as global optimization methods. Yet, EA performance often deteriorates rapidly with the growth of search space dimensionality. To overcome this limitation when designing optimum network deployments for large-scale LTE HetNets, we attempt to decompose the problem and tackle its subcomponents individually. Particularly noting that some HetNet cells have strong correlations due to inter-cell interference, we propose a correlation grouping approach in which cells are grouped together according to their mutual interference. Both the simulation and analytical results indicate that the proposed solution outperforms the random-grouping based EA as well as an EA that detects interacting variables by monitoring the changes in the objective function algorithm in terms of system

  7. The evolution of a horizontal scale for oscillatory magnetoconvection

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J O [Monash Univ., Clayton (Australia). Dept. of Mathematics; Lopez, J M [Aeronautical Research Labs., Port Melbourne (Australia). Aerodynamics Div.

    1989-01-01

    Oscillatory convective motions have been observed in the umbrae of sunspots and, in the past, the linear theory of overstability has been used for sunspot models. Here a non-linear model for oscillatory convection has been used to investigate the possibility of a preferred horizontal cell size for these motions, in the presence of a magnetic field. The integration forward in time, from the conductive state, of the non-linear multimode equations governing magnetoconvection when the magnetic Prandtl number is less than one portrays a complex interaction between the evolving magnetic and vertical velocity horizontal scales. Preferred horizontal scales for the convective cells have been established by identifying the modes that substantially contribute to the overall convective heat transport. All other modes, although initially perturbed, in time essentially decay to zero through self interaction. 8 refs., 5 figs.

  8. Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juntae; Helgeson, Matthew E., E-mail: helgeson@engineering.ucsb.edu [Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106 (United States); Merger, Dimitri; Wilhelm, Manfred [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany)

    2014-09-01

    We investigate yielding in a colloidal gel that forms a heterogeneous structure, consisting of a two-phase bicontinuous network of colloid-rich domains of fractal clusters and colloid-poor domains. Combining large amplitude oscillatory shear measurements with simultaneous small and ultra-small angle neutron scattering (rheo-SANS/USANS), we characterize both the nonlinear mechanical processes and strain amplitude-dependent microstructure underlying yielding. We observe a broad, three-stage yielding process that evolves over an order of magnitude in strain amplitude between the onset of nonlinearity and flow. Analyzing the intracycle response as a sequence of physical processes reveals a transition from elastic straining to elastoplastic thinning (which dominates in region I) and eventually yielding (which evolves through region II) and flow (which saturates in region III), and allows quantification of instantaneous nonlinear parameters associated with yielding. These measures exhibit significant strain rate amplitude dependence above a characteristic frequency, which we argue is governed by poroelastic effects. Correlating these results with time-averaged rheo-USANS measurements reveals that the material passes through a cascade of structural breakdown from large to progressively smaller length scales. In region I, compression of the fractal domains leads to the formation of large voids. In regions II and III, cluster-cluster correlations become increasingly homogeneous, suggesting breakage and eventually depercolation of intercluster bonds at the yield point. All significant structural changes occur on the micron-scale, suggesting that large-scale rearrangements of hundreds or thousands of particles, rather than the homogeneous rearrangement of particle-particle bonds, dominate the initial yielding of heterogeneous colloidal gels.

  9. Foundational perspectives on causality in large-scale brain networks

    Science.gov (United States)

    Mannino, Michael; Bressler, Steven L.

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  10. Localization Algorithm Based on a Spring Model (LASM for Large Scale Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2008-03-01

    Full Text Available A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1 for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.

  11. Forced phase-locked states and information retrieval in a two-layer network of oscillatory neurons with directional connectivity

    International Nuclear Information System (INIS)

    Kazantsev, Victor; Pimashkin, Alexey

    2007-01-01

    We propose two-layer architecture of associative memory oscillatory network with directional interlayer connectivity. The network is capable to store information in the form of phase-locked (in-phase and antiphase) oscillatory patterns. The first (input) layer takes an input pattern to be recognized and their units are unidirectionally connected with all units of the second (control) layer. The connection strengths are weighted using the Hebbian rule. The output (retrieved) patterns appear as forced-phase locked states of the control layer. The conditions are found and analytically expressed for pattern retrieval in response on incoming stimulus. It is shown that the system is capable to recover patterns with a certain level of distortions or noises in their profiles. The architecture is implemented with the Kuramoto phase model and using synaptically coupled neural oscillators with spikes. It is found that the spiking model is capable to retrieve patterns using the spiking phase that translates memorized patterns into the spiking phase shifts at different time scales

  12. Large-Scale Cooperative Task Distribution on Peer-to-Peer Networks

    Science.gov (United States)

    2012-01-01

    SUBTITLE Large-scale cooperative task distribution on peer-to-peer networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...disadvantages of ML- Chord are its fixed size (two layers), and limited scala - bility for large-scale systems. RC-Chord extends ML- D. Karrels et al...configurable before runtime. This can be improved by incorporating a distributed learning algorithm to tune the number and range of the DLoE tracking

  13. Complex modular structure of large-scale brain networks

    Science.gov (United States)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  14. Coarse-Grain Bandwidth Estimation Scheme for Large-Scale Network

    Science.gov (United States)

    Cheung, Kar-Ming; Jennings, Esther H.; Sergui, John S.

    2013-01-01

    A large-scale network that supports a large number of users can have an aggregate data rate of hundreds of Mbps at any time. High-fidelity simulation of a large-scale network might be too complicated and memory-intensive for typical commercial-off-the-shelf (COTS) tools. Unlike a large commercial wide-area-network (WAN) that shares diverse network resources among diverse users and has a complex topology that requires routing mechanism and flow control, the ground communication links of a space network operate under the assumption of a guaranteed dedicated bandwidth allocation between specific sparse endpoints in a star-like topology. This work solved the network design problem of estimating the bandwidths of a ground network architecture option that offer different service classes to meet the latency requirements of different user data types. In this work, a top-down analysis and simulation approach was created to size the bandwidths of a store-and-forward network for a given network topology, a mission traffic scenario, and a set of data types with different latency requirements. These techniques were used to estimate the WAN bandwidths of the ground links for different architecture options of the proposed Integrated Space Communication and Navigation (SCaN) Network. A new analytical approach, called the "leveling scheme," was developed to model the store-and-forward mechanism of the network data flow. The term "leveling" refers to the spreading of data across a longer time horizon without violating the corresponding latency requirement of the data type. Two versions of the leveling scheme were developed: 1. A straightforward version that simply spreads the data of each data type across the time horizon and doesn't take into account the interactions among data types within a pass, or between data types across overlapping passes at a network node, and is inherently sub-optimal. 2. Two-state Markov leveling scheme that takes into account the second order behavior of

  15. Structural Quality of Service in Large-Scale Networks

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup

    , telephony and data. To meet the requirements of the different applications, and to handle the increased vulnerability to failures, the ability to design robust networks providing good Quality of Service is crucial. However, most planning of large-scale networks today is ad-hoc based, leading to highly...... complex networks lacking predictability and global structural properties. The thesis applies the concept of Structural Quality of Service to formulate desirable global properties, and it shows how regular graph structures can be used to obtain such properties.......Digitalization has created the base for co-existence and convergence in communications, leading to an increasing use of multi service networks. This is for example seen in the Fiber To The Home implementations, where a single fiber is used for virtually all means of communication, including TV...

  16. Limitations and tradeoffs in synchronization of large-scale networks with uncertain links

    Science.gov (United States)

    Diwadkar, Amit; Vaidya, Umesh

    2016-01-01

    The synchronization of nonlinear systems connected over large-scale networks has gained popularity in a variety of applications, such as power grids, sensor networks, and biology. Stochastic uncertainty in the interconnections is a ubiquitous phenomenon observed in these physical and biological networks. We provide a size-independent network sufficient condition for the synchronization of scalar nonlinear systems with stochastic linear interactions over large-scale networks. This sufficient condition, expressed in terms of nonlinear dynamics, the Laplacian eigenvalues of the nominal interconnections, and the variance and location of the stochastic uncertainty, allows us to define a synchronization margin. We provide an analytical characterization of important trade-offs between the internal nonlinear dynamics, network topology, and uncertainty in synchronization. For nearest neighbour networks, the existence of an optimal number of neighbours with a maximum synchronization margin is demonstrated. An analytical formula for the optimal gain that produces the maximum synchronization margin allows us to compare the synchronization properties of various complex network topologies. PMID:27067994

  17. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance.

    Science.gov (United States)

    Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J

    2017-03-14

    Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization.

  18. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.

    Science.gov (United States)

    Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng

    2017-04-10

    This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.

  19. Development of large-scale functional brain networks in children.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2009-07-01

    Full Text Available The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y and 22 young-adults (ages 19-22 y. Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  20. Development of large-scale functional brain networks in children.

    Science.gov (United States)

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  1. Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks.

    Science.gov (United States)

    Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo

    2014-04-21

    Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.

  2. Active self-testing noise measurement sensors for large-scale environmental sensor networks.

    Science.gov (United States)

    Domínguez, Federico; Cuong, Nguyen The; Reinoso, Felipe; Touhafi, Abdellah; Steenhaut, Kris

    2013-12-13

    Large-scale noise pollution sensor networks consist of hundreds of spatially distributed microphones that measure environmental noise. These networks provide historical and real-time environmental data to citizens and decision makers and are therefore a key technology to steer environmental policy. However, the high cost of certified environmental microphone sensors render large-scale environmental networks prohibitively expensive. Several environmental network projects have started using off-the-shelf low-cost microphone sensors to reduce their costs, but these sensors have higher failure rates and produce lower quality data. To offset this disadvantage, we developed a low-cost noise sensor that actively checks its condition and indirectly the integrity of the data it produces. The main design concept is to embed a 13 mm speaker in the noise sensor casing and, by regularly scheduling a frequency sweep, estimate the evolution of the microphone's frequency response over time. This paper presents our noise sensor's hardware and software design together with the results of a test deployment in a large-scale environmental network in Belgium. Our middle-range-value sensor (around €50) effectively detected all experienced malfunctions, in laboratory tests and outdoor deployments, with a few false positives. Future improvements could further lower the cost of our sensor below €10.

  3. Large-scale grid management

    International Nuclear Information System (INIS)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-01-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series

  4. Using Agent Base Models to Optimize Large Scale Network for Large System Inventories

    Science.gov (United States)

    Shameldin, Ramez Ahmed; Bowling, Shannon R.

    2010-01-01

    The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.

  5. Large-scale simulations of plastic neural networks on neuromorphic hardware

    Directory of Open Access Journals (Sweden)

    James Courtney Knight

    2016-04-01

    Full Text Available SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Rather than using bespoke analog or digital hardware, the basic computational unit of a SpiNNaker system is a general-purpose ARM processor, allowing it to be programmed to simulate a wide variety of neuron and synapse models. This flexibility is particularly valuable in the study of biological plasticity phenomena. A recently proposed learning rule based on the Bayesian Confidence Propagation Neural Network (BCPNN paradigm offers a generic framework for modeling the interaction of different plasticity mechanisms using spiking neurons. However, it can be computationally expensive to simulate large networks with BCPNN learning since it requires multiple state variables for each synapse, each of which needs to be updated every simulation time-step. We discuss the trade-offs in efficiency and accuracy involved in developing an event-based BCPNN implementation for SpiNNaker based on an analytical solution to the BCPNN equations, and detail the steps taken to fit this within the limited computational and memory resources of the SpiNNaker architecture. We demonstrate this learning rule by learning temporal sequences of neural activity within a recurrent attractor network which we simulate at scales of up to 20000 neurons and 51200000 plastic synapses: the largest plastic neural network ever to be simulated on neuromorphic hardware. We also run a comparable simulation on a Cray XC-30 supercomputer system and find that, if it is to match the run-time of our SpiNNaker simulation, the super computer system uses approximately more power. This suggests that cheaper, more power efficient neuromorphic systems are becoming useful discovery tools in the study of plasticity in large-scale brain models.

  6. Unified Tractable Model for Large-Scale Networks Using Stochastic Geometry: Analysis and Design

    KAUST Repository

    Afify, Laila H.

    2016-12-01

    The ever-growing demands for wireless technologies necessitate the evolution of next generation wireless networks that fulfill the diverse wireless users requirements. However, upscaling existing wireless networks implies upscaling an intrinsic component in the wireless domain; the aggregate network interference. Being the main performance limiting factor, it becomes crucial to develop a rigorous analytical framework to accurately characterize the out-of-cell interference, to reap the benefits of emerging networks. Due to the different network setups and key performance indicators, it is essential to conduct a comprehensive study that unifies the various network configurations together with the different tangible performance metrics. In that regard, the focus of this thesis is to present a unified mathematical paradigm, based on Stochastic Geometry, for large-scale networks with different antenna/network configurations. By exploiting such a unified study, we propose an efficient automated network design strategy to satisfy the desired network objectives. First, this thesis studies the exact aggregate network interference characterization, by accounting for each of the interferers signals in the large-scale network. Second, we show that the information about the interferers symbols can be approximated via the Gaussian signaling approach. The developed mathematical model presents twofold analysis unification for uplink and downlink cellular networks literature. It aligns the tangible decoding error probability analysis with the abstract outage probability and ergodic rate analysis. Furthermore, it unifies the analysis for different antenna configurations, i.e., various multiple-input multiple-output (MIMO) systems. Accordingly, we propose a novel reliable network design strategy that is capable of appropriately adjusting the network parameters to meet desired design criteria. In addition, we discuss the diversity-multiplexing tradeoffs imposed by differently favored

  7. Large-Scale Recurrent Neural Network Based Modelling of Gene Regulatory Network Using Cuckoo Search-Flower Pollination Algorithm.

    Science.gov (United States)

    Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat K

    2016-01-01

    The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.

  8. Delay selection by spike-timing-dependent plasticity in recurrent networks of spiking neurons receiving oscillatory inputs.

    Directory of Open Access Journals (Sweden)

    Robert R Kerr

    Full Text Available Learning rules, such as spike-timing-dependent plasticity (STDP, change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.

  9. Modelling and measurements of sand transport processes over full-scale ripples in oscillatory flow

    NARCIS (Netherlands)

    van der Werf, Jebbe J.; Ribberink, Jan S.; O'Donoghue, Tom; Doucette, Jeffrey C.

    2006-01-01

    A new series of laboratory experiments was performed in the Aberdeen Oscillatory Flow Tunnel (AOFT) and the Large Oscillating Water Tunnel (LOWT) to investigate time-averaged suspended sand concentrations and transport rates over rippled beds in regular and irregular oscillatory flow. The

  10. Detection of large-scale concentric gravity waves from a Chinese airglow imager network

    Science.gov (United States)

    Lai, Chang; Yue, Jia; Xu, Jiyao; Yuan, Wei; Li, Qinzeng; Liu, Xiao

    2018-06-01

    Concentric gravity waves (CGWs) contain a broad spectrum of horizontal wavelengths and periods due to their instantaneous localized sources (e.g., deep convection, volcanic eruptions, or earthquake, etc.). However, it is difficult to observe large-scale gravity waves of >100 km wavelength from the ground for the limited field of view of a single camera and local bad weather. Previously, complete large-scale CGW imagery could only be captured by satellite observations. In the present study, we developed a novel method that uses assembling separate images and applying low-pass filtering to obtain temporal and spatial information about complete large-scale CGWs from a network of all-sky airglow imagers. Coordinated observations from five all-sky airglow imagers in Northern China were assembled and processed to study large-scale CGWs over a wide area (1800 km × 1 400 km), focusing on the same two CGW events as Xu et al. (2015). Our algorithms yielded images of large-scale CGWs by filtering out the small-scale CGWs. The wavelengths, wave speeds, and periods of CGWs were measured from a sequence of consecutive assembled images. Overall, the assembling and low-pass filtering algorithms can expand the airglow imager network to its full capacity regarding the detection of large-scale gravity waves.

  11. Multilevel method for modeling large-scale networks.

    Energy Technology Data Exchange (ETDEWEB)

    Safro, I. M. (Mathematics and Computer Science)

    2012-02-24

    Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from

  12. Understanding the Generation of Network Bursts by Adaptive Oscillatory Neurons

    Directory of Open Access Journals (Sweden)

    Tanguy Fardet

    2018-02-01

    Full Text Available Experimental and numerical studies have revealed that isolated populations of oscillatory neurons can spontaneously synchronize and generate periodic bursts involving the whole network. Such a behavior has notably been observed for cultured neurons in rodent's cortex or hippocampus. We show here that a sufficient condition for this network bursting is the presence of an excitatory population of oscillatory neurons which displays spike-driven adaptation. We provide an analytic model to analyze network bursts generated by coupled adaptive exponential integrate-and-fire neurons. We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve to reach a synchronized intermittent bursting state. The presence of inhibitory neurons or plastic synapses can then modulate this dynamics in many ways but is not necessary for its appearance. Thanks to a simple self-consistent equation, our model gives an intuitive and semi-quantitative tool to understand the bursting behavior. Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain bursting termination. Through a thorough mapping between the theoretical parameters and ion-channel properties, we discuss the biological mechanisms that could be involved and the relevance of the explored parameter-space. Such an insight enables us to propose experimentally-testable predictions regarding how blocking fast, medium or slow after-hyperpolarization channels would affect the firing rate and burst duration, as well as the interburst interval.

  13. Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.

    Science.gov (United States)

    Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu

    2016-01-01

    Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities. © 2015 Wiley Periodicals, Inc.

  14. An efficient method based on the uniformity principle for synthesis of large-scale heat exchanger networks

    International Nuclear Information System (INIS)

    Zhang, Chunwei; Cui, Guomin; Chen, Shang

    2016-01-01

    Highlights: • Two dimensionless uniformity factors are presented to heat exchange network. • The grouping of process streams reduces the computational complexity of large-scale HENS problems. • The optimal sub-network can be obtained by Powell particle swarm optimization algorithm. • The method is illustrated by a case study involving 39 process streams, with a better solution. - Abstract: The optimal design of large-scale heat exchanger networks is a difficult task due to the inherent non-linear characteristics and the combinatorial nature of heat exchangers. To solve large-scale heat exchanger network synthesis (HENS) problems, two dimensionless uniformity factors to describe the heat exchanger network (HEN) uniformity in terms of the temperature difference and the accuracy of process stream grouping are deduced. Additionally, a novel algorithm that combines deterministic and stochastic optimizations to obtain an optimal sub-network with a suitable heat load for a given group of streams is proposed, and is named the Powell particle swarm optimization (PPSO). As a result, the synthesis of large-scale heat exchanger networks is divided into two corresponding sub-parts, namely, the grouping of process streams and the optimization of sub-networks. This approach reduces the computational complexity and increases the efficiency of the proposed method. The robustness and effectiveness of the proposed method are demonstrated by solving a large-scale HENS problem involving 39 process streams, and the results obtained are better than those previously published in the literature.

  15. Oscillatory activity in neocortical networks during tactile discrimination near the limit of spatial acuity.

    Science.gov (United States)

    Adhikari, Bhim M; Sathian, K; Epstein, Charles M; Lamichhane, Bidhan; Dhamala, Mukesh

    2014-05-01

    Oscillatory interactions within functionally specialized but distributed brain regions are believed to be central to perceptual and cognitive functions. Here, using human scalp electroencephalography (EEG) recordings combined with source reconstruction techniques, we study how oscillatory activity functionally organizes different neocortical regions during a tactile discrimination task near the limit of spatial acuity. While undergoing EEG recordings, blindfolded participants felt a linear three-dot array presented electromechanically, under computer control, and reported whether the central dot was offset to the left or right. The average brain response differed significantly for trials with correct and incorrect perceptual responses in the timeframe approximately between 130 and 175ms. During trials with correct responses, source-level peak activity appeared in the left primary somatosensory cortex (SI) at around 45ms, in the right lateral occipital complex (LOC) at 130ms, in the right posterior intraparietal sulcus (pIPS) at 160ms, and finally in the left dorsolateral prefrontal cortex (dlPFC) at 175ms. Spectral interdependency analysis of activity in these nodes showed two distinct distributed networks, a dominantly feedforward network in the beta band (12-30Hz) that included all four nodes and a recurrent network in the gamma band (30-100Hz) that linked SI, pIPS and dlPFC. Measures of network activity in both bands were correlated with the accuracy of task performance. These findings suggest that beta and gamma band oscillatory networks coordinate activity between neocortical regions mediating sensory and cognitive processing to arrive at tactile perceptual decisions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Large-Scale Analysis of Network Bistability for Human Cancers

    Science.gov (United States)

    Shiraishi, Tetsuya; Matsuyama, Shinako; Kitano, Hiroaki

    2010-01-01

    Protein–protein interaction and gene regulatory networks are likely to be locked in a state corresponding to a disease by the behavior of one or more bistable circuits exhibiting switch-like behavior. Sets of genes could be over-expressed or repressed when anomalies due to disease appear, and the circuits responsible for this over- or under-expression might persist for as long as the disease state continues. This paper shows how a large-scale analysis of network bistability for various human cancers can identify genes that can potentially serve as drug targets or diagnosis biomarkers. PMID:20628618

  17. Tradeoffs between quality-of-control and quality-of-service in large-scale nonlinear networked control systems

    NARCIS (Netherlands)

    Borgers, D. P.; Geiselhart, R.; Heemels, W. P. M. H.

    2017-01-01

    In this paper we study input-to-state stability (ISS) of large-scale networked control systems (NCSs) in which sensors, controllers and actuators are connected via multiple (local) communication networks which operate asynchronously and independently of each other. We model the large-scale NCS as an

  18. Equation Chapter 1 Section 1Cross Layer Design for Localization in Large-Scale Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yuanfeng ZHANG

    2014-02-01

    Full Text Available There are many technical challenges for designing large-scale underwater sensor networks, especially the sensor node localization. Although many papers studied for large-scale sensor node localization, previous studies mainly study the location algorithm without the cross layer design for localization. In this paper, by utilizing the network hierarchical structure of underwater sensor networks, we propose a new large-scale underwater acoustic localization scheme based on cross layer design. In this scheme, localization is performed in a hierarchical way, and the whole localization process focused on the physical layer, data link layer and application layer. We increase the pipeline parameters which matched the acoustic channel, added in MAC protocol to increase the authenticity of the large-scale underwater sensor networks, and made analysis of different location algorithm. We conduct extensive simulations, and our results show that MAC layer protocol and the localization algorithm all would affect the result of localization which can balance the trade-off between localization accuracy, localization coverage, and communication cost.

  19. Finite-size scaling for quantum chains with an oscillatory energy gap

    International Nuclear Information System (INIS)

    Hoeger, C.; Gehlen, G. von; Rittenberg, V.

    1984-07-01

    We show that the existence of zeroes of the energy gap for finite quantum chains is related to a nonvanishing wavevector. Finite-size scaling ansaetze are formulated for incommensurable and oscillatory structures. The ansaetze are verified in the one-dimensional XY model in a transverse field. (orig.)

  20. Networking for large-scale science: infrastructure, provisioning, transport and application mapping

    International Nuclear Information System (INIS)

    Rao, Nageswara S; Carter, Steven M; Wu Qishi; Wing, William R; Zhu Mengxia; Mezzacappa, Anthony; Veeraraghavan, Malathi; Blondin, John M

    2005-01-01

    Large-scale science computations and experiments require unprecedented network capabilities in the form of large bandwidth and dynamically stable connections to support data transfers, interactive visualizations, and monitoring and steering operations. A number of component technologies dealing with the infrastructure, provisioning, transport and application mappings must be developed and/or optimized to achieve these capabilities. We present a brief account of the following technologies that contribute toward achieving these network capabilities: (a) DOE UltraScienceNet and NSF CHEETAH network testbeds that provide on-demand and scheduled dedicated network connections; (b) experimental results on transport protocols that achieve close to 100% utilization on dedicated 1Gbps wide-area channels; (c) a scheme for optimally mapping a visualization pipeline onto a network to minimize the end-to-end delays; and (d) interconnect configuration and protocols that provides multiple Gbps flows from Cray X1 to external hosts

  1. Networking for large-scale science: infrastructure, provisioning, transport and application mapping

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Carter, Steven M [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wu Qishi [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wing, William R [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhu Mengxia [Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803 (United States); Mezzacappa, Anthony [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Veeraraghavan, Malathi [Department of Computer Science, University of Virginia, Charlottesville, VA 22904 (United States); Blondin, John M [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States)

    2005-01-01

    Large-scale science computations and experiments require unprecedented network capabilities in the form of large bandwidth and dynamically stable connections to support data transfers, interactive visualizations, and monitoring and steering operations. A number of component technologies dealing with the infrastructure, provisioning, transport and application mappings must be developed and/or optimized to achieve these capabilities. We present a brief account of the following technologies that contribute toward achieving these network capabilities: (a) DOE UltraScienceNet and NSF CHEETAH network testbeds that provide on-demand and scheduled dedicated network connections; (b) experimental results on transport protocols that achieve close to 100% utilization on dedicated 1Gbps wide-area channels; (c) a scheme for optimally mapping a visualization pipeline onto a network to minimize the end-to-end delays; and (d) interconnect configuration and protocols that provides multiple Gbps flows from Cray X1 to external hosts.

  2. Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories.

    Science.gov (United States)

    Chockalingam, Sriram; Aluru, Maneesha; Aluru, Srinivas

    2016-09-19

    Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable number of genes. This is primarily due to the effects of aggregating a diverse array of experiments with different technical and biological scenarios. Here we introduce a pre-processing pipeline suitable for inferring genome-scale gene networks from large microarray datasets. We show that partitioning of the available microarray datasets according to biological relevance into tissue- and process-specific categories significantly extends the limits of downstream network construction. We demonstrate the effectiveness of our pre-processing pipeline by inferring genome-scale networks for the model plant Arabidopsis thaliana using two different construction methods and a collection of 11,760 Affymetrix ATH1 microarray chips. Our pre-processing pipeline and the datasets used in this paper are made available at http://alurulab.cc.gatech.edu/microarray-pp.

  3. Non-parametric co-clustering of large scale sparse bipartite networks on the GPU

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen; Mørup, Morten; Hansen, Lars Kai

    2011-01-01

    of row and column clusters from a hypothesis space of an infinite number of clusters. To reach large scale applications of co-clustering we exploit that parameter inference for co-clustering is well suited for parallel computing. We develop a generic GPU framework for efficient inference on large scale...... sparse bipartite networks and achieve a speedup of two orders of magnitude compared to estimation based on conventional CPUs. In terms of scalability we find for networks with more than 100 million links that reliable inference can be achieved in less than an hour on a single GPU. To efficiently manage...

  4. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities.

    Science.gov (United States)

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks

  5. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities

    Directory of Open Access Journals (Sweden)

    Valerio Santangelo

    2018-02-01

    Full Text Available Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010 to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory in one spatial location. The analysis of the independent components (ICs revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC. The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among

  6. Oscillatory neuronal activity reflects lexical-semantic feature integration within and across sensory modalities in distributed cortical networks.

    Science.gov (United States)

    van Ackeren, Markus J; Schneider, Till R; Müsch, Kathrin; Rueschemeyer, Shirley-Ann

    2014-10-22

    Research from the previous decade suggests that word meaning is partially stored in distributed modality-specific cortical networks. However, little is known about the mechanisms by which semantic content from multiple modalities is integrated into a coherent multisensory representation. Therefore we aimed to characterize differences between integration of lexical-semantic information from a single modality compared with two sensory modalities. We used magnetoencephalography in humans to investigate changes in oscillatory neuronal activity while participants verified two features for a given target word (e.g., "bus"). Feature pairs consisted of either two features from the same modality (visual: "red," "big") or different modalities (auditory and visual: "red," "loud"). The results suggest that integrating modality-specific features of the target word is associated with enhanced high-frequency power (80-120 Hz), while integrating features from different modalities is associated with a sustained increase in low-frequency power (2-8 Hz). Source reconstruction revealed a peak in the anterior temporal lobe for low-frequency and high-frequency effects. These results suggest that integrating lexical-semantic knowledge at different cortical scales is reflected in frequency-specific oscillatory neuronal activity in unisensory and multisensory association networks. Copyright © 2014 the authors 0270-6474/14/3314318-06$15.00/0.

  7. Large-scale modeling of epileptic seizures: scaling properties of two parallel neuronal network simulation algorithms.

    Science.gov (United States)

    Pesce, Lorenzo L; Lee, Hyong C; Hereld, Mark; Visser, Sid; Stevens, Rick L; Wildeman, Albert; van Drongelen, Wim

    2013-01-01

    Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.

  8. Large-Scale Modeling of Epileptic Seizures: Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms

    Directory of Open Access Journals (Sweden)

    Lorenzo L. Pesce

    2013-01-01

    Full Text Available Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons and processor pool sizes (1 to 256 processors. Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.

  9. Local, distributed topology control for large-scale wireless ad-hoc networks

    NARCIS (Netherlands)

    Nieberg, T.; Hurink, Johann L.

    In this document, topology control of a large-scale, wireless network by a distributed algorithm that uses only locally available information is presented. Topology control algorithms adjust the transmission power of wireless nodes to create a desired topology. The algorithm, named local power

  10. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Xiangyun Xiao

    Full Text Available The reconstruction of gene regulatory networks (GRNs from high-throughput experimental data has been considered one of the most important issues in systems biology research. With the development of high-throughput technology and the complexity of biological problems, we need to reconstruct GRNs that contain thousands of genes. However, when many existing algorithms are used to handle these large-scale problems, they will encounter two important issues: low accuracy and high computational cost. To overcome these difficulties, the main goal of this study is to design an effective parallel algorithm to infer large-scale GRNs based on high-performance parallel computing environments. In this study, we proposed a novel asynchronous parallel framework to improve the accuracy and lower the time complexity of large-scale GRN inference by combining splitting technology and ordinary differential equation (ODE-based optimization. The presented algorithm uses the sparsity and modularity of GRNs to split whole large-scale GRNs into many small-scale modular subnetworks. Through the ODE-based optimization of all subnetworks in parallel and their asynchronous communications, we can easily obtain the parameters of the whole network. To test the performance of the proposed approach, we used well-known benchmark datasets from Dialogue for Reverse Engineering Assessments and Methods challenge (DREAM, experimentally determined GRN of Escherichia coli and one published dataset that contains more than 10 thousand genes to compare the proposed approach with several popular algorithms on the same high-performance computing environments in terms of both accuracy and time complexity. The numerical results demonstrate that our parallel algorithm exhibits obvious superiority in inferring large-scale GRNs.

  11. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.

    Science.gov (United States)

    Xiao, Xiangyun; Zhang, Wei; Zou, Xiufen

    2015-01-01

    The reconstruction of gene regulatory networks (GRNs) from high-throughput experimental data has been considered one of the most important issues in systems biology research. With the development of high-throughput technology and the complexity of biological problems, we need to reconstruct GRNs that contain thousands of genes. However, when many existing algorithms are used to handle these large-scale problems, they will encounter two important issues: low accuracy and high computational cost. To overcome these difficulties, the main goal of this study is to design an effective parallel algorithm to infer large-scale GRNs based on high-performance parallel computing environments. In this study, we proposed a novel asynchronous parallel framework to improve the accuracy and lower the time complexity of large-scale GRN inference by combining splitting technology and ordinary differential equation (ODE)-based optimization. The presented algorithm uses the sparsity and modularity of GRNs to split whole large-scale GRNs into many small-scale modular subnetworks. Through the ODE-based optimization of all subnetworks in parallel and their asynchronous communications, we can easily obtain the parameters of the whole network. To test the performance of the proposed approach, we used well-known benchmark datasets from Dialogue for Reverse Engineering Assessments and Methods challenge (DREAM), experimentally determined GRN of Escherichia coli and one published dataset that contains more than 10 thousand genes to compare the proposed approach with several popular algorithms on the same high-performance computing environments in terms of both accuracy and time complexity. The numerical results demonstrate that our parallel algorithm exhibits obvious superiority in inferring large-scale GRNs.

  12. Network Partitioning Domain Knowledge Multiobjective Application Mapping for Large-Scale Network-on-Chip

    Directory of Open Access Journals (Sweden)

    Yin Zhen Tei

    2014-01-01

    Full Text Available This paper proposes a multiobjective application mapping technique targeted for large-scale network-on-chip (NoC. As the number of intellectual property (IP cores in multiprocessor system-on-chip (MPSoC increases, NoC application mapping to find optimum core-to-topology mapping becomes more challenging. Besides, the conflicting cost and performance trade-off makes multiobjective application mapping techniques even more complex. This paper proposes an application mapping technique that incorporates domain knowledge into genetic algorithm (GA. The initial population of GA is initialized with network partitioning (NP while the crossover operator is guided with knowledge on communication demands. NP reduces the large-scale application mapping complexity and provides GA with a potential mapping search space. The proposed genetic operator is compared with state-of-the-art genetic operators in terms of solution quality. In this work, multiobjective optimization of energy and thermal-balance is considered. Through simulation, knowledge-based initial mapping shows significant improvement in Pareto front compared to random initial mapping that is widely used. The proposed knowledge-based crossover also shows better Pareto front compared to state-of-the-art knowledge-based crossover.

  13. Locating inefficient links in a large-scale transportation network

    Science.gov (United States)

    Sun, Li; Liu, Like; Xu, Zhongzhi; Jie, Yang; Wei, Dong; Wang, Pu

    2015-02-01

    Based on data from geographical information system (GIS) and daily commuting origin destination (OD) matrices, we estimated the distribution of traffic flow in the San Francisco road network and studied Braess's paradox in a large-scale transportation network with realistic travel demand. We measured the variation of total travel time Δ T when a road segment is closed, and found that | Δ T | follows a power-law distribution if Δ T 0. This implies that most roads have a negligible effect on the efficiency of the road network, while the failure of a few crucial links would result in severe travel delays, and closure of a few inefficient links would counter-intuitively reduce travel costs considerably. Generating three theoretical networks, we discovered that the heterogeneously distributed travel demand may be the origin of the observed power-law distributions of | Δ T | . Finally, a genetic algorithm was used to pinpoint inefficient link clusters in the road network. We found that closing specific road clusters would further improve the transportation efficiency.

  14. Output regulation of large-scale hydraulic networks with minimal steady state power consumption

    NARCIS (Netherlands)

    Jensen, Tom Nørgaard; Wisniewski, Rafał; De Persis, Claudio; Kallesøe, Carsten Skovmose

    2014-01-01

    An industrial case study involving a large-scale hydraulic network is examined. The hydraulic network underlies a district heating system, with an arbitrary number of end-users. The problem of output regulation is addressed along with a optimization criterion for the control. The fact that the

  15. Large Scale Self-Organizing Information Distribution System

    National Research Council Canada - National Science Library

    Low, Steven

    2005-01-01

    This project investigates issues in "large-scale" networks. Here "large-scale" refers to networks with large number of high capacity nodes and transmission links, and shared by a large number of users...

  16. Design principles for robust oscillatory behavior.

    Science.gov (United States)

    Castillo-Hair, Sebastian M; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

  17. Reorganizing Complex Network to Improve Large-Scale Multiagent Teamwork

    Directory of Open Access Journals (Sweden)

    Yang Xu

    2014-01-01

    Full Text Available Large-scale multiagent teamwork has been popular in various domains. Similar to human society infrastructure, agents only coordinate with some of the others, with a peer-to-peer complex network structure. Their organization has been proven as a key factor to influence their performance. To expedite team performance, we have analyzed that there are three key factors. First, complex network effects may be able to promote team performance. Second, coordination interactions coming from their sources are always trying to be routed to capable agents. Although they could be transferred across the network via different paths, their sources and sinks depend on the intrinsic nature of the team which is irrelevant to the network connections. In addition, the agents involved in the same plan often form a subteam and communicate with each other more frequently. Therefore, if the interactions between agents can be statistically recorded, we are able to set up an integrated network adjustment algorithm by combining the three key factors. Based on our abstracted teamwork simulations and the coordination statistics, we implemented the adaptive reorganization algorithm. The experimental results briefly support our design that the reorganized network is more capable of coordinating heterogeneous agents.

  18. LARGE-SCALE TOPOLOGICAL PROPERTIES OF MOLECULAR NETWORKS.

    Energy Technology Data Exchange (ETDEWEB)

    MASLOV,S.SNEPPEN,K.

    2003-11-17

    Bio-molecular networks lack the top-down design. Instead, selective forces of biological evolution shape them from raw material provided by random events such as gene duplications and single gene mutations. As a result individual connections in these networks are characterized by a large degree of randomness. One may wonder which connectivity patterns are indeed random, while which arose due to the network growth, evolution, and/or its fundamental design principles and limitations? Here we introduce a general method allowing one to construct a random null-model version of a given network while preserving the desired set of its low-level topological features, such as, e.g., the number of neighbors of individual nodes, the average level of modularity, preferential connections between particular groups of nodes, etc. Such a null-model network can then be used to detect and quantify the non-random topological patterns present in large networks. In particular, we measured correlations between degrees of interacting nodes in protein interaction and regulatory networks in yeast. It was found that in both these networks, links between highly connected proteins are systematically suppressed. This effect decreases the likelihood of cross-talk between different functional modules of the cell, and increases the overall robustness of a network by localizing effects of deleterious perturbations. It also teaches us about the overall computational architecture of such networks and points at the origin of large differences in the number of neighbors of individual nodes.

  19. Large-scale transportation network congestion evolution prediction using deep learning theory.

    Science.gov (United States)

    Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai

    2015-01-01

    Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.

  20. Multirelational organization of large-scale social networks in an online world.

    Science.gov (United States)

    Szell, Michael; Lambiotte, Renaud; Thurner, Stefan

    2010-08-03

    The capacity to collect fingerprints of individuals in online media has revolutionized the way researchers explore human society. Social systems can be seen as a nonlinear superposition of a multitude of complex social networks, where nodes represent individuals and links capture a variety of different social relations. Much emphasis has been put on the network topology of social interactions, however, the multidimensional nature of these interactions has largely been ignored, mostly because of lack of data. Here, for the first time, we analyze a complete, multirelational, large social network of a society consisting of the 300,000 odd players of a massive multiplayer online game. We extract networks of six different types of one-to-one interactions between the players. Three of them carry a positive connotation (friendship, communication, trade), three a negative (enmity, armed aggression, punishment). We first analyze these types of networks as separate entities and find that negative interactions differ from positive interactions by their lower reciprocity, weaker clustering, and fatter-tail degree distribution. We then explore how the interdependence of different network types determines the organization of the social system. In particular, we study correlations and overlap between different types of links and demonstrate the tendency of individuals to play different roles in different networks. As a demonstration of the power of the approach, we present the first empirical large-scale verification of the long-standing structural balance theory, by focusing on the specific multiplex network of friendship and enmity relations.

  1. Large scale electrolysers

    International Nuclear Information System (INIS)

    B Bello; M Junker

    2006-01-01

    Hydrogen production by water electrolysis represents nearly 4 % of the world hydrogen production. Future development of hydrogen vehicles will require large quantities of hydrogen. Installation of large scale hydrogen production plants will be needed. In this context, development of low cost large scale electrolysers that could use 'clean power' seems necessary. ALPHEA HYDROGEN, an European network and center of expertise on hydrogen and fuel cells, has performed for its members a study in 2005 to evaluate the potential of large scale electrolysers to produce hydrogen in the future. The different electrolysis technologies were compared. Then, a state of art of the electrolysis modules currently available was made. A review of the large scale electrolysis plants that have been installed in the world was also realized. The main projects related to large scale electrolysis were also listed. Economy of large scale electrolysers has been discussed. The influence of energy prices on the hydrogen production cost by large scale electrolysis was evaluated. (authors)

  2. Large-scale grid management; Storskala Nettforvaltning

    Energy Technology Data Exchange (ETDEWEB)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-07-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series.

  3. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    International Nuclear Information System (INIS)

    S, Honey; S, Naseem; A, Ishaq; M, Maaza; M T, Bhatti; D, Wan

    2016-01-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H + ) ion beam irradiation. Ag-NWs are irradiated under H +  ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H + ion beam-induced welding of Ag-NWs at intersecting positions. H +  ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H +  ion beam, and networks are optically transparent. Morphology also remains stable under H +  ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H +  ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. (paper)

  4. Scalable and Fully Distributed Localization in Large-Scale Sensor Networks

    Directory of Open Access Journals (Sweden)

    Miao Jin

    2017-06-01

    Full Text Available This work proposes a novel connectivity-based localization algorithm, well suitable for large-scale sensor networks with complex shapes and a non-uniform nodal distribution. In contrast to current state-of-the-art connectivity-based localization methods, the proposed algorithm is highly scalable with linear computation and communication costs with respect to the size of the network; and fully distributed where each node only needs the information of its neighbors without cumbersome partitioning and merging process. The algorithm is theoretically guaranteed and numerically stable. Moreover, the algorithm can be readily extended to the localization of networks with a one-hop transmission range distance measurement, and the propagation of the measurement error at one sensor node is limited within a small area of the network around the node. Extensive simulations and comparison with other methods under various representative network settings are carried out, showing the superior performance of the proposed algorithm.

  5. Episodic memory in aspects of large-scale brain networks

    Science.gov (United States)

    Jeong, Woorim; Chung, Chun Kee; Kim, June Sic

    2015-01-01

    Understanding human episodic memory in aspects of large-scale brain networks has become one of the central themes in neuroscience over the last decade. Traditionally, episodic memory was regarded as mostly relying on medial temporal lobe (MTL) structures. However, recent studies have suggested involvement of more widely distributed cortical network and the importance of its interactive roles in the memory process. Both direct and indirect neuro-modulations of the memory network have been tried in experimental treatments of memory disorders. In this review, we focus on the functional organization of the MTL and other neocortical areas in episodic memory. Task-related neuroimaging studies together with lesion studies suggested that specific sub-regions of the MTL are responsible for specific components of memory. However, recent studies have emphasized that connectivity within MTL structures and even their network dynamics with other cortical areas are essential in the memory process. Resting-state functional network studies also have revealed that memory function is subserved by not only the MTL system but also a distributed network, particularly the default-mode network (DMN). Furthermore, researchers have begun to investigate memory networks throughout the entire brain not restricted to the specific resting-state network (RSN). Altered patterns of functional connectivity (FC) among distributed brain regions were observed in patients with memory impairments. Recently, studies have shown that brain stimulation may impact memory through modulating functional networks, carrying future implications of a novel interventional therapy for memory impairment. PMID:26321939

  6. Episodic memory in aspects of large-scale brain networks

    Directory of Open Access Journals (Sweden)

    Woorim eJeong

    2015-08-01

    Full Text Available Understanding human episodic memory in aspects of large-scale brain networks has become one of the central themes in neuroscience over the last decade. Traditionally, episodic memory was regarded as mostly relying on medial temporal lobe (MTL structures. However, recent studies have suggested involvement of more widely distributed cortical network and the importance of its interactive roles in the memory process. Both direct and indirect neuro-modulations of the memory network have been tried in experimental treatments of memory disorders. In this review, we focus on the functional organization of the MTL and other neocortical areas in episodic memory. Task-related neuroimaging studies together with lesion studies suggested that specific sub-regions of the MTL are responsible for specific components of memory. However, recent studies have emphasized that connectivity within MTL structures and even their network dynamics with other cortical areas are essential in the memory process. Resting-state functional network studies also have revealed that memory function is subserved by not only the MTL system but also a distributed network, particularly the default-mode network. Furthermore, researchers have begun to investigate memory networks throughout the entire brain not restricted to the specific resting-state network. Altered patterns of functional connectivity among distributed brain regions were observed in patients with memory impairments. Recently, studies have shown that brain stimulation may impact memory through modulating functional networks, carrying future implications of a novel interventional therapy for memory impairment.

  7. Large-Scale Brain Network Coupling Predicts Total Sleep Deprivation Effects on Cognitive Capacity.

    Directory of Open Access Journals (Sweden)

    Yu Lei

    Full Text Available Interactions between large-scale brain networks have received most attention in the study of cognitive dysfunction of human brain. In this paper, we aimed to test the hypothesis that the coupling strength of large-scale brain networks will reflect the pressure for sleep and will predict cognitive performance, referred to as sleep pressure index (SPI. Fourteen healthy subjects underwent this within-subject functional magnetic resonance imaging (fMRI study during rested wakefulness (RW and after 36 h of total sleep deprivation (TSD. Self-reported scores of sleepiness were higher for TSD than for RW. A subsequent working memory (WM task showed that WM performance was lower after 36 h of TSD. Moreover, SPI was developed based on the coupling strength of salience network (SN and default mode network (DMN. Significant increase of SPI was observed after 36 h of TSD, suggesting stronger pressure for sleep. In addition, SPI was significantly correlated with both the visual analogue scale score of sleepiness and the WM performance. These results showed that alterations in SN-DMN coupling might be critical in cognitive alterations that underlie the lapse after TSD. Further studies may validate the SPI as a potential clinical biomarker to assess the impact of sleep deprivation.

  8. Sterol synthesis and cell size distribution under oscillatory growth conditions in Saccharomyces cerevisiae scale-down cultivations.

    Science.gov (United States)

    Marbà-Ardébol, Anna-Maria; Bockisch, Anika; Neubauer, Peter; Junne, Stefan

    2018-02-01

    Physiological responses of yeast to oscillatory environments as they appear in the liquid phase in large-scale bioreactors have been the subject of past studies. So far, however, the impact on the sterol content and intracellular regulation remains to be investigated. Since oxygen is a cofactor in several reaction steps within sterol metabolism, changes in oxygen availability, as occurs in production-scale aerated bioreactors, might have an influence on the regulation and incorporation of free sterols into the cell lipid layer. Therefore, sterol and fatty acid synthesis in two- and three-compartment scale-down Saccharomyces cerevisiae cultivation were studied and compared with typical values obtained in homogeneous lab-scale cultivations. While cells were exposed to oscillating substrate and oxygen availability in the scale-down cultivations, growth was reduced and accumulation of carboxylic acids was increased. Sterol synthesis was elevated to ergosterol at the same time. The higher fluxes led to increased concentrations of esterified sterols. The cells thus seem to utilize the increased availability of precursors to fill their sterol reservoirs; however, this seems to be limited in the three-compartment reactor cultivation due to a prolonged exposure to oxygen limitation. Besides, a larger heterogeneity within the single-cell size distribution was observed under oscillatory growth conditions with three-dimensional holographic microscopy. Hence the impact of gradients is also observable at the morphological level. The consideration of such a single-cell-based analysis provides useful information about the homogeneity of responses among the population. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Autonomous management of a recursive area hierarchy for large scale wireless sensor networks using multiple parents

    Energy Technology Data Exchange (ETDEWEB)

    Cree, Johnathan Vee [Washington State Univ., Pullman, WA (United States); Delgado-Frias, Jose [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    Large scale wireless sensor networks have been proposed for applications ranging from anomaly detection in an environment to vehicle tracking. Many of these applications require the networks to be distributed across a large geographic area while supporting three to five year network lifetimes. In order to support these requirements large scale wireless sensor networks of duty-cycled devices need a method of efficient and effective autonomous configuration/maintenance. This method should gracefully handle the synchronization tasks duty-cycled networks. Further, an effective configuration solution needs to recognize that in-network data aggregation and analysis presents significant benefits to wireless sensor network and should configure the network in a way such that said higher level functions benefit from the logically imposed structure. NOA, the proposed configuration and maintenance protocol, provides a multi-parent hierarchical logical structure for the network that reduces the synchronization workload. It also provides higher level functions with significant inherent benefits such as but not limited to: removing network divisions that are created by single-parent hierarchies, guarantees for when data will be compared in the hierarchy, and redundancies for communication as well as in-network data aggregation/analysis/storage.

  10. Large-scale transportation network congestion evolution prediction using deep learning theory.

    Directory of Open Access Journals (Sweden)

    Xiaolei Ma

    Full Text Available Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS and Internet of Things (IoT, transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.

  11. Automatic Generation of Connectivity for Large-Scale Neuronal Network Models through Structural Plasticity.

    Science.gov (United States)

    Diaz-Pier, Sandra; Naveau, Mikaël; Butz-Ostendorf, Markus; Morrison, Abigail

    2016-01-01

    With the emergence of new high performance computation technology in the last decade, the simulation of large scale neural networks which are able to reproduce the behavior and structure of the brain has finally become an achievable target of neuroscience. Due to the number of synaptic connections between neurons and the complexity of biological networks, most contemporary models have manually defined or static connectivity. However, it is expected that modeling the dynamic generation and deletion of the links among neurons, locally and between different regions of the brain, is crucial to unravel important mechanisms associated with learning, memory and healing. Moreover, for many neural circuits that could potentially be modeled, activity data is more readily and reliably available than connectivity data. Thus, a framework that enables networks to wire themselves on the basis of specified activity targets can be of great value in specifying network models where connectivity data is incomplete or has large error margins. To address these issues, in the present work we present an implementation of a model of structural plasticity in the neural network simulator NEST. In this model, synapses consist of two parts, a pre- and a post-synaptic element. Synapses are created and deleted during the execution of the simulation following local homeostatic rules until a mean level of electrical activity is reached in the network. We assess the scalability of the implementation in order to evaluate its potential usage in the self generation of connectivity of large scale networks. We show and discuss the results of simulations on simple two population networks and more complex models of the cortical microcircuit involving 8 populations and 4 layers using the new framework.

  12. Measuring large-scale social networks with high resolution.

    Directory of Open Access Journals (Sweden)

    Arkadiusz Stopczynski

    Full Text Available This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years-the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics for a densely connected population of 1000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.

  13. Identifying influential nodes in large-scale directed networks: the role of clustering.

    Science.gov (United States)

    Chen, Duan-Bing; Gao, Hui; Lü, Linyuan; Zhou, Tao

    2013-01-01

    Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node's neighbors but do not directly make use of the interactions among it's neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors' influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about [Formula: see text] nodes, more than 15 times faster than PageRank.

  14. Identifying influential nodes in large-scale directed networks: the role of clustering.

    Directory of Open Access Journals (Sweden)

    Duan-Bing Chen

    Full Text Available Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node's neighbors but do not directly make use of the interactions among it's neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors' influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about [Formula: see text] nodes, more than 15 times faster than PageRank.

  15. Identifying Influential Nodes in Large-Scale Directed Networks: The Role of Clustering

    Science.gov (United States)

    Chen, Duan-Bing; Gao, Hui; Lü, Linyuan; Zhou, Tao

    2013-01-01

    Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node’s neighbors but do not directly make use of the interactions among it’s neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors’ influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about nodes, more than 15 times faster than PageRank. PMID:24204833

  16. Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data.

    Science.gov (United States)

    Narimani, Zahra; Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger

    2017-01-01

    Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.

  17. Network dynamics and its relationships to topology and coupling structure in excitable complex networks

    International Nuclear Information System (INIS)

    Zhang Li-Sheng; Mi Yuan-Yuan; Gu Wei-Feng; Hu Gang

    2014-01-01

    All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend on network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically. (interdisciplinary physics and related areas of science and technology)

  18. Streaming Parallel GPU Acceleration of Large-Scale filter-based Spiking Neural Networks

    NARCIS (Netherlands)

    L.P. Slazynski (Leszek); S.M. Bohte (Sander)

    2012-01-01

    htmlabstractThe arrival of graphics processing (GPU) cards suitable for massively parallel computing promises a↵ordable large-scale neural network simulation previously only available at supercomputing facil- ities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of

  19. 78 FR 70076 - Large Scale Networking (LSN)-Middleware and Grid Interagency Coordination (MAGIC) Team

    Science.gov (United States)

    2013-11-22

    ... projects. The MAGIC Team reports to the Large Scale Networking (LSN) Coordinating Group (CG). Public... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD... MAGIC Team meetings are held on the first Wednesday of each month, 2:00-4:00 p.m., at the National...

  20. Direction of information flow in large-scale resting-state networks is frequency-dependent

    NARCIS (Netherlands)

    Hillebrand, Arjan; Tewarie, Prejaas; Van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A.; Van Straaten, Elisabeth C W; Stam, Cornelis J.

    2016-01-01

    Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these

  1. Large-scale computer networks and the future of legal knowledge-based systems

    NARCIS (Netherlands)

    Leenes, R.E.; Svensson, Jorgen S.; Hage, J.C.; Bench-Capon, T.J.M.; Cohen, M.J.; van den Herik, H.J.

    1995-01-01

    In this paper we investigate the relation between legal knowledge-based systems and large-scale computer networks such as the Internet. On the one hand, researchers of legal knowledge-based systems have claimed huge possibilities, but despite the efforts over the last twenty years, the number of

  2. 77 FR 58416 - Large Scale Networking (LSN); Middleware and Grid Interagency Coordination (MAGIC) Team

    Science.gov (United States)

    2012-09-20

    ..., Grid, and cloud projects. The MAGIC Team reports to the Large Scale Networking (LSN) Coordinating Group... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD.... Dates/Location: The MAGIC Team meetings are held on the first Wednesday of each month, 2:00-4:00pm, at...

  3. Coordinated SLNR based Precoding in Large-Scale Heterogeneous Networks

    KAUST Repository

    Boukhedimi, Ikram

    2017-03-06

    This work focuses on the downlink of large-scale two-tier heterogeneous networks composed of a macro-cell overlaid by micro-cell networks. Our interest is on the design of coordinated beamforming techniques that allow to mitigate the inter-cell interference. Particularly, we consider the case in which the coordinating base stations (BSs) have imperfect knowledge of the channel state information. Under this setting, we propose a regularized SLNR based precoding design in which the regularization factor is used to allow better resilience with respect to the channel estimation errors. Based on tools from random matrix theory, we provide an analytical analysis of the SINR and SLNR performances. These results are then exploited to propose a proper setting of the regularization factor. Simulation results are finally provided in order to validate our findings and to confirm the performance of the proposed precoding scheme.

  4. Coordinated SLNR based Precoding in Large-Scale Heterogeneous Networks

    KAUST Repository

    Boukhedimi, Ikram; Kammoun, Abla; Alouini, Mohamed-Slim

    2017-01-01

    This work focuses on the downlink of large-scale two-tier heterogeneous networks composed of a macro-cell overlaid by micro-cell networks. Our interest is on the design of coordinated beamforming techniques that allow to mitigate the inter-cell interference. Particularly, we consider the case in which the coordinating base stations (BSs) have imperfect knowledge of the channel state information. Under this setting, we propose a regularized SLNR based precoding design in which the regularization factor is used to allow better resilience with respect to the channel estimation errors. Based on tools from random matrix theory, we provide an analytical analysis of the SINR and SLNR performances. These results are then exploited to propose a proper setting of the regularization factor. Simulation results are finally provided in order to validate our findings and to confirm the performance of the proposed precoding scheme.

  5. Catalyst Initiation in the Oscillatory Carbonylation Reaction

    Directory of Open Access Journals (Sweden)

    Katarina Novakovic

    2011-01-01

    Full Text Available Palladium(II iodide is used as a catalyst in the phenylacetylene oxidative carbonylation reaction that has demonstrated oscillatory behaviour in both pH and heat of reaction. In an attempt to extract the reaction network responsible for the oscillatory nature of this reaction, the system was divided into smaller parts and they were studied. This paper focuses on understanding the reaction network responsible for the initial reactions of palladium(II iodide within this oscillatory reaction. The species researched include methanol, palladium(II iodide, potassium iodide, and carbon monoxide. Several chemical reactions were considered and applied in a modelling study. The study revealed the significant role played by traces of water contained in the standard HPLC grade methanol used.

  6. Dynamic behavior of dual cross-linked nanoparticle networks under oscillatory shear

    International Nuclear Information System (INIS)

    Iyer, Balaji V S; Yashin, Victor V; Balazs, Anna C

    2014-01-01

    Via computer simulations, we investigate the linear and nonlinear viscoelastic response of polymer grafted nanoparticle networks subject to oscillatory shear at different amplitudes and frequencies. The individual nanoparticles are composed of a rigid spherical core and a corona of grafted polymers that encompass reactive end groups. With the overlap of the coronas on adjacent particles, the reactive end groups form permanent or labile bonds, and thus form a ‘dual cross-linked’ network. The existing labile bonds between particles can break and reform depending on the bond rupture rate, extent of deformation and the frequency of oscillation. We study how the viscoelastic behavior of the material depends on the energy of the labile bonds and identify the network characteristics that give rise to the observed viscoelastic response. We observe that with an increase in labile bond energy, the storage modulus increases while the loss modulus shows a more complex response depending on the labile bond energy. Specifically, in the case of the samples with the weaker labile bonds, the loss modulus increases monotonically, while for the samples with the stronger labile bonds, the loss modulus exhibits a minimum with an increase in frequency. We show that an increase in the storage modulus corresponds to an enhancement in the average number of bonds in the samples and the characteristics of the loss modulus depend on both the bond kinetics and the mobility of the particles in the network. Furthermore, we determine that the effective contribution of the bonds to the storage modulus decreases with increase in strain amplitude. In particular, while bond formation at small amplitude drives an increase in storage modulus, at large amplitudes it promotes clustering and formation of voids leading to strain softening. Our simulations provide a mesoscopic picture of how the nature of labile bonds affects the performance of cross-linked polymer-grafted nanoparticle networks. (paper)

  7. Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function.

    Science.gov (United States)

    Lerman, Caryn; Gu, Hong; Loughead, James; Ruparel, Kosha; Yang, Yihong; Stein, Elliot A

    2014-05-01

    Interactions of large-scale brain networks may underlie cognitive dysfunctions in psychiatric and addictive disorders. To test the hypothesis that the strength of coupling among 3 large-scale brain networks--salience, executive control, and default mode--will reflect the state of nicotine withdrawal (vs smoking satiety) and will predict abstinence-induced craving and cognitive deficits and to develop a resource allocation index (RAI) that reflects the combined strength of interactions among the 3 large-scale networks. A within-subject functional magnetic resonance imaging study in an academic medical center compared resting-state functional connectivity coherence strength after 24 hours of abstinence and after smoking satiety. We examined the relationship of abstinence-induced changes in the RAI with alterations in subjective, behavioral, and neural functions. We included 37 healthy smoking volunteers, aged 19 to 61 years, for analyses. Twenty-four hours of abstinence vs smoking satiety. Inter-network connectivity strength (primary) and the relationship with subjective, behavioral, and neural measures of nicotine withdrawal during abstinence vs smoking satiety states (secondary). The RAI was significantly lower in the abstinent compared with the smoking satiety states (left RAI, P = .002; right RAI, P = .04), suggesting weaker inhibition between the default mode and salience networks. Weaker inter-network connectivity (reduced RAI) predicted abstinence-induced cravings to smoke (r = -0.59; P = .007) and less suppression of default mode activity during performance of a subsequent working memory task (ventromedial prefrontal cortex, r = -0.66, P = .003; posterior cingulate cortex, r = -0.65, P = .001). Alterations in coupling of the salience and default mode networks and the inability to disengage from the default mode network may be critical in cognitive/affective alterations that underlie nicotine dependence.

  8. Cardinality Estimation Algorithm in Large-Scale Anonymous Wireless Sensor Networks

    KAUST Repository

    Douik, Ahmed

    2017-08-30

    Consider a large-scale anonymous wireless sensor network with unknown cardinality. In such graphs, each node has no information about the network topology and only possesses a unique identifier. This paper introduces a novel distributed algorithm for cardinality estimation and topology discovery, i.e., estimating the number of node and structure of the graph, by querying a small number of nodes and performing statistical inference methods. While the cardinality estimation allows the design of more efficient coding schemes for the network, the topology discovery provides a reliable way for routing packets. The proposed algorithm is shown to produce a cardinality estimate proportional to the best linear unbiased estimator for dense graphs and specific running times. Simulation results attest the theoretical results and reveal that, for a reasonable running time, querying a small group of nodes is sufficient to perform an estimation of 95% of the whole network. Applications of this work include estimating the number of Internet of Things (IoT) sensor devices, online social users, active protein cells, etc.

  9. Multi-GNSS PPP-RTK: From Large- to Small-Scale Networks

    Directory of Open Access Journals (Sweden)

    Nandakumaran Nadarajah

    2018-04-01

    Full Text Available Precise point positioning (PPP and its integer ambiguity resolution-enabled variant, PPP-RTK (real-time kinematic, can benefit enormously from the integration of multiple global navigation satellite systems (GNSS. In such a multi-GNSS landscape, the positioning convergence time is expected to be reduced considerably as compared to the one obtained by a single-GNSS setup. It is therefore the goal of the present contribution to provide numerical insights into the role taken by the multi-GNSS integration in delivering fast and high-precision positioning solutions (sub-decimeter and centimeter levels using PPP-RTK. To that end, we employ the Curtin PPP-RTK platform and process data-sets of GPS, BeiDou Navigation Satellite System (BDS and Galileo in stand-alone and combined forms. The data-sets are collected by various receiver types, ranging from high-end multi-frequency geodetic receivers to low-cost single-frequency mass-market receivers. The corresponding stations form a large-scale (Australia-wide network as well as a small-scale network with inter-station distances less than 30 km. In case of the Australia-wide GPS-only ambiguity-float setup, 90% of the horizontal positioning errors (kinematic mode are shown to become less than five centimeters after 103 min. The stated required time is reduced to 66 min for the corresponding GPS + BDS + Galieo setup. The time is further reduced to 15 min by applying single-receiver ambiguity resolution. The outcomes are supported by the positioning results of the small-scale network.

  10. Direction of information flow in large-scale resting-state networks is frequency-dependent.

    Science.gov (United States)

    Hillebrand, Arjan; Tewarie, Prejaas; van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A; van Straaten, Elisabeth C W; Stam, Cornelis J

    2016-04-05

    Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.

  11. Directed partial correlation: inferring large-scale gene regulatory network through induced topology disruptions.

    Directory of Open Access Journals (Sweden)

    Yinyin Yuan

    Full Text Available Inferring regulatory relationships among many genes based on their temporal variation in transcript abundance has been a popular research topic. Due to the nature of microarray experiments, classical tools for time series analysis lose power since the number of variables far exceeds the number of the samples. In this paper, we describe some of the existing multivariate inference techniques that are applicable to hundreds of variables and show the potential challenges for small-sample, large-scale data. We propose a directed partial correlation (DPC method as an efficient and effective solution to regulatory network inference using these data. Specifically for genomic data, the proposed method is designed to deal with large-scale datasets. It combines the efficiency of partial correlation for setting up network topology by testing conditional independence, and the concept of Granger causality to assess topology change with induced interruptions. The idea is that when a transcription factor is induced artificially within a gene network, the disruption of the network by the induction signifies a genes role in transcriptional regulation. The benchmarking results using GeneNetWeaver, the simulator for the DREAM challenges, provide strong evidence of the outstanding performance of the proposed DPC method. When applied to real biological data, the inferred starch metabolism network in Arabidopsis reveals many biologically meaningful network modules worthy of further investigation. These results collectively suggest DPC is a versatile tool for genomics research. The R package DPC is available for download (http://code.google.com/p/dpcnet/.

  12. Role of Delays in Shaping Spatiotemporal Dynamics of Neuronal Activity in Large Networks

    International Nuclear Information System (INIS)

    Roxin, Alex; Brunel, Nicolas; Hansel, David

    2005-01-01

    We study the effect of delays on the dynamics of large networks of neurons. We show that delays give rise to a wealth of bifurcations and to a rich phase diagram, which includes oscillatory bumps, traveling waves, lurching waves, standing waves arising via a period-doubling bifurcation, aperiodic regimes, and regimes of multistability. We study the existence and the stability of the various dynamical patterns analytically and numerically in a simplified rate model as a function of the interaction parameters. The results derived in that framework allow us to understand the origin of the diversity of dynamical states observed in large networks of spiking neurons

  13. A large-scale perspective on stress-induced alterations in resting-state networks

    Science.gov (United States)

    Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron

    2016-02-01

    Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.

  14. Distributed and Cooperative Link Scheduling for Large-Scale Multihop Wireless Networks

    Directory of Open Access Journals (Sweden)

    Swami Ananthram

    2007-01-01

    Full Text Available A distributed and cooperative link-scheduling (DCLS algorithm is introduced for large-scale multihop wireless networks. With this algorithm, each and every active link in the network cooperatively calibrates its environment and converges to a desired link schedule for data transmissions within a time frame of multiple slots. This schedule is such that the entire network is partitioned into a set of interleaved subnetworks, where each subnetwork consists of concurrent cochannel links that are properly separated from each other. The desired spacing in each subnetwork can be controlled by a tuning parameter and the number of time slots specified for each frame. Following the DCLS algorithm, a distributed and cooperative power control (DCPC algorithm can be applied to each subnetwork to ensure a desired data rate for each link with minimum network transmission power. As shown consistently by simulations, the DCLS algorithm along with a DCPC algorithm yields significant power savings. The power savings also imply an increased feasible region of averaged link data rates for the entire network.

  15. Distributed and Cooperative Link Scheduling for Large-Scale Multihop Wireless Networks

    Directory of Open Access Journals (Sweden)

    Ananthram Swami

    2007-12-01

    Full Text Available A distributed and cooperative link-scheduling (DCLS algorithm is introduced for large-scale multihop wireless networks. With this algorithm, each and every active link in the network cooperatively calibrates its environment and converges to a desired link schedule for data transmissions within a time frame of multiple slots. This schedule is such that the entire network is partitioned into a set of interleaved subnetworks, where each subnetwork consists of concurrent cochannel links that are properly separated from each other. The desired spacing in each subnetwork can be controlled by a tuning parameter and the number of time slots specified for each frame. Following the DCLS algorithm, a distributed and cooperative power control (DCPC algorithm can be applied to each subnetwork to ensure a desired data rate for each link with minimum network transmission power. As shown consistently by simulations, the DCLS algorithm along with a DCPC algorithm yields significant power savings. The power savings also imply an increased feasible region of averaged link data rates for the entire network.

  16. Electricity network limitations on large-scale deployment of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, R.J.

    1999-07-01

    This report sought to identify limitation on large scale deployment of wind energy in the UK. A description of the existing electricity supply system in England, Scotland and Wales is given, and operational aspects of the integrated electricity networks, licence conditions, types of wind turbine generators, and the scope for deployment of wind energy in the UK are addressed. A review of technical limitations and technical criteria stipulated by the Distribution and Grid Codes, the effects of system losses, and commercial issues are examined. Potential solutions to technical limitations are proposed, and recommendations are outlined.

  17. A theoretical bilevel control scheme for power networks with large-scale penetration of distributed renewable resources

    DEFF Research Database (Denmark)

    Boroojeni, Kianoosh; Amini, M. Hadi; Nejadpak, Arash

    2016-01-01

    In this paper, we present a bilevel control framework to achieve a highly-reliable smart distribution network with large-scale penetration of distributed renewable resources (DRRs). We assume that the power distribution network consists of several residential/commercial communities. In the first ...

  18. Developing A Large-Scale, Collaborative, Productive Geoscience Education Network

    Science.gov (United States)

    Manduca, C. A.; Bralower, T. J.; Egger, A. E.; Fox, S.; Ledley, T. S.; Macdonald, H.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.

    2012-12-01

    Over the past 15 years, the geoscience education community has grown substantially and developed broad and deep capacity for collaboration and dissemination of ideas. While this community is best viewed as emergent from complex interactions among changing educational needs and opportunities, we highlight the role of several large projects in the development of a network within this community. In the 1990s, three NSF projects came together to build a robust web infrastructure to support the production and dissemination of on-line resources: On The Cutting Edge (OTCE), Earth Exploration Toolbook, and Starting Point: Teaching Introductory Geoscience. Along with the contemporaneous Digital Library for Earth System Education, these projects engaged geoscience educators nationwide in exploring professional development experiences that produced lasting on-line resources, collaborative authoring of resources, and models for web-based support for geoscience teaching. As a result, a culture developed in the 2000s in which geoscience educators anticipated that resources for geoscience teaching would be shared broadly and that collaborative authoring would be productive and engaging. By this time, a diverse set of examples demonstrated the power of the web infrastructure in supporting collaboration, dissemination and professional development . Building on this foundation, more recent work has expanded both the size of the network and the scope of its work. Many large research projects initiated collaborations to disseminate resources supporting educational use of their data. Research results from the rapidly expanding geoscience education research community were integrated into the Pedagogies in Action website and OTCE. Projects engaged faculty across the nation in large-scale data collection and educational research. The Climate Literacy and Energy Awareness Network and OTCE engaged community members in reviewing the expanding body of on-line resources. Building Strong

  19. Networks and landscapes: a framework for setting goals and evaluating performance at the large landscape scale

    Science.gov (United States)

    R Patrick Bixler; Shawn Johnson; Kirk Emerson; Tina Nabatchi; Melly Reuling; Charles Curtin; Michele Romolini; Morgan Grove

    2016-01-01

    The objective of large landscape conser vation is to mitigate complex ecological problems through interventions at multiple and overlapping scales. Implementation requires coordination among a diverse network of individuals and organizations to integrate local-scale conservation activities with broad-scale goals. This requires an understanding of the governance options...

  20. Large scale network management. Condition indicators for network stations, high voltage power conductions and cables

    International Nuclear Information System (INIS)

    Eggen, Arnt Ove; Rolfseng, Lars; Langdal, Bjoern Inge

    2006-02-01

    In the Strategic Institute Programme (SIP) 'Electricity Business enters e-business (eBee)' SINTEF Energy research has developed competency that can help the energy business employ ICT systems and computer technology in an improved way. Large scale network management is now a reality, and it is characterized by large entities with increasing demands on efficiency and quality. These are goals that can only be reached by using ICT systems and computer technology in a more clever way than what is the case today. At the same time it is important that knowledge held by experienced co-workers is consulted when formal rules for evaluations and decisions in ICT systems are developed. In this project an analytical concept for evaluation of networks based information in different ICT systems has been developed. The method estimating the indicators to describe different conditions in a network is general, and indicators can be made to fit different levels of decision and network levels, for example network station, transformer circuit, distribution network and regional network. Moreover, the indicators can contain information about technical aspects, economy and HSE. An indicator consists of an indicator name, an indicator value, and an indicator colour based on a traffic-light analogy to indicate a condition or a quality for the indicator. Values on one or more indicators give an impression of important conditions in the network, and make up the basis for knowing where more detailed evaluations have to be conducted before a final decision on for example maintenance or renewal is made. A prototype has been developed for testing the new method. The prototype has been developed in Excel, and especially designed for analysing transformer circuits in a distribution network. However, the method is a general one, and well suited for implementation in a commercial computer system (ml)

  1. Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model.

    Directory of Open Access Journals (Sweden)

    Guido Gigante

    2015-11-01

    Full Text Available Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collective dynamical events such as network spikes, UP and DOWN states, global oscillations, and avalanches. Though each of them has been variously recognized in previous works as expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a unified picture of the determinant factors (dynamical and architectural is desirable and not yet available. Progress has also been partially hindered by the use of a variety of statistical measures to define the network events of interest. We propose here a common probabilistic definition of network events that, applied to the firing activity of cultured neural networks, highlights the co-occurrence of network spikes, power-law distributed avalanches, and exponentially distributed 'quasi-orbits', which offer a third type of collective behavior. A rate model, including synaptic excitation and inhibition with no imposed topology, synaptic short-term depression, and finite-size noise, accounts for all these different, coexisting phenomena. We find that their emergence is largely regulated by the proximity to an oscillatory instability of the dynamics, where the non-linear excitable behavior leads to a self-amplification of activity fluctuations over a wide range of scales in space and time. In this sense, the cultured network dynamics is compatible with an excitation-inhibition balance corresponding to a slightly sub-critical regime. Finally, we propose and test a method to infer the characteristic time of the fatigue process, from the observed time course of the network's firing rate. Unlike the model, possessing a single fatigue mechanism, the cultured network appears to show multiple time scales, signalling the possible coexistence of different fatigue mechanisms.

  2. WDM networking on a European Scale

    DEFF Research Database (Denmark)

    Parnis, Noel; Limal, Emmanuel; Hjelme, Dag R.

    1998-01-01

    Four different topological approaches to designing a pan-European optical network are discussed. For such an ultra-high capacity large-scale network, it is necessary to overcome physical path length limitations and to limit Optical Cross-Connect (OXC) complexity.......Four different topological approaches to designing a pan-European optical network are discussed. For such an ultra-high capacity large-scale network, it is necessary to overcome physical path length limitations and to limit Optical Cross-Connect (OXC) complexity....

  3. Querying Large Biological Network Datasets

    Science.gov (United States)

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  4. Large-scale changes in network interactions as a physiological signature of spatial neglect.

    Science.gov (United States)

    Baldassarre, Antonello; Ramsey, Lenny; Hacker, Carl L; Callejas, Alicia; Astafiev, Serguei V; Metcalf, Nicholas V; Zinn, Kristi; Rengachary, Jennifer; Snyder, Abraham Z; Carter, Alex R; Shulman, Gordon L; Corbetta, Maurizio

    2014-12-01

    The relationship between spontaneous brain activity and behaviour following focal injury is not well understood. Here, we report a large-scale study of resting state functional connectivity MRI and spatial neglect following stroke in a large (n=84) heterogeneous sample of first-ever stroke patients (within 1-2 weeks). Spatial neglect, which is typically more severe after right than left hemisphere injury, includes deficits of spatial attention and motor actions contralateral to the lesion, and low general attention due to impaired vigilance/arousal. Patients underwent structural and resting state functional MRI scans, and spatial neglect was measured using the Posner spatial cueing task, and Mesulam and Behavioural Inattention Test cancellation tests. A principal component analysis of the behavioural tests revealed a main factor accounting for 34% of variance that captured three correlated behavioural deficits: visual neglect of the contralesional visual field, visuomotor neglect of the contralesional field, and low overall performance. In an independent sample (21 healthy subjects), we defined 10 resting state networks consisting of 169 brain regions: visual-fovea and visual-periphery, sensory-motor, auditory, dorsal attention, ventral attention, language, fronto-parietal control, cingulo-opercular control, and default mode. We correlated the neglect factor score with the strength of resting state functional connectivity within and across the 10 resting state networks. All damaged brain voxels were removed from the functional connectivity:behaviour correlational analysis. We found that the correlated behavioural deficits summarized by the factor score were associated with correlated multi-network patterns of abnormal functional connectivity involving large swaths of cortex. Specifically, dorsal attention and sensory-motor networks showed: (i) reduced interhemispheric functional connectivity; (ii) reduced anti-correlation with fronto-parietal and default mode

  5. Abnormal binding and disruption in large scale networks involved in human partial seizures

    Directory of Open Access Journals (Sweden)

    Bartolomei Fabrice

    2013-12-01

    Full Text Available There is a marked increase in the amount of electrophysiological and neuroimaging works dealing with the study of large scale brain connectivity in the epileptic brain. Our view of the epileptogenic process in the brain has largely evolved over the last twenty years from the historical concept of “epileptic focus” to a more complex description of “Epileptogenic networks” involved in the genesis and “propagation” of epileptic activities. In particular, a large number of studies have been dedicated to the analysis of intracerebral EEG signals to characterize the dynamic of interactions between brain areas during temporal lobe seizures. These studies have reported that large scale functional connectivity is dramatically altered during seizures, particularly during temporal lobe seizure genesis and development. Dramatic changes in neural synchrony provoked by epileptic rhythms are also responsible for the production of ictal symptoms or changes in patient’s behaviour such as automatisms, emotional changes or consciousness alteration. Beside these studies dedicated to seizures, large-scale network connectivity during the interictal state has also been investigated not only to define biomarkers of epileptogenicity but also to better understand the cognitive impairments observed between seizures.

  6. Temporal entrainment of cognitive functions: musical mnemonics induce brain plasticity and oscillatory synchrony in neural networks underlying memory.

    Science.gov (United States)

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C

    2005-12-01

    In a series of experiments, we have begun to investigate the effect of music as a mnemonic device on learning and memory and the underlying plasticity of oscillatory neural networks. We used verbal learning and memory tests (standardized word lists, AVLT) in conjunction with electroencephalographic analysis to determine differences between verbal learning in either a spoken or musical (verbal materials as song lyrics) modality. In healthy adults, learning in both the spoken and music condition was associated with significant increases in oscillatory synchrony across all frequency bands. A significant difference between the spoken and music condition emerged in the cortical topography of the learning-related synchronization. When using EEG measures as predictors during learning for subsequent successful memory recall, significantly increased coherence (phase-locked synchronization) within and between oscillatory brain networks emerged for music in alpha and gamma bands. In a similar study with multiple sclerosis patients, superior learning and memory was shown in the music condition when controlled for word order recall, and subjects were instructed to sing back the word lists. Also, the music condition was associated with a significant power increase in the low-alpha band in bilateral frontal networks, indicating increased neuronal synchronization. Musical learning may access compensatory pathways for memory functions during compromised PFC functions associated with learning and recall. Music learning may also confer a neurophysiological advantage through the stronger synchronization of the neuronal cell assemblies underlying verbal learning and memory. Collectively our data provide evidence that melodic-rhythmic templates as temporal structures in music may drive internal rhythm formation in recurrent cortical networks involved in learning and memory.

  7. Congenital blindness is associated with large-scale reorganization of anatomical networks.

    Science.gov (United States)

    Hasson, Uri; Andric, Michael; Atilgan, Hicret; Collignon, Olivier

    2016-03-01

    Blindness is a unique model for understanding the role of experience in the development of the brain's functional and anatomical architecture. Documenting changes in the structure of anatomical networks for this population would substantiate the notion that the brain's core network-level organization may undergo neuroplasticity as a result of life-long experience. To examine this issue, we compared whole-brain networks of regional cortical-thickness covariance in early blind and matched sighted individuals. This covariance is thought to reflect signatures of integration between systems involved in similar perceptual/cognitive functions. Using graph-theoretic metrics, we identified a unique mode of anatomical reorganization in the blind that differed from that found for sighted. This was seen in that network partition structures derived from subgroups of blind were more similar to each other than they were to partitions derived from sighted. Notably, after deriving network partitions, we found that language and visual regions tended to reside within separate modules in sighted but showed a pattern of merging into shared modules in the blind. Our study demonstrates that early visual deprivation triggers a systematic large-scale reorganization of whole-brain cortical-thickness networks, suggesting changes in how occipital regions interface with other functional networks in the congenitally blind. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. A large scale analysis of information-theoretic network complexity measures using chemical structures.

    Directory of Open Access Journals (Sweden)

    Matthias Dehmer

    Full Text Available This paper aims to investigate information-theoretic network complexity measures which have already been intensely used in mathematical- and medicinal chemistry including drug design. Numerous such measures have been developed so far but many of them lack a meaningful interpretation, e.g., we want to examine which kind of structural information they detect. Therefore, our main contribution is to shed light on the relatedness between some selected information measures for graphs by performing a large scale analysis using chemical networks. Starting from several sets containing real and synthetic chemical structures represented by graphs, we study the relatedness between a classical (partition-based complexity measure called the topological information content of a graph and some others inferred by a different paradigm leading to partition-independent measures. Moreover, we evaluate the uniqueness of network complexity measures numerically. Generally, a high uniqueness is an important and desirable property when designing novel topological descriptors having the potential to be applied to large chemical databases.

  9. On a digital wireless impact-monitoring network for large-scale composite structures

    International Nuclear Information System (INIS)

    Yuan, Shenfang; Mei, Hanfei; Qiu, Lei; Ren, Yuanqiang

    2014-01-01

    Impact, which may occur during manufacture, service or maintenance, is one of the major concerns to be monitored throughout the lifetime of aircraft composite structures. Aiming at monitoring impacts online while minimizing the weight added to the aircraft to meet the strict limitations of aerospace engineering, this paper puts forward a new digital wireless network based on miniaturized wireless digital impact-monitoring nodes developed for large-scale composite structures. In addition to investigations on the design methods of the network architecture, time synchronization and implementation method, a conflict resolution method based on the feature parameters of digital sequences is first presented to address impact localization conflicts when several nodes are arranged close together. To verify the feasibility and stability of the wireless network, experiments are performed on a complex aircraft composite wing box and an unmanned aerial vehicle (UAV) composite wing. Experimental results show the successful design of the presented network. (paper)

  10. Received signal strength in large-scale wireless relay sensor network: a stochastic ray approach

    NARCIS (Netherlands)

    Hu, L.; Chen, Y.; Scanlon, W.G.

    2011-01-01

    The authors consider a point percolation lattice representation of a large-scale wireless relay sensor network (WRSN) deployed in a cluttered environment. Each relay sensor corresponds to a grid point in the random lattice and the signal sent by the source is modelled as an ensemble of photons that

  11. Urban Freight Management with Stochastic Time-Dependent Travel Times and Application to Large-Scale Transportation Networks

    Directory of Open Access Journals (Sweden)

    Shichao Sun

    2015-01-01

    Full Text Available This paper addressed the vehicle routing problem (VRP in large-scale urban transportation networks with stochastic time-dependent (STD travel times. The subproblem which is how to find the optimal path connecting any pair of customer nodes in a STD network was solved through a robust approach without requiring the probability distributions of link travel times. Based on that, the proposed STD-VRP model can be converted into solving a normal time-dependent VRP (TD-VRP, and algorithms for such TD-VRPs can also be introduced to obtain the solution. Numerical experiments were conducted to address STD-VRPTW of practical sizes on a real world urban network, demonstrated here on the road network of Shenzhen, China. The stochastic time-dependent link travel times of the network were calibrated by historical floating car data. A route construction algorithm was applied to solve the STD problem in 4 delivery scenarios efficiently. The computational results showed that the proposed STD-VRPTW model can improve the level of customer service by satisfying the time-window constraint under any circumstances. The improvement can be very significant especially for large-scale network delivery tasks with no more increase in cost and environmental impacts.

  12. Harnessing diversity towards the reconstructing of large scale gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Takeshi Hase

    Full Text Available Elucidating gene regulatory network (GRN from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud computing framework demonstrated that (i a simple strategy to combine many algorithms does not always lead to performance improvement compared to the cost of consensus and (ii TopkNet integrating only high-performance algorithms provide significant performance improvement compared to the best individual algorithms and community prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks.

  13. Differences between child and adult large-scale functional brain networks for reading tasks.

    Science.gov (United States)

    Liu, Xin; Gao, Yue; Di, Qiqi; Hu, Jiali; Lu, Chunming; Nan, Yun; Booth, James R; Liu, Li

    2018-02-01

    Reading is an important high-level cognitive function of the human brain, requiring interaction among multiple brain regions. Revealing differences between children's large-scale functional brain networks for reading tasks and those of adults helps us to understand how the functional network changes over reading development. Here we used functional magnetic resonance imaging data of 17 adults (19-28 years old) and 16 children (11-13 years old), and graph theoretical analyses to investigate age-related changes in large-scale functional networks during rhyming and meaning judgment tasks on pairs of visually presented Chinese characters. We found that: (1) adults had stronger inter-regional connectivity and nodal degree in occipital regions, while children had stronger inter-regional connectivity in temporal regions, suggesting that adults rely more on visual orthographic processing whereas children rely more on auditory phonological processing during reading. (2) Only adults showed between-task differences in inter-regional connectivity and nodal degree, whereas children showed no task differences, suggesting the topological organization of adults' reading network is more specialized. (3) Children showed greater inter-regional connectivity and nodal degree than adults in multiple subcortical regions; the hubs in children were more distributed in subcortical regions while the hubs in adults were more distributed in cortical regions. These findings suggest that reading development is manifested by a shift from reliance on subcortical to cortical regions. Taken together, our study suggests that Chinese reading development is supported by developmental changes in brain connectivity properties, and some of these changes may be domain-general while others may be specific to the reading domain. © 2017 Wiley Periodicals, Inc.

  14. Implementation of Cyberinfrastructure and Data Management Workflow for a Large-Scale Sensor Network

    Science.gov (United States)

    Jones, A. S.; Horsburgh, J. S.

    2014-12-01

    Monitoring with in situ environmental sensors and other forms of field-based observation presents many challenges for data management, particularly for large-scale networks consisting of multiple sites, sensors, and personnel. The availability and utility of these data in addressing scientific questions relies on effective cyberinfrastructure that facilitates transformation of raw sensor data into functional data products. It also depends on the ability of researchers to share and access the data in useable formats. In addition to addressing the challenges presented by the quantity of data, monitoring networks need practices to ensure high data quality, including procedures and tools for post processing. Data quality is further enhanced if practitioners are able to track equipment, deployments, calibrations, and other events related to site maintenance and associate these details with observational data. In this presentation we will describe the overall workflow that we have developed for research groups and sites conducting long term monitoring using in situ sensors. Features of the workflow include: software tools to automate the transfer of data from field sites to databases, a Python-based program for data quality control post-processing, a web-based application for online discovery and visualization of data, and a data model and web interface for managing physical infrastructure. By automating the data management workflow, the time from collection to analysis is reduced and sharing and publication is facilitated. The incorporation of metadata standards and descriptions and the use of open-source tools enhances the sustainability and reusability of the data. We will describe the workflow and tools that we have developed in the context of the iUTAH (innovative Urban Transitions and Aridregion Hydrosustainability) monitoring network. The iUTAH network consists of aquatic and climate sensors deployed in three watersheds to monitor Gradients Along Mountain to Urban

  15. Noise measurements during high-frequency oscillatory and conventional mechanical ventilation.

    Science.gov (United States)

    Berens, R J; Weigle, C G

    1995-10-01

    To evaluate the noise levels with high-frequency oscillatory ventilation and conventional mechanical ventilation. An observational, prospective study. Pediatric intensive care unit. The caretakers and environment of the pediatric intensive care unit. High-frequency oscillatory and conventional mechanical ventilation. Caretakers evaluated noise using a visual analog scale. Noise was measured with a decibel meter and an octave band frequency filter. There was twice as much noise perceived by the caretakers and as measured on the decibel A scale. All measures showed significantly greater noise, especially at low frequencies, with high-frequency oscillatory ventilation. High-frequency oscillatory ventilation exposes the patient to twice as much noise as does the use of conventional mechanical ventilation.

  16. Just enough inflation. Power spectrum modifications at large scales

    International Nuclear Information System (INIS)

    Cicoli, Michele; Downes, Sean

    2014-07-01

    We show that models of 'just enough' inflation, where the slow-roll evolution lasted only 50-60 e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic and model-independent analysis of any possible non-slow-roll background evolution prior to the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low-l, and so seem disfavoured by recent observational hints for a lack of CMB power at l< or similar 40. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

  17. A Large-Scale Multi-Hop Localization Algorithm Based on Regularized Extreme Learning for Wireless Networks.

    Science.gov (United States)

    Zheng, Wei; Yan, Xiaoyong; Zhao, Wei; Qian, Chengshan

    2017-12-20

    A novel large-scale multi-hop localization algorithm based on regularized extreme learning is proposed in this paper. The large-scale multi-hop localization problem is formulated as a learning problem. Unlike other similar localization algorithms, the proposed algorithm overcomes the shortcoming of the traditional algorithms which are only applicable to an isotropic network, therefore has a strong adaptability to the complex deployment environment. The proposed algorithm is composed of three stages: data acquisition, modeling and location estimation. In data acquisition stage, the training information between nodes of the given network is collected. In modeling stage, the model among the hop-counts and the physical distances between nodes is constructed using regularized extreme learning. In location estimation stage, each node finds its specific location in a distributed manner. Theoretical analysis and several experiments show that the proposed algorithm can adapt to the different topological environments with low computational cost. Furthermore, high accuracy can be achieved by this method without setting complex parameters.

  18. Secure Data Aggregation with Fully Homomorphic Encryption in Large-Scale Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xing Li

    2015-07-01

    Full Text Available With the rapid development of wireless communication technology, sensor technology, information acquisition and processing technology, sensor networks will finally have a deep influence on all aspects of people’s lives. The battery resources of sensor nodes should be managed efficiently in order to prolong network lifetime in large-scale wireless sensor networks (LWSNs. Data aggregation represents an important method to remove redundancy as well as unnecessary data transmission and hence cut down the energy used in communication. As sensor nodes are deployed in hostile environments, the security of the sensitive information such as confidentiality and integrity should be considered. This paper proposes Fully homomorphic Encryption based Secure data Aggregation (FESA in LWSNs which can protect end-to-end data confidentiality and support arbitrary aggregation operations over encrypted data. In addition, by utilizing message authentication codes (MACs, this scheme can also verify data integrity during data aggregation and forwarding processes so that false data can be detected as early as possible. Although the FHE increase the computation overhead due to its large public key size, simulation results show that it is implementable in LWSNs and performs well. Compared with other protocols, the transmitted data and network overhead are reduced in our scheme.

  19. Secure Data Aggregation with Fully Homomorphic Encryption in Large-Scale Wireless Sensor Networks.

    Science.gov (United States)

    Li, Xing; Chen, Dexin; Li, Chunyan; Wang, Liangmin

    2015-07-03

    With the rapid development of wireless communication technology, sensor technology, information acquisition and processing technology, sensor networks will finally have a deep influence on all aspects of people's lives. The battery resources of sensor nodes should be managed efficiently in order to prolong network lifetime in large-scale wireless sensor networks (LWSNs). Data aggregation represents an important method to remove redundancy as well as unnecessary data transmission and hence cut down the energy used in communication. As sensor nodes are deployed in hostile environments, the security of the sensitive information such as confidentiality and integrity should be considered. This paper proposes Fully homomorphic Encryption based Secure data Aggregation (FESA) in LWSNs which can protect end-to-end data confidentiality and support arbitrary aggregation operations over encrypted data. In addition, by utilizing message authentication codes (MACs), this scheme can also verify data integrity during data aggregation and forwarding processes so that false data can be detected as early as possible. Although the FHE increase the computation overhead due to its large public key size, simulation results show that it is implementable in LWSNs and performs well. Compared with other protocols, the transmitted data and network overhead are reduced in our scheme.

  20. Large-scale cortico-subcortical functional networks in focal epilepsies: The role of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Eva Výtvarová

    2017-01-01

    Significance: Focal epilepsies affect large-scale brain networks beyond the epileptogenic zones. Cortico-subcortical functional connectivity disturbance was displayed in LTLE, FLE, and POLE. Significant changes in the resting-state functional connectivity between cortical and subcortical structures suggest an important role of the BG and thalamus in focal epilepsies.

  1. Fractal scale-free networks resistant to disease spread

    International Nuclear Information System (INIS)

    Zhang, Zhongzhi; Zhou, Shuigeng; Zou, Tao; Chen, Guisheng

    2008-01-01

    The conventional wisdom is that scale-free networks are prone to epidemic propagation; in the paper we demonstrate that, on the contrary, disease spreading is inhibited in fractal scale-free networks. We first propose a novel network model and show that it simultaneously has the following rich topological properties: scale-free degree distribution, tunable clustering coefficient, 'large-world' behavior, and fractal scaling. Existing network models do not display these characteristics. Then, we investigate the susceptible–infected–removed (SIR) model of the propagation of diseases in our fractal scale-free networks by mapping it to the bond percolation process. We establish the existence of non-zero tunable epidemic thresholds by making use of the renormalization group technique, which implies that power law degree distribution does not suffice to characterize the epidemic dynamics on top of scale-free networks. We argue that the epidemic dynamics are determined by the topological properties, especially the fractality and its accompanying 'large-world' behavior

  2. Global asymptotic stabilization of large-scale hydraulic networks using positive proportional controls

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard; Wisniewski, Rafal

    2014-01-01

    An industrial case study involving a large-scale hydraulic network underlying a district heating system subject to structural changes is considered. The problem of controlling the pressure drop across the so-called end-user valves in the network to a designated vector of reference values under...... directional actuator constraints is addressed. The proposed solution consists of a set of decentralized positively constrained proportional control actions. The results show that the closed-loop system always has a globally asymptotically stable equilibrium point independently on the number of end......-users. Furthermore, by a proper design of controller gains the closed-loop equilibrium point can be designed to belong to an arbitrarily small neighborhood of the desired equilibrium point. Since there exists a globally asymptotically stable equilibrium point independently on the number of end-users in the system...

  3. Padé approximant for normal stress differences in large-amplitude oscillatory shear flow

    Science.gov (United States)

    Poungthong, P.; Saengow, C.; Giacomin, A. J.; Kolitawong, C.; Merger, D.; Wilhelm, M.

    2018-04-01

    Analytical solutions for the normal stress differences in large-amplitude oscillatory shear flow (LAOS), for continuum or molecular models, normally take the inexact form of the first few terms of a series expansion in the shear rate amplitude. Here, we improve the accuracy of these truncated expansions by replacing them with rational functions called Padé approximants. The recent advent of exact solutions in LAOS presents an opportunity to identify accurate and useful Padé approximants. For this identification, we replace the truncated expansion for the corotational Jeffreys fluid with its Padé approximants for the normal stress differences. We uncover the most accurate and useful approximant, the [3,4] approximant, and then test its accuracy against the exact solution [C. Saengow and A. J. Giacomin, "Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow," Phys. Fluids 29, 121601 (2017)]. We use Ewoldt grids to show the stunning accuracy of our [3,4] approximant in LAOS. We quantify this accuracy with an objective function and then map it onto the Pipkin space. Our two applications illustrate how to use our new approximant reliably. For this, we use the Spriggs relations to generalize our best approximant to multimode, and then, we compare with measurements on molten high-density polyethylene and on dissolved polyisobutylene in isobutylene oligomer.

  4. microRNA as a potential vector for the propagation of robustness in protein expression and oscillatory dynamics within a ceRNA network.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    Full Text Available microRNAs (miRNAs are small noncoding RNAs that are important post-transcriptional regulators of gene expression. miRNAs can induce thresholds in protein synthesis. Such thresholds in protein output can be also achieved by oligomerization of transcription factors (TF for the control of gene expression. First, we propose a minimal model for protein expression regulated by miRNA and by oligomerization of TF. We show that miRNA and oligomerization of TF generate a buffer, which increases the robustness of protein output towards molecular noise as well as towards random variation of kinetics parameters. Next, we extend the model by considering that the same miRNA can bind to multiple messenger RNAs, which accounts for the dynamics of a minimal competing endogenous RNAs (ceRNAs network. The model shows that, through common miRNA regulation, TF can control the expression of all proteins formed by the ceRNA network, even if it drives the expression of only one gene in the network. The model further suggests that the threshold in protein synthesis mediated by the oligomerization of TF can be propagated to the other genes, which can increase the robustness of the expression of all genes in such ceRNA network. Furthermore, we show that a miRNA could increase the time delay of a "Goodwin-like" oscillator model, which may favor the occurrence of oscillations of large amplitude. This result predicts important roles of miRNAs in the control of the molecular mechanisms leading to the emergence of biological rhythms. Moreover, a model for the latter oscillator embedded in a ceRNA network indicates that the oscillatory behavior can be propagated, via the shared miRNA, to all proteins formed by such ceRNA network. Thus, by means of computational models, we show that miRNAs could act as vectors allowing the propagation of robustness in protein synthesis as well as oscillatory behaviors within ceRNA networks.

  5. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.

    Science.gov (United States)

    de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando

    2016-09-01

    Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by

  6. Optical interconnect for large-scale systems

    Science.gov (United States)

    Dress, William

    2013-02-01

    This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.

  7. Towards Agent-Based Simulation of Emerging and Large-Scale Social Networks. Examples of the Migrant Crisis and MMORPGs

    Directory of Open Access Journals (Sweden)

    Schatten, Markus

    2016-10-01

    Full Text Available Large-scale agent based simulation of social networks is described in the context of the migrant crisis in Syria and the EU as well as massively multi-player on-line role playing games (MMORPG. The recipeWorld system by Terna and Fontana is proposed as a possible solution to simulating large-scale social networks. The initial system has been re-implemented using the Smart Python multi-Agent Development Environment (SPADE and Pyinteractive was used for visualization. We present initial models of simulation that we plan to develop further in future studies. Thus this paper is research in progress that will hopefully establish a novel agent-based modelling system in the context of the ModelMMORPG project.

  8. Microstructural Origins of Nonlinear Response in Associating Polymers under Oscillatory Shear

    Directory of Open Access Journals (Sweden)

    Mark A. Wilson

    2017-10-01

    Full Text Available The response of associating polymers with oscillatory shear is studied through large-scale simulations. A hybrid molecular dynamics (MD, Monte Carlo (MC algorithm is employed. Polymer chains are modeled as a coarse-grained bead-spring system. Functionalized end groups, at both ends of the polymer chains, can form reversible bonds according to MC rules. Stress-strain curves show nonlinearities indicated by a non-ellipsoidal shape. We consider two types of nonlinearities. Type I occurs at a strain amplitude much larger than one, type II at a frequency at which the elastic storage modulus dominates the viscous loss modulus. In this last case, the network topology resembles that of the system at rest. The reversible bonds are broken and chains stretch when the system moves away from the zero-strain position. For type I, the chains relax and the number of reversible bonds peaks when the system is near an extreme of the motion. During the movement to the other extreme of the cycle, first a stress overshoot occurs, then a yield accompanied by shear-banding. Finally, the network restructures. Interestingly, the system periodically restores bonds between the same associating groups. Even though major restructuring occurs, the system remembers previous network topologies.

  9. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    Science.gov (United States)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)

  10. GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks.

    Science.gov (United States)

    Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R

    2012-01-01

    In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.

  11. GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks.

    Directory of Open Access Journals (Sweden)

    S M Hadi Hosseini

    Full Text Available In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC and functional data analyses (FDA, in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL and healthy matched Controls (CON. The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.

  12. Working memory training mostly engages general-purpose large-scale networks for learning.

    Science.gov (United States)

    Salmi, Juha; Nyberg, Lars; Laine, Matti

    2018-03-21

    The present meta-analytic study examined brain activation changes following working memory (WM) training, a form of cognitive training that has attracted considerable interest. Comparisons with perceptual-motor (PM) learning revealed that WM training engages domain-general large-scale networks for learning encompassing the dorsal attention and salience networks, sensory areas, and striatum. Also the dynamics of the training-induced brain activation changes within these networks showed a high overlap between WM and PM training. The distinguishing feature for WM training was the consistent modulation of the dorso- and ventrolateral prefrontal cortex (DLPFC/VLPFC) activity. The strongest candidate for mediating transfer to similar untrained WM tasks was the frontostriatal system, showing higher striatal and VLPFC activations, and lower DLPFC activations after training. Modulation of transfer-related areas occurred mostly with longer training periods. Overall, our findings place WM training effects into a general perception-action cycle, where some modulations may depend on the specific cognitive demands of a training task. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Mirror dark matter and large scale structure

    International Nuclear Information System (INIS)

    Ignatiev, A.Yu.; Volkas, R.R.

    2003-01-01

    Mirror matter is a dark matter candidate. In this paper, we reexamine the linear regime of density perturbation growth in a universe containing mirror dark matter. Taking adiabatic scale-invariant perturbations as the input, we confirm that the resulting processed power spectrum is richer than for the more familiar cases of cold, warm and hot dark matter. The new features include a maximum at a certain scale λ max , collisional damping below a smaller characteristic scale λ S ' , with oscillatory perturbations between the two. These scales are functions of the fundamental parameters of the theory. In particular, they decrease for decreasing x, the ratio of the mirror plasma temperature to that of the ordinary. For x∼0.2, the scale λ max becomes galactic. Mirror dark matter therefore leads to bottom-up large scale structure formation, similar to conventional cold dark matter, for x(less-or-similar sign)0.2. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime. The differences pertain to scales smaller than λ S ' in the linear regime, and generally in the nonlinear regime because mirror dark matter is chemically complex and to some extent dissipative. Lyman-α forest data and the early reionization epoch established by WMAP may hold the key to distinguishing mirror dark matter from WIMP-style cold dark matter

  14. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study.

    Science.gov (United States)

    Kaushal, Mayank; Oni-Orisan, Akinwunmi; Chen, Gang; Li, Wenjun; Leschke, Jack; Ward, Doug; Kalinosky, Benjamin; Budde, Matthew; Schmit, Brian; Li, Shi-Jiang; Muqeet, Vaishnavi; Kurpad, Shekar

    2017-09-01

    Network analysis based on graph theory depicts the brain as a complex network that allows inspection of overall brain connectivity pattern and calculation of quantifiable network metrics. To date, large-scale network analysis has not been applied to resting-state functional networks in complete spinal cord injury (SCI) patients. To characterize modular reorganization of whole brain into constituent nodes and compare network metrics between SCI and control subjects, fifteen subjects with chronic complete cervical SCI and 15 neurologically intact controls were scanned. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI). Correlation analysis was performed between every ROI pair to construct connectivity matrices and ROIs were categorized into distinct modules. Subsequently, local efficiency (LE) and global efficiency (GE) network metrics were calculated at incremental cost thresholds. The application of a modularity algorithm organized the whole-brain resting-state functional network of the SCI and the control subjects into nine and seven modules, respectively. The individual modules differed across groups in terms of the number and the composition of constituent nodes. LE demonstrated statistically significant decrease at multiple cost levels in SCI subjects. GE did not differ significantly between the two groups. The demonstration of modular architecture in both groups highlights the applicability of large-scale network analysis in studying complex brain networks. Comparing modules across groups revealed differences in number and membership of constituent nodes, indicating modular reorganization due to neural plasticity.

  15. Computing in Large-Scale Dynamic Systems

    NARCIS (Netherlands)

    Pruteanu, A.S.

    2013-01-01

    Software applications developed for large-scale systems have always been difficult to de- velop due to problems caused by the large number of computing devices involved. Above a certain network size (roughly one hundred), necessary services such as code updating, topol- ogy discovery and data

  16. The Use of Online Social Networks by Polish Former Erasmus Students: A Large-Scale Survey

    Science.gov (United States)

    Bryla, Pawel

    2014-01-01

    There is an increasing role of online social networks in the life of young Poles. We conducted a large-scale survey among Polish former Erasmus students. We have received 2450 completed questionnaires from alumni of 115 higher education institutions all over Poland. 85.4% of our respondents reported they kept in touch with their former Erasmus…

  17. Environmental versatility promotes modularity in large scale metabolic networks

    OpenAIRE

    Samal A.; Wagner Andreas; Martin O.C.

    2011-01-01

    Abstract Background The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chem...

  18. Fabrication of large-scale one-dimensional Au nanochain and nanowire networks by interfacial self-assembly

    International Nuclear Information System (INIS)

    Wang Minhua; Li Yongjun; Xie Zhaoxiong; Liu Cai; Yeung, Edward S.

    2010-01-01

    By utilizing the strong capillary attraction between interfacial nanoparticles, large-scale one-dimensional Au nanochain networks were fabricated at the n-butanol/water interface, and could be conveniently transferred onto hydrophilic substrates. Furthermore, the length of the nanochains could be adjusted simply by controlling the density of Au nanoparticles (AuNPs) at the n-butanol/water interface. Surprisingly, the resultant Au nanochains could further transform into smooth nanowires by increasing the aging time, forming a nanowire network. Combined characterization by HRTEM and UV-vis spectroscopy indicates that the formation of Au nanochains stemmed from a stochastic assembly of interfacial AuNPs due to strong capillary attraction, and the evolution of nanochains to nanowires follows an Ostwald ripening mechanism rather than an oriented attachment. This method could be utilized to fabricate large-area nanochain or nanowire networks more uniformly on solid substrates than that of evaporating a solution of nanochain colloid, since it eliminates the three-dimensional aggregation behavior.

  19. Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells

    International Nuclear Information System (INIS)

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A

    2011-01-01

    Fluctuations in the size of the apical cell surface have been associated with apical constriction and tissue invagination. However, it is currently not known if apical oscillatory behaviors are a unique property of constricting cells or if they constitute a universal feature of the force balance between cells in multicellular tissues. Here, we set out to determine whether oscillatory cell behaviors occur in parallel with cell intercalation during the morphogenetic process of axis elongation in the Drosophila embryo. We applied multi-color, time-lapse imaging of living embryos and SIESTA, an integrated tool for automated and semi-automated cell segmentation, tracking, and analysis of image sequences. Using SIESTA, we identified cycles of contraction and expansion of the apical surface in intercalating cells and characterized them at the molecular, cellular, and tissue scales. We demonstrate that apical oscillations are anisotropic, and this anisotropy depends on the presence of intact cell–cell junctions and spatial cues provided by the anterior–posterior patterning system. Oscillatory cell behaviors during axis elongation are associated with the hierarchical assembly and disassembly of contractile actomyosin structures at the medial cortex of the cell, with actin localization preceding myosin II and with the localization of both proteins preceding changes in cell shape. We discuss models to explain how the architecture of cytoskeletal networks regulates their contractile behavior and the mechanisms that give rise to oscillatory cell behaviors in intercalating cells

  20. The prisoner's dilemma in structured scale-free networks

    International Nuclear Information System (INIS)

    Li Xing; Wu Yonghui; Zhang Zhongzhi; Zhou Shuigeng; Rong Zhihai

    2009-01-01

    The conventional wisdom is that scale-free networks are prone to cooperation spreading. In this paper we investigate the cooperative behavior on the structured scale-free network. In contrast to the conventional wisdom that scale-free networks are prone to cooperation spreading, the evolution of cooperation is inhibited on the structured scale-free network when the prisoner's dilemma (PD) game is modeled. First, we demonstrate that neither the scale-free property nor the high clustering coefficient is responsible for the inhibition of cooperation spreading on the structured scale-free network. Then we provide one heuristic method to argue that the lack of age correlations and its associated 'large-world' behavior in the structured scale-free network inhibit the spread of cooperation. These findings may help enlighten further studies on the evolutionary dynamics of the PD game in scale-free networks

  1. Self-sustained oscillations of complex genomic regulatory networks

    International Nuclear Information System (INIS)

    Ye Weiming; Huang Xiaodong; Huang Xuhui; Li Pengfei; Xia Qinzhi; Hu Gang

    2010-01-01

    Recently, self-sustained oscillations in complex networks consisting of non-oscillatory nodes have attracted great interest in diverse natural and social fields. Oscillatory genomic regulatory networks are one of the most typical examples of this kind. Given an oscillatory genomic network, it is important to reveal the central structure generating the oscillation. However, if the network consists of large numbers of genes and interactions, the oscillation generator is deeply hidden in the complicated interactions. We apply the dominant phase-advanced driving path method proposed in Qian et al. (2010) to reduce complex genomic regulatory networks to one-dimensional and unidirectionally linked network graphs where negative regulatory loops are explored to play as the central generators of the oscillations, and oscillation propagation pathways in the complex networks are clearly shown by tree branches radiating from the loops. Based on the above understanding we can control oscillations of genomic networks with high efficiency.

  2. A Large Scale Code Resolution Service Network in the Internet of Things

    Science.gov (United States)

    Yu, Haining; Zhang, Hongli; Fang, Binxing; Yu, Xiangzhan

    2012-01-01

    In the Internet of Things a code resolution service provides a discovery mechanism for a requester to obtain the information resources associated with a particular product code immediately. In large scale application scenarios a code resolution service faces some serious issues involving heterogeneity, big data and data ownership. A code resolution service network is required to address these issues. Firstly, a list of requirements for the network architecture and code resolution services is proposed. Secondly, in order to eliminate code resolution conflicts and code resolution overloads, a code structure is presented to create a uniform namespace for code resolution records. Thirdly, we propose a loosely coupled distributed network consisting of heterogeneous, independent; collaborating code resolution services and a SkipNet based code resolution service named SkipNet-OCRS, which not only inherits DHT's advantages, but also supports administrative control and autonomy. For the external behaviors of SkipNet-OCRS, a novel external behavior mode named QRRA mode is proposed to enhance security and reduce requester complexity. For the internal behaviors of SkipNet-OCRS, an improved query algorithm is proposed to increase query efficiency. It is analyzed that integrating SkipNet-OCRS into our resolution service network can meet our proposed requirements. Finally, simulation experiments verify the excellent performance of SkipNet-OCRS. PMID:23202207

  3. A large scale code resolution service network in the Internet of Things.

    Science.gov (United States)

    Yu, Haining; Zhang, Hongli; Fang, Binxing; Yu, Xiangzhan

    2012-11-07

    In the Internet of Things a code resolution service provides a discovery mechanism for a requester to obtain the information resources associated with a particular product code immediately. In large scale application scenarios a code resolution service faces some serious issues involving heterogeneity, big data and data ownership. A code resolution service network is required to address these issues. Firstly, a list of requirements for the network architecture and code resolution services is proposed. Secondly, in order to eliminate code resolution conflicts and code resolution overloads, a code structure is presented to create a uniform namespace for code resolution records. Thirdly, we propose a loosely coupled distributed network consisting of heterogeneous, independent; collaborating code resolution services and a SkipNet based code resolution service named SkipNet-OCRS, which not only inherits DHT’s advantages, but also supports administrative control and autonomy. For the external behaviors of SkipNet-OCRS, a novel external behavior mode named QRRA mode is proposed to enhance security and reduce requester complexity. For the internal behaviors of SkipNet-OCRS, an improved query algorithm is proposed to increase query efficiency. It is analyzed that integrating SkipNet-OCRS into our resolution service network can meet our proposed requirements. Finally, simulation experiments verify the excellent performance of SkipNet-OCRS.

  4. Performance Evaluation of Hadoop-based Large-scale Network Traffic Analysis Cluster

    Directory of Open Access Journals (Sweden)

    Tao Ran

    2016-01-01

    Full Text Available As Hadoop has gained popularity in big data era, it is widely used in various fields. The self-design and self-developed large-scale network traffic analysis cluster works well based on Hadoop, with off-line applications running on it to analyze the massive network traffic data. On purpose of scientifically and reasonably evaluating the performance of analysis cluster, we propose a performance evaluation system. Firstly, we set the execution times of three benchmark applications as the benchmark of the performance, and pick 40 metrics of customized statistical resource data. Then we identify the relationship between the resource data and the execution times by a statistic modeling analysis approach, which is composed of principal component analysis and multiple linear regression. After training models by historical data, we can predict the execution times by current resource data. Finally, we evaluate the performance of analysis cluster by the validated predicting of execution times. Experimental results show that the predicted execution times by trained models are within acceptable error range, and the evaluation results of performance are accurate and reliable.

  5. A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems.

    Science.gov (United States)

    Shen, Lili; Guo, Jiming; Wang, Lei

    2018-06-06

    The network real-time kinematic (RTK) technique can provide centimeter-level real time positioning solutions and play a key role in geo-spatial infrastructure. With ever-increasing popularity, network RTK systems will face issues in the support of large numbers of concurrent users. In the past, high-precision positioning services were oriented towards professionals and only supported a few concurrent users. Currently, precise positioning provides a spatial foundation for artificial intelligence (AI), and countless smart devices (autonomous cars, unmanned aerial-vehicles (UAVs), robotic equipment, etc.) require precise positioning services. Therefore, the development of approaches to support large-scale network RTK systems is urgent. In this study, we proposed a self-organizing spatial clustering (SOSC) approach which automatically clusters online users to reduce the computational load on the network RTK system server side. The experimental results indicate that both the SOSC algorithm and the grid algorithm can reduce the computational load efficiently, while the SOSC algorithm gives a more elastic and adaptive clustering solution with different datasets. The SOSC algorithm determines the cluster number and the mean distance to cluster center (MDTCC) according to the data set, while the grid approaches are all predefined. The side-effects of clustering algorithms on the user side are analyzed with real global navigation satellite system (GNSS) data sets. The experimental results indicate that 10 km can be safely used as the cluster radius threshold for the SOSC algorithm without significantly reducing the positioning precision and reliability on the user side.

  6. Research on Large-Scale Road Network Partition and Route Search Method Combined with Traveler Preferences

    Directory of Open Access Journals (Sweden)

    De-Xin Yu

    2013-01-01

    Full Text Available Combined with improved Pallottino parallel algorithm, this paper proposes a large-scale route search method, which considers travelers’ route choice preferences. And urban road network is decomposed into multilayers effectively. Utilizing generalized travel time as road impedance function, the method builds a new multilayer and multitasking road network data storage structure with object-oriented class definition. Then, the proposed path search algorithm is verified by using the real road network of Guangzhou city as an example. By the sensitive experiments, we make a comparative analysis of the proposed path search method with the current advanced optimal path algorithms. The results demonstrate that the proposed method can increase the road network search efficiency by more than 16% under different search proportion requests, node numbers, and computing process numbers, respectively. Therefore, this method is a great breakthrough in the guidance field of urban road network.

  7. Coordinated Multi-layer Multi-domain Optical Network (COMMON) for Large-Scale Science Applications (COMMON)

    Energy Technology Data Exchange (ETDEWEB)

    Vokkarane, Vinod [University of Massachusetts

    2013-09-01

    We intend to implement a Coordinated Multi-layer Multi-domain Optical Network (COMMON) Framework for Large-scale Science Applications. In the COMMON project, specific problems to be addressed include 1) anycast/multicast/manycast request provisioning, 2) deployable OSCARS enhancements, 3) multi-layer, multi-domain quality of service (QoS), and 4) multi-layer, multidomain path survivability. In what follows, we outline the progress in the above categories (Year 1, 2, and 3 deliverables).

  8. A Hybrid Testbed for Performance Evaluation of Large-Scale Datacenter Networks

    DEFF Research Database (Denmark)

    Pilimon, Artur; Ruepp, Sarah Renée

    2018-01-01

    Datacenters (DC) as well as their network interconnects are growing in scale and complexity. They are constantly being challenged in terms of energy and resource utilization efficiency, scalability, availability, reliability and performance requirements. Therefore, these resource-intensive enviro......Datacenters (DC) as well as their network interconnects are growing in scale and complexity. They are constantly being challenged in terms of energy and resource utilization efficiency, scalability, availability, reliability and performance requirements. Therefore, these resource......-intensive environments must be properly tested and analyzed in order to make timely upgrades and transformations. However, a limited number of academic institutions and Research and Development companies have access to production scale DC Network (DCN) testing facilities, and resource-limited studies can produce...... misleading or inaccurate results. To address this problem, we introduce an alternative solution, which forms a solid base for a more realistic and comprehensive performance evaluation of different aspects of DCNs. It is based on the System-in-the-loop (SITL) concept, where real commercial DCN equipment...

  9. Development of a 3D Stream Network and Topography for Improved Large-Scale Hydraulic Modeling

    Science.gov (United States)

    Saksena, S.; Dey, S.; Merwade, V.

    2016-12-01

    Most digital elevation models (DEMs) used for hydraulic modeling do not include channel bed elevations. As a result, the DEMs are complimented with additional bathymetric data for accurate hydraulic simulations. Existing methods to acquire bathymetric information through field surveys or through conceptual models are limited to reach-scale applications. With an increasing focus on large scale hydraulic modeling of rivers, a framework to estimate and incorporate bathymetry for an entire stream network is needed. This study proposes an interpolation-based algorithm to estimate bathymetry for a stream network by modifying the reach-based empirical River Channel Morphology Model (RCMM). The effect of a 3D stream network that includes river bathymetry is then investigated by creating a 1D hydraulic model (HEC-RAS) and 2D hydrodynamic model (Integrated Channel and Pond Routing) for the Upper Wabash River Basin in Indiana, USA. Results show improved simulation of flood depths and storage in the floodplain. Similarly, the impact of river bathymetry incorporation is more significant in the 2D model as compared to the 1D model.

  10. Geometry of river networks. I. Scaling, fluctuations, and deviations

    International Nuclear Information System (INIS)

    Dodds, Peter Sheridan; Rothman, Daniel H.

    2001-01-01

    This paper is the first in a series of three papers investigating the detailed geometry of river networks. Branching networks are a universal structure employed in the distribution and collection of material. Large-scale river networks mark an important class of two-dimensional branching networks, being not only of intrinsic interest but also a pervasive natural phenomenon. In the description of river network structure, scaling laws are uniformly observed. Reported values of scaling exponents vary, suggesting that no unique set of scaling exponents exists. To improve this current understanding of scaling in river networks and to provide a fuller description of branching network structure, here we report a theoretical and empirical study of fluctuations about and deviations from scaling. We examine data for continent-scale river networks such as the Mississippi and the Amazon and draw inspiration from a simple model of directed, random networks. We center our investigations on the scaling of the length of a subbasin's dominant stream with its area, a characterization of basin shape known as Hack's law. We generalize this relationship to a joint probability density, and provide observations and explanations of deviations from scaling. We show that fluctuations about scaling are substantial, and grow with system size. We find strong deviations from scaling at small scales which can be explained by the existence of a linear network structure. At intermediate scales, we find slow drifts in exponent values, indicating that scaling is only approximately obeyed and that universality remains indeterminate. At large scales, we observe a breakdown in scaling due to decreasing sample space and correlations with overall basin shape. The extent of approximate scaling is significantly restricted by these deviations, and will not be improved by increases in network resolution

  11. Altering neuronal excitability to preserve network connectivity in a computational model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Willem de Haan

    2017-09-01

    Full Text Available Neuronal hyperactivity and hyperexcitability of the cerebral cortex and hippocampal region is an increasingly observed phenomenon in preclinical Alzheimer's disease (AD. In later stages, oscillatory slowing and loss of functional connectivity are ubiquitous. Recent evidence suggests that neuronal dynamics have a prominent role in AD pathophysiology, making it a potentially interesting therapeutic target. However, although neuronal activity can be manipulated by various (non-pharmacological means, intervening in a highly integrated system that depends on complex dynamics can produce counterintuitive and adverse effects. Computational dynamic network modeling may serve as a virtual test ground for developing effective interventions. To explore this approach, a previously introduced large-scale neural mass network with human brain topology was used to simulate the temporal evolution of AD-like, activity-dependent network degeneration. In addition, six defense strategies that either enhanced or diminished neuronal excitability were tested against the degeneration process, targeting excitatory and inhibitory neurons combined or separately. Outcome measures described oscillatory, connectivity and topological features of the damaged networks. Over time, the various interventions produced diverse large-scale network effects. Contrary to our hypothesis, the most successful strategy was a selective stimulation of all excitatory neurons in the network; it substantially prolonged the preservation of network integrity. The results of this study imply that functional network damage due to pathological neuronal activity can be opposed by targeted adjustment of neuronal excitability levels. The present approach may help to explore therapeutic effects aimed at preserving or restoring neuronal network integrity and contribute to better-informed intervention choices in future clinical trials in AD.

  12. On the rejection-based algorithm for simulation and analysis of large-scale reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Zunino, Roberto, E-mail: roberto.zunino@unitn.it [Department of Mathematics, University of Trento, Trento (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento, Trento (Italy)

    2015-06-28

    Stochastic simulation for in silico studies of large biochemical networks requires a great amount of computational time. We recently proposed a new exact simulation algorithm, called the rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)], to improve simulation performance by postponing and collapsing as much as possible the propensity updates. In this paper, we analyze the performance of this algorithm in detail, and improve it for simulating large-scale biochemical reaction networks. We also present a new algorithm, called simultaneous RSSA (SRSSA), which generates many independent trajectories simultaneously for the analysis of the biochemical behavior. SRSSA improves simulation performance by utilizing a single data structure across simulations to select reaction firings and forming trajectories. The memory requirement for building and storing the data structure is thus independent of the number of trajectories. The updating of the data structure when needed is performed collectively in a single operation across the simulations. The trajectories generated by SRSSA are exact and independent of each other by exploiting the rejection-based mechanism. We test our new improvement on real biological systems with a wide range of reaction networks to demonstrate its applicability and efficiency.

  13. Information-geometric measures estimate neural interactions during oscillatory brain states

    Directory of Open Access Journals (Sweden)

    Yimin eNie

    2014-02-01

    Full Text Available The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG, a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits various oscillations depending on cognitive demands or when an animal is asleep. Therefore, the investigation of the IG measures during oscillatory network states is important for testing how the IG method can be applied to real neural data. Using model networks of binary neurons or more realistic spiking neurons, we studied how the single- and pairwise-IG measures were influenced by oscillatory neural activity. Two general oscillatory mechanisms, externally driven oscillations and internally induced oscillations, were considered. In both mechanisms, we found that the single-IG measure was linearly related to the magnitude of the external input, and that the pairwise-IG measure was linearly related to the sum of connection strengths between two neurons. We also observed that the pairwise-IG measure was not dependent on the oscillation frequency. These results are consistent with the previous findings that were obtained under the equilibrium conditions. Therefore, we demonstrate that the IG method provides useful insights into neural interactions under the oscillatory condition that can often be observed in the real brain.

  14. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chunyang Lei

    2016-07-01

    Full Text Available Super dense wireless sensor networks (WSNs have become popular with the development of Internet of Things (IoT, Machine-to-Machine (M2M communications and Vehicular-to-Vehicular (V2V networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled.

  15. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks.

    Science.gov (United States)

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Gaura, Elena; Brusey, James; Zhang, Xuekun; Dutkiewicz, Eryk

    2016-07-18

    Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled.

  16. Large-scale brain networks underlying language acquisition in early infancy

    Directory of Open Access Journals (Sweden)

    Fumitaka eHomae

    2011-05-01

    Full Text Available A critical issue in human development is that of whether the language-related areas in the left frontal and temporal regions work as a functional network in preverbal infants. Here, we used 94-channel near-infrared spectroscopy (NIRS to reveal the functional networks in the brains of sleeping 3-month-old infants with and without presenting speech sounds. During the first 3 min, we measured spontaneous brain activation (period 1. After period 1, we provided stimuli by playing Japanese sentences for 3 min (period 2. Finally, we measured brain activation for 3 min without providing the stimulus (period 3, as in period 1. We found that not only the bilateral temporal and temporoparietal regions but also the prefrontal and occipital regions showed oxygenated hemoglobin (oxy-Hb signal increases and deoxygenated hemoglobin (deoxy-Hb signal decreases when speech sounds were presented to infants. By calculating time-lagged cross-correlations and coherences of oxy-Hb signals between channels, we tested the functional connectivity for the 3 periods. The oxy-Hb signals in neighboring channels, as well as their homologous channels in the contralateral hemisphere, showed high correlation coefficients in period 1. Similar correlations were observed in period 2; however, the number of channels showing high correlations was higher in the ipsilateral hemisphere, especially in the anterior-posterior direction. The functional connectivity in period 3 showed a close relationship between the frontal and temporal regions, which was less prominent in period 1, indicating that these regions form the functional networks and work as a hysteresis system that has memory of the previous inputs. We propose a hypothesis that the spatiotemporally large-scale brain networks, including the frontal and temporal regions, underlie speech processing in infants and they might play important roles in language acquisition during infancy.

  17. Event management for large scale event-driven digital hardware spiking neural networks.

    Science.gov (United States)

    Caron, Louis-Charles; D'Haene, Michiel; Mailhot, Frédéric; Schrauwen, Benjamin; Rouat, Jean

    2013-09-01

    The interest in brain-like computation has led to the design of a plethora of innovative neuromorphic systems. Individually, spiking neural networks (SNNs), event-driven simulation and digital hardware neuromorphic systems get a lot of attention. Despite the popularity of event-driven SNNs in software, very few digital hardware architectures are found. This is because existing hardware solutions for event management scale badly with the number of events. This paper introduces the structured heap queue, a pipelined digital hardware data structure, and demonstrates its suitability for event management. The structured heap queue scales gracefully with the number of events, allowing the efficient implementation of large scale digital hardware event-driven SNNs. The scaling is linear for memory, logarithmic for logic resources and constant for processing time. The use of the structured heap queue is demonstrated on a field-programmable gate array (FPGA) with an image segmentation experiment and a SNN of 65,536 neurons and 513,184 synapses. Events can be processed at the rate of 1 every 7 clock cycles and a 406×158 pixel image is segmented in 200 ms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Disrupted coupling of large-scale networks is associated with relapse behaviour in heroin-dependent men

    Science.gov (United States)

    Li, Qiang; Liu, Jierong; Wang, Wei; Wang, Yarong; Li, Wei; Chen, Jiajie; Zhu, Jia; Yan, Xuejiao; Li, Yongbin; Li, Zhe; Ye, Jianjun; Wang, Wei

    2018-01-01

    Background It is unknown whether impaired coupling among 3 core large-scale brain networks (salience [SN], default mode [DMN] and executive control networks [ECN]) is associated with relapse behaviour in treated heroin-dependent patients. Methods We conducted a prospective resting-state functional MRI study comparing the functional connectivity strength among healthy controls and heroin-dependent men who had either relapsed or were in early remission. Men were considered to be either relapsed or in early remission based on urine drug screens during a 3-month follow-up period. We also examined how the coupling of large-scale networks correlated with relapse behaviour among heroin-dependent men. Results We included 20 controls and 50 heroin-dependent men (26 relapsed and 24 early remission) in our analyses. The relapsed men showed greater connectivity than the early remission and control groups between the dorsal anterior cingulate cortex (key node of the SN) and the dorsomedial prefrontal cortex (included in the DMN). The relapsed men and controls showed lower connectivity than the early remission group between the left dorsolateral prefrontal cortex (key node of the left ECN) and the dorsomedial prefrontal cortex. The percentage of positive urine drug screens positively correlated with the coupling between the dorsal anterior cingulate cortex and dorsomedial prefrontal cortex, but negatively correlated with the coupling between the left dorsolateral prefrontal cortex and dorsomedial prefrontal cortex. Limitations We examined deficits in only 3 core networks leading to relapse behaviour. Other networks may also contribute to relapse. Conclusion Greater coupling between the SN and DMN and lower coupling between the left ECN and DMN is associated with relapse behaviour. These findings may shed light on the development of new treatments for heroin addiction. PMID:29252165

  19. The Effects of Topology on Throughput Capacity of Large Scale Wireless Networks

    Directory of Open Access Journals (Sweden)

    Qiuming Liu

    2017-03-01

    Full Text Available In this paper, we jointly consider the inhomogeneity and spatial dimension in large scale wireless networks. We study the effects of topology on the throughput capacity. This problem is inherently difficult since it is complex to handle the interference caused by simultaneous transmission. To solve this problem, we, according to the inhomogeneity of topology, divide the transmission into intra-cluster transmission and inter-cluster transmission. For the intra-cluster transmission, a spheroidal percolation model is constructed. The spheroidal percolation model guarantees a constant rate when a power control strategy is adopted. We also propose a cube percolation mode for the inter-cluster transmission. Different from the spheroidal percolation model, a constant transmission rate can be achieved without power control. For both transmissions, we propose a routing scheme with five phases. By comparing the achievable rate of each phase, we get the rate bottleneck, which is the throughput capacity of the network.

  20. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks

    Directory of Open Access Journals (Sweden)

    Runchun Mark Wang

    2015-05-01

    Full Text Available We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP and Spike Timing Dependent Delay Plasticity (STDDP. We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 2^26 (64M synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted and/or delayed pre-synaptic spike to the target synapse in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 2^36 (64G synaptic adaptors on a current high-end FPGA platform.

  1. A Large Scale Code Resolution Service Network in the Internet of Things

    Directory of Open Access Journals (Sweden)

    Xiangzhan Yu

    2012-11-01

    Full Text Available In the Internet of Things a code resolution service provides a discovery mechanism for a requester to obtain the information resources associated with a particular product code immediately. In large scale application scenarios a code resolution service faces some serious issues involving heterogeneity, big data and data ownership. A code resolution service network is required to address these issues. Firstly, a list of requirements for the network architecture and code resolution services is proposed. Secondly, in order to eliminate code resolution conflicts and code resolution overloads, a code structure is presented to create a uniform namespace for code resolution records. Thirdly, we propose a loosely coupled distributed network consisting of heterogeneous, independent; collaborating code resolution services and a SkipNet based code resolution service named SkipNet-OCRS, which not only inherits DHT’s advantages, but also supports administrative control and autonomy. For the external behaviors of SkipNet-OCRS, a novel external behavior mode named QRRA mode is proposed to enhance security and reduce requester complexity. For the internal behaviors of SkipNet-OCRS, an improved query algorithm is proposed to increase query efficiency. It is analyzed that integrating SkipNet-OCRS into our resolution service network can meet our proposed requirements. Finally, simulation experiments verify the excellent performance of SkipNet-OCRS.

  2. A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems

    Directory of Open Access Journals (Sweden)

    Lili Shen

    2018-06-01

    Full Text Available The network real-time kinematic (RTK technique can provide centimeter-level real time positioning solutions and play a key role in geo-spatial infrastructure. With ever-increasing popularity, network RTK systems will face issues in the support of large numbers of concurrent users. In the past, high-precision positioning services were oriented towards professionals and only supported a few concurrent users. Currently, precise positioning provides a spatial foundation for artificial intelligence (AI, and countless smart devices (autonomous cars, unmanned aerial-vehicles (UAVs, robotic equipment, etc. require precise positioning services. Therefore, the development of approaches to support large-scale network RTK systems is urgent. In this study, we proposed a self-organizing spatial clustering (SOSC approach which automatically clusters online users to reduce the computational load on the network RTK system server side. The experimental results indicate that both the SOSC algorithm and the grid algorithm can reduce the computational load efficiently, while the SOSC algorithm gives a more elastic and adaptive clustering solution with different datasets. The SOSC algorithm determines the cluster number and the mean distance to cluster center (MDTCC according to the data set, while the grid approaches are all predefined. The side-effects of clustering algorithms on the user side are analyzed with real global navigation satellite system (GNSS data sets. The experimental results indicate that 10 km can be safely used as the cluster radius threshold for the SOSC algorithm without significantly reducing the positioning precision and reliability on the user side.

  3. Analysis of a large-scale weighted network of one-to-one human communication

    International Nuclear Information System (INIS)

    Onnela, Jukka-Pekka; Saramaeki, Jari; Hyvoenen, Joerkki; Szabo, Gabor; Menezes, M Argollo de; Kaski, Kimmo; Barabasi, Albert-Laszlo; Kertesz, Janos

    2007-01-01

    We construct a connected network of 3.9 million nodes from mobile phone call records, which can be regarded as a proxy for the underlying human communication network at the societal level. We assign two weights on each edge to reflect the strength of social interaction, which are the aggregate call duration and the cumulative number of calls placed between the individuals over a period of 18 weeks. We present a detailed analysis of this weighted network by examining its degree, strength, and weight distributions, as well as its topological assortativity and weighted assortativity, clustering and weighted clustering, together with correlations between these quantities. We give an account of motif intensity and coherence distributions and compare them to a randomized reference system. We also use the concept of link overlap to measure the number of common neighbours any two adjacent nodes have, which serves as a useful local measure for identifying the interconnectedness of communities. We report a positive correlation between the overlap and weight of a link, thus providing strong quantitative evidence for the weak ties hypothesis, a central concept in social network analysis. The percolation properties of the network are found to depend on the type and order of removed links, and they can help understand how the local structure of the network manifests itself at the global level. We hope that our results will contribute to modelling weighted large-scale social networks, and believe that the systematic approach followed here can be adopted to study other weighted networks

  4. Analysis of a large-scale weighted network of one-to-one human communication

    Science.gov (United States)

    Onnela, Jukka-Pekka; Saramäki, Jari; Hyvönen, Jörkki; Szabó, Gábor; Argollo de Menezes, M.; Kaski, Kimmo; Barabási, Albert-László; Kertész, János

    2007-06-01

    We construct a connected network of 3.9 million nodes from mobile phone call records, which can be regarded as a proxy for the underlying human communication network at the societal level. We assign two weights on each edge to reflect the strength of social interaction, which are the aggregate call duration and the cumulative number of calls placed between the individuals over a period of 18 weeks. We present a detailed analysis of this weighted network by examining its degree, strength, and weight distributions, as well as its topological assortativity and weighted assortativity, clustering and weighted clustering, together with correlations between these quantities. We give an account of motif intensity and coherence distributions and compare them to a randomized reference system. We also use the concept of link overlap to measure the number of common neighbours any two adjacent nodes have, which serves as a useful local measure for identifying the interconnectedness of communities. We report a positive correlation between the overlap and weight of a link, thus providing strong quantitative evidence for the weak ties hypothesis, a central concept in social network analysis. The percolation properties of the network are found to depend on the type and order of removed links, and they can help understand how the local structure of the network manifests itself at the global level. We hope that our results will contribute to modelling weighted large-scale social networks, and believe that the systematic approach followed here can be adopted to study other weighted networks.

  5. Analysis of a large-scale weighted network of one-to-one human communication

    Energy Technology Data Exchange (ETDEWEB)

    Onnela, Jukka-Pekka [Laboratory of Computational Engineering, Helsinki University of Technology (Finland); Saramaeki, Jari [Laboratory of Computational Engineering, Helsinki University of Technology (Finland); Hyvoenen, Joerkki [Laboratory of Computational Engineering, Helsinki University of Technology (Finland); Szabo, Gabor [Department of Physdics and Center for Complex Networks Research, University of Notre Dame, IN (United States); Menezes, M Argollo de [Department of Physdics and Center for Complex Networks Research, University of Notre Dame, IN (United States); Kaski, Kimmo [Laboratory of Computational Engineering, Helsinki University of Technology (Finland); Barabasi, Albert-Laszlo [Department of Physdics and Center for Complex Networks Research, University of Notre Dame, IN (United States); Kertesz, Janos [Laboratory of Computational Engineering, Helsinki University of Technology (Finland)

    2007-06-15

    We construct a connected network of 3.9 million nodes from mobile phone call records, which can be regarded as a proxy for the underlying human communication network at the societal level. We assign two weights on each edge to reflect the strength of social interaction, which are the aggregate call duration and the cumulative number of calls placed between the individuals over a period of 18 weeks. We present a detailed analysis of this weighted network by examining its degree, strength, and weight distributions, as well as its topological assortativity and weighted assortativity, clustering and weighted clustering, together with correlations between these quantities. We give an account of motif intensity and coherence distributions and compare them to a randomized reference system. We also use the concept of link overlap to measure the number of common neighbours any two adjacent nodes have, which serves as a useful local measure for identifying the interconnectedness of communities. We report a positive correlation between the overlap and weight of a link, thus providing strong quantitative evidence for the weak ties hypothesis, a central concept in social network analysis. The percolation properties of the network are found to depend on the type and order of removed links, and they can help understand how the local structure of the network manifests itself at the global level. We hope that our results will contribute to modelling weighted large-scale social networks, and believe that the systematic approach followed here can be adopted to study other weighted networks.

  6. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks?

    Science.gov (United States)

    Martin, Claire; Ravel, Nadine

    2014-01-01

    Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to "bind" distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15-40 Hz) and gamma (60-100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory.

  7. Beta and gamma oscillatory activities associated with olfactory memory tasks: Different rhythms for different functional networks?

    Directory of Open Access Journals (Sweden)

    Claire eMartin

    2014-06-01

    Full Text Available Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform and entorhinal cortices and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to ‘bind’ distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15-40 Hz and gamma (60-100 Hz. While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory.

  8. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    OpenAIRE

    Xerxes D. Arsiwalla; Riccardo eZucca; Alberto eBetella; Enrique eMartinez; David eDalmazzo; Pedro eOmedas; Gustavo eDeco; Gustavo eDeco; Paul F.M.J. Verschure; Paul F.M.J. Verschure

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  9. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    OpenAIRE

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martínez, Enrique, 1961-; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  10. A triple network connectivity study of large-scale brain systems in cognitively normal APOE4 carriers

    Directory of Open Access Journals (Sweden)

    Xia Wu

    2016-09-01

    Full Text Available The triple network model, consisting of the central executive network, salience network and default mode network, has been recently employed to understand dysfunction in core networks across various disorders. Here we used the triple network model to investigate the large-scale brain networks in cognitively normal APOE4 carriers who are at risk of Alzheimer’s disease (AD. To explore the functional connectivity for each of the three networks and the effective connectivity among them, we evaluated 17 cognitively normal individuals with a family history of AD and at least one copy of the apolipoprotein e4 (APOE4 allele and compared the findings to those of 12 individuals who did not carry the APOE4 gene or have a family history of AD, using independent component analysis and Bayesian network approach. Our findings indicated altered within-network connectivity that suggests future cognitive decline risk, and preserved between-network connectivity that may support their current preserved cognition in the cognitively normal APOE4 allele carries. The study provides novel sights into our understanding of the risk factors for AD and their influence on the triple network model of major psychopathology.

  11. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    Science.gov (United States)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    This CD contains files that support the talk (see CASI ID 20100021404). There are 24 models that relate to the ADAPT system and 1 Excel worksheet. In the paper an investigation into the use of Bayesian networks to construct large-scale diagnostic systems is described. The high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems are described in the talk. The data in the CD are the models of the 24 different power systems.

  12. Graph properties of synchronized cortical networks during visual working memory maintenance.

    Science.gov (United States)

    Palva, Satu; Monto, Simo; Palva, J Matias

    2010-02-15

    Oscillatory synchronization facilitates communication in neuronal networks and is intimately associated with human cognition. Neuronal activity in the human brain can be non-invasively imaged with magneto- (MEG) and electroencephalography (EEG), but the large-scale structure of synchronized cortical networks supporting cognitive processing has remained uncharacterized. We combined simultaneous MEG and EEG (MEEG) recordings with minimum-norm-estimate-based inverse modeling to investigate the structure of oscillatory phase synchronized networks that were active during visual working memory (VWM) maintenance. Inter-areal phase-synchrony was quantified as a function of time and frequency by single-trial phase-difference estimates of cortical patches covering the entire cortical surfaces. The resulting networks were characterized with a number of network metrics that were then compared between delta/theta- (3-6 Hz), alpha- (7-13 Hz), beta- (16-25 Hz), and gamma- (30-80 Hz) frequency bands. We found several salient differences between frequency bands. Alpha- and beta-band networks were more clustered and small-world like but had smaller global efficiency than the networks in the delta/theta and gamma bands. Alpha- and beta-band networks also had truncated-power-law degree distributions and high k-core numbers. The data converge on showing that during the VWM-retention period, human cortical alpha- and beta-band networks have a memory-load dependent, scale-free small-world structure with densely connected core-like structures. These data further show that synchronized dynamic networks underlying a specific cognitive state can exhibit distinct frequency-dependent network structures that could support distinct functional roles. Copyright 2009 Elsevier Inc. All rights reserved.

  13. Cooperative HARQ Assisted NOMA Scheme in Large-scale D2D Networks

    KAUST Repository

    Shi, Zheng

    2017-07-13

    This paper develops an interference aware design for cooperative hybrid automatic repeat request (HARQ) assisted non-orthogonal multiple access (NOMA) scheme for large-scale device-to-device (D2D) networks. Specifically, interference aware rate selection and power allocation are considered to maximize long term average throughput (LTAT) and area spectral efficiency (ASE). The design framework is based on stochastic geometry that jointly accounts for the spatial interference correlation at the NOMA receivers as well as the temporal interference correlation across HARQ transmissions. It is found that ignoring the effect of the aggregate interference, or overlooking the spatial and temporal correlation in interference, highly overestimates the NOMA performance and produces misleading design insights. An interference oblivious selection for the power and/or transmission rates leads to violating the network outage constraints. To this end, the results demonstrate the effectiveness of NOMA transmission and manifest the importance of the cooperative HARQ to combat the negative effect of the network aggregate interference. For instance, comparing to the non-cooperative HARQ assisted NOMA, the proposed scheme can yield an outage probability reduction by $32$%. Furthermore, an interference aware optimal design that maximizes the LTAT given outage constraints leads to $47$% throughput improvement over HARQ-assisted orthogonal multiple access (OMA) scheme.

  14. Large Scale Community Detection Using a Small World Model

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Behera

    2017-11-01

    Full Text Available In a social network, small or large communities within the network play a major role in deciding the functionalities of the network. Despite of diverse definitions, communities in the network may be defined as the group of nodes that are more densely connected as compared to nodes outside the group. Revealing such hidden communities is one of the challenging research problems. A real world social network follows small world phenomena, which indicates that any two social entities can be reachable in a small number of steps. In this paper, nodes are mapped into communities based on the random walk in the network. However, uncovering communities in large-scale networks is a challenging task due to its unprecedented growth in the size of social networks. A good number of community detection algorithms based on random walk exist in literature. In addition, when large-scale social networks are being considered, these algorithms are observed to take considerably longer time. In this work, with an objective to improve the efficiency of algorithms, parallel programming framework like Map-Reduce has been considered for uncovering the hidden communities in social network. The proposed approach has been compared with some standard existing community detection algorithms for both synthetic and real-world datasets in order to examine its performance, and it is observed that the proposed algorithm is more efficient than the existing ones.

  15. IP over optical multicasting for large-scale video delivery

    Science.gov (United States)

    Jin, Yaohui; Hu, Weisheng; Sun, Weiqiang; Guo, Wei

    2007-11-01

    In the IPTV systems, multicasting will play a crucial role in the delivery of high-quality video services, which can significantly improve bandwidth efficiency. However, the scalability and the signal quality of current IPTV can barely compete with the existing broadcast digital TV systems since it is difficult to implement large-scale multicasting with end-to-end guaranteed quality of service (QoS) in packet-switched IP network. China 3TNet project aimed to build a high performance broadband trial network to support large-scale concurrent streaming media and interactive multimedia services. The innovative idea of 3TNet is that an automatic switched optical networks (ASON) with the capability of dynamic point-to-multipoint (P2MP) connections replaces the conventional IP multicasting network in the transport core, while the edge remains an IP multicasting network. In this paper, we will introduce the network architecture and discuss challenges in such IP over Optical multicasting for video delivery.

  16. Organization and scaling in water supply networks

    Science.gov (United States)

    Cheng, Likwan; Karney, Bryan W.

    2017-12-01

    Public water supply is one of the society's most vital resources and most costly infrastructures. Traditional concepts of these networks capture their engineering identity as isolated, deterministic hydraulic units, but overlook their physics identity as related entities in a probabilistic, geographic ensemble, characterized by size organization and property scaling. Although discoveries of allometric scaling in natural supply networks (organisms and rivers) raised the prospect for similar findings in anthropogenic supplies, so far such a finding has not been reported in public water or related civic resource supplies. Examining an empirical ensemble of large number and wide size range, we show that water supply networks possess self-organized size abundance and theory-explained allometric scaling in spatial, infrastructural, and resource- and emission-flow properties. These discoveries establish scaling physics for water supply networks and may lead to novel applications in resource- and jurisdiction-scale water governance.

  17. Large Scale Functional Brain Networks Underlying Temporal Integration of Audio-Visual Speech Perception: An EEG Study.

    Science.gov (United States)

    Kumar, G Vinodh; Halder, Tamesh; Jaiswal, Amit K; Mukherjee, Abhishek; Roy, Dipanjan; Banerjee, Arpan

    2016-01-01

    Observable lip movements of the speaker influence perception of auditory speech. A classical example of this influence is reported by listeners who perceive an illusory (cross-modal) speech sound (McGurk-effect) when presented with incongruent audio-visual (AV) speech stimuli. Recent neuroimaging studies of AV speech perception accentuate the role of frontal, parietal, and the integrative brain sites in the vicinity of the superior temporal sulcus (STS) for multisensory speech perception. However, if and how does the network across the whole brain participates during multisensory perception processing remains an open question. We posit that a large-scale functional connectivity among the neural population situated in distributed brain sites may provide valuable insights involved in processing and fusing of AV speech. Varying the psychophysical parameters in tandem with electroencephalogram (EEG) recordings, we exploited the trial-by-trial perceptual variability of incongruent audio-visual (AV) speech stimuli to identify the characteristics of the large-scale cortical network that facilitates multisensory perception during synchronous and asynchronous AV speech. We evaluated the spectral landscape of EEG signals during multisensory speech perception at varying AV lags. Functional connectivity dynamics for all sensor pairs was computed using the time-frequency global coherence, the vector sum of pairwise coherence changes over time. During synchronous AV speech, we observed enhanced global gamma-band coherence and decreased alpha and beta-band coherence underlying cross-modal (illusory) perception compared to unisensory perception around a temporal window of 300-600 ms following onset of stimuli. During asynchronous speech stimuli, a global broadband coherence was observed during cross-modal perception at earlier times along with pre-stimulus decreases of lower frequency power, e.g., alpha rhythms for positive AV lags and theta rhythms for negative AV lags. Thus, our

  18. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed

    2017-03-16

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end, cellular networks are indeed a strong first mile candidate to accommodate the data tsunami to be generated by the IoT. However, IoT devices are required in the cellular paradigm to undergo random access procedures as a precursor to resource allocation. Such procedures impose a major bottleneck that hinders cellular networks\\' ability to support large-scale IoT. In this article, we shed light on the random access dilemma and present a case study based on experimental data as well as system-level simulations. Accordingly, a case is built for the latent need to revisit random access procedures. A call for action is motivated by listing a few potential remedies and recommendations.

  19. Optimal defense resource allocation in scale-free networks

    Science.gov (United States)

    Zhang, Xuejun; Xu, Guoqiang; Xia, Yongxiang

    2018-02-01

    The robustness research of networked systems has drawn widespread attention in the past decade, and one of the central topics is to protect the network from external attacks through allocating appropriate defense resource to different nodes. In this paper, we apply a specific particle swarm optimization (PSO) algorithm to optimize the defense resource allocation in scale-free networks. Results reveal that PSO based resource allocation shows a higher robustness than other resource allocation strategies such as uniform, degree-proportional, and betweenness-proportional allocation strategies. Furthermore, we find that assigning less resource to middle-degree nodes under small-scale attack while more resource to low-degree nodes under large-scale attack is conductive to improving the network robustness. Our work provides an insight into the optimal defense resource allocation pattern in scale-free networks and is helpful for designing a more robust network.

  20. A nonlinear oscillatory problem

    International Nuclear Information System (INIS)

    Zhou Qingqing.

    1991-10-01

    We have studied the nonlinear oscillatory problem of orthotropic cylindrical shell, we have analyzed the character of the oscillatory system. The stable condition of the oscillatory system has been given. (author). 6 refs

  1. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    National Research Council Canada - National Science Library

    Yang, Kyoung

    2005-01-01

    This final report summarizes the progress during the Phase I SBIR project entitled "Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays...

  2. Coherent oscillatory networks supporting short-term memory retention.

    Science.gov (United States)

    Payne, Lisa; Kounios, John

    2009-01-09

    Accumulating evidence suggests that top-down processes, reflected by frontal-midline theta-band (4-8 Hz) electroencephalogram (EEG) oscillations, strengthen the activation of a memory set during short-term memory (STM) retention. In addition, the amplitude of posterior alpha-band (8-13 Hz) oscillations during STM retention is thought to reflect a mechanism that protects fragile STM activations from interference by gating bottom-up sensory inputs. The present study addressed two important questions about these phenomena. First, why have previous studies not consistently found memory set-size effects on frontal-midline theta? Second, how does posterior alpha participate in STM retention? To answer these questions, large-scale network connectivity during STM retention was examined by computing EEG wavelet coherence during the retention period of a modified Sternberg task using visually-presented letters as stimuli. The results showed (a) increasing theta-band coherence between frontal-midline and left temporal-parietal sites with increasing memory load, and (b) increasing alpha-band coherence between midline parietal and left temporal/parietal sites with increasing memory load. These findings support the view that theta-band coherence, rather than amplitude, is the key factor in selective top-down strengthening of the memory set and demonstrate that posterior alpha-band oscillations associated with sensory gating are involved in STM retention by participating in the STM network.

  3. A visual analytics system for optimizing the performance of large-scale networks in supercomputing systems

    Directory of Open Access Journals (Sweden)

    Takanori Fujiwara

    2018-03-01

    Full Text Available The overall efficiency of an extreme-scale supercomputer largely relies on the performance of its network interconnects. Several of the state of the art supercomputers use networks based on the increasingly popular Dragonfly topology. It is crucial to study the behavior and performance of different parallel applications running on Dragonfly networks in order to make optimal system configurations and design choices, such as job scheduling and routing strategies. However, in order to study these temporal network behavior, we would need a tool to analyze and correlate numerous sets of multivariate time-series data collected from the Dragonfly’s multi-level hierarchies. This paper presents such a tool–a visual analytics system–that uses the Dragonfly network to investigate the temporal behavior and optimize the communication performance of a supercomputer. We coupled interactive visualization with time-series analysis methods to help reveal hidden patterns in the network behavior with respect to different parallel applications and system configurations. Our system also provides multiple coordinated views for connecting behaviors observed at different levels of the network hierarchies, which effectively helps visual analysis tasks. We demonstrate the effectiveness of the system with a set of case studies. Our system and findings can not only help improve the communication performance of supercomputing applications, but also the network performance of next-generation supercomputers. Keywords: Supercomputing, Parallel communication network, Dragonfly networks, Time-series data, Performance analysis, Visual analytics

  4. How Did the Information Flow in the #AlphaGo Hashtag Network? A Social Network Analysis of the Large-Scale Information Network on Twitter.

    Science.gov (United States)

    Kim, Jinyoung

    2017-12-01

    As it becomes common for Internet users to use hashtags when posting and searching information on social media, it is important to understand who builds a hashtag network and how information is circulated within the network. This article focused on unlocking the potential of the #AlphaGo hashtag network by addressing the following questions. First, the current study examined whether traditional opinion leadership (i.e., the influentials hypothesis) or grassroot participation by the public (i.e., the interpersonal hypothesis) drove dissemination of information in the hashtag network. Second, several unique patterns of information distribution by key users were identified. Finally, the association between attributes of key users who exerted great influence on information distribution (i.e., the number of followers and follows) and their central status in the network was tested. To answer the proffered research questions, a social network analysis was conducted using a large-scale hashtag network data set from Twitter (n = 21,870). The results showed that the leading actors in the network were actively receiving information from their followers rather than serving as intermediaries between the original information sources and the public. Moreover, the leading actors played several roles (i.e., conversation starters, influencers, and active engagers) in the network. Furthermore, the number of their follows and followers were significantly associated with their central status in the hashtag network. Based on the results, the current research explained how the information was exchanged in the hashtag network by proposing the reciprocal model of information flow.

  5. Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.

    Science.gov (United States)

    Nimmegeers, Philippe; Lauwers, Joost; Telen, Dries; Logist, Filip; Impe, Jan Van

    2017-06-01

    In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult. Copyright © 2017. Published by Elsevier Inc.

  6. Large-Scale Functional Brain Network Abnormalities in Alzheimer’s Disease: Insights from Functional Neuroimaging

    Directory of Open Access Journals (Sweden)

    Bradford C. Dickerson

    2009-01-01

    Full Text Available Functional MRI (fMRI studies of mild cognitive impairment (MCI and Alzheimer’s disease (AD have begun to reveal abnormalities in large-scale memory and cognitive brain networks. Since the medial temporal lobe (MTL memory system is a site of very early pathology in AD, a number of studies have focused on this region of the brain. Yet it is clear that other regions of the large-scale episodic memory network are affected early in the disease as well, and fMRI has begun to illuminate functional abnormalities in frontal, temporal, and parietal cortices as well in MCI and AD. Besides predictable hypoactivation of brain regions as they accrue pathology and undergo atrophy, there are also areas of hyperactivation in brain memory and cognitive circuits, possibly representing attempted compensatory activity. Recent fMRI data in MCI and AD are beginning to reveal relationships between abnormalities of functional activity in the MTL memory system and in functionally connected brain regions, such as the precuneus. Additional work with “resting state” fMRI data is illuminating functional-anatomic brain circuits and their disruption by disease. As this work continues to mature, it will likely contribute to our understanding of fundamental memory processes in the human brain and how these are perturbed in memory disorders. We hope these insights will translate into the incorporation of measures of task-related brain function into diagnostic assessment or therapeutic monitoring, which will hopefully one day be useful for demonstrating beneficial effects of treatments being tested in clinical trials.

  7. Software Defined Optics and Networking for Large Scale Data Centers

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Andrus, Bogdan-Mihai; Tafur Monroy, Idelfonso

    Big data imposes correlations of large amounts of information between numerous systems and databases. This leads to large dynamically changing flows and traffic patterns between clusters and server racks that result in a decrease of the quality of transmission and degraded application performance....... Highly interconnected topologies combined with flexible, on demand network configuration can become a solution to the ever-increasing dynamic traffic...

  8. Large Amplitude Oscillatory Shear (LAOS) of Acrylic Emulsion-Based Pressure Sensitive Adhesives (PSAs)

    Science.gov (United States)

    Zhang, Sipei; Nakatani, Alan; Griffith, William

    Large Amplitude Oscillatory Shear (LAOS) testing has recently taken on renewed interest in the rheological community. It is a very useful tool to probe the viscoelastic response of materials in the non-linear regime. Much of the discussion on polymers in the LAOS field has focused on melts in or near the terminal flow regime. Here we present a LAOS study conducted on a commercial rheometer for acrylic emulsion-based pressure sensitive adhesive (PSA) films in the plateau regime. The films behaved qualitatively similar over an oscillation frequency range of 0.5-5 rad/s. From Fourier transform analysis, the fifth or even the seventh order harmonic could be observed at large applied strains. From stress decomposition analysis or Lissajous curves, inter-cycle elastic softening, or type I behavior, was observed for all films as the strain increases, while intra-cycle strain hardening occurred at strains in the LAOS regime. Overall, as acid content increases, it was found that the trend in elasticity under large applied strains agreed very well with the trend in cohesive strength of the films.

  9. Synchronization enhancement via an oscillatory bath in a network of ...

    Indian Academy of Sciences (India)

    2015-02-05

    Feb 5, 2015 ... 2Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA ... The robustness of synchronization strategy is tested using a local and global ..... enhancement effect that the oscillatory bath has in the ...

  10. Decentralized State-Observer-Based Traffic Density Estimation of Large-Scale Urban Freeway Network by Dynamic Model

    Directory of Open Access Journals (Sweden)

    Yuqi Guo

    2017-08-01

    Full Text Available In order to estimate traffic densities in a large-scale urban freeway network in an accurate and timely fashion when traffic sensors do not cover the freeway network completely and thus only local measurement data can be utilized, this paper proposes a decentralized state observer approach based on a macroscopic traffic flow model. Firstly, by using the well-known cell transmission model (CTM, the urban freeway network is modeled in the way of distributed systems. Secondly, based on the model, a decentralized observer is designed. With the help of the Lyapunov function and S-procedure theory, the observer gains are computed by using linear matrix inequality (LMI technique. So, the traffic densities of the whole road network can be estimated by the designed observer. Finally, this method is applied to the outer ring of the Beijing’s second ring road and experimental results demonstrate the effectiveness and applicability of the proposed approach.

  11. Cortical Network Dynamics of Perceptual Decision-Making in the Human Brain

    Directory of Open Access Journals (Sweden)

    Markus eSiegel

    2011-02-01

    Full Text Available Goal-directed behavior requires the flexible transformation of sensory evidence about our environment into motor actions. Studies of perceptual decision-making have shown that this transformation is distributed across several widely separated brain regions. Yet, little is known about how decision-making emerges from the dynamic interactions among these regions. Here, we review a series of studies, in which we characterized the cortical network interactions underlying a perceptual decision process in the human brain. We used magnetoencephalography (MEG to measure the large-scale cortical population dynamics underlying each of the sub-processes involved in this decision: the encoding of sensory evidence and action plan, the mapping between the two, and the attentional selection of task-relevant evidence. We found that these sub-processes are mediated by neuronal oscillations within specific frequency ranges. Localized gamma-band oscillations in sensory and motor cortices reflect the encoding of the sensory evidence and motor plan. Large-scale oscillations across widespread cortical networks mediate the integrative processes connecting these local networks: Gamma- and beta-band oscillations across frontal, parietal and sensory cortices serve the selection of relevant sensory evidence and its flexible mapping onto action plans. In sum, our results suggest that perceptual decisions are mediated by oscillatory interactions within overlapping local and large-scale cortical networks.

  12. The Multi-Scale Network Landscape of Collaboration.

    Science.gov (United States)

    Bae, Arram; Park, Doheum; Ahn, Yong-Yeol; Park, Juyong

    2016-01-01

    Propelled by the increasing availability of large-scale high-quality data, advanced data modeling and analysis techniques are enabling many novel and significant scientific understanding of a wide range of complex social, natural, and technological systems. These developments also provide opportunities for studying cultural systems and phenomena--which can be said to refer to all products of human creativity and way of life. An important characteristic of a cultural product is that it does not exist in isolation from others, but forms an intricate web of connections on many levels. In the creation and dissemination of cultural products and artworks in particular, collaboration and communication of ideas play an essential role, which can be captured in the heterogeneous network of the creators and practitioners of art. In this paper we propose novel methods to analyze and uncover meaningful patterns from such a network using the network of western classical musicians constructed from a large-scale comprehensive Compact Disc recordings data. We characterize the complex patterns in the network landscape of collaboration between musicians across multiple scales ranging from the macroscopic to the mesoscopic and microscopic that represent the diversity of cultural styles and the individuality of the artists.

  13. Network dynamics with BrainX(3): a large-scale simulation of the human brain network with real-time interaction.

    Science.gov (United States)

    Arsiwalla, Xerxes D; Zucca, Riccardo; Betella, Alberto; Martinez, Enrique; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F M J

    2015-01-01

    BrainX(3) is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX(3) in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX(3) can thus be used as a novel immersive platform for exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas.

  14. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    Science.gov (United States)

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martinez, Enrique; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX3 can thus be used as a novel immersive platform for exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas. PMID:25759649

  15. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    Directory of Open Access Journals (Sweden)

    Xerxes D. Arsiwalla

    2015-02-01

    Full Text Available BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX3 can thus be used as a novel immersive platform for real-time exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably, due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas.

  16. An Novel Architecture of Large-scale Communication in IOT

    Science.gov (United States)

    Ma, Wubin; Deng, Su; Huang, Hongbin

    2018-03-01

    In recent years, many scholars have done a great deal of research on the development of Internet of Things and networked physical systems. However, few people have made the detailed visualization of the large-scale communications architecture in the IOT. In fact, the non-uniform technology between IPv6 and access points has led to a lack of broad principles of large-scale communications architectures. Therefore, this paper presents the Uni-IPv6 Access and Information Exchange Method (UAIEM), a new architecture and algorithm that addresses large-scale communications in the IOT.

  17. An Efficient Addressing Scheme and Its Routing Algorithm for a Large-Scale Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Choi Jeonghee

    2008-01-01

    Full Text Available Abstract So far, various addressing and routing algorithms have been extensively studied for wireless sensor networks (WSNs, but many of them were limited to cover less than hundreds of sensor nodes. It is largely due to stringent requirements for fully distributed coordination among sensor nodes, leading to the wasteful use of available address space. As there is a growing need for a large-scale WSN, it will be extremely challenging to support more than thousands of nodes, using existing standard bodies. Moreover, it is highly unlikely to change the existing standards, primarily due to backward compatibility issue. In response, we propose an elegant addressing scheme and its routing algorithm. While maintaining the existing address scheme, it tackles the wastage problem and achieves no additional memory storage during a routing. We also present an adaptive routing algorithm for location-aware applications, using our addressing scheme. Through a series of simulations, we prove that our approach can achieve two times lesser routing time than the existing standard in a ZigBee network.

  18. An Efficient Addressing Scheme and Its Routing Algorithm for a Large-Scale Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Yongwan Park

    2008-12-01

    Full Text Available So far, various addressing and routing algorithms have been extensively studied for wireless sensor networks (WSNs, but many of them were limited to cover less than hundreds of sensor nodes. It is largely due to stringent requirements for fully distributed coordination among sensor nodes, leading to the wasteful use of available address space. As there is a growing need for a large-scale WSN, it will be extremely challenging to support more than thousands of nodes, using existing standard bodies. Moreover, it is highly unlikely to change the existing standards, primarily due to backward compatibility issue. In response, we propose an elegant addressing scheme and its routing algorithm. While maintaining the existing address scheme, it tackles the wastage problem and achieves no additional memory storage during a routing. We also present an adaptive routing algorithm for location-aware applications, using our addressing scheme. Through a series of simulations, we prove that our approach can achieve two times lesser routing time than the existing standard in a ZigBee network.

  19. Restoring large-scale brain networks in PTSD and related disorders: a proposal for neuroscientifically-informed treatment interventions

    Directory of Open Access Journals (Sweden)

    Ruth A. Lanius

    2015-03-01

    Full Text Available Background: Three intrinsic connectivity networks in the brain, namely the central executive, salience, and default mode networks, have been identified as crucial to the understanding of higher cognitive functioning, and the functioning of these networks has been suggested to be impaired in psychopathology, including posttraumatic stress disorder (PTSD. Objective: 1 To describe three main large-scale networks of the human brain; 2 to discuss the functioning of these neural networks in PTSD and related symptoms; and 3 to offer hypotheses for neuroscientifically-informed interventions based on treating the abnormalities observed in these neural networks in PTSD and related disorders. Method: Literature relevant to this commentary was reviewed. Results: Increasing evidence for altered functioning of the central executive, salience, and default mode networks in PTSD has been demonstrated. We suggest that each network is associated with specific clinical symptoms observed in PTSD, including cognitive dysfunction (central executive network, increased and decreased arousal/interoception (salience network, and an altered sense of self (default mode network. Specific testable neuroscientifically-informed treatments aimed to restore each of these neural networks and related clinical dysfunction are proposed. Conclusions: Neuroscientifically-informed treatment interventions will be essential to future research agendas aimed at targeting specific PTSD and related symptoms.

  20. Signaling in large-scale neural networks

    DEFF Research Database (Denmark)

    Berg, Rune W; Hounsgaard, Jørn

    2009-01-01

    We examine the recent finding that neurons in spinal motor circuits enter a high conductance state during functional network activity. The underlying concomitant increase in random inhibitory and excitatory synaptic activity leads to stochastic signal processing. The possible advantages of this m......We examine the recent finding that neurons in spinal motor circuits enter a high conductance state during functional network activity. The underlying concomitant increase in random inhibitory and excitatory synaptic activity leads to stochastic signal processing. The possible advantages...... of this metabolically costly organization are analyzed by comparing with synaptically less intense networks driven by the intrinsic response properties of the network neurons....

  1. Inferring oscillatory modulation in neural spike trains.

    Science.gov (United States)

    Arai, Kensuke; Kass, Robert E

    2017-10-01

    Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak.

  2. a Stochastic Approach to Multiobjective Optimization of Large-Scale Water Reservoir Networks

    Science.gov (United States)

    Bottacin-Busolin, A.; Worman, A. L.

    2013-12-01

    A main challenge for the planning and management of water resources is the development of multiobjective strategies for operation of large-scale water reservoir networks. The optimal sequence of water releases from multiple reservoirs depends on the stochastic variability of correlated hydrologic inflows and on various processes that affect water demand and energy prices. Although several methods have been suggested, large-scale optimization problems arising in water resources management are still plagued by the high dimensional state space and by the stochastic nature of the hydrologic inflows. In this work, the optimization of reservoir operation is approached using approximate dynamic programming (ADP) with policy iteration and function approximators. The method is based on an off-line learning process in which operating policies are evaluated for a number of stochastic inflow scenarios, and the resulting value functions are used to design new, improved policies until convergence is attained. A case study is presented of a multi-reservoir system in the Dalälven River, Sweden, which includes 13 interconnected reservoirs and 36 power stations. Depending on the late spring and summer peak discharges, the lowlands adjacent to Dalälven can often be flooded during the summer period, and the presence of stagnating floodwater during the hottest months of the year is the cause of a large proliferation of mosquitos, which is a major problem for the people living in the surroundings. Chemical pesticides are currently being used as a preventive countermeasure, which do not provide an effective solution to the problem and have adverse environmental impacts. In this study, ADP was used to analyze the feasibility of alternative operating policies for reducing the flood risk at a reasonable economic cost for the hydropower companies. To this end, mid-term operating policies were derived by combining flood risk reduction with hydropower production objectives. The performance

  3. Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain

    Science.gov (United States)

    Barrett, Lisa Feldman; Satpute, Ajay

    2013-01-01

    Understanding how a human brain creates a human mind ultimately depends on mapping psychological categories and concepts to physical measurements of neural response. Although it has long been assumed that emotional, social, and cognitive phenomena are realized in the operations of separate brain regions or brain networks, we demonstrate that it is possible to understand the body of neuroimaging evidence using a framework that relies on domain general, distributed structure-function mappings. We review current research in affective and social neuroscience and argue that the emerging science of large-scale intrinsic brain networks provides a coherent framework for a domain-general functional architecture of the human brain. PMID:23352202

  4. The Multi-Scale Network Landscape of Collaboration.

    Directory of Open Access Journals (Sweden)

    Arram Bae

    Full Text Available Propelled by the increasing availability of large-scale high-quality data, advanced data modeling and analysis techniques are enabling many novel and significant scientific understanding of a wide range of complex social, natural, and technological systems. These developments also provide opportunities for studying cultural systems and phenomena--which can be said to refer to all products of human creativity and way of life. An important characteristic of a cultural product is that it does not exist in isolation from others, but forms an intricate web of connections on many levels. In the creation and dissemination of cultural products and artworks in particular, collaboration and communication of ideas play an essential role, which can be captured in the heterogeneous network of the creators and practitioners of art. In this paper we propose novel methods to analyze and uncover meaningful patterns from such a network using the network of western classical musicians constructed from a large-scale comprehensive Compact Disc recordings data. We characterize the complex patterns in the network landscape of collaboration between musicians across multiple scales ranging from the macroscopic to the mesoscopic and microscopic that represent the diversity of cultural styles and the individuality of the artists.

  5. Open Problems in Network-aware Data Management in Exa-scale Computing and Terabit Networking Era

    Energy Technology Data Exchange (ETDEWEB)

    Balman, Mehmet; Byna, Surendra

    2011-12-06

    Accessing and managing large amounts of data is a great challenge in collaborative computing environments where resources and users are geographically distributed. Recent advances in network technology led to next-generation high-performance networks, allowing high-bandwidth connectivity. Efficient use of the network infrastructure is necessary in order to address the increasing data and compute requirements of large-scale applications. We discuss several open problems, evaluate emerging trends, and articulate our perspectives in network-aware data management.

  6. Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow

    NARCIS (Netherlands)

    van der A, D.A.; O' Donoghue, T.; Davies, A.G; Ribberink, Jan S.

    2011-01-01

    Experiments have been conducted in a large oscillatory flow tunnel to investigate the effects of acceleration skewness on oscillatory boundary layer flow over fixed beds. As well as enabling experimental investigation of the effects of acceleration skewness, the new experiments add substantially to

  7. Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events : the case of HSR (high speed rail)

    NARCIS (Netherlands)

    Janic, M.

    2018-01-01

    This paper deals with modelling the dynamic resilience of rail passenger transport networks affected by large-scale disruptive events whose impacts deteriorate the networks’ planned infrastructural, operational, economic, and social-economic performances represented by the selected indicators.

  8. Learning in AN Oscillatory Cortical Model

    Science.gov (United States)

    Scarpetta, Silvia; Li, Zhaoping; Hertz, John

    We study a model of generalized-Hebbian learning in asymmetric oscillatory neural networks modeling cortical areas such as hippocampus and olfactory cortex. The learning rule is based on the synaptic plasticity observed experimentally, in particular long-term potentiation and long-term depression of the synaptic efficacies depending on the relative timing of the pre- and postsynaptic activities during learning. The learned memory or representational states can be encoded by both the amplitude and the phase patterns of the oscillating neural populations, enabling more efficient and robust information coding than in conventional models of associative memory or input representation. Depending on the class of nonlinearity of the activation function, the model can function as an associative memory for oscillatory patterns (nonlinearity of class II) or can generalize from or interpolate between the learned states, appropriate for the function of input representation (nonlinearity of class I). In the former case, simulations of the model exhibits a first order transition between the "disordered state" and the "ordered" memory state.

  9. 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study.

    Science.gov (United States)

    Dolz, Jose; Desrosiers, Christian; Ben Ayed, Ismail

    2018-04-15

    This study investigates a 3D and fully convolutional neural network (CNN) for subcortical brain structure segmentation in MRI. 3D CNN architectures have been generally avoided due to their computational and memory requirements during inference. We address the problem via small kernels, allowing deeper architectures. We further model both local and global context by embedding intermediate-layer outputs in the final prediction, which encourages consistency between features extracted at different scales and embeds fine-grained information directly in the segmentation process. Our model is efficiently trained end-to-end on a graphics processing unit (GPU), in a single stage, exploiting the dense inference capabilities of fully CNNs. We performed comprehensive experiments over two publicly available datasets. First, we demonstrate a state-of-the-art performance on the ISBR dataset. Then, we report a large-scale multi-site evaluation over 1112 unregistered subject datasets acquired from 17 different sites (ABIDE dataset), with ages ranging from 7 to 64 years, showing that our method is robust to various acquisition protocols, demographics and clinical factors. Our method yielded segmentations that are highly consistent with a standard atlas-based approach, while running in a fraction of the time needed by atlas-based methods and avoiding registration/normalization steps. This makes it convenient for massive multi-site neuroanatomical imaging studies. To the best of our knowledge, our work is the first to study subcortical structure segmentation on such large-scale and heterogeneous data. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. On-demand Overlay Networks for Large Scientific Data Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Guok, Chin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jackson, Keith [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kissel, Ezra [Univ. of Delaware, Newark, DE (United States); Swany, D. Martin [Univ. of Delaware, Newark, DE (United States); Agarwal, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-10-12

    Large scale scientific data transfers are central to scientific processes. Data from large experimental facilities have to be moved to local institutions for analysis or often data needs to be moved between local clusters and large supercomputing centers. In this paper, we propose and evaluate a network overlay architecture to enable highthroughput, on-demand, coordinated data transfers over wide-area networks. Our work leverages Phoebus and On-demand Secure Circuits and AdvanceReservation System (OSCARS) to provide high performance wide-area network connections. OSCARS enables dynamic provisioning of network paths with guaranteed bandwidth and Phoebus enables the coordination and effective utilization of the OSCARS network paths. Our evaluation shows that this approach leads to improved end-to-end data transfer throughput with minimal overheads. The achievedthroughput using our overlay was limited only by the ability of the end hosts to sink the data.

  11. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.

    Science.gov (United States)

    Ling, Hong; Samarasinghe, Sandhya; Kulasiri, Don

    2013-12-01

    Understanding the control of cellular networks consisting of gene and protein interactions and their emergent properties is a central activity of Systems Biology research. For this, continuous, discrete, hybrid, and stochastic methods have been proposed. Currently, the most common approach to modelling accurate temporal dynamics of networks is ordinary differential equations (ODE). However, critical limitations of ODE models are difficulty in kinetic parameter estimation and numerical solution of a large number of equations, making them more suited to smaller systems. In this article, we introduce a novel recurrent artificial neural network (RNN) that addresses above limitations and produces a continuous model that easily estimates parameters from data, can handle a large number of molecular interactions and quantifies temporal dynamics and emergent systems properties. This RNN is based on a system of ODEs representing molecular interactions in a signalling network. Each neuron represents concentration change of one molecule represented by an ODE. Weights of the RNN correspond to kinetic parameters in the system and can be adjusted incrementally during network training. The method is applied to the p53-Mdm2 oscillation system - a crucial component of the DNA damage response pathways activated by a damage signal. Simulation results indicate that the proposed RNN can successfully represent the behaviour of the p53-Mdm2 oscillation system and solve the parameter estimation problem with high accuracy. Furthermore, we presented a modified form of the RNN that estimates parameters and captures systems dynamics from sparse data collected over relatively large time steps. We also investigate the robustness of the p53-Mdm2 system using the trained RNN under various levels of parameter perturbation to gain a greater understanding of the control of the p53-Mdm2 system. Its outcomes on robustness are consistent with the current biological knowledge of this system. As more

  12. Large-scale network analysis of imagination reveals extended but limited top-down components in human visual cognition.

    Directory of Open Access Journals (Sweden)

    Verkhlyutov V.M.

    2014-12-01

    Full Text Available We investigated whole-brain functional magnetic resonance imaging (fMRI activation in a group of 21 healthy adult subjects during perception, imagination and remembering of two dynamic visual scenarios. Activation of the posterior parts of the cortex prevailed when watching videos. The cognitive tasks of imagination and remembering were accompanied by a predominant activity in the anterior parts of the cortex. An independent component analysis identified seven large-scale cortical networks with relatively invariant spatial distributions across all experimental conditions. The time course of their activation over experimental sessions was task-dependent. These detected networks can be interpreted as a recombination of resting state networks. Both central and peripheral networks were identified within the primary visual cortex. The central network around the caudal pole of BA17 and centers of other visual areas was activated only by direct visual stimulation, while the peripheral network responded to the presentation of visual information as well as to the cognitive tasks of imagination and remembering. The latter result explains the particular susceptibility of peripheral and twilight vision to cognitive top-down influences that often result in false-alarm detections.

  13. Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks.

    Science.gov (United States)

    Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Trautwein, Fynn-Mathis; Kanske, Philipp; Singer, Tania

    2017-02-01

    Functional neuroimaging studies have suggested the existence of 2 largely distinct social cognition networks, one for theory of mind (taking others' cognitive perspective) and another for empathy (sharing others' affective states). To address whether these networks can also be dissociated at the level of brain structure, we combined behavioral phenotyping across multiple socio-cognitive tasks with 3-Tesla MRI cortical thickness and structural covariance analysis in 270 healthy adults, recruited across 2 sites. Regional thickness mapping only provided partial support for divergent substrates, highlighting that individual differences in empathy relate to left insular-opercular thickness while no correlation between thickness and mentalizing scores was found. Conversely, structural covariance analysis showed clearly divergent network modulations by socio-cognitive and -affective phenotypes. Specifically, individual differences in theory of mind related to structural integration between temporo-parietal and dorsomedial prefrontal regions while empathy modulated the strength of dorsal anterior insula networks. Findings were robust across both recruitment sites, suggesting generalizability. At the level of structural network embedding, our study provides a double dissociation between empathy and mentalizing. Moreover, our findings suggest that structural substrates of higher-order social cognition are reflected rather in interregional networks than in the the local anatomical markup of specific regions per se. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Fault Detection for Large-Scale Railway Maintenance Equipment Base on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junfu Yu

    2014-04-01

    Full Text Available Focusing on the fault detection application for large-scale railway maintenance equipment with the specialties of low-cost, energy efficiency, collecting data of the function units. This paper proposed energy efficiency, convenient installation fault detection application using Sigsbee wireless sensor networks, which Sigsbee is the most widely used protocol based on IEEE 802.15.4. This paper proposed a systematic application from hardware design using STM32F103 chips as processer, to software system. Fault detection application is the basic part of the fault diagnose system, wireless sensor nodes of the fault detection application with different kinds of sensors for verities function units communication by Sigsbee to collecting and sending basic working status data to the home gateway, then data will be sent to the fault diagnose system.

  15. Resting-state EEG oscillatory dynamics in fragile X syndrome: abnormal functional connectivity and brain network organization.

    Directory of Open Access Journals (Sweden)

    Melle J W van der Molen

    Full Text Available Disruptions in functional connectivity and dysfunctional brain networks are considered to be a neurological hallmark of neurodevelopmental disorders. Despite the vast literature on functional brain connectivity in typical brain development, surprisingly few attempts have been made to characterize brain network integrity in neurodevelopmental disorders. Here we used resting-state EEG to characterize functional brain connectivity and brain network organization in eight males with fragile X syndrome (FXS and 12 healthy male controls. Functional connectivity was calculated based on the phase lag index (PLI, a non-linear synchronization index that is less sensitive to the effects of volume conduction. Brain network organization was assessed with graph theoretical analysis. A decrease in global functional connectivity was observed in FXS males for upper alpha and beta frequency bands. For theta oscillations, we found increased connectivity in long-range (fronto-posterior and short-range (frontal-frontal and posterior-posterior clusters. Graph theoretical analysis yielded evidence of increased path length in the theta band, suggesting that information transfer between brain regions is particularly impaired for theta oscillations in FXS. These findings are discussed in terms of aberrant maturation of neuronal oscillatory dynamics, resulting in an imbalance in excitatory and inhibitory neuronal circuit activity.

  16. Large-scale Intelligent Transporation Systems simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

    1995-06-01

    A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  17. An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation.

    Science.gov (United States)

    Wang, Yikai; Kang, Jian; Kemmer, Phebe B; Guo, Ying

    2016-01-01

    Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant

  18. Scaling properties of domain wall networks

    International Nuclear Information System (INIS)

    Leite, A. M. M.; Martins, C. J. A. P.

    2011-01-01

    We revisit the cosmological evolution of domain wall networks, taking advantage of recent improvements in computing power. We carry out high-resolution field theory simulations in two, three and four spatial dimensions to study the effects of dimensionality and damping on the evolution of the network. Our results are consistent with the expected scale-invariant evolution of the network, which suggests that previous hints of deviations from this behavior may have been due to the limited dynamical range of those simulations. We also use the results of very large (1024 3 ) simulations in three cosmological epochs to provide a calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c w =0.5±0.2 and k w =1.1±0.3.

  19. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks

    Directory of Open Access Journals (Sweden)

    Raja Jurdak

    2008-11-01

    Full Text Available Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.

  20. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks.

    Science.gov (United States)

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-11-24

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.

  1. BFL: a node and edge betweenness based fast layout algorithm for large scale networks

    Science.gov (United States)

    Hashimoto, Tatsunori B; Nagasaki, Masao; Kojima, Kaname; Miyano, Satoru

    2009-01-01

    Background Network visualization would serve as a useful first step for analysis. However, current graph layout algorithms for biological pathways are insensitive to biologically important information, e.g. subcellular localization, biological node and graph attributes, or/and not available for large scale networks, e.g. more than 10000 elements. Results To overcome these problems, we propose the use of a biologically important graph metric, betweenness, a measure of network flow. This metric is highly correlated with many biological phenomena such as lethality and clusters. We devise a new fast parallel algorithm calculating betweenness to minimize the preprocessing cost. Using this metric, we also invent a node and edge betweenness based fast layout algorithm (BFL). BFL places the high-betweenness nodes to optimal positions and allows the low-betweenness nodes to reach suboptimal positions. Furthermore, BFL reduces the runtime by combining a sequential insertion algorim with betweenness. For a graph with n nodes, this approach reduces the expected runtime of the algorithm to O(n2) when considering edge crossings, and to O(n log n) when considering only density and edge lengths. Conclusion Our BFL algorithm is compared against fast graph layout algorithms and approaches requiring intensive optimizations. For gene networks, we show that our algorithm is faster than all layout algorithms tested while providing readability on par with intensive optimization algorithms. We achieve a 1.4 second runtime for a graph with 4000 nodes and 12000 edges on a standard desktop computer. PMID:19146673

  2. Large-scale modeling of condition-specific gene regulatory networks by information integration and inference.

    Science.gov (United States)

    Ellwanger, Daniel Christian; Leonhardt, Jörn Florian; Mewes, Hans-Werner

    2014-12-01

    Understanding how regulatory networks globally coordinate the response of a cell to changing conditions, such as perturbations by shifting environments, is an elementary challenge in systems biology which has yet to be met. Genome-wide gene expression measurements are high dimensional as these are reflecting the condition-specific interplay of thousands of cellular components. The integration of prior biological knowledge into the modeling process of systems-wide gene regulation enables the large-scale interpretation of gene expression signals in the context of known regulatory relations. We developed COGERE (http://mips.helmholtz-muenchen.de/cogere), a method for the inference of condition-specific gene regulatory networks in human and mouse. We integrated existing knowledge of regulatory interactions from multiple sources to a comprehensive model of prior information. COGERE infers condition-specific regulation by evaluating the mutual dependency between regulator (transcription factor or miRNA) and target gene expression using prior information. This dependency is scored by the non-parametric, nonlinear correlation coefficient η(2) (eta squared) that is derived by a two-way analysis of variance. We show that COGERE significantly outperforms alternative methods in predicting condition-specific gene regulatory networks on simulated data sets. Furthermore, by inferring the cancer-specific gene regulatory network from the NCI-60 expression study, we demonstrate the utility of COGERE to promote hypothesis-driven clinical research. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. The Large-Scale Structure of Scientific Method

    Science.gov (United States)

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  4. Atypical language laterality is associated with large-scale disruption of network integration in children with intractable focal epilepsy.

    Science.gov (United States)

    Ibrahim, George M; Morgan, Benjamin R; Doesburg, Sam M; Taylor, Margot J; Pang, Elizabeth W; Donner, Elizabeth; Go, Cristina Y; Rutka, James T; Snead, O Carter

    2015-04-01

    Epilepsy is associated with disruption of integration in distributed networks, together with altered localization for functions such as expressive language. The relation between atypical network connectivity and altered localization is unknown. In the current study we tested whether atypical expressive language laterality was associated with the alteration of large-scale network integration in children with medically-intractable localization-related epilepsy (LRE). Twenty-three right-handed children (age range 8-17) with medically-intractable LRE performed a verb generation task in fMRI. Language network activation was identified and the Laterality index (LI) was calculated within the pars triangularis and pars opercularis. Resting-state data from the same cohort were subjected to independent component analysis. Dual regression was used to identify associations between resting-state integration and LI values. Higher positive values of the LI, indicating typical language localization were associated with stronger functional integration of various networks including the default mode network (DMN). The normally symmetric resting-state networks showed a pattern of lateralized connectivity mirroring that of language function. The association between atypical language localization and network integration implies a widespread disruption of neural network development. These findings may inform the interpretation of localization studies by providing novel insights into reorganization of neural networks in epilepsy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Displacement and deformation measurement for large structures by camera network

    Science.gov (United States)

    Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu

    2014-03-01

    A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.

  6. Large Scale Experiments of Multihop Networks in Mobile Scenarios

    Directory of Open Access Journals (Sweden)

    Yacine Benchaïb

    2016-03-01

    Full Text Available This paper presents the latest advances in our research work focused on VIRMANEL and SILUMOD, a couple of tools developed for research in wireless mobile multihop networks. SILUMOD is a domain specific language dedicated to the definition of mobility models. This language contains key- words and special operators that make it easy to define a mobility model and calculate the positions of a trajectory. These positions are sent to VIRMANEL, a tool that man- ages virtual machines corresponding to mobile nodes, emu- lates their movements and the resulting connections and dis- connections, and displays the network evolution to the user, thanks to its graphical user interface. The virtualization ap- proach we take here allows to run real code and to test real protocol implementations without deploying an important experimental platform. For the experimentation of a large number of virtual mobile nodes, we defined and implemented a new algorithm for the nearest neighbor search to find the nodes that are within communication range. We then car- ried out a considerable measurement campaign in order to evaluate the performance of this algorithm. The results show that even with an experiment using a large number of mobile nodes, our algorithm make it possible to evaluate the state of connectivity between mobile nodes within a reasonable time and number of operations.

  7. Convergence speed of consensus problems over undirected scale-free networks

    International Nuclear Information System (INIS)

    Sun Wei; Dou Li-Hua

    2010-01-01

    Scale-free networks and consensus behaviour among multiple agents have both attracted much attention. To investigate the consensus speed over scale-free networks is the major topic of the present work. A novel method is developed to construct scale-free networks due to their remarkable power-law degree distributions, while preserving the diversity of network topologies. The time cost or iterations for networks to reach a certain level of consensus is discussed, considering the influence from power-law parameters. They are both demonstrated to be reversed power-law functions of the algebraic connectivity, which is viewed as a measurement on convergence speed of the consensus behaviour. The attempts of tuning power-law parameters may speed up the consensus procedure, but it could also make the network less robust over time delay at the same time. Large scale of simulations are supportive to the conclusions. (general)

  8. Oscillatory Convection in Rotating Liquid Metals

    Science.gov (United States)

    Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

    2016-11-01

    We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

  9. Scale-Free Networks and Commercial Air Carrier Transportation in the United States

    Science.gov (United States)

    Conway, Sheila R.

    2004-01-01

    Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.

  10. Traffic Flow Prediction Model for Large-Scale Road Network Based on Cloud Computing

    Directory of Open Access Journals (Sweden)

    Zhaosheng Yang

    2014-01-01

    Full Text Available To increase the efficiency and precision of large-scale road network traffic flow prediction, a genetic algorithm-support vector machine (GA-SVM model based on cloud computing is proposed in this paper, which is based on the analysis of the characteristics and defects of genetic algorithm and support vector machine. In cloud computing environment, firstly, SVM parameters are optimized by the parallel genetic algorithm, and then this optimized parallel SVM model is used to predict traffic flow. On the basis of the traffic flow data of Haizhu District in Guangzhou City, the proposed model was verified and compared with the serial GA-SVM model and parallel GA-SVM model based on MPI (message passing interface. The results demonstrate that the parallel GA-SVM model based on cloud computing has higher prediction accuracy, shorter running time, and higher speedup.

  11. A Gossip-based Churn Estimator for Large Dynamic Networks

    NARCIS (Netherlands)

    Giuffrida, C.; Ortolani, S.

    2010-01-01

    Gossip-based aggregation is an emerging paradigm to perform distributed computations and measurements in a large-scale setting. In this paper we explore the possibility of using gossip-based aggregation to estimate churn in arbitrarily large networks. To this end, we introduce a new model to compute

  12. Oscillations in the bistable regime of neuronal networks.

    Science.gov (United States)

    Roxin, Alex; Compte, Albert

    2016-07-01

    Bistability between attracting fixed points in neuronal networks has been hypothesized to underlie persistent activity observed in several cortical areas during working memory tasks. In network models this kind of bistability arises due to strong recurrent excitation, sufficient to generate a state of high activity created in a saddle-node (SN) bifurcation. On the other hand, canonical network models of excitatory and inhibitory neurons (E-I networks) robustly produce oscillatory states via a Hopf (H) bifurcation due to the E-I loop. This mechanism for generating oscillations has been invoked to explain the emergence of brain rhythms in the β to γ bands. Although both bistability and oscillatory activity have been intensively studied in network models, there has not been much focus on the coincidence of the two. Here we show that when oscillations emerge in E-I networks in the bistable regime, their phenomenology can be explained to a large extent by considering coincident SN and H bifurcations, known as a codimension two Takens-Bogdanov bifurcation. In particular, we find that such oscillations are not composed of a stable limit cycle, but rather are due to noise-driven oscillatory fluctuations. Furthermore, oscillations in the bistable regime can, in principle, have arbitrarily low frequency.

  13. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    Science.gov (United States)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen

    2018-04-01

    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  14. Parameters affecting the resilience of scale-free networks to random failures.

    Energy Technology Data Exchange (ETDEWEB)

    Link, Hamilton E.; LaViolette, Randall A.; Lane, Terran (University of New Mexico, Albuquerque, NM); Saia, Jared (University of New Mexico, Albuquerque, NM)

    2005-09-01

    It is commonly believed that scale-free networks are robust to massive numbers of random node deletions. For example, Cohen et al. in (1) study scale-free networks including some which approximate the measured degree distribution of the Internet. Their results suggest that if each node in this network failed independently with probability 0.99, most of the remaining nodes would still be connected in a giant component. In this paper, we show that a large and important subclass of scale-free networks are not robust to massive numbers of random node deletions. In particular, we study scale-free networks which have minimum node degree of 1 and a power-law degree distribution beginning with nodes of degree 1 (power-law networks). We show that, in a power-law network approximating the Internet's reported distribution, when the probability of deletion of each node is 0.5 only about 25% of the surviving nodes in the network remain connected in a giant component, and the giant component does not persist beyond a critical failure rate of 0.9. The new result is partially due to improved analytical accommodation of the large number of degree-0 nodes that result after node deletions. Our results apply to power-law networks with a wide range of power-law exponents, including Internet-like networks. We give both analytical and empirical evidence that such networks are not generally robust to massive random node deletions.

  15. Gradient networks on uncorrelated random scale-free networks

    International Nuclear Information System (INIS)

    Pan Guijun; Yan Xiaoqing; Huang Zhongbing; Ma Weichuan

    2011-01-01

    Uncorrelated random scale-free (URSF) networks are useful null models for checking the effects of scale-free topology on network-based dynamical processes. Here, we present a comparative study of the jamming level of gradient networks based on URSF networks and Erdos-Renyi (ER) random networks. We find that the URSF networks are less congested than ER random networks for the average degree (k)>k c (k c ∼ 2 denotes a critical connectivity). In addition, by investigating the topological properties of the two kinds of gradient networks, we discuss the relations between the topological structure and the transport efficiency of the gradient networks. These findings show that the uncorrelated scale-free structure might allow more efficient transport than the random structure.

  16. Spatial fingerprints of community structure in human interaction network for an extensive set of large-scale regions.

    Science.gov (United States)

    Kallus, Zsófia; Barankai, Norbert; Szüle, János; Vattay, Gábor

    2015-01-01

    Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well-established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal-area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization.

  17. Large-scale neural networks and the lateralization of motivation and emotion.

    Science.gov (United States)

    Tops, Mattie; Quirin, Markus; Boksem, Maarten A S; Koole, Sander L

    2017-09-01

    Several lines of research in animals and humans converge on the distinction between two basic large-scale brain networks of self-regulation, giving rise to predictive and reactive control systems (PARCS). Predictive (internally-driven) and reactive (externally-guided) control are supported by dorsal versus ventral corticolimbic systems, respectively. Based on extant empirical evidence, we demonstrate how the PARCS produce frontal laterality effects in emotion and motivation. In addition, we explain how this framework gives rise to individual differences in appraising and coping with challenges. PARCS theory integrates separate fields of research, such as research on the motivational correlates of affect, EEG frontal alpha power asymmetry and implicit affective priming effects on cardiovascular indicators of effort during cognitive task performance. Across these different paradigms, converging evidence points to a qualitative motivational division between, on the one hand, angry and happy emotions, and, on the other hand, sad and fearful emotions. PARCS suggests that those two pairs of emotions are associated with predictive and reactive control, respectively. PARCS theory may thus generate important new insights on the motivational and emotional dynamics that drive autonomic and homeostatic control processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Why small-scale cannabis growers stay small: five mechanisms that prevent small-scale growers from going large scale.

    Science.gov (United States)

    Hammersvik, Eirik; Sandberg, Sveinung; Pedersen, Willy

    2012-11-01

    Over the past 15-20 years, domestic cultivation of cannabis has been established in a number of European countries. New techniques have made such cultivation easier; however, the bulk of growers remain small-scale. In this study, we explore the factors that prevent small-scale growers from increasing their production. The study is based on 1 year of ethnographic fieldwork and qualitative interviews conducted with 45 Norwegian cannabis growers, 10 of whom were growing on a large-scale and 35 on a small-scale. The study identifies five mechanisms that prevent small-scale indoor growers from going large-scale. First, large-scale operations involve a number of people, large sums of money, a high work-load and a high risk of detection, and thus demand a higher level of organizational skills than for small growing operations. Second, financial assets are needed to start a large 'grow-site'. Housing rent, electricity, equipment and nutrients are expensive. Third, to be able to sell large quantities of cannabis, growers need access to an illegal distribution network and knowledge of how to act according to black market norms and structures. Fourth, large-scale operations require advanced horticultural skills to maximize yield and quality, which demands greater skills and knowledge than does small-scale cultivation. Fifth, small-scale growers are often embedded in the 'cannabis culture', which emphasizes anti-commercialism, anti-violence and ecological and community values. Hence, starting up large-scale production will imply having to renegotiate or abandon these values. Going from small- to large-scale cannabis production is a demanding task-ideologically, technically, economically and personally. The many obstacles that small-scale growers face and the lack of interest and motivation for going large-scale suggest that the risk of a 'slippery slope' from small-scale to large-scale growing is limited. Possible political implications of the findings are discussed. Copyright

  19. Characterization of vertical mixing in oscillatory vegetated flows

    Science.gov (United States)

    Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.

    2016-02-01

    Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy

  20. Predicting Positive and Negative Relationships in Large Social Networks.

    Directory of Open Access Journals (Sweden)

    Guan-Nan Wang

    Full Text Available In a social network, users hold and express positive and negative attitudes (e.g. support/opposition towards other users. Those attitudes exhibit some kind of binary relationships among the users, which play an important role in social network analysis. However, some of those binary relationships are likely to be latent as the scale of social network increases. The essence of predicting latent binary relationships have recently began to draw researchers' attention. In this paper, we propose a machine learning algorithm for predicting positive and negative relationships in social networks inspired by structural balance theory and social status theory. More specifically, we show that when two users in the network have fewer common neighbors, the prediction accuracy of the relationship between them deteriorates. Accordingly, in the training phase, we propose a segment-based training framework to divide the training data into two subsets according to the number of common neighbors between users, and build a prediction model for each subset based on support vector machine (SVM. Moreover, to deal with large-scale social network data, we employ a sampling strategy that selects small amount of training data while maintaining high accuracy of prediction. We compare our algorithm with traditional algorithms and adaptive boosting of them. Experimental results of typical data sets show that our algorithm can deal with large social networks and consistently outperforms other methods.

  1. Predicting Positive and Negative Relationships in Large Social Networks.

    Science.gov (United States)

    Wang, Guan-Nan; Gao, Hui; Chen, Lian; Mensah, Dennis N A; Fu, Yan

    2015-01-01

    In a social network, users hold and express positive and negative attitudes (e.g. support/opposition) towards other users. Those attitudes exhibit some kind of binary relationships among the users, which play an important role in social network analysis. However, some of those binary relationships are likely to be latent as the scale of social network increases. The essence of predicting latent binary relationships have recently began to draw researchers' attention. In this paper, we propose a machine learning algorithm for predicting positive and negative relationships in social networks inspired by structural balance theory and social status theory. More specifically, we show that when two users in the network have fewer common neighbors, the prediction accuracy of the relationship between them deteriorates. Accordingly, in the training phase, we propose a segment-based training framework to divide the training data into two subsets according to the number of common neighbors between users, and build a prediction model for each subset based on support vector machine (SVM). Moreover, to deal with large-scale social network data, we employ a sampling strategy that selects small amount of training data while maintaining high accuracy of prediction. We compare our algorithm with traditional algorithms and adaptive boosting of them. Experimental results of typical data sets show that our algorithm can deal with large social networks and consistently outperforms other methods.

  2. Methods for parameter identification in oscillatory networks and application to cortical and thalamic 600 Hz activity.

    Science.gov (United States)

    Leistritz, L; Suesse, T; Haueisen, J; Hilgenfeld, B; Witte, H

    2006-01-01

    Directed information transfer in the human brain occurs presumably by oscillations. As of yet, most approaches for the analysis of these oscillations are based on time-frequency or coherence analysis. The present work concerns the modeling of cortical 600 Hz oscillations, localized within the Brodmann Areas 3b and 1 after stimulation of the nervus medianus, by means of coupled differential equations. This approach leads to the so-called parameter identification problem, where based on a given data set, a set of unknown parameters of a system of ordinary differential equations is determined by special optimization procedures. Some suitable algorithms for this task are presented in this paper. Finally an oscillatory network model is optimally fitted to the data taken from ten volunteers.

  3. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark J.; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter

    2016-01-01

    Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information

  4. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches.

    Directory of Open Access Journals (Sweden)

    Eric Lowet

    Full Text Available Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT preceded by Singular Spectrum Decomposition (SSD of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization

  5. Large amplitude oscillatory motion along a solar filament

    Science.gov (United States)

    Vršnak, B.; Veronig, A. M.; Thalmann, J. K.; Žic, T.

    2007-08-01

    Context: Large amplitude oscillations of solar filaments is a phenomenon that has been known for more than half a century. Recently, a new mode of oscillations, characterized by periodical plasma motions along the filament axis, was discovered. Aims: We analyze such an event, recorded on 23 January 2002 in Big Bear Solar Observatory Hα filtergrams, to infer the triggering mechanism and the nature of the restoring force. Methods: Motion along the filament axis of a distinct buldge-like feature was traced, to quantify the kinematics of the oscillatory motion. The data were fitted by a damped sine function to estimate the basic parameters of the oscillations. To identify the triggering mechanism, morphological changes in the vicinity of the filament were analyzed. Results: The observed oscillations of the plasma along the filament were characterized by an initial displacement of 24 Mm, an initial velocity amplitude of 51 km s-1, a period of 50 min, and a damping time of 115 min. We interpret the trigger in terms of poloidal magnetic flux injection by magnetic reconnection at one of the filament legs. The restoring force is caused by the magnetic pressure gradient along the filament axis. The period of oscillations, derived from the linearized equation of motion (harmonic oscillator) can be expressed as P=π√{2}L/v_Aϕ≈4.4L/v_Aϕ, where v_Aϕ =Bϕ0/√μ_0ρ represents the Alfvén speed based on the equilibrium poloidal field Bϕ0. Conclusions: Combination of our measurements with some previous observations of the same kind of oscillations shows good agreement with the proposed interpretation. Movie to Fig. 1 is only available in electronic form at http://www.aanda.org

  6. THE BUILDUP OF A SCALE-FREE PHOTOSPHERIC MAGNETIC NETWORK

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, K.; Charbonneau, P. [Departement de Physique, Universite de Montreal, 2900 Edouard-Montpetit, Montreal, Quebec H3C 3J7 (Canada); Crouch, A. D., E-mail: kim@astro.umontreal.ca-a, E-mail: paulchar@astro.umontreal.ca-b, E-mail: ash@cora.nwra.com-c [CORA/NWRA, 3380 Mitchell Lane, Boulder, CO 80301 (United States)

    2012-10-01

    We use a global Monte Carlo simulation of the formation of the solar photospheric magnetic network to investigate the origin of the scale invariance characterizing magnetic flux concentrations visible on high-resolution magnetograms. The simulations include spatially and temporally homogeneous injection of small-scale magnetic elements over the whole photosphere, as well as localized episodic injection associated with the emergence and decay of active regions. Network elements form in response to cumulative pairwise aggregation or cancellation of magnetic elements, undergoing a random walk on the sphere and advected on large spatial scales by differential rotation and a poleward meridional flow. The resulting size distribution of simulated network elements is in very good agreement with observational inferences. We find that the fractal index and size distribution of network elements are determined primarily by these post-emergence surface mechanisms, and carry little or no memory of the scales at which magnetic flux is injected in the simulation. Implications for models of dynamo action in the Sun are briefly discussed.

  7. THE BUILDUP OF A SCALE-FREE PHOTOSPHERIC MAGNETIC NETWORK

    International Nuclear Information System (INIS)

    Thibault, K.; Charbonneau, P.; Crouch, A. D.

    2012-01-01

    We use a global Monte Carlo simulation of the formation of the solar photospheric magnetic network to investigate the origin of the scale invariance characterizing magnetic flux concentrations visible on high-resolution magnetograms. The simulations include spatially and temporally homogeneous injection of small-scale magnetic elements over the whole photosphere, as well as localized episodic injection associated with the emergence and decay of active regions. Network elements form in response to cumulative pairwise aggregation or cancellation of magnetic elements, undergoing a random walk on the sphere and advected on large spatial scales by differential rotation and a poleward meridional flow. The resulting size distribution of simulated network elements is in very good agreement with observational inferences. We find that the fractal index and size distribution of network elements are determined primarily by these post-emergence surface mechanisms, and carry little or no memory of the scales at which magnetic flux is injected in the simulation. Implications for models of dynamo action in the Sun are briefly discussed.

  8. The Buildup of a Scale-free Photospheric Magnetic Network

    Science.gov (United States)

    Thibault, K.; Charbonneau, P.; Crouch, A. D.

    2012-10-01

    We use a global Monte Carlo simulation of the formation of the solar photospheric magnetic network to investigate the origin of the scale invariance characterizing magnetic flux concentrations visible on high-resolution magnetograms. The simulations include spatially and temporally homogeneous injection of small-scale magnetic elements over the whole photosphere, as well as localized episodic injection associated with the emergence and decay of active regions. Network elements form in response to cumulative pairwise aggregation or cancellation of magnetic elements, undergoing a random walk on the sphere and advected on large spatial scales by differential rotation and a poleward meridional flow. The resulting size distribution of simulated network elements is in very good agreement with observational inferences. We find that the fractal index and size distribution of network elements are determined primarily by these post-emergence surface mechanisms, and carry little or no memory of the scales at which magnetic flux is injected in the simulation. Implications for models of dynamo action in the Sun are briefly discussed.

  9. Towards a Scalable and Adaptive Application Support Platform for Large-Scale Distributed E-Sciences in High-Performance Network Environments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chase Qishi [New Jersey Inst. of Technology, Newark, NJ (United States); Univ. of Memphis, TN (United States); Zhu, Michelle Mengxia [Southern Illinois Univ., Carbondale, IL (United States)

    2016-06-06

    The advent of large-scale collaborative scientific applications has demonstrated the potential for broad scientific communities to pool globally distributed resources to produce unprecedented data acquisition, movement, and analysis. System resources including supercomputers, data repositories, computing facilities, network infrastructures, storage systems, and display devices have been increasingly deployed at national laboratories and academic institutes. These resources are typically shared by large communities of users over Internet or dedicated networks and hence exhibit an inherent dynamic nature in their availability, accessibility, capacity, and stability. Scientific applications using either experimental facilities or computation-based simulations with various physical, chemical, climatic, and biological models feature diverse scientific workflows as simple as linear pipelines or as complex as a directed acyclic graphs, which must be executed and supported over wide-area networks with massively distributed resources. Application users oftentimes need to manually configure their computing tasks over networks in an ad hoc manner, hence significantly limiting the productivity of scientists and constraining the utilization of resources. The success of these large-scale distributed applications requires a highly adaptive and massively scalable workflow platform that provides automated and optimized computing and networking services. This project is to design and develop a generic Scientific Workflow Automation and Management Platform (SWAMP), which contains a web-based user interface specially tailored for a target application, a set of user libraries, and several easy-to-use computing and networking toolkits for application scientists to conveniently assemble, execute, monitor, and control complex computing workflows in heterogeneous high-performance network environments. SWAMP will enable the automation and management of the entire process of scientific

  10. Mapping change in large networks.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    2010-01-01

    Full Text Available Change is a fundamental ingredient of interaction patterns in biology, technology, the economy, and science itself: Interactions within and between organisms change; transportation patterns by air, land, and sea all change; the global financial flow changes; and the frontiers of scientific research change. Networks and clustering methods have become important tools to comprehend instances of these large-scale structures, but without methods to distinguish between real trends and noisy data, these approaches are not useful for studying how networks change. Only if we can assign significance to the partitioning of single networks can we distinguish meaningful structural changes from random fluctuations. Here we show that bootstrap resampling accompanied by significance clustering provides a solution to this problem. To connect changing structures with the changing function of networks, we highlight and summarize the significant structural changes with alluvial diagrams and realize de Solla Price's vision of mapping change in science: studying the citation pattern between about 7000 scientific journals over the past decade, we find that neuroscience has transformed from an interdisciplinary specialty to a mature and stand-alone discipline.

  11. Spatial dependencies between large-scale brain networks.

    Directory of Open Access Journals (Sweden)

    Robert Leech

    Full Text Available Functional neuroimaging reveals both increases (task-positive and decreases (task-negative in neural activation with many tasks. Many studies show a temporal relationship between task positive and task negative networks that is important for efficient cognitive functioning. Here we provide evidence for a spatial relationship between task positive and negative networks. There are strong spatial similarities between many reported task negative brain networks, termed the default mode network, which is typically assumed to be a spatially fixed network. However, this is not the case. The spatial structure of the DMN varies depending on what specific task is being performed. We test whether there is a fundamental spatial relationship between task positive and negative networks. Specifically, we hypothesize that the distance between task positive and negative voxels is consistent despite different spatial patterns of activation and deactivation evoked by different cognitive tasks. We show significantly reduced variability in the distance between within-condition task positive and task negative voxels than across-condition distances for four different sensory, motor and cognitive tasks--implying that deactivation patterns are spatially dependent on activation patterns (and vice versa, and that both are modulated by specific task demands. We also show a similar relationship between positively and negatively correlated networks from a third 'rest' dataset, in the absence of a specific task. We propose that this spatial relationship may be the macroscopic analogue of microscopic neuronal organization reported in sensory cortical systems, and that this organization may reflect homeostatic plasticity necessary for efficient brain function.

  12. A New Path-Constrained Rendezvous Planning Approach for Large-Scale Event-Driven Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ahmadreza Vajdi

    2018-05-01

    Full Text Available We study the problem of employing a mobile-sink into a large-scale Event-Driven Wireless Sensor Networks (EWSNs for the purpose of data harvesting from sensor-nodes. Generally, this employment improves the main weakness of WSNs that is about energy-consumption in battery-driven sensor-nodes. The main motivation of our work is to address challenges which are related to a network’s topology by adopting a mobile-sink that moves in a predefined trajectory in the environment. Since, in this fashion, it is not possible to gather data from sensor-nodes individually, we adopt the approach of defining some of the sensor-nodes as Rendezvous Points (RPs in the network. We argue that RP-planning in this case is a tradeoff between minimizing the number of RPs while decreasing the number of hops for a sensor-node that needs data transformation to the related RP which leads to minimizing average energy consumption in the network. We address the problem by formulating the challenges and expectations as a Mixed Integer Linear Programming (MILP. Henceforth, by proving the NP-hardness of the problem, we propose three effective and distributed heuristics for RP-planning, identifying sojourn locations, and constructing routing trees. Finally, experimental results prove the effectiveness of our approach.

  13. A New Path-Constrained Rendezvous Planning Approach for Large-Scale Event-Driven Wireless Sensor Networks.

    Science.gov (United States)

    Vajdi, Ahmadreza; Zhang, Gongxuan; Zhou, Junlong; Wei, Tongquan; Wang, Yongli; Wang, Tianshu

    2018-05-04

    We study the problem of employing a mobile-sink into a large-scale Event-Driven Wireless Sensor Networks (EWSNs) for the purpose of data harvesting from sensor-nodes. Generally, this employment improves the main weakness of WSNs that is about energy-consumption in battery-driven sensor-nodes. The main motivation of our work is to address challenges which are related to a network’s topology by adopting a mobile-sink that moves in a predefined trajectory in the environment. Since, in this fashion, it is not possible to gather data from sensor-nodes individually, we adopt the approach of defining some of the sensor-nodes as Rendezvous Points (RPs) in the network. We argue that RP-planning in this case is a tradeoff between minimizing the number of RPs while decreasing the number of hops for a sensor-node that needs data transformation to the related RP which leads to minimizing average energy consumption in the network. We address the problem by formulating the challenges and expectations as a Mixed Integer Linear Programming (MILP). Henceforth, by proving the NP-hardness of the problem, we propose three effective and distributed heuristics for RP-planning, identifying sojourn locations, and constructing routing trees. Finally, experimental results prove the effectiveness of our approach.

  14. A New Path-Constrained Rendezvous Planning Approach for Large-Scale Event-Driven Wireless Sensor Networks

    Science.gov (United States)

    Zhang, Gongxuan; Wang, Yongli; Wang, Tianshu

    2018-01-01

    We study the problem of employing a mobile-sink into a large-scale Event-Driven Wireless Sensor Networks (EWSNs) for the purpose of data harvesting from sensor-nodes. Generally, this employment improves the main weakness of WSNs that is about energy-consumption in battery-driven sensor-nodes. The main motivation of our work is to address challenges which are related to a network’s topology by adopting a mobile-sink that moves in a predefined trajectory in the environment. Since, in this fashion, it is not possible to gather data from sensor-nodes individually, we adopt the approach of defining some of the sensor-nodes as Rendezvous Points (RPs) in the network. We argue that RP-planning in this case is a tradeoff between minimizing the number of RPs while decreasing the number of hops for a sensor-node that needs data transformation to the related RP which leads to minimizing average energy consumption in the network. We address the problem by formulating the challenges and expectations as a Mixed Integer Linear Programming (MILP). Henceforth, by proving the NP-hardness of the problem, we propose three effective and distributed heuristics for RP-planning, identifying sojourn locations, and constructing routing trees. Finally, experimental results prove the effectiveness of our approach. PMID:29734718

  15. Find_tfSBP: find thermodynamics-feasible and smallest balanced pathways with high yield from large-scale metabolic networks.

    Science.gov (United States)

    Xu, Zixiang; Sun, Jibin; Wu, Qiaqing; Zhu, Dunming

    2017-12-11

    Biologically meaningful metabolic pathways are important references in the design of industrial bacterium. At present, constraint-based method is the only way to model and simulate a genome-scale metabolic network under steady-state criteria. Due to the inadequate assumption of the relationship in gene-enzyme-reaction as one-to-one unique association, computational difficulty or ignoring the yield from substrate to product, previous pathway finding approaches can't be effectively applied to find out the high yield pathways that are mass balanced in stoichiometry. In addition, the shortest pathways may not be the pathways with high yield. At the same time, a pathway, which exists in stoichiometry, may not be feasible in thermodynamics. By using mixed integer programming strategy, we put forward an algorithm to identify all the smallest balanced pathways which convert the source compound to the target compound in large-scale metabolic networks. The resulting pathways by our method can finely satisfy the stoichiometric constraints and non-decomposability condition. Especially, the functions of high yield and thermodynamics feasibility have been considered in our approach. This tool is tailored to direct the metabolic engineering practice to enlarge the metabolic potentials of industrial strains by integrating the extensive metabolic network information built from systems biology dataset.

  16. Resting-state functional under-connectivity within and between large-scale cortical networks across three low-frequency bands in adolescents with autism.

    Science.gov (United States)

    Duan, Xujun; Chen, Heng; He, Changchun; Long, Zhiliang; Guo, Xiaonan; Zhou, Yuanyue; Uddin, Lucina Q; Chen, Huafu

    2017-10-03

    Although evidence is accumulating that autism spectrum disorder (ASD) is associated with disruption of functional connections between and within brain networks, it remains largely unknown whether these abnormalities are related to specific frequency bands. To address this question, network contingency analysis was performed on brain functional connectomes obtained from 213 adolescent participants across nine sites in the Autism Brain Imaging Data Exchange (ABIDE) multisite sample, to determine the disrupted connections between and within seven major cortical networks in adolescents with ASD at Slow-5, Slow-4 and Slow-3 frequency bands and further assess whether the aberrant intra- and inter-network connectivity varied as a function of ASD symptoms. Overall under-connectivity within and between large-scale intrinsic networks in ASD was revealed across the three frequency bands. Specifically, decreased connectivity strength within the default mode network (DMN), between DMN and visual network (VN), ventral attention network (VAN), and between dorsal attention network (DAN) and VAN was observed in the lower frequency band (slow-5, slow-4), while decreased connectivity between limbic network (LN) and frontal-parietal network (FPN) was observed in the higher frequency band (slow-3). Furthermore, weaker connectivity within and between specific networks correlated with poorer communication and social interaction skills in the slow-5 band, uniquely. These results demonstrate intrinsic under-connectivity within and between multiple brain networks within predefined frequency bands in ASD, suggesting that frequency-related properties underlie abnormal brain network organization in the disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Selective Reduction of AMPA Currents onto Hippocampal Interneurons Impairs Network Oscillatory Activity

    Science.gov (United States)

    Le Magueresse, Corentin; Monyer, Hannah

    2012-01-01

    Reduction of excitatory currents onto GABAergic interneurons in the forebrain results in impaired spatial working memory and altered oscillatory network patterns in the hippocampus. Whether this phenotype is caused by an alteration in hippocampal interneurons is not known because most studies employed genetic manipulations affecting several brain regions. Here we performed viral injections in genetically modified mice to ablate the GluA4 subunit of the AMPA receptor in the hippocampus (GluA4HC−/− mice), thereby selectively reducing AMPA receptor-mediated currents onto a subgroup of hippocampal interneurons expressing GluA4. This regionally selective manipulation led to a strong spatial working memory deficit while leaving reference memory unaffected. Ripples (125–250 Hz) in the CA1 region of GluA4HC−/− mice had larger amplitude, slower frequency and reduced rate of occurrence. These changes were associated with an increased firing rate of pyramidal cells during ripples. The spatial selectivity of hippocampal pyramidal cells was comparable to that of controls in many respects when assessed during open field exploration and zigzag maze running. However, GluA4 ablation caused altered modulation of firing rate by theta oscillations in both interneurons and pyramidal cells. Moreover, the correlation between the theta firing phase of pyramidal cells and position was weaker in GluA4HC−/− mice. These results establish the involvement of AMPA receptor-mediated currents onto hippocampal interneurons for ripples and theta oscillations, and highlight potential cellular and network alterations that could account for the altered working memory performance. PMID:22675480

  18. Integrating large-scale functional genomics data to dissect metabolic networks for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, Caroline S

    2012-12-17

    The goal of this project is to identify gene networks that are critical for efficient biohydrogen production by leveraging variation in gene content and gene expression in independently isolated Rhodopseudomonas palustris strains. Coexpression methods were applied to large data sets that we have collected to define probabilistic causal gene networks. To our knowledge this a first systems level approach that takes advantage of strain-to strain variability to computationally define networks critical for a particular bacterial phenotypic trait.

  19. Properties of large-scale methane/hydrogen jet fires

    Energy Technology Data Exchange (ETDEWEB)

    Studer, E. [CEA Saclay, DEN, LTMF Heat Transfer and Fluid Mech Lab, 91 - Gif-sur-Yvette (France); Jamois, D.; Leroy, G.; Hebrard, J. [INERIS, F-60150 Verneuil En Halatte (France); Jallais, S. [Air Liquide, F-78350 Jouy En Josas (France); Blanchetiere, V. [GDF SUEZ, 93 - La Plaine St Denis (France)

    2009-12-15

    A future economy based on reduction of carbon-based fuels for power generation and transportation may consider hydrogen as possible energy carrier Extensive and widespread use of hydrogen might require a pipeline network. The alternatives might be the use of the existing natural gas network or to design a dedicated network. Whatever the solution, mixing hydrogen with natural gas will modify the consequences of accidents, substantially The French National Research Agency (ANR) funded project called HYDROMEL focuses on these critical questions Within this project large-scale jet fires have been studied experimentally and numerically The main characteristics of these flames including visible length, radiation fluxes and blowout have been assessed. (authors)

  20. Oscillatory Reinstatement Enhances Declarative Memory.

    Science.gov (United States)

    Javadi, Amir-Homayoun; Glen, James C; Halkiopoulos, Sara; Schulz, Mei; Spiers, Hugo J

    2017-10-11

    Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [ n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval. SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval

  1. The role of high-frequency oscillatory activity in reward processing and learning.

    Science.gov (United States)

    Marco-Pallarés, Josep; Münte, Thomas F; Rodríguez-Fornells, Antoni

    2015-02-01

    Oscillatory activity has been proposed as a key mechanism in the integration of brain activity of distant structures. Particularly, high frequency brain oscillatory activity in the beta and gamma range has received increasing interest in the domains of attention and memory. In addition, a number of recent studies have revealed an increase of beta-gamma activity (20-35 Hz) after unexpected or relevant positive reward outcomes. In the present manuscript we review the literature on this phenomenon and we propose that this activity is a brain signature elicited by unexpected positive outcomes in order to transmit a fast motivational value signal to the reward network. In addition, we hypothesize that beta-gamma oscillatory activity indexes the interaction between attentional and emotional systems, and that it directly reflects the appearance of unexpected positive rewards in learning-related contexts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Spatial fingerprints of community structure in human interaction network for an extensive set of large-scale regions.

    Directory of Open Access Journals (Sweden)

    Zsófia Kallus

    Full Text Available Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well-established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal-area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization.

  3. Rogue AP Detection in the Wireless LAN for Large Scale Deployment

    OpenAIRE

    Sang-Eon Kim; Byung-Soo Chang; Sang Hong Lee; Dae Young Kim

    2006-01-01

    The wireless LAN standard, also known as WiFi, has begun to use commercial purposes. This paper describes access network architecture of wireless LAN for large scale deployment to provide public service. A metro Ethernet and digital subscriber line access network can be used for wireless LAN with access point. In this network architecture, access point plays interface between wireless node and network infrastructure. It is important to maintain access point without any failure and problems to...

  4. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.

    Science.gov (United States)

    Liu, Yang; Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  5. Puzzles of large scale structure and gravitation

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    2006-01-01

    We consider the puzzle of cosmic voids bounded by two-dimensional structures of galactic clusters as also a puzzle pointed out by Weinberg: How can the mass of a typical elementary particle depend on a cosmic parameter like the Hubble constant? An answer to the first puzzle is proposed in terms of 'Scaled' Quantum Mechanical like behaviour which appears at large scales. The second puzzle can be answered by showing that the gravitational mass of an elementary particle has a Machian character (see Ahmed N. Cantorian small worked, Mach's principle and the universal mass network. Chaos, Solitons and Fractals 2004;21(4))

  6. Evolution of a large online social network

    International Nuclear Information System (INIS)

    Hu Haibo; Wang Xiaofan

    2009-01-01

    Although recently there are extensive research on the collaborative networks and online communities, there is very limited knowledge about the actual evolution of the online social networks (OSN). In the Letter, we study the structural evolution of a large online virtual community. We find that the scale growth of the OSN shows non-trivial S shape which may provide a proper exemplification for Bass diffusion model. We reveal that the evolutions of many network properties, such as density, clustering, heterogeneity and modularity, show non-monotone feature, and shrink phenomenon occurs for the path length and diameter of the network. Furthermore, the OSN underwent a transition from degree assortativity characteristic of collaborative networks to degree disassortativity characteristic of many OSNs. Our study has revealed the evolutionary pattern of interpersonal interactions in a specific population and provided a valuable platform for theoretical modeling and further analysis

  7. Memory Transmission in Small Groups and Large Networks: An Agent-Based Model.

    Science.gov (United States)

    Luhmann, Christian C; Rajaram, Suparna

    2015-12-01

    The spread of social influence in large social networks has long been an interest of social scientists. In the domain of memory, collaborative memory experiments have illuminated cognitive mechanisms that allow information to be transmitted between interacting individuals, but these experiments have focused on small-scale social contexts. In the current study, we took a computational approach, circumventing the practical constraints of laboratory paradigms and providing novel results at scales unreachable by laboratory methodologies. Our model embodied theoretical knowledge derived from small-group experiments and replicated foundational results regarding collaborative inhibition and memory convergence in small groups. Ultimately, we investigated large-scale, realistic social networks and found that agents are influenced by the agents with which they interact, but we also found that agents are influenced by nonneighbors (i.e., the neighbors of their neighbors). The similarity between these results and the reports of behavioral transmission in large networks offers a major theoretical insight by linking behavioral transmission to the spread of information. © The Author(s) 2015.

  8. Dynamics of Disagreement: Large-Scale Temporal Network Analysis Reveals Negative Interactions in Online Collaboration

    Science.gov (United States)

    Tsvetkova, Milena; García-Gavilanes, Ruth; Yasseri, Taha

    2016-11-01

    Disagreement and conflict are a fact of social life. However, negative interactions are rarely explicitly declared and recorded and this makes them hard for scientists to study. In an attempt to understand the structural and temporal features of negative interactions in the community, we use complex network methods to analyze patterns in the timing and configuration of reverts of article edits to Wikipedia. We investigate how often and how fast pairs of reverts occur compared to a null model in order to control for patterns that are natural to the content production or are due to the internal rules of Wikipedia. Our results suggest that Wikipedia editors systematically revert the same person, revert back their reverter, and come to defend a reverted editor. We further relate these interactions to the status of the involved editors. Even though the individual reverts might not necessarily be negative social interactions, our analysis points to the existence of certain patterns of negative social dynamics within the community of editors. Some of these patterns have not been previously explored and carry implications for the knowledge collection practice conducted on Wikipedia. Our method can be applied to other large-scale temporal collaboration networks to identify the existence of negative social interactions and other social processes.

  9. A Matrix-Based Proactive Data Relay Algorithm for Large Distributed Sensor Networks.

    Science.gov (United States)

    Xu, Yang; Hu, Xuemei; Hu, Haixiao; Liu, Ming

    2016-08-16

    In large-scale distributed sensor networks, sensed data is required to be relayed around the network so that one or few sensors can gather adequate relative data to produce high quality information for decision-making. In regards to very high energy-constraint sensor nodes, data transmission should be extremely economical. However, traditional data delivery protocols are potentially inefficient relaying unpredictable sensor readings for data fusion in large distributed networks for either overwhelming query transmissions or unnecessary data coverage. By building sensors' local model from their previously transmitted data in three matrixes, we have developed a novel energy-saving data relay algorithm, which allows sensors to proactively make broadcast decisions by using a neat matrix computation to provide balance between transmission and energy-saving. In addition, we designed a heuristic maintenance algorithm to efficiently update these three matrices. This can easily be deployed to large-scale mobile networks in which decisions of sensors are based on their local matrix models no matter how large the network is, and the local models of these sensors are updated constantly. Compared with some traditional approaches based on our simulations, the efficiency of this approach is manifested in uncertain environment. The results show that our approach is scalable and can effectively balance aggregating data with minimizing energy consumption.

  10. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2015-01-01

    Full Text Available Artificial neural networks (ANNs have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  11. Natural language acquisition in large scale neural semantic networks

    Science.gov (United States)

    Ealey, Douglas

    This thesis puts forward the view that a purely signal- based approach to natural language processing is both plausible and desirable. By questioning the veracity of symbolic representations of meaning, it argues for a unified, non-symbolic model of knowledge representation that is both biologically plausible and, potentially, highly efficient. Processes to generate a grounded, neural form of this model-dubbed the semantic filter-are discussed. The combined effects of local neural organisation, coincident with perceptual maturation, are used to hypothesise its nature. This theoretical model is then validated in light of a number of fundamental neurological constraints and milestones. The mechanisms of semantic and episodic development that the model predicts are then used to explain linguistic properties, such as propositions and verbs, syntax and scripting. To mimic the growth of locally densely connected structures upon an unbounded neural substrate, a system is developed that can grow arbitrarily large, data- dependant structures composed of individual self- organising neural networks. The maturational nature of the data used results in a structure in which the perception of concepts is refined by the networks, but demarcated by subsequent structure. As a consequence, the overall structure shows significant memory and computational benefits, as predicted by the cognitive and neural models. Furthermore, the localised nature of the neural architecture also avoids the increasing error sensitivity and redundancy of traditional systems as the training domain grows. The semantic and episodic filters have been demonstrated to perform as well, or better, than more specialist networks, whilst using significantly larger vocabularies, more complex sentence forms and more natural corpora.

  12. Stability switches, oscillatory multistability, and spatio-temporal patterns of nonlinear oscillations in recurrently delay coupled neural networks.

    Science.gov (United States)

    Song, Yongli; Makarov, Valeri A; Velarde, Manuel G

    2009-08-01

    A model of time-delay recurrently coupled spatially segregated neural assemblies is here proposed. We show that it operates like some of the hierarchical architectures of the brain. Each assembly is a neural network with no delay in the local couplings between the units. The delay appears in the long range feedforward and feedback inter-assemblies communications. Bifurcation analysis of a simple four-units system in the autonomous case shows the richness of the dynamical behaviors in a biophysically plausible parameter region. We find oscillatory multistability, hysteresis, and stability switches of the rest state provoked by the time delay. Then we investigate the spatio-temporal patterns of bifurcating periodic solutions by using the symmetric local Hopf bifurcation theory of delay differential equations and derive the equation describing the flow on the center manifold that enables us determining the direction of Hopf bifurcations and stability of the bifurcating periodic orbits. We also discuss computational properties of the system due to the delay when an external drive of the network mimicks external sensory input.

  13. Stability and Control of Large-Scale Dynamical Systems A Vector Dissipative Systems Approach

    CERN Document Server

    Haddad, Wassim M

    2011-01-01

    Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynami

  14. Analysis of Blood Flow Through a Viscoelastic Artery using the Cosserat Continuum with the Large-Amplitude Oscillatory Shear Deformation Model

    DEFF Research Database (Denmark)

    Sedaghatizadeh, N.; Atefi, G.; Fardad, A. A.

    2011-01-01

    In this investigation, semiempirical and numerical studies of blood flow in a viscoelastic artery were performed using the Cosserat continuum model. The large-amplitude oscillatory shear deformation model was used to quantify the nonlinear viscoelastic response of blood flow. The finite differenc...... method was used to solve the governing equations, and the particle swarm optimization algorithm was utilized to identify the non-Newtonian coefficients (kυ and γυ). The numerical results agreed well with previous experimental results....

  15. Large-Scale Demand Driven Design of a Customized Bus Network: A Methodological Framework and Beijing Case Study

    Directory of Open Access Journals (Sweden)

    Jihui Ma

    2017-01-01

    Full Text Available In recent years, an innovative public transportation (PT mode known as the customized bus (CB has been proposed and implemented in many cities in China to efficiently and effectively shift private car users to PT to alleviate traffic congestion and traffic-related environmental pollution. The route network design activity plays an important role in the CB operation planning process because it serves as the basis for other operation planning activities, for example, timetable development, vehicle scheduling, and crew scheduling. In this paper, according to the demand characteristics and operational purpose, a methodological framework that includes the elements of large-scale travel demand data processing and analysis, hierarchical clustering-based route origin-destination (OD region division, route OD region pairing, and a route selection model is proposed for CB network design. Considering the operating cost and social benefits, a route selection model is proposed and a branch-and-bound-based solution method is developed. In addition, a computer-aided program is developed to analyze a real-world Beijing CB route network design problem. The results of the case study demonstrate that the current CB network of Beijing can be significantly improved, thus demonstrating the effectiveness of the proposed methodology.

  16. Inference of functional properties from large-scale analysis of enzyme superfamilies.

    Science.gov (United States)

    Brown, Shoshana D; Babbitt, Patricia C

    2012-01-02

    As increasingly large amounts of data from genome and other sequencing projects become available, new approaches are needed to determine the functions of the proteins these genes encode. We show how large-scale computational analysis can help to address this challenge by linking functional information to sequence and structural similarities using protein similarity networks. Network analyses using three functionally diverse enzyme superfamilies illustrate the use of these approaches for facile updating and comparison of available structures for a large superfamily, for creation of functional hypotheses for metagenomic sequences, and to summarize the limits of our functional knowledge about even well studied superfamilies.

  17. On the network protocol performance evaluation for large scale communication system of nuclear plant

    International Nuclear Information System (INIS)

    Song, K. S.; Lee, T. H.; Kim, H. R.; Kim, D. H.; Ku, I. S.

    1998-01-01

    Computer technology has been dramatically advanced and it is now natural to apply digital network technology into nuclear plants. Communication architecture for nuclear plant defines the coordination of safety reactor control, balance of plant, subsystem utilities, and plant monitoring functions, and how they are connected and their user interface to guarantee plant performance and guarantee safety requirements. Therefore, to implement a digital network for control and monitoring systems of advanced nuclear plant needs systematic design and evaluation procedures because of responsive and hard real-time process characteristics of nuclear plant. In this paper, we evaluate several digital network protocols in terms of network delay, link failure effects to hard real-time requirements with full scale traffic

  18. Large-scale modeling of rain fields from a rain cell deterministic model

    Science.gov (United States)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  19. Variety in emotional life: within-category typicality of emotional experiences is associated with neural activity in large-scale brain networks

    OpenAIRE

    Wilson-Mendenhall, Christine D.; Barrett, Lisa Feldman; Barsalou, Lawrence W.

    2014-01-01

    The tremendous variability within categories of human emotional experience receives little empirical attention. We hypothesized that atypical instances of emotion categories (e.g. pleasant fear of thrill-seeking) would be processed less efficiently than typical instances of emotion categories (e.g. unpleasant fear of violent threat) in large-scale brain networks. During a novel fMRI paradigm, participants immersed themselves in scenarios designed to induce atypical and typical experiences of ...

  20. Statistical Modeling of Large-Scale Signal Path Loss in Underwater Acoustic Networks

    Directory of Open Access Journals (Sweden)

    Manuel Perez Malumbres

    2013-02-01

    Full Text Available In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation, we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc., an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc..

  1. Oscillatory-rotational processes in the Earth motion about the center of mass: Interpolation and forecast

    Science.gov (United States)

    Akulenko, L. D.; Klimov, D. M.; Markov, Yu. G.; Perepelkin, V. V.

    2012-11-01

    The celestial-mechanics approach (the spatial version of the problem for the Earth-Moon system in the field of gravity of the Sun) is used to construct a mathematical model of the Earth's rotational-oscillatory motions. The fundamental aspects of the processes of tidal inhomogeneity in the Earth rotation and the Earth's pole oscillations are studied. It is shown that the presence of the perturbing component of gravitational-tidal forces, which is orthogonal to the Moon's orbit plane, also allows one to distinguish short-period perturbations in the Moon's motion. The obtained model of rotational-oscillatory motions of the nonrigid Earth takes into account both the basic perturbations of large amplitudes and the more complicated small-scale properties of the motion due to the Moon short-period perturbations with combination frequencies. The astrometric data of the International Earth Rotation and Reference Systems Service (IERS) are used to perform numerical simulation (interpolation and forecast) of the Earth rotation parameters (ERP) on various time intervals.

  2. Autonomous smart sensor network for full-scale structural health monitoring

    Science.gov (United States)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  3. Large scale analysis of signal reachability.

    Science.gov (United States)

    Todor, Andrei; Gabr, Haitham; Dobra, Alin; Kahveci, Tamer

    2014-06-15

    Major disorders, such as leukemia, have been shown to alter the transcription of genes. Understanding how gene regulation is affected by such aberrations is of utmost importance. One promising strategy toward this objective is to compute whether signals can reach to the transcription factors through the transcription regulatory network (TRN). Due to the uncertainty of the regulatory interactions, this is a #P-complete problem and thus solving it for very large TRNs remains to be a challenge. We develop a novel and scalable method to compute the probability that a signal originating at any given set of source genes can arrive at any given set of target genes (i.e., transcription factors) when the topology of the underlying signaling network is uncertain. Our method tackles this problem for large networks while providing a provably accurate result. Our method follows a divide-and-conquer strategy. We break down the given network into a sequence of non-overlapping subnetworks such that reachability can be computed autonomously and sequentially on each subnetwork. We represent each interaction using a small polynomial. The product of these polynomials express different scenarios when a signal can or cannot reach to target genes from the source genes. We introduce polynomial collapsing operators for each subnetwork. These operators reduce the size of the resulting polynomial and thus the computational complexity dramatically. We show that our method scales to entire human regulatory networks in only seconds, while the existing methods fail beyond a few tens of genes and interactions. We demonstrate that our method can successfully characterize key reachability characteristics of the entire transcriptions regulatory networks of patients affected by eight different subtypes of leukemia, as well as those from healthy control samples. All the datasets and code used in this article are available at bioinformatics.cise.ufl.edu/PReach/scalable.htm. © The Author 2014

  4. Utilizing Maximal Independent Sets as Dominating Sets in Scale-Free Networks

    Science.gov (United States)

    Derzsy, N.; Molnar, F., Jr.; Szymanski, B. K.; Korniss, G.

    Dominating sets provide key solution to various critical problems in networked systems, such as detecting, monitoring, or controlling the behavior of nodes. Motivated by graph theory literature [Erdos, Israel J. Math. 4, 233 (1966)], we studied maximal independent sets (MIS) as dominating sets in scale-free networks. We investigated the scaling behavior of the size of MIS in artificial scale-free networks with respect to multiple topological properties (size, average degree, power-law exponent, assortativity), evaluated its resilience to network damage resulting from random failure or targeted attack [Molnar et al., Sci. Rep. 5, 8321 (2015)], and compared its efficiency to previously proposed dominating set selection strategies. We showed that, despite its small set size, MIS provides very high resilience against network damage. Using extensive numerical analysis on both synthetic and real-world (social, biological, technological) network samples, we demonstrate that our method effectively satisfies four essential requirements of dominating sets for their practical applicability on large-scale real-world systems: 1.) small set size, 2.) minimal network information required for their construction scheme, 3.) fast and easy computational implementation, and 4.) resiliency to network damage. Supported by DARPA, DTRA, and NSF.

  5. Modeling oscillatory dynamics in brain microcircuits as a way to help uncover neurological disease mechanisms: A proposal

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, F. K. [Toronto Western Research Institute, University Health Network, Krembil Discovery Tower, Toronto Western Hospital, 60 Leonard Street, 7th floor, 7KD411, Toronto, Ontario M5T 2S8 (Canada); Department of Medicine (Neurology), University of Toronto, 200 Elizabeth Street, Toronto, Ontario M5G 2C4 (Canada); Department of Physiology, University of Toronto Medical Sciences Building, 3rd Floor, 1 King' s College Circle, Toronto, Ontario M5S 1A8 (Canada); Ferguson, K. A. [Toronto Western Research Institute, University Health Network, Krembil Discovery Tower, Toronto Western Hospital, 60 Leonard Street, 7th floor, 7KD411, Toronto, Ontario M5T 2S8 (Canada); Department of Physiology, University of Toronto Medical Sciences Building, 3rd Floor, 1 King' s College Circle, Toronto, Ontario M5S 1A8 (Canada)

    2013-12-15

    There is an undisputed need and requirement for theoretical and computational studies in Neuroscience today. Furthermore, it is clear that oscillatory dynamical output from brain networks is representative of various behavioural states, and it is becoming clear that one could consider these outputs as measures of normal and pathological brain states. Although mathematical modeling of oscillatory dynamics in the context of neurological disease exists, it is a highly challenging endeavour because of the many levels of organization in the nervous system. This challenge is coupled with the increasing knowledge of cellular specificity and network dysfunction that is associated with disease. Recently, whole hippocampus in vitro preparations from control animals have been shown to spontaneously express oscillatory activities. In addition, when using preparations derived from animal models of disease, these activities show particular alterations. These preparations present an opportunity to address challenges involved with using models to gain insight because of easier access to simultaneous cellular and network measurements, and pharmacological modulations. We propose that by developing and using models with direct links to experiment at multiple levels, which at least include cellular and microcircuit, a cycling can be set up and used to help us determine critical mechanisms underlying neurological disease. We illustrate our proposal using our previously developed inhibitory network models in the context of these whole hippocampus preparations and show the importance of having direct links at multiple levels.

  6. The future of primordial features with large-scale structure surveys

    International Nuclear Information System (INIS)

    Chen, Xingang; Namjoo, Mohammad Hossein; Dvorkin, Cora; Huang, Zhiqi; Verde, Licia

    2016-01-01

    Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.

  7. The future of primordial features with large-scale structure surveys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xingang; Namjoo, Mohammad Hossein [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dvorkin, Cora [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Huang, Zhiqi [School of Physics and Astronomy, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, 510275 (China); Verde, Licia, E-mail: xingang.chen@cfa.harvard.edu, E-mail: dvorkin@physics.harvard.edu, E-mail: huangzhq25@sysu.edu.cn, E-mail: mohammad.namjoo@cfa.harvard.edu, E-mail: liciaverde@icc.ub.edu [ICREA and ICC-UB, University of Barcelona (IEEC-UB), Marti i Franques, 1, Barcelona 08028 (Spain)

    2016-11-01

    Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.

  8. Traffic assignment models in large-scale applications

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Kjær

    the potential of the method proposed and the possibility to use individual-based GPS units for travel surveys in real-life large-scale multi-modal networks. Congestion is known to highly influence the way we act in the transportation network (and organise our lives), because of longer travel times...... of observations of actual behaviour to obtain estimates of the (monetary) value of different travel time components, thereby increasing the behavioural realism of largescale models. vii The generation of choice sets is a vital component in route choice models. This is, however, not a straight-forward task in real......, but the reliability of the travel time also has a large impact on our travel choices. Consequently, in order to improve the realism of transport models, correct understanding and representation of two values that are related to the value of time (VoT) are essential: (i) the value of congestion (VoC), as the Vo...

  9. Task-dependent changes in cross-level coupling between single neurons and oscillatory activity in multiscale networks.

    Directory of Open Access Journals (Sweden)

    Ryan T Canolty

    Full Text Available Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC or under direct neural control through a brain-machine interface (Brain Control, BC. In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10-45 Hz during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to

  10. Arteriovenous extracorporeal lung assist allows for maximization of oscillatory frequencies: a large-animal model of respiratory distress

    Directory of Open Access Journals (Sweden)

    Kranke Peter

    2008-11-01

    Full Text Available Abstract Background Although the minimization of the applied tidal volume (VT during high-frequency oscillatory ventilation (HFOV reduces the risk of alveolar shear stress, it can also result in insufficient CO2-elimination with severe respiratory acidosis. We hypothesized that in a model of acute respiratory distress (ARDS the application of high oscillatory frequencies requires the combination of HFOV with arteriovenous extracorporeal lung assist (av-ECLA in order to maintain or reestablish normocapnia. Methods After induction of ARDS in eight female pigs (56.5 ± 4.4 kg, a recruitment manoeuvre was performed and intratracheal mean airway pressure (mPaw was adjusted 3 cmH2O above the lower inflection point (Plow of the pressure-volume curve. All animals were ventilated with oscillatory frequencies ranging from 3–15 Hz. The pressure amplitude was fixed at 60 cmH2O. At each frequency gas exchange and hemodynamic measurements were obtained with a clamped and de-clamped av-ECLA. Whenever the av-ECLA was de-clamped, the oxygen sweep gas flow through the membrane lung was adjusted aiming at normocapnia. Results Lung recruitment and adjustment of the mPaw above Plow resulted in a significant improvement of oxygenation (p Conclusion In this animal model of ARDS, maximization of oscillatory frequencies with subsequent minimization of VT leads to hypercapnia that can only be reversed by adding av-ECLA. When combined with a recruitment strategy, these high frequencies do not impair oxygenation

  11. A Matrix-Based Proactive Data Relay Algorithm for Large Distributed Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yang Xu

    2016-08-01

    Full Text Available In large-scale distributed sensor networks, sensed data is required to be relayed around the network so that one or few sensors can gather adequate relative data to produce high quality information for decision-making. In regards to very high energy-constraint sensor nodes, data transmission should be extremely economical. However, traditional data delivery protocols are potentially inefficient relaying unpredictable sensor readings for data fusion in large distributed networks for either overwhelming query transmissions or unnecessary data coverage. By building sensors’ local model from their previously transmitted data in three matrixes, we have developed a novel energy-saving data relay algorithm, which allows sensors to proactively make broadcast decisions by using a neat matrix computation to provide balance between transmission and energy-saving. In addition, we designed a heuristic maintenance algorithm to efficiently update these three matrices. This can easily be deployed to large-scale mobile networks in which decisions of sensors are based on their local matrix models no matter how large the network is, and the local models of these sensors are updated constantly. Compared with some traditional approaches based on our simulations, the efficiency of this approach is manifested in uncertain environment. The results show that our approach is scalable and can effectively balance aggregating data with minimizing energy consumption.

  12. Inference of Functional Properties from Large-scale Analysis of Enzyme Superfamilies*

    Science.gov (United States)

    Brown, Shoshana D.; Babbitt, Patricia C.

    2012-01-01

    As increasingly large amounts of data from genome and other sequencing projects become available, new approaches are needed to determine the functions of the proteins these genes encode. We show how large-scale computational analysis can help to address this challenge by linking functional information to sequence and structural similarities using protein similarity networks. Network analyses using three functionally diverse enzyme superfamilies illustrate the use of these approaches for facile updating and comparison of available structures for a large superfamily, for creation of functional hypotheses for metagenomic sequences, and to summarize the limits of our functional knowledge about even well studied superfamilies. PMID:22069325

  13. A large deformation viscoelastic model for double-network hydrogels

    Science.gov (United States)

    Mao, Yunwei; Lin, Shaoting; Zhao, Xuanhe; Anand, Lallit

    2017-03-01

    We present a large deformation viscoelasticity model for recently synthesized double network hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. Such double-network gels are highly stretchable and at the same time tough, because when stretched the crosslinks in the ionically-crosslinked alginate network rupture which results in distributed internal microdamage which dissipates a substantial amount of energy, while the configurational entropy of the covalently-crosslinked polyacrylamide network allows the gel to return to its original configuration after deformation. In addition to the large hysteresis during loading and unloading, these double network hydrogels also exhibit a substantial rate-sensitive response during loading, but exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We limit our attention to modeling the complex viscoelastic response of such hydrogels under isothermal conditions. Our model is restricted in the sense that we have limited our attention to conditions under which one might neglect any diffusion of the water in the hydrogel - as might occur when the gel has a uniform initial value of the concentration of water, and the mobility of the water molecules in the gel is low relative to the time scale of the mechanical deformation. We also do not attempt to model the final fracture of such double-network hydrogels.

  14. Federated queries of clinical data repositories: Scaling to a national network.

    Science.gov (United States)

    Weber, Griffin M

    2015-06-01

    Federated networks of clinical research data repositories are rapidly growing in size from a handful of sites to true national networks with more than 100 hospitals. This study creates a conceptual framework for predicting how various properties of these systems will scale as they continue to expand. Starting with actual data from Harvard's four-site Shared Health Research Information Network (SHRINE), the framework is used to imagine a future 4000 site network, representing the majority of hospitals in the United States. From this it becomes clear that several common assumptions of small networks fail to scale to a national level, such as all sites being online at all times or containing data from the same date range. On the other hand, a large network enables researchers to select subsets of sites that are most appropriate for particular research questions. Developers of federated clinical data networks should be aware of how the properties of these networks change at different scales and design their software accordingly. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Tile-Based Semisupervised Classification of Large-Scale VHR Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Haikel Alhichri

    2018-01-01

    Full Text Available This paper deals with the problem of the classification of large-scale very high-resolution (VHR remote sensing (RS images in a semisupervised scenario, where we have a limited training set (less than ten training samples per class. Typical pixel-based classification methods are unfeasible for large-scale VHR images. Thus, as a practical and efficient solution, we propose to subdivide the large image into a grid of tiles and then classify the tiles instead of classifying pixels. Our proposed method uses the power of a pretrained convolutional neural network (CNN to first extract descriptive features from each tile. Next, a neural network classifier (composed of 2 fully connected layers is trained in a semisupervised fashion and used to classify all remaining tiles in the image. This basically presents a coarse classification of the image, which is sufficient for many RS application. The second contribution deals with the employment of the semisupervised learning to improve the classification accuracy. We present a novel semisupervised approach which exploits both the spectral and spatial relationships embedded in the remaining unlabelled tiles. In particular, we embed a spectral graph Laplacian in the hidden layer of the neural network. In addition, we apply regularization of the output labels using a spatial graph Laplacian and the random Walker algorithm. Experimental results obtained by testing the method on two large-scale images acquired by the IKONOS2 sensor reveal promising capabilities of this method in terms of classification accuracy even with less than ten training samples per class.

  16. Modulation of Network Oscillatory Activity and GABAergic Synaptic Transmission by CB1 Cannabinoid Receptors in the Rat Medial Entorhinal Cortex

    Directory of Open Access Journals (Sweden)

    Nicola H. Morgan

    2008-01-01

    Full Text Available Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide (ACPA; 10 M, an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500 nM, increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.

  17. A large fiber sensor network for an acoustic neutrino telescope

    Directory of Open Access Journals (Sweden)

    Buis Ernst-Jan

    2017-01-01

    Full Text Available The scientific prospects of detecting neutrinos with an energy close or even higher than the GKZ cut-off energy has been discussed extensively in literature. It is clear that due to their expected low flux, the detection of these ultra-high energy neutrinos (Ev > 1018 eV requires a telescope larger than 100 km3. Acoustic detection may provide a way to observe these ultra-high energy cosmic neutrinos, as sound that they induce in the deep sea when neutrinos lose their energy travels undisturbed for many kilometers. To realize a large scale acoustic neutrino telescope, dedicated technology must be developed that allows for a deep sea sensor network. Fiber optic hydrophone technology provides a promising means to establish a large scale sensor network [1] with the proper sensitivity to detect the small signals from the neutrino interactions.

  18. Scaling and percolation in the small-world network model

    Energy Technology Data Exchange (ETDEWEB)

    Newman, M. E. J. [Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States); Watts, D. J. [Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States)

    1999-12-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model. (c) 1999 The American Physical Society.

  19. Scaling and percolation in the small-world network model

    International Nuclear Information System (INIS)

    Newman, M. E. J.; Watts, D. J.

    1999-01-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model. (c) 1999 The American Physical Society

  20. Enabling parallel simulation of large-scale HPC network systems

    International Nuclear Information System (INIS)

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.; Carns, Philip

    2016-01-01

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks used in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations

  1. Convolutional neural networks for transient candidate vetting in large-scale surveys

    Science.gov (United States)

    Gieseke, Fabian; Bloemen, Steven; van den Bogaard, Cas; Heskes, Tom; Kindler, Jonas; Scalzo, Richard A.; Ribeiro, Valério A. R. M.; van Roestel, Jan; Groot, Paul J.; Yuan, Fang; Möller, Anais; Tucker, Brad E.

    2017-12-01

    Current synoptic sky surveys monitor large areas of the sky to find variable and transient astronomical sources. As the number of detections per night at a single telescope easily exceeds several thousand, current detection pipelines make intensive use of machine learning algorithms to classify the detected objects and to filter out the most interesting candidates. A number of upcoming surveys will produce up to three orders of magnitude more data, which renders high-precision classification systems essential to reduce the manual and, hence, expensive vetting by human experts. We present an approach based on convolutional neural networks to discriminate between true astrophysical sources and artefacts in reference-subtracted optical images. We show that relatively simple networks are already competitive with state-of-the-art systems and that their quality can further be improved via slightly deeper networks and additional pre-processing steps - eventually yielding models outperforming state-of-the-art systems. In particular, our best model correctly classifies about 97.3 per cent of all 'real' and 99.7 per cent of all 'bogus' instances on a test set containing 1942 'bogus' and 227 'real' instances in total. Furthermore, the networks considered in this work can also successfully classify these objects at hand without relying on difference images, which might pave the way for future detection pipelines not containing image subtraction steps at all.

  2. Random sampling of elementary flux modes in large-scale metabolic networks.

    Science.gov (United States)

    Machado, Daniel; Soons, Zita; Patil, Kiran Raosaheb; Ferreira, Eugénio C; Rocha, Isabel

    2012-09-15

    The description of a metabolic network in terms of elementary (flux) modes (EMs) provides an important framework for metabolic pathway analysis. However, their application to large networks has been hampered by the combinatorial explosion in the number of modes. In this work, we develop a method for generating random samples of EMs without computing the whole set. Our algorithm is an adaptation of the canonical basis approach, where we add an additional filtering step which, at each iteration, selects a random subset of the new combinations of modes. In order to obtain an unbiased sample, all candidates are assigned the same probability of getting selected. This approach avoids the exponential growth of the number of modes during computation, thus generating a random sample of the complete set of EMs within reasonable time. We generated samples of different sizes for a metabolic network of Escherichia coli, and observed that they preserve several properties of the full EM set. It is also shown that EM sampling can be used for rational strain design. A well distributed sample, that is representative of the complete set of EMs, should be suitable to most EM-based methods for analysis and optimization of metabolic networks. Source code for a cross-platform implementation in Python is freely available at http://code.google.com/p/emsampler. dmachado@deb.uminho.pt Supplementary data are available at Bioinformatics online.

  3. Dynamic Control of Synchronous Activity in Networks of Spiking Neurons.

    Directory of Open Access Journals (Sweden)

    Axel Hutt

    Full Text Available Oscillatory brain activity is believed to play a central role in neural coding. Accumulating evidence shows that features of these oscillations are highly dynamic: power, frequency and phase fluctuate alongside changes in behavior and task demands. The role and mechanism supporting this variability is however poorly understood. We here analyze a network of recurrently connected spiking neurons with time delay displaying stable synchronous dynamics. Using mean-field and stability analyses, we investigate the influence of dynamic inputs on the frequency of firing rate oscillations. We show that afferent noise, mimicking inputs to the neurons, causes smoothing of the system's response function, displacing equilibria and altering the stability of oscillatory states. Our analysis further shows that these noise-induced changes cause a shift of the peak frequency of synchronous oscillations that scales with input intensity, leading the network towards critical states. We lastly discuss the extension of these principles to periodic stimulation, in which externally applied driving signals can trigger analogous phenomena. Our results reveal one possible mechanism involved in shaping oscillatory activity in the brain and associated control principles.

  4. Dynamic Control of Synchronous Activity in Networks of Spiking Neurons.

    Science.gov (United States)

    Hutt, Axel; Mierau, Andreas; Lefebvre, Jérémie

    Oscillatory brain activity is believed to play a central role in neural coding. Accumulating evidence shows that features of these oscillations are highly dynamic: power, frequency and phase fluctuate alongside changes in behavior and task demands. The role and mechanism supporting this variability is however poorly understood. We here analyze a network of recurrently connected spiking neurons with time delay displaying stable synchronous dynamics. Using mean-field and stability analyses, we investigate the influence of dynamic inputs on the frequency of firing rate oscillations. We show that afferent noise, mimicking inputs to the neurons, causes smoothing of the system's response function, displacing equilibria and altering the stability of oscillatory states. Our analysis further shows that these noise-induced changes cause a shift of the peak frequency of synchronous oscillations that scales with input intensity, leading the network towards critical states. We lastly discuss the extension of these principles to periodic stimulation, in which externally applied driving signals can trigger analogous phenomena. Our results reveal one possible mechanism involved in shaping oscillatory activity in the brain and associated control principles.

  5. Analysis for Large Scale Integration of Electric Vehicles into Power Grids

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Xiaoru

    2011-01-01

    Electric Vehicles (EVs) provide a significant opportunity for reducing the consumption of fossil energies and the emission of carbon dioxide. With more and more electric vehicles integrated in the power systems, it becomes important to study the effects of EV integration on the power systems......, especially the low and middle voltage level networks. In the paper, the basic structure and characteristics of the electric vehicles are introduced. The possible impacts of large scale integration of electric vehicles on the power systems especially the advantage to the integration of the renewable energies...... are discussed. Finally, the research projects related to the large scale integration of electric vehicles into the power systems are introduced, it will provide reference for large scale integration of Electric Vehicles into power grids....

  6. A multi-scale network method for two-phase flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Khayrat, Karim, E-mail: khayratk@ifd.mavt.ethz.ch; Jenny, Patrick

    2017-08-01

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.

  7. A multi-scale network method for two-phase flow in porous media

    International Nuclear Information System (INIS)

    Khayrat, Karim; Jenny, Patrick

    2017-01-01

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.

  8. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)

    International Nuclear Information System (INIS)

    Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J.; Eberle, Aaron P. R.; Porcar, Lionel

    2014-01-01

    The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response

  9. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)

    Energy Technology Data Exchange (ETDEWEB)

    Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J., E-mail: wagnernj@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Neutron Science, University of Delaware, Newark, Delaware 19716 (United States); Eberle, Aaron P. R. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Porcar, Lionel [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)

    2014-09-01

    The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response.

  10. Oscillatory systems in mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Gooch, V D; Packer, L

    1974-01-01

    Comparison of known mitochondrial oscillatory systems suggest that they all have a common mechanism. Investigation of the requirements of these various systems reveals a common set of basic features that indicate ion-transport processes to be the key components mediating oscillatory behavior. These ion-transport processes include (a) a diffusional transport of a cation and a H/sup +/, (b) a diffusional, non-ionic, coupled transport of a H/sup +/ with a weak acid anion, and (c) an energy-linked H/sup +/ transport. To adequately describe the oscillatory phenomenon, however, it is necessary to consider also the presence of (a) nonlinear concentration profiles of one or more ions within the membrane and its unstirred layers, and (b) feedback loops developed as a result of molecular conformational changes or membrane structural changes affecting ionic flows, each having a major influence on the other.

  11. Computational investigation of large-scale vortex interaction with flexible bodies

    Science.gov (United States)

    Connell, Benjamin; Yue, Dick K. P.

    2003-11-01

    The interaction of large-scale vortices with flexible bodies is examined with particular interest paid to the energy and momentum budgets of the system. Finite difference direct numerical simulation of the Navier-Stokes equations on a moving curvilinear grid is coupled with a finite difference structural solver of both a linear membrane under tension and linear Euler-Bernoulli beam. The hydrodynamics and structural dynamics are solved simultaneously using an iterative procedure with the external structural forcing calculated from the hydrodynamics at the surface and the flow-field velocity boundary condition given by the structural motion. We focus on an investigation into the canonical problem of a vortex-dipole impinging on a flexible membrane. It is discovered that the structural properties of the membrane direct the interaction in terms of the flow evolution and the energy budget. Pressure gradients associated with resonant membrane response are shown to sustain the oscillatory motion of the vortex pair. Understanding how the key mechanisms in vortex-body interactions are guided by the structural properties of the body is a prerequisite to exploiting these mechanisms.

  12. State of the Art in Large-Scale Soil Moisture Monitoring

    Science.gov (United States)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  13. Abnormal language-related oscillatory responses in primary progressive aphasia

    Directory of Open Access Journals (Sweden)

    A. Kielar

    Full Text Available Patients with Primary Progressive Aphasia (PPA may react to linguistic stimuli differently than healthy controls, reflecting degeneration of language networks and engagement of compensatory mechanisms. We used magnetoencephalography (MEG to evaluate oscillatory neural responses in sentence comprehension, in patients with PPA and age-matched controls. Participants viewed sentences containing semantically and syntactically anomalous words that evoke distinct oscillatory responses. For age-matched controls, semantic anomalies elicited left-lateralized 8–30 Hz power decreases distributed along ventral brain regions, whereas syntactic anomalies elicited bilateral power decreases in both ventral and dorsal regions. In comparison to controls, patients with PPA showed altered patterns of induced oscillations, characterized by delayed latencies and attenuated amplitude, which were correlated with linguistic impairment measured offline. The recruitment of right hemisphere temporo-parietal areas (also found in controls was correlated with preserved semantic processing abilities, indicating that preserved neural activity in these regions was able to support successful semantic processing. In contrast, syntactic processing was more consistently impaired in PPA, regardless of neural activity patterns, suggesting that this domain of language is particularly vulnerable to the neuronal loss. In addition, we found that delayed peak latencies of oscillatory responses were associated with lower accuracy for detecting semantic anomalies, suggesting that language deficits observed in PPA may be linked to delayed or slowed information processing. Keywords: MEG oscillations, Primary progressive aphasia (PPA, Sentence comprehension

  14. Multiscale analysis of spreading in a large communication network

    International Nuclear Information System (INIS)

    Kivelä, Mikko; Pan, Raj Kumar; Kaski, Kimmo; Kertész, János; Saramäki, Jari; Karsai, Márton

    2012-01-01

    In temporal networks, both the topology of the underlying network and the timings of interaction events can be crucial in determining how a dynamic process mediated by the network unfolds. We have explored the limiting case of the speed of spreading in the SI model, set up such that an event between an infectious and a susceptible individual always transmits the infection. The speed of this process sets an upper bound for the speed of any dynamic process that is mediated through the interaction events of the network. With the help of temporal networks derived from large-scale time-stamped data on mobile phone calls, we extend earlier results that indicate the slowing-down effects of burstiness and temporal inhomogeneities. In such networks, links are not permanently active, but dynamic processes are mediated by recurrent events taking place on the links at specific points in time. We perform a multiscale analysis and pinpoint the importance of the timings of event sequences on individual links, their correlations with neighboring sequences, and the temporal pathways taken by the network-scale spreading process. This is achieved by studying empirically and analytically different characteristic relay times of links, relevant to the respective scales, and a set of temporal reference models that allow for removing selected time-domain correlations one by one. Our analysis shows that for the spreading velocity, time-domain inhomogeneities are as important as the network topology, which indicates the need to take time-domain information into account when studying spreading dynamics. In particular, results for the different characteristic relay times underline the importance of the burstiness of individual links

  15. Adaptive Neural Networks Decentralized FTC Design for Nonstrict-Feedback Nonlinear Interconnected Large-Scale Systems Against Actuator Faults.

    Science.gov (United States)

    Li, Yongming; Tong, Shaocheng

    The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small

  16. Large-scale solar purchasing

    International Nuclear Information System (INIS)

    1999-01-01

    The principal objective of the project was to participate in the definition of a new IEA task concerning solar procurement (''the Task'') and to assess whether involvement in the task would be in the interest of the UK active solar heating industry. The project also aimed to assess the importance of large scale solar purchasing to UK active solar heating market development and to evaluate the level of interest in large scale solar purchasing amongst potential large scale purchasers (in particular housing associations and housing developers). A further aim of the project was to consider means of stimulating large scale active solar heating purchasing activity within the UK. (author)

  17. Disinformative data in large-scale hydrological modelling

    Directory of Open Access Journals (Sweden)

    A. Kauffeldt

    2013-07-01

    Full Text Available Large-scale hydrological modelling has become an important tool for the study of global and regional water resources, climate impacts, and water-resources management. However, modelling efforts over large spatial domains are fraught with problems of data scarcity, uncertainties and inconsistencies between model forcing and evaluation data. Model-independent methods to screen and analyse data for such problems are needed. This study aimed at identifying data inconsistencies in global datasets using a pre-modelling analysis, inconsistencies that can be disinformative for subsequent modelling. The consistency between (i basin areas for different hydrographic datasets, and (ii between climate data (precipitation and potential evaporation and discharge data, was examined in terms of how well basin areas were represented in the flow networks and the possibility of water-balance closure. It was found that (i most basins could be well represented in both gridded basin delineations and polygon-based ones, but some basins exhibited large area discrepancies between flow-network datasets and archived basin areas, (ii basins exhibiting too-high runoff coefficients were abundant in areas where precipitation data were likely affected by snow undercatch, and (iii the occurrence of basins exhibiting losses exceeding the potential-evaporation limit was strongly dependent on the potential-evaporation data, both in terms of numbers and geographical distribution. Some inconsistencies may be resolved by considering sub-grid variability in climate data, surface-dependent potential-evaporation estimates, etc., but further studies are needed to determine the reasons for the inconsistencies found. Our results emphasise the need for pre-modelling data analysis to identify dataset inconsistencies as an important first step in any large-scale study. Applying data-screening methods before modelling should also increase our chances to draw robust conclusions from subsequent

  18. Full-Duplex Communications in Large-Scale Cellular Networks

    KAUST Repository

    Alammouri, Ahmad

    2016-01-01

    /downlink interference. This thesis presents a tractable framework, based on stochastic geometry, to study FD communications in multi-tier cellular networks. Particularly, we assess the FD communications effect on the network performance and quantify the associated gains

  19. Hierarchical ZnO microspheres built by sheet-like network: Large-scale synthesis and structurally enhanced catalytic performances

    International Nuclear Information System (INIS)

    Zhu Guoxing; Liu Yuanjun; Ji Zhenyuan; Bai Song; Shen Xiaoping; Xu Zheng

    2012-01-01

    Highlights: ► Hierarchical ZnO microspheres were prepared through a facile precursor procedure in the absence of self-assembled templates, organic additives, or matrices. ► The building blocks of microspheres, sheet-like ZnO networks, are porous mesocrystal terminated with (0 1 −1 0) crystal planes. ► The hierarchical ZnO microsphere catalyst exhibits structure-induced enhancement of catalytic performance and a strong durability. - Abstract: Large-scale novel hierarchical ZnO microspheres were fabricated by a facile precursor procedure in the absence of self-assembled templates, organic additives, or matrices. A field emission scanning electron microscopy (FESEM) image reveals that the ZnO microspheres with diameter of 5–18 μm are built by sheet-like ZnO networks with average thickness of 40 nm and length of several microns. High resolution transmission electron microscopy (HRTEM) image indicates that the building blocks, sheet-like ZnO networks, are porous mesocrystal terminated with {0 1 −1 0} crystal planes. A potential application of the ZnO microspheres as a catalyst in the synthesis of 5-substituted 1H-tetrazoles was investigated. It was found that the hierarchical ZnO microsphere catalyst exhibits structure-induced enhancement of catalytic performance and a strong durability.

  20. ASH : Tackling node mobility in large-scale networks

    NARCIS (Netherlands)

    Pruteanu, A.; Dulman, S.

    2012-01-01

    With the increased adoption of technologies likewireless sensor networks by real-world applications, dynamic network topologies are becoming the rule rather than the exception. Node mobility, however, introduces a range of problems (communication interference, path uncertainty, low quality of

  1. HTS cables open the window for large-scale renewables

    International Nuclear Information System (INIS)

    Geschiere, A; Willen, D; Piga, E; Barendregt, P

    2008-01-01

    In a realistic approach to future energy consumption, the effects of sustainable power sources and the effects of growing welfare with increased use of electricity need to be considered. These factors lead to an increased transfer of electric energy over the networks. A dominant part of the energy need will come from expanded large-scale renewable sources. To use them efficiently over Europe, large energy transits between different countries are required. Bottlenecks in the existing infrastructure will be avoided by strengthening the network. For environmental reasons more infrastructure will be built underground. Nuon is studying the HTS technology as a component to solve these challenges. This technology offers a tremendously large power transport capacity as well as the possibility to reduce short circuit currents, making integration of renewables easier. Furthermore, power transport will be possible at lower voltage levels, giving the opportunity to upgrade the existing network while re-using it. This will result in large cost savings while reaching the future energy challenges. In a 6 km backbone structure in Amsterdam Nuon wants to install a 50 kV HTS Triax cable for a significant increase of the transport capacity, while developing its capabilities. Nevertheless several barriers have to be overcome

  2. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    Science.gov (United States)

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean.

  3. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Pinson, Pierre

    2017-01-01

    , we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven...... to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecastingof renewable power generation....

  4. Network inference via adaptive optimal design

    Directory of Open Access Journals (Sweden)

    Stigter Johannes D

    2012-09-01

    Full Text Available Abstract Background Current research in network reverse engineering for genetic or metabolic networks very often does not include a proper experimental and/or input design. In this paper we address this issue in more detail and suggest a method that includes an iterative design of experiments based, on the most recent data that become available. The presented approach allows a reliable reconstruction of the network and addresses an important issue, i.e., the analysis and the propagation of uncertainties as they exist in both the data and in our own knowledge. These two types of uncertainties have their immediate ramifications for the uncertainties in the parameter estimates and, hence, are taken into account from the very beginning of our experimental design. Findings The method is demonstrated for two small networks that include a genetic network for mRNA synthesis and degradation and an oscillatory network describing a molecular network underlying adenosine 3’-5’ cyclic monophosphate (cAMP as observed in populations of Dyctyostelium cells. In both cases a substantial reduction in parameter uncertainty was observed. Extension to larger scale networks is possible but needs a more rigorous parameter estimation algorithm that includes sparsity as a constraint in the optimization procedure. Conclusion We conclude that a careful experiment design very often (but not always pays off in terms of reliability in the inferred network topology. For large scale networks a better parameter estimation algorithm is required that includes sparsity as an additional constraint. These algorithms are available in the literature and can also be used in an adaptive optimal design setting as demonstrated in this paper.

  5. Large-scale information flow in conscious and unconscious states: an ECoG study in monkeys.

    Directory of Open Access Journals (Sweden)

    Toru Yanagawa

    Full Text Available Consciousness is an emergent property of the complex brain network. In order to understand how consciousness is constructed, neural interactions within this network must be elucidated. Previous studies have shown that specific neural interactions between the thalamus and frontoparietal cortices; frontal and parietal cortices; and parietal and temporal cortices are correlated with levels of consciousness. However, due to technical limitations, the network underlying consciousness has not been investigated in terms of large-scale interactions with high temporal and spectral resolution. In this study, we recorded neural activity with dense electrocorticogram (ECoG arrays and used the spectral Granger causality to generate a more comprehensive network that relates to consciousness in monkeys. We found that neural interactions were significantly different between conscious and unconscious states in all combinations of cortical region pairs. Furthermore, the difference in neural interactions between conscious and unconscious states could be represented in 4 frequency-specific large-scale networks with unique interaction patterns: 2 networks were related to consciousness and showed peaks in alpha and beta bands, while the other 2 networks were related to unconsciousness and showed peaks in theta and gamma bands. Moreover, networks in the unconscious state were shared amongst 3 different unconscious conditions, which were induced either by ketamine and medetomidine, propofol, or sleep. Our results provide a novel picture that the difference between conscious and unconscious states is characterized by a switch in frequency-specific modes of large-scale communications across the entire cortex, rather than the cessation of interactions between specific cortical regions.

  6. 3D LDV Measurements in Oscillatory Boundary Layers

    Science.gov (United States)

    Mier, J. M.; Garcia, M. H.

    2012-12-01

    The oscillatory boundary layer represents a particular case of unsteady wall-bounded flows in which fluid particles follow a periodic sinusoidal motion. Unlike steady boundary layer flows, the oscillatory flow regime and bed roughness character change in time along the period for every cycle, a characteristic that introduces a high degree of complexity in the analysis of these flows. Governing equations can be derived from the general Navier-Stokes equations for the motion of fluids, from which the exact solution for the laminar oscillatory boundary layer is obtained (also known as the 2nd Stokes problem). No exact solution exists for the turbulent case, thus, understanding of the main flow characteristics comes from experimental work. Several researchers have reported experimental work in oscillatory boundary layers since the 1960's; however, larger scale facilities and the development of newer measurement techniques with improved temporal and spatial resolution in recent years provides a unique opportunity to achieve a better understanding about this type of flows. Several experiments were performed in the Large Oscillatory Water and Sediment Tunnel (LOWST) facility at the Ven Te Chow Hydrosystems Laboratory, for a range of Reynolds wave numbers between 6x10^4 3D Laser Doppler Velocimetry (LDV) system was used to measure instantaneous flow velocities with a temporal resolution up to ~ 1,000 Hz. It was mounted on a 3-axis traverse with a spatial resolution of 0.01 mm in all three directions. The closest point to the bottom was measured at z = 0.2 mm (z+ ≈ 4), which allowed to capture boundary layer features with great detail. In order to achieve true 3D measurements, 2 probes were used on a perpendicular configuration, such that u and w components were measured from a probe on the side of the flume and v component was measured from a probe pointing down through and access window on top of the flume. The top probe was submerged in a water container, such that the

  7. Mining the Mind Research Network: A Novel Framework for Exploring Large Scale, Heterogeneous Translational Neuroscience Research Data Sources

    Science.gov (United States)

    Bockholt, Henry J.; Scully, Mark; Courtney, William; Rachakonda, Srinivas; Scott, Adam; Caprihan, Arvind; Fries, Jill; Kalyanam, Ravi; Segall, Judith M.; de la Garza, Raul; Lane, Susan; Calhoun, Vince D.

    2009-01-01

    A neuroinformatics (NI) system is critical to brain imaging research in order to shorten the time between study conception and results. Such a NI system is required to scale well when large numbers of subjects are studied. Further, when multiple sites participate in research projects organizational issues become increasingly difficult. Optimized NI applications mitigate these problems. Additionally, NI software enables coordination across multiple studies, leveraging advantages potentially leading to exponential research discoveries. The web-based, Mind Research Network (MRN), database system has been designed and improved through our experience with 200 research studies and 250 researchers from seven different institutions. The MRN tools permit the collection, management, reporting and efficient use of large scale, heterogeneous data sources, e.g., multiple institutions, multiple principal investigators, multiple research programs and studies, and multimodal acquisitions. We have collected and analyzed data sets on thousands of research participants and have set up a framework to automatically analyze the data, thereby making efficient, practical data mining of this vast resource possible. This paper presents a comprehensive framework for capturing and analyzing heterogeneous neuroscience research data sources that has been fully optimized for end-users to perform novel data mining. PMID:20461147

  8. Mining the mind research network: a novel framework for exploring large scale, heterogeneous translational neuroscience research data sources.

    Directory of Open Access Journals (Sweden)

    Henry Jeremy Bockholt

    2010-04-01

    Full Text Available A neuroinformatics (NI system is critical to brain imaging research in order to shorten the time between study conception and results. Such a NI system is required to scale well when large numbers of subjects are studied. Further, when multiple sites participate in research projects organizational issues become increasingly difficult. Optimized NI applications mitigate these problems. Additionally, NI software enables coordination across multiple studies, leveraging advantages potentially leading to exponential research discoveries. The web-based, Mind Research Network (MRN, database system has been designed and improved through our experience with 200 research studies and 250 researchers from 7 different institutions. The MRN tools permit the collection, management, reporting and efficient use of large scale, heterogeneous data sources, e.g., multiple institutions, multiple principal investigators, multiple research programs and studies, and multimodal acquisitions. We have collected and analyzed data sets on thousands of research participants and have set up a framework to automatically analyze the data, thereby making efficient, practical data mining of this vast resource possible. This paper presents a comprehensive framework for capturing and analyzing heterogeneous neuroscience research data sources that has been fully optimized for end-users to perform novel data mining.

  9. Brain Oscillatory Correlates of Altered Executive Functioning in Positive and Negative Symptomatic Schizophrenia Patients and Healthy Controls.

    Science.gov (United States)

    Berger, Barbara; Minarik, Tamas; Griesmayr, Birgit; Stelzig-Schoeler, Renate; Aichhorn, Wolfgang; Sauseng, Paul

    2016-01-01

    Working Memory and executive functioning deficits are core characteristics of patients suffering from schizophrenia. Electrophysiological research indicates that altered patterns of neural oscillatory mechanisms underpinning executive functioning are associated with the psychiatric disorder. Such brain oscillatory changes have been found in local amplitude differences at gamma and theta frequencies in task-specific cortical areas. Moreover, interregional interactions are also disrupted as signified by decreased phase coherence of fronto-posterior theta activity in schizophrenia patients. However, schizophrenia is not a one-dimensional psychiatric disorder but has various forms and expressions. A common distinction is between positive and negative symptomatology but most patients have both negative and positive symptoms to some extent. Here, we examined three groups-healthy controls, predominantly negative, and predominantly positive symptomatic schizophrenia patients-when performing a working memory task with increasing cognitive demand and increasing need for executive control. We analyzed brain oscillatory activity in the three groups separately and investigated how predominant symptomatology might explain differences in brain oscillatory patterns. Our results indicate that differences in task specific fronto-posterior network activity (i.e., executive control network) expressed by interregional phase synchronization are able to account for working memory dysfunctions between groups. Local changes in the theta and gamma frequency range also show differences between patients and healthy controls, and more importantly, between the two patient groups. We conclude that differences in oscillatory brain activation patterns related to executive processing can be an indicator for positive and negative symptomatology in schizophrenia. Furthermore, changes in cognitive and especially executive functioning in patients are expressed by alterations in a task-specific fronto

  10. Extraction of drainage networks from large terrain datasets using high throughput computing

    Science.gov (United States)

    Gong, Jianya; Xie, Jibo

    2009-02-01

    Advanced digital photogrammetry and remote sensing technology produces large terrain datasets (LTD). How to process and use these LTD has become a big challenge for GIS users. Extracting drainage networks, which are basic for hydrological applications, from LTD is one of the typical applications of digital terrain analysis (DTA) in geographical information applications. Existing serial drainage algorithms cannot deal with large data volumes in a timely fashion, and few GIS platforms can process LTD beyond the GB size. High throughput computing (HTC), a distributed parallel computing mode, is proposed to improve the efficiency of drainage networks extraction from LTD. Drainage network extraction using HTC involves two key issues: (1) how to decompose the large DEM datasets into independent computing units and (2) how to merge the separate outputs into a final result. A new decomposition method is presented in which the large datasets are partitioned into independent computing units using natural watershed boundaries instead of using regular 1-dimensional (strip-wise) and 2-dimensional (block-wise) decomposition. Because the distribution of drainage networks is strongly related to watershed boundaries, the new decomposition method is more effective and natural. The method to extract natural watershed boundaries was improved by using multi-scale DEMs instead of single-scale DEMs. A HTC environment is employed to test the proposed methods with real datasets.

  11. Oscillatory magneto-convection under magnetic field modulation

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2018-03-01

    Full Text Available In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is used to derive an amplitude of oscillatory convection for weakly nonlinear mode. Heat transfer is quantified in terms of the Nusselt number, which is governed by the Landau equation. The variation of the modulation excitation of the magnetic field alternates heat transfer in the layer. The modulation excitation of the magnetic field is used either to enhance or diminish the heat transfer in the system. Further, it is found that, oscillatory mode of convection enhances the heat transfer and than stationary convection. The results have possible technological applications in magnetic fluid based systems involving energy transmission. Keywords: Weakly nonlinear theory, Oscillatory convection, Complex Ginzburg Landau model, Magnetic modulation

  12. Fast and accurate solution for the SCUC problem in large-scale power systems using adapted binary programming and enhanced dual neural network

    International Nuclear Information System (INIS)

    Shafie-khah, M.; Moghaddam, M.P.; Sheikh-El-Eslami, M.K.; Catalão, J.P.S.

    2014-01-01

    Highlights: • A novel hybrid method based on decomposition of SCUC into QP and BP problems is proposed. • An adapted binary programming and an enhanced dual neural network model are applied. • The proposed EDNN is exactly convergent to the global optimal solution of QP. • An AC power flow procedure is developed for including contingency/security issues. • It is suited for large-scale systems, providing both accurate and fast solutions. - Abstract: This paper presents a novel hybrid method for solving the security constrained unit commitment (SCUC) problem. The proposed formulation requires much less computation time in comparison with other methods while assuring the accuracy of the results. Furthermore, the framework provided here allows including an accurate description of warmth-dependent startup costs, valve point effects, multiple fuel costs, forbidden zones of operation, and AC load flow bounds. To solve the nonconvex problem, an adapted binary programming method and enhanced dual neural network model are utilized as optimization tools, and a procedure for AC power flow modeling is developed for including contingency/security issues, as new contributions to earlier studies. Unlike classical SCUC methods, the proposed method allows to simultaneously solve the unit commitment problem and comply with the network limits. In addition to conventional test systems, a real-world large-scale power system with 493 units has been used to fully validate the effectiveness of the novel hybrid method proposed

  13. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    Science.gov (United States)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist

  14. A Networked Sensor System for the Analysis of Plot-Scale Hydrology.

    Science.gov (United States)

    Villalba, German; Plaza, Fernando; Zhong, Xiaoyang; Davis, Tyler W; Navarro, Miguel; Li, Yimei; Slater, Thomas A; Liang, Yao; Liang, Xu

    2017-03-20

    This study presents the latest updates to the Audubon Society of Western Pennsylvania (ASWP) testbed, a $50,000 USD, 104-node outdoor multi-hop wireless sensor network (WSN). The network collects environmental data from over 240 sensors, including the EC-5, MPS-1 and MPS-2 soil moisture and soil water potential sensors and self-made sap flow sensors, across a heterogeneous deployment comprised of MICAz, IRIS and TelosB wireless motes. A low-cost sensor board and software driver was developed for communicating with the analog and digital sensors. Innovative techniques (e.g., balanced energy efficient routing and heterogeneous over-the-air mote reprogramming) maintained high success rates (>96%) and enabled effective software updating, throughout the large-scale heterogeneous WSN. The edaphic properties monitored by the network showed strong agreement with data logger measurements and were fitted to pedotransfer functions for estimating local soil hydraulic properties. Furthermore, sap flow measurements, scaled to tree stand transpiration, were found to be at or below potential evapotranspiration estimates. While outdoor WSNs still present numerous challenges, the ASWP testbed proves to be an effective and (relatively) low-cost environmental monitoring solution and represents a step towards developing a platform for monitoring and quantifying statistically relevant environmental parameters from large-scale network deployments.

  15. Relay discovery and selection for large-scale P2P streaming.

    Directory of Open Access Journals (Sweden)

    Chengwei Zhang

    Full Text Available In peer-to-peer networks, application relays have been commonly used to provide various networking services. The service performance often improves significantly if a relay is selected appropriately based on its network location. In this paper, we studied the location-aware relay discovery and selection problem for large-scale P2P streaming networks. In these large-scale and dynamic overlays, it incurs significant communication and computation cost to discover a sufficiently large relay candidate set and further to select one relay with good performance. The network location can be measured directly or indirectly with the tradeoffs between timeliness, overhead and accuracy. Based on a measurement study and the associated error analysis, we demonstrate that indirect measurements, such as King and Internet Coordinate Systems (ICS, can only achieve a coarse estimation of peers' network location and those methods based on pure indirect measurements cannot lead to a good relay selection. We also demonstrate that there exists significant error amplification of the commonly used "best-out-of-K" selection methodology using three RTT data sets publicly available. We propose a two-phase approach to achieve efficient relay discovery and accurate relay selection. Indirect measurements are used to narrow down a small number of high-quality relay candidates and the final relay selection is refined based on direct probing. This two-phase approach enjoys an efficient implementation using the Distributed-Hash-Table (DHT. When the DHT is constructed, the node keys carry the location information and they are generated scalably using indirect measurements, such as the ICS coordinates. The relay discovery is achieved efficiently utilizing the DHT-based search. We evaluated various aspects of this DHT-based approach, including the DHT indexing procedure, key generation under peer churn and message costs.

  16. Risk-based optimization of pipe inspections in large underground networks with imprecise information

    International Nuclear Information System (INIS)

    Mancuso, A.; Compare, M.; Salo, A.; Zio, E.; Laakso, T.

    2016-01-01

    In this paper, we present a novel risk-based methodology for optimizing the inspections of large underground infrastructure networks in the presence of incomplete information about the network features and parameters. The methodology employs Multi Attribute Value Theory to assess the risk of each pipe in the network, whereafter the optimal inspection campaign is built with Portfolio Decision Analysis (PDA). Specifically, Robust Portfolio Modeling (RPM) is employed to identify Pareto-optimal portfolios of pipe inspections. The proposed methodology is illustrated by reporting a real case study on the large-scale maintenance optimization of the sewerage network in Espoo, Finland. - Highlights: • Risk-based approach to optimize pipe inspections on large underground networks. • Reasonable computational effort to select efficient inspection portfolios. • Possibility to accommodate imprecise expert information. • Feasibility of the approach shown by Espoo water system case study.

  17. Precision Scaling of Neural Networks for Efficient Audio Processing

    OpenAIRE

    Ko, Jong Hwan; Fromm, Josh; Philipose, Matthai; Tashev, Ivan; Zarar, Shuayb

    2017-01-01

    While deep neural networks have shown powerful performance in many audio applications, their large computation and memory demand has been a challenge for real-time processing. In this paper, we study the impact of scaling the precision of neural networks on the performance of two common audio processing tasks, namely, voice-activity detection and single-channel speech enhancement. We determine the optimal pair of weight/neuron bit precision by exploring its impact on both the performance and ...

  18. REAL-TIME VIDEO SCALING BASED ON CONVOLUTION NEURAL NETWORK ARCHITECTURE

    OpenAIRE

    S Safinaz; A V Ravi Kumar

    2017-01-01

    In recent years, video super resolution techniques becomes mandatory requirements to get high resolution videos. Many super resolution techniques researched but still video super resolution or scaling is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural network architecture to eliminate the blurriness in the images and video frames and to provide better reconstruction quality while scaling of large datasets from lower resolution frames t...

  19. Large-scale brain network associated with creative insight: combined voxel-based morphometry and resting-state functional connectivity analyses.

    Science.gov (United States)

    Ogawa, Takeshi; Aihara, Takatsugu; Shimokawa, Takeaki; Yamashita, Okito

    2018-04-24

    Creative insight occurs with an "Aha!" experience when solving a difficult problem. Here, we investigated large-scale networks associated with insight problem solving. We recruited 232 healthy participants aged 21-69 years old. Participants completed a magnetic resonance imaging study (MRI; structural imaging and a 10 min resting-state functional MRI) and an insight test battery (ITB) consisting of written questionnaires (matchstick arithmetic task, remote associates test, and insight problem solving task). To identify the resting-state functional connectivity (RSFC) associated with individual creative insight, we conducted an exploratory voxel-based morphometry (VBM)-constrained RSFC analysis. We identified positive correlations between ITB score and grey matter volume (GMV) in the right insula and middle cingulate cortex/precuneus, and a negative correlation between ITB score and GMV in the left cerebellum crus 1 and right supplementary motor area. We applied seed-based RSFC analysis to whole brain voxels using the seeds obtained from the VBM and identified insight-positive/negative connections, i.e. a positive/negative correlation between the ITB score and individual RSFCs between two brain regions. Insight-specific connections included motor-related regions whereas creative-common connections included a default mode network. Our results indicate that creative insight requires a coupling of multiple networks, such as the default mode, semantic and cerebral-cerebellum networks.

  20. Coarse-grain bandwidth estimation techniques for large-scale network

    Science.gov (United States)

    Cheung, Kar-Ming; Jennings, E.

    In this paper, we describe a top-down analysis and simulation approach to size the bandwidths of a store-and-forward network for a given network topology, a mission traffic scenario, and a set of data types with different latency requirements. We use these techniques to estimate the wide area network (WAN) bandwidths of the ground links for different architecture options of the proposed Integrated Space Communication and Navigation (SCaN) Network.

  1. Oscillatory corticospinal activity during static contraction of ankle muscles is reduced in healthy old versus young adults

    DEFF Research Database (Denmark)

    Spedden, Meaghan Elizabeth; Nielsen, Jens Bo; Geertsen, Svend Sparre

    2018-01-01

    Aging is accompanied by impaired motor function, but age-related changes in neural networks responsible for generating movement are not well understood. We aimed to investigate the functional oscillatory coupling between activity in the sensorimotor cortex and ankle muscles during static contract......Aging is accompanied by impaired motor function, but age-related changes in neural networks responsible for generating movement are not well understood. We aimed to investigate the functional oscillatory coupling between activity in the sensorimotor cortex and ankle muscles during static...... contraction. Fifteen young (20–26 yr) and fifteen older (65–73 yr) subjects were instructed to match a target force by performing static ankle dorsi- or plantar flexion, while electroencephalographic (EEG) activity was recorded from the cortex and electromyographic (EMG) activity was recorded from dorsi...

  2. Managing Virtual Networks on Large-Scale Projects

    National Research Council Canada - National Science Library

    Noll, David

    2006-01-01

    The complexity of Boeing's 787 Program is too great for the formal planned information and communication network structure to fully meet the needs of companies, managers, and employees located throughout the world...

  3. Oscillatory magneto-convection under magnetic field modulation

    OpenAIRE

    Kiran, Palle; Bhadauria, B.S.; Narasimhulu, Y.

    2017-01-01

    In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is...

  4. Scaling architecture-on-demand based optical networks

    NARCIS (Netherlands)

    Meyer, Hugo; Sancho, Jose Carlos; Mrdakovic, Milica; Peng, Shuping; Simeonidou, Dimitra; Miao, Wang; Calabretta, Nicola

    2016-01-01

    This paper analyzes methodologies that allow scaling properly Architecture-On-Demand (AoD) based optical networks. As Data Centers and HPC systems are growing in size and complexity, optical networks seem to be the way to scale the bandwidth of current network infrastructures. To scale the number of

  5. Large-scale, high-resolution multielectrode-array recording depicts functional network differences of cortical and hippocampal cultures.

    Directory of Open Access Journals (Sweden)

    Shinya Ito

    Full Text Available Understanding the detailed circuitry of functioning neuronal networks is one of the major goals of neuroscience. Recent improvements in neuronal recording techniques have made it possible to record the spiking activity from hundreds of neurons simultaneously with sub-millisecond temporal resolution. Here we used a 512-channel multielectrode array system to record the activity from hundreds of neurons in organotypic cultures of cortico-hippocampal brain slices from mice. To probe the network structure, we employed a wavelet transform of the cross-correlogram to categorize the functional connectivity in different frequency ranges. With this method we directly compare, for the first time, in any preparation, the neuronal network structures of cortex and hippocampus, on the scale of hundreds of neurons, with sub-millisecond time resolution. Among the three frequency ranges that we investigated, the lower two frequency ranges (gamma (30-80 Hz and beta (12-30 Hz range showed similar network structure between cortex and hippocampus, but there were many significant differences between these structures in the high frequency range (100-1000 Hz. The high frequency networks in cortex showed short tailed degree-distributions, shorter decay length of connectivity density, smaller clustering coefficients, and positive assortativity. Our results suggest that our method can characterize frequency dependent differences of network architecture from different brain regions. Crucially, because these differences between brain regions require millisecond temporal scales to be observed and characterized, these results underscore the importance of high temporal resolution recordings for the understanding of functional networks in neuronal systems.

  6. Sandpile on scale-free networks with assortative mixing

    International Nuclear Information System (INIS)

    Yin Yanping; Zhang Duanming; Pan Guijun; He Minhua; Tan Jin

    2007-01-01

    We numerically investigate the Bak-Tang-Wiesenfeld sandpile model on scale-free networks with assortative mixing, where the threshold height of each node is equal to its degree. It is observed that a large fraction of multiple topplings are included in avalanches on assortative networks, which is absent on uncorrelated networks. We introduce a parameter F-bar(a) to characterize the fraction of multiple topplings in avalanches of area a. The fraction of multiple topplings increases dramatically with the degree of assortativity and has a peak for small a whose height also increase with the assortativity of the networks. Unlike the case on uncorrelated networks, the distributions of avalanche size, area and duration do not follow pure power law, but deviate more obviously from pure power law with the growing degree of assortativity. The results show that the assortative mixing has a strong influence on the behavior of avalanche dynamics on complex networks

  7. Rogue AP Detection in the Wireless LAN for Large Scale Deployment

    Directory of Open Access Journals (Sweden)

    Sang-Eon Kim

    2006-10-01

    Full Text Available The wireless LAN standard, also known as WiFi, has begun to use commercial purposes. This paper describes access network architecture of wireless LAN for large scale deployment to provide public service. A metro Ethernet and digital subscriber line access network can be used for wireless LAN with access point. In this network architecture, access point plays interface between wireless node and network infrastructure. It is important to maintain access point without any failure and problems to public users. This paper proposes definition of rogue access point and classifies based on functional problem to access the Internet. After that, rogue access point detection scheme is described based on classification over the wireless LAN. The rogue access point detector can greatly improve the network availability to network service provider of wireless LAN.

  8. Maximal planar networks with large clustering coefficient and power-law degree distribution

    International Nuclear Information System (INIS)

    Zhou Tao; Yan Gang; Wang Binghong

    2005-01-01

    In this article, we propose a simple rule that generates scale-free networks with very large clustering coefficient and very small average distance. These networks are called random Apollonian networks (RANs) as they can be considered as a variation of Apollonian networks. We obtain the analytic results of power-law exponent γ=3 and clustering coefficient C=(46/3)-36 ln (3/2)≅0.74, which agree with the simulation results very well. We prove that the increasing tendency of average distance of RANs is a little slower than the logarithm of the number of nodes in RANs. Since most real-life networks are both scale-free and small-world networks, RANs may perform well in mimicking the reality. The RANs possess hierarchical structure as C(k)∼k -1 that are in accord with the observations of many real-life networks. In addition, we prove that RANs are maximal planar networks, which are of particular practicability for layout of printed circuits and so on. The percolation and epidemic spreading process are also studied and the comparisons between RANs and Barabasi-Albert (BA) as well as Newman-Watts (NW) networks are shown. We find that, when the network order N (the total number of nodes) is relatively small (as N∼10 4 ), the performance of RANs under intentional attack is not sensitive to N, while that of BA networks is much affected by N. And the diseases spread slower in RANs than BA networks in the early stage of the suseptible-infected process, indicating that the large clustering coefficient may slow the spreading velocity, especially in the outbreaks

  9. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  10. The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data

    NARCIS (Netherlands)

    Thompson, Paul M.; Stein, Jason L.; Medland, Sarah E.; Hibar, Derrek P.; Vasquez, Alejandro Arias; Renteria, Miguel E.; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J.; Martin, Nicholas G.; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud; Almasy, Laura; Almeida, Jorge; Alpert, Kathryn; Andreasen, Nancy C.; Andreassen, Ole A.; Apostolova, Liana G.; Appel, Katja; Armstrong, Nicola J.; Aribisala, Benjamin; Bastin, Mark E.; Bauer, Michael; Bearden, Carrie E.; Bergmann, Orjan; Binder, Elisabeth B.; Blangero, John; Bockholt, Henry J.; Boen, Erlend; Bois, Catherine; Boomsma, Dorret I.; Booth, Tom; Bowman, Ian J.; Bralten, Janita; Brouwer, Rachel M.; Brunner, Han G.; Brohawn, David G.; Buckner, Randy L.; Buitelaar, Jan; Bulayeva, Kazima; Bustillo, Juan R.; Calhoun, Vince D.; Hartman, Catharina A.; Hoekstra, Pieter J.; Penninx, Brenda W.; Schmaal, Lianne; van Tol, Marie-Jose

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience,

  11. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data

    NARCIS (Netherlands)

    Thompson, Paul M.; Stein, Jason L.; Medland, Sarah E.; Hibar, Derrek P.; Vasquez, Alejandro Arias; Renteria, Miguel E.; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J.; Martin, Nicholas G.; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud; Almasy, Laura; Almeida, Jorge; Alpert, Kathryn; Andreasen, Nancy C.; Andreassen, Ole A.; Apostolova, Liana G.; Appel, Katja; Armstrong, Nicola J.; Aribisala, Benjamin; Bastin, Mark E.; Bauer, Michael; Bearden, Carrie E.; Bergmann, Orjan; Binder, Elisabeth B.; Blangero, John; Bockholt, Henry J.; Bøen, Erlend; Bois, Catherine; Boomsma, Dorret I.; Booth, Tom; Bowman, Ian J.; Bralten, Janita; Brouwer, Rachel M.; Brunner, Han G.; Brohawn, David G.; Buckner, Randy L.; Buitelaar, Jan; Bulayeva, Kazima; Bustillo, Juan R.; Calhoun, Vince D.; Cannon, Dara M.; Cantor, Rita M.; Carless, Melanie A.; Caseras, Xavier; Cavalleri, Gianpiero L.; Chakravarty, M. Mallar; Chang, Kiki D.; Ching, Christopher R. K.; Christoforou, Andrea; Cichon, Sven; Clark, Vincent P.; Conrod, Patricia; Coppola, Giovanni; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Deary, Ian J.; de Geus, Eco J. C.; den Braber, Anouk; Delvecchio, Giuseppe; Depondt, Chantal; de Haan, Lieuwe; de Zubicaray, Greig I.; Dima, Danai; Dimitrova, Rali; Djurovic, Srdjan; Dong, Hongwei; Donohoe, Gary; Duggirala, Ravindranath; Dyer, Thomas D.; Ehrlich, Stefan; Ekman, Carl Johan; Elvsåshagen, Torbjørn; Emsell, Louise; Erk, Susanne; Espeseth, Thomas; Fagerness, Jesen; Fears, Scott; Fedko, Iryna; Fernández, Guillén; Fisher, Simon E.; Foroud, Tatiana; Fox, Peter T.; Francks, Clyde; Frangou, Sophia; Frey, Eva Maria; Frodl, Thomas; Frouin, Vincent; Garavan, Hugh; Giddaluru, Sudheer; Glahn, David C.; Godlewska, Beata; Goldstein, Rita Z.; Gollub, Randy L.; Grabe, Hans J.; Grimm, Oliver; Gruber, Oliver; Guadalupe, Tulio; Gur, Raquel E.; Gur, Ruben C.; Göring, Harald H. H.; Hagenaars, Saskia; Hajek, Tomas; Hall, Geoffrey B.; Hall, Jeremy; Hardy, John; Hartman, Catharina A.; Hass, Johanna; Hatton, Sean N.; Haukvik, Unn K.; Hegenscheid, Katrin; Heinz, Andreas; Hickie, Ian B.; Ho, Beng-Choon; Hoehn, David; Hoekstra, Pieter J.; Hollinshead, Marisa; Holmes, Avram J.; Homuth, Georg; Hoogman, Martine; Hong, L. Elliot; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E.; Hwang, Kristy S.; Jack, Clifford R.; Jenkinson, Mark; Johnston, Caroline; Jönsson, Erik G.; Kahn, René S.; Kasperaviciute, Dalia; Kelly, Sinead; Kim, Sungeun; Kochunov, Peter; Koenders, Laura; Krämer, Bernd; Kwok, John B. J.; Lagopoulos, Jim; Laje, Gonzalo; Landen, Mikael; Landman, Bennett A.; Lauriello, John; Lawrie, Stephen M.; Lee, Phil H.; Le Hellard, Stephanie; Lemaître, Herve; Leonardo, Cassandra D.; Li, Chiang-Shan; Liberg, Benny; Liewald, David C.; Liu, Xinmin; Lopez, Lorna M.; Loth, Eva; Lourdusamy, Anbarasu; Luciano, Michelle; Macciardi, Fabio; Machielsen, Marise W. J.; Macqueen, Glenda M.; Malt, Ulrik F.; Mandl, René; Manoach, Dara S.; Martinot, Jean-Luc; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; Mattingsdal, Morten; Meyer-Lindenberg, Andreas; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Milaneschi, Yuri; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Moses, Eric K.; Mueller, Bryon A.; Muñoz Maniega, Susana; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Mwangi, Benson; Nauck, Matthias; Nho, Kwangsik; Nichols, Thomas E.; Nilsson, Lars-Göran; Nugent, Allison C.; Nyberg, Lars; Olvera, Rene L.; Oosterlaan, Jaap; Ophoff, Roel A.; Pandolfo, Massimo; Papalampropoulou-Tsiridou, Melina; Papmeyer, Martina; Paus, Tomas; Pausova, Zdenka; Pearlson, Godfrey D.; Penninx, Brenda W.; Peterson, Charles P.; Pfennig, Andrea; Phillips, Mary; Pike, G. Bruce; Poline, Jean-Baptiste; Potkin, Steven G.; Pütz, Benno; Ramasamy, Adaikalavan; Rasmussen, Jerod; Rietschel, Marcella; Rijpkema, Mark; Risacher, Shannon L.; Roffman, Joshua L.; Roiz-Santiañez, Roberto; Romanczuk-Seiferth, Nina; Rose, Emma J.; Royle, Natalie A.; Rujescu, Dan; Ryten, Mina; Sachdev, Perminder S.; Salami, Alireza; Satterthwaite, Theodore D.; Savitz, Jonathan; Saykin, Andrew J.; Scanlon, Cathy; Schmaal, Lianne; Schnack, Hugo G.; Schork, Andrew J.; Schulz, S. Charles; Schür, Remmelt; Seidman, Larry; Shen, Li; Shoemaker, Jody M.; Simmons, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soares, Jair C.; Sponheim, Scott R.; Sprooten, Emma; Starr, John M.; Steen, Vidar M.; Strakowski, Stephen; Strike, Lachlan; Sussmann, Jessika; Sämann, Philipp G.; Teumer, Alexander; Toga, Arthur W.; Tordesillas-Gutierrez, Diana; Trabzuni, Daniah; Trost, Sarah; Turner, Jessica; van den Heuvel, Martijn; van der Wee, Nic J.; van Eijk, Kristel; van Erp, Theo G. M.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Valdés Hernández, Maria C.; Veltman, Dick J.; Versace, Amelia; Völzke, Henry; Walker, Robert; Walter, Henrik; Wang, Lei; Wardlaw, Joanna M.; Weale, Michael E.; Weiner, Michael W.; Wen, Wei; Westlye, Lars T.; Whalley, Heather C.; Whelan, Christopher D.; White, Tonya; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Zilles, David; Zwiers, Marcel P.; Thalamuthu, Anbupalam; Schofield, Peter R.; Freimer, Nelson B.; Lawrence, Natalia S.; Drevets, Wayne

    2014-01-01

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience,

  12. The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data

    NARCIS (Netherlands)

    P.M. Thompson (Paul); J.L. Stein; S.E. Medland (Sarah Elizabeth); D.P. Hibar (Derrek); A.A. Vásquez (Arias); M.E. Rentería (Miguel); R. Toro (Roberto); N. Jahanshad (Neda); G. Schumann (Gunter); B. Franke (Barbara); M.J. Wright (Margaret); N.G. Martin (Nicholas); I. Agartz (Ingrid); M. Alda (Martin); S. Alhusaini (Saud); L. Almasy (Laura); K. Alpert (Kathryn); N.C. Andreasen; O.A. Andreassen (Ole); L.G. Apostolova (Liana); K. Appel (Katja); N.J. Armstrong (Nicola); B. Aribisala (Benjamin); M.E. Bastin (Mark); M. Bauer (Michael); C.E. Bearden (Carrie); Ø. Bergmann (Ørjan); E.B. Binder (Elisabeth); J. Blangero (John); H.J. Bockholt; E. Bøen (Erlend); M. Bois (Monique); D.I. Boomsma (Dorret); T. Booth (Tom); I.J. Bowman (Ian); L.B.C. Bralten (Linda); R.M. Brouwer (Rachel); H.G. Brunner; D.G. Brohawn (David); M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); J. Bustillo; V.D. Calhoun (Vince); D.M. Cannon (Dara); R.M. Cantor; M.A. Carless (Melanie); X. Caseras (Xavier); G. Cavalleri (Gianpiero); M.M. Chakravarty (M. Mallar); K.D. Chang (Kiki); C.R.K. Ching (Christopher); A. Christoforou (Andrea); S. Cichon (Sven); V.P. Clark; P. Conrod (Patricia); D. Coppola (Domenico); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); I.J. Deary (Ian); E.J.C. de Geus (Eco); A. den Braber (Anouk); G. Delvecchio (Giuseppe); C. Depondt (Chantal); L. de Haan (Lieuwe); G.I. de Zubicaray (Greig); D. Dima (Danai); R. Dimitrova (Rali); S. Djurovic (Srdjan); H. Dong (Hongwei); D.J. Donohoe (Dennis); A. Duggirala (Aparna); M.D. Dyer (Matthew); S.M. Ehrlich (Stefan); C.J. Ekman (Carl Johan); T. Elvsåshagen (Torbjørn); L. Emsell (Louise); S. Erk; T. Espeseth (Thomas); J. Fagerness (Jesen); S. Fears (Scott); I. Fedko (Iryna); G. Fernandez (Guillén); S.E. Fisher (Simon); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); S. Frangou (Sophia); E.M. Frey (Eva Maria); T. Frodl (Thomas); V. Frouin (Vincent); H. Garavan (Hugh); S. Giddaluru (Sudheer); D.C. Glahn (David); B. Godlewska (Beata); R.Z. Goldstein (Rita); R.L. Gollub (Randy); H.J. Grabe (Hans Jörgen); O. Grimm (Oliver); O. Gruber (Oliver); T. Guadalupe (Tulio); R.E. Gur (Raquel); R.C. Gur (Ruben); H.H.H. Göring (Harald); S. Hagenaars (Saskia); T. Hajek (Tomas); G.B. Hall (Garry); J. Hall (Jeremy); J. Hardy (John); C.A. Hartman (Catharina); J. Hass (Johanna); W. Hatton; U.K. Haukvik (Unn); K. Hegenscheid (Katrin); J. Heinz (Judith); I.B. Hickie (Ian); B.C. Ho (Beng ); D. Hoehn (David); P.J. Hoekstra (Pieter); M. Hollinshead (Marisa); A.J. Holmes (Avram); G. Homuth (Georg); M. Hoogman (Martine); L.E. Hong (L.Elliot); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); H.E. Hulshoff Pol (Hilleke); K.S. Hwang (Kristy); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); C. Johnston; E.G. Jönsson (Erik); R.S. Kahn (René); D. Kasperaviciute (Dalia); S. Kelly (Steve); S. Kim (Shinseog); P. Kochunov (Peter); L. Koenders (Laura); B. Krämer (Bernd); J.B.J. Kwok (John); J. Lagopoulos (Jim); G. Laje (Gonzalo); M. Landén (Mikael); B.A. Landman (Bennett); J. Lauriello; S. Lawrie (Stephen); P.H. Lee (Phil); S. Le Hellard (Stephanie); H. Lemaître (Herve); C.D. Leonardo (Cassandra); C.-S. Li (Chiang-shan); B. Liberg (Benny); D.C. Liewald (David C.); X. Liu (Xinmin); L.M. Lopez (Lorna); E. Loth (Eva); A. Lourdusamy (Anbarasu); M. Luciano (Michelle); F. MacCiardi (Fabio); M.W.J. Machielsen (Marise); G.M. MacQueen (Glenda); U.F. Malt (Ulrik); R. Mandl (René); D.S. Manoach (Dara); J.-L. Martinot (Jean-Luc); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); M. Mattingsdal (Morten); A. Meyer-Lindenberg; C. McDonald (Colm); A.M. McIntosh (Andrew); F.J. Mcmahon (Francis J); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); Y. Milaneschi (Yuri); S. Mohnke (Sebastian); G.W. Montgomery (Grant); D.W. Morris (Derek W); E.K. Moses (Eric); B.A. Mueller (Bryon ); S. Muñoz Maniega (Susana); T.W. Mühleisen (Thomas); B. Müller-Myhsok (Bertram); B. Mwangi (Benson); M. Nauck (Matthias); K. Nho (Kwangsik); T.E. Nichols (Thomas); L.G. Nilsson; A.C. Nugent (Allison); L. Nyberg (Lisa); R.L. Olvera (Rene); J. Oosterlaan (Jaap); R.A. Ophoff (Roel); M. Pandolfo (Massimo); M. Papalampropoulou-Tsiridou (Melina); M. Papmeyer (Martina); T. Paus (Tomas); Z. Pausova (Zdenka); G. Pearlson (Godfrey); B.W.J.H. Penninx (Brenda); C.P. Peterson (Charles); A. Pfennig (Andrea); M. Phillips (Mary); G.B. Pike (G Bruce); J.B. Poline (Jean Baptiste); S.G. Potkin (Steven); B. Pütz (Benno); A. Ramasamy (Adaikalavan); J. Rasmussen (Jerod); M. Rietschel (Marcella); M. Rijpkema (Mark); S.L. Risacher (Shannon); J.L. Roffman (Joshua); R. Roiz-Santiañez (Roberto); N. Romanczuk-Seiferth (Nina); E.J. Rose (Emma); N.A. Royle (Natalie); D. Rujescu (Dan); M. Ryten (Mina); P.S. Sachdev (Perminder); A. Salami (Alireza); T.D. Satterthwaite (Theodore); J. Savitz (Jonathan); A.J. Saykin (Andrew); C. Scanlon (Cathy); L. Schmaal (Lianne); H. Schnack (Hugo); N.J. Schork (Nicholas); S.C. Schulz (S.Charles); R. Schür (Remmelt); L.J. Seidman (Larry); L. Shen (Li); L. Shoemaker (Lawrence); A. Simmons (Andrew); S.M. Sisodiya (Sanjay); C. Smith (Colin); J.W. Smoller; J.C. Soares (Jair); S.R. Sponheim (Scott); R. Sprooten (Roy); J.M. Starr (John); V.M. Steen (Vidar); S. Strakowski (Stephen); L.T. Strike (Lachlan); J. Sussmann (Jessika); P.G. Sämann (Philipp); A. Teumer (Alexander); A.W. Toga (Arthur); D. Tordesillas-Gutierrez (Diana); D. Trabzuni (Danyah); S. Trost (Sarah); J. Turner (Jessica); M. van den Heuvel (Martijn); N.J. van der Wee (Nic); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); M.C. Valdés Hernández (Maria); D.J. Veltman (Dick); A. Versace (Amelia); H. Völzke (Henry); R. Walker (Robert); H.J. Walter (Henrik); L. Wang (Lei); J.M. Wardlaw (J.); M.E. Weale (Michael); M.W. Weiner (Michael); W. Wen (Wei); L.T. Westlye (Lars); H.C. Whalley (Heather); C.D. Whelan (Christopher); T.J.H. White (Tonya); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); D. Zilles (David); M.P. Zwiers (Marcel); A. Thalamuthu (Anbupalam); J.R. Almeida (Jorge); C.J. Schofield (Christopher); N.B. Freimer (Nelson); N.S. Lawrence (Natalia); D.A. Drevets (Douglas)

    2014-01-01

    textabstractThe Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in

  13. Large Scale Computing for the Modelling of Whole Brain Connectivity

    DEFF Research Database (Denmark)

    Albers, Kristoffer Jon

    organization of the brain in continuously increasing resolution. From these images, networks of structural and functional connectivity can be constructed. Bayesian stochastic block modelling provides a prominent data-driven approach for uncovering the latent organization, by clustering the networks into groups...... of neurons. Relying on Markov Chain Monte Carlo (MCMC) simulations as the workhorse in Bayesian inference however poses significant computational challenges, especially when modelling networks at the scale and complexity supported by high-resolution whole-brain MRI. In this thesis, we present how to overcome...... these computational limitations and apply Bayesian stochastic block models for un-supervised data-driven clustering of whole-brain connectivity in full image resolution. We implement high-performance software that allows us to efficiently apply stochastic blockmodelling with MCMC sampling on large complex networks...

  14. Identifying Controlling Nodes in Neuronal Networks in Different Scales

    Science.gov (United States)

    Tang, Yang; Gao, Huijun; Zou, Wei; Kurths, Jürgen

    2012-01-01

    Recent studies have detected hubs in neuronal networks using degree, betweenness centrality, motif and synchronization and revealed the importance of hubs in their structural and functional roles. In addition, the analysis of complex networks in different scales are widely used in physics community. This can provide detailed insights into the intrinsic properties of networks. In this study, we focus on the identification of controlling regions in cortical networks of cats’ brain in microscopic, mesoscopic and macroscopic scales, based on single-objective evolutionary computation methods. The problem is investigated by considering two measures of controllability separately. The impact of the number of driver nodes on controllability is revealed and the properties of controlling nodes are shown in a statistical way. Our results show that the statistical properties of the controlling nodes display a concave or convex shape with an increase of the allowed number of controlling nodes, revealing a transition in choosing driver nodes from the areas with a large degree to the areas with a low degree. Interestingly, the community Auditory in cats’ brain, which has sparse connections with other communities, plays an important role in controlling the neuronal networks. PMID:22848475

  15. Default network modulation and large-scale network interactivity in healthy young and old adults.

    Science.gov (United States)

    Spreng, R Nathan; Schacter, Daniel L

    2012-11-01

    We investigated age-related changes in default, attention, and control network activity and their interactions in young and old adults. Brain activity during autobiographical and visuospatial planning was assessed using multivariate analysis and with intrinsic connectivity networks as regions of interest. In both groups, autobiographical planning engaged the default network while visuospatial planning engaged the attention network, consistent with a competition between the domains of internalized and externalized cognition. The control network was engaged for both planning tasks. In young subjects, the control network coupled with the default network during autobiographical planning and with the attention network during visuospatial planning. In old subjects, default-to-control network coupling was observed during both planning tasks, and old adults failed to deactivate the default network during visuospatial planning. This failure is not indicative of default network dysfunction per se, evidenced by default network engagement during autobiographical planning. Rather, a failure to modulate the default network in old adults is indicative of a lower degree of flexible network interactivity and reduced dynamic range of network modulation to changing task demands.

  16. Cooperative Dynamics in Lattice-Embedded Scale-Free Networks

    International Nuclear Information System (INIS)

    Shang Lihui; Zhang Mingji; Yang Yanqing

    2009-01-01

    We investigate cooperative behaviors of lattice-embedded scale-free networking agents in the prisoner's dilemma game model by employing two initial strategy distribution mechanisms, which are specific distribution to the most connected sites (hubs) and random distribution. Our study indicates that the game dynamics crucially depends on the underlying spatial network structure with different strategy distribution mechanism. The cooperators' specific distribution contributes to an enhanced level of cooperation in the system compared with random one, and cooperation is robust to cooperators' specific distribution but fragile to defectors' specific distribution. Especially, unlike the specific case, increasing heterogeneity of network does not always favor the emergence of cooperation under random mechanism. Furthermore, we study the geographical effects and find that the graphically constrained network structure tends to improve the evolution of cooperation in random case and in specific one for a large temptation to defect.

  17. Pacemaker neuron and network oscillations depend on a neuromodulator-regulated linear current

    Directory of Open Access Journals (Sweden)

    Shunbing Zhao

    2010-05-01

    Full Text Available Linear leak currents have been implicated in the regulation of neuronal excitability, generation of neuronal and network oscillations, and network state transitions. Yet, few studies have directly tested the dependence of network oscillations on leak currents or explored the role of leak currents on network activity. In the oscillatory pyloric network of decapod crustaceans neuromodulatory inputs are necessary for pacemaker activity. A large subset of neuromodulators is known to activate a single voltage-gated inward current IMI, which has been shown to regulate the rhythmic activity of the network and its pacemaker neurons. Using the dynamic clamp technique, we show that the crucial component of IMI for the generation of oscillatory activity is only a close-to-linear portion of the current-voltage relationship. The nature of this conductance is such that the presence or the absence of neuromodulators effectively regulates the amount of leak current and the input resistance in the pacemaker neurons. When deprived of neuromodulatory inputs, pyloric oscillations are disrupted; yet, a linear reduction of the total conductance in a single neuron within the pacemaker group recovers not only the pacemaker activity in that neuron, but also leads to a recovery of oscillations in the entire pyloric network. The recovered activity produces proper frequency and phasing that is similar to that induced by neuromodulators. These results show that the passive properties of pacemaker neurons can significantly affect their capacity to generate and regulate the oscillatory activity of an entire network, and that this feature is exploited by neuromodulatory inputs.

  18. From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data.

    Science.gov (United States)

    Vella, Danila; Zoppis, Italo; Mauri, Giancarlo; Mauri, Pierluigi; Di Silvestre, Dario

    2017-12-01

    The reductionist approach of dissecting biological systems into their constituents has been successful in the first stage of the molecular biology to elucidate the chemical basis of several biological processes. This knowledge helped biologists to understand the complexity of the biological systems evidencing that most biological functions do not arise from individual molecules; thus, realizing that the emergent properties of the biological systems cannot be explained or be predicted by investigating individual molecules without taking into consideration their relations. Thanks to the improvement of the current -omics technologies and the increasing understanding of the molecular relationships, even more studies are evaluating the biological systems through approaches based on graph theory. Genomic and proteomic data are often combined with protein-protein interaction (PPI) networks whose structure is routinely analyzed by algorithms and tools to characterize hubs/bottlenecks and topological, functional, and disease modules. On the other hand, co-expression networks represent a complementary procedure that give the opportunity to evaluate at system level including organisms that lack information on PPIs. Based on these premises, we introduce the reader to the PPI and to the co-expression networks, including aspects of reconstruction and analysis. In particular, the new idea to evaluate large-scale proteomic data by means of co-expression networks will be discussed presenting some examples of application. Their use to infer biological knowledge will be shown, and a special attention will be devoted to the topological and module analysis.

  19. The Genome-Scale Integrated Networks in Microorganisms

    Directory of Open Access Journals (Sweden)

    Tong Hao

    2018-02-01

    Full Text Available The genome-scale cellular network has become a necessary tool in the systematic analysis of microbes. In a cell, there are several layers (i.e., types of the molecular networks, for example, genome-scale metabolic network (GMN, transcriptional regulatory network (TRN, and signal transduction network (STN. It has been realized that the limitation and inaccuracy of the prediction exist just using only a single-layer network. Therefore, the integrated network constructed based on the networks of the three types attracts more interests. The function of a biological process in living cells is usually performed by the interaction of biological components. Therefore, it is necessary to integrate and analyze all the related components at the systems level for the comprehensively and correctly realizing the physiological function in living organisms. In this review, we discussed three representative genome-scale cellular networks: GMN, TRN, and STN, representing different levels (i.e., metabolism, gene regulation, and cellular signaling of a cell’s activities. Furthermore, we discussed the integration of the networks of the three types. With more understanding on the complexity of microbial cells, the development of integrated network has become an inevitable trend in analyzing genome-scale cellular networks of microorganisms.

  20. Scaling in public transport networks

    Directory of Open Access Journals (Sweden)

    C. von Ferber

    2005-01-01

    Full Text Available We analyse the statistical properties of public transport networks. These networks are defined by a set of public transport routes (bus lines and the stations serviced by these. For larger networks these appear to possess a scale-free structure, as it is demonstrated e.g. by the Zipf law distribution of the number of routes servicing a given station or for the distribution of the number of stations which can be visited from a chosen one without changing the means of transport. Moreover, a rather particular feature of the public transport network is that many routes service common subsets of stations. We discuss the possibility of new scaling laws that govern intrinsic properties of such subsets.

  1. Collaborative-Large scale Engineering Assessment Networks for Environmental Research: The Overview

    Science.gov (United States)

    Moo-Young, H.

    2004-05-01

    A networked infrastructure for engineering solutions and policy alternatives is necessary to assess, manage, and protect complex, anthropogenic ally stressed environmental resources effectively. Reductionist and discrete disciplinary methodologies are no longer adequate to evaluate and model complex environmental systems and anthropogenic stresses. While the reductonist approach provides important information regarding individual mechanisms, it cannot provide complete information about how multiple processes are related. Therefore, it is not possible to make accurate predictions about system responses to engineering interventions and the effectiveness of policy options. For example, experts cannot agree on best management strategies for contaminated sediments in riverine and estuarine systems. This is due, in part to the fact that existing models do not accurately capture integrated system dynamics. In addition, infrastructure is not available for investigators to exchange and archive data, to collaborate on new investigative methods, and to synthesize these results to develop engineering solutions and policy alternatives. Our vision for the future is to create a network comprising field facilities and a collaboration of engineers, scientists, policy makers, and community groups. This will allow integration across disciplines, across different temporal and spatial scales, surface and subsurface geographies, and air sheds and watersheds. Benefits include fast response to changes in system health, real-time decision making, and continuous data collection that can be used to anticipate future problems, and to develop sound engineering solutions and management decisions. CLEANER encompasses four general aspects: 1) A Network of environmental field facilities instrumented for the acquisition and analysis of environmental data; 2) A Virtual Repository of Data and information technology for engineering modeling, analysis and visualization of data, i.e. an environmental

  2. Spatio-temporal spike train analysis for large scale networks using the maximum entropy principle and Monte Carlo method

    International Nuclear Information System (INIS)

    Nasser, Hassan; Cessac, Bruno; Marre, Olivier

    2013-01-01

    Understanding the dynamics of neural networks is a major challenge in experimental neuroscience. For that purpose, a modelling of the recorded activity that reproduces the main statistics of the data is required. In the first part, we present a review on recent results dealing with spike train statistics analysis using maximum entropy models (MaxEnt). Most of these studies have focused on modelling synchronous spike patterns, leaving aside the temporal dynamics of the neural activity. However, the maximum entropy principle can be generalized to the temporal case, leading to Markovian models where memory effects and time correlations in the dynamics are properly taken into account. In the second part, we present a new method based on Monte Carlo sampling which is suited for the fitting of large-scale spatio-temporal MaxEnt models. The formalism and the tools presented here will be essential to fit MaxEnt spatio-temporal models to large neural ensembles. (paper)

  3. Identifying the Oscillatory Mechanism of the Glucose Oxidase-Catalase Coupled Enzyme System.

    Science.gov (United States)

    Muzika, František; Jurašek, Radovan; Schreiberová, Lenka; Radojković, Vuk; Schreiber, Igor

    2017-10-12

    We provide experimental evidence of periodic and aperiodic oscillations in an enzymatic system of glucose oxidase-catalase in a continuous-flow stirred reactor coupled by a membrane with a continuous-flow reservoir supplied with hydrogen peroxide. To describe such dynamics, we formulate a detailed mechanism based on partial results in the literature. Finally, we introduce a novel method for estimation of unknown kinetic parameters. The method is based on matching experimental data at an oscillatory instability with stoichiometric constraints of the mechanism formulated by applying the stability theory of reaction networks. This approach has been used to estimate rate coefficients in the catalase part of the mechanism. Remarkably, model simulations show good agreement with the observed oscillatory dynamics, including apparently chaotic intermittent behavior. Our method can be applied to any reaction system with an experimentally observable dynamical instability.

  4. Evolutionary Hierarchical Multi-Criteria Metaheuristics for Scheduling in Large-Scale Grid Systems

    CERN Document Server

    Kołodziej, Joanna

    2012-01-01

    One of the most challenging issues in modelling today's large-scale computational systems is to effectively manage highly parametrised distributed environments such as computational grids, clouds, ad hoc networks and P2P networks. Next-generation computational grids must provide a wide range of services and high performance computing infrastructures. Various types of information and data processed in the large-scale dynamic grid environment may be incomplete, imprecise, and fragmented, which complicates the specification of proper evaluation criteria and which affects both the availability of resources and the final collective decisions of users. The complexity of grid architectures and grid management may also contribute towards higher energy consumption. All of these issues necessitate the development of intelligent resource management techniques, which are capable of capturing all of this complexity and optimising meaningful metrics for a wide range of grid applications.   This book covers hot topics in t...

  5. Processing oscillatory signals by incoherent feedforward loops

    Science.gov (United States)

    Zhang, Carolyn; Wu, Feilun; Tsoi, Ryan; Shats, Igor; You, Lingchong

    From the timing of amoeba development to the maintenance of stem cell pluripotency,many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression.While networks underlying this signal decoding are diverse,many are built around a common motif, the incoherent feedforward loop (IFFL),where an input simultaneously activates an output and an inhibitor of the output.With appropriate parameters,this motif can generate temporal adaptation,where the system is desensitized to a sustained input.This property serves as the foundation for distinguishing signals with varying temporal profiles.Here,we use quantitative modeling to examine another property of IFFLs,the ability to process oscillatory signals.Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints.The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics.In addition,a match between the network parameters and signal characteristics is required for optimal ``counting''.We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose. This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).

  6. Microfluidic mixing through oscillatory transverse perturbations

    Science.gov (United States)

    Wu, J. W.; Xia, H. M.; Zhang, Y. Y.; Zhu, P.

    2018-05-01

    Fluid mixing in miniaturized fluidic devices is a challenging task. In this work, the mixing enhancement through oscillatory transverse perturbations coupling with divergent circular chambers is studied. To simplify the design, an autonomous microfluidic oscillator is used to produce the oscillatory flow. It is then applied to four side-channels that intersect with a central channel of constant flow. The mixing performance is tested at high fluid viscosities of up to 16 cP. Results show that the oscillatory flow can cause strong transverse perturbations which effectively enhance the mixing. The influence of a fluidic capacitor in the central channel is also examined, which at low viscosities can intensify the perturbations and further improve the mixing.

  7. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    Science.gov (United States)

    Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

    2016-01-01

    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

  8. Distributed weighted least-squares estimation with fast convergence for large-scale systems☆

    Science.gov (United States)

    Marelli, Damián Edgardo; Fu, Minyue

    2015-01-01

    In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods. PMID:25641976

  9. Distributed weighted least-squares estimation with fast convergence for large-scale systems.

    Science.gov (United States)

    Marelli, Damián Edgardo; Fu, Minyue

    2015-01-01

    In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods.

  10. Large-scale data analytics

    CERN Document Server

    Gkoulalas-Divanis, Aris

    2014-01-01

    Provides cutting-edge research in large-scale data analytics from diverse scientific areas Surveys varied subject areas and reports on individual results of research in the field Shares many tips and insights into large-scale data analytics from authors and editors with long-term experience and specialization in the field

  11. Approaches to large scale unsaturated flow in heterogeneous, stratified, and fractured geologic media

    International Nuclear Information System (INIS)

    Ababou, R.

    1991-08-01

    This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs

  12. Enumeration of smallest intervention strategies in genome-scale metabolic networks.

    Directory of Open Access Journals (Sweden)

    Axel von Kamp

    2014-01-01

    Full Text Available One ultimate goal of metabolic network modeling is the rational redesign of biochemical networks to optimize the production of certain compounds by cellular systems. Although several constraint-based optimization techniques have been developed for this purpose, methods for systematic enumeration of intervention strategies in genome-scale metabolic networks are still lacking. In principle, Minimal Cut Sets (MCSs; inclusion-minimal combinations of reaction or gene deletions that lead to the fulfilment of a given intervention goal provide an exhaustive enumeration approach. However, their disadvantage is the combinatorial explosion in larger networks and the requirement to compute first the elementary modes (EMs which itself is impractical in genome-scale networks. We present MCSEnumerator, a new method for effective enumeration of the smallest MCSs (with fewest interventions in genome-scale metabolic network models. For this we combine two approaches, namely (i the mapping of MCSs to EMs in a dual network, and (ii a modified algorithm by which shortest EMs can be effectively determined in large networks. In this way, we can identify the smallest MCSs by calculating the shortest EMs in the dual network. Realistic application examples demonstrate that our algorithm is able to list thousands of the most efficient intervention strategies in genome-scale networks for various intervention problems. For instance, for the first time we could enumerate all synthetic lethals in E.coli with combinations of up to 5 reactions. We also applied the new algorithm exemplarily to compute strain designs for growth-coupled synthesis of different products (ethanol, fumarate, serine by E.coli. We found numerous new engineering strategies partially requiring less knockouts and guaranteeing higher product yields (even without the assumption of optimal growth than reported previously. The strength of the presented approach is that smallest intervention strategies can be

  13. Scaling of load in communications networks.

    Science.gov (United States)

    Narayan, Onuttom; Saniee, Iraj

    2010-09-01

    We show that the load at each node in a preferential attachment network scales as a power of the degree of the node. For a network whose degree distribution is p(k)∼k{-γ} , we show that the load is l(k)∼k{η} with η=γ-1 , implying that the probability distribution for the load is p(l)∼1/l{2} independent of γ . The results are obtained through scaling arguments supported by finite size scaling studies. They contradict earlier claims, but are in agreement with the exact solution for the special case of tree graphs. Results are also presented for real communications networks at the IP layer, using the latest available data. Our analysis of the data shows relatively poor power-law degree distributions as compared to the scaling of the load versus degree. This emphasizes the importance of the load in network analysis.

  14. Large-scale simulations with distributed computing: Asymptotic scaling of ballistic deposition

    International Nuclear Information System (INIS)

    Farnudi, Bahman; Vvedensky, Dimitri D

    2011-01-01

    Extensive kinetic Monte Carlo simulations are reported for ballistic deposition (BD) in (1 + 1) dimensions. The large system sizes L observed for the onset of asymptotic scaling (L ≅ 2 12 ) explains the widespread discrepancies in previous reports for exponents of BD in one and likely in higher dimensions. The exponents obtained directly from our simulations, α = 0.499 ± 0.004 and β = 0.336 ± 0.004, capture the exact values α = 1/2 and β = 1/3 for the one-dimensional Kardar-Parisi-Zhang equation. An analysis of our simulations suggests a criterion for identifying the onset of true asymptotic scaling, which enables a more informed evaluation of exponents for BD in higher dimensions. These simulations were made possible by the Simulation through Social Networking project at the Institute for Advanced Studies in Basic Sciences in 2007, which was re-launched in November 2010.

  15. Large-scale resting state network correlates of cognitive impairment in Parkinson’s disease and related dopaminergic deficits

    Directory of Open Access Journals (Sweden)

    Alexander V Lebedev

    2014-04-01

    Full Text Available Cognitive impairment is a common non-motor feature of Parkinson’s disease (PD. The current study aimed to investigate resting state fMRI correlates of cognitive impairment in PD from a large-scale network perspective, and to assess the impact of dopamine deficiency on these networks. Thirty PD patients with resting state fMRI were included from the Parkinson’s Progression Marker Initiative (PPMI database. Eighteen patients from this sample were also scanned with 123I-FP-CIT SPECT. A standardized neuropsychological battery was administered, evaluating verbal memory, visuospatial, and executive cognitive domains. Image preprocessing was performed using an SPM8-based workflow, obtaining time-series from 90 regions-of-interest (ROIs defined from the AAL brain atlas. The Brain Connectivity Toolbox was used to extract nodal strength from all ROIs and modularity of the cognitive circuitry determined using the meta-analytical software Neurosynth. Brain-behavior covariance patterns between cognitive functions and nodal strength were estimated using Partial Least Squares. Extracted latent variable scores were correlated with performances in the three cognitive domains and striatal dopamine transporter binding ratios (SBR using linear modeling. Finally, influence of nigrostriatal dopaminergic deficiency on modularity of the cognitive network was analyzed. Less severe executive impairment was associated with increased dorsal fronto-parietal cortical processing and inhibited subcortical and primary sensory involvement. This pattern was positively influenced by the relative preservation of nigrostriatal dopaminergic function. The pattern associated with better memory performance favored prefronto-limbic processing, and did not reveal associations with presynaptic striatal dopamine uptake. SBR ratios were negatively associated with modularity of the cognitive network, suggesting integrative effects of the preserved nigrostriatal dopamine system on this

  16. REAL-TIME VIDEO SCALING BASED ON CONVOLUTION NEURAL NETWORK ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    S Safinaz

    2017-08-01

    Full Text Available In recent years, video super resolution techniques becomes mandatory requirements to get high resolution videos. Many super resolution techniques researched but still video super resolution or scaling is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural network architecture to eliminate the blurriness in the images and video frames and to provide better reconstruction quality while scaling of large datasets from lower resolution frames to high resolution frames. We compare our outcomes with multiple exiting algorithms. Our extensive results of proposed technique RemCNN (Reconstruction error minimization Convolution Neural Network shows that our model outperforms the existing technologies such as bicubic, bilinear, MCResNet and provide better reconstructed motioning images and video frames. The experimental results shows that our average PSNR result is 47.80474 considering upscale-2, 41.70209 for upscale-3 and 36.24503 for upscale-4 for Myanmar dataset which is very high in contrast to other existing techniques. This results proves our proposed model real-time video scaling based on convolution neural network architecture’s high efficiency and better performance.

  17. Disturbed oscillatory brain dynamics in subcortical ischemic vascular dementia

    Directory of Open Access Journals (Sweden)

    van Straaten Elisabeth CW

    2012-07-01

    Full Text Available Abstract Background White matter hyperintensities (WMH can lead to dementia but the underlying physiological mechanisms are unclear. We compared relative oscillatory power from electroencephalographic studies (EEGs of 17 patients with subcortical ischemic vascular dementia, based on extensive white matter hyperintensities (SIVD-WMH with 17 controls to investigate physiological changes underlying this diagnosis. Results Differences between the groups were large, with a decrease of relative power of fast activity in patients (alpha power 0.25 ± 0.12 versus 0.38 ± 0.13, p = 0.01; beta power 0.08 ± 0.04 versus 0.19 ± 0.07; p Conclusions This pattern of disturbance in oscillatory brain activity indicate loss of connections between neurons, providing a first step in the understanding of cognitive dysfunction in SIVD-WMH.

  18. The impact of new forms of large-scale general practice provider collaborations on England's NHS: a systematic review.

    Science.gov (United States)

    Pettigrew, Luisa M; Kumpunen, Stephanie; Mays, Nicholas; Rosen, Rebecca; Posaner, Rachel

    2018-03-01

    Over the past decade, collaboration between general practices in England to form new provider networks and large-scale organisations has been driven largely by grassroots action among GPs. However, it is now being increasingly advocated for by national policymakers. Expectations of what scaling up general practice in England will achieve are significant. To review the evidence of the impact of new forms of large-scale general practice provider collaborations in England. Systematic review. Embase, MEDLINE, Health Management Information Consortium, and Social Sciences Citation Index were searched for studies reporting the impact on clinical processes and outcomes, patient experience, workforce satisfaction, or costs of new forms of provider collaborations between general practices in England. A total of 1782 publications were screened. Five studies met the inclusion criteria and four examined the same general practice networks, limiting generalisability. Substantial financial investment was required to establish the networks and the associated interventions that were targeted at four clinical areas. Quality improvements were achieved through standardised processes, incentives at network level, information technology-enabled performance dashboards, and local network management. The fifth study of a large-scale multisite general practice organisation showed that it may be better placed to implement safety and quality processes than conventional practices. However, unintended consequences may arise, such as perceptions of disenfranchisement among staff and reductions in continuity of care. Good-quality evidence of the impacts of scaling up general practice provider organisations in England is scarce. As more general practice collaborations emerge, evaluation of their impacts will be important to understand which work, in which settings, how, and why. © British Journal of General Practice 2018.

  19. Cascading failure in the wireless sensor scale-free networks

    Science.gov (United States)

    Liu, Hao-Ran; Dong, Ming-Ru; Yin, Rong-Rong; Han, Li

    2015-05-01

    In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2014203239), the Autonomous Research Fund of Young Teacher in Yanshan University (Grant No. 14LGB017) and Yanshan University Doctoral Foundation, China (Grant No. B867).

  20. Large scale modulation of high frequency acoustic waves in periodic porous media.

    Science.gov (United States)

    Boutin, Claude; Rallu, Antoine; Hans, Stephane

    2012-12-01

    This paper deals with the description of the modulation at large scale of high frequency acoustic waves in gas saturated periodic porous media. High frequencies mean local dynamics at the pore scale and therefore absence of scale separation in the usual sense of homogenization. However, although the pressure is spatially varying in the pores (according to periodic eigenmodes), the mode amplitude can present a large scale modulation, thereby introducing another type of scale separation to which the asymptotic multi-scale procedure applies. The approach is first presented on a periodic network of inter-connected Helmholtz resonators. The equations governing the modulations carried by periodic eigenmodes, at frequencies close to their eigenfrequency, are derived. The number of cells on which the carrying periodic mode is defined is therefore a parameter of the modeling. In a second part, the asymptotic approach is developed for periodic porous media saturated by a perfect gas. Using the "multicells" periodic condition, one obtains the family of equations governing the amplitude modulation at large scale of high frequency waves. The significant difference between modulations of simple and multiple mode are evidenced and discussed. The features of the modulation (anisotropy, width of frequency band) are also analyzed.

  1. Living in a network of scaling cities and finite resources.

    Science.gov (United States)

    Qubbaj, Murad R; Shutters, Shade T; Muneepeerakul, Rachata

    2015-02-01

    Many urban phenomena exhibit remarkable regularity in the form of nonlinear scaling behaviors, but their implications on a system of networked cities has never been investigated. Such knowledge is crucial for our ability to harness the complexity of urban processes to further sustainability science. In this paper, we develop a dynamical modeling framework that embeds population-resource dynamics-a generalized Lotka-Volterra system with modifications to incorporate the urban scaling behaviors-in complex networks in which cities may be linked to the resources of other cities and people may migrate in pursuit of higher welfare. We find that isolated cities (i.e., no migration) are susceptible to collapse if they do not have access to adequate resources. Links to other cities may help cities that would otherwise collapse due to insufficient resources. The effects of inter-city links, however, can vary due to the interplay between the nonlinear scaling behaviors and network structure. The long-term population level of a city is, in many settings, largely a function of the city's access to resources over which the city has little or no competition. Nonetheless, careful investigation of dynamics is required to gain mechanistic understanding of a particular city-resource network because cities and resources may collapse and the scaling behaviors may influence the effects of inter-city links, thereby distorting what topological metrics really measure.

  2. Weighted Scaling in Non-growth Random Networks

    International Nuclear Information System (INIS)

    Chen Guang; Yang Xuhua; Xu Xinli

    2012-01-01

    We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in non-growth random networks. In this model, we use multiple-edges to represent the connections between vertices and define the weight of a multiple-edge as the total weights of all single-edges within it and the strength of a vertex as the sum of weights for those multiple-edges attached to it. The network evolves according to a vertex strength preferential selection mechanism. During the evolution process, the network always holds its total number of vertices and its total number of single-edges constantly. We show analytically and numerically that a network will form steady scale-free distributions with our model. The results show that a weighted non-growth random network can evolve into scale-free state. It is interesting that the network also obtains the character of an exponential edge weight distribution. Namely, coexistence of scale-free distribution and exponential distribution emerges.

  3. Using large-scale Granger causality to study changes in brain network properties in the Clinically Isolated Syndrome (CIS) stage of multiple sclerosis

    Science.gov (United States)

    Abidin, Anas Z.; Chockanathan, Udaysankar; DSouza, Adora M.; Inglese, Matilde; Wismüller, Axel

    2017-03-01

    Clinically Isolated Syndrome (CIS) is often considered to be the first neurological episode associated with Multiple sclerosis (MS). At an early stage the inflammatory demyelination occurring in the CNS can manifest as a change in neuronal metabolism, with multiple asymptomatic white matter lesions detected in clinical MRI. Such damage may induce topological changes of brain networks, which can be captured by advanced functional MRI (fMRI) analysis techniques. We test this hypothesis by capturing the effective relationships of 90 brain regions, defined in the Automated Anatomic Labeling (AAL) atlas, using a large-scale Granger Causality (lsGC) framework. The resulting networks are then characterized using graph-theoretic measures that quantify various network topology properties at a global as well as at a local level. We study for differences in these properties in network graphs obtained for 18 subjects (10 male and 8 female, 9 with CIS and 9 healthy controls). Global network properties captured trending differences with modularity and clustering coefficient (pdifferences in some regions of the inferior frontal and parietal lobe. We conclude that multivariate analysis of fMRI time-series can reveal interesting information about changes occurring in the brain in early stages of MS.

  4. Oscillatory integration windows in neurons

    Science.gov (United States)

    Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark

    2016-01-01

    Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking. PMID:27976720

  5. Sensing across large-scale cognitive radio networks: Data processing, algorithms, and testbed for wireless tomography and moving target tracking

    Science.gov (United States)

    Bonior, Jason David

    As the use of wireless devices has become more widespread so has the potential for utilizing wireless networks for remote sensing applications. Regular wireless communication devices are not typically designed for remote sensing. Remote sensing techniques must be carefully tailored to the capabilities of these networks before they can be applied. Experimental verification of these techniques and algorithms requires robust yet flexible testbeds. In this dissertation, two experimental testbeds for the advancement of research into sensing across large-scale cognitive radio networks are presented. System architectures, implementations, capabilities, experimental verification, and performance are discussed. One testbed is designed for the collection of scattering data to be used in RF and wireless tomography research. This system is used to collect full complex scattering data using a vector network analyzer (VNA) and amplitude-only data using non-synchronous software-defined radios (SDRs). Collected data is used to experimentally validate a technique for phase reconstruction using semidefinite relaxation and demonstrate the feasibility of wireless tomography. The second testbed is a SDR network for the collection of experimental data. The development of tools for network maintenance and data collection is presented and discussed. A novel recursive weighted centroid algorithm for device-free target localization using the variance of received signal strength for wireless links is proposed. The signal variance resulting from a moving target is modeled as having contours related to Cassini ovals. This model is used to formulate recursive weights which reduce the influence of wireless links that are farther from the target location estimate. The algorithm and its implementation on this testbed are presented and experimental results discussed.

  6. Social Network Analysis and Mining to Monitor and Identify Problems with Large-Scale Information and Communication Technology Interventions.

    Science.gov (United States)

    da Silva, Aleksandra do Socorro; de Brito, Silvana Rossy; Vijaykumar, Nandamudi Lankalapalli; da Rocha, Cláudio Alex Jorge; Monteiro, Maurílio de Abreu; Costa, João Crisóstomo Weyl Albuquerque; Francês, Carlos Renato Lisboa

    2016-01-01

    The published literature reveals several arguments concerning the strategic importance of information and communication technology (ICT) interventions for developing countries where the digital divide is a challenge. Large-scale ICT interventions can be an option for countries whose regions, both urban and rural, present a high number of digitally excluded people. Our goal was to monitor and identify problems in interventions aimed at certification for a large number of participants in different geographical regions. Our case study is the training at the Telecentros.BR, a program created in Brazil to install telecenters and certify individuals to use ICT resources. We propose an approach that applies social network analysis and mining techniques to data collected from Telecentros.BR dataset and from the socioeconomics and telecommunications infrastructure indicators of the participants' municipalities. We found that (i) the analysis of interactions in different time periods reflects the objectives of each phase of training, highlighting the increased density in the phase in which participants develop and disseminate their projects; (ii) analysis according to the roles of participants (i.e., tutors or community members) reveals that the interactions were influenced by the center (or region) to which the participant belongs (that is, a community contained mainly members of the same region and always with the presence of tutors, contradicting expectations of the training project, which aimed for intense collaboration of the participants, regardless of the geographic region); (iii) the social network of participants influences the success of the training: that is, given evidence that the degree of the community member is in the highest range, the probability of this individual concluding the training is 0.689; (iv) the North region presented the lowest probability of participant certification, whereas the Northeast, which served municipalities with similar

  7. Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON

    Science.gov (United States)

    Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling

    2017-12-01

    WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.

  8. A design method of oscillatory De-Qing circuit

    International Nuclear Information System (INIS)

    Feng Wenquan

    1988-01-01

    With some particular advantages the oscillatory De-Qing circuit now is widely used. However its design is very complex. By means of a quantitative analysis for this circuit a group of design formulas is obtained. According to these design formulas the maximum allowable charging inductance L c , the De-Qing network resistance R and capacitance C can easily be determined, if the PFN capacitance C N , the maximum pulse frequency F max , and percentage regulation η are given. Simple and direct formulas for specific situation are listed. Finally, a design example is given and a comparison with experimental result is made, which shows that the design method is feasible and reliable

  9. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.

    Science.gov (United States)

    Brader, J M; Siebenbürger, M; Ballauff, M; Reinheimer, K; Wilhelm, M; Frey, S J; Weysser, F; Fuchs, M

    2010-12-01

    Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.

  10. Knowledge Guided Disambiguation for Large-Scale Scene Classification With Multi-Resolution CNNs

    Science.gov (United States)

    Wang, Limin; Guo, Sheng; Huang, Weilin; Xiong, Yuanjun; Qiao, Yu

    2017-04-01

    Convolutional Neural Networks (CNNs) have made remarkable progress on scene recognition, partially due to these recent large-scale scene datasets, such as the Places and Places2. Scene categories are often defined by multi-level information, including local objects, global layout, and background environment, thus leading to large intra-class variations. In addition, with the increasing number of scene categories, label ambiguity has become another crucial issue in large-scale classification. This paper focuses on large-scale scene recognition and makes two major contributions to tackle these issues. First, we propose a multi-resolution CNN architecture that captures visual content and structure at multiple levels. The multi-resolution CNNs are composed of coarse resolution CNNs and fine resolution CNNs, which are complementary to each other. Second, we design two knowledge guided disambiguation techniques to deal with the problem of label ambiguity. (i) We exploit the knowledge from the confusion matrix computed on validation data to merge ambiguous classes into a super category. (ii) We utilize the knowledge of extra networks to produce a soft label for each image. Then the super categories or soft labels are employed to guide CNN training on the Places2. We conduct extensive experiments on three large-scale image datasets (ImageNet, Places, and Places2), demonstrating the effectiveness of our approach. Furthermore, our method takes part in two major scene recognition challenges, and achieves the second place at the Places2 challenge in ILSVRC 2015, and the first place at the LSUN challenge in CVPR 2016. Finally, we directly test the learned representations on other scene benchmarks, and obtain the new state-of-the-art results on the MIT Indoor67 (86.7\\%) and SUN397 (72.0\\%). We release the code and models at~\\url{https://github.com/wanglimin/MRCNN-Scene-Recognition}.

  11. Large-Scale Functional Brain Network Reorganization During Taoist Meditation.

    Science.gov (United States)

    Jao, Tun; Li, Chia-Wei; Vértes, Petra E; Wu, Changwei Wesley; Achard, Sophie; Hsieh, Chao-Hsien; Liou, Chien-Hui; Chen, Jyh-Horng; Bullmore, Edward T

    2016-02-01

    Meditation induces a distinct and reversible mental state that provides insights into brain correlates of consciousness. We explored brain network changes related to meditation by graph theoretical analysis of resting-state functional magnetic resonance imaging data. Eighteen Taoist meditators with varying levels of expertise were scanned using a within-subjects counterbalanced design during resting and meditation states. State-related differences in network topology were measured globally and at the level of individual nodes and edges. Although measures of global network topology, such as small-worldness, were unchanged, meditation was characterized by an extensive and expertise-dependent reorganization of the hubs (highly connected nodes) and edges (functional connections). Areas of sensory cortex, especially the bilateral primary visual and auditory cortices, and the bilateral temporopolar areas, which had the highest degree (or connectivity) during the resting state, showed the biggest decrease during meditation. Conversely, bilateral thalamus and components of the default mode network, mainly the bilateral precuneus and posterior cingulate cortex, had low degree in the resting state but increased degree during meditation. Additionally, these changes in nodal degree were accompanied by reorganization of anatomical orientation of the edges. During meditation, long-distance longitudinal (antero-posterior) edges increased proportionally, whereas orthogonal long-distance transverse (right-left) edges connecting bilaterally homologous cortices decreased. Our findings suggest that transient changes in consciousness associated with meditation introduce convergent changes in the topological and spatial properties of brain functional networks, and the anatomical pattern of integration might be as important as the global level of integration when considering the network basis for human consciousness.

  12. Measures of large-scale structure in the CfA redshift survey slices

    International Nuclear Information System (INIS)

    De Lapparent, V.; Geller, M.J.; Huchra, J.P.

    1991-01-01

    Variations of the counts-in-cells with cell size are used here to define two statistical measures of large-scale clustering in three 6 deg slices of the CfA redshift survey. A percolation criterion is used to estimate the filling factor which measures the fraction of the total volume in the survey occupied by the large-scale structures. For the full 18 deg slice of the CfA redshift survey, f is about 0.25 + or - 0.05. After removing groups with more than five members from two of the slices, variations of the counts in occupied cells with cell size have a power-law behavior with a slope beta about 2.2 on scales from 1-10/h Mpc. Application of both this statistic and the percolation analysis to simulations suggests that a network of two-dimensional structures is a better description of the geometry of the clustering in the CfA slices than a network of one-dimensional structures. Counts-in-cells are also used to estimate at 0.3 galaxy h-squared/Mpc the average galaxy surface density in sheets like the Great Wall. 46 refs

  13. Ethics of large-scale change

    OpenAIRE

    Arler, Finn

    2006-01-01

      The subject of this paper is long-term large-scale changes in human society. Some very significant examples of large-scale change are presented: human population growth, human appropriation of land and primary production, the human use of fossil fuels, and climate change. The question is posed, which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, th...

  14. Working memory load related modulations of the oscillatory brain activity. N-back ERD/ERS study

    International Nuclear Information System (INIS)

    Nakao, Yoshiaki; Tamura, Toshiyo; Kodabashi, Atsushi; Fujimoto, Toshiro; Yarita, Masaru

    2011-01-01

    In recent cognitive neuroscience, a lot of studies of the human working memory were examined, and electroencephalography (EEG) measurements during n-back task were often used. However, they were almost studied by event related potentials (ERP) analysis. In the ERP study, time-locked components can be elicited, but non time-locked components such as the modulated brain oscillatory activity might be lost by an averaging procedure. To elucidate the contribution of the modulations of the brain oscillatory activity to the human working memory, we examined event related desynchronization (ERD)/event related synchronization (ERS) analysis on the source waveforms during n-back task. Source waveforms were calculated from a source model which was constructed with the sources seeded from fMRI meta-analysis of n-back task and additional sources in the orbitofrontal cortex and the visual cortex estimated with P100 and P360 components in the n-back ERP. Our results suggested the network which included the prefrontal cortex and the parietal lobe had a contribution to human working memory process, and it was mediated by theta oscillatory activity. (author)

  15. Scheduling of power generation a large-scale mixed-variable model

    CERN Document Server

    Prékopa, András; Strazicky, Beáta; Deák, István; Hoffer, János; Németh, Ágoston; Potecz, Béla

    2014-01-01

    The book contains description of a real life application of modern mathematical optimization tools in an important problem solution for power networks. The objective is the modelling and calculation of optimal daily scheduling of power generation, by thermal power plants,  to satisfy all demands at minimum cost, in such a way that the  generation and transmission capacities as well as the demands at the nodes of the system appear in an integrated form. The physical parameters of the network are also taken into account. The obtained large-scale mixed variable problem is relaxed in a smart, practical way, to allow for fast numerical solution of the problem.

  16. Global competition and local cooperation in a network of neural oscillators

    Science.gov (United States)

    Terman, David; Wang, DeLiang

    An architecture of locally excitatory, globally inhibitory oscillator networks is proposed and investigated both analytically and by computer simulation. The model for each oscillator corresponds to a standard relaxation oscillator with two time scales. Oscillators are locally coupled by a scheme that resembles excitatory synaptic coupling, and each oscillator also inhibits other oscillators through a common inhibitor. Oscillators are driven to be oscillatory by external stimulation. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing the other oscillators from jumping up. We show analytically that with the selective gating mechanism, the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate the model's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding and may provide an effective computational framework for scene segmentation and figure/ ground segregation.

  17. Coarse-Grain Bandwidth Estimation Techniques for Large-Scale Space Network

    Science.gov (United States)

    Cheung, Kar-Ming; Jennings, Esther

    2013-01-01

    In this paper, we describe a top-down analysis and simulation approach to size the bandwidths of a store-andforward network for a given network topology, a mission traffic scenario, and a set of data types with different latency requirements. We use these techniques to estimate the wide area network (WAN) bandwidths of the ground links for different architecture options of the proposed Integrated Space Communication and Navigation (SCaN) Network.

  18. Advances in Large-Scale Solar Heating and Long Term Storage in Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    2000-01-01

    According to (the) information from the European Large-Scale Solar Heating Network, (See http://www.hvac.chalmers.se/cshp/), the area of installed solar collectors for large-scale application is in Europe, approximately 8 mill m2, corresponding to about 4000 MW thermal power. The 11 plants...... the last 10 years and the corresponding cost per collector area for the final installed plant is kept constant, even so the solar production is increased. Unfortunately large-scale seasonal storage was not able to keep up with the advances in solar technology, at least for pit water and gravel storage...... of the total 51 plants are equipped with long-term storage. In Denmark, 7 plants are installed, comprising of approx. 18,000-m2 collector area with new plants planned. The development of these plants and the involved technologies will be presented in this paper, with a focus on the improvements for Danish...

  19. Heuristic algorithm for determination of local properties of scale-free networks

    CERN Document Server

    Mitrovic, M

    2006-01-01

    Complex networks are everywhere. Many phenomena in nature can be modeled as networks: - brain structures - protein-protein interaction networks - social interactions - the Internet and WWW. They can be represented in terms of nodes and edges connecting them. Important characteristics: - these networks are not random; they have a structured architecture. Structure of different networks are similar: - all have power law degree distribution (scale-free property) - despite large size there is usually relatively short path between any two nodes (small world property). Global characteristics: - degree distribution, clustering coefficient and the diameter. Local structure: - frequency of subgraphs of given type (subgraph of order k is a part of the network consisting of k nodes and edges between them). There are different types of subgraphs of the same order.

  20. A Feature Selection Method for Large-Scale Network Traffic Classification Based on Spark

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2016-02-01

    Full Text Available Currently, with the rapid increasing of data scales in network traffic classifications, how to select traffic features efficiently is becoming a big challenge. Although a number of traditional feature selection methods using the Hadoop-MapReduce framework have been proposed, the execution time was still unsatisfactory with numeral iterative computations during the processing. To address this issue, an efficient feature selection method for network traffic based on a new parallel computing framework called Spark is proposed in this paper. In our approach, the complete feature set is firstly preprocessed based on Fisher score, and a sequential forward search strategy is employed for subsets. The optimal feature subset is then selected using the continuous iterations of the Spark computing framework. The implementation demonstrates that, on the precondition of keeping the classification accuracy, our method reduces the time cost of modeling and classification, and improves the execution efficiency of feature selection significantly.

  1. LARGE SCALE DISTRIBUTED PARAMETER MODEL OF MAIN MAGNET SYSTEM AND FREQUENCY DECOMPOSITION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,W.; MARNERIS, I.; SANDBERG, J.

    2007-06-25

    Large accelerator main magnet system consists of hundreds, even thousands, of dipole magnets. They are linked together under selected configurations to provide highly uniform dipole fields when powered. Distributed capacitance, insulation resistance, coil resistance, magnet inductance, and coupling inductance of upper and lower pancakes make each magnet a complex network. When all dipole magnets are chained together in a circle, they become a coupled pair of very high order complex ladder networks. In this study, a network of more than thousand inductive, capacitive or resistive elements are used to model an actual system. The circuit is a large-scale network. Its equivalent polynomial form has several hundred degrees. Analysis of this high order circuit and simulation of the response of any or all components is often computationally infeasible. We present methods to use frequency decomposition approach to effectively simulate and analyze magnet configuration and power supply topologies.

  2. Composition and structure of a large online social network in The Netherlands.

    Directory of Open Access Journals (Sweden)

    Rense Corten

    Full Text Available Limitations in data collection have long been an obstacle in research on friendship networks. Most earlier studies use either a sample of ego-networks, or complete network data on a relatively small group (e.g., a single organization. The rise of online social networking services such as Friendster and Facebook, however, provides researchers with opportunities to study friendship networks on a much larger scale. This study uses complete network data from Hyves, a popular online social networking service in The Netherlands, comprising over eight million members and over 400 million online friendship relations. In the first study of its kind for The Netherlands, I examine the structure of this network in terms of the degree distribution, characteristic path length, clustering, and degree assortativity. Results indicate that this network shares features of other large complex networks, but also deviates in other respects. In addition, a comparison with other online social networks shows that these networks show remarkable similarities.

  3. Composition and structure of a large online social network in The Netherlands.

    Science.gov (United States)

    Corten, Rense

    2012-01-01

    Limitations in data collection have long been an obstacle in research on friendship networks. Most earlier studies use either a sample of ego-networks, or complete network data on a relatively small group (e.g., a single organization). The rise of online social networking services such as Friendster and Facebook, however, provides researchers with opportunities to study friendship networks on a much larger scale. This study uses complete network data from Hyves, a popular online social networking service in The Netherlands, comprising over eight million members and over 400 million online friendship relations. In the first study of its kind for The Netherlands, I examine the structure of this network in terms of the degree distribution, characteristic path length, clustering, and degree assortativity. Results indicate that this network shares features of other large complex networks, but also deviates in other respects. In addition, a comparison with other online social networks shows that these networks show remarkable similarities.

  4. Constructing large scale SCI-based processing systems by switch elements

    International Nuclear Information System (INIS)

    Wu, B.; Kristiansen, E.; Skaali, B.; Bogaerts, A.; Divia, R.; Mueller, H.

    1993-05-01

    The goal of this paper is to study some of the design criteria for the switch elements to form the interconnection of large scale SCI-based processing systems. The approved IEEE standard 1596 makes it possible to couple up to 64K nodes together. In order to connect thousands of nodes to construct large scale SCI-based processing systems, one has to interconnect these nodes by switch elements to form different topologies. A summary of the requirements and key points of interconnection networks and switches is presented. Two models of the SCI switch elements are proposed. The authors investigate several examples of systems constructed for 4-switches with simulations and the results are analyzed. Some issues and enhancements are discussed to provide the ideas behind the switch design that can improve performance and reduce latency. 29 refs., 11 figs., 3 tabs

  5. Analysis of Oscillatory Neural Activity in Series Network Models of Parkinson's Disease During Deep Brain Stimulation.

    Science.gov (United States)

    Davidson, Clare M; de Paor, Annraoi M; Cagnan, Hayriye; Lowery, Madeleine M

    2016-01-01

    Parkinson's disease is a progressive, neurodegenerative disorder, characterized by hallmark motor symptoms. It is associated with pathological, oscillatory neural activity in the basal ganglia. Deep brain stimulation (DBS) is often successfully used to treat medically refractive Parkinson's disease. However, the selection of stimulation parameters is based on qualitative assessment of the patient, which can result in a lengthy tuning period and a suboptimal choice of parameters. This study explores fourth-order, control theory-based models of oscillatory activity in the basal ganglia. Describing function analysis is applied to examine possible mechanisms for the generation of oscillations in interacting nuclei and to investigate the suppression of oscillations with high-frequency stimulation. The theoretical results for the suppression of the oscillatory activity obtained using both the fourth-order model, and a previously described second-order model, are optimized to fit clinically recorded local field potential data obtained from Parkinsonian patients with implanted DBS. Close agreement between the power of oscillations recorded for a range of stimulation amplitudes is observed ( R(2)=0.69-0.99 ). The results suggest that the behavior of the system and the suppression of pathological neural oscillations with DBS is well described by the macroscopic models presented. The results also demonstrate that in this instance, a second-order model is sufficient to model the clinical data, without the need for added complexity. Describing the system behavior with computationally efficient models could aid in the identification of optimal stimulation parameters for patients in a clinical environment.

  6. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D D; Bailey, G; Martin, J; Garton, D; Noorman, H; Stelcer, E; Johnson, P [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1994-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  7. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Bailey, G.; Martin, J.; Garton, D.; Noorman, H.; Stelcer, E.; Johnson, P. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  8. Engineering large-scale agent-based systems with consensus

    Science.gov (United States)

    Bokma, A.; Slade, A.; Kerridge, S.; Johnson, K.

    1994-01-01

    The paper presents the consensus method for the development of large-scale agent-based systems. Systems can be developed as networks of knowledge based agents (KBA) which engage in a collaborative problem solving effort. The method provides a comprehensive and integrated approach to the development of this type of system. This includes a systematic analysis of user requirements as well as a structured approach to generating a system design which exhibits the desired functionality. There is a direct correspondence between system requirements and design components. The benefits of this approach are that requirements are traceable into design components and code thus facilitating verification. The use of the consensus method with two major test applications showed it to be successful and also provided valuable insight into problems typically associated with the development of large systems.

  9. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  10. LES-based characterization of a suction and oscillatory blowing fluidic actuator

    Science.gov (United States)

    Kim, Jeonglae; Moin, Parviz

    2015-11-01

    Recently, a novel fluidic actuator using steady suction and oscillatory blowing was developed for control of turbulent flows. The suction and oscillatory blowing (SaOB) actuator combines steady suction and pulsed oscillatory blowing into a single device. The actuation is based upon a self-sustained mechanism of confined jets and does not require any moving parts. The control output is determined by a pressure source and the geometric details, and no additional input is needed. While its basic mechanisms have been investigated to some extent, detailed characteristics of internal turbulent flows are not well understood. In this study, internal flows of the SaOB actuator are simulated using large-eddy simulation (LES). Flow characteristics within the actuator are described in detail for a better understanding of the physical mechanisms and improving the actuator design. LES predicts the self-sustained oscillations of the turbulent jet. Switching frequency, maximum velocity at the actuator outlets, and wall pressure distribution are in good agreement with the experimental measurements. The computational results are used to develop simplified boundary conditions for numerical experiments of active flow control. Supported by the Boeing company.

  11. Oscillatory serotonin function in depression.

    Science.gov (United States)

    Salomon, Ronald M; Cowan, Ronald L

    2013-11-01

    Oscillations in brain activities with periods of minutes to hours may be critical for normal mood behaviors. Ultradian (faster than circadian) rhythms of mood behaviors and associated central nervous system activities are altered in depression. Recent data suggest that ultradian rhythms in serotonin (5HT) function also change in depression. In two separate studies, 5HT metabolites in cerebrospinal fluid (CSF) were measured every 10 min for 24 h before and after chronic antidepressant treatment. Antidepressant treatments were associated with enhanced ultradian amplitudes of CSF metabolite levels. Another study used resting-state functional magnetic resonance imaging (fMRI) to measure amplitudes of dorsal raphé activation cycles following sham or active dietary depletions of the 5HT precursor (tryptophan). During depletion, amplitudes of dorsal raphé activation cycles increased with rapid 6 s periods (about 0.18 Hz) while functional connectivity weakened between dorsal raphé and thalamus at slower periods of 20 s (0.05 Hz). A third approach studied MDMA (ecstasy, 3,4-methylenedioxy-N-methylamphetamine) users because of their chronically diminished 5HT function compared with non-MDMA polysubstance users (Karageorgiou et al., 2009). Compared with a non-MDMA using cohort, MDMA users showed diminished fMRI intra-regional coherence in motor regions along with altered functional connectivity, again suggesting effects of altered 5HT oscillatory function. These data support a hypothesis that qualities of ultradian oscillations in 5HT function may critically influence moods and behaviors. Dysfunctional 5HT rhythms in depression may be a common endpoint and biomarker for depression, linking dysfunction of slow brain network oscillators to 5HT mechanisms affected by commonly available treatments. 5HT oscillatory dysfunction may define illness subtypes and predict responses to serotonergic agents. Further studies of 5HT oscillations in depression are indicated. Copyright

  12. Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow

    Science.gov (United States)

    Saengow, C.; Giacomin, A. J.

    2017-12-01

    The Oldroyd 8-constant framework for continuum constitutive theory contains a rich diversity of popular special cases for polymeric liquids. In this paper, we use part of our exact solution for shear stress to arrive at unique exact analytical solutions for the normal stress difference responses to large-amplitude oscillatory shear (LAOS) flow. The nonlinearity of the polymeric liquids, triggered by LAOS, causes these responses at even multiples of the test frequency. We call responses at a frequency higher than twice the test frequency higher harmonics. We find the new exact analytical solutions to be compact and intrinsically beautiful. These solutions reduce to those of our previous work on the special case of the corotational Maxwell fluid. Our solutions also agree with our new truncated Goddard integral expansion for the special case of the corotational Jeffreys fluid. The limiting behaviors of these exact solutions also yield new explicit expressions. Finally, we use our exact solutions to see how η∞ affects the normal stress differences in LAOS.

  13. Effects of degree correlation on scale-free gradient networks

    International Nuclear Information System (INIS)

    Pan Guijun; Yan Xiaoqing; Ma Weichuan; Luo Yihui; Huang Zhongbing

    2010-01-01

    We have studied the effects of degree correlation on congestion pressure in scale-free gradient networks. It is observed that the jamming coefficient J is insensitive to the degree correlation coefficient r for assortative and strongly disassortative scale-free networks, and J markedly decreases with an increase in r for weakly disassortative scale-free networks. We have also investigated the effects of degree correlation on the topology structure of scale-free gradient networks, and discussed the relation between the topology structure properties and transport efficiency of gradient networks.

  14. Cross-modal integration of lexical-semantic features during word processing: evidence from oscillatory dynamics during EEG.

    Directory of Open Access Journals (Sweden)

    Markus J van Ackeren

    Full Text Available In recent years, numerous studies have provided converging evidence that word meaning is partially stored in modality-specific cortical networks. However, little is known about the mechanisms supporting the integration of this distributed semantic content into coherent conceptual representations. In the current study we aimed to address this issue by using EEG to look at the spatial and temporal dynamics of feature integration during word comprehension. Specifically, participants were presented with two modality-specific features (i.e., visual or auditory features such as silver and loud and asked to verify whether these two features were compatible with a subsequently presented target word (e.g., WHISTLE. Each pair of features described properties from either the same modality (e.g., silver, tiny  =  visual features or different modalities (e.g., silver, loud  =  visual, auditory. Behavioral and EEG data were collected. The results show that verifying features that are putatively represented in the same modality-specific network is faster than verifying features across modalities. At the neural level, integrating features across modalities induces sustained oscillatory activity around the theta range (4-6 Hz in left anterior temporal lobe (ATL, a putative hub for integrating distributed semantic content. In addition, enhanced long-range network interactions in the theta range were seen between left ATL and a widespread cortical network. These results suggest that oscillatory dynamics in the theta range could be involved in integrating multimodal semantic content by creating transient functional networks linking distributed modality-specific networks and multimodal semantic hubs such as left ATL.

  15. Political consultation and large-scale research

    International Nuclear Information System (INIS)

    Bechmann, G.; Folkers, H.

    1977-01-01

    Large-scale research and policy consulting have an intermediary position between sociological sub-systems. While large-scale research coordinates science, policy, and production, policy consulting coordinates science, policy and political spheres. In this very position, large-scale research and policy consulting lack of institutional guarantees and rational back-ground guarantee which are characteristic for their sociological environment. This large-scale research can neither deal with the production of innovative goods under consideration of rentability, nor can it hope for full recognition by the basis-oriented scientific community. Policy consulting knows neither the competence assignment of the political system to make decisions nor can it judge succesfully by the critical standards of the established social science, at least as far as the present situation is concerned. This intermediary position of large-scale research and policy consulting has, in three points, a consequence supporting the thesis which states that this is a new form of institutionalization of science: These are: 1) external control, 2) the organization form, 3) the theoretical conception of large-scale research and policy consulting. (orig.) [de

  16. Scaling a network with positive gains to a lossy or gainy network

    NARCIS (Netherlands)

    Koene, J.

    1979-01-01

    Necessary and sufficient conditions are presented under which it is possible to scale a network with positive gains to a lossy or a gainy network. A procedure to perform such a scaling operation is given.

  17. BioPlex Display: An Interactive Suite for Large-Scale AP-MS Protein-Protein Interaction Data.

    Science.gov (United States)

    Schweppe, Devin K; Huttlin, Edward L; Harper, J Wade; Gygi, Steven P

    2018-01-05

    The development of large-scale data sets requires a new means to display and disseminate research studies to large audiences. Knowledge of protein-protein interaction (PPI) networks has become a principle interest of many groups within the field of proteomics. At the confluence of technologies, such as cross-linking mass spectrometry, yeast two-hybrid, protein cofractionation, and affinity purification mass spectrometry (AP-MS), detection of PPIs can uncover novel biological inferences at a high-throughput. Thus new platforms to provide community access to large data sets are necessary. To this end, we have developed a web application that enables exploration and dissemination of the growing BioPlex interaction network. BioPlex is a large-scale interactome data set based on AP-MS of baits from the human ORFeome. The latest BioPlex data set release (BioPlex 2.0) contains 56 553 interactions from 5891 AP-MS experiments. To improve community access to this vast compendium of interactions, we developed BioPlex Display, which integrates individual protein querying, access to empirical data, and on-the-fly annotation of networks within an easy-to-use and mobile web application. BioPlex Display enables rapid acquisition of data from BioPlex and development of hypotheses based on protein interactions.

  18. Large-scale multimedia modeling applications

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.; Buck, J.W.; Whelan, G.; Strenge, D.L.; Castleton, K.J.; Gelston, G.M.

    1995-08-01

    Over the past decade, the US Department of Energy (DOE) and other agencies have faced increasing scrutiny for a wide range of environmental issues related to past and current practices. A number of large-scale applications have been undertaken that required analysis of large numbers of potential environmental issues over a wide range of environmental conditions and contaminants. Several of these applications, referred to here as large-scale applications, have addressed long-term public health risks using a holistic approach for assessing impacts from potential waterborne and airborne transport pathways. Multimedia models such as the Multimedia Environmental Pollutant Assessment System (MEPAS) were designed for use in such applications. MEPAS integrates radioactive and hazardous contaminants impact computations for major exposure routes via air, surface water, ground water, and overland flow transport. A number of large-scale applications of MEPAS have been conducted to assess various endpoints for environmental and human health impacts. These applications are described in terms of lessons learned in the development of an effective approach for large-scale applications

  19. Optimal Information Processing in Biochemical Networks

    Science.gov (United States)

    Wiggins, Chris

    2012-02-01

    A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.

  20. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2008-02-29

    There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

  1. Multidimensional Scaling Localization Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-02-01

    Full Text Available Due to the localization algorithm in large-scale wireless sensor network exists shortcomings both in positioning accuracy and time complexity compared to traditional localization algorithm, this paper presents a fast multidimensional scaling location algorithm. By positioning algorithm for fast multidimensional scaling, fast mapping initialization, fast mapping and coordinate transform can get schematic coordinates of node, coordinates Initialize of MDS algorithm, an accurate estimate of the node coordinates and using the PRORUSTES to analysis alignment of the coordinate and final position coordinates of nodes etc. There are four steps, and the thesis gives specific implementation steps of the algorithm. Finally, compared with stochastic algorithms and classical MDS algorithm experiment, the thesis takes application of specific examples. Experimental results show that: the proposed localization algorithm has fast multidimensional scaling positioning accuracy in ensuring certain circumstances, but also greatly improves the speed of operation.

  2. Self-similarity and scaling theory of complex networks

    Science.gov (United States)

    Song, Chaoming

    Scale-free networks have been studied extensively due to their relevance to many real systems as diverse as the World Wide Web (WWW), the Internet, biological and social networks. We present a novel approach to the analysis of scale-free networks, revealing that their structure is self-similar. This result is achieved by the application of a renormalization procedure which coarse-grains the system into boxes containing nodes within a given "size". Concurrently, we identify a power-law relation between the number of boxes needed to cover the network and the size of the box defining a self-similar exponent, which classifies fractal and non-fractal networks. By using the concept of renormalization as a mechanism for the growth of fractal and non-fractal modular networks, we show that the key principle that gives rise to the fractal architecture of networks is a strong effective "repulsion" between the most connected nodes (hubs) on all length scales, rendering them very dispersed. We show that a robust network comprised of functional modules, such as a cellular network, necessitates a fractal topology, suggestive of a evolutionary drive for their existence. These fundamental properties help to understand the emergence of the scale-free property in complex networks.

  3. Node localization algorithm of wireless sensor networks for large electrical equipment monitoring application

    DEFF Research Database (Denmark)

    Chen, Qinyin; Hu, Y.; Chen, Zhe

    2016-01-01

    Node localization technology is an important technology for the Wireless Sensor Networks (WSNs) applications. An improved 3D node localization algorithm is proposed in this paper, which is based on a Multi-dimensional Scaling (MDS) node localization algorithm for large electrical equipment monito...

  4. Study on boiling heat transfer of subcooled flow under oscillatory flow condition

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Yamazaki, Satoshi; Koizumi, Yasuo

    2004-01-01

    The Onset of Nucleate Boiling, the point of Net Vapor Generation and Critical Heat Flux on subcooled flow boiling under oscillatory flow, focusing on liquid velocity, amplitude and frequency of oscillatory flow were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.07 m/s at 0.10MPa. The liquid subcooling was 20K. Frequency of oscillatory flow was 2 and 4 Hz, respectively; amplitude of oscillatory flow was 25 and 50% in a ratio of main flow rate, respectively. Temperatures at Onset of Nuclear Boiling and Critical Heat Flux obtained in the experiments decreased with the oscillatory flow. The decrease of liquid velocity by oscillatory flow caused the ONB and the CHF to decrease. On the other hand, heat flux at Net Vapor Generation decreased with oscillatory flow; the increase of liquid velocity by oscillatory flow caused the NVG to decrease. (author)

  5. Word-Length Correlations and Memory in Large Texts: A Visibility Network Analysis

    Directory of Open Access Journals (Sweden)

    Lev Guzmán-Vargas

    2015-11-01

    Full Text Available We study the correlation properties of word lengths in large texts from 30 ebooks in the English language from the Gutenberg Project (www.gutenberg.org using the natural visibility graph method (NVG. NVG converts a time series into a graph and then analyzes its graph properties. First, the original sequence of words is transformed into a sequence of values containing the length of each word, and then, it is integrated. Next, we apply the NVG to the integrated word-length series and construct the network. We show that the degree distribution of that network follows a power law, P ( k ∼ k - γ , with two regimes, which are characterized by the exponents γ s ≈ 1 . 7 (at short degree scales and γ l ≈ 1 . 3 (at large degree scales. This suggests that word lengths are much more strongly correlated at large distances between words than at short distances between words. That finding is also supported by the detrended fluctuation analysis (DFA and recurrence time distribution. These results provide new information about the universal characteristics of the structure of written texts beyond that given by word frequencies.

  6. A Nonlinear Multiobjective Bilevel Model for Minimum Cost Network Flow Problem in a Large-Scale Construction Project

    Directory of Open Access Journals (Sweden)

    Jiuping Xu

    2012-01-01

    Full Text Available The aim of this study is to deal with a minimum cost network flow problem (MCNFP in a large-scale construction project using a nonlinear multiobjective bilevel model with birandom variables. The main target of the upper level is to minimize both direct and transportation time costs. The target of the lower level is to minimize transportation costs. After an analysis of the birandom variables, an expectation multiobjective bilevel programming model with chance constraints is formulated to incorporate decision makers’ preferences. To solve the identified special conditions, an equivalent crisp model is proposed with an additional multiobjective bilevel particle swarm optimization (MOBLPSO developed to solve the model. The Shuibuya Hydropower Project is used as a real-world example to verify the proposed approach. Results and analysis are presented to highlight the performances of the MOBLPSO, which is very effective and efficient compared to a genetic algorithm and a simulated annealing algorithm.

  7. Decentralized Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad

    2013-01-01

    problem is formulated as a centralized large-scale optimization problem but is then decomposed into smaller subproblems that are solved locally by each unit connected to an aggregator. For large-scale systems the method is faster than solving the full problem and can be distributed to include an arbitrary...

  8. Automating large-scale reactor systems

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1985-01-01

    This paper conveys a philosophy for developing automated large-scale control systems that behave in an integrated, intelligent, flexible manner. Methods for operating large-scale systems under varying degrees of equipment degradation are discussed, and a design approach that separates the effort into phases is suggested. 5 refs., 1 fig

  9. Full-Duplex Communications in Large-Scale Cellular Networks

    KAUST Repository

    AlAmmouri, Ahmad

    2016-04-01

    In-band full-duplex (FD) communications have been optimistically promoted to improve the spectrum utilization and efficiency. However, the penetration of FD communications to the cellular networks domain is challenging due to the imposed uplink/downlink interference. This thesis presents a tractable framework, based on stochastic geometry, to study FD communications in multi-tier cellular networks. Particularly, we assess the FD communications effect on the network performance and quantify the associated gains. The study proves the vulnerability of the uplink to the downlink interference and shows that the improved FD rate gains harvested in the downlink (up to 97%) comes at the expense of a significant degradation in the uplink rate (up to 94%). Therefore, we propose a novel fine-grained duplexing scheme, denoted as α-duplex scheme, which allows a partial overlap between the uplink and the downlink frequency bands. We derive the required conditions to harvest rate gains from the α-duplex scheme and show its superiority to both the FD and half-duplex (HD) schemes. In particular, we show that the α-duplex scheme provides a simultaneous improvement of 28% for the downlink rate and 56% for the uplink rate. We also show that the amount of the overlap can be optimized based on the network design objective. Moreover, backward compatibility is an essential ingredient for the success of new technologies. In the context of in-band FD communication, FD base stations (BSs) should support HD users\\' equipment (UEs) without sacrificing the foreseen FD gains. The results show that FD-UEs are not necessarily required to harvest rate gains from FD-BSs. In particular, the results show that adding FD-UEs to FD-BSs offers a maximum of 5% rate gain over FD-BSs and HD-UEs case, which is a marginal gain compared to the burden required to implement FD transceivers at the UEs\\' side. To this end, we shed light on practical scenarios where HD-UEs operation with FD-BSs outperforms the

  10. Emergence of scale-free close-knit friendship structure in online social networks.

    Directory of Open Access Journals (Sweden)

    Ai-Xiang Cui

    Full Text Available Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four

  11. Emergence of scale-free close-knit friendship structure in online social networks.

    Science.gov (United States)

    Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan

    2012-01-01

    Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This

  12. Numerical Modeling of Large-Scale Rocky Coastline Evolution

    Science.gov (United States)

    Limber, P.; Murray, A. B.; Littlewood, R.; Valvo, L.

    2008-12-01

    Seventy-five percent of the world's ocean coastline is rocky. On large scales (i.e. greater than a kilometer), many intertwined processes drive rocky coastline evolution, including coastal erosion and sediment transport, tectonics, antecedent topography, and variations in sea cliff lithology. In areas such as California, an additional aspect of rocky coastline evolution involves submarine canyons that cut across the continental shelf and extend into the nearshore zone. These types of canyons intercept alongshore sediment transport and flush sand to abyssal depths during periodic turbidity currents, thereby delineating coastal sediment transport pathways and affecting shoreline evolution over large spatial and time scales. How tectonic, sediment transport, and canyon processes interact with inherited topographic and lithologic settings to shape rocky coastlines remains an unanswered, and largely unexplored, question. We will present numerical model results of rocky coastline evolution that starts with an immature fractal coastline. The initial shape is modified by headland erosion, wave-driven alongshore sediment transport, and submarine canyon placement. Our previous model results have shown that, as expected, an initial sediment-free irregularly shaped rocky coastline with homogeneous lithology will undergo smoothing in response to wave attack; headlands erode and mobile sediment is swept into bays, forming isolated pocket beaches. As this diffusive process continues, pocket beaches coalesce, and a continuous sediment transport pathway results. However, when a randomly placed submarine canyon is introduced to the system as a sediment sink, the end results are wholly different: sediment cover is reduced, which in turn increases weathering and erosion rates and causes the entire shoreline to move landward more rapidly. The canyon's alongshore position also affects coastline morphology. When placed offshore of a headland, the submarine canyon captures local sediment

  13. Scaling properties in time-varying networks with memory

    Science.gov (United States)

    Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong

    2015-12-01

    The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.

  14. Scale free effects in world currency exchange network

    Science.gov (United States)

    Górski, A. Z.; Drożdż, S.; Kwapień, J.

    2008-11-01

    A large collection of daily time series for 60 world currencies' exchange rates is considered. The correlation matrices are calculated and the corresponding Minimal Spanning Tree (MST) graphs are constructed for each of those currencies used as reference for the remaining ones. It is shown that multiplicity of the MST graphs' nodes to a good approximation develops a power like, scale free distribution with the scaling exponent similar as for several other complex systems studied so far. Furthermore, quantitative arguments in favor of the hierarchical organization of the world currency exchange network are provided by relating the structure of the above MST graphs and their scaling exponents to those that are derived from an exactly solvable hierarchical network model. A special status of the USD during the period considered can be attributed to some departures of the MST features, when this currency (or some other tied to it) is used as reference, from characteristics typical to such a hierarchical clustering of nodes towards those that correspond to the random graphs. Even though in general the basic structure of the MST is robust with respect to changing the reference currency some trace of a systematic transition from somewhat dispersed - like the USD case - towards more compact MST topology can be observed when correlations increase.

  15. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    Science.gov (United States)

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  16. Reverse engineering large-scale genetic networks: synthetic versus

    Indian Academy of Sciences (India)

    Development of microarray technology has resulted in an exponential rise in gene expression data. Linear computational methods are of great assistance in identifying molecular interactions, and elucidating the functional properties of gene networks. It overcomes the weaknesses of in vivo experiments including high cost, ...

  17. USE OF RFID AT LARGE-SCALE EVENTS

    Directory of Open Access Journals (Sweden)

    Yuusuke KAWAKITA

    2005-01-01

    Full Text Available Radio Frequency Identification (RFID devices and related technologies have received a great deal of attention for their ability to perform non-contact object identification. Systems incorporating RFID have been evaluated from a variety of perspectives. The authors constructed a networked RFID system to support event management at NetWorld+Interop 2004 Tokyo, an event that received 150,000 visitors. The system used multiple RFID readers installed at the venue and RFID tags carried by each visitor to provide a platform for running various management and visitor support applications. This paper presents the results of this field trial of RFID readability rates. It further addresses the applicability of RFID systems to visitor management, a problematic aspect of large-scale events.

  18. Inertial particle manipulation in microscale oscillatory flows

    Science.gov (United States)

    Agarwal, Siddhansh; Rallabandi, Bhargav; Raju, David; Hilgenfeldt, Sascha

    2017-11-01

    Recent work has shown that inertial effects in oscillating flows can be exploited for simultaneous transport and differential displacement of microparticles, enabling size sorting of such particles on extraordinarily short time scales. Generalizing previous theory efforts, we here derive a two-dimensional time-averaged version of the Maxey-Riley equation that includes the effect of an oscillating interface to model particle dynamics in such flows. Separating the steady transport time scale from the oscillatory time scale results in a simple and computationally efficient reduced model that preserves all slow-time features of the full unsteady Maxey-Riley simulations, including inertial particle displacement. Comparison is made not only to full simulations, but also to experiments using oscillating bubbles as the driving interfaces. In this case, the theory predicts either an attraction to or a repulsion from the bubble interface due to inertial effects, so that versatile particle manipulation is possible using differences in particle size, particle/fluid density contrast and streaming strength. We also demonstrate that these predictions are in agreement with experiments.

  19. AlpArray - technical strategies for large-scale European co-operation in broadband seismology

    Science.gov (United States)

    Brisbourne, A.; Clinton, J.; Hetenyi, G.; Pequegnat, C.; Wilde-Piorko, M.; Villasenor, A.; Comelli, P.; AlpArray Working Group

    2012-04-01

    AlpArray is a new initiative to study the greater Alpine area with a large-scale broadband seismological network. The interested parties (currently 32 institutes in 12 countries) plan to combine their existing infrastructures into an all-out transnational effort that includes data acquisition, processing, imaging and interpretation. The experiment will encompass the greater Alpine area, from the Black Forest in the north to the Northern Apennines in the south and from the Pannonian Basin in the east to the French Massif Central in the west. We aim to cover this region with high-quality broadband seismometers by combining the ~400 existing permanent stations with an additional 400+ instruments from mobile pools. In this way, we plan to achieve homogeneous and high resolution coverage while also deploying densely spaced stations along swaths across key parts of the Alpine chain. These efforts on land will be combined with deployments of ocean bottom seismometers in the Mediterranean Sea. Significant progress has already been made in outlining the scientific goals and funding strategy. A brief overview of these aspects of the initiative will be presented here. However, we will concentrate on the technical aspects: How efficient large-scale integration of existing infrastructures can be achieved. Existing permanent station coverage within the greater Alpine area has been collated and assessed for data availability, allowing strategies to be developed for network densification to ensure a robust backbone network: An anticipated deployment strategy has been drawn up to optimise array coverage and data quality. The augmented backbone network will be supplemented by more densely spaced temporary arrays targeting more specific scientific questions. For these temporary arrays, a strategy document has been produced to outline standards for station installation, data acquisition, processing, archival and dissemination. All these operations are of course vital. However, data

  20. Weighted Scale-Free Network Properties of Ecological Network

    International Nuclear Information System (INIS)

    Lee, Jae Woo; Maeng, Seong Eun

    2013-01-01

    We investigate the scale-free network properties of the bipartite ecological network, in particular, the plant-pollinator network. In plant-pollinator network, the pollinators visit the plant to get the nectars. In contrast to the other complex network, the plant-pollinator network has not only the trophic relationships among the interacting partners but also the complexities of the coevolutionary effects. The interactions between the plant and pollinators are beneficial relations. The plant-pollinator network is a bipartite and weighted network. The networks have two types of the nodes: plant and pollinator. We consider the visiting frequency of a pollinator to a plant as the weighting value of the link. We defined the strength of a node as the sum of the weighting value of the links. We reported the cumulative distribution function (CDF) of the degree and the strength of the plant-pollinator network. The CDF of the plants followed stretched exponential functions for both degree and strength, but the CDF of the pollinators showed the power law for both degree and strength. The average strength of the links showed the nonlinear dependence on the degree of the networks.

  1. The Software Reliability of Large Scale Integration Circuit and Very Large Scale Integration Circuit

    OpenAIRE

    Artem Ganiyev; Jan Vitasek

    2010-01-01

    This article describes evaluation method of faultless function of large scale integration circuits (LSI) and very large scale integration circuits (VLSI). In the article there is a comparative analysis of factors which determine faultless of integrated circuits, analysis of already existing methods and model of faultless function evaluation of LSI and VLSI. The main part describes a proposed algorithm and program for analysis of fault rate in LSI and VLSI circuits.

  2. A Mountain-Scale Monitoring Network for Yucca Mountain Performance Confirmation

    International Nuclear Information System (INIS)

    Freifeld, Barry; Tsang, Yvonne

    2006-01-01

    Confirmation of the performance of Yucca Mountain is required by 10 CFR Part 63.131 to indicate, where practicable, that the natural system acts as a barrier, as intended. Hence, performance confirmation monitoring and testing would provide data for continued assessment during the pre-closure period. In general, to carry out testing at a relevant scale is always important, and in the case of performance confirmation, it is particularly important to be able to test at the scale of the repository. We view the large perturbation caused by construction of the repository at Yucca Mountain as a unique opportunity to study the large-scale behavior of the natural barrier system. Repository construction would necessarily introduce traced fluids and result in the creation of leachates. A program to monitor traced fluids and construction leachates permits evaluation of transport through the unsaturated zone and potentially downgradient through the saturated zone. A robust sampling and monitoring network for continuous measurement of important parameters, and for periodic collection of agrochemical samples, is proposed to observe thermo-hydrogeochemical changes near the repository horizon and down to the water table. The sampling and monitoring network can be used to provide data to (1) assess subsurface conditions encountered and changes in those conditions during construction and waste emplacement operations; and (2) for modeling to determine that the natural system is functioning as intended

  3. Spectral Methods for Immunization of Large Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Ahmad

    2017-11-01

    Full Text Available Given a network of nodes, minimizing the spread of a contagion using a limited budget is a well-studied problem with applications in network security, viral marketing, social networks, and public health. In real graphs, virus may infect a node which in turn infects its neighbour nodes and this may trigger an epidemic in the whole graph. The goal thus is to select the best k nodes (budget constraint that are immunized (vaccinated, screened, filtered so as the remaining graph is less prone to the epidemic. It is known that the problem is, in all practical models, computationally intractable even for moderate sized graphs. In this paper we employ ideas from spectral graph theory to define relevance and importance of nodes. Using novel graph theoretic techniques, we then design an efficient approximation algorithm to immunize the graph. Theoretical guarantees on the running time of our algorithm show that it is more efficient than any other known solution in the literature. We test the performance of our algorithm on several real world graphs. Experiments show that our algorithm scales well for large graphs and outperforms state of the art algorithms both in quality (containment of epidemic and efficiency (runtime and space complexity.

  4. The Design of a Large Scale Airline Network

    NARCIS (Netherlands)

    Carmona Benitez, R.B.

    2012-01-01

    Airlines invest a lot of money before opening new pax transportation services, for this reason, airlines have to analyze if their profits will overcome the amount of money they have to invest to open new services. The design and analysis of the feasibility of airlines networks can be done by using

  5. Bilevel Traffic Evacuation Model and Algorithm Design for Large-Scale Activities

    Directory of Open Access Journals (Sweden)

    Danwen Bao

    2017-01-01

    Full Text Available This paper establishes a bilevel planning model with one master and multiple slaves to solve traffic evacuation problems. The minimum evacuation network saturation and shortest evacuation time are used as the objective functions for the upper- and lower-level models, respectively. The optimizing conditions of this model are also analyzed. An improved particle swarm optimization (PSO method is proposed by introducing an electromagnetism-like mechanism to solve the bilevel model and enhance its convergence efficiency. A case study is carried out using the Nanjing Olympic Sports Center. The results indicate that, for large-scale activities, the average evacuation time of the classic model is shorter but the road saturation distribution is more uneven. Thus, the overall evacuation efficiency of the network is not high. For induced emergencies, the evacuation time of the bilevel planning model is shortened. When the audience arrival rate is increased from 50% to 100%, the evacuation time is shortened from 22% to 35%, indicating that the optimization effect of the bilevel planning model is more effective compared to the classic model. Therefore, the model and algorithm presented in this paper can provide a theoretical basis for the traffic-induced evacuation decision making of large-scale activities.

  6. Incorporation of Spatial Interactions in Location Networks to Identify Critical Geo-Referenced Routes for Assessing Disease Control Measures on a Large-Scale Campus

    Directory of Open Access Journals (Sweden)

    Tzai-Hung Wen

    2015-04-01

    Full Text Available Respiratory diseases mainly spread through interpersonal contact. Class suspension is the most direct strategy to prevent the spread of disease through elementary or secondary schools by blocking the contact network. However, as university students usually attend courses in different buildings, the daily contact patterns on a university campus are complicated, and once disease clusters have occurred, suspending classes is far from an efficient strategy to control disease spread. The purpose of this study is to propose a methodological framework for generating campus location networks from a routine administration database, analyzing the community structure of the network, and identifying the critical links and nodes for blocking respiratory disease transmission. The data comes from the student enrollment records of a major comprehensive university in Taiwan. We combined the social network analysis and spatial interaction model to establish a geo-referenced community structure among the classroom buildings. We also identified the critical links among the communities that were acting as contact bridges and explored the changes in the location network after the sequential removal of the high-risk buildings. Instead of conducting a questionnaire survey, the study established a standard procedure for constructing a location network on a large-scale campus from a routine curriculum database. We also present how a location network structure at a campus could function to target the high-risk buildings as the bridges connecting communities for blocking disease transmission.

  7. Network-induced oscillatory behavior in material flow networks and irregular business cycles

    Science.gov (United States)

    Helbing, Dirk; Lämmer, Stefen; Witt, Ulrich; Brenner, Thomas

    2004-11-01

    Network theory is rapidly changing our understanding of complex systems, but the relevance of topological features for the dynamic behavior of metabolic networks, food webs, production systems, information networks, or cascade failures of power grids remains to be explored. Based on a simple model of supply networks, we offer an interpretation of instabilities and oscillations observed in biological, ecological, economic, and engineering systems. We find that most supply networks display damped oscillations, even when their units—and linear chains of these units—behave in a nonoscillatory way. Moreover, networks of damped oscillators tend to produce growing oscillations. This surprising behavior offers, for example, a different interpretation of business cycles and of oscillating or pulsating processes. The network structure of material flows itself turns out to be a source of instability, and cyclical variations are an inherent feature of decentralized adjustments.

  8. Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network

    Science.gov (United States)

    Sang, Nong; Zhang, Tianxu

    1997-12-01

    Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.

  9. Network-state modulation of power-law frequency-scaling in visual cortical neurons.

    Science.gov (United States)

    El Boustani, Sami; Marre, Olivier; Béhuret, Sébastien; Baudot, Pierre; Yger, Pierre; Bal, Thierry; Destexhe, Alain; Frégnac, Yves

    2009-09-01

    Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m) activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m) reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population signals measured

  10. PERSEUS-HUB: Interactive and Collective Exploration of Large-Scale Graphs

    Directory of Open Access Journals (Sweden)

    Di Jin

    2017-07-01

    Full Text Available Graphs emerge naturally in many domains, such as social science, neuroscience, transportation engineering, and more. In many cases, such graphs have millions or billions of nodes and edges, and their sizes increase daily at a fast pace. How can researchers from various domains explore large graphs interactively and efficiently to find out what is ‘important’? How can multiple researchers explore a new graph dataset collectively and “help” each other with their findings? In this article, we present Perseus-Hub, a large-scale graph mining tool that computes a set of graph properties in a distributed manner, performs ensemble, multi-view anomaly detection to highlight regions that are worth investigating, and provides users with uncluttered visualization and easy interaction with complex graph statistics. Perseus-Hub uses a Spark cluster to calculate various statistics of large-scale graphs efficiently, and aggregates the results in a summary on the master node to support interactive user exploration. In Perseus-Hub, the visualized distributions of graph statistics provide preliminary analysis to understand a graph. To perform a deeper analysis, users with little prior knowledge can leverage patterns (e.g., spikes in the power-law degree distribution marked by other users or experts. M