WorldWideScience

Sample records for large-scale hydrological model

  1. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    NARCIS (Netherlands)

    Loon, van A.F.; Huijgevoort, van M.H.J.; Lanen, van H.A.J.

    2012-01-01

    Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological

  2. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    Directory of Open Access Journals (Sweden)

    A. F. Van Loon

    2012-11-01

    Full Text Available Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that participated in the model intercomparison project of WATCH (WaterMIP. For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity, drought propagation features (pooling, attenuation, lag, lengthening, and hydrological drought typology (classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought.

    Drought characteristics simulated by large-scale models clearly reflected drought propagation; i.e. drought events became fewer and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having fewer and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of classical rainfall deficit droughts, and an

  3. Large-scale hydrology in Europe : observed patterns and model performance

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, Lukas

    2011-06-15

    In a changing climate, terrestrial water storages are of great interest as water availability impacts key aspects of ecosystem functioning. Thus, a better understanding of the variations of wet and dry periods will contribute to fully grasp processes of the earth system such as nutrient cycling and vegetation dynamics. Currently, river runoff from small, nearly natural, catchments is one of the few variables of the terrestrial water balance that is regularly monitored with detailed spatial and temporal coverage on large scales. River runoff, therefore, provides a foundation to approach European hydrology with respect to observed patterns on large scales, with regard to the ability of models to capture these.The analysis of observed river flow from small catchments, focused on the identification and description of spatial patterns of simultaneous temporal variations of runoff. These are dominated by large-scale variations of climatic variables but also altered by catchment processes. It was shown that time series of annual low, mean and high flows follow the same atmospheric drivers. The observation that high flows are more closely coupled to large scale atmospheric drivers than low flows, indicates the increasing influence of catchment properties on runoff under dry conditions. Further, it was shown that the low-frequency variability of European runoff is dominated by two opposing centres of simultaneous variations, such that dry years in the north are accompanied by wet years in the south.Large-scale hydrological models are simplified representations of our current perception of the terrestrial water balance on large scales. Quantification of the models strengths and weaknesses is the prerequisite for a reliable interpretation of simulation results. Model evaluations may also enable to detect shortcomings with model assumptions and thus enable a refinement of the current perception of hydrological systems. The ability of a multi model ensemble of nine large-scale

  4. Findings and Challenges in Fine-Resolution Large-Scale Hydrological Modeling

    Science.gov (United States)

    Her, Y. G.

    2017-12-01

    Fine-resolution large-scale (FL) modeling can provide the overall picture of the hydrological cycle and transport while taking into account unique local conditions in the simulation. It can also help develop water resources management plans consistent across spatial scales by describing the spatial consequences of decisions and hydrological events extensively. FL modeling is expected to be common in the near future as global-scale remotely sensed data are emerging, and computing resources have been advanced rapidly. There are several spatially distributed models available for hydrological analyses. Some of them rely on numerical methods such as finite difference/element methods (FDM/FEM), which require excessive computing resources (implicit scheme) to manipulate large matrices or small simulation time intervals (explicit scheme) to maintain the stability of the solution, to describe two-dimensional overland processes. Others make unrealistic assumptions such as constant overland flow velocity to reduce the computational loads of the simulation. Thus, simulation efficiency often comes at the expense of precision and reliability in FL modeling. Here, we introduce a new FL continuous hydrological model and its application to four watersheds in different landscapes and sizes from 3.5 km2 to 2,800 km2 at the spatial resolution of 30 m on an hourly basis. The model provided acceptable accuracy statistics in reproducing hydrological observations made in the watersheds. The modeling outputs including the maps of simulated travel time, runoff depth, soil water content, and groundwater recharge, were animated, visualizing the dynamics of hydrological processes occurring in the watersheds during and between storm events. Findings and challenges were discussed in the context of modeling efficiency, accuracy, and reproducibility, which we found can be improved by employing advanced computing techniques and hydrological understandings, by using remotely sensed hydrological

  5. Using radar altimetry to update a large-scale hydrological model of the Brahmaputra river basin

    DEFF Research Database (Denmark)

    Finsen, F.; Milzow, Christian; Smith, R.

    2014-01-01

    Measurements of river and lake water levels from space-borne radar altimeters (past missions include ERS, Envisat, Jason, Topex) are useful for calibration and validation of large-scale hydrological models in poorly gauged river basins. Altimetry data availability over the downstream reaches...... of the Brahmaputra is excellent (17 high-quality virtual stations from ERS-2, 6 from Topex and 10 from Envisat are available for the Brahmaputra). In this study, altimetry data are used to update a large-scale Budyko-type hydrological model of the Brahmaputra river basin in real time. Altimetry measurements...... improved model performance considerably. The Nash-Sutcliffe model efficiency increased from 0.77 to 0.83. Real-time river basin modelling using radar altimetry has the potential to improve the predictive capability of large-scale hydrological models elsewhere on the planet....

  6. Disinformative data in large-scale hydrological modelling

    Directory of Open Access Journals (Sweden)

    A. Kauffeldt

    2013-07-01

    Full Text Available Large-scale hydrological modelling has become an important tool for the study of global and regional water resources, climate impacts, and water-resources management. However, modelling efforts over large spatial domains are fraught with problems of data scarcity, uncertainties and inconsistencies between model forcing and evaluation data. Model-independent methods to screen and analyse data for such problems are needed. This study aimed at identifying data inconsistencies in global datasets using a pre-modelling analysis, inconsistencies that can be disinformative for subsequent modelling. The consistency between (i basin areas for different hydrographic datasets, and (ii between climate data (precipitation and potential evaporation and discharge data, was examined in terms of how well basin areas were represented in the flow networks and the possibility of water-balance closure. It was found that (i most basins could be well represented in both gridded basin delineations and polygon-based ones, but some basins exhibited large area discrepancies between flow-network datasets and archived basin areas, (ii basins exhibiting too-high runoff coefficients were abundant in areas where precipitation data were likely affected by snow undercatch, and (iii the occurrence of basins exhibiting losses exceeding the potential-evaporation limit was strongly dependent on the potential-evaporation data, both in terms of numbers and geographical distribution. Some inconsistencies may be resolved by considering sub-grid variability in climate data, surface-dependent potential-evaporation estimates, etc., but further studies are needed to determine the reasons for the inconsistencies found. Our results emphasise the need for pre-modelling data analysis to identify dataset inconsistencies as an important first step in any large-scale study. Applying data-screening methods before modelling should also increase our chances to draw robust conclusions from subsequent

  7. On the Fidelity of Semi-distributed Hydrologic Model Simulations for Large Scale Catchment Applications

    Science.gov (United States)

    Ajami, H.; Sharma, A.; Lakshmi, V.

    2017-12-01

    Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.

  8. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models

    Science.gov (United States)

    Wanders, N.; Bierkens, M. F. P.; de Jong, S. M.; de Roo, A.; Karssenberg, D.

    2014-08-01

    Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system, in particular the unsaturated zone, remains uncalibrated. Soil moisture observations from satellites have the potential to fill this gap. Here we evaluate the added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: (1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? (2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to calibration based only on discharge observations, such that this leads to improved simulations of soil moisture content and discharge? A dual state and parameter Ensemble Kalman Filter is used to calibrate the hydrological model LISFLOOD for the Upper Danube. Calibration is done using discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS, and ASCAT. Calibration with discharge data improves the estimation of groundwater and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate identification of parameters related to land-surface processes. For the Upper Danube upstream area up to 40,000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30% in the RMSE for discharge simulations, compared to calibration on discharge alone. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models, leading to a better simulation of soil moisture content throughout the catchment and a better simulation of discharge in upstream areas. This article was corrected on 15 SEP 2014. See the end of the full text for details.

  9. Integrating an agent-based model into a large-scale hydrological model for evaluating drought management in California

    Science.gov (United States)

    Sheffield, J.; He, X.; Wada, Y.; Burek, P.; Kahil, M.; Wood, E. F.; Oppenheimer, M.

    2017-12-01

    California has endured record-breaking drought since winter 2011 and will likely experience more severe and persistent drought in the coming decades under changing climate. At the same time, human water management practices can also affect drought frequency and intensity, which underscores the importance of human behaviour in effective drought adaptation and mitigation. Currently, although a few large-scale hydrological and water resources models (e.g., PCR-GLOBWB) consider human water use and management practices (e.g., irrigation, reservoir operation, groundwater pumping), none of them includes the dynamic feedback between local human behaviors/decisions and the natural hydrological system. It is, therefore, vital to integrate social and behavioral dimensions into current hydrological modeling frameworks. This study applies the agent-based modeling (ABM) approach and couples it with a large-scale hydrological model (i.e., Community Water Model, CWatM) in order to have a balanced representation of social, environmental and economic factors and a more realistic representation of the bi-directional interactions and feedbacks in coupled human and natural systems. In this study, we focus on drought management in California and considers two types of agents, which are (groups of) farmers and state management authorities, and assumed that their corresponding objectives are to maximize the net crop profit and to maintain sufficient water supply, respectively. Farmers' behaviors are linked with local agricultural practices such as cropping patterns and deficit irrigation. More precisely, farmers' decisions are incorporated into CWatM across different time scales in terms of daily irrigation amount, seasonal/annual decisions on crop types and irrigated area as well as the long-term investment of irrigation infrastructure. This simulation-based optimization framework is further applied by performing different sets of scenarios to investigate and evaluate the effectiveness

  10. Repurposing of open data through large scale hydrological modelling - hypeweb.smhi.se

    Science.gov (United States)

    Strömbäck, Lena; Andersson, Jafet; Donnelly, Chantal; Gustafsson, David; Isberg, Kristina; Pechlivanidis, Ilias; Strömqvist, Johan; Arheimer, Berit

    2015-04-01

    Hydrological modelling demands large amounts of spatial data, such as soil properties, land use, topography, lakes and reservoirs, ice and snow coverage, water management (e.g. irrigation patterns and regulations), meteorological data and observed water discharge in rivers. By using such data, the hydrological model will in turn provide new data that can be used for new purposes (i.e. re-purposing). This presentation will give an example of how readily available open data from public portals have been re-purposed by using the Hydrological Predictions for the Environment (HYPE) model in a number of large-scale model applications covering numerous subbasins and rivers. HYPE is a dynamic, semi-distributed, process-based, and integrated catchment model. The model output is launched as new Open Data at the web site www.hypeweb.smhi.se to be used for (i) Climate change impact assessments on water resources and dynamics; (ii) The European Water Framework Directive (WFD) for characterization and development of measure programs to improve the ecological status of water bodies; (iii) Design variables for infrastructure constructions; (iv) Spatial water-resource mapping; (v) Operational forecasts (1-10 days and seasonal) on floods and droughts; (vi) Input to oceanographic models for operational forecasts and marine status assessments; (vii) Research. The following regional domains have been modelled so far with different resolutions (number of subbasins within brackets): Sweden (37 000), Europe (35 000), Arctic basin (30 000), La Plata River (6 000), Niger River (800), Middle-East North-Africa (31 000), and the Indian subcontinent (6 000). The Hype web site provides several interactive web applications for exploring results from the models. The user can explore an overview of various water variables for historical and future conditions. Moreover the user can explore and download historical time series of discharge for each basin and explore the performance of the model

  11. Large-scale hydrological modelling and decision-making for sustainable water and land management along the Tarim River

    OpenAIRE

    Yu, Yang

    2017-01-01

    The debate over the effectiveness of Integrated Water Resources Management (IWRM) in practice has lasted for years. As the complexity and scope of IWRM increases in practice, it is difficult for hydrological models to directly simulate the interactions among water, ecosystem and humans. This study presents the large-scale hydrological modeling (MIKE HYDRO) approach and a Decision Support System (DSS) for decision-making with stakeholders on the sustainable water and land management along the ...

  12. Obtaining high-resolution stage forecasts by coupling large-scale hydrologic models with sensor data

    Science.gov (United States)

    Fries, K. J.; Kerkez, B.

    2017-12-01

    We investigate how "big" quantities of distributed sensor data can be coupled with a large-scale hydrologic model, in particular the National Water Model (NWM), to obtain hyper-resolution forecasts. The recent launch of the NWM provides a great example of how growing computational capacity is enabling a new generation of massive hydrologic models. While the NWM spans an unprecedented spatial extent, there remain many questions about how to improve forecast at the street-level, the resolution at which many stakeholders make critical decisions. Further, the NWM runs on supercomputers, so water managers who may have access to their own high-resolution measurements may not readily be able to assimilate them into the model. To that end, we ask the question: how can the advances of the large-scale NWM be coupled with new local observations to enable hyper-resolution hydrologic forecasts? A methodology is proposed whereby the flow forecasts of the NWM are directly mapped to high-resolution stream levels using Dynamical System Identification. We apply the methodology across a sensor network of 182 gages in Iowa. Of these sites, approximately one third have shown to perform well in high-resolution flood forecasting when coupled with the outputs of the NWM. The quality of these forecasts is characterized using Principal Component Analysis and Random Forests to identify where the NWM may benefit from new sources of local observations. We also discuss how this approach can help municipalities identify where they should place low-cost sensors to most benefit from flood forecasts of the NWM.

  13. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model

    Science.gov (United States)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2018-01-01

    Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration by innovative methods of model resolution alteration based on the spatial data variability and scaling of flows in urban hydrology.

  14. Integrating SMOS brightness temperatures with a new conceptual spatially distributed hydrological model for improving flood and drought predictions at large scale.

    Science.gov (United States)

    Hostache, Renaud; Rains, Dominik; Chini, Marco; Lievens, Hans; Verhoest, Niko E. C.; Matgen, Patrick

    2017-04-01

    Motivated by climate change and its impact on the scarcity or excess of water in many parts of the world, several agencies and research institutions have taken initiatives in monitoring and predicting the hydrologic cycle at a global scale. Such a monitoring/prediction effort is important for understanding the vulnerability to extreme hydrological events and for providing early warnings. This can be based on an optimal combination of hydro-meteorological models and remote sensing, in which satellite measurements can be used as forcing or calibration data or for regularly updating the model states or parameters. Many advances have been made in these domains and the near future will bring new opportunities with respect to remote sensing as a result of the increasing number of spaceborn sensors enabling the large scale monitoring of water resources. Besides of these advances, there is currently a tendency to refine and further complicate physically-based hydrologic models to better capture the hydrologic processes at hand. However, this may not necessarily be beneficial for large-scale hydrology, as computational efforts are therefore increasing significantly. As a matter of fact, a novel thematic science question that is to be investigated is whether a flexible conceptual model can match the performance of a complex physically-based model for hydrologic simulations at large scale. In this context, the main objective of this study is to investigate how innovative techniques that allow for the estimation of soil moisture from satellite data can help in reducing errors and uncertainties in large scale conceptual hydro-meteorological modelling. A spatially distributed conceptual hydrologic model has been set up based on recent developments of the SUPERFLEX modelling framework. As it requires limited computational efforts, this model enables early warnings for large areas. Using as forcings the ERA-Interim public dataset and coupled with the CMEM radiative transfer model

  15. The use of remotely sensed soil moisture data in large-scale models of the hydrological cycle

    Science.gov (United States)

    Salomonson, V. V.; Gurney, R. J.; Schmugge, T. J.

    1985-01-01

    Manabe (1982) has reviewed numerical simulations of the atmosphere which provided a framework within which an examination of the dynamics of the hydrological cycle could be conducted. It was found that the climate is sensitive to soil moisture variability in space and time. The challenge arises now to improve the observations of soil moisture so as to provide up-dated boundary condition inputs to large scale models including the hydrological cycle. Attention is given to details regarding the significance of understanding soil moisture variations, soil moisture estimation using remote sensing, and energy and moisture balance modeling.

  16. Modeling the Hydrologic Effects of Large-Scale Green Infrastructure Projects with GIS

    Science.gov (United States)

    Bado, R. A.; Fekete, B. M.; Khanbilvardi, R.

    2015-12-01

    Impervious surfaces in urban areas generate excess runoff, which in turn causes flooding, combined sewer overflows, and degradation of adjacent surface waters. Municipal environmental protection agencies have shown a growing interest in mitigating these effects with 'green' infrastructure practices that partially restore the perviousness and water holding capacity of urban centers. Assessment of the performance of current and future green infrastructure projects is hindered by the lack of adequate hydrological modeling tools; conventional techniques fail to account for the complex flow pathways of urban environments, and detailed analyses are difficult to prepare for the very large domains in which green infrastructure projects are implemented. Currently, no standard toolset exists that can rapidly and conveniently predict runoff, consequent inundations, and sewer overflows at a city-wide scale. We demonstrate how streamlined modeling techniques can be used with open-source GIS software to efficiently model runoff in large urban catchments. Hydraulic parameters and flow paths through city blocks, roadways, and sewer drains are automatically generated from GIS layers, and ultimately urban flow simulations can be executed for a variety of rainfall conditions. With this methodology, users can understand the implications of large-scale land use changes and green/gray storm water retention systems on hydraulic loading, peak flow rates, and runoff volumes.

  17. A Web-based Distributed Voluntary Computing Platform for Large Scale Hydrological Computations

    Science.gov (United States)

    Demir, I.; Agliamzanov, R.

    2014-12-01

    Distributed volunteer computing can enable researchers and scientist to form large parallel computing environments to utilize the computing power of the millions of computers on the Internet, and use them towards running large scale environmental simulations and models to serve the common good of local communities and the world. Recent developments in web technologies and standards allow client-side scripting languages to run at speeds close to native application, and utilize the power of Graphics Processing Units (GPU). Using a client-side scripting language like JavaScript, we have developed an open distributed computing framework that makes it easy for researchers to write their own hydrologic models, and run them on volunteer computers. Users will easily enable their websites for visitors to volunteer sharing their computer resources to contribute running advanced hydrological models and simulations. Using a web-based system allows users to start volunteering their computational resources within seconds without installing any software. The framework distributes the model simulation to thousands of nodes in small spatial and computational sizes. A relational database system is utilized for managing data connections and queue management for the distributed computing nodes. In this paper, we present a web-based distributed volunteer computing platform to enable large scale hydrological simulations and model runs in an open and integrated environment.

  18. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model

    Science.gov (United States)

    Abbaspour, K. C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B.

    2015-05-01

    A combination of driving forces are increasing pressure on local, national, and regional water supplies needed for irrigation, energy production, industrial uses, domestic purposes, and the environment. In many parts of Europe groundwater quantity, and in particular quality, have come under sever degradation and water levels have decreased resulting in negative environmental impacts. Rapid improvements in the economy of the eastern European block of countries and uncertainties with regard to freshwater availability create challenges for water managers. At the same time, climate change adds a new level of uncertainty with regard to freshwater supplies. In this research we build and calibrate an integrated hydrological model of Europe using the Soil and Water Assessment Tool (SWAT) program. Different components of water resources are simulated and crop yield and water quality are considered at the Hydrological Response Unit (HRU) level. The water resources are quantified at subbasin level with monthly time intervals. Leaching of nitrate into groundwater is also simulated at a finer spatial level (HRU). The use of large-scale, high-resolution water resources models enables consistent and comprehensive examination of integrated system behavior through physically-based, data-driven simulation. In this article we discuss issues with data availability, calibration of large-scale distributed models, and outline procedures for model calibration and uncertainty analysis. The calibrated model and results provide information support to the European Water Framework Directive and lay the basis for further assessment of the impact of climate change on water availability and quality. The approach and methods developed are general and can be applied to any large region around the world.

  19. Application of Large-Scale, Multi-Resolution Watershed Modeling Framework Using the Hydrologic and Water Quality System (HAWQS

    Directory of Open Access Journals (Sweden)

    Haw Yen

    2016-04-01

    Full Text Available In recent years, large-scale watershed modeling has been implemented broadly in the field of water resources planning and management. Complex hydrological, sediment, and nutrient processes can be simulated by sophisticated watershed simulation models for important issues such as water resources allocation, sediment transport, and pollution control. Among commonly adopted models, the Soil and Water Assessment Tool (SWAT has been demonstrated to provide superior performance with a large amount of referencing databases. However, it is cumbersome to perform tedious initialization steps such as preparing inputs and developing a model with each changing targeted study area. In this study, the Hydrologic and Water Quality System (HAWQS is introduced to serve as a national-scale Decision Support System (DSS to conduct challenging watershed modeling tasks. HAWQS is a web-based DSS developed and maintained by Texas A & M University, and supported by the U.S. Environmental Protection Agency. Three different spatial resolutions of Hydrologic Unit Code (HUC8, HUC10, and HUC12 and three temporal scales (time steps in daily/monthly/annual are available as alternatives for general users. In addition, users can specify preferred values of model parameters instead of using the pre-defined sets. With the aid of HAWQS, users can generate a preliminarily calibrated SWAT project within a few minutes by only providing the ending HUC number of the targeted watershed and the simulation period. In the case study, HAWQS was implemented on the Illinois River Basin, USA, with graphical demonstrations and associated analytical results. Scientists and/or decision-makers can take advantage of the HAWQS framework while conducting relevant topics or policies in the future.

  20. Modelling hydrologic and hydrodynamic processes in basins with large semi-arid wetlands

    Science.gov (United States)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Pontes, Paulo; Crétaux, Jean-François; Bergé-Nguyen, Muriel; Biancamaria, Sylvain; Gosset, Marielle; Calmant, Stephane; Tanimoun, Bachir

    2018-06-01

    Hydrological and hydrodynamic models are core tools for simulation of large basins and complex river systems associated to wetlands. Recent studies have pointed towards the importance of online coupling strategies, representing feedbacks between floodplain inundation and vertical hydrology. Especially across semi-arid regions, soil-floodplain interactions can be strong. In this study, we included a two-way coupling scheme in a large scale hydrological-hydrodynamic model (MGB) and tested different model structures, in order to assess which processes are important to be simulated in large semi-arid wetlands and how these processes interact with water budget components. To demonstrate benefits from this coupling over a validation case, the model was applied to the Upper Niger River basin encompassing the Niger Inner Delta, a vast semi-arid wetland in the Sahel Desert. Simulation was carried out from 1999 to 2014 with daily TMPA 3B42 precipitation as forcing, using both in-situ and remotely sensed data for calibration and validation. Model outputs were in good agreement with discharge and water levels at stations both upstream and downstream of the Inner Delta (Nash-Sutcliffe Efficiency (NSE) >0.6 for most gauges), as well as for flooded areas within the Delta region (NSE = 0.6; r = 0.85). Model estimates of annual water losses across the Delta varied between 20.1 and 30.6 km3/yr, while annual evapotranspiration ranged between 760 mm/yr and 1130 mm/yr. Evaluation of model structure indicated that representation of both floodplain channels hydrodynamics (storage, bifurcations, lateral connections) and vertical hydrological processes (floodplain water infiltration into soil column; evapotranspiration from soil and vegetation and evaporation of open water) are necessary to correctly simulate flood wave attenuation and evapotranspiration along the basin. Two-way coupled models are necessary to better understand processes in large semi-arid wetlands. Finally, such coupled

  1. European Continental Scale Hydrological Model, Limitations and Challenges

    Science.gov (United States)

    Rouholahnejad, E.; Abbaspour, K.

    2014-12-01

    The pressures on water resources due to increasing levels of societal demand, increasing conflict of interest and uncertainties with regard to freshwater availability create challenges for water managers and policymakers in many parts of Europe. At the same time, climate change adds a new level of pressure and uncertainty with regard to freshwater supplies. On the other hand, the small-scale sectoral structure of water management is now reaching its limits. The integrated management of water in basins requires a new level of consideration where water bodies are to be viewed in the context of the whole river system and managed as a unit within their basins. In this research we present the limitations and challenges of modelling the hydrology of the continent Europe. The challenges include: data availability at continental scale and the use of globally available data, streamgauge data quality and their misleading impacts on model calibration, calibration of large-scale distributed model, uncertainty quantification, and computation time. We describe how to avoid over parameterization in calibration process and introduce a parallel processing scheme to overcome high computation time. We used Soil and Water Assessment Tool (SWAT) program as an integrated hydrology and crop growth simulator to model water resources of the Europe continent. Different components of water resources are simulated and crop yield and water quality are considered at the Hydrological Response Unit (HRU) level. The water resources are quantified at subbasin level with monthly time intervals for the period of 1970-2006. The use of a large-scale, high-resolution water resources models enables consistent and comprehensive examination of integrated system behavior through physically-based, data-driven simulation and provides the overall picture of water resources temporal and spatial distribution across the continent. The calibrated model and results provide information support to the European Water

  2. Coupling a basin erosion and river sediment transport model into a large scale hydrological model: an application in the Amazon basin

    Science.gov (United States)

    Buarque, D. C.; Collischonn, W.; Paiva, R. C. D.

    2012-04-01

    This study presents the first application and preliminary results of the large scale hydrodynamic/hydrological model MGB-IPH with a new module to predict the spatial distribution of the basin erosion and river sediment transport in a daily time step. The MGB-IPH is a large-scale, distributed and process based hydrological model that uses a catchment based discretization and the Hydrological Response Units (HRU) approach. It uses physical based equations to simulate the hydrological processes, such as the Penman Monteith model for evapotranspiration, and uses the Muskingum Cunge approach and a full 1D hydrodynamic model for river routing; including backwater effects and seasonal flooding. The sediment module of the MGB-IPH model is divided into two components: 1) prediction of erosion over the basin and sediment yield to river network; 2) sediment transport along the river channels. Both MGB-IPH and the sediment module use GIS tools to display relevant maps and to extract parameters from SRTM DEM (a 15" resolution was adopted). Using the catchment discretization the sediment module applies the Modified Universal Soil Loss Equation to predict soil loss from each HRU considering three sediment classes defined according to the soil texture: sand, silt and clay. The effects of topography on soil erosion are estimated by a two-dimensional slope length (LS) factor which using the contributing area approach and a local slope steepness (S), both estimated for each DEM pixel using GIS algorithms. The amount of sediment releasing to the catchment river reach in each day is calculated using a linear reservoir. Once the sediment reaches the river they are transported into the river channel using an advection equation for silt and clay and a sediment continuity equation for sand. A sediment balance based on the Yang sediment transport capacity, allowing to compute the amount of erosion and deposition along the rivers, is performed for sand particles as bed load, whilst no

  3. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    Energy Technology Data Exchange (ETDEWEB)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Flörke, M.; Huang, S.; Motovilov, Y.; Buda, S.; Yang, T.; Müller, C.; Leng, G.; Tang, Q.; Portmann, F. T.; Hagemann, S.; Gerten, D.; Wada, Y.; Masaki, Y.; Alemayehu, T.; Satoh, Y.; Samaniego, L.

    2017-01-04

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.

  4. Parameterization of a Hydrological Model for a Large, Ungauged Urban Catchment

    Directory of Open Access Journals (Sweden)

    Gerald Krebs

    2016-10-01

    Full Text Available Urbanization leads to the replacement of natural areas by impervious surfaces and affects the catchment hydrological cycle with adverse environmental impacts. Low impact development tools (LID that mimic hydrological processes of natural areas have been developed and applied to mitigate these impacts. Hydrological simulations are one possibility to evaluate the LID performance but the associated small-scale processes require a highly spatially distributed and explicit modeling approach. However, detailed data for model development are often not available for large urban areas, hampering the model parameterization. In this paper we propose a methodology to parameterize a hydrological model to a large, ungauged urban area by maintaining at the same time a detailed surface discretization for direct parameter manipulation for LID simulation and a firm reliance on available data for model conceptualization. Catchment delineation was based on a high-resolution digital elevation model (DEM and model parameterization relied on a novel model regionalization approach. The impact of automated delineation and model regionalization on simulation results was evaluated for three monitored study catchments (5.87–12.59 ha. The simulated runoff peak was most sensitive to accurate catchment discretization and calibration, while both the runoff volume and the fit of the hydrograph were less affected.

  5. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    Directory of Open Access Journals (Sweden)

    S. Goeller

    2013-07-01

    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  6. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    Science.gov (United States)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  7. Improving rainfall representation for large-scale hydrological modelling of tropical mountain basins

    Science.gov (United States)

    Zulkafli, Zed; Buytaert, Wouter; Onof, Christian; Lavado, Waldo; Guyot, Jean-Loup

    2013-04-01

    Errors in the forcing data are sometimes overlooked in hydrological studies even when they could be the most important source of uncertainty. The latter particularly holds true in tropical countries with short historical records of rainfall monitoring and remote areas with sparse rain gauge network. In such instances, alternative data such as the remotely sensed precipitation from the TRMM (Tropical Rainfall Measuring Mission) satellite have been used. These provide a good spatial representation of rainfall processes but have been established in the literature to contain volumetric biases that may impair the results of hydrological modelling or worse, are compensated during model calibration. In this study, we analysed precipitation time series from the TMPA (TRMM Multiple Precipitation Algorithm, version 6) against measurements from over 300 gauges in the Andes and Amazon regions of Peru and Ecuador. We found moderately good monthly correlation between the pixel and gauge pairs but a severe underestimation of rainfall amounts and wet days. The discrepancy between the time series pairs is particularly visible over the east side of the Andes and may be attributed to localized and orographic-driven high intensity rainfall, which the satellite product may have limited skills at capturing due to technical and scale issues. This consequently results in a low bias in the simulated streamflow volumes further downstream. In comparison, with the recently released TMPA, version 7, the biases reduce. This work further explores several approaches to merge the two sources of rainfall measurements, each of a different spatial and temporal support, with the objective of improving the representation of rainfall in hydrological simulations. The methods used are (1) mean bias correction (2) data assimilation using Kalman filter Bayesian updating. The results are evaluated by means of (1) a comparison of runoff ratios (the ratio of the total runoff and the total precipitation over an

  8. Improved Large-Scale Inundation Modelling by 1D-2D Coupling and Consideration of Hydrologic and Hydrodynamic Processes - a Case Study in the Amazon

    Science.gov (United States)

    Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.

    2015-12-01

    Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple

  9. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation

    Science.gov (United States)

    Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-01-01

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946

  10. Large-scale hydrological modelling in the semi-arid north-east of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Guentner, A

    2002-09-01

    Semi-arid areas are characterized by small water resources. An increasing water demand due to population growth and economic development as well as a possible decreasing water availability in the course of climate change may aggravate water scarcity in future in these areas. The quantitative assessment of the water resources is a prerequisite for the development of sustainable measures of water management. For this task, hydrological models within a dynamic integrated framework are indispensable tools. The main objective of this study is to develop a hydrological model for the quantification of water availability over a large geographic domain of semi-arid environments. The study area is the Federal State of Ceara in the semi-arid north-east of Brazil. Surface water from reservoirs provides the largest part of water supply. The area has recurrently been affected by droughts which caused serious economic losses and social impacts like migration from the rural regions. (orig.)

  11. Significant uncertainty in global scale hydrological modeling from precipitation data errors

    Science.gov (United States)

    Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.

    2015-10-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.

  12. Large-scale hydrological modelling in the semi-arid north-east of Brazil

    Science.gov (United States)

    Güntner, Andreas

    2002-07-01

    the framework of an integrated model which contains modules that do not work on the basis of natural spatial units. The target units mentioned above are disaggregated in Wasa into smaller modelling units within a new multi-scale, hierarchical approach. The landscape units defined in this scheme capture in particular the effect of structured variability of terrain, soil and vegetation characteristics along toposequences on soil moisture and runoff generation. Lateral hydrological processes at the hillslope scale, as reinfiltration of surface runoff, being of particular importance in semi-arid environments, can thus be represented also within the large-scale model in a simplified form. Depending on the resolution of available data, small-scale variability is not represented explicitly with geographic reference in Wasa, but by the distribution of sub-scale units and by statistical transition frequencies for lateral fluxes between these units. Further model components of Wasa which respect specific features of semi-arid hydrology are: (1) A two-layer model for evapotranspiration comprises energy transfer at the soil surface (including soil evaporation), which is of importance in view of the mainly sparse vegetation cover. Additionally, vegetation parameters are differentiated in space and time in dependence on the occurrence of the rainy season. (2) The infiltration module represents in particular infiltration-excess surface runoff as the dominant runoff component. (3) For the aggregate description of the water balance of reservoirs that cannot be represented explicitly in the model, a storage approach respecting different reservoirs size classes and their interaction via the river network is applied. (4) A model for the quantification of water withdrawal by water use in different sectors is coupled to Wasa. (5) A cascade model for the temporal disaggregation of precipitation time series, adapted to the specific characteristics of tropical convective rainfall, is applied

  13. Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments

    Directory of Open Access Journals (Sweden)

    J. Dehotin

    2008-05-01

    Full Text Available Distributed hydrological models are valuable tools to derive distributed estimation of water balance components or to study the impact of land-use or climate change on water resources and water quality. In these models, the choice of an appropriate spatial discretization is a crucial issue. It is obviously linked to the available data, their spatial resolution and the dominant hydrological processes. For a given catchment and a given data set, the "optimal" spatial discretization should be adapted to the modelling objectives, as the latter determine the dominant hydrological processes considered in the modelling. For small catchments, landscape heterogeneity can be represented explicitly, whereas for large catchments such fine representation is not feasible and simplification is needed. The question is thus: is it possible to design a flexible methodology to represent landscape heterogeneity efficiently, according to the problem to be solved? This methodology should allow a controlled and objective trade-off between available data, the scale of the dominant water cycle components and the modelling objectives.

    In this paper, we propose a general methodology for such catchment discretization. It is based on the use of nested discretizations. The first level of discretization is composed of the sub-catchments, organised by the river network topology. The sub-catchment variability can be described using a second level of discretizations, which is called hydro-landscape units. This level of discretization is only performed if it is consistent with the modelling objectives, the active hydrological processes and data availability. The hydro-landscapes take into account different geophysical factors such as topography, land-use, pedology, but also suitable hydrological discontinuities such as ditches, hedges, dams, etc. For numerical reasons these hydro-landscapes can be further subdivided into smaller elements that will constitute the

  14. Modeling large-scale human alteration of land surface hydrology and climate

    Science.gov (United States)

    Pokhrel, Yadu N.; Felfelani, Farshid; Shin, Sanghoon; Yamada, Tomohito J.; Satoh, Yusuke

    2017-12-01

    Rapidly expanding human activities have profoundly affected various biophysical and biogeochemical processes of the Earth system over a broad range of scales, and freshwater systems are now amongst the most extensively altered ecosystems. In this study, we examine the human-induced changes in land surface water and energy balances and the associated climate impacts using a coupled hydrological-climate model framework which also simulates the impacts of human activities on the water cycle. We present three sets of analyses using the results from two model versions—one with and the other without considering human activities; both versions are run in offline and coupled mode resulting in a series of four experiments in total. First, we examine climate and human-induced changes in regional water balance focusing on the widely debated issue of the desiccation of the Aral Sea in central Asia. Then, we discuss the changes in surface temperature as a result of changes in land surface energy balance due to irrigation over global and regional scales. Finally, we examine the global and regional climate impacts of increased atmospheric water vapor content due to irrigation. Results indicate that the direct anthropogenic alteration of river flow in the Aral Sea basin resulted in the loss of 510 km3 of water during the latter half of the twentieth century which explains about half of the total loss of water from the sea. Results of irrigation-induced changes in surface energy balance suggest a significant surface cooling of up to 3.3 K over 1° grids in highly irrigated areas but a negligible change in land surface temperature when averaged over sufficiently large global regions. Results from the coupled model indicate a substantial change in 2 m air temperature and outgoing longwave radiation due to irrigation, highlighting the non-local (regional and global) implications of irrigation. These results provide important insights on the direct human alteration of land surface

  15. Lumped hydrological models is an Occam' razor for runoff modeling in large Russian Arctic basins

    OpenAIRE

    Ayzel Georgy

    2018-01-01

    This study is aimed to investigate the possibility of three lumped hydrological models to predict daily runoff of large-scale Arctic basins for the modern period (1979-2014) in the case of substantial data scarcity. All models were driven only by meteorological forcing reanalysis dataset without any additional information about landscape, soil or vegetation cover properties of studied basins. We found limitations of model parameters calibration in ungauged basins using global optimization alg...

  16. Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin

    NARCIS (Netherlands)

    Sutanudjaja, E.H.; Beek, L.P.H. van; Jong, S.M. de; Geer, F.C. van; Bierkens, M.F.P.

    2011-01-01

    The current generation of large-scale hydrological models does not include a groundwater flow component. Large-scale groundwater models, involving aquifers and basins of multiple countries, are still rare mainly due to a lack of hydro-geological data which are usually only available in

  17. Large-scale groundwater modeling using global datasets: A test case for the Rhine-Meuse basin

    NARCIS (Netherlands)

    Sutanudjaja, E.H.; Beek, L.P.H. van; Jong, S.M. de; Geer, F.C. van; Bierkens, M.F.P.

    2011-01-01

    The current generation of large-scale hydrological models does not include a groundwater flow component. Large-scale groundwater models, involving aquifers and basins of multiple countries, are still rare mainly due to a lack of hydro-geological data which are usually only available in developed

  18. Sizing and scaling requirements of a large-scale physical model for code validation

    International Nuclear Information System (INIS)

    Khaleel, R.; Legore, T.

    1990-01-01

    Model validation is an important consideration in application of a code for performance assessment and therefore in assessing the long-term behavior of the engineered and natural barriers of a geologic repository. Scaling considerations relevant to porous media flow are reviewed. An analysis approach is presented for determining the sizing requirements of a large-scale, hydrology physical model. The physical model will be used to validate performance assessment codes that evaluate the long-term behavior of the repository isolation system. Numerical simulation results for sizing requirements are presented for a porous medium model in which the media properties are spatially uncorrelated

  19. A review of continent scale hydrological datasets available for Africa

    OpenAIRE

    Bonsor, H.C.

    2010-01-01

    As rainfall becomes less reliable with predicted climate change the ability to assess the spatial and seasonal variations in groundwater availability on a large-scale (catchment and continent) is becoming increasingly important (Bates, et al. 2007; MacDonald et al. 2009). The scarcity of observed hydrological data, or difficulty in obtaining such data, within Africa means remotely sensed (RS) datasets must often be used to drive large-scale hydrological models. The different ap...

  20. Impact of spatio-temporal scale of adjustment on variational assimilation of hydrologic and hydrometeorological data in operational distributed hydrologic models

    Science.gov (United States)

    Lee, H.; Seo, D.; McKee, P.; Corby, R.

    2009-12-01

    One of the large challenges in data assimilation (DA) into distributed hydrologic models is to reduce the large degrees of freedom involved in the inverse problem to avoid overfitting. To assess the sensitivity of the performance of DA to the dimensionality of the inverse problem, we design and carry out real-world experiments in which the control vector in variational DA (VAR) is solved at different scales in space and time, e.g., lumped, semi-distributed, and fully-distributed in space, and hourly, 6 hourly, etc., in time. The size of the control vector is related to the degrees of freedom in the inverse problem. For the assessment, we use the prototype 4-dimenational variational data assimilator (4DVAR) that assimilates streamflow, precipitation and potential evaporation data into the NWS Hydrology Laboratory’s Research Distributed Hydrologic Model (HL-RDHM). In this talk, we present the initial results for a number of basins in Oklahoma and Texas.

  1. Large-scale hydrological modeling for calculating water stress indices: implications of improved spatiotemporal resolution, surface-groundwater differentiation, and uncertainty characterization.

    Science.gov (United States)

    Scherer, Laura; Venkatesh, Aranya; Karuppiah, Ramkumar; Pfister, Stephan

    2015-04-21

    Physical water scarcities can be described by water stress indices. These are often determined at an annual scale and a watershed level; however, such scales mask seasonal fluctuations and spatial heterogeneity within a watershed. In order to account for this level of detail, first and foremost, water availability estimates must be improved and refined. State-of-the-art global hydrological models such as WaterGAP and UNH/GRDC have previously been unable to reliably reflect water availability at the subbasin scale. In this study, the Soil and Water Assessment Tool (SWAT) was tested as an alternative to global models, using the case study of the Mississippi watershed. While SWAT clearly outperformed the global models at the scale of a large watershed, it was judged to be unsuitable for global scale simulations due to the high calibration efforts required. The results obtained in this study show that global assessments miss out on key aspects related to upstream/downstream relations and monthly fluctuations, which are important both for the characterization of water scarcity in the Mississippi watershed and for water footprints. Especially in arid regions, where scarcity is high, these models provide unsatisfying results.

  2. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    Science.gov (United States)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach

  3. Global-Scale Hydrology: Simple Characterization of Complex Simulation

    Science.gov (United States)

    Koster, Randal D.

    1999-01-01

    Atmospheric general circulation models (AGCMS) are unique and valuable tools for the analysis of large-scale hydrology. AGCM simulations of climate provide tremendous amounts of hydrological data with a spatial and temporal coverage unmatched by observation systems. To the extent that the AGCM behaves realistically, these data can shed light on the nature of the real world's hydrological cycle. In the first part of the seminar, I will describe the hydrological cycle in a typical AGCM, with some emphasis on the validation of simulated precipitation against observations. The second part of the seminar will focus on a key goal in large-scale hydrology studies, namely the identification of simple, overarching controls on hydrological behavior hidden amidst the tremendous amounts of data produced by the highly complex AGCM parameterizations. In particular, I will show that a simple 50-year-old climatological relation (and a recent extension we made to it) successfully predicts, to first order, both the annual mean and the interannual variability of simulated evaporation and runoff fluxes. The seminar will conclude with an example of a practical application of global hydrology studies. The accurate prediction of weather statistics several months in advance would have tremendous societal benefits, and conventional wisdom today points at the use of coupled ocean-atmosphere-land models for such seasonal-to-interannual prediction. Understanding the hydrological cycle in AGCMs is critical to establishing the potential for such prediction. Our own studies show, among other things, that soil moisture retention can lead to significant precipitation predictability in many midlatitude and tropical regions.

  4. Toward the Development of a Cold Regions Regional-Scale Hydrologic Model, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, Larry D [Univ. of Alaska, Fairbanks, AK (United States); Bolton, William Robert [Univ. of Alaska, Fairbanks, AK (United States); Young-Robertson, Jessica (Cable) [Univ. of Alaska, Fairbanks, AK (United States)

    2018-01-02

    This project improves meso-scale hydrologic modeling in the boreal forest by: (1) demonstrating the importance of capturing the heterogeneity of the landscape using small scale datasets for parameterization for both small and large basins; (2) demonstrating that in drier parts of the landscape and as the boreal forest dries with climate change, modeling approaches must consider the sensitivity of simulations to soil hydraulic parameters - such as residual water content - that are usually held constant. Thus, variability / flexibility in residual water content must be considered for accurate simulation of hydrologic processes in the boreal forest; (3) demonstrating that assessing climate change impacts on boreal forest hydrology through multiple model integration must account for direct effects of climate change (temperature and precipitation), and indirect effects from climate impacts on landscape characteristics (permafrost and vegetation distribution). Simulations demonstrated that climate change will increase runoff, but will increase ET to a greater extent and result in a drying of the landscape; and (4) vegetation plays a significant role in boreal hydrologic processes in permafrost free areas that have deciduous trees. This landscape type results in a decoupling of ET and precipitation, a tight coupling of ET and temperature, low runoff, and overall soil drying.

  5. Large-scale hydrological model river storage and discharge correction using a satellite altimetry-based discharge product

    Science.gov (United States)

    Emery, Charlotte Marie; Paris, Adrien; Biancamaria, Sylvain; Boone, Aaron; Calmant, Stéphane; Garambois, Pierre-André; Santos da Silva, Joecila

    2018-04-01

    Land surface models (LSMs) are widely used to study the continental part of the water cycle. However, even though their accuracy is increasing, inherent model uncertainties can not be avoided. In the meantime, remotely sensed observations of the continental water cycle variables such as soil moisture, lakes and river elevations are more frequent and accurate. Therefore, those two different types of information can be combined, using data assimilation techniques to reduce a model's uncertainties in its state variables or/and in its input parameters. The objective of this study is to present a data assimilation platform that assimilates into the large-scale ISBA-CTRIP LSM a punctual river discharge product, derived from ENVISAT nadir altimeter water elevation measurements and rating curves, over the whole Amazon basin. To deal with the scale difference between the model and the observation, the study also presents an initial development for a localization treatment that allows one to limit the impact of observations to areas close to the observation and in the same hydrological network. This assimilation platform is based on the ensemble Kalman filter and can correct either the CTRIP river water storage or the discharge. Root mean square error (RMSE) compared to gauge discharges is globally reduced until 21 % and at Óbidos, near the outlet, RMSE is reduced by up to 52 % compared to ENVISAT-based discharge. Finally, it is shown that localization improves results along the main tributaries.

  6. Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level

    OpenAIRE

    KAUFFELD Anna; WETTERHALL F.; Pappenberger F.; SALAMON Peter; THIELEN DEL POZO Jutta

    2014-01-01

    The uncertainty in operational hydrological forecast systems driven with numerical weather predictions inputs are often assessed by quantifying the uncertainty from the inputs and not from the hydrological model itself. However, part of the uncertainty in modelled discharge stems from the hydrological model and some models may be more suitable than others for particular processes. A hydrological multi-model hydrological system can account for some of this uncertainty, but there exists a p...

  7. Impacts of Changing Climatic Drivers and Land use features on Future Stormwater Runoff in the Northwest Florida Basin: A Large-Scale Hydrologic Modeling Assessment

    Science.gov (United States)

    Khan, M.; Abdul-Aziz, O. I.

    2017-12-01

    Potential changes in climatic drivers and land cover features can significantly influence the stormwater budget in the Northwest Florida Basin. We investigated the hydro-climatic and land use sensitivities of stormwater runoff by developing a large-scale process-based rainfall-runoff model for the large basin by using the EPA Storm Water Management Model (SWMM 5.1). Climatic and hydrologic variables, as well as land use/cover features were incorporated into the model to account for the key processes of coastal hydrology and its dynamic interactions with groundwater and sea levels. We calibrated and validated the model by historical daily streamflow observations during 2009-2012 at four major rivers in the basin. Downscaled climatic drivers (precipitation, temperature, solar radiation) projected by twenty GCMs-RCMs under CMIP5, along with the projected future land use/cover features were also incorporated into the model. The basin storm runoff was then simulated for the historical (2000s = 1976-2005) and two future periods (2050s = 2030-2059, and 2080s = 2070-2099). Comparative evaluation of the historical and future scenarios leads to important guidelines for stormwater management in Northwest Florida and similar regions under a changing climate and environment.

  8. A refined regional modeling approach for the Corn Belt - Experiences and recommendations for large-scale integrated modeling

    Science.gov (United States)

    Panagopoulos, Yiannis; Gassman, Philip W.; Jha, Manoj K.; Kling, Catherine L.; Campbell, Todd; Srinivasan, Raghavan; White, Michael; Arnold, Jeffrey G.

    2015-05-01

    Nonpoint source pollution from agriculture is the main source of nitrogen and phosphorus in the stream systems of the Corn Belt region in the Midwestern US. This region is comprised of two large river basins, the intensely row-cropped Upper Mississippi River Basin (UMRB) and Ohio-Tennessee River Basin (OTRB), which are considered the key contributing areas for the Northern Gulf of Mexico hypoxic zone according to the US Environmental Protection Agency. Thus, in this area it is of utmost importance to ensure that intensive agriculture for food, feed and biofuel production can coexist with a healthy water environment. To address these objectives within a river basin management context, an integrated modeling system has been constructed with the hydrologic Soil and Water Assessment Tool (SWAT) model, capable of estimating river basin responses to alternative cropping and/or management strategies. To improve modeling performance compared to previous studies and provide a spatially detailed basis for scenario development, this SWAT Corn Belt application incorporates a greatly refined subwatershed structure based on 12-digit hydrologic units or 'subwatersheds' as defined by the US Geological Service. The model setup, calibration and validation are time-demanding and challenging tasks for these large systems, given the scale intensive data requirements, and the need to ensure the reliability of flow and pollutant load predictions at multiple locations. Thus, the objectives of this study are both to comprehensively describe this large-scale modeling approach, providing estimates of pollution and crop production in the region as well as to present strengths and weaknesses of integrated modeling at such a large scale along with how it can be improved on the basis of the current modeling structure and results. The predictions were based on a semi-automatic hydrologic calibration approach for large-scale and spatially detailed modeling studies, with the use of the Sequential

  9. The UP modelling system for large scale hydrology: simulation of the Arkansas-Red River basin

    Directory of Open Access Journals (Sweden)

    C. G. Kilsby

    1999-01-01

    Full Text Available The UP (Upscaled Physically-based hydrological modelling system to the Arkansas-Red River basin (USA is designed for macro-scale simulations of land surface processes, and aims for a physical basis and, avoids the use of discharge records in the direct calibration of parameters. This is achieved in a two stage process: in the first stage parametrizations are derived from detailed modelling of selected representative small and then used in a second stage in which a simple distributed model is used to simulate the dynamic behaviour of the whole basin. The first stage of the process is described in a companion paper (Ewen et al., this issue, and the second stage of this process is described here. The model operated at an hourly time-step on 17-km grid squares for a two year simulation period, and represents all the important hydrological processes including regional aquifer recharge, groundwater discharge, infiltration- and saturation-excess runoff, evapotranspiration, snowmelt, overland and channel flow. Outputs from the model are discussed, and include river discharge at gauging stations and space-time fields of evaporation and soil moisture. Whilst the model efficiency assessed by comparison of simulated and observed discharge records is not as good as could be achieved with a model calibrated against discharge, there are considerable advantages in retaining a physical basis in applications to ungauged river basins and assessments of impacts of land use or climate change.

  10. Applying Hillslope Hydrology to Bridge between Ecosystem and Grid-Scale Processes within an Earth System Model

    Science.gov (United States)

    Subin, Z. M.; Sulman, B. N.; Malyshev, S.; Shevliakova, E.

    2013-12-01

    Soil moisture is a crucial control on surface energy fluxes, vegetation properties, and soil carbon cycling. Its interactions with ecosystem processes are highly nonlinear across a large range, as both drought stress and anoxia can impede vegetation and microbial growth. Earth System Models (ESMs) generally only represent an average soil-moisture state in grid cells at scales of 50-200 km, and as a result are not able to adequately represent the effects of subgrid heterogeneity in soil moisture, especially in regions with large wetland areas. We addressed this deficiency by developing the first ESM-coupled subgrid hillslope-hydrological model, TiHy (Tiled-hillslope Hydrology), embedded within the Geophysical Fluid Dynamics Laboratory (GFDL) land model. In each grid cell, one or more representative hillslope geometries are discretized into land model tiles along an upland-to-lowland gradient. These geometries represent ~1 km hillslope-scale hydrological features and allow for flexible representation of hillslope profile and plan shapes, in addition to variation of subsurface properties among or within hillslopes. Each tile (which may represent ~100 m along the hillslope) has its own surface fluxes, vegetation state, and vertically-resolved state variables for soil physics and biogeochemistry. Resolution of water state in deep layers (~200 m) down to bedrock allows for physical integration of groundwater transport with unsaturated overlying dynamics. Multiple tiles can also co-exist at the same vertical position along the hillslope, allowing the simulation of ecosystem heterogeneity due to disturbance. The hydrological model is coupled to the vertically-resolved Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) model, which captures non-linearity resulting from interactions between vertically-heterogeneous soil carbon and water profiles. We present comparisons of simulated water table depth to observations. We examine sensitivities to

  11. airGR: an R-package suitable for large sample hydrology presenting a suite of lumped hydrological models

    Science.gov (United States)

    Thirel, G.; Delaigue, O.; Coron, L.; Perrin, C.; Andreassian, V.

    2016-12-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years with the main objectives of designing models as efficient as possible in terms of streamflow simulation, applicable to a wide range of catchments and having low data requirements. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2015; Coron et al., 2016), called airGR, to make these models widely available. It includes: - the water balance annual GR1A (Mouehli et al., 2006), - the monthly GR2M (Mouehli, 2003) models, - three versions of the daily model, namely GR4J (Perrin et al., 2003), GR5J (Le Moine, 2008) and GR6J (Pushpalatha et al., 2011), - the hourly GR4H model (Mathevet, 2005), - a degree-day snow module CemaNeige (Valéry et al., 2014). The airGR package has been designed to facilitate the use by non-expert users and allow the addition of evaluation criteria, models or calibration algorithm selected by the end-user. Each model core is coded in FORTRAN to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria) are coded in R. The package is already used for educational purposes. It allows for convenient implementation of model inter-comparisons and

  12. Simulations of ecosystem hydrological processes using a unified multi-scale model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin; Hinkle, Ross; Li, Hong-Yi; Bailey, Vanessa; Bond-Lamberty, Ben

    2015-01-01

    This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling of hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.

  13. Large-scale hydrological simulations using the soil water assessment tool, protocol development, and application in the danube basin.

    Science.gov (United States)

    Pagliero, Liliana; Bouraoui, Fayçal; Willems, Patrick; Diels, Jan

    2014-01-01

    The Water Framework Directive of the European Union requires member states to achieve good ecological status of all water bodies. A harmonized pan-European assessment of water resources availability and quality, as affected by various management options, is necessary for a successful implementation of European environmental legislation. In this context, we developed a methodology to predict surface water flow at the pan-European scale using available datasets. Among the hydrological models available, the Soil Water Assessment Tool was selected because its characteristics make it suitable for large-scale applications with limited data requirements. This paper presents the results for the Danube pilot basin. The Danube Basin is one of the largest European watersheds, covering approximately 803,000 km and portions of 14 countries. The modeling data used included land use and management information, a detailed soil parameters map, and high-resolution climate data. The Danube Basin was divided into 4663 subwatersheds of an average size of 179 km. A modeling protocol is proposed to cope with the problems of hydrological regionalization from gauged to ungauged watersheds and overparameterization and identifiability, which are usually present during calibration. The protocol involves a cluster analysis for the determination of hydrological regions and multiobjective calibration using a combination of manual and automated calibration. The proposed protocol was successfully implemented, with the modeled discharges capturing well the overall hydrological behavior of the basin. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. User Friendly Open GIS Tool for Large Scale Data Assimilation - a Case Study of Hydrological Modelling

    Science.gov (United States)

    Gupta, P. K.

    2012-08-01

    Open source software (OSS) coding has tremendous advantages over proprietary software. These are primarily fuelled by high level programming languages (JAVA, C++, Python etc...) and open source geospatial libraries (GDAL/OGR, GEOS, GeoTools etc.). Quantum GIS (QGIS) is a popular open source GIS package, which is licensed under GNU GPL and is written in C++. It allows users to perform specialised tasks by creating plugins in C++ and Python. This research article emphasises on exploiting this capability of QGIS to build and implement plugins across multiple platforms using the easy to learn - Python programming language. In the present study, a tool has been developed to assimilate large spatio-temporal datasets such as national level gridded rainfall, temperature, topographic (digital elevation model, slope, aspect), landuse/landcover and multi-layer soil data for input into hydrological models. At present this tool has been developed for Indian sub-continent. An attempt is also made to use popular scientific and numerical libraries to create custom applications for digital inclusion. In the hydrological modelling calibration and validation are important steps which are repetitively carried out for the same study region. As such the developed tool will be user friendly and used efficiently for these repetitive processes by reducing the time required for data management and handling. Moreover, it was found that the developed tool can easily assimilate large dataset in an organised manner.

  15. Development of computational infrastructure to support hyper-resolution large-ensemble hydrology simulations from local-to-continental scales

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of computational infrastructure to support hyper-resolution large-ensemble hydrology simulations from local-to-continental scales A move is currently...

  16. Using GRACE Satellite Gravimetry for Assessing Large-Scale Hydrologic Extremes

    Directory of Open Access Journals (Sweden)

    Alexander Y. Sun

    2017-12-01

    Full Text Available Global assessment of the spatiotemporal variability in terrestrial total water storage anomalies (TWSA in response to hydrologic extremes is critical for water resources management. Using TWSA derived from the gravity recovery and climate experiment (GRACE satellites, this study systematically assessed the skill of the TWSA-climatology (TC approach and breakpoint (BP detection method for identifying large-scale hydrologic extremes. The TC approach calculates standardized anomalies by using the mean and standard deviation of the GRACE TWSA corresponding to each month. In the BP detection method, the empirical mode decomposition (EMD is first applied to identify the mean return period of TWSA extremes, and then a statistical procedure is used to identify the actual occurrence times of abrupt changes (i.e., BPs in TWSA. Both detection methods were demonstrated on basin-averaged TWSA time series for the world’s 35 largest river basins. A nonlinear event coincidence analysis measure was applied to cross-examine abrupt changes detected by these methods with those detected by the Standardized Precipitation Index (SPI. Results show that our EMD-assisted BP procedure is a promising tool for identifying hydrologic extremes using GRACE TWSA data. Abrupt changes detected by the BP method coincide well with those of the SPI anomalies and with documented hydrologic extreme events. Event timings obtained by the TC method were ambiguous for a number of river basins studied, probably because the GRACE data length is too short to derive long-term climatology at this time. The BP approach demonstrates a robust wet-dry anomaly detection capability, which will be important for applications with the upcoming GRACE Follow-On mission.

  17. Spatial-Scale Characteristics of Precipitation Simulated by Regional Climate Models and the Implications for Hydrological Modeling

    DEFF Research Database (Denmark)

    Rasmussen, S.H.; Christensen, J. H.; Drews, Martin

    2012-01-01

    Precipitation simulated by regional climate models (RCMs) is generally biased with respect to observations, especially at the local scale of a few tens of kilometers. This study investigates how well two different RCMs are able to reproduce the spatial correlation patterns of observed summer...... length scales on the order of 130 km are found in both observed data and RCM simulations. When simulations and observations are aggregated to different grid sizes, the pattern correlation significantly decreases when the aggregation length is less than roughly 100 km. Furthermore, the intermodel standard......, reflecting larger predictive certainty of the RCMs at larger scales. The findings on aggregated grid scales are shown to be largely independent of the underlying RCMs grid resolutions but not of the overall size of RCM domain. With regard to hydrological modeling applications, these findings indicate...

  18. Scaling, Similarity, and the Fourth Paradigm for Hydrology

    Science.gov (United States)

    Peters-Lidard, Christa D.; Clark, Martyn; Samaniego, Luis; Verhoest, Niko E. C.; van Emmerik, Tim; Uijlenhoet, Remko; Achieng, Kevin; Franz, Trenton E.; Woods, Ross

    2017-01-01

    In this synthesis paper addressing hydrologic scaling and similarity, we posit that roadblocks in the search for universal laws of hydrology are hindered by our focus on computational simulation (the third paradigm), and assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modelling, have laid the foundation for a data-driven framework for scrutinizing hydrological scaling and similarity hypotheses. We summarize important scaling and similarity concepts (hypotheses) that require testing, describe a mutual information framework for testing these hypotheses, describe boundary condition, state flux, and parameter data requirements across scales to support testing these hypotheses, and discuss some challenges to overcome while pursuing the fourth hydrological paradigm. We call upon the hydrologic sciences community to develop a focused effort towards adopting the fourth paradigm and apply this to outstanding challenges in scaling and similarity.

  19. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study

    Science.gov (United States)

    Hattermann, F. F.; Vetter, T.; Breuer, L.; Su, Buda; Daggupati, P.; Donnelly, C.; Fekete, B.; Flörke, F.; Gosling, S. N.; Hoffmann, P.; Liersch, S.; Masaki, Y.; Motovilov, Y.; Müller, C.; Samaniego, L.; Stacke, T.; Wada, Y.; Yang, T.; Krysnaova, V.

    2018-01-01

    Climate change impacts on water availability and hydrological extremes are major concerns as regards the Sustainable Development Goals. Impacts on hydrology are normally investigated as part of a modelling chain, in which climate projections from multiple climate models are used as inputs to multiple impact models, under different greenhouse gas emissions scenarios, which result in different amounts of global temperature rise. While the goal is generally to investigate the relevance of changes in climate for the water cycle, water resources or hydrological extremes, it is often the case that variations in other components of the model chain obscure the effect of climate scenario variation. This is particularly important when assessing the impacts of relatively lower magnitudes of global warming, such as those associated with the aspirational goals of the Paris Agreement. In our study, we use ANOVA (analyses of variance) to allocate and quantify the main sources of uncertainty in the hydrological impact modelling chain. In turn we determine the statistical significance of different sources of uncertainty. We achieve this by using a set of five climate models and up to 13 hydrological models, for nine large scale river basins across the globe, under four emissions scenarios. The impact variable we consider in our analysis is daily river discharge. We analyze overall water availability and flow regime, including seasonality, high flows and low flows. Scaling effects are investigated by separately looking at discharge generated by global and regional hydrological models respectively. Finally, we compare our results with other recently published studies. We find that small differences in global temperature rise associated with some emissions scenarios have mostly significant impacts on river discharge—however, climate model related uncertainty is so large that it obscures the sensitivity of the hydrological system.

  20. Common problematic aspects of coupling hydrological models with groundwater flow models on the river catchment scale

    Directory of Open Access Journals (Sweden)

    R. Barthel

    2006-01-01

    Full Text Available Model coupling requires a thorough conceptualisation of the coupling strategy, including an exact definition of the individual model domains, the "transboundary" processes and the exchange parameters. It is shown here that in the case of coupling groundwater flow and hydrological models – in particular on the regional scale – it is very important to find a common definition and scale-appropriate process description of groundwater recharge and baseflow (or "groundwater runoff/discharge" in order to achieve a meaningful representation of the processes that link the unsaturated and saturated zones and the river network. As such, integration by means of coupling established disciplinary models is problematic given that in such models, processes are defined from a purpose-oriented, disciplinary perspective and are therefore not necessarily consistent with definitions of the same process in the model concepts of other disciplines. This article contains a general introduction to the requirements and challenges of model coupling in Integrated Water Resources Management including a definition of the most relevant technical terms, a short description of the commonly used approach of model coupling and finally a detailed consideration of the role of groundwater recharge and baseflow in coupling groundwater models with hydrological models. The conclusions summarize the most relevant problems rather than giving practical solutions. This paper aims to point out that working on a large scale in an integrated context requires rethinking traditional disciplinary workflows and encouraging communication between the different disciplines involved. It is worth noting that the aspects discussed here are mainly viewed from a groundwater perspective, which reflects the author's background.

  1. Scale effect challenges in urban hydrology highlighted with a Fully Distributed Model and High-resolution rainfall data

    Science.gov (United States)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2017-04-01

    Nowadays, there is a growing interest on small-scale rainfall information, provided by weather radars, to be used in urban water management and decision-making. Therefore, an increasing interest is in parallel devoted to the development of fully distributed and grid-based models following the increase of computation capabilities, the availability of high-resolution GIS information needed for such models implementation. However, the choice of an appropriate implementation scale to integrate the catchment heterogeneity and the whole measured rainfall variability provided by High-resolution radar technologies still issues. This work proposes a two steps investigation of scale effects in urban hydrology and its effects on modeling works. In the first step fractal tools are used to highlight the scale dependency observed within distributed data used to describe the catchment heterogeneity, both the structure of the sewer network and the distribution of impervious areas are analyzed. Then an intensive multi-scale modeling work is carried out to understand scaling effects on hydrological model performance. Investigations were conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model was implemented at 17 spatial resolutions ranging from 100 m to 5 m and modeling investigations were performed using both rain gauge rainfall information as well as high resolution X band radar data in order to assess the sensitivity of the model to small scale rainfall variability. Results coming out from this work demonstrate scale effect challenges in urban hydrology modeling. In fact, fractal concept highlights the scale dependency observed within distributed data used to implement hydrological models. Patterns of geophysical data change when we change the observation pixel size. The multi-scale modeling investigation performed with Multi-Hydro model at 17 spatial resolutions confirms scaling effect on hydrological model

  2. Modeling the impact of large-scale energy conversion systems on global climate

    International Nuclear Information System (INIS)

    Williams, J.

    There are three energy options which could satisfy a projected energy requirement of about 30 TW and these are the solar, nuclear and (to a lesser extent) coal options. Climate models can be used to assess the impact of large scale deployment of these options. The impact of waste heat has been assessed using energy balance models and general circulation models (GCMs). Results suggest that the impacts are significant when the heat imput is very high and studies of more realistic scenarios are required. Energy balance models, radiative-convective models and a GCM have been used to study the impact of doubling the atmospheric CO 2 concentration. State-of-the-art models estimate a surface temperature increase of 1.5-3.0 0 C with large amplification near the poles, but much uncertainty remains. Very few model studies have been made of the impact of particles on global climate, more information on the characteristics of particle input are required. The impact of large-scale deployment of solar energy conversion systems has received little attention but model studies suggest that large scale changes in surface characteristics associated with such systems (surface heat balance, roughness and hydrological characteristics and ocean surface temperature) could have significant global climatic effects. (Auth.)

  3. Application of Hierarchy Theory to Cross-Scale Hydrologic Modeling of Nutrient Loads

    Science.gov (United States)

    We describe a model called Regional Hydrologic Modeling for Environmental Evaluation 16 (RHyME2) for quantifying annual nutrient loads in stream networks and watersheds. RHyME2 is 17 a cross-scale statistical and process-based water-quality model. The model ...

  4. USER FRIENDLY OPEN GIS TOOL FOR LARGE SCALE DATA ASSIMILATION – A CASE STUDY OF HYDROLOGICAL MODELLING

    Directory of Open Access Journals (Sweden)

    P. K. Gupta

    2012-08-01

    Full Text Available Open source software (OSS coding has tremendous advantages over proprietary software. These are primarily fuelled by high level programming languages (JAVA, C++, Python etc... and open source geospatial libraries (GDAL/OGR, GEOS, GeoTools etc.. Quantum GIS (QGIS is a popular open source GIS package, which is licensed under GNU GPL and is written in C++. It allows users to perform specialised tasks by creating plugins in C++ and Python. This research article emphasises on exploiting this capability of QGIS to build and implement plugins across multiple platforms using the easy to learn – Python programming language. In the present study, a tool has been developed to assimilate large spatio-temporal datasets such as national level gridded rainfall, temperature, topographic (digital elevation model, slope, aspect, landuse/landcover and multi-layer soil data for input into hydrological models. At present this tool has been developed for Indian sub-continent. An attempt is also made to use popular scientific and numerical libraries to create custom applications for digital inclusion. In the hydrological modelling calibration and validation are important steps which are repetitively carried out for the same study region. As such the developed tool will be user friendly and used efficiently for these repetitive processes by reducing the time required for data management and handling. Moreover, it was found that the developed tool can easily assimilate large dataset in an organised manner.

  5. Toward seamless hydrologic predictions across spatial scales

    Directory of Open Access Journals (Sweden)

    L. Samaniego

    2017-09-01

    Full Text Available Land surface and hydrologic models (LSMs/HMs are used at diverse spatial resolutions ranging from catchment-scale (1–10 km to global-scale (over 50 km applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR technique offers a practical and robust method that provides consistent (seamless parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.

  6. Toward seamless hydrologic predictions across spatial scales

    Science.gov (United States)

    Samaniego, Luis; Kumar, Rohini; Thober, Stephan; Rakovec, Oldrich; Zink, Matthias; Wanders, Niko; Eisner, Stephanie; Müller Schmied, Hannes; Sutanudjaja, Edwin H.; Warrach-Sagi, Kirsten; Attinger, Sabine

    2017-09-01

    Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1-10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR) technique offers a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.

  7. Large sample hydrology in NZ: Spatial organisation in process diagnostics

    Science.gov (United States)

    McMillan, H. K.; Woods, R. A.; Clark, M. P.

    2013-12-01

    A key question in hydrology is how to predict the dominant runoff generation processes in any given catchment. This knowledge is vital for a range of applications in forecasting hydrological response and related processes such as nutrient and sediment transport. A step towards this goal is to map dominant processes in locations where data is available. In this presentation, we use data from 900 flow gauging stations and 680 rain gauges in New Zealand, to assess hydrological processes. These catchments range in character from rolling pasture, to alluvial plains, to temperate rainforest, to volcanic areas. By taking advantage of so many flow regimes, we harness the benefits of large-sample and comparative hydrology to study patterns and spatial organisation in runoff processes, and their relationship to physical catchment characteristics. The approach we use to assess hydrological processes is based on the concept of diagnostic signatures. Diagnostic signatures in hydrology are targeted analyses of measured data which allow us to investigate specific aspects of catchment response. We apply signatures which target the water balance, the flood response and the recession behaviour. We explore the organisation, similarity and diversity in hydrological processes across the New Zealand landscape, and how these patterns change with scale. We discuss our findings in the context of the strong hydro-climatic gradients in New Zealand, and consider the implications for hydrological model building on a national scale.

  8. SWAT Modeling for Depression-Dominated Areas: How Do Depressions Manipulate Hydrologic Modeling?

    Directory of Open Access Journals (Sweden)

    Mohsen Tahmasebi Nasab

    2017-01-01

    Full Text Available Modeling hydrologic processes for depression-dominated areas such as the North American Prairie Pothole Region is complex and reliant on a clear understanding of dynamic filling-spilling-merging-splitting processes of numerous depressions over the surface. Puddles are spatially distributed over a watershed and their sizes, storages, and interactions vary over time. However, most hydrologic models fail to account for these dynamic processes. Like other traditional methods, depressions are filled as a required preprocessing step in the Soil and Water Assessment Tool (SWAT. The objective of this study was to facilitate hydrologic modeling for depression-dominated areas by coupling SWAT with a Puddle Delineation (PD algorithm. In the coupled PD-SWAT model, the PD algorithm was utilized to quantify topographic details, including the characteristics, distribution, and hierarchical relationships of depressions, which were incorporated into SWAT at the hydrologic response unit (HRU scale. The new PD-SWAT model was tested for a large watershed in North Dakota under real precipitation events. In addition, hydrologic modeling of a small watershed was conducted under two extreme high and low synthetic precipitation conditions. In particular, the PD-SWAT was compared against the regular SWAT based on depressionless DEMs. The impact of depressions on the hydrologic modeling of the large and small watersheds was evaluated. The simulation results for the large watershed indicated that SWAT systematically overestimated the outlet discharge, which can be attributed to the failure to account for the hydrologic effects of depressions. It was found from the PD-SWAT modeling results that at the HRU scale surface runoff initiation was significantly delayed due to the threshold control of depressions. Under the high precipitation scenario, depressions increased the surface runoff peak. However, the low precipitation scenario could not fully fill depressions to reach

  9. Toward seamless hydrologic predictions across spatial scales

    NARCIS (Netherlands)

    Samaniego, Luis; Kumar, Rohini; Thober, Stephan; Rakovec, Oldrich; Zink, Matthias; Wanders, Niko; Eisner, Stephanie; Müller Schmied, Hannes; Sutanudjaja, Edwin; Warrach-Sagi, Kirsten; Attinger, Sabine

    2017-01-01

    Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1-10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the

  10. Effect of Integrating Hydrologic Scaling Concepts on Students Learning and Decision Making Experiences

    Science.gov (United States)

    Najm, Majdi R. Abou; Mohtar, Rabi H.; Cherkauer, Keith A.; French, Brian F.

    2010-01-01

    Proper understanding of scaling and large-scale hydrologic processes is often not explicitly incorporated in the teaching curriculum. This makes it difficult for students to connect the effect of small scale processes and properties (like soil texture and structure, aggregation, shrinkage, and cracking) on large scale hydrologic responses (like…

  11. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p 0.46, p 0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  12. Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—a synthesis

    Science.gov (United States)

    Krysanova, Valentina; Vetter, Tobias; Eisner, Stephanie; Huang, Shaochun; Pechlivanidis, Ilias; Strauch, Michael; Gelfan, Alexander; Kumar, Rohini; Aich, Valentin; Arheimer, Berit; Chamorro, Alejandro; van Griensven, Ann; Kundu, Dipangkar; Lobanova, Anastasia; Mishra, Vimal; Plötner, Stefan; Reinhardt, Julia; Seidou, Ousmane; Wang, Xiaoyan; Wortmann, Michel; Zeng, Xiaofan; Hattermann, Fred F.

    2017-10-01

    An intercomparison of climate change impacts projected by nine regional-scale hydrological models for 12 large river basins on all continents was performed, and sources of uncertainty were quantified in the framework of the ISIMIP project. The models ECOMAG, HBV, HYMOD, HYPE, mHM, SWAT, SWIM, VIC and WaterGAP3 were applied in the following basins: Rhine and Tagus in Europe, Niger and Blue Nile in Africa, Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, Upper Mississippi, MacKenzie and Upper Amazon in America, and Darling in Australia. The model calibration and validation was done using WATCH climate data for the period 1971-2000. The results, evaluated with 14 criteria, are mostly satisfactory, except for the low flow. Climate change impacts were analyzed using projections from five global climate models under four representative concentration pathways. Trends in the period 2070-2099 in relation to the reference period 1975-2004 were evaluated for three variables: the long-term mean annual flow and high and low flow percentiles Q 10 and Q 90, as well as for flows in three months high- and low-flow periods denoted as HF and LF. For three river basins: the Lena, MacKenzie and Tagus strong trends in all five variables were found (except for Q 10 in the MacKenzie); trends with moderate certainty for three to five variables were confirmed for the Rhine, Ganges and Upper Mississippi; and increases in HF and LF were found for the Upper Amazon, Upper Yangtze and Upper Yellow. The analysis of projected streamflow seasonality demonstrated increasing streamflow volumes during the high-flow period in four basins influenced by monsoonal precipitation (Ganges, Upper Amazon, Upper Yangtze and Upper Yellow), an amplification of the snowmelt flood peaks in the Lena and MacKenzie, and a substantial decrease of discharge in the Tagus (all months). The overall average fractions of uncertainty for the annual mean flow projections in the multi-model ensemble applied for all basins

  13. Cloud-enabled large-scale land surface model simulations with the NASA Land Information System

    Science.gov (United States)

    Duffy, D.; Vaughan, G.; Clark, M. P.; Peters-Lidard, C. D.; Nijssen, B.; Nearing, G. S.; Rheingrover, S.; Kumar, S.; Geiger, J. V.

    2017-12-01

    Developed by the Hydrological Sciences Laboratory at NASA Goddard Space Flight Center (GSFC), the Land Information System (LIS) is a high-performance software framework for terrestrial hydrology modeling and data assimilation. LIS provides the ability to integrate satellite and ground-based observational products and advanced modeling algorithms to extract land surface states and fluxes. Through a partnership with the National Center for Atmospheric Research (NCAR) and the University of Washington, the LIS model is currently being extended to include the Structure for Unifying Multiple Modeling Alternatives (SUMMA). With the addition of SUMMA in LIS, meaningful simulations containing a large multi-model ensemble will be enabled and can provide advanced probabilistic continental-domain modeling capabilities at spatial scales relevant for water managers. The resulting LIS/SUMMA application framework is difficult for non-experts to install due to the large amount of dependencies on specific versions of operating systems, libraries, and compilers. This has created a significant barrier to entry for domain scientists that are interested in using the software on their own systems or in the cloud. In addition, the requirement to support multiple run time environments across the LIS community has created a significant burden on the NASA team. To overcome these challenges, LIS/SUMMA has been deployed using Linux containers, which allows for an entire software package along with all dependences to be installed within a working runtime environment, and Kubernetes, which orchestrates the deployment of a cluster of containers. Within a cloud environment, users can now easily create a cluster of virtual machines and run large-scale LIS/SUMMA simulations. Installations that have taken weeks and months can now be performed in minutes of time. This presentation will discuss the steps required to create a cloud-enabled large-scale simulation, present examples of its use, and

  14. Development and evaluation of a watershed-scale hybrid hydrologic model

    OpenAIRE

    Cho, Younghyun

    2016-01-01

    A watershed-scale hybrid hydrologic model (Distributed-Clark), which is a lumped conceptual and distributed feature model, was developed to predict spatially distributed short- and long-term rainfall runoff generation and routing using relatively simple methodologies and state-of-the-art spatial data in a GIS environment. In Distributed-Clark, spatially distributed excess rainfall estimated with the SCS curve number method and a GIS-based set of separated unit hydrographs (spatially distribut...

  15. Uncertainty in hydrological change modelling

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige

    applied at the grid scale. Flux and state hydrological outputs which integrate responses over time and space showed more sensitivity to precipitation mean spatial biases and less so on extremes. In the investigated catchments, the projected change of groundwater levels and basin discharge between current......Hydrological change modelling methodologies generally use climate models outputs to force hydrological simulations under changed conditions. There are nested sources of uncertainty throughout this methodology, including choice of climate model and subsequent bias correction methods. This Ph.......D. study evaluates the uncertainty of the impact of climate change in hydrological simulations given multiple climate models and bias correction methods of varying complexity. Three distribution based scaling methods (DBS) were developed and benchmarked against a more simplistic and commonly used delta...

  16. A high-resolution European dataset for hydrologic modeling

    Science.gov (United States)

    Ntegeka, Victor; Salamon, Peter; Gomes, Goncalo; Sint, Hadewij; Lorini, Valerio; Thielen, Jutta

    2013-04-01

    There is an increasing demand for large scale hydrological models not only in the field of modeling the impact of climate change on water resources but also for disaster risk assessments and flood or drought early warning systems. These large scale models need to be calibrated and verified against large amounts of observations in order to judge their capabilities to predict the future. However, the creation of large scale datasets is challenging for it requires collection, harmonization, and quality checking of large amounts of observations. For this reason, only a limited number of such datasets exist. In this work, we present a pan European, high-resolution gridded dataset of meteorological observations (EFAS-Meteo) which was designed with the aim to drive a large scale hydrological model. Similar European and global gridded datasets already exist, such as the HadGHCND (Caesar et al., 2006), the JRC MARS-STAT database (van der Goot and Orlandi, 2003) and the E-OBS gridded dataset (Haylock et al., 2008). However, none of those provide similarly high spatial resolution and/or a complete set of variables to force a hydrologic model. EFAS-Meteo contains daily maps of precipitation, surface temperature (mean, minimum and maximum), wind speed and vapour pressure at a spatial grid resolution of 5 x 5 km for the time period 1 January 1990 - 31 December 2011. It furthermore contains calculated radiation, which is calculated by using a staggered approach depending on the availability of sunshine duration, cloud cover and minimum and maximum temperature, and evapotranspiration (potential evapotranspiration, bare soil and open water evapotranspiration). The potential evapotranspiration was calculated using the Penman-Monteith equation with the above-mentioned meteorological variables. The dataset was created as part of the development of the European Flood Awareness System (EFAS) and has been continuously updated throughout the last years. The dataset variables are used as

  17. State of the Art in Large-Scale Soil Moisture Monitoring

    Science.gov (United States)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  18. Modeling the Hydrological Regime of Turkana Lake (Kenya, Ethiopia) by Combining Spatially Distributed Hydrological Modeling and Remote Sensing Datasets

    Science.gov (United States)

    Anghileri, D.; Kaelin, A.; Peleg, N.; Fatichi, S.; Molnar, P.; Roques, C.; Longuevergne, L.; Burlando, P.

    2017-12-01

    Hydrological modeling in poorly gauged basins can benefit from the use of remote sensing datasets although there are challenges associated with the mismatch in spatial and temporal scales between catchment scale hydrological models and remote sensing products. We model the hydrological processes and long-term water budget of the Lake Turkana catchment, a transboundary basin between Kenya and Ethiopia, by integrating several remote sensing products into a spatially distributed and physically explicit model, Topkapi-ETH. Lake Turkana is the world largest desert lake draining a catchment of 145'500 km2. It has three main contributing rivers: the Omo river, which contributes most of the annual lake inflow, the Turkwel river, and the Kerio rivers, which contribute the remaining part. The lake levels have shown great variations in the last decades due to long-term climate fluctuations and the regulation of three reservoirs, Gibe I, II, and III, which significantly alter the hydrological seasonality. Another large reservoir is planned and may be built in the next decade, generating concerns about the fate of Lake Turkana in the long run because of this additional anthropogenic pressure and increasing evaporation driven by climate change. We consider different remote sensing datasets, i.e., TRMM-V7 for precipitation, MERRA-2 for temperature, as inputs to the spatially distributed hydrological model. We validate the simulation results with other remote sensing datasets, i.e., GRACE for total water storage anomalies, GLDAS-NOAH for soil moisture, ERA-Interim/Land for surface runoff, and TOPEX/Poseidon for satellite altimetry data. Results highlight how different remote sensing products can be integrated into a hydrological modeling framework accounting for their relative uncertainties. We also carried out simulations with the artificial reservoirs planned in the north part of the catchment and without any reservoirs, to assess their impacts on the catchment hydrological

  19. Hydrological Modelling of Small Scale Processes in a Wetland Habitat

    DEFF Research Database (Denmark)

    Johansen, Ole; Jensen, Jacob Birk; Pedersen, Morten Lauge

    2009-01-01

    Numerical modelling of the hydrology in a Danish rich fen area has been conducted. By collecting various data in the field the model has been successfully calibrated and the flow paths as well as the groundwater discharge distribution have been simulated in details. The results of this work have...... shown that distributed numerical models can be applied to local scale problems and that natural springs, ditches, the geological conditions as well as the local topographic variations have a significant influence on the flow paths in the examined rich fen area....

  20. Hydrological models are mediating models

    Science.gov (United States)

    Babel, L. V.; Karssenberg, D.

    2013-08-01

    Despite the increasing role of models in hydrological research and decision-making processes, only few accounts of the nature and function of models exist in hydrology. Earlier considerations have traditionally been conducted while making a clear distinction between physically-based and conceptual models. A new philosophical account, primarily based on the fields of physics and economics, transcends classes of models and scientific disciplines by considering models as "mediators" between theory and observations. The core of this approach lies in identifying models as (1) being only partially dependent on theory and observations, (2) integrating non-deductive elements in their construction, and (3) carrying the role of instruments of scientific enquiry about both theory and the world. The applicability of this approach to hydrology is evaluated in the present article. Three widely used hydrological models, each showing a different degree of apparent physicality, are confronted to the main characteristics of the "mediating models" concept. We argue that irrespective of their kind, hydrological models depend on both theory and observations, rather than merely on one of these two domains. Their construction is additionally involving a large number of miscellaneous, external ingredients, such as past experiences, model objectives, knowledge and preferences of the modeller, as well as hardware and software resources. We show that hydrological models convey the role of instruments in scientific practice by mediating between theory and the world. It results from these considerations that the traditional distinction between physically-based and conceptual models is necessarily too simplistic and refers at best to the stage at which theory and observations are steering model construction. The large variety of ingredients involved in model construction would deserve closer attention, for being rarely explicitly presented in peer-reviewed literature. We believe that devoting

  1. Variational assimilation of streamflow into operational distributed hydrologic models: effect of spatiotemporal adjustment scale

    Science.gov (United States)

    Lee, H.; Seo, D.-J.; Liu, Y.; Koren, V.; McKee, P.; Corby, R.

    2012-01-01

    State updating of distributed rainfall-runoff models via streamflow assimilation is subject to overfitting because large dimensionality of the state space of the model may render the assimilation problem seriously under-determined. To examine the issue in the context of operational hydrology, we carry out a set of real-world experiments in which streamflow data is assimilated into gridded Sacramento Soil Moisture Accounting (SAC-SMA) and kinematic-wave routing models of the US National Weather Service (NWS) Research Distributed Hydrologic Model (RDHM) with the variational data assimilation technique. Study basins include four basins in Oklahoma and five basins in Texas. To assess the sensitivity of data assimilation performance to dimensionality reduction in the control vector, we used nine different spatiotemporal adjustment scales, where state variables are adjusted in a lumped, semi-distributed, or distributed fashion and biases in precipitation and potential evaporation (PE) are adjusted hourly, 6-hourly, or kept time-invariant. For each adjustment scale, three different streamflow assimilation scenarios are explored, where streamflow observations at basin interior points, at the basin outlet, or at both interior points and the outlet are assimilated. The streamflow assimilation experiments with nine different basins show that the optimum spatiotemporal adjustment scale varies from one basin to another and may be different for streamflow analysis and prediction in all of the three streamflow assimilation scenarios. The most preferred adjustment scale for seven out of nine basins is found to be the distributed, hourly scale, despite the fact that several independent validation results at this adjustment scale indicated the occurrence of overfitting. Basins with highly correlated interior and outlet flows tend to be less sensitive to the adjustment scale and could benefit more from streamflow assimilation. In comparison to outlet flow assimilation, interior flow

  2. Hydrological processes at the urban residential scale

    Science.gov (United States)

    Q. Xiao; E.G. McPherson; J.R. Simpson; S.L. Ustin

    2007-01-01

    In the face of increasing urbanization, there is growing interest in application of microscale hydrologic solutions to minimize storm runoff and conserve water at the source. In this study, a physically based numerical model was developed to understand hydrologic processes better at the urban residential scale and the interaction of these processes among different...

  3. A Quantitative Socio-hydrological Characterization of Water Security in Large-Scale Irrigation Systems

    Science.gov (United States)

    Siddiqi, A.; Muhammad, A.; Wescoat, J. L., Jr.

    2017-12-01

    Large-scale, legacy canal systems, such as the irrigation infrastructure in the Indus Basin in Punjab, Pakistan, have been primarily conceived, constructed, and operated with a techno-centric approach. The emerging socio-hydrological approaches provide a new lens for studying such systems to potentially identify fresh insights for addressing contemporary challenges of water security. In this work, using the partial definition of water security as "the reliable availability of an acceptable quantity and quality of water", supply reliability is construed as a partial measure of water security in irrigation systems. A set of metrics are used to quantitatively study reliability of surface supply in the canal systems of Punjab, Pakistan using an extensive dataset of 10-daily surface water deliveries over a decade (2007-2016) and of high frequency (10-minute) flow measurements over one year. The reliability quantification is based on comparison of actual deliveries and entitlements, which are a combination of hydrological and social constructs. The socio-hydrological lens highlights critical issues of how flows are measured, monitored, perceived, and experienced from the perspective of operators (government officials) and users (famers). The analysis reveals varying levels of reliability (and by extension security) of supply when data is examined across multiple temporal and spatial scales. The results shed new light on evolution of water security (as partially measured by supply reliability) for surface irrigation in the Punjab province of Pakistan and demonstrate that "information security" (defined as reliable availability of sufficiently detailed data) is vital for enabling water security. It is found that forecasting and management (that are social processes) lead to differences between entitlements and actual deliveries, and there is significant potential to positively affect supply reliability through interventions in the social realm.

  4. Land surface modelling in hydrology and meteorology – lessons learned from the Baltic Basin

    Directory of Open Access Journals (Sweden)

    L. P. Graham

    2000-01-01

    Full Text Available By both tradition and purpose, the land parameterization schemes of hydrological and meteorological models differ greatly. Meteorologists are concerned primarily with solving the energy balance, whereas hydrologists are most interested in the water balance. Meteorological climate models typically have multi-layered soil parameterisation that solves temperature fluxes numerically with diffusive equations. The same approach is carried over to a similar treatment of water transport. Hydrological models are not usually so interested in soil temperatures, but must provide a reasonable representation of soil moisture to get runoff right. To treat the heterogeneity of the soil, many hydrological models use only one layer with a statistical representation of soil variability. Such a hydrological model can be used on large scales while taking subgrid variability into account. Hydrological models also include lateral transport of water – an imperative if' river discharge is to be estimated. The concept of a complexity chain for coupled modelling systems is introduced, together with considerations for mixing model components. Under BALTEX (Baltic Sea Experiment and SWECLIM (Swedish Regional Climate Modelling Programme, a large-scale hydrological model of runoff in the Baltic Basin is used to review atmospheric climate model simulations. This incorporates both the runoff record and hydrological modelling experience into atmospheric model development. Results from two models are shown. A conclusion is that the key to improved models may be less complexity. Perhaps the meteorological models should keep their multi-layered approach for modelling soil temperature, but add a simpler, yet physically consistent, hydrological approach for modelling snow processes and water transport in the soil. Keywords: land surface modelling; hydrological modelling; atmospheric climate models; subgrid variability; Baltic Basin

  5. Urban Hydrology and Water Quality Modeling - Resolution Modeling Comparison for Water Quantity and Quality

    Science.gov (United States)

    Fry, T. J.; Maxwell, R. M.

    2014-12-01

    Urbanization presents challenging water resource problems for communities worldwide. The hydromodifications associated with urbanization results in increased runoff rates and volumes and increased peak flows. These hydrologic changes can lead to increased erosion and stream destabilization, decreased evapotranspiration, decreased ground water recharge, increases in pollutant loading, and localized anthropogenic climate change or Urban Heat Islands. Stormwater represents a complex and dynamic component of the urban water cycle that requires careful mitigation. With the implementation of Phase II rules under the CWA, stormwater management is shifting from a drainage-efficiency focus to a natural systems focus. The natural system focus, referred to as Low Impact Development (LID), or Green Infrastructure, uses best management practices (BMPs) to reduce the impacts caused by urbanization hydromodification. Large-scale patterns of stormwater runoff from urban environments are complex and it is unclear what the large-scale impacts of green infrastructure are on the water cycle. High resolution physically based hydrologic models can be used to more accurately simulate the urban hydrologic cycle. These types of models tend to be more dynamic and allow for greater flexibility in evaluating and accounting for various hydrologic processes in the urban environment that may be lost with lower resolution conceptual models. We propose to evaluate the effectiveness of high resolution models to accurately represent and determine the urban hydrologic cycle with the overall goal of being able to accurately assess the impacts of LID BMPs in urban environments. We propose to complete a rigorous model intercomparison between ParFlow and FLO-2D. Both of these models can be scaled to higher resolutions, allow for rainfall to be spatially and temporally input, and solve the shallow water equations. Each model is different in the way it accounts for infiltration, initial abstraction losses

  6. Large scale hydrogeological modelling of a low-lying complex coastal aquifer system

    DEFF Research Database (Denmark)

    Meyer, Rena

    2018-01-01

    intrusion. In this thesis a new methodological approach was developed to combine 3D numerical groundwater modelling with a detailed geological description and hydrological, geochemical and geophysical data. It was applied to a regional scale saltwater intrusion in order to analyse and quantify...... the groundwater flow dynamics, identify the driving mechanisms that formed the saltwater intrusion to its present extent and to predict its progression in the future. The study area is located in the transboundary region between Southern Denmark and Northern Germany, adjacent to the Wadden Sea. Here, a large-scale...... parametrization schemes that accommodate hydrogeological heterogeneities. Subsequently, density-dependent flow and transport modelling of multiple salt sources was successfully applied to simulate the formation of the saltwater intrusion during the last 4200 years, accounting for historic changes in the hydraulic...

  7. Managing large-scale models: DBS

    International Nuclear Information System (INIS)

    1981-05-01

    A set of fundamental management tools for developing and operating a large scale model and data base system is presented. Based on experience in operating and developing a large scale computerized system, the only reasonable way to gain strong management control of such a system is to implement appropriate controls and procedures. Chapter I discusses the purpose of the book. Chapter II classifies a broad range of generic management problems into three groups: documentation, operations, and maintenance. First, system problems are identified then solutions for gaining management control are disucssed. Chapters III, IV, and V present practical methods for dealing with these problems. These methods were developed for managing SEAS but have general application for large scale models and data bases

  8. Global-scale hydrological response to future glacier mass loss

    Science.gov (United States)

    Huss, Matthias; Hock, Regine

    2018-01-01

    Worldwide glacier retreat and associated future runoff changes raise major concerns over the sustainability of global water resources1-4, but global-scale assessments of glacier decline and the resulting hydrological consequences are scarce5,6. Here we compute global glacier runoff changes for 56 large-scale glacierized drainage basins to 2100 and analyse the glacial impact on streamflow. In roughly half of the investigated basins, the modelled annual glacier runoff continues to rise until a maximum (`peak water') is reached, beyond which runoff steadily declines. In the remaining basins, this tipping point has already been passed. Peak water occurs later in basins with larger glaciers and higher ice-cover fractions. Typically, future glacier runoff increases in early summer but decreases in late summer. Although most of the 56 basins have less than 2% ice coverage, by 2100 one-third of them might experience runoff decreases greater than 10% due to glacier mass loss in at least one month of the melt season, with the largest reductions in central Asia and the Andes. We conclude that, even in large-scale basins with minimal ice-cover fraction, the downstream hydrological effects of continued glacier wastage can be substantial, but the magnitudes vary greatly among basins and throughout the melt season.

  9. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...... with coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  10. Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations

    NARCIS (Netherlands)

    Lopez, Patricia Lopez; Wanders, Niko; Schellekens, Jaap; Renzullo, Luigi J.; Sutanudjaja, Edwin H.; Bierkens, Marc F. P.

    2016-01-01

    The coarse spatial resolution of global hydrological models (typically > 0.25◦ ) limits their ability to resolve key water balance processes for many river basins and thus compromises their suitability for water resources management, especially when compared to locally tuned river models. A possible

  11. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    Science.gov (United States)

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on

  12. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-08-01

    Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM) simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i) modify a DGVM for simulating land surface water balances; (ii) evaluate the modified model in simulating actual evapotranspiration (ET), soil moisture, and surface runoff at regional or watershed scales; and (iii) gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH) model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ) DGVM. To evaluate the model we ran LH using historical (1981-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981-2006 (R2 > 0.46, p 0.52). The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences day method for snowmelt computation, the addition of the solar radiation effect on snowmelt enabled LH to better simulate monthly stream flow in winter and early spring for rivers located at mid-to-high latitudes. In addition, LH-modeled

  13. Temporal variation and scaling of parameters for a monthly hydrologic model

    Science.gov (United States)

    Deng, Chao; Liu, Pan; Wang, Dingbao; Wang, Weiguang

    2018-03-01

    The temporal variation of model parameters is affected by the catchment conditions and has a significant impact on hydrological simulation. This study aims to evaluate the seasonality and downscaling of model parameter across time scales based on monthly and mean annual water balance models with a common model framework. Two parameters of the monthly model, i.e., k and m, are assumed to be time-variant at different months. Based on the hydrological data set from 121 MOPEX catchments in the United States, we firstly analyzed the correlation between parameters (k and m) and catchment properties (NDVI and frequency of rainfall events, α). The results show that parameter k is positively correlated with NDVI or α, while the correlation is opposite for parameter m, indicating that precipitation and vegetation affect monthly water balance by controlling temporal variation of parameters k and m. The multiple linear regression is then used to fit the relationship between ε and the means and coefficient of variations of parameters k and m. Based on the empirical equation and the correlations between the time-variant parameters and NDVI, the mean annual parameter ε is downscaled to monthly k and m. The results show that it has lower NSEs than these from model with time-variant k and m being calibrated through SCE-UA, while for several study catchments, it has higher NSEs than that of the model with constant parameters. The proposed method is feasible and provides a useful tool for temporal scaling of model parameter.

  14. Large-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in multimedia over China

    Science.gov (United States)

    Huang, Y.; Liu, M.; Wada, Y.; He, X.; Sun, X.

    2017-12-01

    In recent decades, with rapid economic growth, industrial development and urbanization, expanding pollution of polycyclic aromatic hydrocarbons (PAHs) has become a diversified and complicated phenomenon in China. However, the availability of sufficient monitoring activities for PAHs in multi-compartment and the corresponding multi-interface migration processes are still limited, especially at a large geographic area. In this study, we couple the Multimedia Fate Model (MFM) to the Community Multi-Scale Air Quality (CMAQ) model in order to consider the fugacity and the transient contamination processes. This coupled dynamic contaminant model can evaluate the detailed local variations and mass fluxes of PAHs in different environmental media (e.g., air, surface film, soil, sediment, water and vegetation) across different spatial (a county to country) and temporal (days to years) scales. This model has been applied to a large geographical domain of China at a 36 km by 36 km grid resolution. The model considers response characteristics of typical environmental medium to complex underlying surface. Results suggest that direct emission is the main input pathway of PAHs entering the atmosphere, while advection is the main outward flow of pollutants from the environment. In addition, both soil and sediment act as the main sink of PAHs and have the longest retention time. Importantly, the highest PAHs loadings are found in urbanized and densely populated regions of China, such as Yangtze River Delta and Pearl River Delta. This model can provide a good scientific basis towards a better understanding of the large-scale dynamics of environmental pollutants for land conservation and sustainable development. In a next step, the dynamic contaminant model will be integrated with the continental-scale hydrological and water resources model (i.e., Community Water Model, CWatM) to quantify a more accurate representation and feedbacks between the hydrological cycle and water quality at

  15. Atmospheric Rivers across Multi-scales of the Hydrologic cycle

    Science.gov (United States)

    Hu, H.

    2017-12-01

    Atmospheric Rivers (ARs) are defined as filamentary structures with strong water vapor transport in the atmosphere, moving as much water as is discharged by the Amazon River. As a large-scale phenomenon, ARs are embedded in the planetary-scale Rossby waves and account for the majority of poleward moisture transport in the midlatitudes. On the other hand, AR is the fundamental physical mechanism leading to extreme basin-scale precipitation and flooding over the U.S. West Coast in the winter season. The moisture transported by ARs is forced to rise and generate precipitation when it impinges on the mountainous coastal lands. My goal is to build the connection between the multi-scale features associated with ARs with their impacts on local hydrology, with particular focus on the U.S. West Coast. Moving across the different scales I have: (1) examined the planetary-scale dynamics in the upper-troposphere, and established a robust relationship between the two regimes of Rossby wave breaking and AR-precipitation and streamflow along the West Coast; (2) quantified the contribution from the tropics/subtropics to AR-related precipitation intensity and found a significant modulation from the large-scale thermodynamics; (3) developed a water tracer tool in a land surface model to track the lifecycle of the water collected from AR precipitation over the terrestrial system, so that the role of catchment-scale factors in modulating ARs' hydrological consequences could be examined. Ultimately, the information gather from these studies will indicate how the dynamic and thermodynamic changes as a response to climate change could affect the local flooding and water resource, which would be helpful in decision making.

  16. Remote sensing inputs to landscape models which predict future spatial land use patterns for hydrologic models

    Science.gov (United States)

    Miller, L. D.; Tom, C.; Nualchawee, K.

    1977-01-01

    A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.

  17. HIS Design: Big Data that Supports Hydrologic Modeling from Continental to Hillslope Scales

    Science.gov (United States)

    Rasmussen, T. C.; Deemy, J. B.; Younger, S. E.; Kirk, S. E.; Brockman, L. E.

    2016-12-01

    Analogous to Google Maps, hydrologic data, information, and knowledge resolve differently depending upon the spatial and temporal scales of interest. We show how a multi-scale hydrologic information system (HIS) can be designed and populated for a broad range of spatial (e.g., hillslope, local, regional, continental) and temporal (e.g., current, recent, historic, geologic) scales. Surface and subsurface hydrologic and transport processes are assumed to be scale-dependent, requiring unique governing equations and parameters at each scale. This robust and flexible framework is designed to meet the inventory, monitoring, and management needs of multiple federal agencies (i.e., Forest Service, National Park Service, Fish and Wildlife Service, National Wildlife Reserves). Multi-scale HIS examples are provided using Geographic Information Systems (GIS) for the Southeastern US.

  18. Global scale groundwater flow model

    Science.gov (United States)

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  19. Upscaling Empirically Based Conceptualisations to Model Tropical Dominant Hydrological Processes for Historical Land Use Change

    Science.gov (United States)

    Toohey, R.; Boll, J.; Brooks, E.; Jones, J.

    2009-12-01

    Surface runoff and percolation to ground water are two hydrological processes of concern to the Atlantic slope of Costa Rica because of their impacts on flooding and drinking water contamination. As per legislation, the Costa Rican Government funds land use management from the farm to the regional scale to improve or conserve hydrological ecosystem services. In this study, we examined how land use (e.g., forest, coffee, sugar cane, and pasture) affects hydrological response at the point, plot (1 m2), and the field scale (1-6ha) to empirically conceptualize the dominant hydrological processes in each land use. Using our field data, we upscaled these conceptual processes into a physically-based distributed hydrological model at the field, watershed (130 km2), and regional (1500 km2) scales. At the point and plot scales, the presence of macropores and large roots promoted greater vertical percolation and subsurface connectivity in the forest and coffee field sites. The lack of macropores and large roots, plus the addition of management artifacts (e.g., surface compaction and a plough layer), altered the dominant hydrological processes by increasing lateral flow and surface runoff in the pasture and sugar cane field sites. Macropores and topography were major influences on runoff generation at the field scale. Also at the field scale, antecedent moisture conditions suggest a threshold behavior as a temporal control on surface runoff generation. However, in this tropical climate with very intense rainstorms, annual surface runoff was less than 10% of annual precipitation at the field scale. Significant differences in soil and hydrological characteristics observed at the point and plot scales appear to have less significance when upscaled to the field scale. At the point and plot scales, percolation acted as the dominant hydrological process in this tropical environment. However, at the field scale for sugar cane and pasture sites, saturation-excess runoff increased as

  20. Genetic Programming for Automatic Hydrological Modelling

    Science.gov (United States)

    Chadalawada, Jayashree; Babovic, Vladan

    2017-04-01

    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach

  1. HYDROSCAPE: A SCAlable and ParallelizablE Rainfall Runoff Model for Hydrological Applications

    Science.gov (United States)

    Piccolroaz, S.; Di Lazzaro, M.; Zarlenga, A.; Majone, B.; Bellin, A.; Fiori, A.

    2015-12-01

    In this work we present HYDROSCAPE, an innovative streamflow routing method based on the travel time approach, and modeled through a fine-scale geomorphological description of hydrological flow paths. The model is designed aimed at being easily coupled with weather forecast or climate models providing the hydrological forcing, and at the same time preserving the geomorphological dispersion of the river network, which is kept unchanged independently on the grid size of rainfall input. This makes HYDROSCAPE particularly suitable for multi-scale applications, ranging from medium size catchments up to the continental scale, and to investigate the effects of extreme rainfall events that require an accurate description of basin response timing. Key feature of the model is its computational efficiency, which allows performing a large number of simulations for sensitivity/uncertainty analyses in a Monte Carlo framework. Further, the model is highly parsimonious, involving the calibration of only three parameters: one defining the residence time of hillslope response, one for channel velocity, and a multiplicative factor accounting for uncertainties in the identification of the potential maximum soil moisture retention in the SCS-CN method. HYDROSCAPE is designed with a simple and flexible modular structure, which makes it particularly prone to massive parallelization, customization according to the specific user needs and preferences (e.g., rainfall-runoff model), and continuous development and improvement. Finally, the possibility to specify the desired computational time step and evaluate streamflow at any location in the domain, makes HYDROSCAPE an attractive tool for many hydrological applications, and a valuable alternative to more complex and highly parametrized large scale hydrological models. Together with model development and features, we present an application to the Upper Tiber River basin (Italy), providing a practical example of model performance and

  2. Large scale debris-flow hazard assessment: a geotechnical approach and GIS modelling

    Directory of Open Access Journals (Sweden)

    G. Delmonaco

    2003-01-01

    Full Text Available A deterministic distributed model has been developed for large-scale debris-flow hazard analysis in the basin of River Vezza (Tuscany Region – Italy. This area (51.6 km 2 was affected by over 250 landslides. These were classified as debris/earth flow mainly involving the metamorphic geological formations outcropping in the area, triggered by the pluviometric event of 19 June 1996. In the last decades landslide hazard and risk analysis have been favoured by the development of GIS techniques permitting the generalisation, synthesis and modelling of stability conditions on a large scale investigation (>1:10 000. In this work, the main results derived by the application of a geotechnical model coupled with a hydrological model for the assessment of debris flows hazard analysis, are reported. This analysis has been developed starting by the following steps: landslide inventory map derived by aerial photo interpretation, direct field survey, generation of a database and digital maps, elaboration of a DTM and derived themes (i.e. slope angle map, definition of a superficial soil thickness map, geotechnical soil characterisation through implementation of a backanalysis on test slopes, laboratory test analysis, inference of the influence of precipitation, for distinct return times, on ponding time and pore pressure generation, implementation of a slope stability model (infinite slope model and generalisation of the safety factor for estimated rainfall events with different return times. Such an approach has allowed the identification of potential source areas of debris flow triggering. This is used to detected precipitation events with estimated return time of 10, 50, 75 and 100 years. The model shows a dramatic decrease of safety conditions for the simulation when is related to a 75 years return time rainfall event. It corresponds to an estimated cumulated daily intensity of 280–330 mm. This value can be considered the hydrological triggering

  3. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  4. Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin

    Directory of Open Access Journals (Sweden)

    E. H. Sutanudjaja

    2011-09-01

    Full Text Available The current generation of large-scale hydrological models does not include a groundwater flow component. Large-scale groundwater models, involving aquifers and basins of multiple countries, are still rare mainly due to a lack of hydro-geological data which are usually only available in developed countries. In this study, we propose a novel approach to construct large-scale groundwater models by using global datasets that are readily available. As the test-bed, we use the combined Rhine-Meuse basin that contains groundwater head data used to verify the model output. We start by building a distributed land surface model (30 arc-second resolution to estimate groundwater recharge and river discharge. Subsequently, a MODFLOW transient groundwater model is built and forced by the recharge and surface water levels calculated by the land surface model. Results are promising despite the fact that we still use an offline procedure to couple the land surface and MODFLOW groundwater models (i.e. the simulations of both models are separately performed. The simulated river discharges compare well to the observations. Moreover, based on our sensitivity analysis, in which we run several groundwater model scenarios with various hydro-geological parameter settings, we observe that the model can reasonably well reproduce the observed groundwater head time series. However, we note that there are still some limitations in the current approach, specifically because the offline-coupling technique simplifies the dynamic feedbacks between surface water levels and groundwater heads, and between soil moisture states and groundwater heads. Also the current sensitivity analysis ignores the uncertainty of the land surface model output. Despite these limitations, we argue that the results of the current model show a promise for large-scale groundwater modeling practices, including for data-poor environments and at the global scale.

  5. Plot-scale field experiment of surface hydrologic processes with EOS implications

    Science.gov (United States)

    Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.

    1992-01-01

    Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.

  6. Small scale green infrastructure design to meet different urban hydrological criteria.

    Science.gov (United States)

    Jia, Z; Tang, S; Luo, W; Li, S; Zhou, M

    2016-04-15

    As small scale green infrastructures, rain gardens have been widely advocated for urban stormwater management in the contemporary low impact development (LID) era. This paper presents a simple method that consists of hydrological models and the matching plots of nomographs to provide an informative and practical tool for rain garden sizing and hydrological evaluation. The proposed method considers design storms, infiltration rates and the runoff contribution area ratio of the rain garden, allowing users to size a rain garden for a specific site with hydrological reference and predict overflow of the rain garden under different storms. The nomographs provide a visual presentation on the sensitivity of different design parameters. Subsequent application of the proposed method to a case study conducted in a sub-humid region in China showed that, the method accurately predicted the design storms for the existing rain garden, the predicted overflows under large storm events were within 13-50% of the measured volumes. The results suggest that the nomographs approach is a practical tool for quick selection or assessment of design options that incorporate key hydrological parameters of rain gardens or other infiltration type green infrastructure. The graphic approach as displayed by the nomographs allow urban planners to demonstrate the hydrological effect of small scale green infrastructure and gain more support for promoting low impact development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Large-watershed flood simulation and forecasting based on different-resolution distributed hydrological model

    Science.gov (United States)

    Li, J.

    2017-12-01

    Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.

  8. Large-scale multimedia modeling applications

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.; Buck, J.W.; Whelan, G.; Strenge, D.L.; Castleton, K.J.; Gelston, G.M.

    1995-08-01

    Over the past decade, the US Department of Energy (DOE) and other agencies have faced increasing scrutiny for a wide range of environmental issues related to past and current practices. A number of large-scale applications have been undertaken that required analysis of large numbers of potential environmental issues over a wide range of environmental conditions and contaminants. Several of these applications, referred to here as large-scale applications, have addressed long-term public health risks using a holistic approach for assessing impacts from potential waterborne and airborne transport pathways. Multimedia models such as the Multimedia Environmental Pollutant Assessment System (MEPAS) were designed for use in such applications. MEPAS integrates radioactive and hazardous contaminants impact computations for major exposure routes via air, surface water, ground water, and overland flow transport. A number of large-scale applications of MEPAS have been conducted to assess various endpoints for environmental and human health impacts. These applications are described in terms of lessons learned in the development of an effective approach for large-scale applications

  9. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.

    Science.gov (United States)

    Deane, David C; Nicol, Jason M; Gehrig, Susan L; Harding, Claire; Aldridge, Kane T; Goodman, Abigail M; Brookes, Justin D

    2017-06-01

    Human use of water resources threatens environmental water supplies. If resource managers are to develop policies that avoid unacceptable ecological impacts, some means to predict ecosystem response to changes in water availability is necessary. This is difficult to achieve at spatial scales relevant for water resource management because of the high natural variability in ecosystem hydrology and ecology. Water plant functional groups classify species with similar hydrological niche preferences together, allowing a qualitative means to generalize community responses to changes in hydrology. We tested the potential for functional groups in making quantitative prediction of water plant functional group distributions across diverse wetland types over a large geographical extent. We sampled wetlands covering a broad range of hydrogeomorphic and salinity conditions in South Australia, collecting both hydrological and floristic data from 687 quadrats across 28 wetland hydrological gradients. We built hydrological-niche models for eight water plant functional groups using a range of candidate models combining different surface inundation metrics. We then tested the predictive performance of top-ranked individual and averaged models for each functional group. Cross validation showed that models achieved acceptable predictive performance, with correct classification rates in the range 0.68-0.95. Model predictions can be made at any spatial scale that hydrological data are available and could be implemented in a geographical information system. We show the response of water plant functional groups to inundation is consistent enough across diverse wetland types to quantify the probability of hydrological impacts over regional spatial scales. © 2017 by the Ecological Society of America.

  10. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Directory of Open Access Journals (Sweden)

    G. Tang

    2012-08-01

    Full Text Available Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i modify a DGVM for simulating land surface water balances; (ii evaluate the modified model in simulating actual evapotranspiration (ET, soil moisture, and surface runoff at regional or watershed scales; and (iii gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ DGVM. To evaluate the model we ran LH using historical (1981–2006 climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981–2006 (R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficient > 0.52. The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences < 15% with observed values for these rivers. Compared to a degree-day method for snowmelt computation, the addition of the solar radiation effect on snowmelt

  11. A socio-hydrologic model of coupled water-agriculture dynamics with emphasis on farm size.

    Science.gov (United States)

    Brugger, D. R.; Maneta, M. P.

    2015-12-01

    Agricultural land cover dynamics in the U.S. are dominated by two trends: 1) total agricultural land is decreasing and 2) average farm size is increasing. These trends have important implications for the future of water resources because 1) growing more food on less land is due in large part to increased groundwater withdrawal and 2) larger farms can better afford both more efficient irrigation and more groundwater access. However, these large-scale trends are due to individual farm operators responding to many factors including climate, economics, and policy. It is therefore difficult to incorporate the trends into watershed-scale hydrologic models. Traditional scenario-based approaches are valuable for many applications, but there is typically no feedback between the hydrologic model and the agricultural dynamics and so limited insight is gained into the how agriculture co-evolves with water resources. We present a socio-hydrologic model that couples simplified hydrologic and agricultural economic dynamics, accounting for many factors that depend on farm size such as irrigation efficiency and returns to scale. We introduce an "economic memory" (EM) state variable that is driven by agricultural revenue and affects whether farms are sold when land market values exceed expected returns from agriculture. The model uses a Generalized Mixture Model of Gaussians to approximate the distribution of farm sizes in a study area, effectively lumping farms into "small," "medium," and "large" groups that have independent parameterizations. We apply the model in a semi-arid watershed in the upper Columbia River Basin, calibrating to data on streamflow, total agricultural land cover, and farm size distribution. The model is used to investigate the sensitivity of the coupled system to various hydrologic and economic scenarios such as increasing market value of land, reduced surface water availability, and increased irrigation efficiency in small farms.

  12. Analysis for preliminary evaluation of discrete fracture flow and large-scale permeability in sedimentary rocks

    International Nuclear Information System (INIS)

    Kanehiro, B.Y.; Lai, C.H.; Stow, S.H.

    1987-05-01

    Conceptual models for sedimentary rock settings that could be used in future evaluation and suitability studies are being examined through the DOE Repository Technology Program. One area of concern for the hydrologic aspects of these models is discrete fracture flow analysis as related to the estimation of the size of the representative elementary volume, evaluation of the appropriateness of continuum assumptions and estimation of the large-scale permeabilities of sedimentary rocks. A basis for preliminary analysis of flow in fracture systems of the types that might be expected to occur in low permeability sedimentary rocks is presented. The approach used involves numerical modeling of discrete fracture flow for the configuration of a large-scale hydrologic field test directed at estimation of the size of the representative elementary volume and large-scale permeability. Analysis of fracture data on the basis of this configuration is expected to provide a preliminary indication of the scale at which continuum assumptions can be made

  13. Large-scale runoff generation - parsimonious parameterisation using high-resolution topography

    Science.gov (United States)

    Gong, L.; Halldin, S.; Xu, C.-Y.

    2011-08-01

    World water resources have primarily been analysed by global-scale hydrological models in the last decades. Runoff generation in many of these models are based on process formulations developed at catchments scales. The division between slow runoff (baseflow) and fast runoff is primarily governed by slope and spatial distribution of effective water storage capacity, both acting at very small scales. Many hydrological models, e.g. VIC, account for the spatial storage variability in terms of statistical distributions; such models are generally proven to perform well. The statistical approaches, however, use the same runoff-generation parameters everywhere in a basin. The TOPMODEL concept, on the other hand, links the effective maximum storage capacity with real-world topography. Recent availability of global high-quality, high-resolution topographic data makes TOPMODEL attractive as a basis for a physically-based runoff-generation algorithm at large scales, even if its assumptions are not valid in flat terrain or for deep groundwater systems. We present a new runoff-generation algorithm for large-scale hydrology based on TOPMODEL concepts intended to overcome these problems. The TRG (topography-derived runoff generation) algorithm relaxes the TOPMODEL equilibrium assumption so baseflow generation is not tied to topography. TRG only uses the topographic index to distribute average storage to each topographic index class. The maximum storage capacity is proportional to the range of topographic index and is scaled by one parameter. The distribution of storage capacity within large-scale grid cells is obtained numerically through topographic analysis. The new topography-derived distribution function is then inserted into a runoff-generation framework similar VIC's. Different basin parts are parameterised by different storage capacities, and different shapes of the storage-distribution curves depend on their topographic characteristics. The TRG algorithm is driven by the

  14. Macroscale hydrologic modeling of ecologically relevant flow metrics

    Science.gov (United States)

    Wenger, Seth J.; Luce, Charles H.; Hamlet, Alan F.; Isaak, Daniel J.; Neville, Helen M.

    2010-09-01

    Stream hydrology strongly affects the structure of aquatic communities. Changes to air temperature and precipitation driven by increased greenhouse gas concentrations are shifting timing and volume of streamflows potentially affecting these communities. The variable infiltration capacity (VIC) macroscale hydrologic model has been employed at regional scales to describe and forecast hydrologic changes but has been calibrated and applied mainly to large rivers. An important question is how well VIC runoff simulations serve to answer questions about hydrologic changes in smaller streams, which are important habitat for many fish species. To answer this question, we aggregated gridded VIC outputs within the drainage basins of 55 streamflow gages in the Pacific Northwest United States and compared modeled hydrographs and summary metrics to observations. For most streams, several ecologically relevant aspects of the hydrologic regime were accurately modeled, including center of flow timing, mean annual and summer flows and frequency of winter floods. Frequencies of high and low flows in the summer were not well predicted, however. Predictions were worse for sites with strong groundwater influence, and some sites showed errors that may result from limitations in the forcing climate data. Higher resolution (1/16th degree) modeling provided small improvements over lower resolution (1/8th degree). Despite some limitations, the VIC model appears capable of representing several ecologically relevant hydrologic characteristics in streams, making it a useful tool for understanding the effects of hydrology in delimiting species distributions and predicting the potential effects of climate shifts on aquatic organisms.

  15. A data-model integration approach toward improved understanding on wetland functions and hydrological benefits at the catchment scale

    Science.gov (United States)

    Yeo, I. Y.; Lang, M.; Lee, S.; Huang, C.; Jin, H.; McCarty, G.; Sadeghi, A.

    2017-12-01

    The wetland ecosystem plays crucial roles in improving hydrological function and ecological integrity for the downstream water and the surrounding landscape. However, changing behaviours and functioning of wetland ecosystems are poorly understood and extremely difficult to characterize. Improved understanding on hydrological behaviours of wetlands, considering their interaction with surrounding landscapes and impacts on downstream waters, is an essential first step toward closing the knowledge gap. We present an integrated wetland-catchment modelling study that capitalizes on recently developed inundation maps and other geospatial data. The aim of the data-model integration is to improve spatial prediction of wetland inundation and evaluate cumulative hydrological benefits at the catchment scale. In this paper, we highlight problems arising from data preparation, parameterization, and process representation in simulating wetlands within a distributed catchment model, and report the recent progress on mapping of wetland dynamics (i.e., inundation) using multiple remotely sensed data. We demonstrate the value of spatially explicit inundation information to develop site-specific wetland parameters and to evaluate model prediction at multi-spatial and temporal scales. This spatial data-model integrated framework is tested using Soil and Water Assessment Tool (SWAT) with improved wetland extension, and applied for an agricultural watershed in the Mid-Atlantic Coastal Plain, USA. This study illustrates necessity of spatially distributed information and a data integrated modelling approach to predict inundation of wetlands and hydrologic function at the local landscape scale, where monitoring and conservation decision making take place.

  16. Assessment of the Suitability of High Resolution Numerical Weather Model Outputs for Hydrological Modelling in Mountainous Cold Regions

    Science.gov (United States)

    Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.

    2017-12-01

    The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.

  17. Chance-constrained overland flow modeling for improving conceptual distributed hydrologic simulations based on scaling representation of sub-daily rainfall variability

    International Nuclear Information System (INIS)

    Han, Jing-Cheng; Huang, Guohe; Huang, Yuefei; Zhang, Hua; Li, Zhong; Chen, Qiuwen

    2015-01-01

    Lack of hydrologic process representation at the short time-scale would lead to inadequate simulations in distributed hydrological modeling. Especially for complex mountainous watersheds, surface runoff simulations are significantly affected by the overland flow generation, which is closely related to the rainfall characteristics at a sub-time step. In this paper, the sub-daily variability of rainfall intensity was considered using a probability distribution, and a chance-constrained overland flow modeling approach was proposed to capture the generation of overland flow within conceptual distributed hydrologic simulations. The integrated modeling procedures were further demonstrated through a watershed of China Three Gorges Reservoir area, leading to an improved SLURP-TGR hydrologic model based on SLURP. Combined with rainfall thresholds determined to distinguish various magnitudes of daily rainfall totals, three levels of significance were simultaneously employed to examine the hydrologic-response simulation. Results showed that SLURP-TGR could enhance the model performance, and the deviation of runoff simulations was effectively controlled. However, rainfall thresholds were so crucial for reflecting the scaling effect of rainfall intensity that optimal levels of significance and rainfall threshold were 0.05 and 10 mm, respectively. As for the Xiangxi River watershed, the main runoff contribution came from interflow of the fast store. Although slight differences of overland flow simulations between SLURP and SLURP-TGR were derived, SLURP-TGR was found to help improve the simulation of peak flows, and would improve the overall modeling efficiency through adjusting runoff component simulations. Consequently, the developed modeling approach favors efficient representation of hydrological processes and would be expected to have a potential for wide applications. - Highlights: • We develop an improved hydrologic model considering the scaling effect of rainfall. • A

  18. Chance-constrained overland flow modeling for improving conceptual distributed hydrologic simulations based on scaling representation of sub-daily rainfall variability

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jing-Cheng [State Key Laboratory of Hydroscience & Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084 (China); Huang, Guohe, E-mail: huang@iseis.org [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Huang, Yuefei [State Key Laboratory of Hydroscience & Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Hua [College of Science and Engineering, Texas A& M University — Corpus Christi, Corpus Christi, TX 78412-5797 (United States); Li, Zhong [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Chen, Qiuwen [Center for Eco-Environmental Research, Nanjing Hydraulics Research Institute, Nanjing 210029 (China)

    2015-08-15

    Lack of hydrologic process representation at the short time-scale would lead to inadequate simulations in distributed hydrological modeling. Especially for complex mountainous watersheds, surface runoff simulations are significantly affected by the overland flow generation, which is closely related to the rainfall characteristics at a sub-time step. In this paper, the sub-daily variability of rainfall intensity was considered using a probability distribution, and a chance-constrained overland flow modeling approach was proposed to capture the generation of overland flow within conceptual distributed hydrologic simulations. The integrated modeling procedures were further demonstrated through a watershed of China Three Gorges Reservoir area, leading to an improved SLURP-TGR hydrologic model based on SLURP. Combined with rainfall thresholds determined to distinguish various magnitudes of daily rainfall totals, three levels of significance were simultaneously employed to examine the hydrologic-response simulation. Results showed that SLURP-TGR could enhance the model performance, and the deviation of runoff simulations was effectively controlled. However, rainfall thresholds were so crucial for reflecting the scaling effect of rainfall intensity that optimal levels of significance and rainfall threshold were 0.05 and 10 mm, respectively. As for the Xiangxi River watershed, the main runoff contribution came from interflow of the fast store. Although slight differences of overland flow simulations between SLURP and SLURP-TGR were derived, SLURP-TGR was found to help improve the simulation of peak flows, and would improve the overall modeling efficiency through adjusting runoff component simulations. Consequently, the developed modeling approach favors efficient representation of hydrological processes and would be expected to have a potential for wide applications. - Highlights: • We develop an improved hydrologic model considering the scaling effect of rainfall. • A

  19. Improving National Water Modeling: An Intercomparison of two High-Resolution, Continental Scale Models, CONUS-ParFlow and the National Water Model

    Science.gov (United States)

    Tijerina, D.; Gochis, D.; Condon, L. E.; Maxwell, R. M.

    2017-12-01

    Development of integrated hydrology modeling systems that couple atmospheric, land surface, and subsurface flow is growing trend in hydrologic modeling. Using an integrated modeling framework, subsurface hydrologic processes, such as lateral flow and soil moisture redistribution, are represented in a single cohesive framework with surface processes like overland flow and evapotranspiration. There is a need for these more intricate models in comprehensive hydrologic forecasting and water management over large spatial areas, specifically the Continental US (CONUS). Currently, two high-resolution, coupled hydrologic modeling applications have been developed for this domain: CONUS-ParFlow built using the integrated hydrologic model ParFlow and the National Water Model that uses the NCAR Weather Research and Forecasting hydrological extension package (WRF-Hydro). Both ParFlow and WRF-Hydro include land surface models, overland flow, and take advantage of parallelization and high-performance computing (HPC) capabilities; however, they have different approaches to overland subsurface flow and groundwater-surface water interactions. Accurately representing large domains remains a challenge considering the difficult task of representing complex hydrologic processes, computational expense, and extensive data needs; both models have accomplished this, but have differences in approach and continue to be difficult to validate. A further exploration of effective methodology to accurately represent large-scale hydrology with integrated models is needed to advance this growing field. Here we compare the outputs of CONUS-ParFlow and the National Water Model to each other and with observations to study the performance of hyper-resolution models over large domains. Models were compared over a range of scales for major watersheds within the CONUS with a specific focus on the Mississippi, Ohio, and Colorado River basins. We use a novel set of approaches and analysis for this comparison

  20. SITE-94. Discrete-feature modelling of the Aespoe site: 2. Development of the integrated site-scale model

    International Nuclear Information System (INIS)

    Geier, J.E.

    1996-12-01

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Hydrologic properties of the large-scale structures are initially estimated from cross-hole hydrologic test data, and automatically calibrated by numerical simulation of network flow, and comparison with undisturbed heads and observed drawdown in selected cross-hole tests. The calibrated model is combined with a separately derived fracture network model, to yield the integrated model. This model is partly validated by simulation of transient responses to a long-term pumping test and a convergent tracer test, based on the LPT2 experiment at Aespoe. The integrated model predicts that discharge from the SITE-94 repository is predominantly via fracture zones along the eastern shore of Aespoe. Similar discharge loci are produced by numerous model variants that explore uncertainty with regard to effective semi regional boundary conditions, hydrologic properties of the site-scale structures, and alternative structural/hydrological interpretations. 32 refs

  1. SITE-94. Discrete-feature modelling of the Aespoe site: 2. Development of the integrated site-scale model

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J.E. [Golder Associates AB, Uppsala (Sweden)

    1996-12-01

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Hydrologic properties of the large-scale structures are initially estimated from cross-hole hydrologic test data, and automatically calibrated by numerical simulation of network flow, and comparison with undisturbed heads and observed drawdown in selected cross-hole tests. The calibrated model is combined with a separately derived fracture network model, to yield the integrated model. This model is partly validated by simulation of transient responses to a long-term pumping test and a convergent tracer test, based on the LPT2 experiment at Aespoe. The integrated model predicts that discharge from the SITE-94 repository is predominantly via fracture zones along the eastern shore of Aespoe. Similar discharge loci are produced by numerous model variants that explore uncertainty with regard to effective semi regional boundary conditions, hydrologic properties of the site-scale structures, and alternative structural/hydrological interpretations. 32 refs.

  2. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    Directory of Open Access Journals (Sweden)

    A. Endalamaw

    2017-09-01

    Full Text Available Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which better represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW in Interior Alaska: one nearly permafrost-free (LowP sub-basin and one permafrost-dominated (HighP sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC mesoscale hydrological model to simulate runoff, evapotranspiration (ET, and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub

  3. GLOFRIM v1.0 - A globally applicable computational framework for integrated hydrological-hydrodynamic modelling

    Science.gov (United States)

    Hoch, Jannis M.; Neal, Jeffrey C.; Baart, Fedor; van Beek, Rens; Winsemius, Hessel C.; Bates, Paul D.; Bierkens, Marc F. P.

    2017-10-01

    We here present GLOFRIM, a globally applicable computational framework for integrated hydrological-hydrodynamic modelling. GLOFRIM facilitates spatially explicit coupling of hydrodynamic and hydrologic models and caters for an ensemble of models to be coupled. It currently encompasses the global hydrological model PCR-GLOBWB as well as the hydrodynamic models Delft3D Flexible Mesh (DFM; solving the full shallow-water equations and allowing for spatially flexible meshing) and LISFLOOD-FP (LFP; solving the local inertia equations and running on regular grids). The main advantages of the framework are its open and free access, its global applicability, its versatility, and its extensibility with other hydrological or hydrodynamic models. Before applying GLOFRIM to an actual test case, we benchmarked both DFM and LFP for a synthetic test case. Results show that for sub-critical flow conditions, discharge response to the same input signal is near-identical for both models, which agrees with previous studies. We subsequently applied the framework to the Amazon River basin to not only test the framework thoroughly, but also to perform a first-ever benchmark of flexible and regular grids on a large-scale. Both DFM and LFP produce comparable results in terms of simulated discharge with LFP exhibiting slightly higher accuracy as expressed by a Kling-Gupta efficiency of 0.82 compared to 0.76 for DFM. However, benchmarking inundation extent between DFM and LFP over the entire study area, a critical success index of 0.46 was obtained, indicating that the models disagree as often as they agree. Differences between models in both simulated discharge and inundation extent are to a large extent attributable to the gridding techniques employed. In fact, the results show that both the numerical scheme of the inundation model and the gridding technique can contribute to deviations in simulated inundation extent as we control for model forcing and boundary conditions. This study shows

  4. Linking Time and Space Scales in Distributed Hydrological Modelling - a case study for the VIC model

    Science.gov (United States)

    Melsen, Lieke; Teuling, Adriaan; Torfs, Paul; Zappa, Massimiliano; Mizukami, Naoki; Clark, Martyn; Uijlenhoet, Remko

    2015-04-01

    One of the famous paradoxes of the Greek philosopher Zeno of Elea (~450 BC) is the one with the arrow: If one shoots an arrow, and cuts its motion into such small time steps that at every step the arrow is standing still, the arrow is motionless, because a concatenation of non-moving parts does not create motion. Nowadays, this reasoning can be refuted easily, because we know that motion is a change in space over time, which thus by definition depends on both time and space. If one disregards time by cutting it into infinite small steps, motion is also excluded. This example shows that time and space are linked and therefore hard to evaluate separately. As hydrologists we want to understand and predict the motion of water, which means we have to look both in space and in time. In hydrological models we can account for space by using spatially explicit models. With increasing computational power and increased data availability from e.g. satellites, it has become easier to apply models at a higher spatial resolution. Increasing the resolution of hydrological models is also labelled as one of the 'Grand Challenges' in hydrology by Wood et al. (2011) and Bierkens et al. (2014), who call for global modelling at hyperresolution (~1 km and smaller). A literature survey on 242 peer-viewed articles in which the Variable Infiltration Capacity (VIC) model was used, showed that the spatial resolution at which the model is applied has decreased over the past 17 years: From 0.5 to 2 degrees when the model was just developed, to 1/8 and even 1/32 degree nowadays. On the other hand the literature survey showed that the time step at which the model is calibrated and/or validated remained the same over the last 17 years; mainly daily or monthly. Klemeš (1983) stresses the fact that space and time scales are connected, and therefore downscaling the spatial scale would also imply downscaling of the temporal scale. Is it worth the effort of downscaling your model from 1 degree to 1

  5. High resolution time-lapse gravity field from GRACE for hydrological modelling

    DEFF Research Database (Denmark)

    Krogh, Pernille Engelbredt

    Calibration of large scale hydrological models have traditionally been performed using point observations, which are often sparsely distributed. The Gravity Recovery And Climate Experiment (GRACE) mission provides global remote sensing information about mass fluxes with unprecedented accuracy...... than for the mascon only solution, but later than the GLDAS/Noah TWS and the CNES/GRGS SH solutions. The deviations are 10–20 days. From this point of view, the tuning of hydrological models with KBRR data is certainly feasible, though highly time consuming and complicated at the moment. The method...

  6. Flexible hydrological modeling - Disaggregation from lumped catchment scale to higher spatial resolutions

    Science.gov (United States)

    Tran, Quoc Quan; Willems, Patrick; Pannemans, Bart; Blanckaert, Joris; Pereira, Fernando; Nossent, Jiri; Cauwenberghs, Kris; Vansteenkiste, Thomas

    2015-04-01

    Based on an international literature review on model structures of existing rainfall-runoff and hydrological models, a generalized model structure is proposed. It consists of different types of meteorological components, storage components, splitting components and routing components. They can be spatially organized in a lumped way, or on a grid, spatially interlinked by source-to-sink or grid-to-grid (cell-to-cell) routing. The grid size of the model can be chosen depending on the application. The user can select/change the spatial resolution depending on the needs and/or the evaluation of the accuracy of the model results, or use different spatial resolutions in parallel for different applications. Major research questions addressed during the study are: How can we assure consistent results of the model at any spatial detail? How can we avoid strong or sudden changes in model parameters and corresponding simulation results, when one moves from one level of spatial detail to another? How can we limit the problem of overparameterization/equifinality when we move from the lumped model to the spatially distributed model? The proposed approach is a step-wise one, where first the lumped conceptual model is calibrated using a systematic, data-based approach, followed by a disaggregation step where the lumped parameters are disaggregated based on spatial catchment characteristics (topography, land use, soil characteristics). In this way, disaggregation can be done down to any spatial scale, and consistently among scales. Only few additional calibration parameters are introduced to scale the absolute spatial differences in model parameters, but keeping the relative differences as obtained from the spatial catchment characteristics. After calibration of the spatial model, the accuracies of the lumped and spatial models were compared for peak, low and cumulative runoff total and sub-flows (at downstream and internal gauging stations). For the distributed models, additional

  7. Use of hydrologic and hydrodynamic modeling for ecosystem restoration

    Science.gov (United States)

    Obeysekera, J.; Kuebler, L.; Ahmed, S.; Chang, M.-L.; Engel, V.; Langevin, C.; Swain, E.; Wan, Y.

    2011-01-01

    Planning and implementation of unprecedented projects for restoring the greater Everglades ecosystem are underway and the hydrologic and hydrodynamic modeling of restoration alternatives has become essential for success of restoration efforts. In view of the complex nature of the South Florida water resources system, regional-scale (system-wide) hydrologic models have been developed and used extensively for the development of the Comprehensive Everglades Restoration Plan. In addition, numerous subregional-scale hydrologic and hydrodynamic models have been developed and are being used for evaluating project-scale water management plans associated with urban, agricultural, and inland costal ecosystems. The authors provide a comprehensive summary of models of all scales, as well as the next generation models under development to meet the future needs of ecosystem restoration efforts in South Florida. The multiagency efforts to develop and apply models have allowed the agencies to understand the complex hydrologic interactions, quantify appropriate performance measures, and use new technologies in simulation algorithms, software development, and GIS/database techniques to meet the future modeling needs of the ecosystem restoration programs. Copyright ?? 2011 Taylor & Francis Group, LLC.

  8. Modelling cross-scale relationships between climate, hydrology, and individual animals: Generating scenarios for stream salamanders

    Directory of Open Access Journals (Sweden)

    Philippe eGirard

    2015-07-01

    Full Text Available Hybrid modelling provides a unique opportunity to study cross-scale relationships in environmental systems by linking together models of global, regional, landscape, and local-scale processes, yet the approach is rarely applied to address conservation and management questions. Here, we demonstrate how a hybrid modelling approach can be used to assess the effect of cross-scale interactions on the survival of the Allegheny Mountain Dusky Salamander (Desmognathus ochrophaeus in response to changes in temperature and water availability induced by climate change at the northern limits of its distribution. To do so, we combine regional climate modelling with a landscape-scale integrated surface-groundwater flow model and an individual-based model of stream salamanders. On average, climate scenarios depict a warmer and wetter environment for the 2050 horizon. The increase in average annual temperature and extended hydrological activity time series in the future, combined with a better synchronization with the salamanders’ reproduction period, result in a significant increase in the long-term population viability of the salamanders. This indicates that climate change may not necessarily limit the survivability of small, stream-dwelling animals in headwater basins located in cold and humid regions. This new knowledge suggests that habitat conservation initiatives for amphibians with large latitudinal distributions in Eastern North America should be prioritized at the northern limits of their ranges to facilitate species migration and persistence in the face of climate change. This example demonstrates how hybrid models can serve as powerful tools for informing management and conservation decisions.

  9. Effects of Energy Development on Hydrologic Response: a Multi-Scale Modeling Approach

    Science.gov (United States)

    Vithanage, J.; Miller, S. N.; Berendsen, M.; Caffrey, P. A.; Bellis, J.; Schuler, R.

    2013-12-01

    Potential impacts of energy development on surface hydrology in western Wyoming were assessed using spatially explicit hydrological models. Currently there are proposals to develop over 800 new oil and gas wells in the 218,000 acre-sized LaBarge development area that abuts the Wyoming Range and contributes runoff to the Upper Green River (approximately 1 well per 2 square miles). The intensity of development raises questions relating to impacts on the hydrological cycle, water quality, erosion and sedimentation. We developed landscape management scenarios relating to current disturbance and proposed actions put forth by the energy operators to provide inputs to spatially explicit hydrologic models. Differences between the scenarios were derived to quantify the changes and analyse the impacts to the project area. To perform this research, the Automated Watershed Assessment Tool (AGWA) was enhanced by adding different management practices suitable for the region, including the reclamation of disturbed lands over time. The AGWA interface was used to parameterize and execute two hydrologic models: the Soil and Water Assessment Tool (SWAT) and the KINEmatic Runoff and EROSion model (KINEROS2). We used freely available data including SSURGO soils, Multi-Resolution Landscape Consortium (MRLC) land cover, and 10m resolution terrain data to derive suitable initial parameters for the models. The SWAT model was manually calibrated using an innovative method at the monthly level; observed daily rainfall and temperature inputs were used as a function of elevation considering the local climate effects. Higher temporal calibration was not possible due to a lack of adequate climate and runoff data. The Nash Sutcliff efficiencies of two calibrated watersheds at the monthly scale exceeded 0.95. Results of the AGWA/SWAT simulations indicate a range of sensitivity to disturbance due to heterogeneous soil and terrain characteristics over a simulated time period of 10 years. The KINEROS

  10. Modelling runoff and erosion for a semi-arid catchment using a multi-scale approach based on hydrological connectivity

    NARCIS (Netherlands)

    Lesschen, J.P.; Schoorl, J.M.; Cammeraat, L.H.

    2009-01-01

    Runoff and erosion processes are often non-linear and scale dependent, which complicate runoff and erosion modelling at the catchment scale. One of the reasons for scale dependency is the influence of sinks, i.e. areas of infiltration and sedimentation, which lower hydrological connectivity and

  11. Large scale model testing

    International Nuclear Information System (INIS)

    Brumovsky, M.; Filip, R.; Polachova, H.; Stepanek, S.

    1989-01-01

    Fracture mechanics and fatigue calculations for WWER reactor pressure vessels were checked by large scale model testing performed using large testing machine ZZ 8000 (with a maximum load of 80 MN) at the SKODA WORKS. The results are described from testing the material resistance to fracture (non-ductile). The testing included the base materials and welded joints. The rated specimen thickness was 150 mm with defects of a depth between 15 and 100 mm. The results are also presented of nozzles of 850 mm inner diameter in a scale of 1:3; static, cyclic, and dynamic tests were performed without and with surface defects (15, 30 and 45 mm deep). During cyclic tests the crack growth rate in the elastic-plastic region was also determined. (author). 6 figs., 2 tabs., 5 refs

  12. Large-scale runoff generation – parsimonious parameterisation using high-resolution topography

    Directory of Open Access Journals (Sweden)

    L. Gong

    2011-08-01

    Full Text Available World water resources have primarily been analysed by global-scale hydrological models in the last decades. Runoff generation in many of these models are based on process formulations developed at catchments scales. The division between slow runoff (baseflow and fast runoff is primarily governed by slope and spatial distribution of effective water storage capacity, both acting at very small scales. Many hydrological models, e.g. VIC, account for the spatial storage variability in terms of statistical distributions; such models are generally proven to perform well. The statistical approaches, however, use the same runoff-generation parameters everywhere in a basin. The TOPMODEL concept, on the other hand, links the effective maximum storage capacity with real-world topography. Recent availability of global high-quality, high-resolution topographic data makes TOPMODEL attractive as a basis for a physically-based runoff-generation algorithm at large scales, even if its assumptions are not valid in flat terrain or for deep groundwater systems. We present a new runoff-generation algorithm for large-scale hydrology based on TOPMODEL concepts intended to overcome these problems. The TRG (topography-derived runoff generation algorithm relaxes the TOPMODEL equilibrium assumption so baseflow generation is not tied to topography. TRG only uses the topographic index to distribute average storage to each topographic index class. The maximum storage capacity is proportional to the range of topographic index and is scaled by one parameter. The distribution of storage capacity within large-scale grid cells is obtained numerically through topographic analysis. The new topography-derived distribution function is then inserted into a runoff-generation framework similar VIC's. Different basin parts are parameterised by different storage capacities, and different shapes of the storage-distribution curves depend on their topographic characteristics. The TRG algorithm

  13. Comparing large-scale hydrological model predictions with observed streamflow in the Pacific Northwest: effects of climate and groundwater

    Science.gov (United States)

    Mohammad Safeeq; Guillaume S. Mauger; Gordon E. Grant; Ivan Arismendi; Alan F. Hamlet; Se-Yeun Lee

    2014-01-01

    Assessing uncertainties in hydrologic models can improve accuracy in predicting future streamflow. Here, simulated streamflows using the Variable Infiltration Capacity (VIC) model at coarse (1/16°) and fine (1/120°) spatial resolutions were evaluated against observed streamflows from 217 watersheds. In...

  14. Development of a Watershed-Scale Long-Term Hydrologic Impact Assessment Model with the Asymptotic Curve Number Regression Equation

    Directory of Open Access Journals (Sweden)

    Jichul Ryu

    2016-04-01

    Full Text Available In this study, 52 asymptotic Curve Number (CN regression equations were developed for combinations of representative land covers and hydrologic soil groups. In addition, to overcome the limitations of the original Long-term Hydrologic Impact Assessment (L-THIA model when it is applied to larger watersheds, a watershed-scale L-THIA Asymptotic CN (ACN regression equation model (watershed-scale L-THIA ACN model was developed by integrating the asymptotic CN regressions and various modules for direct runoff/baseflow/channel routing. The watershed-scale L-THIA ACN model was applied to four watersheds in South Korea to evaluate the accuracy of its streamflow prediction. The coefficient of determination (R2 and Nash–Sutcliffe Efficiency (NSE values for observed versus simulated streamflows over intervals of eight days were greater than 0.6 for all four of the watersheds. The watershed-scale L-THIA ACN model, including the asymptotic CN regression equation method, can simulate long-term streamflow sufficiently well with the ten parameters that have been added for the characterization of streamflow.

  15. Simulating Complex, Cold-region Process Interactions Using a Multi-scale, Variable-complexity Hydrological Model

    Science.gov (United States)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2017-12-01

    Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.

  16. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Science.gov (United States)

    Gosling, S. N.; Taylor, R. G.; Arnell, N. W.; Todd, M. C.

    2011-01-01

    , they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are represented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs. This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM (Mac-PDM.09 here) as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evapotranspiration estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme (Q5, Q95) monthly runoff, all of which have implications for future water management issues.

  17. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Directory of Open Access Journals (Sweden)

    S. N. Gosling

    2011-01-01

    . However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are represented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs. This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM (Mac-PDM.09 here as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evapotranspiration estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme (Q5, Q95 monthly runoff, all of which have implications for future water management issues.

  18. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    Directory of Open Access Journals (Sweden)

    S. Hagemann

    2013-05-01

    Full Text Available Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three and hydrological models (eight were used to systematically assess the hydrological response to climate change and project the future state of global water resources. This multi-model ensemble allows us to investigate how the hydrology models contribute to the uncertainty in projected hydrological changes compared to the climate models. Due to their systematic biases, GCM outputs cannot be used directly in hydrological impact studies, so a statistical bias correction has been applied. The results show a large spread in projected changes in water resources within the climate–hydrology modelling chain for some regions. They clearly demonstrate that climate models are not the only source of uncertainty for hydrological change, and that the spread resulting from the choice of the hydrology model is larger than the spread originating from the climate models over many areas. But there are also areas showing a robust change signal, such as at high latitudes and in some midlatitude regions, where the models agree on the sign of projected hydrological changes, indicative of higher confidence in this ensemble mean signal. In many catchments an increase of available water resources is expected but there are some severe decreases in Central and Southern Europe, the Middle East, the Mississippi River basin, southern Africa, southern China and south-eastern Australia.

  19. A remote sensing driven distributed hydrological model of the Senegal River basin

    DEFF Research Database (Denmark)

    Stisen, Simon; Jensen, Karsten Høgh; Sandholt, Inge

    2008-01-01

    outputs of AET from both model setups was carried out. This revealed substantial differences in the spatial patterns of AET for the examined subcatchment, in spite of similar values of predicted discharge and average AET. The potential for driving large scale hydrological models using remote sensing data......Distributed hydrological models require extensive data amounts for driving the models and for parameterization of the land surface and subsurface. This study investigates the potential of applying remote sensing (RS) based input data in a hydrological model for the 350,000 km2 Senegal River basin...... in West Africa. By utilizing remote sensing data to estimate precipitation, potential evapotranspiration (PET) and leaf area index (LAI) the model was driven entirely by remote sensing based data and independent of traditional meteorological data. The remote sensing retrievals were based on data from...

  20. Data assimilation in integrated hydrological modelling

    DEFF Research Database (Denmark)

    Rasmussen, Jørn

    Integrated hydrological models are useful tools for water resource management and research, and advances in computational power and the advent of new observation types has resulted in the models generally becoming more complex and distributed. However, the models are often characterized by a high...... degree of parameterization which results in significant model uncertainty which cannot be reduced much due to observations often being scarce and often taking the form of point measurements. Data assimilation shows great promise for use in integrated hydrological models , as it allows for observations...... to be efficiently combined with models to improve model predictions, reduce uncertainty and estimate model parameters. In this thesis, a framework for assimilating multiple observation types and updating multiple components and parameters of a catchment scale integrated hydrological model is developed and tested...

  1. Variance-based Sensitivity Analysis of Large-scale Hydrological Model to Prepare an Ensemble-based SWOT-like Data Assimilation Experiments

    Science.gov (United States)

    Emery, C. M.; Biancamaria, S.; Boone, A. A.; Ricci, S. M.; Garambois, P. A.; Decharme, B.; Rochoux, M. C.

    2015-12-01

    Land Surface Models (LSM) coupled with River Routing schemes (RRM), are used in Global Climate Models (GCM) to simulate the continental part of the water cycle. They are key component of GCM as they provide boundary conditions to atmospheric and oceanic models. However, at global scale, errors arise mainly from simplified physics, atmospheric forcing, and input parameters. More particularly, those used in RRM, such as river width, depth and friction coefficients, are difficult to calibrate and are mostly derived from geomorphologic relationships, which may not always be realistic. In situ measurements are then used to calibrate these relationships and validate the model, but global in situ data are very sparse. Additionally, due to the lack of existing global river geomorphology database and accurate forcing, models are run at coarse resolution. This is typically the case of the ISBA-TRIP model used in this study.A complementary alternative to in-situ data are satellite observations. In this regard, the Surface Water and Ocean Topography (SWOT) satellite mission, jointly developed by NASA/CNES/CSA/UKSA and scheduled for launch around 2020, should be very valuable to calibrate RRM parameters. It will provide maps of water surface elevation for rivers wider than 100 meters over continental surfaces in between 78°S and 78°N and also direct observation of river geomorphological parameters such as width ans slope.Yet, before assimilating such kind of data, it is needed to analyze RRM temporal sensitivity to time-constant parameters. This study presents such analysis over large river basins for the TRIP RRM. Model output uncertainty, represented by unconditional variance, is decomposed into ordered contribution from each parameter. Doing a time-dependent analysis allows then to identify to which parameters modeled water level and discharge are the most sensitive along a hydrological year. The results show that local parameters directly impact water levels, while

  2. Deriving Scaling Factors Using a Global Hydrological Model to Restore GRACE Total Water Storage Changes for China's Yangtze River Basin

    Science.gov (United States)

    Long, Di; Yang, Yuting; Yoshihide, Wada; Hong, Yang; Liang, Wei; Chen, Yaning; Yong, Bin; Hou, Aizhong; Wei, Jiangfeng; Chen, Lu

    2015-01-01

    This study used a global hydrological model (GHM), PCR-GLOBWB, which simulates surface water storage changes, natural and human induced groundwater storage changes, and the interactions between surface water and subsurface water, to generate scaling factors by mimicking low-pass filtering of GRACE signals. Signal losses in GRACE data were subsequently restored by the scaling factors from PCR-GLOBWB. Results indicate greater spatial heterogeneity in scaling factor from PCR-GLOBWB and CLM4.0 than that from GLDAS-1 Noah due to comprehensive simulation of surface and subsurface water storage changes for PCR-GLOBWB and CLM4.0. Filtered GRACE total water storage (TWS) changes applied with PCR-GLOBWB scaling factors show closer agreement with water budget estimates of TWS changes than those with scaling factors from other land surface models (LSMs) in China's Yangtze River basin. Results of this study develop a further understanding of the behavior of scaling factors from different LSMs or GHMs over hydrologically complex basins, and could be valuable in providing more accurate TWS changes for hydrological applications (e.g., monitoring drought and groundwater storage depletion) over regions where human-induced interactions between surface water and subsurface water are intensive.

  3. Significant uncertainty in global scale hydrological modeling from precipitation data erros

    NARCIS (Netherlands)

    Sperna Weiland, F.; Vrugt, J.A.; Beek, van P.H.; Weerts, A.H.; Bierkens, M.F.P.

    2015-01-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we

  4. Significant uncertainty in global scale hydrological modeling from precipitation data errors

    NARCIS (Netherlands)

    Weiland, Frederiek C. Sperna; Vrugt, Jasper A.; van Beek, Rens (L. ) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.

    2015-01-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we

  5. Nitrate reduction in geologically heterogeneous catchments — A framework for assessing the scale of predictive capability of hydrological models

    International Nuclear Information System (INIS)

    Refsgaard, Jens Christian; Auken, Esben; Bamberg, Charlotte A.; Christensen, Britt S.B.; Clausen, Thomas; Dalgaard, Esben; Effersø, Flemming; Ernstsen, Vibeke; Gertz, Flemming; Hansen, Anne Lausten; He, Xin; Jacobsen, Brian H.; Jensen, Karsten Høgh; Jørgensen, Flemming; Jørgensen, Lisbeth Flindt; Koch, Julian; Nilsson, Bertel; Petersen, Christian; De Schepper, Guillaume; Schamper, Cyril

    2014-01-01

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root zone is reduced in the saturated zone before reaching the streams, and vulnerable areas, where no subsurface reduction takes place, and then only impose regulations/restrictions on the vulnerable areas. Distributed hydrological models can make predictions at grid scale, i.e. at much smaller scale than the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface and for assessing at which spatial scales modelling tools have predictive capabilities. A new instrument has been developed for airborne geophysical measurements, Mini-SkyTEM, dedicated to identifying geological structures and heterogeneities with horizontal and lateral resolutions of 30–50 m and 2 m, respectively, in the upper 30 m. The geological heterogeneity and uncertainty are further analysed by use of the geostatistical software TProGS by generating stochastic geological realisations that are soft conditioned against the geophysical data. Finally, the flow paths within the catchment are simulated by use of the MIKE SHE hydrological modelling system for each of the geological models generated by TProGS and the prediction uncertainty is characterised by the variance between the

  6. Nitrate reduction in geologically heterogeneous catchments — A framework for assessing the scale of predictive capability of hydrological models

    Energy Technology Data Exchange (ETDEWEB)

    Refsgaard, Jens Christian, E-mail: jcr@geus.dk [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Auken, Esben [Department of Earth Sciences, Aarhus University (Denmark); Bamberg, Charlotte A. [City of Aarhus (Denmark); Christensen, Britt S.B. [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Clausen, Thomas [DHI, Hørsholm (Denmark); Dalgaard, Esben [Department of Earth Sciences, Aarhus University (Denmark); Effersø, Flemming [SkyTEM Aps, Beder (Denmark); Ernstsen, Vibeke [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Gertz, Flemming [Knowledge Center for Agriculture, Skejby (Denmark); Hansen, Anne Lausten [Department of Geosciences and Natural Resource Management, University of Copenhagen (Denmark); He, Xin [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Jacobsen, Brian H. [Department of Food and Resource Economics, University of Copenhagen (Denmark); Jensen, Karsten Høgh [Department of Geosciences and Natural Resource Management, University of Copenhagen (Denmark); Jørgensen, Flemming; Jørgensen, Lisbeth Flindt [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Koch, Julian [Department of Geosciences and Natural Resource Management, University of Copenhagen (Denmark); Nilsson, Bertel [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Petersen, Christian [City of Odder (Denmark); De Schepper, Guillaume [Université Laval, Québec (Canada); Schamper, Cyril [Department of Earth Sciences, Aarhus University (Denmark); and others

    2014-01-01

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root zone is reduced in the saturated zone before reaching the streams, and vulnerable areas, where no subsurface reduction takes place, and then only impose regulations/restrictions on the vulnerable areas. Distributed hydrological models can make predictions at grid scale, i.e. at much smaller scale than the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface and for assessing at which spatial scales modelling tools have predictive capabilities. A new instrument has been developed for airborne geophysical measurements, Mini-SkyTEM, dedicated to identifying geological structures and heterogeneities with horizontal and lateral resolutions of 30–50 m and 2 m, respectively, in the upper 30 m. The geological heterogeneity and uncertainty are further analysed by use of the geostatistical software TProGS by generating stochastic geological realisations that are soft conditioned against the geophysical data. Finally, the flow paths within the catchment are simulated by use of the MIKE SHE hydrological modelling system for each of the geological models generated by TProGS and the prediction uncertainty is characterised by the variance between the

  7. Comparison Between Overtopping Discharge in Small and Large Scale Models

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, Hans F.

    2006-01-01

    The present paper presents overtopping measurements from small scale model test performed at the Haudraulic & Coastal Engineering Laboratory, Aalborg University, Denmark and large scale model tests performed at the Largde Wave Channel,Hannover, Germany. Comparison between results obtained from...... small and large scale model tests show no clear evidence of scale effects for overtopping above a threshold value. In the large scale model no overtopping was measured for waveheights below Hs = 0.5m as the water sunk into the voids between the stones on the crest. For low overtopping scale effects...

  8. Water consumption and allocation strategies along the river oases of Tarim River based on large-scale hydrological modelling

    Science.gov (United States)

    Yu, Yang; Disse, Markus; Yu, Ruide

    2016-04-01

    With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. The project aims to contribute to a sustainable land management which explicitly takes into account ecosystem functions and ecosystem services. SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups. The modelling of water consumption and allocation strategies is a core block in the SuMaRiO cluster. A large-scale hydrological model (MIKE HYDRO Basin) was established for the purpose of sustainable agricultural water management in the main stem Tarim River. MIKE HYDRO Basin is an integrated, multipurpose, map-based decision support tool for river basin analysis, planning and management. It provides detailed simulation results concerning water resources and land use in the catchment areas of the river. Calibration data and future predictions based on large amount of data was acquired. The results of model calibration indicated a close correlation between simulated and observed values. Scenarios with the change on irrigation strategies and land use distributions were investigated. Irrigation scenarios revealed that the available irrigation water has significant and varying effects on the yields of different crops. Irrigation water saving could reach up to 40% in the water-saving irrigation scenario. Land use scenarios illustrated that an increase of farmland area in the

  9. Effective use of integrated hydrological models in basin-scale water resources management: surrogate modeling approaches

    Science.gov (United States)

    Zheng, Y.; Wu, B.; Wu, X.

    2015-12-01

    Integrated hydrological models (IHMs) consider surface water and subsurface water as a unified system, and have been widely adopted in basin-scale water resources studies. However, due to IHMs' mathematical complexity and high computational cost, it is difficult to implement them in an iterative model evaluation process (e.g., Monte Carlo Simulation, simulation-optimization analysis, etc.), which diminishes their applicability for supporting decision-making in real-world situations. Our studies investigated how to effectively use complex IHMs to address real-world water issues via surrogate modeling. Three surrogate modeling approaches were considered, including 1) DYCORS (DYnamic COordinate search using Response Surface models), a well-established response surface-based optimization algorithm; 2) SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), a response surface-based optimization algorithm that we developed specifically for IHMs; and 3) Probabilistic Collocation Method (PCM), a stochastic response surface approach. Our investigation was based on a modeling case study in the Heihe River Basin (HRB), China's second largest endorheic river basin. The GSFLOW (Coupled Ground-Water and Surface-Water Flow Model) model was employed. Two decision problems were discussed. One is to optimize, both in time and in space, the conjunctive use of surface water and groundwater for agricultural irrigation in the middle HRB region; and the other is to cost-effectively collect hydrological data based on a data-worth evaluation. Overall, our study results highlight the value of incorporating an IHM in making decisions of water resources management and hydrological data collection. An IHM like GSFLOW can provide great flexibility to formulating proper objective functions and constraints for various optimization problems. On the other hand, it has been demonstrated that surrogate modeling approaches can pave the path for such incorporation in real

  10. Hydrologic Effects of Global Climate Change on a Large Drained Pine Forest

    Science.gov (United States)

    Devendra M. Amatya; Ge Sun; R. W. Skaggs; G. M Chescheir; J. E. Nettles

    2006-01-01

    A simulation study using a watershed scale forest hydrology model (DRAINWAT) was conducted to evaluate potential effects of climate change on the hydrology of a 3,000 ha managed pine forest in coastal North Carolina. The model was first validated with a five-year (1996-2000) data set fro111 the study site and then run with 50-years (1951-00) of historic weather data...

  11. National-Scale Hydrologic Classification & Agricultural Decision Support: A Multi-Scale Approach

    Science.gov (United States)

    Coopersmith, E. J.; Minsker, B.; Sivapalan, M.

    2012-12-01

    Classification frameworks can help organize catchments exhibiting similarity in hydrologic and climatic terms. Focusing this assessment of "similarity" upon specific hydrologic signatures, in this case the annual regime curve, can facilitate the prediction of hydrologic responses. Agricultural decision-support over a diverse set of catchments throughout the United States depends upon successful modeling of the wetting/drying process without necessitating separate model calibration at every site where such insights are required. To this end, a holistic classification framework is developed to describe both climatic variability (humid vs. arid, winter rainfall vs. summer rainfall) and the draining, storing, and filtering behavior of any catchment, including ungauged or minimally gauged basins. At the national scale, over 400 catchments from the MOPEX database are analyzed to construct the classification system, with over 77% of these catchments ultimately falling into only six clusters. At individual locations, soil moisture models, receiving only rainfall as input, produce correlation values in excess of 0.9 with respect to observed soil moisture measurements. By deploying physical models for predicting soil moisture exclusively from precipitation that are calibrated at gauged locations, overlaying machine learning techniques to improve these estimates, then generalizing the calibration parameters for catchments in a given class, agronomic decision-support becomes available where it is needed rather than only where sensing data are located.lassifications of 428 U.S. catchments on the basis of hydrologic regime data, Coopersmith et al, 2012.

  12. Modeling Pre- and Post- Wildfire Hydrologic Response to Vegetation Change in the Valles Caldera National Preserve, NM

    Science.gov (United States)

    Gregory, A. E.; Benedict, K. K.; Zhang, S.; Savickas, J.

    2017-12-01

    Large scale, high severity wildfires in forests have become increasingly prevalent in the western United States due to fire exclusion. Although past work has focused on the immediate consequences of wildfire (ie. runoff magnitude and debris flow), little has been done to understand the post wildfire hydrologic consequences of vegetation regrowth. Furthermore, vegetation is often characterized by static parameterizations within hydrological models. In order to understand the temporal relationship between hydrologic processes and revegetation, we modularized and partially automated the hydrologic modeling process to increase connectivity between remotely sensed data, the Virtual Watershed Platform (a data management resource, called the VWP), input meteorological data, and the Precipitation-Runoff Modeling System (PRMS). This process was used to run simulations in the Valles Caldera of NM, an area impacted by the 2011 Las Conchas Fire, in PRMS before and after the Las Conchas to evaluate hydrologic process changes. The modeling environment addressed some of the existing challenges faced by hydrological modelers. At present, modelers are somewhat limited in their ability to push the boundaries of hydrologic understanding. Specific issues faced by modelers include limited computational resources to model processes at large spatial and temporal scales, data storage capacity and accessibility from the modeling platform, computational and time contraints for experimental modeling, and the skills to integrate modeling software in ways that have not been explored. By taking an interdisciplinary approach, we were able to address some of these challenges by leveraging the skills of hydrologic, data, and computer scientists; and the technical capabilities provided by a combination of on-demand/high-performance computing, distributed data, and cloud services. The hydrologic modeling process was modularized to include options for distributing meteorological data, parameter space

  13. Quantification of effective plant rooting depth: advancing global hydrological modelling

    Science.gov (United States)

    Yang, Y.; Donohue, R. J.; McVicar, T.

    2017-12-01

    Plant rooting depth (Zr) is a key parameter in hydrological and biogeochemical models, yet the global spatial distribution of Zr is largely unknown due to the difficulties in its direct measurement. Moreover, Zr observations are usually only representative of a single plant or several plants, which can differ greatly from the effective Zr over a modelling unit (e.g., catchment or grid-box). Here, we provide a global parameterization of an analytical Zr model that balances the marginal carbon cost and benefit of deeper roots, and produce a climatological (i.e., 1982-2010 average) global Zr map. To test the Zr estimates, we apply the estimated Zr in a highly transparent hydrological model (i.e., the Budyko-Choudhury-Porporato (BCP) model) to estimate mean annual actual evapotranspiration (E) across the globe. We then compare the estimated E with both water balance-based E observations at 32 major catchments and satellite grid-box retrievals across the globe. Our results show that the BCP model, when implemented with Zr estimated herein, optimally reproduced the spatial pattern of E at both scales and provides improved model outputs when compared to BCP model results from two already existing global Zr datasets. These results suggest that our Zr estimates can be effectively used in state-of-the-art hydrological models, and potentially biogeochemical models, where the determination of Zr currently largely relies on biome type-based look-up tables.

  14. Assessing Human Modifications to Floodplains using Large-Scale Hydrogeomorphic Floodplain Modeling

    Science.gov (United States)

    Morrison, R. R.; Scheel, K.; Nardi, F.; Annis, A.

    2017-12-01

    Human modifications to floodplains for water resource and flood management purposes have significantly transformed river-floodplain connectivity dynamics in many watersheds. Bridges, levees, reservoirs, shifts in land use, and other hydraulic engineering works have altered flow patterns and caused changes in the timing and extent of floodplain inundation processes. These hydrogeomorphic changes have likely resulted in negative impacts to aquatic habitat and ecological processes. The availability of large-scale topographic datasets at high resolution provide an opportunity for detecting anthropogenic impacts by means of geomorphic mapping. We have developed and are implementing a methodology for comparing a hydrogeomorphic floodplain mapping technique to hydraulically-modeled floodplain boundaries to estimate floodplain loss due to human activities. Our hydrogeomorphic mapping methodology assumes that river valley morphology intrinsically includes information on flood-driven erosion and depositional phenomena. We use a digital elevation model-based algorithm to identify the floodplain as the area of the fluvial corridor laying below water reference levels, which are estimated using a simplified hydrologic model. Results from our hydrogeomorphic method are compared to hydraulically-derived flood zone maps and spatial datasets of levee protected-areas to explore where water management features, such as levees, have changed floodplain dynamics and landscape features. Parameters associated with commonly used F-index functions are quantified and analyzed to better understand how floodplain areas have been reduced within a basin. Preliminary results indicate that the hydrogeomorphic floodplain model is useful for quickly delineating floodplains at large watershed scales, but further analyses are needed to understand the caveats for using the model in determining floodplain loss due to levees. We plan to continue this work by exploring the spatial dependencies of the F

  15. Homogenization of Large-Scale Movement Models in Ecology

    Science.gov (United States)

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  16. Large-scale runoff generation – parsimonious parameterisation using high-resolution topography

    OpenAIRE

    L. Gong; S. Halldin; C.-Y. Xu

    2010-01-01

    World water resources have primarily been analysed by global-scale hydrological models in the last decades. Runoff generation in many of these models are based on process formulations developed at catchments scales. The division between slow runoff (baseflow) and fast runoff is primarily governed by slope and spatial distribution of effective water storage capacity, both acting a very small scales. Many hydrological models, e.g. VIC, account for the spatial storage variability in terms...

  17. Predicting hydrological response to forest changes by simple statistical models: the selection of the best indicator of forest changes with a hydrological perspective

    Science.gov (United States)

    Ning, D.; Zhang, M.; Ren, S.; Hou, Y.; Yu, L.; Meng, Z.

    2017-01-01

    Forest plays an important role in hydrological cycle, and forest changes will inevitably affect runoff across multiple spatial scales. The selection of a suitable indicator for forest changes is essential for predicting forest-related hydrological response. This study used the Meijiang River, one of the headwaters of the Poyang Lake as an example to identify the best indicator of forest changes for predicting forest change-induced hydrological responses. Correlation analysis was conducted first to detect the relationships between monthly runoff and its predictive variables including antecedent monthly precipitation and indicators for forest changes (forest coverage, vegetation indices including EVI, NDVI, and NDWI), and by use of the identified predictive variables that were most correlated with monthly runoff, multiple linear regression models were then developed. The model with best performance identified in this study included two independent variables -antecedent monthly precipitation and NDWI. It indicates that NDWI is the best indicator of forest change in hydrological prediction while forest coverage, the most commonly used indicator of forest change is insignificantly related to monthly runoff. This highlights the use of vegetation index such as NDWI to indicate forest changes in hydrological studies. This study will provide us with an efficient way to quantify the hydrological impact of large-scale forest changes in the Meijiang River watershed, which is crucial for downstream water resource management and ecological protection in the Poyang Lake basin.

  18. Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: a review

    Directory of Open Access Journals (Sweden)

    Ly, S.

    2013-01-01

    Full Text Available Watershed management and hydrological modeling require data related to the very important matter of precipitation, often measured using raingages or weather stations. Hydrological models often require a preliminary spatial interpolation as part of the modeling process. The success of spatial interpolation varies according to the type of model chosen, its mode of geographical management and the resolution used. The quality of a result is determined by the quality of the continuous spatial rainfall, which ensues from the interpolation method used. The objective of this article is to review the existing methods for interpolation of rainfall data that are usually required in hydrological modeling. We review the basis for the application of certain common methods and geostatistical approaches used in interpolation of rainfall. Previous studies have highlighted the need for new research to investigate ways of improving the quality of rainfall data and ultimately, the quality of hydrological modeling.

  19. Tools for Virtual Collaboration Designed for High Resolution Hydrologic Research with Continental-Scale Data Support

    Science.gov (United States)

    Duffy, Christopher; Leonard, Lorne; Shi, Yuning; Bhatt, Gopal; Hanson, Paul; Gil, Yolanda; Yu, Xuan

    2015-04-01

    Using a series of recent examples and papers we explore some progress and potential for virtual (cyber-) collaboration inspired by access to high resolution, harmonized public-sector data at continental scales [1]. The first example describes 7 meso-scale catchments in Pennsylvania, USA where the watershed is forced by climate reanalysis and IPCC future climate scenarios (Intergovernmental Panel on Climate Change). We show how existing public-sector data and community models are currently able to resolve fine-scale eco-hydrologic processes regarding wetland response to climate change [2]. The results reveal that regional climate change is only part of the story, with large variations in flood and drought response associated with differences in terrain, physiography, landuse and/or hydrogeology. The importance of community-driven virtual testbeds are demonstrated in the context of Critical Zone Observatories, where earth scientists from around the world are organizing hydro-geophysical data and model results to explore new processes that couple hydrologic models with land-atmosphere interaction, biogeochemical weathering, carbon-nitrogen cycle, landscape evolution and ecosystem services [3][4]. Critical Zone cyber-research demonstrates how data-driven model development requires a flexible computational structure where process modules are relatively easy to incorporate and where new data structures can be implemented [5]. From the perspective of "Big-Data" the paper points out that extrapolating results from virtual observatories to catchments at continental scales, will require centralized or cloud-based cyberinfrastructure as a necessary condition for effectively sharing petabytes of data and model results [6]. Finally we outline how innovative cyber-science is supporting earth-science learning, sharing and exploration through the use of on-line tools where hydrologists and limnologists are sharing data and models for simulating the coupled impacts of catchment

  20. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    Science.gov (United States)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we

  1. Large-scale modeling of rain fields from a rain cell deterministic model

    Science.gov (United States)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  2. Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale

    Science.gov (United States)

    Kim, Jongho; Ivanov, Valeriy Y.; Katopodes, Nikolaos D.

    2013-09-01

    A novel two-dimensional, physically based model of soil erosion and sediment transport coupled to models of hydrological and overland flow processes has been developed. The Hairsine-Rose formulation of erosion and deposition processes is used to account for size-selective sediment transport and differentiate bed material into original and deposited soil layers. The formulation is integrated within the framework of the hydrologic and hydrodynamic model tRIBS-OFM, Triangulated irregular network-based, Real-time Integrated Basin Simulator-Overland Flow Model. The integrated model explicitly couples the hydrodynamic formulation with the advection-dominated transport equations for sediment of multiple particle sizes. To solve the system of equations including both the Saint-Venant and the Hairsine-Rose equations, the finite volume method is employed based on Roe's approximate Riemann solver on an unstructured grid. The formulation yields space-time dynamics of flow, erosion, and sediment transport at fine scale. The integrated model has been successfully verified with analytical solutions and empirical data for two benchmark cases. Sensitivity tests to grid resolution and the number of used particle sizes have been carried out. The model has been validated at the catchment scale for the Lucky Hills watershed located in southeastern Arizona, USA, using 10 events for which catchment-scale streamflow and sediment yield data were available. Since the model is based on physical laws and explicitly uses multiple types of watershed information, satisfactory results were obtained. The spatial output has been analyzed and the driving role of topography in erosion processes has been discussed. It is expected that the integrated formulation of the model has the promise to reduce uncertainties associated with typical parameterizations of flow and erosion processes. A potential for more credible modeling of earth-surface processes is thus anticipated.

  3. Regional drought assessment using a distributed hydrological model coupled with Standardized Runoff Index

    Directory of Open Access Journals (Sweden)

    H. Shen

    2015-05-01

    Full Text Available Drought assessment is essential for coping with frequent droughts nowadays. Owing to the large spatio-temporal variations in hydrometeorology in most regions in China, it is very necessary to use a physically-based hydrological model to produce rational spatial and temporal distributions of hydro-meteorological variables for drought assessment. In this study, the large-scale distributed hydrological model Variable Infiltration Capacity (VIC was coupled with a modified standardized runoff index (SRI for drought assessment in the Weihe River basin, northwest China. The result indicates that the coupled model is capable of reasonably reproducing the spatial distribution of drought occurrence. It reflected the spatial heterogeneity of regional drought and improved the physical mechanism of SRI. This model also has potential for drought forecasting, early warning and mitigation, given that accurate meteorological forcing data are available.

  4. The JGrass-NewAge system for forecasting and managing the hydrological budgets at the basin scale: models of flow generation and propagation/routing

    Directory of Open Access Journals (Sweden)

    G. Formetta

    2011-11-01

    Full Text Available This paper presents a discussion of the predictive capacity of the implementation of the semi-distributed hydrological modeling system JGrass-NewAge. This model focuses on the hydrological budgets of medium scale to large scale basins as the product of the processes at the hillslope scale with the interplay of the river network. The part of the modeling system presented here deals with the: (i estimation of the space-time structure of precipitation, (ii estimation of runoff production; (iii aggregation and propagation of flows in channel; (v estimation of evapotranspiration; (vi automatic calibration of the discharge with the method of particle swarming.

    The system is based on a hillslope-link geometrical partition of the landscape, combining raster and vectorial treatment of hillslope data with vector based tracking of flow in channels. Measured precipitation are spatially interpolated with the use of kriging. Runoff production at each channel link is estimated through a peculiar application of the Hymod model. Routing in channels uses an integrated flow equation and produces discharges at any link end, for any link in the river network. Evapotranspiration is estimated with an implementation of the Priestley-Taylor equation. The model system assembly is calibrated using the particle swarming algorithm. A two year simulation of hourly discharge of the Little Washita (OK, USA basin is presented and discussed with the support of some classical indices of goodness of fit, and analysis of the residuals. A novelty with respect to traditional hydrological modeling is that each of the elements above, including the preprocessing and the analysis tools, is implemented as a software component, built upon Object Modelling System v3 and jgrasstools prescriptions, that can be cleanly switched in and out at run-time, rather than at compiling time. The possibility of creating different modeling products by the connection of modules with or without the

  5. Multi-model analysis in hydrological prediction

    Science.gov (United States)

    Lanthier, M.; Arsenault, R.; Brissette, F.

    2017-12-01

    Hydrologic modelling, by nature, is a simplification of the real-world hydrologic system. Therefore ensemble hydrological predictions thus obtained do not present the full range of possible streamflow outcomes, thereby producing ensembles which demonstrate errors in variance such as under-dispersion. Past studies show that lumped models used in prediction mode can return satisfactory results, especially when there is not enough information available on the watershed to run a distributed model. But all lumped models greatly simplify the complex processes of the hydrologic cycle. To generate more spread in the hydrologic ensemble predictions, multi-model ensembles have been considered. In this study, the aim is to propose and analyse a method that gives an ensemble streamflow prediction that properly represents the forecast probabilities and reduced ensemble bias. To achieve this, three simple lumped models are used to generate an ensemble. These will also be combined using multi-model averaging techniques, which generally generate a more accurate hydrogram than the best of the individual models in simulation mode. This new predictive combined hydrogram is added to the ensemble, thus creating a large ensemble which may improve the variability while also improving the ensemble mean bias. The quality of the predictions is then assessed on different periods: 2 weeks, 1 month, 3 months and 6 months using a PIT Histogram of the percentiles of the real observation volumes with respect to the volumes of the ensemble members. Initially, the models were run using historical weather data to generate synthetic flows. This worked for individual models, but not for the multi-model and for the large ensemble. Consequently, by performing data assimilation at each prediction period and thus adjusting the initial states of the models, the PIT Histogram could be constructed using the observed flows while allowing the use of the multi-model predictions. The under-dispersion has been

  6. Large-Scale and Global Hydrology. Chapter 92

    Science.gov (United States)

    Rodell, Matthew; Beaudoing, Hiroko Kato; Koster, Randal; Peters-Lidard, Christa D.; Famiglietti, James S.; Lakshmi, Venkat

    2016-01-01

    Powered by the sun, water moves continuously between and through Earths oceanic, atmospheric, and terrestrial reservoirs. It enables life, shapes Earths surface, and responds to and influences climate change. Scientists measure various features of the water cycle using a combination of ground, airborne, and space-based observations, and seek to characterize it at multiple scales with the aid of numerical models. Over time our understanding of the water cycle and ability to quantify it have improved, owing to advances in observational capabilities, the extension of the data record, and increases in computing power and storage. Here we present some of the most recent estimates of global and continental ocean basin scale water cycle stocks and fluxes and provide examples of modern numerical modeling systems and reanalyses.Further, we discuss prospects for predicting water cycle variability at seasonal and longer scales, which is complicated by a changing climate and direct human impacts related to water management and agriculture. Changes to the water cycle will be among the most obvious and important facets of climate change, thus it is crucial that we continue to invest in our ability to monitor it.

  7. Coupled hydrologic and hydraulic modeling of Upper Niger River Basin

    Science.gov (United States)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Gossett, Marielle; Pontes, Paulo; Calmant, Stephane; Biancamaria, Sylvain; Crétaux, Jean-François; Tanimoune, Bachir

    2017-04-01

    The Upper Niger Basin is located in Western Africa, flowing from Guinea Highlands towards the Sahel region. In this area lies the seasonally inundated Niger Inland Delta, which supports important environmental services such as habitats for wildlife, climate and flood regulation, as well as large fishery and agricultural areas. In this study, we present the application of MGB-IPH large scale hydrologic and hydrodynamic model for the Upper Niger Basin, totaling c.a. 650,000 km2 and set up until the city of Niamey in Niger. The model couples hydrological vertical balance and runoff generation with hydrodynamic flood wave propagation, by allowing infiltration from floodplains into soil column as well as representing backwater effects and floodplain storage throughout flat areas such as the Inland Delta. The model is forced with TRMM 3B42 daily precipitation and Climate Research Unit (CRU) climatology for the period 2000-2010, and was calibrated against in-situ discharge gauges and validated with in-situ water level, remotely sensed estimations of flooded areas (classification of MODIS imagery) and satellite altimetry (JASON-2 mission). Model results show good predictions for calibrated daily discharge and validated water level and altimetry at stations both upstream and downstream of the delta (Nash-Sutcliffe Efficiency>0.7 for all stations), as well as for flooded areas within the delta region (ENS=0.5; r2=0.8), allowing a good representation of flooding dynamics basinwide and simulation of flooding behavior of both perennial (e.g., Niger main stem) and ephemeral rivers (e.g., Niger Red Flood tributaries in Sahel). Coupling between hydrology and hydrodynamic processes indicates an important feedback between floodplain and soil water storage that allows high evapotranspiration rates even after the flood passage around the inner delta area. Also, representation of water retention in floodplain channels and distributaries in the inner delta (e.g., Diaka river

  8. Initial hydrological modelling to assess impacts of different land uses on process hydrology in a small-scale semi-arid catchment in the Western Cape Province, South Africa

    CSIR Research Space (South Africa)

    Steudel, T

    2010-06-01

    Full Text Available in those areas. GIS DATA ? highly precise GPS field measurements and contour line information for digital elevation model (DEM) generation and watershed derivation ? different raster layers (spatial resolution = 7.6 m) containing plot specific...2000 is capable of representing the hydrological conditions within such a small- scale catchment (Fig. 5, Fig 6) OUTLOOK ? J2000 can be used for a detailed analysis of the individual hydrological components affected by land use change ? further...

  9. Micro-scale hydrological field experiments in Romania

    Directory of Open Access Journals (Sweden)

    Minea Gabriel

    2016-02-01

    Full Text Available The paper (communication presents an overview of hydrologic field experiments at micro-scale in Romania. In order to experimentally investigate micro (plot-scale hydrological impact of soil erosion, the National Institute of Hydrology and Water Management founded Voineşti Experimental Basin (VES in 1964 and the Aldeni Experimental Basins (AEB in 1984. AEB and VES are located in the Curvature Subcarpathians. Experimental plots are organized in a double systems and have an area of 80 m2 (runoff plots at AEB and 300 m2 (water balance plots at VES. Land use of plot: first plot ”grass-land” is covered with perennial grass and second plot (control consists in ”bare soil”. Over the latter one, the soil is hoeing, which results in a greater development of infiltration than in the first plot. Experimental investigations at micro-scale are aimed towards determining the parameters of the water balance equation, during natural and artificial rainfalls, researching of flows and soil erosion processes on experimental plots, extrapolating relations involving runoff coefficients from a small scale to medium scale. Nowadays, the latest evolutions in data acquisition and transmission equipment are represented by sensors (such as: sensors to determinate the soil moisture content. Exploitation and dissemination of hydrologic data is accomplished by research themes/projects, year-books of basic data and papers.

  10. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle

    Science.gov (United States)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto

    2015-04-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  11. Understanding the roles of ligand promoted dissolution, water column saturation and hydrological properties on intense basalt weathering using reactive transport and watershed-scale hydrologic modeling

    Science.gov (United States)

    Perez Fodich, A.; Walter, M. T.; Derry, L. A.

    2016-12-01

    The interaction of rocks with rainwater generates physical and chemical changes, which ultimately culminates in soil development. The addition of catalyzers such as plants, atmospheric gases and hydrological properties will result in more intense and/or faster weathering transformations. The intensity of weathering across the Island of Hawaii is strongly correlated with exposure age and time-integrated precipitation. Intense weathering has resulted from interaction between a thermodynamically unstable lithology, high water/rock ratios, atmospheric gases (O2, CO2) and biota as an organic acid and CO2 producer. To further investigate the role of different weathering agents we have developed 1-D reactive transport models (RTM) to understand mineralogical and fluid chemistry changes in the initially basaltic porous media. The initial meso-scale heterogeneity of porosity makes it difficult for RTMs to capture changes in runoff/groundwater partitioning. Therefore, hydraulic properties (hydraulic conductivity and aquifer depth) are modeled as a watershed parameter appropriate for this system where sub-surface hydraulic data is scarce(1). Initial results agree with field data in a broad sense: different rainfall regimes and timescales show depletion of mobile cations, increasingly low pH, congruent dissolution of olivine and pyroxene, incongruent dissolution of plagioclase and basaltic glass, precipitation of non-crystalline allophane and ferrihydrite, and porosity changes due to dissolution and precipitation of minerals; ultimately Al and Fe are also exported from the system. RTM is used to examine the roles of unsaturation in the soil profile, ligand promoted dissolution of Al- and Fe-bearing phases, and Fe-oxide precipitation at the outcrop scale. Also, we aim to test the use of recession flow analysis to model watershed-scale hydrological properties to extrapolate changes in the runoff/groundwater partitioning. The coupling between weathering processes and hydrologic

  12. Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology

    Directory of Open Access Journals (Sweden)

    I. Gouttevin

    2012-04-01

    Full Text Available Soil freezing is a major feature of boreal regions with substantial impact on climate. The present paper describes the implementation of the thermal and hydrological effects of soil freezing in the land surface model ORCHIDEE, which includes a physical description of continental hydrology. The new soil freezing scheme is evaluated against analytical solutions and in-situ observations at a variety of scales in order to test its numerical robustness, explore its sensitivity to parameterization choices and confront its performance to field measurements at typical application scales.

    Our soil freezing model exhibits a low sensitivity to the vertical discretization for spatial steps in the range of a few millimetres to a few centimetres. It is however sensitive to the temperature interval around the freezing point where phase change occurs, which should be 1 °C to 2 °C wide. Furthermore, linear and thermodynamical parameterizations of the liquid water content lead to similar results in terms of water redistribution within the soil and thermal evolution under freezing. Our approach does not allow firm discrimination of the performance of one approach over the other.

    The new soil freezing scheme considerably improves the representation of runoff and river discharge in regions underlain by permafrost or subject to seasonal freezing. A thermodynamical parameterization of the liquid water content appears more appropriate for an integrated description of the hydrological processes at the scale of the vast Siberian basins. The use of a subgrid variability approach and the representation of wetlands could help capture the features of the Arctic hydrological regime with more accuracy.

    The modeling of the soil thermal regime is generally improved by the representation of soil freezing processes. In particular, the dynamics of the active layer is captured with more accuracy, which is of crucial importance in the prospect of

  13. From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions

    Science.gov (United States)

    Fenicia, Fabrizio; Kavetski, Dmitri; Savenije, Hubert H. G.; Pfister, Laurent

    2016-02-01

    This paper explores the development and application of distributed hydrological models, focusing on the key decisions of how to discretize the landscape, which model structures to use in each landscape element, and how to link model parameters across multiple landscape elements. The case study considers the Attert catchment in Luxembourg—a 300 km2 mesoscale catchment with 10 nested subcatchments that exhibit clearly different streamflow dynamics. The research questions are investigated using conceptual models applied at hydrologic response unit (HRU) scales (1-4 HRUs) on 6 hourly time steps. Multiple model structures are hypothesized and implemented using the SUPERFLEX framework. Following calibration, space/time model transferability is tested using a split-sample approach, with evaluation criteria including streamflow prediction error metrics and hydrological signatures. Our results suggest that: (1) models using geology-based HRUs are more robust and capture the spatial variability of streamflow time series and signatures better than models using topography-based HRUs; this finding supports the hypothesis that, in the Attert, geology exerts a stronger control than topography on streamflow generation, (2) streamflow dynamics of different HRUs can be represented using distinct and remarkably simple model structures, which can be interpreted in terms of the perceived dominant hydrologic processes in each geology type, and (3) the same maximum root zone storage can be used across the three dominant geological units with no loss in model transferability; this finding suggests that the partitioning of water between streamflow and evaporation in the study area is largely independent of geology and can be used to improve model parsimony. The modeling methodology introduced in this study is general and can be used to advance our broader understanding and prediction of hydrological behavior, including the landscape characteristics that control hydrologic response, the

  14. High-resolution Continental Scale Land Surface Model incorporating Land-water Management in United States

    Science.gov (United States)

    Shin, S.; Pokhrel, Y. N.

    2016-12-01

    Land surface models have been used to assess water resources sustainability under changing Earth environment and increasing human water needs. Overwhelming observational records indicate that human activities have ubiquitous and pertinent effects on the hydrologic cycle; however, they have been crudely represented in large scale land surface models. In this study, we enhance an integrated continental-scale land hydrology model named Leaf-Hydro-Flood to better represent land-water management. The model is implemented at high resolution (5km grids) over the continental US. Surface water and groundwater are withdrawn based on actual practices. Newly added irrigation, water diversion, and dam operation schemes allow better simulations of stream flows, evapotranspiration, and infiltration. Results of various hydrologic fluxes and stores from two sets of simulation (one with and the other without human activities) are compared over a range of river basin and aquifer scales. The improved simulations of land hydrology have potential to build consistent modeling framework for human-water-climate interactions.

  15. A large scale field experiment in the Amazon basin (LAMBADA/BATERISTA)

    NARCIS (Netherlands)

    Dolman, A.J.; Kabat, P.; Gash, J.H.C.; Noilhan, J.; Jochum, A.M.; Nobre, C.

    1995-01-01

    A description is given of a large-scale field experiment planned in the Amazon basin, aimed at assessing the large-scale balances of energy, water and carbon dioxide. The embedding of this experiment in global change programmes is described, viz. the Biospheric Aspects of the Hydrological Cycle

  16. Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS)

    Science.gov (United States)

    Jing, Miao; Heße, Falk; Kumar, Rohini; Wang, Wenqing; Fischer, Thomas; Walther, Marc; Zink, Matthias; Zech, Alraune; Samaniego, Luis; Kolditz, Olaf; Attinger, Sabine

    2018-06-01

    Most large-scale hydrologic models fall short in reproducing groundwater head dynamics and simulating transport process due to their oversimplified representation of groundwater flow. In this study, we aim to extend the applicability of the mesoscale Hydrologic Model (mHM v5.7) to subsurface hydrology by coupling it with the porous media simulator OpenGeoSys (OGS). The two models are one-way coupled through model interfaces GIS2FEM and RIV2FEM, by which the grid-based fluxes of groundwater recharge and the river-groundwater exchange generated by mHM are converted to fixed-flux boundary conditions of the groundwater model OGS. Specifically, the grid-based vertical reservoirs in mHM are completely preserved for the estimation of land-surface fluxes, while OGS acts as a plug-in to the original mHM modeling framework for groundwater flow and transport modeling. The applicability of the coupled model (mHM-OGS v1.0) is evaluated by a case study in the central European mesoscale river basin - Nägelstedt. Different time steps, i.e., daily in mHM and monthly in OGS, are used to account for fast surface flow and slow groundwater flow. Model calibration is conducted following a two-step procedure using discharge for mHM and long-term mean of groundwater head measurements for OGS. Based on the model summary statistics, namely the Nash-Sutcliffe model efficiency (NSE), the mean absolute error (MAE), and the interquartile range error (QRE), the coupled model is able to satisfactorily represent the dynamics of discharge and groundwater heads at several locations across the study basin. Our exemplary calculations show that the one-way coupled model can take advantage of the spatially explicit modeling capabilities of surface and groundwater hydrologic models and provide an adequate representation of the spatiotemporal behaviors of groundwater storage and heads, thus making it a valuable tool for addressing water resources and management problems.

  17. netherland hydrological modeling instrument

    Science.gov (United States)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  18. tran-SAS v1.0: a numerical model to compute catchment-scale hydrologic transport using StorAge Selection functions

    Directory of Open Access Journals (Sweden)

    P. Benettin

    2018-04-01

    Full Text Available This paper presents the tran-SAS package, which includes a set of codes to model solute transport and water residence times through a hydrological system. The model is based on a catchment-scale approach that aims at reproducing the integrated response of the system at one of its outlets. The codes are implemented in MATLAB and are meant to be easy to edit, so that users with minimal programming knowledge can adapt them to the desired application. The problem of large-scale solute transport has both theoretical and practical implications. On the one side, the ability to represent the ensemble of water flow trajectories through a heterogeneous system helps unraveling streamflow generation processes and allows us to make inferences on plant–water interactions. On the other side, transport models are a practical tool that can be used to estimate the persistence of solutes in the environment. The core of the package is based on the implementation of an age master equation (ME, which is solved using general StorAge Selection (SAS functions. The age ME is first converted into a set of ordinary differential equations, each addressing the transport of an individual precipitation input through the catchment, and then it is discretized using an explicit numerical scheme. Results show that the implementation is efficient and allows the model to run in short times. The numerical accuracy is critically evaluated and it is shown to be satisfactory in most cases of hydrologic interest. Additionally, a higher-order implementation is provided within the package to evaluate and, if necessary, to improve the numerical accuracy of the results. The codes can be used to model streamflow age and solute concentration, but a number of additional outputs can be obtained by editing the codes to further advance the ability to understand and model catchment transport processes.

  19. tran-SAS v1.0: a numerical model to compute catchment-scale hydrologic transport using StorAge Selection functions

    Science.gov (United States)

    Benettin, Paolo; Bertuzzo, Enrico

    2018-04-01

    This paper presents the tran-SAS package, which includes a set of codes to model solute transport and water residence times through a hydrological system. The model is based on a catchment-scale approach that aims at reproducing the integrated response of the system at one of its outlets. The codes are implemented in MATLAB and are meant to be easy to edit, so that users with minimal programming knowledge can adapt them to the desired application. The problem of large-scale solute transport has both theoretical and practical implications. On the one side, the ability to represent the ensemble of water flow trajectories through a heterogeneous system helps unraveling streamflow generation processes and allows us to make inferences on plant-water interactions. On the other side, transport models are a practical tool that can be used to estimate the persistence of solutes in the environment. The core of the package is based on the implementation of an age master equation (ME), which is solved using general StorAge Selection (SAS) functions. The age ME is first converted into a set of ordinary differential equations, each addressing the transport of an individual precipitation input through the catchment, and then it is discretized using an explicit numerical scheme. Results show that the implementation is efficient and allows the model to run in short times. The numerical accuracy is critically evaluated and it is shown to be satisfactory in most cases of hydrologic interest. Additionally, a higher-order implementation is provided within the package to evaluate and, if necessary, to improve the numerical accuracy of the results. The codes can be used to model streamflow age and solute concentration, but a number of additional outputs can be obtained by editing the codes to further advance the ability to understand and model catchment transport processes.

  20. Hydrologic effects of large southwestern USA wildfires significantly increase regional water supply: fact or fiction?

    Science.gov (United States)

    Wine, M. L.; Cadol, D.

    2016-08-01

    In recent years climate change and historic fire suppression have increased the frequency of large wildfires in the southwestern USA, motivating study of the hydrological consequences of these wildfires at point and watershed scales, typically over short periods of time. These studies have revealed that reduced soil infiltration capacity and reduced transpiration due to tree canopy combustion increase streamflow at the watershed scale. However, the degree to which these local increases in runoff propagate to larger scales—relevant to urban and agricultural water supply—remains largely unknown, particularly in semi-arid mountainous watersheds co-dominated by winter snowmelt and the North American monsoon. To address this question, we selected three New Mexico watersheds—the Jemez (1223 km2), Mogollon (191 km2), and Gila (4807 km2)—that together have been affected by over 100 wildfires since 1982. We then applied climate-driven linear models to test for effects of fire on streamflow metrics after controlling for climatic variability. Here we show that, after controlling for climatic and snowpack variability, significantly more streamflow discharged from the Gila watershed for three to five years following wildfires, consistent with increased regional water yield due to enhanced infiltration-excess overland flow and groundwater recharge at the large watershed scale. In contrast, we observed no such increase in discharge from the Jemez watershed following wildfires. Fire regimes represent a key difference between the contrasting responses of the Jemez and Gila watersheds with the latter experiencing more frequent wildfires, many caused by lightning strikes. While hydrologic dynamics at the scale of large watersheds were previously thought to be climatically dominated, these results suggest that if one fifth or more of a large watershed has been burned in the previous three to five years, significant increases in water yield can be expected.

  1. Interactions between large-scale modes of climate and their relationship with Australian climate and hydrology

    Science.gov (United States)

    Whan, K. R.; Lindesay, J. A.; Timbal, B.; Raupach, M. R.; Williams, E.

    2010-12-01

    Australia’s natural environment is adapted to low rainfall availability and high variability but human systems are less able to adapt to variability in the hydrological cycle. Understanding the mechanisms underlying drought persistence and severity is vital to contextualising future climate change. Multiple external forcings mean the mechanisms of drought occurrence in south-eastern Australian are complex. The key influences on SEA climate are El Niño-Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the sub-tropical ridge (STR); each of these large-scale climate modes (LSCM) has been studied widely. The need for research into the interactions among the modes has been noted [1], although to date this has received limited attention. Relationships between LSCM and hydrometeorological variability are nonlinear, making linearity assumptions underlying usual statistical techniques (e.g. correlation, principle components analysis) questionable. In the current research a statistical technique that can deal with nonlinear interactions is applied to a new dataset enabling a full examination of the Australian water balance. The Australian Water Availability Project (AWAP) dataset models the Australian water balance on a fine grid [2]. Hydrological parameters (e.g. soil moisture, evaporation, runoff) are modelled from meteorological data, allowing the complete Australian water balance (climate and hydrology) to be examined and the mechanisms of drought to be studied holistically. Classification and regression trees (CART) are a powerful regression-based technique that is capable of accounting for nonlinear effects. Although it has limited previous application in climate research [3] this methodology is particularly informative in cases with multiple predictors and nonlinear relationships such as climate variability. Statistical relationships between variables are the basis for the decision rules in CART that are used to split

  2. Modeling post-wildfire hydrological processes with ParFlow

    Science.gov (United States)

    Escobar, I. S.; Lopez, S. R.; Kinoshita, A. M.

    2017-12-01

    Wildfires alter the natural processes within a watershed, such as surface runoff, evapotranspiration rates, and subsurface water storage. Post-fire hydrologic models are typically one-dimensional, empirically-based models or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful for modeling and predictions at the watershed outlet; however, do not provide detailed, distributed hydrologic processes at the point scale within the watershed. This research uses ParFlow, a three-dimensional, distributed hydrologic model to simulate post-fire hydrologic processes by representing the spatial and temporal variability of soil burn severity (via hydrophobicity) and vegetation recovery. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This work builds upon previous field and remote sensing analysis conducted for the 2003 Old Fire Burn in Devil Canyon, located in southern California (USA). This model is initially developed for a hillslope defined by a 500 m by 1000 m lateral extent. The subsurface reaches 12.4 m and is assigned a variable cell thickness to explicitly consider soil burn severity throughout the stages of recovery and vegetation regrowth. We consider four slope and eight hydrophobic layer configurations. Evapotranspiration is used as a proxy for vegetation regrowth and is represented by the satellite-based Simplified Surface Energy Balance (SSEBOP) product. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated at the point scale. Results will be used as a basis for developing and fine-tuning a watershed-scale model. Long-term simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management. In reference

  3. Improved Regional Climate Model Simulation of Precipitation by a Dynamical Coupling to a Hydrology Model

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Hesselbjerg Christensen, Jens

    convective precipitation systems. As a result climate model simulations let alone future projections of precipitation often exhibit substantial biases. Here we show that the dynamical coupling of a regional climate model to a detailed fully distributed hydrological model - including groundwater-, overland...... of local precipitation dynamics are seen for time scales of app. Seasonal duration and longer. We show that these results can be attributed to a more complete treatment of land surface feedbacks. The local scale effect on the atmosphere suggests that coupled high-resolution climate-hydrology models...... including a detailed 3D redistribution of sub- and land surface water have a significant potential for improving climate projections even diminishing the need for bias correction in climate-hydrology studies....

  4. Integrating remotely sensed surface water extent into continental scale hydrology.

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R 2 , RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  5. An interactive display system for large-scale 3D models

    Science.gov (United States)

    Liu, Zijian; Sun, Kun; Tao, Wenbing; Liu, Liman

    2018-04-01

    With the improvement of 3D reconstruction theory and the rapid development of computer hardware technology, the reconstructed 3D models are enlarging in scale and increasing in complexity. Models with tens of thousands of 3D points or triangular meshes are common in practical applications. Due to storage and computing power limitation, it is difficult to achieve real-time display and interaction with large scale 3D models for some common 3D display software, such as MeshLab. In this paper, we propose a display system for large-scale 3D scene models. We construct the LOD (Levels of Detail) model of the reconstructed 3D scene in advance, and then use an out-of-core view-dependent multi-resolution rendering scheme to realize the real-time display of the large-scale 3D model. With the proposed method, our display system is able to render in real time while roaming in the reconstructed scene and 3D camera poses can also be displayed. Furthermore, the memory consumption can be significantly decreased via internal and external memory exchange mechanism, so that it is possible to display a large scale reconstructed scene with over millions of 3D points or triangular meshes in a regular PC with only 4GB RAM.

  6. Development of the Hydrological-Ecological Integrated watershed Flow Model (HEIFLOW): an application to the Heihe River Basin

    Science.gov (United States)

    Tian, Y.; Zheng, Y.; Zheng, C.; Han, F., Sr.

    2017-12-01

    Physically based and fully-distributed integrated hydrological models (IHMs) can quantitatively depict hydrological processes, both surface and subsurface, with sufficient spatial and temporal details. However, the complexity involved in pre-processing data and setting up models seriously hindered the wider application of IHMs in scientific research and management practice. This study introduces our design and development of Visual HEIFLOW, hereafter referred to as VHF, a comprehensive graphical data processing and modeling system for integrated hydrological simulation. The current version of VHF has been structured to accommodate an IHM named HEIFLOW (Hydrological-Ecological Integrated watershed-scale FLOW model). HEIFLOW is a model being developed by the authors, which has all typical elements of physically based and fully-distributed IHMs. It is based on GSFLOW, a representative integrated surface water-groundwater model developed by USGS. HEIFLOW provides several ecological modules that enable to simulate growth cycle of general vegetation and special plants (maize and populus euphratica). VHF incorporates and streamlines all key steps of the integrated modeling, and accommodates all types of GIS data necessary to hydrological simulation. It provides a GIS-based data processing framework to prepare an IHM for simulations, and has functionalities to flexibly display and modify model features (e.g., model grids, streams, boundary conditions, observational sites, etc.) and their associated data. It enables visualization and various spatio-temporal analyses of all model inputs and outputs at different scales (i.e., computing unit, sub-basin, basin, or user-defined spatial extent). The above system features, as well as many others, can significantly reduce the difficulty and time cost of building and using a complex IHM. The case study in the Heihe River Basin demonstrated the applicability of VHF for large scale integrated SW-GW modeling. Visualization and spatial

  7. Using the object modeling system for hydrological model development and application

    Directory of Open Access Journals (Sweden)

    S. Kralisch

    2005-01-01

    Full Text Available State of the art challenges in sustainable management of water resources have created demand for integrated, flexible and easy to use hydrological models which are able to simulate the quantitative and qualitative aspects of the hydrological cycle with a sufficient degree of certainty. Existing models which have been de-veloped to fit these needs are often constrained to specific scales or purposes and thus can not be easily adapted to meet different challenges. As a solution for flexible and modularised model development and application, the Object Modeling System (OMS has been developed in a joint approach by the USDA-ARS, GPSRU (Fort Collins, CO, USA, USGS (Denver, CO, USA, and the FSU (Jena, Germany. The OMS provides a modern modelling framework which allows the implementation of single process components to be compiled and applied as custom tailored model assemblies. This paper describes basic principles of the OMS and its main components and explains in more detail how the problems during coupling of models or model components are solved inside the system. It highlights the integration of different spatial and temporal scales by their representation as spatial modelling entities embedded into time compound components. As an exam-ple the implementation of the hydrological model J2000 is discussed.

  8. On modeling complex interplay in small-scale self-organized socio-hydrological systems

    Science.gov (United States)

    Muneepeerakul, Rachata

    2017-04-01

    Successful and sustainable socio-hydrological systems, as in any coupled natural human-systems, require effective governance, which depends on the existence of proper infrastructure (both hard and soft). Recent work has addressed systems in which resource users and the organization responsible for maintaining the infrastructure are separate entities. However, many socio-hydrological systems, especially in developing countries, are small and without such formal division of labor; rather, such division of labor typically arises from self-organization within the population. In this work, we modify and mathematically operationalize a conceptual framework by developing a system of differential equations that capture the strategic behavior within such a self-organized population, its interplay with infrastructure characteristics and hydrological dynamics, and feedbacks between these elements. The model yields a number of insightful conditions related to long-term sustainability and collapse of the socio-hydrological system in the form of relationships between biophysical and social factors. These relationships encapsulate nonlinear interactions of these factors. The modeling framework is grounded in a solid conceptual foundation upon which additional modifications and realism can be built for potential reconciliation between socio-hydrology with other related fields and further applications.

  9. Research on Multi Hydrological Models Applicability and Modelling Data Uncertainty Analysis for Flash Flood Simulation in Hilly Area

    Science.gov (United States)

    Ye, L.; Wu, J.; Wang, L.; Song, T.; Ji, R.

    2017-12-01

    Flooding in small-scale watershed in hilly area is characterized by short time periods and rapid rise and recession due to the complex underlying surfaces, various climate type and strong effect of human activities. It is almost impossible for a single hydrological model to describe the variation of flooding in both time and space accurately for all the catchments in hilly area because the hydrological characteristics can vary significantly among different catchments. In this study, we compare the performance of 5 hydrological models with varying degrees of complexity for simulation of flash flood for 14 small-scale watershed in China in order to find the relationship between the applicability of the hydrological models and the catchments characteristics. Meanwhile, given the fact that the hydrological data is sparse in hilly area, the effect of precipitation data, DEM resolution and their interference on the uncertainty of flood simulation is also illustrated. In general, the results showed that the distributed hydrological model (HEC-HMS in this study) performed better than the lumped hydrological models. Xinajiang and API models had good simulation for the humid catchments when long-term and continuous rainfall data is provided. Dahuofang model can simulate the flood peak well while the runoff generation module is relatively poor. In addition, the effect of diverse modelling data on the simulations is not simply superposed, and there is a complex interaction effect among different modelling data. Overall, both the catchment hydrological characteristics and modelling data situation should be taken into consideration in order to choose the suitable hydrological model for flood simulation for small-scale catchment in hilly area.

  10. Validation of a mesoscale hydrological model in a small-scale forested catchment

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Tesař, Miroslav

    2016-01-01

    Roč. 47, č. 1 (2016), s. 27-41 ISSN 1998-9563 R&D Projects: GA TA ČR TA02021451 Institutional support: RVO:67985874 Keywords : hydrological modelling * small catchment * soil moisture * subsurface lateral flow * SWIM Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.754, year: 2016

  11. Effects of land use on lake nutrients: The importance of scale, hydrologic connectivity, and region

    Science.gov (United States)

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate

    2015-01-01

    Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales.

  12. Using large hydrological datasets to create a robust, physically based, spatially distributed model for Great Britain

    Science.gov (United States)

    Lewis, Elizabeth; Kilsby, Chris; Fowler, Hayley

    2014-05-01

    The impact of climate change on hydrological systems requires further quantification in order to inform water management. This study intends to conduct such analysis using hydrological models. Such models are of varying forms, of which conceptual, lumped parameter models and physically-based models are two important types. The majority of hydrological studies use conceptual models calibrated against measured river flow time series in order to represent catchment behaviour. This method often shows impressive results for specific problems in gauged catchments. However, the results may not be robust under non-stationary conditions such as climate change, as physical processes and relationships amenable to change are not accounted for explicitly. Moreover, conceptual models are less readily applicable to ungauged catchments, in which hydrological predictions are also required. As such, the physically based, spatially distributed model SHETRAN is used in this study to develop a robust and reliable framework for modelling historic and future behaviour of gauged and ungauged catchments across the whole of Great Britain. In order to achieve this, a large array of data completely covering Great Britain for the period 1960-2006 has been collated and efficiently stored ready for model input. The data processed include a DEM, rainfall, PE and maps of geology, soil and land cover. A desire to make the modelling system easy for others to work with led to the development of a user-friendly graphical interface. This allows non-experts to set up and run a catchment model in a few seconds, a process that can normally take weeks or months. The quality and reliability of the extensive dataset for modelling hydrological processes has also been evaluated. One aspect of this has been an assessment of error and uncertainty in rainfall input data, as well as the effects of temporal resolution in precipitation inputs on model calibration. SHETRAN has been updated to accept gridded rainfall

  13. VIC-CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    Science.gov (United States)

    Malek, Keyvan; Stöckle, Claudio; Chinnayakanahalli, Kiran; Nelson, Roger; Liu, Mingliang; Rajagopalan, Kirti; Barik, Muhammad; Adam, Jennifer C.

    2017-08-01

    Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively). A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC) hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC-CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology), it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC-CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC-CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land-atmosphere interactions. The performance of VIC-CropSyst was evaluated on both regional (over the US Pacific Northwest) and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois). The agreement between recorded and simulated evapotranspiration (ET), applied irrigation water, soil moisture, leaf area index (LAI), and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  14. Modelling of Sub-daily Hydrological Processes Using Daily Time-Step Models: A Distribution Function Approach to Temporal Scaling

    Science.gov (United States)

    Kandel, D. D.; Western, A. W.; Grayson, R. B.

    2004-12-01

    Mismatches in scale between the fundamental processes, the model and supporting data are a major limitation in hydrologic modelling. Surface runoff generation via infiltration excess and the process of soil erosion are fundamentally short time-scale phenomena and their average behaviour is mostly determined by the short time-scale peak intensities of rainfall. Ideally, these processes should be simulated using time-steps of the order of minutes to appropriately resolve the effect of rainfall intensity variations. However, sub-daily data support is often inadequate and the processes are usually simulated by calibrating daily (or even coarser) time-step models. Generally process descriptions are not modified but rather effective parameter values are used to account for the effect of temporal lumping, assuming that the effect of the scale mismatch can be counterbalanced by tuning the parameter values at the model time-step of interest. Often this results in parameter values that are difficult to interpret physically. A similar approach is often taken spatially. This is problematic as these processes generally operate or interact non-linearly. This indicates a need for better techniques to simulate sub-daily processes using daily time-step models while still using widely available daily information. A new method applicable to many rainfall-runoff-erosion models is presented. The method is based on temporal scaling using statistical distributions of rainfall intensity to represent sub-daily intensity variations in a daily time-step model. This allows the effect of short time-scale nonlinear processes to be captured while modelling at a daily time-step, which is often attractive due to the wide availability of daily forcing data. The approach relies on characterising the rainfall intensity variation within a day using a cumulative distribution function (cdf). This cdf is then modified by various linear and nonlinear processes typically represented in hydrological and

  15. Optimization of large-scale heterogeneous system-of-systems models.

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, Ojas; Watson, Jean-Paul; Phillips, Cynthia Ann; Siirola, John; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Lee, Herbert K. H. (University of California, Santa Cruz, Santa Cruz, CA); Hart, William Eugene; Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA); Woodruff, David L. (University of California, Davis, Davis, CA)

    2012-01-01

    Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.

  16. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  17. Intermittent Rivers and Biodiversity. Large scale analyses between hydrology and ecology in intermittent rivers

    OpenAIRE

    Blanchard, Q.

    2014-01-01

    Intermittent rivers are characterized by a temporary interruption of their flow which can manifest in a variety of ways, as much on a spatial scale as on a temporal one. This particular aspect of intermittent river hydrology gives rise to unique ecosystems, combining both aquatic and terrestrial habitats. Neglected for a long time by scientists and once considered biologically depauperate and ecologically unimportant, these fragile habitats are nowadays acknowledged for their rendered service...

  18. Quantifying Km-scale Hydrological Exchange Flows under Dynamic Flows and Their Influences on River Corridor Biogeochemistry

    Science.gov (United States)

    Chen, X.; Song, X.; Shuai, P.; Hammond, G. E.; Ren, H.; Zachara, J. M.

    2017-12-01

    Hydrologic exchange flows (HEFs) in rivers play vital roles in watershed ecological and biogeochemical functions due to their strong capacity to attenuate contaminants and process significant quantities of carbon and nutrients. While most of existing HEF studies focus on headwater systems with the assumption of steady-state flow, there is lack of understanding of large-scale HEFs in high-order regulated rivers that experience high-frequency stage fluctuations. The large variability of HEFs is a result of interactions between spatial heterogeneity in hydrogeologic properties and temporal variation in river discharge induced by natural or anthropogenic perturbations. Our 9-year spatially distributed dataset (water elevation, specific conductance, and temperature) combined with mechanistic hydrobiogeochemical simulations have revealed complex spatial and temporal dynamics in km-scale HEFs and their significant impacts on contaminant plume mobility and hyporheic biogeochemical processes along the Hanford Reach. Extended multidirectional flow behaviors of unconfined, river corridor groundwater were observed hundreds of meters inland from the river shore resulting from discharge-dependent HEFs. An appropriately sized modeling domain to capture the impact of regional groundwater flow as well as knowledge of subsurface structures controlling intra-aquifer hydrologic connectivity were essential to realistically model transient storage in this large-scale river corridor. This work showed that both river water and mobile groundwater contaminants could serve as effective tracers of HEFs, thus providing valuable information for evaluating and validating the HEF models. Multimodal residence time distributions with long tails were resulted from the mixture of long and short exchange pathways, which consequently impact the carbon and nutrient cycling within the river corridor. Improved understanding of HEFs using integrated observational and modeling approaches sheds light on

  19. Ecological succession, hydrology and carbon acquisition of biological soil crusts measured at the micro-scale.

    Science.gov (United States)

    Tighe, Matthew; Haling, Rebecca E; Flavel, Richard J; Young, Iain M

    2012-01-01

    The hydrological characteristics of biological soil crusts (BSCs) are not well understood. In particular the relationship between runoff and BSC surfaces at relatively large (>1 m(2)) scales is ambiguous. Further, there is a dearth of information on small scale (mm to cm) hydrological characterization of crust types which severely limits any interpretation of trends at larger scales. Site differences and broad classifications of BSCs as one soil surface type rather than into functional form exacerbate the problem. This study examines, for the first time, some hydrological characteristics and related surface variables of a range of crust types at one site and at a small scale (sub mm to mm). X-ray tomography and fine scale hydrological measurements were made on intact BSCs, followed by C and C isotopic analyses. A 'hump' shaped relationship was found between the successional stage/sensitivity to physical disturbance classification of BSCs and their hydrophobicity, and a similar but 'inverse hump' relationship exists with hydraulic conductivity. Several bivariate relationships were found between hydrological variables. Hydraulic conductivity and hydrophobicity of BSCs were closely related but this association was confounded by crust type. The surface coverage of crust and the microporosity 0.5 mm below the crust surface were closely associated irrespective of crust type. The δ (13)C signatures of the BSCs were also related to hydraulic conductivity, suggesting that the hydrological characteristics of BSCs alter the chemical processes of their immediate surroundings via the physiological response (C acquisition) of the crust itself. These small scale results illustrate the wide range of hydrological properties associated with BSCs, and suggest associations between the ecological successional stage/functional form of BSCs and their ecohydrological role that needs further examination.

  20. Hydrologic characteristics of freshwater mussel habitat: novel insights from modeled flows

    Science.gov (United States)

    Drew, C. Ashton; Eddy, Michele; Kwak, Thomas J.; Cope, W. Gregory; Augspurger, Tom

    2018-01-01

    The ability to model freshwater stream habitat and species distributions is limited by the spatially sparse flow data available from long-term gauging stations. Flow data beyond the immediate vicinity of gauging stations would enhance our ability to explore and characterize hydrologic habitat suitability. The southeastern USA supports high aquatic biodiversity, but threats, such as landuse alteration, climate change, conflicting water-resource demands, and pollution, have led to the imperilment and legal protection of many species. The ability to distinguish suitable from unsuitable habitat conditions, including hydrologic suitability, is a key criterion for successful conservation and restoration of aquatic species. We used the example of the critically endangered Tar River Spinymussel (Parvaspina steinstansana) and associated species to demonstrate the value of modeled flow data (WaterFALL™) to generate novel insights into population structure and testable hypotheses regarding hydrologic suitability. With ordination models, we: 1) identified all catchments with potentially suitable hydrology, 2) identified 2 distinct hydrologic environments occupied by the Tar River Spinymussel, and 3) estimated greater hydrological habitat niche breadth of assumed surrogate species associates at the catchment scale. Our findings provide the first demonstrated application of complete, continuous, regional modeled hydrologic data to freshwater mussel distribution and management. This research highlights the utility of modeling and data-mining methods to facilitate further exploration and application of such modeled environmental conditions to inform aquatic species management. We conclude that such an approach can support landscape-scale management decisions that require spatial information at fine resolution (e.g., enhanced National Hydrology Dataset catchments) and broad extent (e.g., multiple river basins).

  1. Model structural uncertainty quantification and hydrologic parameter and prediction error analysis using airborne electromagnetic data

    DEFF Research Database (Denmark)

    Minsley, B. J.; Christensen, Nikolaj Kruse; Christensen, Steen

    Model structure, or the spatial arrangement of subsurface lithological units, is fundamental to the hydrological behavior of Earth systems. Knowledge of geological model structure is critically important in order to make informed hydrological predictions and management decisions. Model structure...... is never perfectly known, however, and incorrect assumptions can be a significant source of error when making model predictions. We describe a systematic approach for quantifying model structural uncertainty that is based on the integration of sparse borehole observations and large-scale airborne...... electromagnetic (AEM) data. Our estimates of model structural uncertainty follow a Bayesian framework that accounts for both the uncertainties in geophysical parameter estimates given AEM data, and the uncertainties in the relationship between lithology and geophysical parameters. Using geostatistical sequential...

  2. Towards an integrated model of floodplain hydrology representing feedbacks and anthropogenic effects

    Science.gov (United States)

    Andreadis, K.; Schumann, G.; Voisin, N.; O'Loughlin, F.; Tesfa, T. K.; Bates, P.

    2017-12-01

    The exchange of water between hillslopes, river channels and floodplain can be quite complex and the difficulty in capturing the mechanisms behind it is exacerbated by the impact of human activities such as irrigation and reservoir operations. Although there has been a vast body of work on modeling hydrological processes, most of the resulting models have been limited with regards to aspects of the coupled human-natural system. For example, hydrologic models that represent processes such as evapotranspiration, infiltration, interception and groundwater dynamics often neglect anthropogenic effects or do not adequately represent the inherently two-dimensional floodplain flow. We present an integrated modeling framework that is comprised of the Variable Infiltration Capacity (VIC) hydrology model, the LISFLOOD-FP hydrodynamic model, and the Water resources Management (WM) model. The VIC model solves the energy and water balance over a gridded domain and simulates a number of hydrologic features such as snow, frozen soils, lakes and wetlands, while also representing irrigation demand from cropland areas. LISFLOOD-FP solves an approximation of the Saint-Venant equations to efficiently simulate flow in river channels and the floodplain. The implementation of WM accommodates a variety of operating rules in reservoirs and withdrawals due to consumptive demands, allowing the successful simulation of regulated flow. The models are coupled so as to allow feedbacks between their corresponding processes, therefore providing the ability to test different hypotheses about the floodplain hydrology of large-scale basins. We test this integrated framework over the Zambezi River basin by simulating its hydrology from 2000-2010, and evaluate the results against remotely sensed observations. Finally, we examine the sensitivity of streamflow and water inundation to changes in reservoir operations, precipitation and temperature.

  3. High resolution global flood hazard map from physically-based hydrologic and hydraulic models.

    Science.gov (United States)

    Begnudelli, L.; Kaheil, Y.; McCollum, J.

    2017-12-01

    The global flood map published online at http://www.fmglobal.com/research-and-resources/global-flood-map at 90m resolution is being used worldwide to understand flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs. The modeling system is based on a physically-based hydrologic model to simulate river discharges, and 2D shallow-water hydrodynamic model to simulate inundation. The model can be applied to large-scale flood hazard mapping thanks to several solutions that maximize its efficiency and the use of parallel computing. The hydrologic component of the modeling system is the Hillslope River Routing (HRR) hydrologic model. HRR simulates hydrological processes using a Green-Ampt parameterization, and is calibrated against observed discharge data from several publicly-available datasets. For inundation mapping, we use a 2D Finite-Volume Shallow-Water model with wetting/drying. We introduce here a grid Up-Scaling Technique (UST) for hydraulic modeling to perform simulations at higher resolution at global scale with relatively short computational times. A 30m SRTM is now available worldwide along with higher accuracy and/or resolution local Digital Elevation Models (DEMs) in many countries and regions. UST consists of aggregating computational cells, thus forming a coarser grid, while retaining the topographic information from the original full-resolution mesh. The full-resolution topography is used for building relationships between volume and free surface elevation inside cells and computing inter-cell fluxes. This approach almost achieves computational speed typical of the coarse grids while preserving, to a significant extent, the accuracy offered by the much higher resolution available DEM. The simulations are carried out along each river of the network by forcing the hydraulic model with the streamflow hydrographs generated by HRR. Hydrographs are scaled so that the peak

  4. Development and testing of watershed-scale models for poorly drained soils

    Science.gov (United States)

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2005-01-01

    Watershed-scale hydrology and water quality models were used to evaluate the crrmulative impacts of land use and management practices on dowrzstream hydrology and nitrogen loading of poorly drained watersheds. Field-scale hydrology and nutrient dyyrutmics are predicted by DRAINMOD in both models. In the first model (DRAINMOD-DUFLOW), field-scale predictions are coupled...

  5. USGS Geospatial Fabric and Geo Data Portal for Continental Scale Hydrology Simulations

    Science.gov (United States)

    Sampson, K. M.; Newman, A. J.; Blodgett, D. L.; Viger, R.; Hay, L.; Clark, M. P.

    2013-12-01

    This presentation describes use of United States Geological Survey (USGS) data products and server-based resources for continental-scale hydrologic simulations. The USGS Modeling of Watershed Systems (MoWS) group provides a consistent national geospatial fabric built on NHDPlus. They have defined more than 100,000 hydrologic response units (HRUs) over the continental United States based on points of interest (POIs) and split into left and right bank based on the corresponding stream segment. Geophysical attributes are calculated for each HRU that can be used to define parameters in hydrologic and land-surface models. The Geo Data Portal (GDP) project at the USGS Center for Integrated Data Analytics (CIDA) provides access to downscaled climate datasets and processing services via web-interface and python modules for creating forcing datasets for any polygon (such as an HRU). These resources greatly reduce the labor required for creating model-ready data in-house, contributing to efficient and effective modeling applications. We will present an application of this USGS cyber-infrastructure for assessments of impacts of climate change on hydrology over the continental United States.

  6. Development and Application of an Integrated Model for Representing Hydrologic Processes and Irrigation at Residential Scale in Semiarid and Mediterranean Regions

    Science.gov (United States)

    Herrera, J. B.; Gironas, J. A.; Bonilla, C. A.; Vera, S.; Reyes, F. R.

    2015-12-01

    Urbanization alters physical and biological processes that take place in natural environments. New impervious areas change the hydrological processes, reducing infiltration and evapotranspiration and increasing direct runoff volumes and flow discharges. To reduce these effects at local scale, sustainable urban drainage systems, low impact development and best management practices have been developed and implemented. These technologies, which typically consider some type of green infrastructure (GI), simulate natural processes of capture, retention and infiltration to control flow discharges from frequent events and preserve the hydrological cycle. Applying these techniques in semiarid regions requires accounting for aspects related to the maintenance of green areas, such as the irrigation needs and the selection of the vegetation. This study develops the Integrated Hydrological Model at Residential Scale, IHMORS, which is a continuous model that simulates the most relevant hydrological processes together with irrigation processes of green areas. In the model contributing areas and drainage control practices are modeled by combining and connecting differents subareas subjected to surface processes (i.e. interception, evapotranspiration, infiltration and surface runoff) and sub-surface processes (percolation, redistribution and subsurface runoff). The model simulates these processes and accounts for the dynamics of the water content in different soil layers. The different components of the model were first tested using laboratory and numerical experiments, and then an application to a case study was carried out. In this application we assess the long-term performance in terms of runoff control and irrigation needs of green gardens with different vegetation, under different climate and irrigation practices. The model identifies significant differences in the performance of the alternatives and provides a good insight for the maintenance needs of GI for runoff control.

  7. VIC–CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    Directory of Open Access Journals (Sweden)

    K. Malek

    2017-08-01

    Full Text Available Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively. A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC–CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology, it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC–CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC–CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land–atmosphere interactions. The performance of VIC–CropSyst was evaluated on both regional (over the US Pacific Northwest and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois. The agreement between recorded and simulated evapotranspiration (ET, applied irrigation water, soil moisture, leaf area index (LAI, and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  8. Spatial pattern evaluation of a calibrated national hydrological model - a remote-sensing-based diagnostic approach

    Science.gov (United States)

    Mendiguren, Gorka; Koch, Julian; Stisen, Simon

    2017-11-01

    Distributed hydrological models are traditionally evaluated against discharge stations, emphasizing the temporal and neglecting the spatial component of a model. The present study widens the traditional paradigm by highlighting spatial patterns of evapotranspiration (ET), a key variable at the land-atmosphere interface, obtained from two different approaches at the national scale of Denmark. The first approach is based on a national water resources model (DK-model), using the MIKE-SHE model code, and the second approach utilizes a two-source energy balance model (TSEB) driven mainly by satellite remote sensing data. Ideally, the hydrological model simulation and remote-sensing-based approach should present similar spatial patterns and driving mechanisms of ET. However, the spatial comparison showed that the differences are significant and indicate insufficient spatial pattern performance of the hydrological model.The differences in spatial patterns can partly be explained by the fact that the hydrological model is configured to run in six domains that are calibrated independently from each other, as it is often the case for large-scale multi-basin calibrations. Furthermore, the model incorporates predefined temporal dynamics of leaf area index (LAI), root depth (RD) and crop coefficient (Kc) for each land cover type. This zonal approach of model parameterization ignores the spatiotemporal complexity of the natural system. To overcome this limitation, this study features a modified version of the DK-model in which LAI, RD and Kc are empirically derived using remote sensing data and detailed soil property maps in order to generate a higher degree of spatiotemporal variability and spatial consistency between the six domains. The effects of these changes are analyzed by using empirical orthogonal function (EOF) analysis to evaluate spatial patterns. The EOF analysis shows that including remote-sensing-derived LAI, RD and Kc in the distributed hydrological model adds

  9. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models

  10. Evaluating and improving the representation of heteroscedastic errors in hydrological models

    Science.gov (United States)

    McInerney, D. J.; Thyer, M. A.; Kavetski, D.; Kuczera, G. A.

    2013-12-01

    Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic predictions. In particular, residual errors of hydrological models are often heteroscedastic, with large errors associated with high rainfall and runoff events. Recent studies have shown that using a weighted least squares (WLS) approach - where the magnitude of residuals are assumed to be linearly proportional to the magnitude of the flow - captures some of this heteroscedasticity. In this study we explore a range of Bayesian approaches for improving the representation of heteroscedasticity in residual errors. We compare several improved formulations of the WLS approach, the well-known Box-Cox transformation and the more recent log-sinh transformation. Our results confirm that these approaches are able to stabilize the residual error variance, and that it is possible to improve the representation of heteroscedasticity compared with the linear WLS approach. We also find generally good performance of the Box-Cox and log-sinh transformations, although as indicated in earlier publications, the Box-Cox transform sometimes produces unrealistically large prediction limits. Our work explores the trade-offs between these different uncertainty characterization approaches, investigates how their performance varies across diverse catchments and models, and recommends practical approaches suitable for large-scale applications.

  11. Wind and Photovoltaic Large-Scale Regional Models for hourly production evaluation

    DEFF Research Database (Denmark)

    Marinelli, Mattia; Maule, Petr; Hahmann, Andrea N.

    2015-01-01

    This work presents two large-scale regional models used for the evaluation of normalized power output from wind turbines and photovoltaic power plants on a European regional scale. The models give an estimate of renewable production on a regional scale with 1 h resolution, starting from a mesosca...... of the transmission system, especially regarding the cross-border power flows. The tuning of these regional models is done using historical meteorological data acquired on a per-country basis and using publicly available data of installed capacity.......This work presents two large-scale regional models used for the evaluation of normalized power output from wind turbines and photovoltaic power plants on a European regional scale. The models give an estimate of renewable production on a regional scale with 1 h resolution, starting from a mesoscale...

  12. Elucidating Critical Zone Process Interactions with an Integrated Hydrology Model in a Headwaters Research Catchment

    Science.gov (United States)

    Collins, C.; Maxwell, R. M.

    2017-12-01

    Providence Creek (P300) watershed is an alpine headwaters catchment located at the Southern Sierra Critical Zone Observatory (SSCZO). Evidence of groundwater-dependent vegetation and drought-induced tree mortality at P300 along with the effect of subsurface characterization on mountain ecohydrology motivates this study. A hyper resolution integrated hydrology model of this site, along with extensive instrumentation, provides an opportunity to study the effects of lateral groundwater flow on vegetation's tolerance to drought. ParFlow-CLM is a fully integrated surface-subsurface model that is driven with reconstructed meteorology, such as the North American Land Data Assimilation System project phase 2 (NLDAS-2) dataset. However, large-scale data products mute orographic effects on climate at smaller scales. Climate variables often do not behave uniformly in highly heterogeneous mountain regions. Therefore, forcing physically-based integrated hydrologic models—especially of mountain headwaters catchments—with a large-scale data product is a major challenge. Obtaining reliable observations in complex terrain is challenging and while climate data products introduce uncertainties likewise, documented discrepancies between several data products and P300 observations suggest these data products may suffice. To tackle these issues, a suite of simulations was run to parse out (1) the effects of climate data source (data products versus observations) and (2) the effects of climate data spatial variability. One tool for evaluating the effect of climate data on model outputs is the relationship between latent head flux (LH) and evapotranspiration (ET) partitioning with water table depth (WTD). This zone of LH sensitivity to WTD is referred to as the "critical zone." Preliminary results suggest that these critical zone relationships are preserved despite forcing albeit significant shifts in magnitude. These results demonstrate that integrated hydrology models are sensitive

  13. Revisiting an interdisciplinary hydrological modelling project. A socio-hydrology (?) example from the early 2000s

    Science.gov (United States)

    Seidl, Roman; Barthel, Roland

    2016-04-01

    (see also, Hamilton, ElSawah, Guillaume, Jakeman, and Pierce 2015; Jakeman and Letcher 2003). Our contribution attempts to close a gap between previous concepts of integration of socio-economic aspects into hydrology (typically inspired by Integrated Water Resources Management) and the new socio-hydrology approach. We suppose that socio-hydrology could benefit from widening its scope and considering previous research at the boundaries between hydrology and social sciences. At the same time, concepts developed prior to socio-hydrology were seldom entirely successful. It might be beneficial to review these approaches developed earlier and those that are being developed in parallel from the perspective of socio-hydrology. References: Barthel, R., S. Janisch, N. Schwarz, A. Trifkovic, D. Nickel, C. Schulz, and W. Mauser. 2008. An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain. Environmental Modelling & Software, 23: 1095-1121. Barthel, R., D. Nickel, A. Meleg, A. Trifkovic, and J. Braun. 2005. Linking the physical and the socio-economic compartments of an integrated water and land use management model on a river basin scale using an object-oriented water supply model. Physics and Chemistry of the Earth, 30: 389-397. doi: 10.1016/j.pce.2005.06.006 Hamilton, S. H., S. ElSawah, J. H. A. Guillaume, A. J. Jakeman, and S. A. Pierce. 2015. Integrated assessment and modelling: Overview and synthesis ofsalient dimensions. Environmental Modelling and Software, 64: 215-229. doi: 10.1016/j.envsoft.2014.12.005 Jakeman, A. J., and R. A. Letcher. 2003. Integrated assessment and modelling: features, principles and examples for catchment management. Environmental Modelling & Software, 18: 491-501. doi: http://dx.doi.org/10.1016/S1364-8152(03)00024-0 Mauser, W., and M. Prasch. 2016. Regional Assessment of Global Change Impacts - The Project GLOWA-Danube: Springer International Publishing.

  14. Hydrological system dynamics of glaciated Karnali River Basin Nepal Himalaya using J2000 Hydrological model

    Science.gov (United States)

    Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.

    2015-12-01

    Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff

  15. Gsflow-py: An integrated hydrologic model development tool

    Science.gov (United States)

    Gardner, M.; Niswonger, R. G.; Morton, C.; Henson, W.; Huntington, J. L.

    2017-12-01

    Integrated hydrologic modeling encompasses a vast number of processes and specifications, variable in time and space, and development of model datasets can be arduous. Model input construction techniques have not been formalized or made easily reproducible. Creating the input files for integrated hydrologic models (IHM) requires complex GIS processing of raster and vector datasets from various sources. Developing stream network topology that is consistent with the model resolution digital elevation model is important for robust simulation of surface water and groundwater exchanges. Distribution of meteorologic parameters over the model domain is difficult in complex terrain at the model resolution scale, but is necessary to drive realistic simulations. Historically, development of input data for IHM models has required extensive GIS and computer programming expertise which has restricted the use of IHMs to research groups with available financial, human, and technical resources. Here we present a series of Python scripts that provide a formalized technique for the parameterization and development of integrated hydrologic model inputs for GSFLOW. With some modifications, this process could be applied to any regular grid hydrologic model. This Python toolkit automates many of the necessary and laborious processes of parameterization, including stream network development and cascade routing, land coverages, and meteorological distribution over the model domain.

  16. Large transverse momentum processes in a non-scaling parton model

    International Nuclear Information System (INIS)

    Stirling, W.J.

    1977-01-01

    The production of large transverse momentum mesons in hadronic collisions by the quark fusion mechanism is discussed in a parton model which gives logarithmic corrections to Bjorken scaling. It is found that the moments of the large transverse momentum structure function exhibit a simple scale breaking behaviour similar to the behaviour of the Drell-Yan and deep inelastic structure functions of the model. An estimate of corresponding experimental consequences is made and the extent to which analogous results can be expected in an asymptotically free gauge theory is discussed. A simple set of rules is presented for incorporating the logarithmic corrections to scaling into all covariant parton model calculations. (Auth.)

  17. Bayesian hierarchical model for large-scale covariance matrix estimation.

    Science.gov (United States)

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  18. Flood frequency estimation by national-scale continuous hydrological simulations: an application in Great Britain

    Science.gov (United States)

    Formetta, Giuseppe; Stewart, Elizabeth; Bell, Victoria; Reynard, Nick

    2017-04-01

    measured floods with a correlation coefficient that ranges from 0.8 for low return periods to 0.65 for the highest. It is shown that model performance is robust and independent of catchment features such as area and mean annual rainfall. The promising results for Great Britain support the aspiration that continuous simulation from large-scale hydrological models, supported by the increasing availability of global weather, climate and hydrological products, could be used to develop robust methods to help engineers estimate design floods in regions with limited gauge data or affected by environmental change.

  19. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    Science.gov (United States)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  20. The Multi-Scale Model Approach to Thermohydrology at Yucca Mountain

    International Nuclear Information System (INIS)

    Glascoe, L; Buscheck, T A; Gansemer, J; Sun, Y

    2002-01-01

    The Multi-Scale Thermo-Hydrologic (MSTH) process model is a modeling abstraction of them1 hydrology (TH) of the potential Yucca Mountain repository at multiple spatial scales. The MSTH model as described herein was used for the Supplemental Science and Performance Analyses (BSC, 2001) and is documented in detail in CRWMS M and O (2000) and Glascoe et al. (2002). The model has been validated to a nested grid model in Buscheck et al. (In Review). The MSTH approach is necessary for modeling thermal hydrology at Yucca Mountain for two reasons: (1) varying levels of detail are necessary at different spatial scales to capture important TH processes and (2) a fully-coupled TH model of the repository which includes the necessary spatial detail is computationally prohibitive. The MSTH model consists of six ''submodels'' which are combined in a manner to reduce the complexity of modeling where appropriate. The coupling of these models allows for appropriate consideration of mountain-scale thermal hydrology along with the thermal hydrology of drift-scale discrete waste packages of varying heat load. Two stages are involved in the MSTH approach, first, the execution of submodels, and second, the assembly of submodels using the Multi-scale Thermohydrology Abstraction Code (MSTHAC). MSTHAC assembles the submodels in a five-step process culminating in the TH model output of discrete waste packages including a mountain-scale influence

  1. CORDEX - a treasure trove of open climate data for hydrological modelling

    Science.gov (United States)

    O'Rourke, Eleanor; Nikulin, Grigory; Kjellström, Erik

    2015-04-01

    The Coordinated Regional Downscaling Experiment (CORDEX) was initiated by the World Climate Research Programme (WCRP) to coordinate high-resolution Regional Climate Modelling and provide a set of regional climate projections for the majority of global land regions. Additionally making this data available, and importantly useable, to impact and adaptation communities was a fundamental goal. Phase I of CORDEX, which came to a close in November 2013, was successful in developing a framework in which scientists around the world adopted a common protocol to guide the development of high-resolution Regional Climate Model (RCM) and empirical statistical downscaling (ESD) projections, and the intercomparison of these projections, on each continent, with a particular focus on the African region. As a result of these intensive activities by groups across the globe more than 47000 quality checked open datasets are now freely available to users through the searchable Earth System Grid Federation (ESGF). The integration of this data into large scale hydrological modelling is in action within the Swedish Meteorological & Hydrological Institute (SMHI) exemplifying the great potential use of this resource to the hydrological community. The aim of CORDEX Phase II is to enhance the dialogue with end-users so as to meet the growing demand for tailored regional climate information. Here, greater interaction between the CORDEX and hydrological modelling community can only prove hugely beneficial leading to greater protection for those vulnerable to the impacts of a changing climate.

  2. Grid based calibration of SWAT hydrological models

    Directory of Open Access Journals (Sweden)

    D. Gorgan

    2012-07-01

    Full Text Available The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool, developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.

  3. Development of hydrological models and surface process modelization Study case in High Mountain slopes

    International Nuclear Information System (INIS)

    Loaiza, Juan Carlos; Pauwels, Valentijn R

    2011-01-01

    Hydrological models are useful because allow to predict fluxes into the hydrological systems, which is useful to predict foods and violent phenomenon associated to water fluxes, especially in materials under a high meteorization level. The combination of these models with meteorological predictions, especially with rainfall models, allow to model water behavior into the soil. On most of cases, this type of models is really sensible to evapotranspiration. On climatic studies, the superficial processes have to be represented adequately. Calibration and validation of these models is necessary to obtain reliable results. This paper is a practical exercise of application of complete hydrological information at detailed scale in a high mountain catchment, considering the soil use and types more representatives. The information of soil moisture, infiltration, runoff and rainfall is used to calibrate and validate TOPLATS hydrological model to simulate the behavior of soil moisture. The finds show that is possible to implement an hydrological model by means of soil moisture information use and an equation of calibration by Extended Kalman Filter (EKF).

  4. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales

    Science.gov (United States)

    Freeman, Mary C.; Pringle, C.M.; Jackson, C.R.

    2007-01-01

    Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two-thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large-scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free-flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large-scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream-system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and

  5. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  6. The Hamburg large scale geostrophic ocean general circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Mikolajewicz, U.

    1992-02-01

    The rationale for the Large Scale Geostrophic ocean circulation model (LSG-OGCM) is based on the observations that for a large scale ocean circulation model designed for climate studies, the relevant characteristic spatial scales are large compared with the internal Rossby radius throughout most of the ocean, while the characteristic time scales are large compared with the periods of gravity modes and barotropic Rossby wave modes. In the present version of the model, the fast modes have been filtered out by a conventional technique of integrating the full primitive equations, including all terms except the nonlinear advection of momentum, by an implicit time integration method. The free surface is also treated prognostically, without invoking a rigid lid approximation. The numerical scheme is unconditionally stable and has the additional advantage that it can be applied uniformly to the entire globe, including the equatorial and coastal current regions. (orig.)

  7. Modeling Feedbacks Between Individual Human Decisions and Hydrology Using Interconnected Physical and Social Models

    Science.gov (United States)

    Murphy, J.; Lammers, R. B.; Proussevitch, A. A.; Ozik, J.; Altaweel, M.; Collier, N. T.; Alessa, L.; Kliskey, A. D.

    2014-12-01

    The global hydrological cycle intersects with human decision making at multiple scales, from dams and irrigation works to the taps in individuals' homes. Residential water consumers are commonly encouraged to conserve; these messages are heard against a background of individual values and conceptions about water quality, uses, and availability. The degree to which these values impact the larger-hydrological dynamics, the way that changes in those values have impacts on the hydrological cycle through time, and the feedbacks by which water availability and quality in turn shape those values, are not well explored. To investigate this domain we employ a global-scale water balance model (WBM) coupled with a social-science-grounded agent-based model (ABM). The integration of a hydrological model with an agent-based model allows us to explore driving factors in the dynamics in coupled human-natural systems. From the perspective of the physical hydrologist, the ABM offers a richer means of incorporating the human decisions that drive the hydrological system; from the view of the social scientist, a physically-based hydrological model allows the decisions of the agents to play out against constraints faithful to the real world. We apply the interconnected models to a study of Tucson, Arizona, USA, and its role in the larger Colorado River system. Our core concept is Technology-Induced Environmental Distancing (TIED), which posits that layers of technology can insulate consumers from direct knowledge of a resource. In Tucson, multiple infrastructure and institutional layers have arguably increased the conceptual distance between individuals and their water supply, offering a test case of the TIED framework. Our coupled simulation allows us to show how the larger system transforms a resource with high temporal and spatial variability into a consumer constant, and the effects of this transformation on the regional system. We use this to explore how pricing, messaging, and

  8. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators

    International Nuclear Information System (INIS)

    Fonseca, R A; Vieira, J; Silva, L O; Fiuza, F; Davidson, A; Tsung, F S; Mori, W B

    2013-01-01

    A new generation of laser wakefield accelerators (LWFA), supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modelling to further understand the underlying physics and identify optimal regimes, but large scale modelling of these scenarios is computationally heavy and requires the efficient use of state-of-the-art petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed/shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modelling of LWFA, demonstrating speedups of over 1 order of magnitude on the same hardware. Finally, scalability to over ∼10 6 cores and sustained performance over ∼2 P Flops is demonstrated, opening the way for large scale modelling of LWFA scenarios. (paper)

  9. Multiresolution comparison of precipitation datasets for large-scale models

    Science.gov (United States)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  10. Modelling floods in the Ammer catchment: limitations and challenges with a coupled meteo-hydrological model approach

    Directory of Open Access Journals (Sweden)

    R. Ludwig

    2003-01-01

    Full Text Available Numerous applications of hydrological models have shown their capability to simulate hydrological processes with a reasonable degree of certainty. For flood modelling, the quality of precipitation data — the key input parameter — is very important but often remains questionable. This paper presents a critical review of experience in the EU-funded RAPHAEL project. Different meteorological data sources were evaluated to assess their applicability for flood modelling and forecasting in the Bavarian pre-alpine catchment of the Ammer river (709 km2, for which the hydrological aspects of runoff production are described as well as the complex nature of floods. Apart from conventional rain gauge data, forecasts from several Numerical Weather Prediction Models (NWP as well as rain radar data are examined, scaled and applied within the framework of a GIS-structured and physically based hydrological model. Multi-scenario results are compared and analysed. The synergetic approach leads to promising results under certain meteorological conditions but emphasises various drawbacks. At present, NWPs are the only source of rainfall forecasts (up to 96 hours with large spatial coverage and high temporal resolution. On the other hand, the coarse spatial resolution of NWP grids cannot yet address, adequately, the heterogeneous structures of orographic rainfields in complex convective situations; hence, a major downscaling problem for mountain catchment applications is introduced. As shown for two selected Ammer flood events, a high variability in prediction accuracy has still to be accepted at present. Sensitivity analysis of both meteo-data input and hydrological model performance in terms of process description are discussed and positive conclusions have been drawn for future applications of an advanced meteo-hydro model synergy. Keywords: RAPHAEL, modelling, forecasting, model coupling, PROMET-D, TOPMODEL

  11. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    Science.gov (United States)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  12. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology.

    Science.gov (United States)

    Tompkins, Adrian M; Ermert, Volker

    2013-02-18

    The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions.

  13. Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale

    Energy Technology Data Exchange (ETDEWEB)

    Teutschbein, Claudia [Stockholm University, Department of Physical Geography and Quaternary Geology, Stockholm (Sweden); Wetterhall, Fredrik [King' s College London, Department of Geography, Strand, London (United Kingdom); Swedish Meteorological and Hydrological Institute, Norrkoeping (Sweden); Seibert, Jan [Stockholm University, Department of Physical Geography and Quaternary Geology, Stockholm (Sweden); Uppsala University, Department of Earth Sciences, Uppsala (Sweden); University of Zurich, Department of Geography, Zurich (Switzerland)

    2011-11-15

    Hydrological modeling for climate-change impact assessment implies using meteorological variables simulated by global climate models (GCMs). Due to mismatching scales, coarse-resolution GCM output cannot be used directly for hydrological impact studies but rather needs to be downscaled. In this study, we investigated the variability of seasonal streamflow and flood-peak projections caused by the use of three statistical approaches to downscale precipitation from two GCMs for a meso-scale catchment in southeastern Sweden: (1) an analog method (AM), (2) a multi-objective fuzzy-rule-based classification (MOFRBC) and (3) the Statistical DownScaling Model (SDSM). The obtained higher-resolution precipitation values were then used to simulate daily streamflow for a control period (1961-1990) and for two future emission scenarios (2071-2100) with the precipitation-streamflow model HBV. The choice of downscaled precipitation time series had a major impact on the streamflow simulations, which was directly related to the ability of the downscaling approaches to reproduce observed precipitation. Although SDSM was considered to be most suitable for downscaling precipitation in the studied river basin, we highlighted the importance of an ensemble approach. The climate and streamflow change signals indicated that the current flow regime with a snowmelt-driven spring flood in April will likely change to a flow regime that is rather dominated by large winter streamflows. Spring flood events are expected to decrease considerably and occur earlier, whereas autumn flood peaks are projected to increase slightly. The simulations demonstrated that projections of future streamflow regimes are highly variable and can even partly point towards different directions. (orig.)

  14. Utilization of Large Scale Surface Models for Detailed Visibility Analyses

    Science.gov (United States)

    Caha, J.; Kačmařík, M.

    2017-11-01

    This article demonstrates utilization of large scale surface models with small spatial resolution and high accuracy, acquired from Unmanned Aerial Vehicle scanning, for visibility analyses. The importance of large scale data for visibility analyses on the local scale, where the detail of the surface model is the most defining factor, is described. The focus is not only the classic Boolean visibility, that is usually determined within GIS, but also on so called extended viewsheds that aims to provide more information about visibility. The case study with examples of visibility analyses was performed on river Opava, near the Ostrava city (Czech Republic). The multiple Boolean viewshed analysis and global horizon viewshed were calculated to determine most prominent features and visibility barriers of the surface. Besides that, the extended viewshed showing angle difference above the local horizon, which describes angular height of the target area above the barrier, is shown. The case study proved that large scale models are appropriate data source for visibility analyses on local level. The discussion summarizes possible future applications and further development directions of visibility analyses.

  15. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    Science.gov (United States)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  16. Penalized Estimation in Large-Scale Generalized Linear Array Models

    DEFF Research Database (Denmark)

    Lund, Adam; Vincent, Martin; Hansen, Niels Richard

    2017-01-01

    Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...

  17. Investigation of Relationship Between Hydrologic Processes of Precipitation, Evaporation and Stream Flow Using Linear Time Series Models (Case study: Western Basins of Lake Urmia)

    OpenAIRE

    M. Moravej; K. Khalili; J. Behmanesh

    2016-01-01

    Introduction: Studying the hydrological cycle, especially in large scales such as water catchments, is difficult and complicated despite the fact that the numbers of hydrological components are limited. This complexity rises from complex interactions between hydrological components and environment. Recognition, determination and modeling of all interactive processes are needed to address this issue, but it's not feasible for dealing with practical engineering problems. So, it is more convenie...

  18. Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.

    Science.gov (United States)

    Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.

    2017-12-01

    Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the Mizu

  19. A surface hydrology model for regional vector borne disease models

    Science.gov (United States)

    Tompkins, Adrian; Asare, Ernest; Bomblies, Arne; Amekudzi, Leonard

    2016-04-01

    Small, sun-lit temporary pools that form during the rainy season are important breeding sites for many key mosquito vectors responsible for the transmission of malaria and other diseases. The representation of this surface hydrology in mathematical disease models is challenging, due to their small-scale, dependence on the terrain and the difficulty of setting soil parameters. Here we introduce a model that represents the temporal evolution of the aggregate statistics of breeding sites in a single pond fractional coverage parameter. The model is based on a simple, geometrical assumption concerning the terrain, and accounts for the processes of surface runoff, pond overflow, infiltration and evaporation. Soil moisture, soil properties and large-scale terrain slope are accounted for using a calibration parameter that sets the equivalent catchment fraction. The model is calibrated and then evaluated using in situ pond measurements in Ghana and ultra-high (10m) resolution explicit simulations for a village in Niger. Despite the model's simplicity, it is shown to reproduce the variability and mean of the pond aggregate water coverage well for both locations and validation techniques. Example malaria simulations for Uganda will be shown using this new scheme with a generic calibration setting, evaluated using district malaria case data. Possible methods for implementing regional calibration will be briefly discussed.

  20. Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR

    Science.gov (United States)

    Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.

    2017-12-01

    Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.

  1. Stream-groundwater exchange and hydrologic turnover at the network scale

    Science.gov (United States)

    Covino, Tim; McGlynn, Brian; Mallard, John

    2011-12-01

    The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.

  2. Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study

    Science.gov (United States)

    Wei, Xiaohua; Zhang, Mingfang

    2010-12-01

    Climatic variability and forest disturbance are commonly recognized as two major drivers influencing streamflow change in large-scale forested watersheds. The greatest challenge in evaluating quantitative hydrological effects of forest disturbance is the removal of climatic effect on hydrology. In this paper, a method was designed to quantify respective contributions of large-scale forest disturbance and climatic variability on streamflow using the Willow River watershed (2860 km2) located in the central part of British Columbia, Canada. Long-term (>50 years) data on hydrology, climate, and timber harvesting history represented by equivalent clear-cutting area (ECA) were available to discern climatic and forestry influences on streamflow by three steps. First, effective precipitation, an integrated climatic index, was generated by subtracting evapotranspiration from precipitation. Second, modified double mass curves were developed by plotting accumulated annual streamflow against annual effective precipitation, which presented a much clearer picture of the cumulative effects of forest disturbance on streamflow following removal of climatic influence. The average annual streamflow changes that were attributed to forest disturbances and climatic variability were then estimated to be +58.7 and -72.4 mm, respectively. The positive (increasing) and negative (decreasing) values in streamflow change indicated opposite change directions, which suggest an offsetting effect between forest disturbance and climatic variability in the study watershed. Finally, a multivariate Autoregressive Integrated Moving Average (ARIMA) model was generated to establish quantitative relationships between accumulated annual streamflow deviation attributed to forest disturbances and annual ECA. The model was then used to project streamflow change under various timber harvesting scenarios. The methodology can be effectively applied to any large-scale single watershed where long-term data (>50

  3. Upscaling from research watersheds: an essential stage of trustworthy general-purpose hydrologic model building

    Science.gov (United States)

    McNamara, J. P.; Semenova, O.; Restrepo, P. J.

    2011-12-01

    Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in

  4. Development and application of a large scale river system model for National Water Accounting in Australia

    Science.gov (United States)

    Dutta, Dushmanta; Vaze, Jai; Kim, Shaun; Hughes, Justin; Yang, Ang; Teng, Jin; Lerat, Julien

    2017-04-01

    Existing global and continental scale river models, mainly designed for integrating with global climate models, are of very coarse spatial resolutions and lack many important hydrological processes, such as overbank flow, irrigation diversion, groundwater seepage/recharge, which operate at a much finer resolution. Thus, these models are not suitable for producing water accounts, which have become increasingly important for water resources planning and management at regional and national scales. A continental scale river system model called Australian Water Resource Assessment River System model (AWRA-R) has been developed and implemented for national water accounting in Australia using a node-link architecture. The model includes major hydrological processes, anthropogenic water utilisation and storage routing that influence the streamflow in both regulated and unregulated river systems. Two key components of the model are an irrigation model to compute water diversion for irrigation use and associated fluxes and stores and a storage-based floodplain inundation model to compute overbank flow from river to floodplain and associated floodplain fluxes and stores. The results in the Murray-Darling Basin shows highly satisfactory performance of the model with median daily Nash-Sutcliffe Efficiency (NSE) of 0.64 and median annual bias of less than 1% for the period of calibration (1970-1991) and median daily NSE of 0.69 and median annual bias of 12% for validation period (1992-2014). The results have demonstrated that the performance of the model is less satisfactory when the key processes such as overbank flow, groundwater seepage and irrigation diversion are switched off. The AWRA-R model, which has been operationalised by the Australian Bureau of Meteorology for continental scale water accounting, has contributed to improvements in the national water account by substantially reducing accounted different volume (gain/loss).

  5. Ensemble Analysis of Variational Assimilation of Hydrologic and Hydrometeorological Data into Distributed Hydrologic Model

    Science.gov (United States)

    Lee, H.; Seo, D.; Koren, V.

    2008-12-01

    A prototype 4DVAR (four-dimensional variational) data assimilator for gridded Sacramento soil-moisture accounting and kinematic-wave routing models in the Hydrology Laboratory's Research Distributed Hydrologic Model (HL-RDHM) has been developed. The prototype assimilates streamflow and in-situ soil moisture data and adjusts gridded precipitation and climatological potential evaporation data to reduce uncertainty in the model initial conditions for improved monitoring and prediction of streamflow and soil moisture at the outlet and interior locations within the catchment. Due to large degrees of freedom involved, data assimilation (DA) into distributed hydrologic models is complex. To understand and assess sensitivity of the performance of DA to uncertainties in the model initial conditions and in the data, two synthetic experiments have been carried out in an ensemble framework. Results from the synthetic experiments shed much light on the potential and limitations with DA into distributed models. For initial real-world assessment, the prototype DA has also been applied to the headwater basin at Eldon near the Oklahoma-Arkansas border. We present these results and describe the next steps.

  6. Coupling meteorological and hydrological models for flood forecasting

    Directory of Open Access Journals (Sweden)

    Bartholmes

    2005-01-01

    Full Text Available This paper deals with the problem of analysing the coupling of meteorological meso-scale quantitative precipitation forecasts with distributed rainfall-runoff models to extend the forecasting horizon. Traditionally, semi-distributed rainfall-runoff models have been used for real time flood forecasting. More recently, increased computer capabilities allow the utilisation of distributed hydrological models with mesh sizes from tenths of metres to a few kilometres. On the other hand, meteorological models, providing the quantitative precipitation forecast, tend to produce average values on meshes ranging from slightly less than 10 to 200 kilometres. Therefore, to improve the quality of flood forecasts, the effects of coupling the meteorological and the hydrological models at different scales were analysed. A distributed hydrological model (TOPKAPI was developed and calibrated using a 1x1 km mesh for the case of the river Po closed at Ponte Spessa (catchment area c. 37000 km2. The model was then coupled with several other European meteorological models ranging from the Limited Area Models (provided by DMI and DWD with resolutions from 0.0625° * 0.0625°, to the ECMWF ensemble predictions with a resolution of 1.85° * 1.85°. Interesting results, describing the coupled model behaviour, are available for a meteorological extreme event in Northern Italy (Nov. 1994. The results demonstrate the poor reliability of the quantitative precipitation forecasts produced by meteorological models presently available; this is not resolved using the Ensemble Forecasting technique, when compared with results obtainable with measured rainfall.

  7. Survey of hydrologic models and hydrologic data needs for tracking flow in the Rio Grande, north-central New Mexico, 2010

    Science.gov (United States)

    Tillery, Anne; Eggleston, Jack R.

    2012-01-01

    obtain because the data come from multiple sources. Each surface-water model produces results that could be helpful in quantifying the flow of the Rio Grande, specifically by helping to track water as it moves down the channel of the Rio Grande and by improving the understanding of river hydraulics for the specified reaches. The ability of each surface-water model to track flow on the Rio Grande varies according to the purpose for which each model was designed. The purpose of Upper Rio Grande Water Operations Model (URGWOM) - to simulate water storage and delivery operations in the Rio Grande - is more applicable to tracking flow on the Rio Grande than are any of the other surface-water models surveyed. Specifically, the strengths of URGWOM in relation to modeling flow are the details and attention given to the accounting of Rio Grande flow and San Juan-Chama flow at a daily time step. The most significant difficulty in using any of the surveyed surface-water models for the purpose of predicting the need for requested water releases is that none of the surface-water models surveyed consider water accounting on a real-time basis. Groundwater models that provide detailed simulations of shallow groundwater flow in the vicinity of the Rio Grande can provide large-scale estimates of flow between the Rio Grande and shallow aquifers, which can be an important component of the Rio Grande water budget as a whole. The groundwater models surveyed for this report cannot, however, be expected to provide simulations of flow at time scales of less than the simulated time step (1 month to 1 year in most cases). Of those of the currently used groundwater models, the purpose of model 13 - to simulate the shallow riparian groundwater environment - is the most appropriate for examining local-scale surface-water/groundwater interactions. The basin-scale models, however, are also important in understanding the large-scale water balances between the aquifers and the surface water. In the case

  8. Hydrological modelling over different scales on the edge of the permafrost zone: approaching model realism based on experimentalists' knowledge

    Science.gov (United States)

    Nesterova, Natalia; Makarieva, Olga; Lebedeva, Lyudmila

    2017-04-01

    Quantitative and qualitative experimentalists' data helps to advance both understanding of the runoff generation and modelling strategies. There is significant lack of such information for the dynamic and vulnerable cold regions. The aim of the study is to make use of historically collected experimental hydrological data for modelling poorly-gauged river basins on larger scales near the southern margin of the permafrost zone in Eastern Siberia. Experimental study site "Mogot" includes the Nelka river (30.8 km2) and its three tributaries with watersheds area from 2 to 5.8 km2. It is located in the upper elevated (500 - 1500 m a.s.l.) part of the Amur River basin. Mean annual temperature and precipitation are -7.5°C and 555 mm respectively. Top of the mountains with weak vegetation has well drained soil that prevents any water accumulation. Larch forest on the northern slopes has thick organic layer. It causes shallow active layer and relatively small subsurface water storage. Soil in the southern slopes has thinner organic layer and thaws up to 1.6 m depth. Flood plains are the wettest landscape with highest water storage capacity. Measured monthly evaporation varies from 9 to 100 mm through the year. Experimental data shows importance of air temperature and precipitation changes with the elevation. Their gradient was taken into account for hydrological simulations. Model parameterization was developed according to available quantitative and qualitative data in the Mogot station. The process-based hydrological Hydrograph model was used in the study. It explicitly describes hydrological processes in different permafrost environments. Flexibility of the Hydrograph model allows take advantage from the experimental data for model set-up. The model uses basic meteorological data as input. The level of model complexity is suitable for a remote, sparsely gauged region such as Southern Siberia as it allows for a priori assessment of the model parameters. Model simulation

  9. Cracking up (and down): Linking multi-domain hydraulic properties with multi-scale hydrological processes in shrink-swell soils

    Science.gov (United States)

    Stewart, R. D.; Rupp, D. E.; Abou Najm, M. R.; Selker, J. S.

    2017-12-01

    Shrink-swell soils, often classified as Vertisols or vertic intergrades, are found on every continent except Antarctica and within many agricultural and urban regions. These soils are characterized by cyclical shrinking and swelling, in which bulk density and porosity distributions vary as functions of time and soil moisture. Crack networks that form in these soils act as dominant environmental controls on the movement of water, contaminants, and gases, making it important to develop fundamental understanding and tractable models of their hydrologic characteristics and behaviors. In this study, which took place primarily in the Secano Interior region of South-Central Chile, we quantified soil-water interactions across scales using a diverse and innovative dataset. These measurements were then utilized to develop a set of parsimonious multi-domain models for describing hydraulic properties and hydrological processes in shrink-swell soils. In a series of examples, we show how this model can predict porosity distributions, crack widths, saturated hydraulic conductivities, and surface runoff (i.e., overland flow) thresholds, by capturing the dominant mechanisms by which water moves through and interacts with clayey soils. Altogether, these models successfully link small-scale shrinkage/swelling behaviors with large-scale thresholds, and can be applied to describe important processes such as infiltration, overland flow development, and the preferential flow and transport of fluids and gases.

  10. Photorealistic large-scale urban city model reconstruction.

    Science.gov (United States)

    Poullis, Charalambos; You, Suya

    2009-01-01

    The rapid and efficient creation of virtual environments has become a crucial part of virtual reality applications. In particular, civil and defense applications often require and employ detailed models of operations areas for training, simulations of different scenarios, planning for natural or man-made events, monitoring, surveillance, games, and films. A realistic representation of the large-scale environments is therefore imperative for the success of such applications since it increases the immersive experience of its users and helps reduce the difference between physical and virtual reality. However, the task of creating such large-scale virtual environments still remains a time-consuming and manual work. In this work, we propose a novel method for the rapid reconstruction of photorealistic large-scale virtual environments. First, a novel, extendible, parameterized geometric primitive is presented for the automatic building identification and reconstruction of building structures. In addition, buildings with complex roofs containing complex linear and nonlinear surfaces are reconstructed interactively using a linear polygonal and a nonlinear primitive, respectively. Second, we present a rendering pipeline for the composition of photorealistic textures, which unlike existing techniques, can recover missing or occluded texture information by integrating multiple information captured from different optical sensors (ground, aerial, and satellite).

  11. Predicting the natural flow regime: Models for assessing hydrological alteration in streams

    Science.gov (United States)

    Carlisle, D.M.; Falcone, J.; Wolock, D.M.; Meador, M.R.; Norris, R.H.

    2009-01-01

    Understanding the extent to which natural streamflow characteristics have been altered is an important consideration for ecological assessments of streams. Assessing hydrologic condition requires that we quantify the attributes of the flow regime that would be expected in the absence of anthropogenic modifications. The objective of this study was to evaluate whether selected streamflow characteristics could be predicted at regional and national scales using geospatial data. Long-term, gaged river basins distributed throughout the contiguous US that had streamflow characteristics representing least disturbed or near pristine conditions were identified. Thirteen metrics of the magnitude, frequency, duration, timing and rate of change of streamflow were calculated using a 20-50 year period of record for each site. We used random forests (RF), a robust statistical modelling approach, to develop models that predicted the value for each streamflow metric using natural watershed characteristics. We compared the performance (i.e. bias and precision) of national- and regional-scale predictive models to that of models based on landscape classifications, including major river basins, ecoregions and hydrologic landscape regions (HLR). For all hydrologic metrics, landscape stratification models produced estimates that were less biased and more precise than a null model that accounted for no natural variability. Predictive models at the national and regional scale performed equally well, and substantially improved predictions of all hydrologic metrics relative to landscape stratification models. Prediction error rates ranged from 15 to 40%, but were 25% for most metrics. We selected three gaged, non-reference sites to illustrate how predictive models could be used to assess hydrologic condition. These examples show how the models accurately estimate predisturbance conditions and are sensitive to changes in streamflow variability associated with long-term land-use change. We also

  12. Vegetation root zone storage and rooting depth, derived from local calibration of a global hydrological model

    Science.gov (United States)

    van der Ent, R.; Van Beek, R.; Sutanudjaja, E.; Wang-Erlandsson, L.; Hessels, T.; Bastiaanssen, W.; Bierkens, M. F.

    2017-12-01

    The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. Root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.

  13. How to handle spatial heterogeneity in hydrological models.

    Science.gov (United States)

    Loritz, Ralf; Neuper, Malte; Gupta, Hoshin; Zehe, Erwin

    2017-04-01

    The amount of data we observe in our environmental systems is larger than ever. This leads to a new kind of problem where hydrological modelers can have access to large datasets with various quantitative and qualitative observations but are uncertain about the information content with respect to the hydrological functioning of a landscape. For example digital elevation models obviously contain plenty of information about the topography of a landscape; however the question of relevance for Hydrology is how much of this information is important for the hydrological functioning of a landscape. This kind of question is not limited to topography and we can ask similar questions when handling distributed rainfall data or geophysical images. In this study we would like to show how one can separate dominant patterns in the landscape from idiosyncratic system details. We use a 2D numerical hillslope model in combination with an extensive research data set to test a variety of different model setups that are built upon different landscape characteristics and run by different rainfalls measurements. With the help of information theory based measures we can identify and learn how much heterogeneity is really necessary for successful hydrological simulations and how much of it we can neglect.

  14. A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C

    NARCIS (Netherlands)

    Gosling, S.N.; Zaherpour, J.J.; Mount, N.J.; Hattermann, F.F.; Dankers, R.; Arheimer, B.; Breuer, L.; Ding, J.; Haddeland, I.; Kumar, R.; Kundu, D.; Liu, J.; van Griensven, A.; Veldkamp, T.I.E.; Vetter, T.; Wang, X.; Zhang, X.

    2017-01-01

    We present one of the first climate change impact assessments on river runoff that utilises an ensemble of global hydrological models (Glob-HMs) and an ensemble of catchment-scale hydrological models (Cat-HMs), across multiple catchments: the upper Amazon, Darling, Ganges, Lena, upper Mississippi,

  15. Hydrogen combustion modelling in large-scale geometries

    International Nuclear Information System (INIS)

    Studer, E.; Beccantini, A.; Kudriakov, S.; Velikorodny, A.

    2014-01-01

    Hydrogen risk mitigation issues based on catalytic recombiners cannot exclude flammable clouds to be formed during the course of a severe accident in a Nuclear Power Plant. Consequences of combustion processes have to be assessed based on existing knowledge and state of the art in CFD combustion modelling. The Fukushima accidents have also revealed the need for taking into account the hydrogen explosion phenomena in risk management. Thus combustion modelling in a large-scale geometry is one of the remaining severe accident safety issues. At present day there doesn't exist a combustion model which can accurately describe a combustion process inside a geometrical configuration typical of the Nuclear Power Plant (NPP) environment. Therefore the major attention in model development has to be paid on the adoption of existing approaches or creation of the new ones capable of reliably predicting the possibility of the flame acceleration in the geometries of that type. A set of experiments performed previously in RUT facility and Heiss Dampf Reactor (HDR) facility is used as a validation database for development of three-dimensional gas dynamic model for the simulation of hydrogen-air-steam combustion in large-scale geometries. The combustion regimes include slow deflagration, fast deflagration, and detonation. Modelling is based on Reactive Discrete Equation Method (RDEM) where flame is represented as an interface separating reactants and combustion products. The transport of the progress variable is governed by different flame surface wrinkling factors. The results of numerical simulation are presented together with the comparisons, critical discussions and conclusions. (authors)

  16. The Scale Effects of Engineered Inlets in Urban Hydrologic Processes

    Science.gov (United States)

    Shevade, L.; Montalto, F. A.

    2017-12-01

    Runoff from urban surfaces is typically captured by engineered inlets for conveyance to receiving water bodies or treatment plants. Normative hydrologic and hydraulic (H&H) modeling tools generally assume 100% efficient inlets, though observations by the authors suggest this assumption is invalid. The discrepancy is key since the more efficiently the inlet, the more linearly hydrologic processes scale with catchment area. Using several years of remote sensing, the observed efficiencies of urban green infrastructure (GI) facility inlets in New York City are presented, as a function of the morphological and climatological properties of their catchments and events. The rainfall-runoff response is modeled with EPA to assess the degree of inaccuracy that the assumption of efficient inlets introduces in block and neighborhood-scale simulations. Next, an algorithm is presented that incorporates inlet efficiency into SWMM and the improved predictive skill evaluated using Nash-Sutcliffe and root-mean-square error (RMSE). The results are used to evaluate the extent to which decentralized green stormwater management facilities positioned at the low points of urban catchments ought to be designed with larger capacities than their counterparts located further upslope.

  17. The three-point function as a probe of models for large-scale structure

    International Nuclear Information System (INIS)

    Frieman, J.A.; Gaztanaga, E.

    1993-01-01

    The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard Ω = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R p ∼20 h -1 Mpc, e.g., low-matter-density (non-zero cosmological constant) models, open-quote tilted close-quote primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q J at large scales, r approx-gt R p . Current observational constraints on the three-point amplitudes Q 3 and S 3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales

  18. On the Representation of Subgrid Microtopography Effects in Process-based Hydrologic Models

    Science.gov (United States)

    Jan, A.; Painter, S. L.; Coon, E. T.

    2017-12-01

    Increased availability of high-resolution digital elevation are enabling process-based hydrologic modeling on finer and finer scales. However, spatial variability in surface elevation (microtopography) exists below the scale of a typical hyper-resolution grid cell and has the potential to play a significant role in water retention, runoff, and surface/subsurface interactions. Though the concept of microtopographic features (depressions, obstructions) and the associated implications on flow and discharge are well established, representing those effects in watershed-scale integrated surface/subsurface hydrology models remains a challenge. Using the complex and coupled hydrologic environment of the Arctic polygonal tundra as an example, we study the effects of submeter topography and present a subgrid model parameterized by small-scale spatial heterogeneities for use in hyper-resolution models with polygons at a scale of 15-20 meters forming the surface cells. The subgrid model alters the flow and storage terms in the diffusion wave equation for surface flow. We compare our results against sub-meter scale simulations (acts as a benchmark for our simulations) and hyper-resolution models without the subgrid representation. The initiation of runoff in the fine-scale simulations is delayed and the recession curve is slowed relative to simulated runoff using the hyper-resolution model with no subgrid representation. Our subgrid modeling approach improves the representation of runoff and water retention relative to models that ignore subgrid topography. We evaluate different strategies for parameterizing subgrid model and present a classification-based method to efficiently move forward to larger landscapes. This work was supported by the Interoperable Design of Extreme-scale Application Software (IDEAS) project and the Next-Generation Ecosystem Experiments-Arctic (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the

  19. A Watershed Scale Life Cycle Assessment Framework for Hydrologic Design

    Science.gov (United States)

    Tavakol-Davani, H.; Tavakol-Davani, PhD, H.; Burian, S. J.

    2017-12-01

    Sustainable hydrologic design has received attention from researchers with different backgrounds, including hydrologists and sustainability experts, recently. On one hand, hydrologists have been analyzing ways to achieve hydrologic goals through implementation of recent environmentally-friendly approaches, e.g. Green Infrastructure (GI) - without quantifying the life cycle environmental impacts of the infrastructure through the ISO Life Cycle Assessment (LCA) method. On the other hand, sustainability experts have been applying the LCA to study the life cycle impacts of water infrastructure - without considering the important hydrologic aspects through hydrologic and hydraulic (H&H) analysis. In fact, defining proper system elements for a watershed scale urban water sustainability study requires both H&H and LCA specialties, which reveals the necessity of performing an integrated, interdisciplinary study. Therefore, the present study developed a watershed scale coupled H&H-LCA framework to bring the hydrology and sustainability expertise together to contribute moving the current wage definition of sustainable hydrologic design towards onto a globally standard concept. The proposed framework was employed to study GIs for an urban watershed in Toledo, OH. Lastly, uncertainties associated with the proposed method and parameters were analyzed through a robust Monte Carlo simulation using parallel processing. Results indicated the necessity of both hydrologic and LCA components in the design procedure in order to achieve sustainability.

  20. Integrated climate and hydrology modelling - Coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model

    Energy Technology Data Exchange (ETDEWEB)

    Dahl Larsen, M.A. [Technical Univ. of Denmark. DTU Management Engineering, DTU Risoe Campus, Roskilde (Denmark)

    2013-10-15

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate and hydrology have used each model component in an offline mode where the models are run in sequential steps and one model serves as a boundary condition or data input source to the other. Within recent years a new field of research has emerged where efforts have been made to dynamically couple existing climate and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface. The modelling tool consists of a fully dynamic two-way coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model. The expected gain is twofold. Firstly, HIRHAM utilizes the land surface component of the combined MIKE SHE/SWET hydrology and land surface model (LSM), which is superior to the LSM in HIRHAM. A wider range of processes are included at the land surface, subsurface flow is distributed in three dimensions and the temporal and spatial resolution is higher. Secondly, the feedback mechanisms of e.g. soil moisture and precipitation between the two models are included. The preparation of the HIRHAM and MIKE SHE models for the coupled study revealed several findings. The performance of HIRHAM was highly affected by the domain size, domain

  1. The Saskatchewan River Basin - a large scale observatory for water security research (Invited)

    Science.gov (United States)

    Wheater, H. S.

    2013-12-01

    multiple jurisdictions. The SaskRB has therefore been developed as a large scale observatory, now a Regional Hydroclimate Project of the World Climate Research Programme's GEWEX project, and is available to contribute to the emerging North American Water Program. State-of-the-art hydro-ecological experimental sites have been developed for the key biomes, and a river and lake biogeochemical research facility, focussed on impacts of nutrients and exotic chemicals. Data are integrated at SaskRB scale to support the development of improved large scale climate and hydrological modelling products, the development of DSS systems for local, provincial and basin-scale management, and the development of related social science research, engaging stakeholders in the research and exploring their values and priorities for water security. The observatory provides multiple scales of observation and modelling required to develop: a) new climate, hydrological and ecological science and modelling tools to address environmental change in key environments, and their integrated effects and feedbacks at large catchment scale, b) new tools needed to support river basin management under uncertainty, including anthropogenic controls on land and water management and c) the place-based focus for the development of new transdisciplinary science.

  2. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  3. The subcatchment- and catchment-scale hydrology of a boreal headwater peatland complex with sporadic permafrost.

    Science.gov (United States)

    Sonnentag, O.; Helbig, M.; Connon, R.; Hould Gosselin, G.; Ryu, Y.; Karoline, W.; Hanisch, J.; Moore, T. R.; Quinton, W. L.

    2017-12-01

    The permafrost region of the Northern Hemisphere has been experiencing twice the rate of climate warming compared to the rest of the Earth, resulting in the degradation of the cryosphere. A large portion of the high-latitude boreal forests of northwestern Canada grows on low-lying organic-rich lands with relative warm and thin isolated, sporadic and discontinuous permafrost. Along this southern limit of permafrost, increasingly warmer temperatures have caused widespread permafrost thaw leading to land cover changes at unprecedented rates. A prominent change includes wetland expansion at the expense of Picea mariana (black spruce)-dominated forest due to ground surface subsidence caused by the thawing of ice-rich permafrost leading to collapsing peat plateaus. Recent conceptual advances have provided important new insights into high-latitude boreal forest hydrology. However, refined quantitative understanding of the mechanisms behind water storage and movement at subcatchment and catchment scales is needed from a water resources management perspective. Here we combine multi-year daily runoff measurements with spatially explicit estimates of evapotranspiration, modelled with the Breathing Earth System Simulator, to characterize the monthly growing season catchment scale ( 150 km2) hydrological response of a boreal headwater peatland complex with sporadic permafrost in the southern Northwest Territories. The corresponding water budget components at subcatchment scale ( 0.1 km2) were obtained from concurrent cutthroat flume runoff and eddy covariance evapotranspiration measurements. The highly significant linear relationships for runoff (r2=0.64) and evapotranspiration (r2=0.75) between subcatchment and catchment scales suggest that the mineral upland-dominated downstream portion of the catchment acts hydrologically similar to the headwater portion dominated by boreal peatland complexes. Breakpoint analysis in combination with moving window statistics on multi

  4. Modeling of hydrological processes in arid agricultural regions

    Directory of Open Access Journals (Sweden)

    Jiang LI,Xiaomin MAO,Shaozhong KANG,David A. BARRY

    2015-12-01

    Full Text Available Understanding of hydrological processes, including consideration of interactions between vegetation growth and water transfer in the root zone, underpins efficient use of water resources in arid-zone agriculture. Water transfers take place in the soil-plant-atmosphere continuum, and include groundwater dynamics, unsaturated zone flow, evaporation/transpiration from vegetated/bare soil and surface water, agricultural canal/surface water flow and seepage, and well pumping. Models can be categorized into three classes: (1 regional distributed hydrological models with various land uses, (2 groundwater-soil-plant-atmosphere continuum models that neglect lateral water fluxes, and (3 coupled models with groundwater flow and unsaturated zone water dynamics. This review highlights, in addition, future research challenges in modeling arid-zone agricultural systems, e.g., to effectively assimilate data from remote sensing, and to fully reflect climate change effects at various model scales.

  5. On the effects of adaptive reservoir operating rules in hydrological physically-based models

    Science.gov (United States)

    Giudici, Federico; Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2017-04-01

    Recent years have seen a significant increase of the human influence on the natural systems both at the global and local scale. Accurately modeling the human component and its interaction with the natural environment is key to characterize the real system dynamics and anticipate future potential changes to the hydrological regimes. Modern distributed, physically-based hydrological models are able to describe hydrological processes with high level of detail and high spatiotemporal resolution. Yet, they lack in sophistication for the behavior component and human decisions are usually described by very simplistic rules, which might underperform in reproducing the catchment dynamics. In the case of water reservoir operators, these simplistic rules usually consist of target-level rule curves, which represent the average historical level trajectory. Whilst these rules can reasonably reproduce the average seasonal water volume shifts due to the reservoirs' operation, they cannot properly represent peculiar conditions, which influence the actual reservoirs' operation, e.g., variations in energy price or water demand, dry or wet meteorological conditions. Moreover, target-level rule curves are not suitable to explore the water system response to climate and socio economic changing contexts, because they assume a business-as-usual operation. In this work, we quantitatively assess how the inclusion of adaptive reservoirs' operating rules into physically-based hydrological models contribute to the proper representation of the hydrological regime at the catchment scale. In particular, we contrast target-level rule curves and detailed optimization-based behavioral models. We, first, perform the comparison on past observational records, showing that target-level rule curves underperform in representing the hydrological regime over multiple time scales (e.g., weekly, seasonal, inter-annual). Then, we compare how future hydrological changes are affected by the two modeling

  6. Modeling hydrologic responses to deforestation/forestation and climate change at multiple scales in the Southern US and China

    Science.gov (United States)

    Ge Sun; Steven McNulty; Jianbiao Lu; James Vose; Devendra Amayta; Guoyi Zhou; Zhiqiang Zhang

    2006-01-01

    Watershed management and restoration practices require a clear understanding of the basic eco-hydrologic processes and ecosystem responses to disturbances at multiple scales (Bruijnzeel, 2004; Scott et al., 2005). Worldwide century-long forest hydrologic research has documented that deforestation and forestation (i.e. reforestation and afforestation) can have variable...

  7. Research on large-scale wind farm modeling

    Science.gov (United States)

    Ma, Longfei; Zhang, Baoqun; Gong, Cheng; Jiao, Ran; Shi, Rui; Chi, Zhongjun; Ding, Yifeng

    2017-01-01

    Due to intermittent and adulatory properties of wind energy, when large-scale wind farm connected to the grid, it will have much impact on the power system, which is different from traditional power plants. Therefore it is necessary to establish an effective wind farm model to simulate and analyze the influence wind farms have on the grid as well as the transient characteristics of the wind turbines when the grid is at fault. However we must first establish an effective WTGs model. As the doubly-fed VSCF wind turbine has become the mainstream wind turbine model currently, this article first investigates the research progress of doubly-fed VSCF wind turbine, and then describes the detailed building process of the model. After that investigating the common wind farm modeling methods and pointing out the problems encountered. As WAMS is widely used in the power system, which makes online parameter identification of the wind farm model based on off-output characteristics of wind farm be possible, with a focus on interpretation of the new idea of identification-based modeling of large wind farms, which can be realized by two concrete methods.

  8. Small scale models equal large scale savings

    International Nuclear Information System (INIS)

    Lee, R.; Segroves, R.

    1994-01-01

    A physical scale model of a reactor is a tool which can be used to reduce the time spent by workers in the containment during an outage and thus to reduce the radiation dose and save money. The model can be used for worker orientation, and for planning maintenance, modifications, manpower deployment and outage activities. Examples of the use of models are presented. These were for the La Salle 2 and Dresden 1 and 2 BWRs. In each case cost-effectiveness and exposure reduction due to the use of a scale model is demonstrated. (UK)

  9. Extending SME to Handle Large-Scale Cognitive Modeling.

    Science.gov (United States)

    Forbus, Kenneth D; Ferguson, Ronald W; Lovett, Andrew; Gentner, Dedre

    2017-07-01

    Analogy and similarity are central phenomena in human cognition, involved in processes ranging from visual perception to conceptual change. To capture this centrality requires that a model of comparison must be able to integrate with other processes and handle the size and complexity of the representations required by the tasks being modeled. This paper describes extensions to Structure-Mapping Engine (SME) since its inception in 1986 that have increased its scope of operation. We first review the basic SME algorithm, describe psychological evidence for SME as a process model, and summarize its role in simulating similarity-based retrieval and generalization. Then we describe five techniques now incorporated into the SME that have enabled it to tackle large-scale modeling tasks: (a) Greedy merging rapidly constructs one or more best interpretations of a match in polynomial time: O(n 2 log(n)); (b) Incremental operation enables mappings to be extended as new information is retrieved or derived about the base or target, to model situations where information in a task is updated over time; (c) Ubiquitous predicates model the varying degrees to which items may suggest alignment; (d) Structural evaluation of analogical inferences models aspects of plausibility judgments; (e) Match filters enable large-scale task models to communicate constraints to SME to influence the mapping process. We illustrate via examples from published studies how these enable it to capture a broader range of psychological phenomena than before. Copyright © 2016 Cognitive Science Society, Inc.

  10. Using Agent Base Models to Optimize Large Scale Network for Large System Inventories

    Science.gov (United States)

    Shameldin, Ramez Ahmed; Bowling, Shannon R.

    2010-01-01

    The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.

  11. Traffic assignment models in large-scale applications

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Kjær

    the potential of the method proposed and the possibility to use individual-based GPS units for travel surveys in real-life large-scale multi-modal networks. Congestion is known to highly influence the way we act in the transportation network (and organise our lives), because of longer travel times...... of observations of actual behaviour to obtain estimates of the (monetary) value of different travel time components, thereby increasing the behavioural realism of largescale models. vii The generation of choice sets is a vital component in route choice models. This is, however, not a straight-forward task in real......, but the reliability of the travel time also has a large impact on our travel choices. Consequently, in order to improve the realism of transport models, correct understanding and representation of two values that are related to the value of time (VoT) are essential: (i) the value of congestion (VoC), as the Vo...

  12. airGRteaching: an R-package designed for teaching hydrology with lumped hydrological models

    Science.gov (United States)

    Thirel, Guillaume; Delaigue, Olivier; Coron, Laurent; Andréassian, Vazken; Brigode, Pierre

    2017-04-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2016), called airGR (Coron et al., 2016, 2017), to make these models widely available. Although its initial target public was hydrological modellers, the package is already used for educational purposes. Indeed, simple models allow for rapidly visualising the effects of parameterizations and model components on flows hydrographs. In order to avoid the difficulties that students may have when manipulating R and datasets, we developed (Delaigue and Coron, 2016): - Three simplified functions to prepare data, calibrate a model and run a simulation - Simplified and dynamic plot functions - A shiny (Chang et al., 2016) interface that connects this R-package to a browser-based visualisation tool. On this interface, the students can use different hydrological models (including the possibility to use a snow-accounting model), manually modify their parameters and automatically calibrate their parameters with diverse objective functions. One of the visualisation tabs of the interface includes observed precipitation and temperature, simulated snowpack (if any), observed and simulated

  13. High resolution weather data for urban hydrological modelling and impact assessment, ICT requirements and future challenges

    Science.gov (United States)

    ten Veldhuis, Marie-claire; van Riemsdijk, Birna

    2013-04-01

    Hydrological analysis of urban catchments requires high resolution rainfall and catchment information because of the small size of these catchments, high spatial variability of the urban fabric, fast runoff processes and related short response times. Rainfall information available from traditional radar and rain gauge networks does no not meet the relevant scales of urban hydrology. A new type of weather radars, based on X-band frequency and equipped with Doppler and dual polarimetry capabilities, promises to provide more accurate rainfall estimates at the spatial and temporal scales that are required for urban hydrological analysis. Recently, the RAINGAIN project was started to analyse the applicability of this new type of radars in the context of urban hydrological modelling. In this project, meteorologists and hydrologists work closely together in several stages of urban hydrological analysis: from the acquisition procedure of novel and high-end radar products to data acquisition and processing, rainfall data retrieval, hydrological event analysis and forecasting. The project comprises of four pilot locations with various characteristics of weather radar equipment, ground stations, urban hydrological systems, modelling approaches and requirements. Access to data processing and modelling software is handled in different ways in the pilots, depending on ownership and user context. Sharing of data and software among pilots and with the outside world is an ongoing topic of discussion. The availability of high resolution weather data augments requirements with respect to the resolution of hydrological models and input data. This has led to the development of fully distributed hydrological models, the implementation of which remains limited by the unavailability of hydrological input data. On the other hand, if models are to be used in flood forecasting, hydrological models need to be computationally efficient to enable fast responses to extreme event conditions. This

  14. Value of river discharge data for global-scale hydrological modeling

    Directory of Open Access Journals (Sweden)

    M. Hunger

    2008-05-01

    Full Text Available This paper investigates the value of observed river discharge data for global-scale hydrological modeling of a number of flow characteristics that are e.g. required for assessing water resources, flood risk and habitat alteration of aquatic ecosystems. An improved version of the WaterGAP Global Hydrology Model (WGHM was tuned against measured discharge using either the 724-station dataset (V1 against which former model versions were tuned or an extended dataset (V2 of 1235 stations. WGHM is tuned by adjusting one model parameter (γ that affects runoff generation from land areas in order to fit simulated and observed long-term average discharge at tuning stations. In basins where γ does not suffice to tune the model, two correction factors are applied successively: the areal correction factor corrects local runoff in a basin and the station correction factor adjusts discharge directly the gauge. Using station correction is unfavorable, as it makes discharge discontinuous at the gauge and inconsistent with runoff in the upstream basin. The study results are as follows. (1 Comparing V2 to V1, the global land area covered by tuning basins increases by 5% and the area where the model can be tuned by only adjusting γ increases by 8%. However, the area where a station correction factor (and not only an areal correction factor has to be applied more than doubles. (2 The value of additional discharge information for representing the spatial distribution of long-term average discharge (and thus renewable water resources with WGHM is high, particularly for river basins outside of the V1 tuning area and in regions where the refined dataset provides a significant subdivision of formerly extended tuning basins (average V2 basin size less than half the V1 basin size. If the additional discharge information were not used for tuning, simulated long-term average discharge would differ from the observed one by a factor of, on average, 1.8 in the formerly

  15. Applicability of Hydrologic Landscapes for Model Calibration ...

    Science.gov (United States)

    The Pacific Northwest Hydrologic Landscapes (PNW HL) at the assessment unit scale has provided a solid conceptual classification framework to relate and transfer hydrologically meaningful information between watersheds without access to streamflow time series. A collection of techniques were applied to the HL assessment unit composition in watersheds across the Pacific Northwest to aggregate the hydrologic behavior of the Hydrologic Landscapes from the assessment unit scale to the watershed scale. This non-trivial solution both emphasizes HL classifications within the watershed that provide that majority of moisture surplus/deficit and considers the relative position (upstream vs. downstream) of these HL classifications. A clustering algorithm was applied to the HL-based characterization of assessment units within 185 watersheds to help organize watersheds into nine classes hypothesized to have similar hydrologic behavior. The HL-based classes were used to organize and describe hydrologic behavior information about watershed classes and both predictions and validations were independently performed with regard to the general magnitude of six hydroclimatic signature values. A second cluster analysis was then performed using the independently calculated signature values as similarity metrics, and it was found that the six signature clusters showed substantial overlap in watershed class membership to those in the HL-based classes. One hypothesis set forward from thi

  16. Regression-based season-ahead drought prediction for southern Peru conditioned on large-scale climate variables

    Science.gov (United States)

    Mortensen, Eric; Wu, Shu; Notaro, Michael; Vavrus, Stephen; Montgomery, Rob; De Piérola, José; Sánchez, Carlos; Block, Paul

    2018-01-01

    Located at a complex topographic, climatic, and hydrologic crossroads, southern Peru is a semiarid region that exhibits high spatiotemporal variability in precipitation. The economic viability of the region hinges on this water, yet southern Peru is prone to water scarcity caused by seasonal meteorological drought. Meteorological droughts in this region are often triggered during El Niño episodes; however, other large-scale climate mechanisms also play a noteworthy role in controlling the region's hydrologic cycle. An extensive season-ahead precipitation prediction model is developed to help bolster the existing capacity of stakeholders to plan for and mitigate deleterious impacts of drought. In addition to existing climate indices, large-scale climatic variables, such as sea surface temperature, are investigated to identify potential drought predictors. A principal component regression framework is applied to 11 potential predictors to produce an ensemble forecast of regional January-March precipitation totals. Model hindcasts of 51 years, compared to climatology and another model conditioned solely on an El Niño-Southern Oscillation index, achieve notable skill and perform better for several metrics, including ranked probability skill score and a hit-miss statistic. The information provided by the developed model and ancillary modeling efforts, such as extending the lead time of and spatially disaggregating precipitation predictions to the local level as well as forecasting the number of wet-dry days per rainy season, may further assist regional stakeholders and policymakers in preparing for drought.

  17. Spatial structure and scaling of macropores in hydrological process at small catchment scale

    Science.gov (United States)

    Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter

    2013-04-01

    During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video

  18. Large-scale building energy efficiency retrofit: Concept, model and control

    International Nuclear Information System (INIS)

    Wu, Zhou; Wang, Bo; Xia, Xiaohua

    2016-01-01

    BEER (Building energy efficiency retrofit) projects are initiated in many nations and regions over the world. Existing studies of BEER focus on modeling and planning based on one building and one year period of retrofitting, which cannot be applied to certain large BEER projects with multiple buildings and multi-year retrofit. In this paper, the large-scale BEER problem is defined in a general TBT (time-building-technology) framework, which fits essential requirements of real-world projects. The large-scale BEER is newly studied in the control approach rather than the optimization approach commonly used before. Optimal control is proposed to design optimal retrofitting strategy in terms of maximal energy savings and maximal NPV (net present value). The designed strategy is dynamically changing on dimensions of time, building and technology. The TBT framework and the optimal control approach are verified in a large BEER project, and results indicate that promising performance of energy and cost savings can be achieved in the general TBT framework. - Highlights: • Energy efficiency retrofit of many buildings is studied. • A TBT (time-building-technology) framework is proposed. • The control system of the large-scale BEER is modeled. • The optimal retrofitting strategy is obtained.

  19. Modeling of reservoir operation in UNH global hydrological model

    Science.gov (United States)

    Shiklomanov, Alexander; Prusevich, Alexander; Frolking, Steve; Glidden, Stanley; Lammers, Richard; Wisser, Dominik

    2015-04-01

    Climate is changing and river flow is an integrated characteristic reflecting numerous environmental processes and their changes aggregated over large areas. Anthropogenic impacts on the river flow, however, can significantly exceed the changes associated with climate variability. Besides of irrigation, reservoirs and dams are one of major anthropogenic factor affecting streamflow. They distort hydrological regime of many rivers by trapping of freshwater runoff, modifying timing of river discharge and increasing the evaporation rate. Thus, reservoirs is an integral part of the global hydrological system and their impacts on rivers have to be taken into account for better quantification and understanding of hydrological changes. We developed a new technique, which was incorporated into WBM-TrANS model (Water Balance Model-Transport from Anthropogenic and Natural Systems) to simulate river routing through large reservoirs and natural lakes based on information available from freely accessible databases such as GRanD (the Global Reservoir and Dam database) or NID (National Inventory of Dams for US). Different formulations were applied for unregulated spillway dams and lakes, and for 4 types of regulated reservoirs, which were subdivided based on main purpose including generic (multipurpose), hydropower generation, irrigation and water supply, and flood control. We also incorporated rules for reservoir fill up and draining at the times of construction and decommission based on available data. The model were tested for many reservoirs of different size and types located in various climatic conditions using several gridded meteorological data sets as model input and observed daily and monthly discharge data from GRDC (Global Runoff Data Center), USGS Water Data (US Geological Survey), and UNH archives. The best results with Nash-Sutcliffe model efficiency coefficient in the range of 0.5-0.9 were obtained for temperate zone of Northern Hemisphere where most of large

  20. Hydrologic scales, cloud variability, remote sensing, and models: Implications for forecasting snowmelt and streamflow

    Science.gov (United States)

    Simpson, James J.; Dettinger, M.D.; Gehrke, F.; McIntire, T.J.; Hufford, Gary L.

    2004-01-01

    Accurate prediction of available water supply from snowmelt is needed if the myriad of human, environmental, agricultural, and industrial demands for water are to be satisfied, especially given legislatively imposed conditions on its allocation. Robust retrievals of hydrologic basin model variables (e.g., insolation or areal extent of snow cover) provide several advantages over the current operational use of either point measurements or parameterizations to help to meet this requirement. Insolation can be provided at hourly time scales (or better if needed during rapid melt events associated with flooding) and at 1-km spatial resolution. These satellite-based retrievals incorporate the effects of highly variable (both in space and time) and unpredictable cloud cover on estimates of insolation. The insolation estimates are further adjusted for the effects of basin topography using a high-resolution digital elevation model prior to model input. Simulations of two Sierra Nevada rivers in the snowmelt seasons of 1998 and 1999 indicate that even the simplest improvements in modeled insolation can improve snowmelt simulations, with 10%-20% reductions in root-mean-square errors. Direct retrieval of the areal extent of snow cover may mitigate the need to rely entirely on internal calculations of this variable, a reliance that can yield large errors that are difficult to correct until long after the season is complete and that often leads to persistent underestimates or overestimates of the volumes of the water to operational reservoirs. Agencies responsible for accurately predicting available water resources from the melt of snowpack [e.g., both federal (the National Weather Service River Forecast Centers) and state (the California Department of Water Resources)] can benefit by incorporating concepts developed herein into their operational forecasting procedures. ?? 2004 American Meteorological Society.

  1. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    Directory of Open Access Journals (Sweden)

    V. A. Bell

    2017-09-01

    Full Text Available Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts from the GloSea5 model (1996 to 2009 are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region. Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 % in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows, whereas for the 3-month ahead lead time, GloSea5 forecasts account for  ∼ 70

  2. Hydrological characterization of Guadalquivir River Basin for the period 1980-2010 using VIC model

    Science.gov (United States)

    García-Valdecasas-Ojeda, Matilde; de Franciscis, Sebastiano; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    This study analyzes the changes of soil moisture and real evapotranspiration (ETR), during the last 30 years, in the Guadalquivir River Basin, located in the south of the Iberian Peninsula. Soil moisture content is related with the different components of the real evaporation, it is a relevant factor when analyzing the intensity of droughts and heat waves, and particularly, for the impact study of the climate change. The soil moisture and real evapotranspiration data consist of simulations obtained by using the Variable Infiltration Capacity (VIC) hydrological model. This is a large-scale hydrologic model and allows the estimations of different variables in the hydrological system of a basin. Land surface is modeled as a grid of large and uniform cells with sub-grid heterogeneity (e.g. land cover), while water influx is local, only depending from the interaction between grid cell and local atmosphere environment. Observational data of temperature and precipitation from Spain02 dataset have been used as input variables for VIC model. Additionally, estimates of actual evapotranspiration and soil moisture are also analyzed using temperature, precipitation, wind, humidity and radiation as input variables for VIC. These variables are obtained from a dynamical downscaling from ERA-Interim data by the Weather Research and Forecasting (WRF) model. The simulations have a spatial resolution about 9 km and the analysis is done on a seasonal time-scale. Preliminary results show that ETR presents very low values for autumn from WRF simulations compared with VIC simulations. Only significant positive trends are found during autumn for the western part of the basin for the ETR obtained with VIC model, meanwhile no significant trends are found for the ETR WRF simulations. Keywords: Soil moisture, Real evapotranspiration, Guadalquivir Basin, trends, VIC, WRF. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R

  3. A detailed model for simulation of catchment scale subsurface hydrologic processes

    Science.gov (United States)

    Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    A catchment scale numerical model is developed based on the three-dimensional transient Richards equation describing fluid flow in variably saturated porous media. The model is designed to take advantage of digital elevation data bases and of information extracted from these data bases by topographic analysis. The practical application of the model is demonstrated in simulations of a small subcatchment of the Konza Prairie reserve near Manhattan, Kansas. In a preliminary investigation of computational issues related to model resolution, we obtain satisfactory numerical results using large aspect ratios, suggesting that horizontal grid dimensions may not be unreasonably constrained by the typically much smaller vertical length scale of a catchment and by vertical discretization requirements. Additional tests are needed to examine the effects of numerical constraints and parameter heterogeneity in determining acceptable grid aspect ratios. In other simulations we attempt to match the observed streamflow response of the catchment, and we point out the small contribution of the streamflow component to the overall water balance of the catchment.

  4. HydroShare for iUTAH: Collaborative Publication, Interoperability, and Reuse of Hydrologic Data and Models for a Large, Interdisciplinary Water Research Project

    Science.gov (United States)

    Horsburgh, J. S.; Jones, A. S.

    2016-12-01

    Data and models used within the hydrologic science community are diverse. New research data and model repositories have succeeded in making data and models more accessible, but have been, in most cases, limited to particular types or classes of data or models and also lack the type of collaborative, and iterative functionality needed to enable shared data collection and modeling workflows. File sharing systems currently used within many scientific communities for private sharing of preliminary and intermediate data and modeling products do not support collaborative data capture, description, visualization, and annotation. More recently, hydrologic datasets and models have been cast as "social objects" that can be published, collaborated around, annotated, discovered, and accessed. Yet it can be difficult using existing software tools to achieve the kind of collaborative workflows and data/model reuse that many envision. HydroShare is a new, web-based system for sharing hydrologic data and models with specific functionality aimed at making collaboration easier and achieving new levels of interactive functionality and interoperability. Within HydroShare, we have developed new functionality for creating datasets, describing them with metadata, and sharing them with collaborators. HydroShare is enabled by a generic data model and content packaging scheme that supports describing and sharing diverse hydrologic datasets and models. Interoperability among the diverse types of data and models used by hydrologic scientists is achieved through the use of consistent storage, management, sharing, publication, and annotation within HydroShare. In this presentation, we highlight and demonstrate how the flexibility of HydroShare's data model and packaging scheme, HydroShare's access control and sharing functionality, and versioning and publication capabilities have enabled the sharing and publication of research datasets for a large, interdisciplinary water research project

  5. REQUIREMENTS FOR SYSTEMS DEVELOPMENT LIFE CYCLE MODELS FOR LARGE-SCALE DEFENSE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kadir Alpaslan DEMIR

    2015-10-01

    Full Text Available TLarge-scale defense system projects are strategic for maintaining and increasing the national defense capability. Therefore, governments spend billions of dollars in the acquisition and development of large-scale defense systems. The scale of defense systems is always increasing and the costs to build them are skyrocketing. Today, defense systems are software intensive and they are either a system of systems or a part of it. Historically, the project performances observed in the development of these systems have been signifi cantly poor when compared to other types of projects. It is obvious that the currently used systems development life cycle models are insuffi cient to address today’s challenges of building these systems. Using a systems development life cycle model that is specifi cally designed for largescale defense system developments and is effective in dealing with today’s and near-future challenges will help to improve project performances. The fi rst step in the development a large-scale defense systems development life cycle model is the identifi cation of requirements for such a model. This paper contributes to the body of literature in the fi eld by providing a set of requirements for system development life cycle models for large-scale defense systems. Furthermore, a research agenda is proposed.

  6. 1:250,000-scale Hydrologic Units of the United States

    Science.gov (United States)

    Steeves, Peter; Nebert, Douglas

    1994-01-01

    The Geographic Information Retrieval and Analysis System (GIRAS) was developed in the mid 70s to put into digital form a numberof data layers which were of interest to the USGS. One of these data layers was the Hydrologic Units. The map is based on the Hydrologic Unit Maps published by the U.S. Geological Survey Office of Water Data Coordination, together with the list descriptions and name of region, subregion, accounting units, and cataloging unit. The hydrologic units are encoded with an eight-digit number that indicates the hydrologic region (first two digits), hydrologic subregion (second two digits), accounting unit (third two digits), and cataloging unit (fourth two digits). The data produced by GIRAS was originally collected at a scale of 1:250K. Some areas, notably major cities in the west, were recompiled at a scale of 1:100K. In order to join the data together and use the data in a geographic information system (GIS) the data were processed in the ARC/INFO GUS software package. Within the GIS, the data were edgematched and the neatline boundaries between maps were removed to create a single data set for the conterminous

  7. A comparison of MIKE SHE and DRAINMOD for modeling forested wetland hydrology in coastal South Carolina, USA

    Science.gov (United States)

    Zhaohua Dai; Devendra M. Amatya; Ge Sun; Carl C. Trettin; Changsheng Li; Harbin Li

    2010-01-01

    Models are widely used to assess hydrologic impacts of land-management, land-use change and climate change. Two hydrologic models with different spatial scales, MIKE SHE (spatially distributed, watershed-scale) and DRAINMOD (lumped, fieldscale), were compared in terms of their performance in predicting stream flow and water table depth in a first-order forested...

  8. Probabilistic hydrological nowcasting using radar based nowcasting techniques and distributed hydrological models: application in the Mediterranean area

    Science.gov (United States)

    Poletti, Maria Laura; Pignone, Flavio; Rebora, Nicola; Silvestro, Francesco

    2017-04-01

    The exposure of the urban areas to flash-floods is particularly significant to Mediterranean coastal cities, generally densely-inhabited. Severe rainfall events often associated to intense and organized thunderstorms produced, during the last century, flash-floods and landslides causing serious damages to urban areas and in the worst events led to human losses. The temporal scale of these events has been observed strictly linked to the size of the catchments involved: in the Mediterranean area a great number of catchments that pass through coastal cities have a small drainage area (less than 100 km2) and a corresponding hydrologic response timescale in the order of a few hours. A suitable nowcasting chain is essential for the on time forecast of this kind of events. In fact meteorological forecast systems are unable to predict precipitation at the scale of these events, small both at spatial (few km) and temporal (hourly) scales. Nowcasting models, covering the time interval of the following two hours starting from the observation try to extend the predictability limits of the forecasting models in support of real-time flood alert system operations. This work aims to present the use of hydrological models coupled with nowcasting techniques. The nowcasting model PhaSt furnishes an ensemble of equi-probable future precipitation scenarios on time horizons of 1-3 h starting from the most recent radar observations. The coupling of the nowcasting model PhaSt with the hydrological model Continuum allows to forecast the flood with a few hours in advance. In this way it is possible to generate different discharge prediction for the following hours and associated return period maps: these maps can be used as a support in the decisional process for the warning system.

  9. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    DEFF Research Database (Denmark)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian

    2016-01-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes...... use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared...... to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice...

  10. A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape

    Science.gov (United States)

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-09-01

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from the molecular scale (pore-scale O2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" that reconstructs temporally resolved fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface-subsurface isothermal simulations were performed for summer months (June-September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998-2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (training the ROM. We also demonstrate that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training data set with relatively good accuracy (< 1.7% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. By coupling the ROMs constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled climate simulations to spatial scales consistent with

  11. Integrated hydrologic model of Pajaro Valley, Santa Cruz and Monterey Counties, California

    Science.gov (United States)

    Hanson, Randall T.; Schmid, Wolfgang; Faunt, Claudia C.; Lear, Jonathan; Lockwood, Brian

    2014-01-01

    Increasing population, agricultural development (including shifts to more water-intensive crops), and climate variability are placing increasingly larger demands on available groundwater resources in the Pajaro Valley, one of the most productive agricultural regions in the world. This study provided a refined conceptual model, geohydrologic framework, and integrated hydrologic model of the Pajaro Valley. The goal of this study was to produce a model capable of being accurate at scales relevant to water management decisions that are being considered in the revision and updates to the Basin Management Plan (BMP). The Pajaro Valley Hydrologic Model (PVHM) was designed to reproduce the most important natural and human components of the hydrologic system and related climatic factors, permitting an accurate assessment of groundwater conditions and processes that can inform the new BMP and help to improve planning for long-term sustainability of water resources. Model development included a revision of the conceptual model of the flow system, reevaluation of the previous model transformed into MODFLOW, implementation of the new geohydrologic model and conceptual model, and calibration of the transient hydrologic model.

  12. Uncertainty propagation in urban hydrology water quality modelling

    NARCIS (Netherlands)

    Torres Matallana, Arturo; Leopold, U.; Heuvelink, G.B.M.

    2016-01-01

    Uncertainty is often ignored in urban hydrology modelling. Engineering practice typically ignores uncertainties and uncertainty propagation. This can have large impacts, such as the wrong dimensioning of urban drainage systems and the inaccurate estimation of pollution in the environment caused

  13. Delft-FEWS:A Decision Making Platform to Intergrate Data, Model, Algorithm for Large-Scale River Basin Water Management

    Science.gov (United States)

    Yang, T.; Welles, E.

    2017-12-01

    In this paper, we introduce a flood forecasting and decision making platform, named Delft-FEWS, which has been developed over years at the Delft Hydraulics and now at Deltares. The philosophy of Delft-FEWS is to provide water managers and operators with an open shell tool, which allows the integratation of a variety of hydrological, hydraulics, river routing, and reservoir models with hydrometerological forecasts data. Delft-FEWS serves as an powerful tool for both basin-scale and national-scale water resources management. The essential novelty of Delft-FEWS is to change the flood forecasting and water resources management from a single model or agency centric paradigm to a intergrated framework, in which different model, data, algorithm and stakeholders are strongly linked together. The paper will start with the challenges in water resources managment, and the concept and philosophy of Delft-FEWS. Then, the details of data handling and linkages of Delft-FEWS with different hydrological, hydraulic, and reservoir models, etc. Last, several cases studies and applications of Delft-FEWS will be demonstrated, including the National Weather Service and the Bonneville Power Administration in USA, and a national application in the water board in the Netherland.

  14. Climatic and physiographic controls on catchment-scale nitrate loss at different spatial scales: insights from a top-down model development approach

    Science.gov (United States)

    Shafii, Mahyar; Basu, Nandita; Schiff, Sherry; Van Cappellen, Philippe

    2017-04-01

    Dramatic increase in nitrogen circulating in the biosphere due to anthropogenic activities has resulted in impairment of water quality in groundwater and surface water causing eutrophication in coastal regions. Understanding the fate and transport of nitrogen from landscape to coastal areas requires exploring the drivers of nitrogen processes in both time and space, as well as the identification of appropriate flow pathways. Conceptual models can be used as diagnostic tools to provide insights into such controls. However, diagnostic evaluation of coupled hydrological-biogeochemical models is challenging. This research proposes a top-down methodology utilizing hydrochemical signatures to develop conceptual models for simulating the integrated streamflow and nitrate responses while taking into account dominant controls on nitrate variability (e.g., climate, soil water content, etc.). Our main objective is to seek appropriate model complexity that sufficiently reproduces multiple hydrological and nitrate signatures. Having developed a suitable conceptual model for a given watershed, we employ it in sensitivity studies to demonstrate the dominant process controls that contribute to the nitrate response at scales of interest. We apply the proposed approach to nitrate simulation in a range of small to large sub-watersheds in the Grand River Watershed (GRW) located in Ontario. Such multi-basin modeling experiment will enable us to address process scaling and investigate the consequences of lumping processes in terms of models' predictive capability. The proposed methodology can be applied to the development of large-scale models that can help decision-making associated with nutrients management at regional scale.

  15. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM) MODELS

    International Nuclear Information System (INIS)

    Y.S. Wu

    2005-01-01

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas

  16. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Y.S. Wu

    2005-08-24

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on

  17. Comparison of Spatial Interpolation Schemes for Rainfall Data and Application in Hydrological Modeling

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2017-05-01

    Full Text Available The spatial distribution of precipitation is an important aspect of water-related research. The use of different interpolation schemes in the same catchment may cause large differences and deviations from the actual spatial distribution of rainfall. Our study analyzes different methods of spatial rainfall interpolation at annual, daily, and hourly time scales to provide a comprehensive evaluation. An improved regression-based scheme is proposed using principal component regression with residual correction (PCRR and is compared with inverse distance weighting (IDW and multiple linear regression (MLR interpolation methods. In this study, the meso-scale catchment of the Fuhe River in southeastern China was selected as a typical region. Furthermore, a hydrological model HEC-HMS was used to calculate streamflow and to evaluate the impact of rainfall interpolation methods on the results of the hydrological model. Results show that the PCRR method performed better than the other methods tested in the study and can effectively eliminate the interpolation anomalies caused by terrain differences between observation points and surrounding areas. Simulated streamflow showed different characteristics based on the mean, maximum, minimum, and peak flows. The results simulated by PCRR exhibited the lowest streamflow error and highest correlation with measured values at the daily time scale. The application of the PCRR method is found to be promising because it considers multicollinearity among variables.

  18. Detonation and fragmentation modeling for the description of large scale vapor explosions

    International Nuclear Information System (INIS)

    Buerger, M.; Carachalios, C.; Unger, H.

    1985-01-01

    The thermal detonation modeling of large-scale vapor explosions is shown to be indispensable for realistic safety evaluations. A steady-state as well as transient detonation model have been developed including detailed descriptions of the dynamics as well as the fragmentation processes inside a detonation wave. Strong restrictions for large-scale vapor explosions are obtained from this modeling and they indicate that the reactor pressure vessel would even withstand explosions with unrealistically high masses of corium involved. The modeling is supported by comparisons with a detonation experiment and - concerning its key part - hydronamic fragmentation experiments. (orig.) [de

  19. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    Science.gov (United States)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    a basis for improved large scale hydrological modelling.

  20. Hydrological response of a small catchment burned by experimental fire

    NARCIS (Netherlands)

    Stoof, C.R.; Vervoort, R.W.; Iwema, J.; Elsen, van den H.G.M.; Ferreira, A.J.D.; Ritsema, C.J.

    2012-01-01

    Fire can considerably change hydrological processes, increasing the risk of extreme flooding and erosion events. Although hydrological processes are largely affected by scale, catchment-scale studies on the hydrological impact of fire in Europe are scarce, and nested approaches are rarely used. We

  1. Dynamic Modeling, Optimization, and Advanced Control for Large Scale Biorefineries

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail

    with a complex conversion route. Computational fluid dynamics is used to model transport phenomena in large reactors capturing tank profiles, and delays due to plug flows. This work publishes for the first time demonstration scale real data for validation showing that the model library is suitable...

  2. Dynamic subgrid scale model of large eddy simulation of cross bundle flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1996-01-01

    The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  3. Investigation on the integral output power model of a large-scale wind farm

    Institute of Scientific and Technical Information of China (English)

    BAO Nengsheng; MA Xiuqian; NI Weidou

    2007-01-01

    The integral output power model of a large-scale wind farm is needed when estimating the wind farm's output over a period of time in the future.The actual wind speed power model and calculation method of a wind farm made up of many wind turbine units are discussed.After analyzing the incoming wind flow characteristics and their energy distributions,and after considering the multi-effects among the wind turbine units and certain assumptions,the incoming wind flow model of multi-units is built.The calculation algorithms and steps of the integral output power model of a large-scale wind farm are provided.Finally,an actual power output of the wind farm is calculated and analyzed by using the practical measurement wind speed data.The characteristics of a large-scale wind farm are also discussed.

  4. Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models

    Science.gov (United States)

    Avissar, Roni; Chen, Fei

    1993-01-01

    Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes

  5. Data assimilation in hydrological modelling

    DEFF Research Database (Denmark)

    Drecourt, Jean-Philippe

    Data assimilation is an invaluable tool in hydrological modelling as it allows to efficiently combine scarce data with a numerical model to obtain improved model predictions. In addition, data assimilation also provides an uncertainty analysis of the predictions made by the hydrological model....... In this thesis, the Kalman filter is used for data assimilation with a focus on groundwater modelling. However the developed techniques are general and can be applied also in other modelling domains. Modelling involves conceptualization of the processes of Nature. Data assimilation provides a way to deal...... with model non-linearities and biased errors. A literature review analyzes the most popular techniques and their application in hydrological modelling. Since bias is an important problem in groundwater modelling, two bias aware Kalman filters have been implemented and compared using an artificial test case...

  6. Modeling and control of a large nuclear reactor. A three-time-scale approach

    Energy Technology Data Exchange (ETDEWEB)

    Shimjith, S.R. [Indian Institute of Technology Bombay, Mumbai (India); Bhabha Atomic Research Centre, Mumbai (India); Tiwari, A.P. [Bhabha Atomic Research Centre, Mumbai (India); Bandyopadhyay, B. [Indian Institute of Technology Bombay, Mumbai (India). IDP in Systems and Control Engineering

    2013-07-01

    Recent research on Modeling and Control of a Large Nuclear Reactor. Presents a three-time-scale approach. Written by leading experts in the field. Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property, with emphasis on three-time-scale systems.

  7. Nonlinear Prediction Model for Hydrologic Time Series Based on Wavelet Decomposition

    Science.gov (United States)

    Kwon, H.; Khalil, A.; Brown, C.; Lall, U.; Ahn, H.; Moon, Y.

    2005-12-01

    Traditionally forecasting and characterizations of hydrologic systems is performed utilizing many techniques. Stochastic linear methods such as AR and ARIMA and nonlinear ones such as statistical learning theory based tools have been extensively used. The common difficulty to all methods is the determination of sufficient and necessary information and predictors for a successful prediction. Relationships between hydrologic variables are often highly nonlinear and interrelated across the temporal scale. A new hybrid approach is proposed for the simulation of hydrologic time series combining both the wavelet transform and the nonlinear model. The present model employs some merits of wavelet transform and nonlinear time series model. The Wavelet Transform is adopted to decompose a hydrologic nonlinear process into a set of mono-component signals, which are simulated by nonlinear model. The hybrid methodology is formulated in a manner to improve the accuracy of a long term forecasting. The proposed hybrid model yields much better results in terms of capturing and reproducing the time-frequency properties of the system at hand. Prediction results are promising when compared to traditional univariate time series models. An application of the plausibility of the proposed methodology is provided and the results conclude that wavelet based time series model can be utilized for simulating and forecasting of hydrologic variable reasonably well. This will ultimately serve the purpose of integrated water resources planning and management.

  8. Scaling considerations related to interactions of hydrologic, pedologic and geomorphic processes (Invited)

    Science.gov (United States)

    Sidle, R. C.

    2013-12-01

    Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K) and infiltration capacity at small scales generally underestimates these values for application at larger field, hillslope, or catchment scales. Both vertical and slope-parallel saturated flow and related contaminant transport are often influenced by interconnected networks of preferential flow paths, which are not captured in K measurements derived from soil cores. Using such K values in models may underestimate water and contaminant fluxes and runoff peaks. As shown in small-scale runoff plot studies, infiltration rates are typically lower than integrated infiltration across a hillslope or in headwater catchments. The resultant greater infiltration-excess overland flow in small plots compared to larger landscapes is attributed to the lack of preferential flow continuity; plot border effects; greater homogeneity of rainfall inputs, topography and soil physical properties; and magnified effects of hydrophobicity in small plots. At the hillslope scale, isolated areas with high infiltration capacity can greatly reduce surface runoff and surface erosion at the hillslope scale. These hydropedologic and hydrogeomorphic processes are also relevant to both occurrence and timing of landslides. The focus of many landslide studies has typically been either on small-scale vadose zone process and how these affect soil mechanical properties or on larger scale, more descriptive geomorphic studies. One of the issues in translating laboratory-based investigations on geotechnical behavior of soils to field scales where landslides occur is the characterization of large-scale hydrological processes and flow paths that occur in heterogeneous and anisotropic porous media. These processes are not only affected

  9. Characterizing the utility of the TMPA real-time product for hydrologic predictions over global river basins across scales

    Science.gov (United States)

    Gao, H.; Zhang, S.; Nijssen, B.; Zhou, T.; Voisin, N.; Sheffield, J.; Lee, K.; Shukla, S.; Lettenmaier, D. P.

    2017-12-01

    Despite its errors and uncertainties, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time product (TMPA-RT) has been widely used for hydrological monitoring and forecasting due to its timely availability for real-time applications. To evaluate the utility of TMPA-RT in hydrologic predictions, many studies have compared modeled streamflows driven by TMPA-RT against gauge data. However, because of the limited availability of streamflow observations in data sparse regions, there is still a lack of comprehensive comparisons for TMPA-RT based hydrologic predictions at the global scale. Furthermore, it is expected that its skill is less optimal at the subbasin scale than the basin scale. In this study, we evaluate and characterize the utility of the TMPA-RT product over selected global river basins during the period of 1998 to 2015 using the TMPA research product (TMPA-RP) as a reference. The Variable Infiltration Capacity (VIC) model, which was calibrated and validated previously, is adopted to simulate streamflows driven by TMPA-RT and TMPA-RP, respectively. The objective of this study is to analyze the spatial and temporal characteristics of the hydrologic predictions by answering the following questions: (1) How do the precipitation errors associated with the TMPA-RT product transform into streamflow errors with respect to geographical and climatological characteristics? (2) How do streamflow errors vary across scales within a basin?

  10. Using Modeling Tools to Better Understand Permafrost Hydrology

    Directory of Open Access Journals (Sweden)

    Clément Fabre

    2017-06-01

    Full Text Available Modification of the hydrological cycle and, subsequently, of other global cycles is expected in Arctic watersheds owing to global change. Future climate scenarios imply widespread permafrost degradation caused by an increase in air temperature, and the expected effect on permafrost hydrology is immense. This study aims at analyzing, and quantifying the daily water transfer in the largest Arctic river system, the Yenisei River in central Siberia, Russia, partially underlain by permafrost. The semi-distributed SWAT (Soil and Water Assessment Tool hydrological model has been calibrated and validated at a daily time step in historical discharge simulations for the 2003–2014 period. The model parameters have been adjusted to embrace the hydrological features of permafrost. SWAT is shown capable to estimate water fluxes at a daily time step, especially during unfrozen periods, once are considered specific climatic and soils conditions adapted to a permafrost watershed. The model simulates average annual contribution to runoff of 263 millimeters per year (mm yr−1 distributed as 152 mm yr−1 (58% of surface runoff, 103 mm yr−1 (39% of lateral flow and 8 mm yr−1 (3% of return flow from the aquifer. These results are integrated on a reduced basin area downstream from large dams and are closer to observations than previous modeling exercises.

  11. Investigating impacts of natural and human-induced environmental changes on hydrological processes and flood hazards using a GIS-based hydrological/hydraulic model and remote sensing data

    Science.gov (United States)

    Wang, Lei

    Natural and human-induced environmental changes have been altering the earth's surface and hydrological processes, and thus directly contribute to the severity of flood hazards. To understand these changes and their impacts, this research developed a GIS-based hydrological and hydraulic modeling system, which incorporates state-of-the-art remote sensing data to simulate flood under various scenarios. The conceptual framework and technical issues of incorporating multi-scale remote sensing data have been addressed. This research develops an object-oriented hydrological modeling framework. Compared with traditional lumped or cell-based distributed hydrological modeling frameworks, the object-oriented framework allows basic spatial hydrologic units to have various size and irregular shape. This framework is capable of assimilating various GIS and remotely-sensed data with different spatial resolutions. It ensures the computational efficiency, while preserving sufficient spatial details of input data and model outputs. Sensitivity analysis and comparison of high resolution LIDAR DEM with traditional USGS 30m resolution DEM suggests that the use of LIDAR DEMs can greatly reduce uncertainty in calibration of flow parameters in the hydrologic model and hence increase the reliability of modeling results. In addition, subtle topographic features and hydrologic objects like surface depressions and detention basins can be extracted from the high resolution LiDAR DEMs. An innovative algorithm has been developed to efficiently delineate surface depressions and detention basins from LiDAR DEMs. Using a time series of Landsat images, a retrospective analysis of surface imperviousness has been conducted to assess the hydrologic impact of urbanization. The analysis reveals that with rapid urbanization the impervious surface has been increased from 10.1% to 38.4% for the case study area during 1974--2002. As a result, the peak flow for a 100-year flood event has increased by 20% and

  12. Stochastic Modelling of Hydrologic Systems

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa

    2007-01-01

    In this PhD project several stochastic modelling methods are studied and applied on various subjects in hydrology. The research was prepared at Informatics and Mathematical Modelling at the Technical University of Denmark. The thesis is divided into two parts. The first part contains...... an introduction and an overview of the papers published. Then an introduction to basic concepts in hydrology along with a description of hydrological data is given. Finally an introduction to stochastic modelling is given. The second part contains the research papers. In the research papers the stochastic methods...... are described, as at the time of publication these methods represent new contribution to hydrology. The second part also contains additional description of software used and a brief introduction to stiff systems. The system in one of the papers is stiff....

  13. Wetland Hydrology | Science Inventory | US EPA

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  14. Model study of the impacts of future climate change on the hydrology of Ganges-Brahmaputra-Meghna (GBM) basin

    Science.gov (United States)

    Masood, M.; Yeh, P. J.-F.; Hanasaki, N.; Takeuchi, K.

    2014-06-01

    The intensity, duration, and geographic extent of floods in Bangladesh mostly depend on the combined influences of three river systems, Ganges, Brahmaputra and Meghna (GBM). In addition, climate change is likely to have significant effects on the hydrology and water resources of the GBM basins and might ultimately lead to more serious floods in Bangladesh. However, the assessment of climate change impacts on basin-scale hydrology by using well-constrained hydrologic modelling has rarely been conducted for GBM basins due to the lack of data for model calibration and validation. In this study, a macro-scale hydrologic model H08 has been applied regionally over the basin at a relatively fine grid resolution (10 km) by integrating the fine-resolution (~0.5 km) DEM data for accurate river networks delineation. The model has been calibrated via analyzing model parameter sensitivity and validated based on a long-term observed daily streamflow data. The impact of climate change on not only the runoff, but also the basin-scale hydrology including evapotranspiration, soil moisture and net radiation have been assessed in this study through three time-slice experiments; present-day (1979-2003), near-future (2015-2039) and far-future (2075-2099) periods. Results shows that, by the end of 21st century (a) the entire GBM basin is projected to be warmed by ~3°C (b) the changes of mean precipitation are projected to be +14.0, +10.4, and +15.2%, and the changes of mean runoff to be +14, +15, and +18% in the Brahmaputra, Ganges and Meghna basin respectively (c) evapotranspiration is predicted to increase significantly for the entire GBM basins (Brahmaputra: +14.4%, Ganges: +9.4%, Meghna: +8.8%) due to increased net radiation (Brahmaputra: +6%, Ganges: +5.9%, Meghna: +3.3%) as well as warmer air temperature. Changes of hydrologic variables will be larger in dry season (November-April) than that in wet season (May-October). Amongst three basins, Meghna shows the largest hydrological

  15. Embedding complex hydrology in the regional climate system – Dynamic coupling across different modelling domains

    DEFF Research Database (Denmark)

    Butts, Michael; Drews, Martin; Larsen, Morten Andreas Dahl

    2014-01-01

    the atmosphere and the groundwater via the land surface and can represent the lateral movement of water in both the surface and subsurface and their interactions, not normally accounted for in climate models. Meso-scale processes are important for climate in general and rainfall in particular. Hydrological......To improve our understanding of the impacts of feedback between the atmosphere and the terrestrial water cycle including groundwater and to improve the integration of water resource management modelling for climate adaption we have developed a dynamically coupled climate–hydrological modelling...... impacts are assessed at the catchment scale, the most important scale for water management. Feedback between groundwater, the land surface and the atmosphere occurs across a range of scales. Recognising this, the coupling was developed to allow dynamic exchange of water and energy at the catchment scale...

  16. Observatories, think tanks, and community models in the hydrologic and environmental sciences: How does it affect me?

    Science.gov (United States)

    Torgersen, Thomas

    2006-06-01

    Multiple issues in hydrologic and environmental sciences are now squarely in the public focus and require both government and scientific study. Two facts also emerge: (1) The new approach being touted publicly for advancing the hydrologic and environmental sciences is the establishment of community-operated "big science" (observatories, think tanks, community models, and data repositories). (2) There have been important changes in the business of science over the last 20 years that make it important for the hydrologic and environmental sciences to demonstrate the "value" of public investment in hydrological and environmental science. Given that community-operated big science (observatories, think tanks, community models, and data repositories) could become operational, I argue that such big science should not mean a reduction in the importance of single-investigator science. Rather, specific linkages between the large-scale, team-built, community-operated big science and the single investigator should provide context data, observatory data, and systems models for a continuing stream of hypotheses by discipline-based, specialized research and a strong rationale for continued, single-PI ("discovery-based") research. I also argue that big science can be managed to provide a better means of demonstrating the value of public investment in the hydrologic and environmental sciences. Decisions regarding policy will still be political, but big science could provide an integration of the best scientific understanding as a guide for the best policy.

  17. Model Calibration in Watershed Hydrology

    Science.gov (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  18. Integrating Geographical Information Systems (GIS) with Hydrological Modelling – Applicability and Limitations

    OpenAIRE

    Rajesh VijayKumar Kherde; Dr. Priyadarshi. H. Sawant

    2013-01-01

    The evolution of Geographic information systems (GIS) facilitated the use digital terrain data for topography based hydrological modelling. The use of spatial data for hydrological modelling emerged from the great capability of GIS tools to store and handle the data associated hydro-morphology of the basin. These models utilize the spatially variable terrain data for converting rainfall into surface runoff.Manual map manipulation has always posed difficulty in analysing and designing large sc...

  19. Challenges of Modeling Flood Risk at Large Scales

    Science.gov (United States)

    Guin, J.; Simic, M.; Rowe, J.

    2009-04-01

    Flood risk management is a major concern for many nations and for the insurance sector in places where this peril is insured. A prerequisite for risk management, whether in the public sector or in the private sector is an accurate estimation of the risk. Mitigation measures and traditional flood management techniques are most successful when the problem is viewed at a large regional scale such that all inter-dependencies in a river network are well understood. From an insurance perspective the jury is still out there on whether flood is an insurable peril. However, with advances in modeling techniques and computer power it is possible to develop models that allow proper risk quantification at the scale suitable for a viable insurance market for flood peril. In order to serve the insurance market a model has to be event-simulation based and has to provide financial risk estimation that forms the basis for risk pricing, risk transfer and risk management at all levels of insurance industry at large. In short, for a collection of properties, henceforth referred to as a portfolio, the critical output of the model is an annual probability distribution of economic losses from a single flood occurrence (flood event) or from an aggregation of all events in any given year. In this paper, the challenges of developing such a model are discussed in the context of Great Britain for which a model has been developed. The model comprises of several, physically motivated components so that the primary attributes of the phenomenon are accounted for. The first component, the rainfall generator simulates a continuous series of rainfall events in space and time over thousands of years, which are physically realistic while maintaining the statistical properties of rainfall at all locations over the model domain. A physically based runoff generation module feeds all the rivers in Great Britain, whose total length of stream links amounts to about 60,000 km. A dynamical flow routing

  20. Hydrological regulation drives regime shifts: evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake.

    Science.gov (United States)

    Kong, Xiangzhen; He, Qishuang; Yang, Bin; He, Wei; Xu, Fuliu; Janssen, Annette B G; Kuiper, Jan J; van Gerven, Luuk P A; Qin, Ning; Jiang, Yujiao; Liu, Wenxiu; Yang, Chen; Bai, Zelin; Zhang, Min; Kong, Fanxiang; Janse, Jan H; Mooij, Wolf M

    2017-02-01

    Quantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such 'regime shifts' can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long-term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we focus on a large shallow lake (Lake Chaohu) located in one of the most densely populated areas in China, the lower Yangtze River floodplain, which has undergone both WLC and increasing nutrient loading over the last several decades. We applied a novel methodology that combines consistent evidence from both paleolimnological records and ecosystem modeling to overcome the hurdle of data insufficiency and to unravel the drivers and underlying mechanisms in ecosystem dynamics. We identified the occurrence of two regime shifts: one in 1963, characterized by the abrupt disappearance of submerged vegetation, and another around 1980, with strong algal blooms being observed thereafter. Using model scenarios, we further disentangled the roles of WLC and nutrient loading, showing that the 1963 shift was predominantly triggered by WLC, whereas the shift ca. 1980 was attributed to aggravated nutrient loading. Our analysis also shows interactions between these two stressors. Compared to the dynamics driven by nutrient loading alone, WLC reduced the critical P loading and resulted in earlier disappearance of submerged vegetation and emergence of algal blooms by approximately 26 and 10 years, respectively. Overall, our study reveals the significant role of hydrological regulation in driving shallow lake ecosystem dynamics, and it highlights the urgency of using multi-objective management criteria that includes ecological sustainability perspectives when

  1. Comparison of HSPF and PRMS model simulated flows using different temporal and spatial scales in the Black Hills, South Dakota

    Science.gov (United States)

    Chalise, D. R.; Haj, Adel E.; Fontaine, T.A.

    2018-01-01

    The hydrological simulation program Fortran (HSPF) [Hydrological Simulation Program Fortran version 12.2 (Computer software). USEPA, Washington, DC] and the precipitation runoff modeling system (PRMS) [Precipitation Runoff Modeling System version 4.0 (Computer software). USGS, Reston, VA] models are semidistributed, deterministic hydrological tools for simulating the impacts of precipitation, land use, and climate on basin hydrology and streamflow. Both models have been applied independently to many watersheds across the United States. This paper reports the statistical results assessing various temporal (daily, monthly, and annual) and spatial (small versus large watershed) scale biases in HSPF and PRMS simulations using two watersheds in the Black Hills, South Dakota. The Nash-Sutcliffe efficiency (NSE), Pearson correlation coefficient (r">rr), and coefficient of determination (R2">R2R2) statistics for the daily, monthly, and annual flows were used to evaluate the models’ performance. Results from the HSPF models showed that the HSPF consistently simulated the annual flows for both large and small basins better than the monthly and daily flows, and the simulated flows for the small watershed better than flows for the large watershed. In comparison, the PRMS model results show that the PRMS simulated the monthly flows for both the large and small watersheds better than the daily and annual flows, and the range of statistical error in the PRMS models was greater than that in the HSPF models. Moreover, it can be concluded that the statistical error in the HSPF and the PRMSdaily, monthly, and annual flow estimates for watersheds in the Black Hills was influenced by both temporal and spatial scale variability.

  2. The testing of thermal-mechanical-hydrological-chemical processes using a large block

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.A.; Blair, S.C.; Buscheck, T.A.; Chesnut, D.A.; Glassley, W.E.; Lee, K.; Roberts, J.J.

    1994-01-01

    The radioactive decay heat from nuclear waste packages may, depending on the thermal load, create coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near-field environment of a repository. A group of tests on a large block (LBT) are planned to provide a timely opportunity to test and calibrate some of the TMHC model concepts. The LBT is advantageous for testing and verifying model concepts because the boundary conditions are controlled, and the block can be characterized before and after the experiment. A block of Topopah Spring tuff of about 3 x 3 x 4.5 m will be sawed and isolated at Fran Ridge, Nevada Test Site. Small blocks of the rock adjacent to the large block will be collected for laboratory testing of some individual thermal-mechanical, hydrological, and chemical processes. A constant load of about 4 MPa will be applied to the top and sides of the large block. The sides will be sealed with moisture and thermal barriers. The large block will be heated with one heater in each borehole and guard heaters on the sides so that a dry-out zone and a condensate zone will exist simultaneously. Temperature, moisture content, pore pressure, chemical composition, stress and displacement will be measured throughout the block during the heating and cool-down phases. The results from the experiments on small blocks and the tests on the large block will provide a better understanding of some concepts of the coupled TMHC processes

  3. Application of simplified models to CO2 migration and immobilization in large-scale geological systems

    KAUST Repository

    Gasda, Sarah E.

    2012-07-01

    Long-term stabilization of injected carbon dioxide (CO 2) is an essential component of risk management for geological carbon sequestration operations. However, migration and trapping phenomena are inherently complex, involving processes that act over multiple spatial and temporal scales. One example involves centimeter-scale density instabilities in the dissolved CO 2 region leading to large-scale convective mixing that can be a significant driver for CO 2 dissolution. Another example is the potentially important effect of capillary forces, in addition to buoyancy and viscous forces, on the evolution of mobile CO 2. Local capillary effects lead to a capillary transition zone, or capillary fringe, where both fluids are present in the mobile state. This small-scale effect may have a significant impact on large-scale plume migration as well as long-term residual and dissolution trapping. Computational models that can capture both large and small-scale effects are essential to predict the role of these processes on the long-term storage security of CO 2 sequestration operations. Conventional modeling tools are unable to resolve sufficiently all of these relevant processes when modeling CO 2 migration in large-scale geological systems. Herein, we present a vertically-integrated approach to CO 2 modeling that employs upscaled representations of these subgrid processes. We apply the model to the Johansen formation, a prospective site for sequestration of Norwegian CO 2 emissions, and explore the sensitivity of CO 2 migration and trapping to subscale physics. Model results show the relative importance of different physical processes in large-scale simulations. The ability of models such as this to capture the relevant physical processes at large spatial and temporal scales is important for prediction and analysis of CO 2 storage sites. © 2012 Elsevier Ltd.

  4. Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions

    Science.gov (United States)

    Sulis, M.; Paniconi, C.; Marrocu, M.; Huard, D.; Chaumont, D.

    2012-12-01

    General circulation models (GCMs) are the primary instruments for obtaining projections of future global climate change. Outputs from GCMs, aided by dynamical and/or statistical downscaling techniques, have long been used to simulate changes in regional climate systems over wide spatiotemporal scales. Numerous studies have acknowledged the disagreements between the various GCMs and between the different downscaling methods designed to compensate for the mismatch between climate model output and the spatial scale at which hydrological models are applied. Very little is known, however, about the importance of these differences once they have been input or assimilated by a nonlinear hydrological model. This issue is investigated here at the catchment scale using a process-based model of integrated surface and subsurface hydrologic response driven by outputs from 12 members of a multimodel climate ensemble. The data set consists of daily values of precipitation and min/max temperatures obtained by combining four regional climate models and five GCMs. The regional scenarios were downscaled using a quantile scaling bias-correction technique. The hydrologic response was simulated for the 690 km2des Anglais catchment in southwestern Quebec, Canada. The results show that different hydrological components (river discharge, aquifer recharge, and soil moisture storage) respond differently to precipitation and temperature anomalies in the multimodel climate output, with greater variability for annual discharge compared to recharge and soil moisture storage. We also find that runoff generation and extreme event-driven peak hydrograph flows are highly sensitive to any uncertainty in climate data. Finally, the results show the significant impact of changing sequences of rainy days on groundwater recharge fluxes and the influence of longer dry spells in modifying soil moisture spatial variability.

  5. Investigation of the transferability of hydrological models and a method to improve model calibration

    Directory of Open Access Journals (Sweden)

    G. Hartmann

    2005-01-01

    Full Text Available In order to find a model parameterization such that the hydrological model performs well even under different conditions, appropriate model performance measures have to be determined. A common performance measure is the Nash Sutcliffe efficiency. Usually it is calculated comparing observed and modelled daily values. In this paper a modified version is suggested in order to calibrate a model on different time scales simultaneously (days up to years. A spatially distributed hydrological model based on HBV concept was used. The modelling was applied on the Upper Neckar catchment, a mesoscale river in south western Germany with a basin size of about 4000 km2. The observation period 1961-1990 was divided into four different climatic periods, referred to as "warm", "cold", "wet" and "dry". These sub periods were used to assess the transferability of the model calibration and of the measure of performance. In a first step, the hydrological model was calibrated on a certain period and afterwards applied on the same period. Then, a validation was performed on the climatologically opposite period than the calibration, e.g. the model calibrated on the cold period was applied on the warm period. Optimal parameter sets were identified by an automatic calibration procedure based on Simulated Annealing. The results show, that calibrating a hydrological model that is supposed to handle short as well as long term signals becomes an important task. Especially the objective function has to be chosen very carefully.

  6. Hydrologic and Water Quality Model Development Using Simulink

    Directory of Open Access Journals (Sweden)

    James D. Bowen

    2014-11-01

    Full Text Available A stormwater runoff model based on the Soil Conservation Service (SCS method and a finite-volume based water quality model have been developed to investigate the use of Simulink for use in teaching and research. Simulink, a MATLAB extension, is a graphically based model development environment for system modeling and simulation. Widely used for mechanical and electrical systems, Simulink has had less use for modeling of hydrologic systems. The watershed model is being considered for use in teaching graduate-level courses in hydrology and/or stormwater modeling. Simulink’s block (data process and arrow (data transfer object model, the copy and paste user interface, the large number of existing blocks, and the absence of computer code allows students to become model developers almost immediately. The visual depiction of systems, their component subsystems, and the flow of data through the systems are ideal attributes for hands-on teaching of hydrologic and mass balance processes to today’s computer-savvy visual learners. Model development with Simulink for research purposes is also investigated. A finite volume, multi-layer pond model using the water quality kinetics present in CE-QUAL-W2 has been developed using Simulink. The model is one of the first uses of Simulink for modeling eutrophication dynamics in stratified natural systems. The model structure and a test case are presented. One use of the model for teaching a graduate-level water quality modeling class is also described.

  7. Advancements in Hydrology and Erosion Process Understanding and Post-Fire Hydrologic and Erosion Model Development for Semi-Arid Landscapes

    Science.gov (United States)

    Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.

    2017-04-01

    Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.

  8. Real-Time Analysis and Forecasting of Multisite River Flow Using a Distributed Hydrological Model

    Directory of Open Access Journals (Sweden)

    Mingdong Sun

    2014-01-01

    Full Text Available A spatial distributed hydrological forecasting system was developed to promote the analysis of river flow dynamic state in a large basin. The research presented the real-time analysis and forecasting of multisite river flow in the Nakdong River Basin using a distributed hydrological model with radar rainfall forecast data. A real-time calibration algorithm of hydrological distributed model was proposed to investigate the particular relationship between the water storage and basin discharge. Demonstrate the approach of simulating multisite river flow using a distributed hydrological model couple with real-time calibration and forecasting of multisite river flow with radar rainfall forecasts data. The hydrographs and results exhibit that calibrated flow simulations are very approximate to the flow observation at all sites and the accuracy of forecasting flow is gradually decreased with lead times extending from 1 hr to 3 hrs. The flow forecasts are lower than the flow observation which is likely caused by the low estimation of radar rainfall forecasts. The research has well demonstrated that the distributed hydrological model is readily applicable for multisite real-time river flow analysis and forecasting in a large basin.

  9. Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River Basin

    Science.gov (United States)

    Ji, H. J.; Liu, J.

    2017-12-01

    Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River BasinHaijuan Ji1* Jintao Liu1,2 Shanshan Xu1___________________ 1College of Hydrology and Water Resources, Hohai University, Nanjing 210098, People's Republic of China 2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, People's Republic of China ___________________ * Corresponding author. Tel.: +86-025-83786973; Fax: +86-025-83786606. E-mail address: Hhu201510@163.com (H.J. Ji). Abstract: The Tibetan Plateau plays an important role in regulating the regional hydrological processes due to its high elevations and being the headwaters of many major Asian river basins. If familiar with the distribution of hydrological characteristics, will help us improve the level of development and utilization the water resources. However, there exist glaciers and snow with few sites. It is significance for us to understand the glacier and snow hydrological process in order to recognize the evolution of water resources in the Tibetan. This manuscript takes Lhasa River as the study area, taking use of ground, remote sensing and assimilation data, taking advantage of high precision TRMM precipitation data and MODIS snow cover data, first, according to the data from ground station evaluation of TRMM data in the application of the accuracy of the Lhasa River, and based on MODIS data fusion of multi source microwave snow making cloudless snow products, which are used for discriminant and analysis glacier and snow regulation mechanism on day scale, add snow and glacier unit into xinanjing model, this model can simulate the study region's runoff evolution, parameter sensitivity even spatial variation of hydrological characteristics the next ten years on region grid scale. The results of hydrological model in Lhasa River can simulate the glacier and snow runoff variation in high cold region better, to enhance the predictive ability of the spring

  10. The ability of a GCM-forced hydrological model to reproduce global discharge variability

    NARCIS (Netherlands)

    Sperna Weiland, F.C.; Beek, L.P.H. van; Kwadijk, J.C.J.; Bierkens, M.F.P.

    2010-01-01

    Data from General Circulation Models (GCMs) are often used to investigate hydrological impacts of climate change. However GCM data are known to have large biases, especially for precipitation. In this study the usefulness of GCM data for hydrological studies, with focus on discharge variability

  11. Assessing climate change impact by integrated hydrological modelling

    Science.gov (United States)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    Future climate may have a profound effect on the freshwater cycle, which must be taken into consideration by water management for future planning. Developments in the future climate are nevertheless uncertain, thus adding to the challenge of managing an uncertain system. To support the water managers at various levels in Denmark, the national water resources model (DK-model) (Højberg et al., 2012; Stisen et al., 2012) was used to propagate future climate to hydrological response under considerations of the main sources of uncertainty. The DK-model is a physically based and fully distributed model constructed on the basis of the MIKE SHE/MIKE11 model system describing groundwater and surface water systems and the interaction between the domains. The model has been constructed for the entire 43.000 km2 land area of Denmark only excluding minor islands. Future climate from General Circulation Models (GCM) was downscaled by Regional Climate Models (RCM) by a distribution-based scaling method (Seaby et al., 2012). The same dataset was used to train all combinations of GCM-RCMs and they were found to represent the mean and variance at the seasonal basis equally well. Changes in hydrological response were computed by comparing the short term development from the period 1990 - 2010 to 2021 - 2050, which is the time span relevant for water management. To account for uncertainty in future climate predictions, hydrological response from the DK-model using nine combinations of GCMs and RCMs was analysed for two catchments representing the various hydrogeological conditions in Denmark. Three GCM-RCM combinations displaying high, mean and low future impacts were selected as representative climate models for which climate impact studies were carried out for the entire country. Parameter uncertainty was addressed by sensitivity analysis and was generally found to be of less importance compared to the uncertainty spanned by the GCM-RCM combinations. Analysis of the simulations

  12. QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks

    Science.gov (United States)

    Minaudo, Camille; Curie, Florence; Jullian, Yann; Gassama, Nathalie; Moatar, Florentina

    2018-04-01

    To allow climate change impact assessment of water quality in river systems, the scientific community lacks efficient deterministic models able to simulate hydrological and biogeochemical processes in drainage networks at the regional scale, with high temporal resolution and water temperature explicitly determined. The model QUALity-NETwork (QUAL-NET) was developed and tested on the Middle Loire River Corridor, a sub-catchment of the Loire River in France, prone to eutrophication. Hourly variations computed efficiently by the model helped disentangle the complex interactions existing between hydrological and biological processes across different timescales. Phosphorus (P) availability was the most constraining factor for phytoplankton development in the Loire River, but simulating bacterial dynamics in QUAL-NET surprisingly evidenced large amounts of organic matter recycled within the water column through the microbial loop, which delivered significant fluxes of available P and enhanced phytoplankton growth. This explained why severe blooms still occur in the Loire River despite large P input reductions since 1990. QUAL-NET could be used to study past evolutions or predict future trajectories under climate change and land use scenarios.

  13. QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks

    Directory of Open Access Journals (Sweden)

    C. Minaudo

    2018-04-01

    Full Text Available To allow climate change impact assessment of water quality in river systems, the scientific community lacks efficient deterministic models able to simulate hydrological and biogeochemical processes in drainage networks at the regional scale, with high temporal resolution and water temperature explicitly determined. The model QUALity-NETwork (QUAL-NET was developed and tested on the Middle Loire River Corridor, a sub-catchment of the Loire River in France, prone to eutrophication. Hourly variations computed efficiently by the model helped disentangle the complex interactions existing between hydrological and biological processes across different timescales. Phosphorus (P availability was the most constraining factor for phytoplankton development in the Loire River, but simulating bacterial dynamics in QUAL-NET surprisingly evidenced large amounts of organic matter recycled within the water column through the microbial loop, which delivered significant fluxes of available P and enhanced phytoplankton growth. This explained why severe blooms still occur in the Loire River despite large P input reductions since 1990. QUAL-NET could be used to study past evolutions or predict future trajectories under climate change and land use scenarios.

  14. Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model

    Science.gov (United States)

    Laiolo, P.; Gabellani, S.; Campo, L.; Silvestro, F.; Delogu, F.; Rudari, R.; Pulvirenti, L.; Boni, G.; Fascetti, F.; Pierdicca, N.; Crapolicchio, R.; Hasenauer, S.; Puca, S.

    2016-06-01

    The reliable estimation of hydrological variables in space and time is of fundamental importance in operational hydrology to improve the flood predictions and hydrological cycle description. Nowadays remotely sensed data can offer a chance to improve hydrological models especially in environments with scarce ground based data. The aim of this work is to update the state variables of a physically based, distributed and continuous hydrological model using four different satellite-derived data (three soil moisture products and a land surface temperature measurement) and one soil moisture analysis to evaluate, even with a non optimal technique, the impact on the hydrological cycle. The experiments were carried out for a small catchment, in the northern part of Italy, for the period July 2012-June 2013. The products were pre-processed according to their own characteristics and then they were assimilated into the model using a simple nudging technique. The benefits on the model predictions of discharge were tested against observations. The analysis showed a general improvement of the model discharge predictions, even with a simple assimilation technique, for all the assimilation experiments; the Nash-Sutcliffe model efficiency coefficient was increased from 0.6 (relative to the model without assimilation) to 0.7, moreover, errors on discharge were reduced up to the 10%. An added value to the model was found in the rainfall season (autumn): all the assimilation experiments reduced the errors up to the 20%. This demonstrated that discharge prediction of a distributed hydrological model, which works at fine scale resolution in a small basin, can be improved with the assimilation of coarse-scale satellite-derived data.

  15. A question driven socio-hydrological modeling process

    Science.gov (United States)

    Garcia, M.; Portney, K.; Islam, S.

    2016-01-01

    Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human-induced changes may propagate through this coupled system. Modeling of coupled human-hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding model conceptualization. There are no universally accepted laws of human behavior as there are for the physical systems; furthermore, a shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope and detail to remain contingent on and adaptive to the question context. We demonstrate the utility of this process by revisiting a classic question in water resources engineering on reservoir operation rules: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result, per capita demand decreases during

  16. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model

    Science.gov (United States)

    Krogh, Sebastian A.; Pomeroy, John W.; Marsh, Philip

    2017-07-01

    A better understanding of cold regions hydrological processes and regimes in transitional environments is critical for predicting future Arctic freshwater fluxes under climate and vegetation change. A physically based hydrological model using the Cold Regions Hydrological Model platform was created for a small Arctic basin in the tundra-taiga transition region. The model represents snow redistribution and sublimation by wind and vegetation, snowmelt energy budget, evapotranspiration, subsurface flow through organic terrain, infiltration to frozen soils, freezing and thawing of soils, permafrost and streamflow routing. The model was used to reconstruct the basin water cycle over 28 years to understand and quantify the mass fluxes controlling its hydrological regime. Model structure and parameters were set from the current understanding of Arctic hydrology, remote sensing, field research in the basin and region, and calibration against streamflow observations. Calibration was restricted to subsurface hydraulic and storage parameters. Multi-objective evaluation of the model using observed streamflow, snow accumulation and ground freeze/thaw state showed adequate simulation. Significant spatial variability in the winter mass fluxes was found between tundra, shrubs and forested sites, particularly due to the substantial blowing snow redistribution and sublimation from the wind-swept upper basin, as well as sublimation of canopy intercepted snow from the forest (about 17% of snowfall). At the basin scale, the model showed that evapotranspiration is the largest loss of water (47%), followed by streamflow (39%) and sublimation (14%). The models streamflow performance sensitivity to a set of parameter was analysed, as well as the mean annual mass balance uncertainty associated with these parameters.

  17. Large-scale river regulation

    International Nuclear Information System (INIS)

    Petts, G.

    1994-01-01

    Recent concern over human impacts on the environment has tended to focus on climatic change, desertification, destruction of tropical rain forests, and pollution. Yet large-scale water projects such as dams, reservoirs, and inter-basin transfers are among the most dramatic and extensive ways in which our environment has been, and continues to be, transformed by human action. Water running to the sea is perceived as a lost resource, floods are viewed as major hazards, and wetlands are seen as wastelands. River regulation, involving the redistribution of water in time and space, is a key concept in socio-economic development. To achieve water and food security, to develop drylands, and to prevent desertification and drought are primary aims for many countries. A second key concept is ecological sustainability. Yet the ecology of rivers and their floodplains is dependent on the natural hydrological regime, and its related biochemical and geomorphological dynamics. (Author)

  18. A large-scale forest landscape model incorporating multi-scale processes and utilizing forest inventory data

    Science.gov (United States)

    Wen J. Wang; Hong S. He; Martin A. Spetich; Stephen R. Shifley; Frank R. Thompson III; David R. Larsen; Jacob S. Fraser; Jian. Yang

    2013-01-01

    Two challenges confronting forest landscape models (FLMs) are how to simulate fine, standscale processes while making large-scale (i.e., .107 ha) simulation possible, and how to take advantage of extensive forest inventory data such as U.S. Forest Inventory and Analysis (FIA) data to initialize and constrain model parameters. We present the LANDIS PRO model that...

  19. Sensitivity of hydrological modeling to meteorological data and implications for climate change studies

    International Nuclear Information System (INIS)

    Roy, L.G.; Roy, R.; Desrochers, G.E.; Vaillancourt, C.; Chartier, I.

    2008-01-01

    There are uncertainties associated with the use of hydrological models. This study aims to analyse one source of uncertainty associated with hydrological modeling, particularly in the context of climate change studies on water resources. Additional intent of this study is to compare the ability of some meteorological data sources, used in conjunction with an hydrological model, to reproduce the hydrologic regime of a watershed. A case study on a watershed of south-western Quebec, Canada using five different sources of meteorological data as input to an offline hydrological model are presented in this paper. Data used came from weather stations, NCEP reanalysis, ERA40 reanalysis and two Canadian Regional Climate Model (CRCM) runs driven by NCEP and ERA40 reanalysis, providing atmospheric driving boundary conditions to this limited-area climate model. To investigate the sensitivity of simulated streamflow to different sources of meteorological data, we first calibrated the hydrological model with each of the meteorological data sets over the 1961-1980 period. The five different sets of parameters of the hydrological model were then used to simulate streamflow of the 1981-2000 validation period with the five meteorological data sets as inputs. The 25 simulated streamflow series have been compared to the observed streamflow of the watershed. The five meteorological data sets do not have the same ability, when used with the hydrological model, to reproduce streamflow. Our results show also that the hydrological model parameters used may have an important influence on results such as water balance, but it is linked with the differences that may have in the characteristics of the meteorological data used. For climate change impacts assessments on water resources, we have found that there is an uncertainty associated with the meteorological data used to calibrate the model. For expected changes on mean annual flows of the Chateauguay River, our results vary from a small

  20. Infrastructure to Support Hydrologic Research: Information Systems

    Science.gov (United States)

    Lall, U.; Duffy, C j

    2001-12-01

    systems developed, with the goal of addressing specific hydrologic puzzles. This initiative will also support the development of methods to improve our ability to formulate conceptual and operational models for estimating hydrologic fluxes at ungaged and poorly gaged locations and time periods. Operational modeling of large scale hydrologic systems coupled to other earth systems is just now coming into vogue, and will be aggressively supported by the data initiatives at the LTHOs, and by the investment in new Measurement Technology. While we recognize that new ways of problem formulation and reduction are crucial to progress in modeling such systems, methods of "data assimilation" hold the promise for correcting the trajectories of existing models and for checking key modeling assumptions. Hence, we advance this component as part of an information system (defined through data, access and visualization tools, and numerical and statistical modeling tools) that may provide immediate improvements in hydrologic forecasting and applications. Finally, an HIS facility that embodies the components enumerated above, provides an excellent venue for the training of scientists and as a meeting place for scientists to plan new experiments, test hypothesis with data, explore improvements in models or visualization tools, and to generate new research ideas. This "think tank" component will add to the vitality of the field of hydrology as a scientific discipline.

  1. Hydrological modeling using a multi-site stochastic weather generator

    Science.gov (United States)

    Weather data is usually required at several locations over a large watershed, especially when using distributed models for hydrological simulations. In many applications, spatially correlated weather data can be provided by a multi-site stochastic weather generator which considers the spatial correl...

  2. Amplification of wildfire area burnt by hydrological drought in the humid tropics

    Science.gov (United States)

    Taufik, Muh; Torfs, Paul J. J. F.; Uijlenhoet, Remko; Jones, Philip D.; Murdiyarso, Daniel; van Lanen, Henny A. J.

    2017-06-01

    Borneo's diverse ecosystems, which are typical humid tropical conditions, are deteriorating rapidly, as the area is experiencing recurrent large-scale wildfires, affecting atmospheric composition and influencing regional climate processes. Studies suggest that climate-driven drought regulates wildfires, but these overlook subsurface processes leading to hydrological drought, an important driver. Here, we show that models which include hydrological processes better predict area burnt than those solely based on climate data. We report that the Borneo landscape has experienced a substantial hydrological drying trend since the early twentieth century, leading to progressive tree mortality, more severe than in other tropical regions. This has caused massive wildfires in lowland Borneo during the past two decades, which we show are clustered in years with large areas of hydrological drought coinciding with strong El Niño events. Statistical modelling evidence shows amplifying wildfires and greater area burnt in response to El Niño/Southern Oscillation (ENSO) strength, when hydrology is considered. These results highlight the importance of considering hydrological drought for wildfire prediction, and we recommend that hydrology should be considered in future studies of the impact of projected ENSO strength, including effects on tropical ecosystems, and biodiversity conservation.

  3. The large-scale peculiar velocity field in flat models of the universe

    International Nuclear Information System (INIS)

    Vittorio, N.; Turner, M.S.

    1986-10-01

    The inflationary Universe scenario predicts a flat Universe and both adiabatic and isocurvature primordial density perturbations with the Zel'dovich spectrum. The two simplest realizations, models dominated by hot or cold dark matter, seem to be in conflict with observations. Flat models are examined with two components of mass density, where one of the components of mass density is smoothly distributed and the large-scale (≥10h -1 MpC) peculiar velocity field for these models is considered. For the smooth component relativistic particles, a relic cosmological term, and light strings are considered. At present the observational situation is unsettled; but, in principle, the large-scale peculiar velocity field is very powerful discriminator between these different models. 61 refs

  4. The relationship between large-scale and convective states in the tropics - Towards an improved representation of convection in large-scale models

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, Christian [Monash Univ., Melbourne, VIC (Australia)

    2015-02-26

    This report summarises an investigation into the relationship of tropical thunderstorms to the atmospheric conditions they are embedded in. The study is based on the use of radar observations at the Atmospheric Radiation Measurement site in Darwin run under the auspices of the DOE Atmospheric Systems Research program. Linking the larger scales of the atmosphere with the smaller scales of thunderstorms is crucial for the development of the representation of thunderstorms in weather and climate models, which is carried out by a process termed parametrisation. Through the analysis of radar and wind profiler observations the project made several fundamental discoveries about tropical storms and quantified the relationship of the occurrence and intensity of these storms to the large-scale atmosphere. We were able to show that the rainfall averaged over an area the size of a typical climate model grid-box is largely controlled by the number of storms in the area, and less so by the storm intensity. This allows us to completely rethink the way we represent such storms in climate models. We also found that storms occur in three distinct categories based on their depth and that the transition between these categories is strongly related to the larger scale dynamical features of the atmosphere more so than its thermodynamic state. Finally, we used our observational findings to test and refine a new approach to cumulus parametrisation which relies on the stochastic modelling of the area covered by different convective cloud types.

  5. Modeling sediment yield in small catchments at event scale: Model comparison, development and evaluation

    Science.gov (United States)

    Tan, Z.; Leung, L. R.; Li, H. Y.; Tesfa, T. K.

    2017-12-01

    Sediment yield (SY) has significant impacts on river biogeochemistry and aquatic ecosystems but it is rarely represented in Earth System Models (ESMs). Existing SY models focus on estimating SY from large river basins or individual catchments so it is not clear how well they simulate SY in ESMs at larger spatial scales and globally. In this study, we compare the strengths and weaknesses of eight well-known SY models in simulating annual mean SY at about 400 small catchments ranging in size from 0.22 to 200 km2 in the US, Canada and Puerto Rico. In addition, we also investigate the performance of these models in simulating event-scale SY at six catchments in the US using high-quality hydrological inputs. The model comparison shows that none of the models can reproduce the SY at large spatial scales but the Morgan model performs the better than others despite its simplicity. In all model simulations, large underestimates occur in catchments with very high SY. A possible pathway to reduce the discrepancies is to incorporate sediment detachment by landsliding, which is currently not included in the models being evaluated. We propose a new SY model that is based on the Morgan model but including a landsliding soil detachment scheme that is being developed. Along with the results of the model comparison and evaluation, preliminary findings from the revised Morgan model will be presented.

  6. Quantitative and qualitative synthesis of socio-hydrological research

    Science.gov (United States)

    Xu, L.; Gober, P.; Wheater, H. S.; Kajikawa, Y.

    2017-12-01

    The challenge of climate change adaptation has raised awareness of the feedbacks and interconnections in complex human-natural coupled water systems. This has reinforced the call for a socio-hydrological approach to better understand, and represent in models, the associated system dynamics. Such models can potentially provide the tools to link knowledge about complex water systems to decision-making and policy frameworks. Socio-hydrology, as the subfield of human-natural coupled systems analysis, has been dramatically developed in the past few years. The purpose of this study is to empirically examine work that has been framed under the umbrella of socio-hydrology, to provide insights into the participants and their disciplinary perspectives, and to draw conclusions about where the field is headed. In doing so, we used a combined quantitative and qualitative approach to synthesise current knowledge of socio-hydrology and to propose some promising future directions in this subfield of water sciences. The general statistics of the existing literature showed that socio-hydrological research has become an emerging topic and is drawing more concern and engagement of hydrologists. However, the participation of social scientists is inadequate and greater cross-disciplinary integration is desirable. Current concerns in this subfield of water research centre on two basic challenges: (1) the need to embrace the social dimensions of water-related risks, and (2) the importance of interactions and feedbacks in dynamic socio-hydrological systems. A third challenge identified here relates to the large-scale implications of 1) and 2) above, i.e. virtual water flows as a mechanism to track the human use of water at the global scale. Accordingly, we propose five potential directions with regard to socio-hydrological models, interdisciplinary collaboration and transdisciplinary studies, the science-policy interface, resilience in socio-hydrological systems, and data sharing for human

  7. REIONIZATION ON LARGE SCALES. I. A PARAMETRIC MODEL CONSTRUCTED FROM RADIATION-HYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Battaglia, N.; Trac, H.; Cen, R.; Loeb, A.

    2013-01-01

    We present a new method for modeling inhomogeneous cosmic reionization on large scales. Utilizing high-resolution radiation-hydrodynamic simulations with 2048 3 dark matter particles, 2048 3 gas cells, and 17 billion adaptive rays in a L = 100 Mpc h –1 box, we show that the density and reionization redshift fields are highly correlated on large scales (∼> 1 Mpc h –1 ). This correlation can be statistically represented by a scale-dependent linear bias. We construct a parametric function for the bias, which is then used to filter any large-scale density field to derive the corresponding spatially varying reionization redshift field. The parametric model has three free parameters that can be reduced to one free parameter when we fit the two bias parameters to simulation results. We can differentiate degenerate combinations of the bias parameters by combining results for the global ionization histories and correlation length between ionized regions. Unlike previous semi-analytic models, the evolution of the reionization redshift field in our model is directly compared cell by cell against simulations and performs well in all tests. Our model maps the high-resolution, intermediate-volume radiation-hydrodynamic simulations onto lower-resolution, larger-volume N-body simulations (∼> 2 Gpc h –1 ) in order to make mock observations and theoretical predictions

  8. Perturbation theory instead of large scale shell model calculations

    International Nuclear Information System (INIS)

    Feldmeier, H.; Mankos, P.

    1977-01-01

    Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de

  9. Does model performance improve with complexity? A case study with three hydrological models

    Science.gov (United States)

    Orth, Rene; Staudinger, Maria; Seneviratne, Sonia I.; Seibert, Jan; Zappa, Massimiliano

    2015-04-01

    In recent decades considerable progress has been made in climate model development. Following the massive increase in computational power, models became more sophisticated. At the same time also simple conceptual models have advanced. In this study we validate and compare three hydrological models of different complexity to investigate whether their performance varies accordingly. For this purpose we use runoff and also soil moisture measurements, which allow a truly independent validation, from several sites across Switzerland. The models are calibrated in similar ways with the same runoff data. Our results show that the more complex models HBV and PREVAH outperform the simple water balance model (SWBM) in case of runoff but not for soil moisture. Furthermore the most sophisticated PREVAH model shows an added value compared to the HBV model only in case of soil moisture. Focusing on extreme events we find generally improved performance of the SWBM during drought conditions and degraded agreement with observations during wet extremes. For the more complex models we find the opposite behavior, probably because they were primarily developed for prediction of runoff extremes. As expected given their complexity, HBV and PREVAH have more problems with over-fitting. All models show a tendency towards better performance in lower altitudes as opposed to (pre-) alpine sites. The results vary considerably across the investigated sites. In contrast, the different metrics we consider to estimate the agreement between models and observations lead to similar conclusions, indicating that the performance of the considered models is similar at different time scales as well as for anomalies and long-term means. We conclude that added complexity does not necessarily lead to improved performance of hydrological models, and that performance can vary greatly depending on the considered hydrological variable (e.g. runoff vs. soil moisture) or hydrological conditions (floods vs. droughts).

  10. Implications of the methodological choices for hydrologic portrayals of climate change over the contiguous United States: Statistically downscaled forcing data and hydrologic models

    Science.gov (United States)

    Mizukami, Naoki; Clark, Martyn P.; Gutmann, Ethan D.; Mendoza, Pablo A.; Newman, Andrew J.; Nijssen, Bart; Livneh, Ben; Hay, Lauren E.; Arnold, Jeffrey R.; Brekke, Levi D.

    2016-01-01

    Continental-domain assessments of climate change impacts on water resources typically rely on statistically downscaled climate model outputs to force hydrologic models at a finer spatial resolution. This study examines the effects of four statistical downscaling methods [bias-corrected constructed analog (BCCA), bias-corrected spatial disaggregation applied at daily (BCSDd) and monthly scales (BCSDm), and asynchronous regression (AR)] on retrospective hydrologic simulations using three hydrologic models with their default parameters (the Community Land Model, version 4.0; the Variable Infiltration Capacity model, version 4.1.2; and the Precipitation–Runoff Modeling System, version 3.0.4) over the contiguous United States (CONUS). Biases of hydrologic simulations forced by statistically downscaled climate data relative to the simulation with observation-based gridded data are presented. Each statistical downscaling method produces different meteorological portrayals including precipitation amount, wet-day frequency, and the energy input (i.e., shortwave radiation), and their interplay affects estimations of precipitation partitioning between evapotranspiration and runoff, extreme runoff, and hydrologic states (i.e., snow and soil moisture). The analyses show that BCCA underestimates annual precipitation by as much as −250 mm, leading to unreasonable hydrologic portrayals over the CONUS for all models. Although the other three statistical downscaling methods produce a comparable precipitation bias ranging from −10 to 8 mm across the CONUS, BCSDd severely overestimates the wet-day fraction by up to 0.25, leading to different precipitation partitioning compared to the simulations with other downscaled data. Overall, the choice of downscaling method contributes to less spread in runoff estimates (by a factor of 1.5–3) than the choice of hydrologic model with use of the default parameters if BCCA is excluded.

  11. Characterizing Drought Events from a Hydrological Model Ensemble

    Science.gov (United States)

    Smith, Katie; Parry, Simon; Prudhomme, Christel; Hannaford, Jamie; Tanguy, Maliko; Barker, Lucy; Svensson, Cecilia

    2017-04-01

    Hydrological droughts are a slow onset natural hazard that can affect large areas. Within the United Kingdom there have been eight major drought events over the last 50 years, with several events acting at the continental scale, and covering the entire nation. Many of these events have lasted several years and had significant impacts on agriculture, the environment and the economy. Generally in the UK, due to a northwest-southeast gradient in rainfall and relief, as well as varying underlying geology, droughts tend to be most severe in the southeast, which can threaten water supplies to the capital in London. With the impacts of climate change likely to increase the severity and duration of drought events worldwide, it is crucial that we gain an understanding of the characteristics of some of the longer and more extreme droughts of the 19th and 20th centuries, so we may utilize this information in planning for the future. Hydrological models are essential both for reconstructing such events that predate streamflow records, and for use in drought forecasting. However, whilst the uncertainties involved in modelling hydrological extremes on the flooding end of the flow regime have been studied in depth over the past few decades, the uncertainties in simulating droughts and low flow events have not yet received such rigorous academic attention. The "Cascade of Uncertainty" approach has been applied to explore uncertainty and coherence across simulations of notable drought events from the past 50 years using the airGR family of daily lumped catchment models. Parameter uncertainty has been addressed using a Latin Hypercube sampled experiment of 500,000 parameter sets per model (GR4J, GR5J and GR6J), over more than 200 catchments across the UK. The best performing model parameterisations, determined using a multi-objective function approach, have then been taken forward for use in the assessment of the impact of model parameters and model structure on drought event

  12. Large-scale groundwater modeling using global datasets: A test case for the Rhine-Meuse basin

    NARCIS (Netherlands)

    Sutanudjaja, E.H.; Beek, L.P.H. van; Jong, S.M. de; Geer, F.C. van; Bierkens, M.F.P.

    2011-01-01

    Large-scale groundwater models involving aquifers and basins of multiple countries are still rare due to a lack of hydrogeological data which are usually only available in developed countries. In this study, we propose a novel approach to construct large-scale groundwater models by using global

  13. Multi-variable evaluation of hydrological model predictions for a headwater basin in the Canadian Rocky Mountains

    Directory of Open Access Journals (Sweden)

    X. Fang

    2013-04-01

    Full Text Available One of the purposes of the Cold Regions Hydrological Modelling platform (CRHM is to diagnose inadequacies in the understanding of the hydrological cycle and its simulation. A physically based hydrological model including a full suite of snow and cold regions hydrology processes as well as warm season, hillslope and groundwater hydrology was developed in CRHM for application in the Marmot Creek Research Basin (~ 9.4 km2, located in the Front Ranges of the Canadian Rocky Mountains. Parameters were selected from digital elevation model, forest, soil, and geological maps, and from the results of many cold regions hydrology studies in the region and elsewhere. Non-calibrated simulations were conducted for six hydrological years during the period 2005–2011 and were compared with detailed field observations of several hydrological cycle components. The results showed good model performance for snow accumulation and snowmelt compared to the field observations for four seasons during the period 2007–2011, with a small bias and normalised root mean square difference (NRMSD ranging from 40 to 42% for the subalpine conifer forests and from 31 to 67% for the alpine tundra and treeline larch forest environments. Overestimation or underestimation of the peak SWE ranged from 1.6 to 29%. Simulations matched well with the observed unfrozen moisture fluctuation in the top soil layer at a lodgepole pine site during the period 2006–2011, with a NRMSD ranging from 17 to 39%, but with consistent overestimation of 7 to 34%. Evaluations of seasonal streamflow during the period 2006–2011 revealed that the model generally predicted well compared to observations at the basin scale, with a NRMSD of 60% and small model bias (1%, while at the sub-basin scale NRMSDs were larger, ranging from 72 to 76%, though overestimation or underestimation for the cumulative seasonal discharge was within 29%. Timing of discharge was better predicted at the Marmot Creek basin outlet

  14. Numerical Modeling of Large-Scale Rocky Coastline Evolution

    Science.gov (United States)

    Limber, P.; Murray, A. B.; Littlewood, R.; Valvo, L.

    2008-12-01

    Seventy-five percent of the world's ocean coastline is rocky. On large scales (i.e. greater than a kilometer), many intertwined processes drive rocky coastline evolution, including coastal erosion and sediment transport, tectonics, antecedent topography, and variations in sea cliff lithology. In areas such as California, an additional aspect of rocky coastline evolution involves submarine canyons that cut across the continental shelf and extend into the nearshore zone. These types of canyons intercept alongshore sediment transport and flush sand to abyssal depths during periodic turbidity currents, thereby delineating coastal sediment transport pathways and affecting shoreline evolution over large spatial and time scales. How tectonic, sediment transport, and canyon processes interact with inherited topographic and lithologic settings to shape rocky coastlines remains an unanswered, and largely unexplored, question. We will present numerical model results of rocky coastline evolution that starts with an immature fractal coastline. The initial shape is modified by headland erosion, wave-driven alongshore sediment transport, and submarine canyon placement. Our previous model results have shown that, as expected, an initial sediment-free irregularly shaped rocky coastline with homogeneous lithology will undergo smoothing in response to wave attack; headlands erode and mobile sediment is swept into bays, forming isolated pocket beaches. As this diffusive process continues, pocket beaches coalesce, and a continuous sediment transport pathway results. However, when a randomly placed submarine canyon is introduced to the system as a sediment sink, the end results are wholly different: sediment cover is reduced, which in turn increases weathering and erosion rates and causes the entire shoreline to move landward more rapidly. The canyon's alongshore position also affects coastline morphology. When placed offshore of a headland, the submarine canyon captures local sediment

  15. Impact of Sub-grid Soil Textural Properties on Simulations of Hydrological Fluxes at the Continental Scale Mississippi River Basin

    Science.gov (United States)

    Kumar, R.; Samaniego, L. E.; Livneh, B.

    2013-12-01

    Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked

  16. A Community Data Model for Hydrologic Observations

    Science.gov (United States)

    Tarboton, D. G.; Horsburgh, J. S.; Zaslavsky, I.; Maidment, D. R.; Valentine, D.; Jennings, B.

    2006-12-01

    The CUAHSI Hydrologic Information System project is developing information technology infrastructure to support hydrologic science. Hydrologic information science involves the description of hydrologic environments in a consistent way, using data models for information integration. This includes a hydrologic observations data model for the storage and retrieval of hydrologic observations in a relational database designed to facilitate data retrieval for integrated analysis of information collected by multiple investigators. It is intended to provide a standard format to facilitate the effective sharing of information between investigators and to facilitate analysis of information within a single study area or hydrologic observatory, or across hydrologic observatories and regions. The observations data model is designed to store hydrologic observations and sufficient ancillary information (metadata) about the observations to allow them to be unambiguously interpreted and used and provide traceable heritage from raw measurements to usable information. The design is based on the premise that a relational database at the single observation level is most effective for providing querying capability and cross dimension data retrieval and analysis. This premise is being tested through the implementation of a prototype hydrologic observations database, and the development of web services for the retrieval of data from and ingestion of data into the database. These web services hosted by the San Diego Supercomputer center make data in the database accessible both through a Hydrologic Data Access System portal and directly from applications software such as Excel, Matlab and ArcGIS that have Standard Object Access Protocol (SOAP) capability. This paper will (1) describe the data model; (2) demonstrate the capability for representing diverse data in the same database; (3) demonstrate the use of the database from applications software for the performance of hydrologic analysis

  17. Modeling water quality in an urban river using hydrological factors--data driven approaches.

    Science.gov (United States)

    Chang, Fi-John; Tsai, Yu-Hsuan; Chen, Pin-An; Coynel, Alexandra; Vachaud, Georges

    2015-03-15

    Contrasting seasonal variations occur in river flow and water quality as a result of short duration, severe intensity storms and typhoons in Taiwan. Sudden changes in river flow caused by impending extreme events may impose serious degradation on river water quality and fateful impacts on ecosystems. Water quality is measured in a monthly/quarterly scale, and therefore an estimation of water quality in a daily scale would be of good help for timely river pollution management. This study proposes a systematic analysis scheme (SAS) to assess the spatio-temporal interrelation of water quality in an urban river and construct water quality estimation models using two static and one dynamic artificial neural networks (ANNs) coupled with the Gamma test (GT) based on water quality, hydrological and economic data. The Dahan River basin in Taiwan is the study area. Ammonia nitrogen (NH3-N) is considered as the representative parameter, a correlative indicator in judging the contamination level over the study. Key factors the most closely related to the representative parameter (NH3-N) are extracted by the Gamma test for modeling NH3-N concentration, and as a result, four hydrological factors (discharge, days w/o discharge, water temperature and rainfall) are identified as model inputs. The modeling results demonstrate that the nonlinear autoregressive with exogenous input (NARX) network furnished with recurrent connections can accurately estimate NH3-N concentration with a very high coefficient of efficiency value (0.926) and a low RMSE value (0.386 mg/l). Besides, the NARX network can suitably catch peak values that mainly occur in dry periods (September-April in the study area), which is particularly important to water pollution treatment. The proposed SAS suggests a promising approach to reliably modeling the spatio-temporal NH3-N concentration based solely on hydrological data, without using water quality sampling data. It is worth noticing that such estimation can be

  18. Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin

    Science.gov (United States)

    Du, Liuying; Rajib, Adnan; Merwade, Venkatesh

    2018-07-01

    Looking only at climate change impacts provides partial information about a changing hydrologic regime. Understanding the spatio-temporal nature of change in hydrologic processes, and the explicit contributions from both climate and land use drivers, holds more practical value for water resources management and policy intervention. This study presents a comprehensive assessment on the spatio-temporal trend of Blue Water (BW) and Green Water (GW) in a 490,000 km2 temperate mid-latitude basin (Ohio River Basin) over the past 80 years (1935-2014), and from thereon, quantifies the combined as well as relative contributions of climate and land use changes. The Soil and Water Assessment Tool (SWAT) is adopted to simulate hydrologic fluxes. Mann-Kendall and Theil-Sen statistical tests are performed on the modeled outputs to detect respectively the trend and magnitude of changes at three different spatial scales - the entire basin, regional level, and sub-basin level. Despite the overall volumetric increase of both BW and GW in the entire basin, changes in their annual average values during the period of simulation reveal a distinctive spatial pattern. GW has increased significantly in the upper and lower parts of the basin, which can be related to the prominent land use change in those areas. BW has increased significantly only in the lower part, likely being associated with the notable precipitation change there. Furthermore, the simulation under a time-varying climate but constant land use scenario identifies climate change in the Ohio River Basin to be influential on BW, while the impact is relatively nominal on GW; whereas, land use change increases GW remarkably, but is counterproductive on BW. The approach to quantify combined/relative effects of climate and land use change as shown in this study can be replicated to understand BW-GW dynamics in similar large basins around the globe.

  19. Large scale solar district heating. Evaluation, modelling and designing - Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    The appendices present the following: A) Cad-drawing of the Marstal CSHP design. B) Key values - large-scale solar heating in Denmark. C) Monitoring - a system description. D) WMO-classification of pyranometers (solarimeters). E) The computer simulation model in TRNSYS. F) Selected papers from the author. (EHS)

  20. HESS Opinions: Hydrologic predictions in a changing environment: behavioral modeling

    Directory of Open Access Journals (Sweden)

    S. J. Schymanski

    2011-02-01

    Full Text Available Most hydrological models are valid at most only in a few places and cannot be reasonably transferred to other places or to far distant time periods. Transfer in space is difficult because the models are conditioned on past observations at particular places to define parameter values and unobservable processes that are needed to fully characterize the structure and functioning of the landscape. Transfer in time has to deal with the likely temporal changes to both parameters and processes under future changed conditions. This remains an important obstacle to addressing some of the most urgent prediction questions in hydrology, such as prediction in ungauged basins and prediction under global change. In this paper, we propose a new approach to catchment hydrological modeling, based on universal principles that do not change in time and that remain valid across many places. The key to this framework, which we call behavioral modeling, is to assume that there are universal and time-invariant organizing principles that can be used to identify the most appropriate model structure (including parameter values and responses for a given ecosystem at a given moment in time. These organizing principles may be derived from fundamental physical or biological laws, or from empirical laws that have been demonstrated to be time-invariant and to hold at many places and scales. Much fundamental research remains to be undertaken to help discover these organizing principles on the basis of exploration of observed patterns of landscape structure and hydrological behavior and their interpretation as legacy effects of past co-evolution of climate, soils, topography, vegetation and humans. Our hope is that the new behavioral modeling framework will be a step forward towards a new vision for hydrology where models are capable of more confidently predicting the behavior of catchments beyond what has been observed or experienced before.

  1. Towards a 'standard model' of large scale structure formation

    International Nuclear Information System (INIS)

    Shafi, Q.

    1994-01-01

    We explore constraints on inflationary models employing data on large scale structure mainly from COBE temperature anisotropies and IRAS selected galaxy surveys. In models where the tensor contribution to the COBE signal is negligible, we find that the spectral index of density fluctuations n must exceed 0.7. Furthermore the COBE signal cannot be dominated by the tensor component, implying n > 0.85 in such models. The data favors cold plus hot dark matter models with n equal or close to unity and Ω HDM ∼ 0.2 - 0.35. Realistic grand unified theories, including supersymmetric versions, which produce inflation with these properties are presented. (author). 46 refs, 8 figs

  2. Data Assimilation in Integrated and Distributed Hydrological Models

    DEFF Research Database (Denmark)

    Zhang, Donghua

    processes and provide simulations in refined temporal and spatial resolutions. Recent developments in measurement and sensor technologies have significantly improved the coverage, quality, frequency and diversity of hydrological observations. Data assimilation provides a great potential in relation...... point of view, different assimilation methodologies and techniques have been developed or customized to better serve hydrological assimilation. From the application point of view, real data and real-world complex catchments are used with the focus of investigating the models’ improvements with data...... a variety of model uncertainty sources and scales. Next the groundwater head assimilation experiment was tested in a much more complex catchment with assimilation of biased real observations. In such cases, the bias-aware assimilation method significantly outperforms the standard assimilation method...

  3. How can hydrological modeling help to understand process dynamics in sparsely gauged tropical regions - case study Mata Âtlantica, Brazil

    Science.gov (United States)

    Künne, Annika; Penedo, Santiago; Schuler, Azeneth; Bardy Prado, Rachel; Kralisch, Sven; Flügel, Wolfgang-Albert

    2015-04-01

    To ensure long-term water security for domestic, agricultural and industrial use in the emerging country of Brazil with fast-growing markets and technologies, understanding of catchment hydrology is essential. Yet, hydrological analysis, high resolution temporal and spatial monitoring and reliable meteo-hydrological data are insufficient to fully understand hydrological processes in the region and to predict future trends. Physically based hydrological modeling can help to expose uncertainties of measured data, predict future trends and contribute to physical understanding about the watershed. The Brazilian Atlantic rainforest (Mata Atlântica) is one of the world's biodiversity hotspots. After the Portuguese colonization, its original expansion of 1.5 million km² was reduced to only 7% of the former area. Due to forest fragmentation, overexploitation and soil degradation, pressure on water resources in the region has significantly increased. Climatically, the region possesses distinctive wet and dry periods. While extreme precipitation events in the rainy season cause floods and landslides, dry periods can lead to water shortages, especially in the agricultural and domestic supply sectors. To ensure both, the protection of the remnants of Atlantic rainforest biome as well as water supply, a hydrological understanding of this sparsely gauged region is essential. We will present hydrological models of two meso- to large-scale catchments (Rio Macacu and Rio Dois Rios) within the Mata Âtlantica in the state of Rio de Janeiro. The results show how physically based models can contribute to hydrological system understanding within the region and answer what-if scenarios, supporting regional planners and decision makers in integrated water resources management.

  4. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability

    Science.gov (United States)

    Herman, Matthew R.; Nejadhashemi, A. Pouyan; Abouali, Mohammad; Hernandez-Suarez, Juan Sebastian; Daneshvar, Fariborz; Zhang, Zhen; Anderson, Martha C.; Sadeghi, Ali M.; Hain, Christopher R.; Sharifi, Amirreza

    2018-01-01

    As the global demands for the use of freshwater resources continues to rise, it has become increasingly important to insure the sustainability of this resources. This is accomplished through the use of management strategies that often utilize monitoring and the use of hydrological models. However, monitoring at large scales is not feasible and therefore model applications are becoming challenging, especially when spatially distributed datasets, such as evapotranspiration, are needed to understand the model performances. Due to these limitations, most of the hydrological models are only calibrated for data obtained from site/point observations, such as streamflow. Therefore, the main focus of this paper is to examine whether the incorporation of remotely sensed and spatially distributed datasets can improve the overall performance of the model. In this study, actual evapotranspiration (ETa) data was obtained from the two different sets of satellite based remote sensing data. One dataset estimates ETa based on the Simplified Surface Energy Balance (SSEBop) model while the other one estimates ETa based on the Atmosphere-Land Exchange Inverse (ALEXI) model. The hydrological model used in this study is the Soil and Water Assessment Tool (SWAT), which was calibrated against spatially distributed ETa and single point streamflow records for the Honeyoey Creek-Pine Creek Watershed, located in Michigan, USA. Two different techniques, multi-variable and genetic algorithm, were used to calibrate the SWAT model. Using the aforementioned datasets, the performance of the hydrological model in estimating ETa was improved using both calibration techniques by achieving Nash-Sutcliffe efficiency (NSE) values >0.5 (0.73-0.85), percent bias (PBIAS) values within ±25% (±21.73%), and root mean squared error - observations standard deviation ratio (RSR) values <0.7 (0.39-0.52). However, the genetic algorithm technique was more effective with the ETa calibration while significantly

  5. Development of a hybrid 3-D hydrological model to simulate hillslopes and the regional unconfined aquifer system in Earth system models

    Science.gov (United States)

    Hazenberg, P.; Broxton, P. D.; Brunke, M.; Gochis, D.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.

    2015-12-01

    The terrestrial hydrological system, including surface and subsurface water, is an essential component of the Earth's climate system. Over the past few decades, land surface modelers have built one-dimensional (1D) models resolving the vertical flow of water through the soil column for use in Earth system models (ESMs). These models generally have a relatively coarse model grid size (~25-100 km) and only account for sub-grid lateral hydrological variations using simple parameterization schemes. At the same time, hydrologists have developed detailed high-resolution (~0.1-10 km grid size) three dimensional (3D) models and showed the importance of accounting for the vertical and lateral redistribution of surface and subsurface water on soil moisture, the surface energy balance and ecosystem dynamics on these smaller scales. However, computational constraints have limited the implementation of the high-resolution models for continental and global scale applications. The current work presents a hybrid-3D hydrological approach is presented, where the 1D vertical soil column model (available in many ESMs) is coupled with a high-resolution lateral flow model (h2D) to simulate subsurface flow and overland flow. H2D accounts for both local-scale hillslope and regional-scale unconfined aquifer responses (i.e. riparian zone and wetlands). This approach was shown to give comparable results as those obtained by an explicit 3D Richards model for the subsurface, but improves runtime efficiency considerably. The h3D approach is implemented for the Delaware river basin, where Noah-MP land surface model (LSM) is used to calculated vertical energy and water exchanges with the atmosphere using a 10km grid resolution. Noah-MP was coupled within the WRF-Hydro infrastructure with the lateral 1km grid resolution h2D model, for which the average depth-to-bedrock, hillslope width function and soil parameters were estimated from digital datasets. The ability of this h3D approach to simulate

  6. An Educational Model for Hands-On Hydrology Education

    Science.gov (United States)

    AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.

    2014-12-01

    This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.

  7. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... temperature are explored in a multi-objective calibration experiment to optimize the parameters in a SVAT model in the Sahel. The two satellite derived variables were effective at constraining most land-surface and soil parameters. A data assimilation framework is developed and implemented with an integrated...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...

  8. Hydrological impacts of urbanization at the catchment scale

    Science.gov (United States)

    Oudin, Ludovic; Salavati, Bahar; Furusho-Percot, Carina; Ribstein, Pierre; Saadi, Mohamed

    2018-04-01

    The impacts of urbanization on floods, droughts and the overall river regime have been largely investigated in the past few decades, but the quantification and the prediction of such impacts still remain a challenge in hydrology. We gathered a sample of 142 catchments that have a documented increase in urban areas over the hydrometeorological record period in the United States. The changes in river flow regimes due to urban spread were differentiated from climate variability using the GR4J conceptual hydrological model. High, low and mean flows were impacted at a threshold of a 10% total impervious area. Moreover, the historical evolution of urban landscape spatial patterns was used to further detail the urbanization process in terms of extent and fragmentation of urban areas throughout the catchment and to help interpret the divergent impacts observed in streamflow behaviors. Regression analysis pointed out the importance of major wastewater treatment facilities that might overpass the effects of imperviousness, and therefore further research should either take them explicitly into account or select a wastewater facility-free catchment sample to clearly evaluate the impacts of urban landscape on low flows.

  9. Large Scale Skill in Regional Climate Modeling and the Lateral Boundary Condition Scheme

    Science.gov (United States)

    Veljović, K.; Rajković, B.; Mesinger, F.

    2009-04-01

    Several points are made concerning the somewhat controversial issue of regional climate modeling: should a regional climate model (RCM) be expected to maintain the large scale skill of the driver global model that is supplying its lateral boundary condition (LBC)? Given that this is normally desired, is it able to do so without help via the fairly popular large scale nudging? Specifically, without such nudging, will the RCM kinetic energy necessarily decrease with time compared to that of the driver model or analysis data as suggested by a study using the Regional Atmospheric Modeling System (RAMS)? Finally, can the lateral boundary condition scheme make a difference: is the almost universally used but somewhat costly relaxation scheme necessary for a desirable RCM performance? Experiments are made to explore these questions running the Eta model in two versions differing in the lateral boundary scheme used. One of these schemes is the traditional relaxation scheme, and the other the Eta model scheme in which information is used at the outermost boundary only, and not all variables are prescribed at the outflow boundary. Forecast lateral boundary conditions are used, and results are verified against the analyses. Thus, skill of the two RCM forecasts can be and is compared not only against each other but also against that of the driver global forecast. A novel verification method is used in the manner of customary precipitation verification in that forecast spatial wind speed distribution is verified against analyses by calculating bias adjusted equitable threat scores and bias scores for wind speeds greater than chosen wind speed thresholds. In this way, focusing on a high wind speed value in the upper troposphere, verification of large scale features we suggest can be done in a manner that may be more physically meaningful than verifications via spectral decomposition that are a standard RCM verification method. The results we have at this point are somewhat

  10. A meteo-hydrological prediction system based on a multi-model approach for precipitation forecasting

    Directory of Open Access Journals (Sweden)

    S. Davolio

    2008-02-01

    Full Text Available The precipitation forecasted by a numerical weather prediction model, even at high resolution, suffers from errors which can be considerable at the scales of interest for hydrological purposes. In the present study, a fraction of the uncertainty related to meteorological prediction is taken into account by implementing a multi-model forecasting approach, aimed at providing multiple precipitation scenarios driving the same hydrological model. Therefore, the estimation of that uncertainty associated with the quantitative precipitation forecast (QPF, conveyed by the multi-model ensemble, can be exploited by the hydrological model, propagating the error into the hydrological forecast.

    The proposed meteo-hydrological forecasting system is implemented and tested in a real-time configuration for several episodes of intense precipitation affecting the Reno river basin, a medium-sized basin located in northern Italy (Apennines. These episodes are associated with flood events of different intensity and are representative of different meteorological configurations responsible for severe weather affecting northern Apennines.

    The simulation results show that the coupled system is promising in the prediction of discharge peaks (both in terms of amount and timing for warning purposes. The ensemble hydrological forecasts provide a range of possible flood scenarios that proved to be useful for the support of civil protection authorities in their decision.

  11. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  12. Review article: Hydrological modeling in glacierized catchments of central Asia - status and challenges

    Science.gov (United States)

    Chen, Yaning; Li, Weihong; Fang, Gonghuan; Li, Zhi

    2017-02-01

    Meltwater from glacierized catchments is one of the most important water supplies in central Asia. Therefore, the effects of climate change on glaciers and snow cover will have increasingly significant consequences for runoff. Hydrological modeling has become an indispensable research approach to water resources management in large glacierized river basins, but there is a lack of focus in the modeling of glacial discharge. This paper reviews the status of hydrological modeling in glacierized catchments of central Asia, discussing the limitations of the available models and extrapolating these to future challenges and directions. After reviewing recent efforts, we conclude that the main sources of uncertainty in assessing the regional hydrological impacts of climate change are the unreliable and incomplete data sets and the lack of understanding of the hydrological regimes of glacierized catchments of central Asia. Runoff trends indicate a complex response to changes in climate. For future variation of water resources, it is essential to quantify the responses of hydrologic processes to both climate change and shrinking glaciers in glacierized catchments, and scientific focus should be on reducing uncertainties linked to these processes.

  13. Trends in large-scale testing of reactor structures

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    2003-01-01

    Large-scale tests of reactor structures have been conducted at Sandia National Laboratories since the late 1970s. This paper describes a number of different large-scale impact tests, pressurization tests of models of containment structures, and thermal-pressure tests of models of reactor pressure vessels. The advantages of large-scale testing are evident, but cost, in particular limits its use. As computer models have grown in size, such as number of degrees of freedom, the advent of computer graphics has made possible very realistic representation of results - results that may not accurately represent reality. A necessary condition to avoiding this pitfall is the validation of the analytical methods and underlying physical representations. Ironically, the immensely larger computer models sometimes increase the need for large-scale testing, because the modeling is applied to increasing more complex structural systems and/or more complex physical phenomena. Unfortunately, the cost of large-scale tests is a disadvantage that will likely severely limit similar testing in the future. International collaborations may provide the best mechanism for funding future programs with large-scale tests. (author)

  14. Digital Hydrologic Networks Supporting Applications Related to Spatially Referenced Regression Modeling

    Science.gov (United States)

    Brakebill, J.W.; Wolock, D.M.; Terziotti, S.E.

    2011-01-01

    Digital hydrologic networks depicting surface-water pathways and their associated drainage catchments provide a key component to hydrologic analysis and modeling. Collectively, they form common spatial units that can be used to frame the descriptions of aquatic and watershed processes. In addition, they provide the ability to simulate and route the movement of water and associated constituents throughout the landscape. Digital hydrologic networks have evolved from derivatives of mapping products to detailed, interconnected, spatially referenced networks of water pathways, drainage areas, and stream and watershed characteristics. These properties are important because they enhance the ability to spatially evaluate factors that affect the sources and transport of water-quality constituents at various scales. SPAtially Referenced Regressions On Watershed attributes (SPARROW), a process-based/statistical model, relies on a digital hydrologic network in order to establish relations between quantities of monitored contaminant flux, contaminant sources, and the associated physical characteristics affecting contaminant transport. Digital hydrologic networks modified from the River Reach File (RF1) and National Hydrography Dataset (NHD) geospatial datasets provided frameworks for SPARROW in six regions of the conterminous United States. In addition, characteristics of the modified RF1 were used to update estimates of mean-annual streamflow. This produced more current flow estimates for use in SPARROW modeling. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  15. Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database

    Science.gov (United States)

    Verdin, Kristine L.

    2017-07-17

    The U.S. Geological Survey has developed a new global high-resolution hydrologic derivative database. Loosely modeled on the HYDRO1k database, this new database, entitled Hydrologic Derivatives for Modeling and Analysis, provides comprehensive and consistent global coverage of topographically derived raster layers (digital elevation model data, flow direction, flow accumulation, slope, and compound topographic index) and vector layers (streams and catchment boundaries). The coverage of the data is global, and the underlying digital elevation model is a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), and the SRTM (Shuttle Radar Topography Mission). For most of the globe south of 60°N., the raster resolution of the data is 3 arc-seconds, corresponding to the resolution of the SRTM. For the areas north of 60°N., the resolution is 7.5 arc-seconds (the highest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30 arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information. This database is appropriate for use in continental-scale modeling efforts. The work described in this report was conducted by the U.S. Geological Survey in cooperation with the National Aeronautics and Space Administration Goddard Space Flight Center.

  16. Protein homology model refinement by large-scale energy optimization.

    Science.gov (United States)

    Park, Hahnbeom; Ovchinnikov, Sergey; Kim, David E; DiMaio, Frank; Baker, David

    2018-03-20

    Proteins fold to their lowest free-energy structures, and hence the most straightforward way to increase the accuracy of a partially incorrect protein structure model is to search for the lowest-energy nearby structure. This direct approach has met with little success for two reasons: first, energy function inaccuracies can lead to false energy minima, resulting in model degradation rather than improvement; and second, even with an accurate energy function, the search problem is formidable because the energy only drops considerably in the immediate vicinity of the global minimum, and there are a very large number of degrees of freedom. Here we describe a large-scale energy optimization-based refinement method that incorporates advances in both search and energy function accuracy that can substantially improve the accuracy of low-resolution homology models. The method refined low-resolution homology models into correct folds for 50 of 84 diverse protein families and generated improved models in recent blind structure prediction experiments. Analyses of the basis for these improvements reveal contributions from both the improvements in conformational sampling techniques and the energy function.

  17. Analogue scale modelling of extensional tectonic processes using a large state-of-the-art centrifuge

    Science.gov (United States)

    Park, Heon-Joon; Lee, Changyeol

    2017-04-01

    Analogue scale modelling of extensional tectonic processes such as rifting and basin opening has been numerously conducted. Among the controlling factors, gravitational acceleration (g) on the scale models was regarded as a constant (Earth's gravity) in the most of the analogue model studies, and only a few model studies considered larger gravitational acceleration by using a centrifuge (an apparatus generating large centrifugal force by rotating the model at a high speed). Although analogue models using a centrifuge allow large scale-down and accelerated deformation that is derived by density differences such as salt diapir, the possible model size is mostly limited up to 10 cm. A state-of-the-art centrifuge installed at the KOCED Geotechnical Centrifuge Testing Center, Korea Advanced Institute of Science and Technology (KAIST) allows a large surface area of the scale-models up to 70 by 70 cm under the maximum capacity of 240 g-tons. Using the centrifuge, we will conduct analogue scale modelling of the extensional tectonic processes such as opening of the back-arc basin. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2014R1A6A3A04056405).

  18. Modelling aggregation on the large scale and regularity on the small scale in spatial point pattern datasets

    DEFF Research Database (Denmark)

    Lavancier, Frédéric; Møller, Jesper

    We consider a dependent thinning of a regular point process with the aim of obtaining aggregation on the large scale and regularity on the small scale in the resulting target point process of retained points. Various parametric models for the underlying processes are suggested and the properties...

  19. Bilevel Traffic Evacuation Model and Algorithm Design for Large-Scale Activities

    Directory of Open Access Journals (Sweden)

    Danwen Bao

    2017-01-01

    Full Text Available This paper establishes a bilevel planning model with one master and multiple slaves to solve traffic evacuation problems. The minimum evacuation network saturation and shortest evacuation time are used as the objective functions for the upper- and lower-level models, respectively. The optimizing conditions of this model are also analyzed. An improved particle swarm optimization (PSO method is proposed by introducing an electromagnetism-like mechanism to solve the bilevel model and enhance its convergence efficiency. A case study is carried out using the Nanjing Olympic Sports Center. The results indicate that, for large-scale activities, the average evacuation time of the classic model is shorter but the road saturation distribution is more uneven. Thus, the overall evacuation efficiency of the network is not high. For induced emergencies, the evacuation time of the bilevel planning model is shortened. When the audience arrival rate is increased from 50% to 100%, the evacuation time is shortened from 22% to 35%, indicating that the optimization effect of the bilevel planning model is more effective compared to the classic model. Therefore, the model and algorithm presented in this paper can provide a theoretical basis for the traffic-induced evacuation decision making of large-scale activities.

  20. Multi-criteria evaluation of hydrological models

    Science.gov (United States)

    Rakovec, Oldrich; Clark, Martyn; Weerts, Albrecht; Hill, Mary; Teuling, Ryan; Uijlenhoet, Remko

    2013-04-01

    Over the last years, there is a tendency in the hydrological community to move from the simple conceptual models towards more complex, physically/process-based hydrological models. This is because conceptual models often fail to simulate the dynamics of the observations. However, there is little agreement on how much complexity needs to be considered within the complex process-based models. One way to proceed to is to improve understanding of what is important and unimportant in the models considered. The aim of this ongoing study is to evaluate structural model adequacy using alternative conceptual and process-based models of hydrological systems, with an emphasis on understanding how model complexity relates to observed hydrological processes. Some of the models require considerable execution time and the computationally frugal sensitivity analysis, model calibration and uncertainty quantification methods are well-suited to providing important insights for models with lengthy execution times. The current experiment evaluates two version of the Framework for Understanding Structural Errors (FUSE), which both enable running model inter-comparison experiments. One supports computationally efficient conceptual models, and the second supports more-process-based models that tend to have longer execution times. The conceptual FUSE combines components of 4 existing conceptual hydrological models. The process-based framework consists of different forms of Richard's equations, numerical solutions, groundwater parameterizations and hydraulic conductivity distribution. The hydrological analysis of the model processes has evolved from focusing only on simulated runoff (final model output), to also including other criteria such as soil moisture and groundwater levels. Parameter importance and associated structural importance are evaluated using different types of sensitivity analyses techniques, making use of both robust global methods (e.g. Sobol') as well as several

  1. Global hydrological droughts in the 21st century under a changing hydrological regime

    Directory of Open Access Journals (Sweden)

    N. Wanders

    2015-01-01

    Full Text Available Climate change very likely impacts future hydrological drought characteristics across the world. Here, we quantify the impact of climate change on future low flows and associated hydrological drought characteristics on a global scale using an alternative drought identification approach that considers adaptation to future changes in hydrological regime. The global hydrological model PCR-GLOBWB was used to simulate daily discharge at 0.5° globally for 1971–2099. The model was forced with CMIP5 climate projections taken from five global circulation models (GCMs and four emission scenarios (representative concentration pathways, RCPs, from the Inter-Sectoral Impact Model Intercomparison Project. Drought events occur when discharge is below a threshold. The conventional variable threshold (VTM was calculated by deriving the threshold from the period 1971–2000. The transient variable threshold (VTMt is a non-stationary approach, where the threshold is based on the discharge values of the previous 30 years implying the threshold to vary every year during the 21st century. The VTMt adjusts to gradual changes in the hydrological regime as response to climate change. Results show a significant negative trend in the low flow regime over the 21st century for large parts of South America, southern Africa, Australia and the Mediterranean. In 40–52% of the world reduced low flows are projected, while increased low flows are found in the snow-dominated climates. In 27% of the global area both the drought duration and the deficit volume are expected to increase when applying the VTMt. However, this area will significantly increase to 62% when the VTM is applied. The mean global area in drought, with the VTMt, remains rather constant (11.7 to 13.4%, compared to the substantial increase when the VTM is applied (11.7 to 20%. The study illustrates that an alternative drought identification that considers adaptation to an altered hydrological regime has a

  2. Large-scale inverse model analyses employing fast randomized data reduction

    Science.gov (United States)

    Lin, Youzuo; Le, Ellen B.; O'Malley, Daniel; Vesselinov, Velimir V.; Bui-Thanh, Tan

    2017-08-01

    When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally efficient technique for solving inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called "sketching" matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.

  3. Hydroclimatology of Lake Victoria region using hydrologic model and satellite remote sensing data

    Directory of Open Access Journals (Sweden)

    S. I. Khan

    2011-01-01

    Full Text Available Study of hydro-climatology at a range of temporal scales is important in understanding and ultimately mitigating the potential severe impacts of hydrological extreme events such as floods and droughts. Using daily in-situ data over the last two decades combined with the recently available multiple-years satellite remote sensing data, we analyzed and simulated, with a distributed hydrologic model, the hydro-climatology in Nzoia, one of the major contributing sub-basins of Lake Victoria in the East African highlands. The basin, with a semi arid climate, has no sustained base flow contribution to Lake Victoria. The short spell of high discharge showed that rain is the prime cause of floods in the basin. There is only a marginal increase in annual mean discharge over the last 21 years. The 2-, 5- and 10- year peak discharges, for the entire study period showed that more years since the mid 1990's have had high peak discharges despite having relatively less annual rain. The study also presents the hydrologic model calibration and validation results over the Nzoia basin. The spatiotemporal variability of the water cycle components were quantified using a hydrologic model, with in-situ and multi-satellite remote sensing datasets. The model is calibrated using daily observed discharge data for the period between 1985 and 1999, for which model performance is estimated with a Nash Sutcliffe Efficiency (NSCE of 0.87 and 0.23% bias. The model validation showed an error metrics with NSCE of 0.65 and 1.04% bias. Moreover, the hydrologic capability of satellite precipitation (TRMM-3B42 V6 is evaluated. In terms of reconstruction of the water cycle components the spatial distribution and time series of modeling results for precipitation and runoff showed considerable agreement with the monthly model runoff estimates and gauge observations. Runoff values responded to precipitation events that occurred across the catchment during the wet season from March to

  4. Groundwater development stress: Global-scale indices compared to regional modeling

    Science.gov (United States)

    Alley, William; Clark, Brian R.; Ely, Matt; Faunt, Claudia

    2018-01-01

    The increased availability of global datasets and technologies such as global hydrologic models and the Gravity Recovery and Climate Experiment (GRACE) satellites have resulted in a growing number of global-scale assessments of water availability using simple indices of water stress. Developed initially for surface water, such indices are increasingly used to evaluate global groundwater resources. We compare indices of groundwater development stress for three major agricultural areas of the United States to information available from regional water budgets developed from detailed groundwater modeling. These comparisons illustrate the potential value of regional-scale analyses to supplement global hydrological models and GRACE analyses of groundwater depletion. Regional-scale analyses allow assessments of water stress that better account for scale effects, the dynamics of groundwater flow systems, the complexities of irrigated agricultural systems, and the laws, regulations, engineering, and socioeconomic factors that govern groundwater use. Strategic use of regional-scale models with global-scale analyses would greatly enhance knowledge of the global groundwater depletion problem.

  5. Assessing the value of variational assimilation of streamflow data into distributed hydrologic models for improved streamflow monitoring and prediction at ungauged and gauged locations in the catchment

    Science.gov (United States)

    Lee, Hak Su; Seo, Dong-Jun; Liu, Yuqiong; McKee, Paul; Corby, Robert

    2010-05-01

    State updating of distributed hydrologic models via assimilation of streamflow data is subject to "overfitting" because large dimensionality of the state space of the model may render the assimilation problem seriously underdetermined. To examine the issue in the context of operational hydrology, we carried out a set of real-world experiments in which we assimilate streamflow data at interior and/or outlet locations into gridded SAC and kinematic-wave routing models of the U.S. National Weather Service (NWS) Research Distributed Hydrologic Model (RDHM). We used for the experiments nine basins in the southern plains of the U.S. The experiments consist of selectively assimilating streamflow at different gauge locations, outlet and/or interior, and carrying out both dependent and independent validation. To assess the sensitivity of the quality of assimilation-aided streamflow simulation to the reduced dimensionality of the state space, we carried out data assimilation at spatially semi-distributed or lumped scale and by adjusting biases in precipitation and potential evaporation at a 6-hourly or larger scale. In this talk, we present the results and findings.

  6. Including investment risk in large-scale power market models

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard; Meibom, P.

    2003-01-01

    Long-term energy market models can be used to examine investments in production technologies, however, with market liberalisation it is crucial that such models include investment risks and investor behaviour. This paper analyses how the effect of investment risk on production technology selection...... can be included in large-scale partial equilibrium models of the power market. The analyses are divided into a part about risk measures appropriate for power market investors and a more technical part about the combination of a risk-adjustment model and a partial-equilibrium model. To illustrate...... the analyses quantitatively, a framework based on an iterative interaction between the equilibrium model and a separate risk-adjustment module was constructed. To illustrate the features of the proposed modelling approach we examined how uncertainty in demand and variable costs affects the optimal choice...

  7. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing

    2017-08-01

    Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.

  8. ERM model analysis for adaptation to hydrological model errors

    Science.gov (United States)

    Baymani-Nezhad, M.; Han, D.

    2018-05-01

    Hydrological conditions are changed continuously and these phenomenons generate errors on flood forecasting models and will lead to get unrealistic results. Therefore, to overcome these difficulties, a concept called model updating is proposed in hydrological studies. Real-time model updating is one of the challenging processes in hydrological sciences and has not been entirely solved due to lack of knowledge about the future state of the catchment under study. Basically, in terms of flood forecasting process, errors propagated from the rainfall-runoff model are enumerated as the main source of uncertainty in the forecasting model. Hence, to dominate the exciting errors, several methods have been proposed by researchers to update the rainfall-runoff models such as parameter updating, model state updating, and correction on input data. The current study focuses on investigations about the ability of rainfall-runoff model parameters to cope with three types of existing errors, timing, shape and volume as the common errors in hydrological modelling. The new lumped model, the ERM model, has been selected for this study to evaluate its parameters for its use in model updating to cope with the stated errors. Investigation about ten events proves that the ERM model parameters can be updated to cope with the errors without the need to recalibrate the model.

  9. Bayesian estimation of parameters in a regional hydrological model

    Directory of Open Access Journals (Sweden)

    K. Engeland

    2002-01-01

    Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis

  10. Flood Modelling of Banjir Kanal Barat (Integration of Hydrology Model and GIS

    Directory of Open Access Journals (Sweden)

    Muhammad Aris Marfai

    2004-01-01

    Full Text Available Hydrological modelling has an advantage on river flood study. Hydrological factors can be easily determined and calculated using hydrological model. HEC-RAS (Hydrological Engineering Centre-River Analysis System software is well known as hydrological modelling software for flood simulation and encroachment analysis of the floodplain area. For spatial performance and analysis of flood, the integration of the Geographic Information Systems (GIS and hydrological model is needed. The aims of this research are 1 to perform a flood encroachment using HEC-RAS software, and 2 to generate a flood hazard map. The methodology for this research omprise of 1 generating geometric data as a requirement of the data input on HEC-RAS hydrological model, 2 Hydrological data inputting, 3 generating of the flood encroachment analysis, and 4 transformation of flood encroachment into flood hazard map. The spatial pattern of the flood hazard is illustrated in a map. The result shows that hydrological model as integration with GIS can be used for flood hazard map generation. This method has advantages on the calculation of the hydrological factors of flood and spatial performance of the flood hazard map. For further analysis, the landuse map can be used on the overlay operation with the flood hazard map in order to obtain the impact of the flood on the landuse.

  11. Hydrological Modeling in Alaska with WRF-Hydro

    Science.gov (United States)

    Elmer, N. J.; Zavodsky, B.; Molthan, A.

    2017-12-01

    The operational National Water Model (NWM), implemented in August 2016, is an instantiation of the Weather Research and Forecasting hydrological extension package (WRF-Hydro). Currently, the NWM only covers the contiguous United States, but will be expanded to include an Alaska domain in the future. It is well known that Alaska presents several hydrological modeling challenges, including unique arctic/sub-arctic hydrological processes not observed elsewhere in the United States and a severe lack of in-situ observations for model initialization. This project sets up an experimental version of WRF-Hydro in Alaska mimicking the NWM to gauge the ability of WRF-Hydro to represent hydrological processes in Alaska and identify model calibration challenges. Recent and upcoming launches of hydrology-focused NASA satellite missions such as the Soil Moisture Active Passive (SMAP) and Surface Water Ocean Topography (SWOT) expand the spatial and temporal coverage of observations in Alaska, so this study also lays the groundwork for assimilating these NASA datasets into WRF-Hydro in the future.

  12. Review of Dynamic Modeling and Simulation of Large Scale Belt Conveyor System

    Science.gov (United States)

    He, Qing; Li, Hong

    Belt conveyor is one of the most important devices to transport bulk-solid material for long distance. Dynamic analysis is the key to decide whether the design is rational in technique, safe and reliable in running, feasible in economy. It is very important to study dynamic properties, improve efficiency and productivity, guarantee conveyor safe, reliable and stable running. The dynamic researches and applications of large scale belt conveyor are discussed. The main research topics, the state-of-the-art of dynamic researches on belt conveyor are analyzed. The main future works focus on dynamic analysis, modeling and simulation of main components and whole system, nonlinear modeling, simulation and vibration analysis of large scale conveyor system.

  13. Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally

    Science.gov (United States)

    Lee, Donghoon; Ward, Philip; Block, Paul

    2018-02-01

    Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.

  14. Towards improved hydrologic predictions using data assimilation techniques for water resource management at the continental scale

    Science.gov (United States)

    Naz, Bibi; Kurtz, Wolfgang; Kollet, Stefan; Hendricks Franssen, Harrie-Jan; Sharples, Wendy; Görgen, Klaus; Keune, Jessica; Kulkarni, Ketan

    2017-04-01

    More accurate and reliable hydrologic simulations are important for many applications such as water resource management, future water availability projections and predictions of extreme events. However, simulation of spatial and temporal variations in the critical water budget components such as precipitation, snow, evaporation and runoff is highly uncertain, due to errors in e.g. model structure and inputs (hydrologic parameters and forcings). In this study, we use data assimilation techniques to improve the predictability of continental-scale water fluxes using in-situ measurements along with remotely sensed information to improve hydrologic predications for water resource systems. The Community Land Model, version 3.5 (CLM) integrated with the Parallel Data Assimilation Framework (PDAF) was implemented at spatial resolution of 1/36 degree (3 km) over the European CORDEX domain. The modeling system was forced with a high-resolution reanalysis system COSMO-REA6 from Hans-Ertel Centre for Weather Research (HErZ) and ERA-Interim datasets for time period of 1994-2014. A series of data assimilation experiments were conducted to assess the efficiency of assimilation of various observations, such as river discharge data, remotely sensed soil moisture, terrestrial water storage and snow measurements into the CLM-PDAF at regional to continental scales. This setup not only allows to quantify uncertainties, but also improves streamflow predictions by updating simultaneously model states and parameters utilizing observational information. The results from different regions, watershed sizes, spatial resolutions and timescales are compared and discussed in this study.

  15. The evolution of process-based hydrologic models

    NARCIS (Netherlands)

    Clark, Martyn P.; Bierkens, Marc F.P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R.N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.

    2017-01-01

    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this

  16. A four-stage hybrid model for hydrological time series forecasting.

    Science.gov (United States)

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of 'denoising, decomposition and ensemble'. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models.

  17. A Four-Stage Hybrid Model for Hydrological Time Series Forecasting

    Science.gov (United States)

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of ‘denoising, decomposition and ensemble’. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models. PMID:25111782

  18. Disagreement between Hydrological and Land Surface models on the water budgets in the Arctic: why is this and which of them is right?

    Science.gov (United States)

    Blyth, E.; Martinez-de la Torre, A.; Ellis, R.; Robinson, E.

    2017-12-01

    The fresh-water budget of the Artic region has a diverse range of impacts: the ecosystems of the region, ocean circulation response to Arctic freshwater, methane emissions through changing wetland extent as well as the available fresh water for human consumption. But there are many processes that control the budget including a seasonal snow packs building and thawing, freezing soils and permafrost, extensive organic soils and large wetland systems. All these processes interact to create a complex hydrological system. In this study we examine a suite of 10 models that bring all those processes together in a 25 year reanalysis of the global water budget. We assess their performance in the Arctic region. There are two approaches to modelling fresh-water flows at large scales, referred to here as `Hydrological' and `Land Surface' models. While both approaches include a physically based model of the water stores and fluxes, the Land Surface models links the water flows to an energy-based model for processes such as snow melt and soil freezing. This study will analyse the impact of that basic difference on the regional patterns of evapotranspiration, runoff generation and terrestrial water storage. For the evapotranspiration, the Hydrological models tend to have a bigger spatial range in the model bias (difference to observations), implying greater errors compared to the Land-Surface models. For instance, some regions such as Eastern Siberia have consistently lower Evaporation in the Hydrological models than the Land Surface models. For the Runoff however, the results are the other way round with a slightly higher spatial range in bias for the Land Surface models implying greater errors than the Hydrological models. A simple analysis would suggest that Hydrological models are designed to get the runoff right, while Land Surface models designed to get the evapotranspiration right. Tracing the source of the difference suggests that the difference comes from the treatment

  19. Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model

    Science.gov (United States)

    Li, Ji; Chen, Yangbo; Wang, Huanyu; Qin, Jianming; Li, Jie; Chiao, Sen

    2017-03-01

    Long lead time flood forecasting is very important for large watershed flood mitigation as it provides more time for flood warning and emergency responses. The latest numerical weather forecast model could provide 1-15-day quantitative precipitation forecasting products in grid format, and by coupling this product with a distributed hydrological model could produce long lead time watershed flood forecasting products. This paper studied the feasibility of coupling the Liuxihe model with the Weather Research and Forecasting quantitative precipitation forecast (WRF QPF) for large watershed flood forecasting in southern China. The QPF of WRF products has three lead times, including 24, 48 and 72 h, with the grid resolution being 20 km  × 20 km. The Liuxihe model is set up with freely downloaded terrain property; the model parameters were previously optimized with rain gauge observed precipitation, and re-optimized with the WRF QPF. Results show that the WRF QPF has bias with the rain gauge precipitation, and a post-processing method is proposed to post-process the WRF QPF products, which improves the flood forecasting capability. With model parameter re-optimization, the model's performance improves also. This suggests that the model parameters be optimized with QPF, not the rain gauge precipitation. With the increasing of lead time, the accuracy of the WRF QPF decreases, as does the flood forecasting capability. Flood forecasting products produced by coupling the Liuxihe model with the WRF QPF provide a good reference for large watershed flood warning due to its long lead time and rational results.

  20. Integration of Local Hydrology into Regional Hydrologic Simulation Model

    Science.gov (United States)

    Van Zee, R. J.; Lal, W. A.

    2002-05-01

    South Florida hydrology is dominated by the Central and South Florida (C&SF) Project that is managed to provide flood protection, water supply and environmental protection. A complex network of levees canals and structures provide these services to the individual drainage basins. The landscape varies widely across the C&SF system, with corresponding differences in the way water is managed within each basin. Agricultural areas are managed for optimal crop production. Urban areas maximize flood protection while maintaining minimum water levels to protect adjacent wetlands and local water supplies. "Natural" areas flood and dry out in response to the temporal distribution of rainfall. The evaluation of planning, regulation and operational issues require access to a simulation model that captures the effects of both regional and local hydrology. The Regional Simulation Model (RSM) uses a "pseudo-cell" approach to integrate local hydrology within the context of a regional hydrologic system. A 2-dimensional triangulated mesh is used to represent the regional surface and ground water systems and a 1-dimensional canal network is superimposed onto this mesh. The movement of water is simulated using a finite volume formulation with a diffusive wave approximation. Each cell in the triangulated mesh has a "pseudo-cell" counterpart, which represents the same area as the cell, but it is conceptualized such that it simulates the localized hydrologic conditions Protocols have been established to provide an interface between a cell and its pseudo-cell counterpart. . A number of pseudo-cell types have already been developed and tested in the simulation of Water Conservation Area 1 and several have been proposed to deal with specific local issues in the Southwest Florida Feasibility Study. This presentation will provide an overview of the overall RSM design, describe the relationship between cells and pseudo-cells, and illustrate how pseudo-cells are be used to simulate agriculture

  1. On the influence of cell size in physically-based distributed hydrological modelling to assess extreme values in water resource planning

    Directory of Open Access Journals (Sweden)

    M. Egüen

    2012-05-01

    Full Text Available This paper studies the influence of changing spatial resolution on the implementation of distributed hydrological modelling for water resource planning in Mediterranean areas. Different cell sizes were used to investigate variations in the basin hydrologic response given by the model WiMMed, developed in Andalusia (Spain, in a selected watershed. The model was calibrated on a monthly basis from the available daily flow data at the reservoir that closes the watershed, for three different cell sizes, 30, 100, and 500 m, and the effects of this change on the hydrological response of the basin were analysed by means of the comparison of the hydrological variables at different time scales for a 3-yr-period, and the effective values for the calibration parameters obtained for each spatial resolution. The variation in the distribution of the input parameters due to using different spatial resolutions resulted in a change in the obtained hydrological networks and significant differences in other hydrological variables, both in mean basin-scale and values distributed in the cell level. Differences in the magnitude of annual and global runoff, together with other hydrological components of the water balance, became apparent. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of a distributed hydrological model to reach a balance between the quality of results and the computational cost; thus, 30 and 100-m could be chosen for water resource management, without significant decrease in the accuracy of the simulation, but the 500-m cell size resulted in significant overestimation of runoff and consequently, could involve uncertain decisions based on the expected availability of rainfall excess for storage in the reservoirs. Particular values of the effective calibration parameters are also provided for this hydrological model and the study area.

  2. SCALING ANALYSIS OF REPOSITORY HEAT LOAD FOR REDUCED DIMENSIONALITY MODELS

    International Nuclear Information System (INIS)

    MICHAEL T. ITAMUA AND CLIFFORD K. HO

    1998-01-01

    The thermal energy released from the waste packages emplaced in the potential Yucca Mountain repository is expected to result in changes in the repository temperature, relative humidity, air mass fraction, gas flow rates, and other parameters that are important input into the models used to calculate the performance of the engineered system components. In particular, the waste package degradation models require input from thermal-hydrologic models that have higher resolution than those currently used to simulate the T/H responses at the mountain-scale. Therefore, a combination of mountain- and drift-scale T/H models is being used to generate the drift thermal-hydrologic environment

  3. The Software Reliability of Large Scale Integration Circuit and Very Large Scale Integration Circuit

    OpenAIRE

    Artem Ganiyev; Jan Vitasek

    2010-01-01

    This article describes evaluation method of faultless function of large scale integration circuits (LSI) and very large scale integration circuits (VLSI). In the article there is a comparative analysis of factors which determine faultless of integrated circuits, analysis of already existing methods and model of faultless function evaluation of LSI and VLSI. The main part describes a proposed algorithm and program for analysis of fault rate in LSI and VLSI circuits.

  4. A Model-Model and Data-Model Comparison for the Early Eocene Hydrological Cycle

    Science.gov (United States)

    Carmichael, Matthew J.; Lunt, Daniel J.; Huber, Matthew; Heinemann, Malte; Kiehl, Jeffrey; LeGrande, Allegra; Loptson, Claire A.; Roberts, Chris D.; Sagoo, Navjit; Shields, Christine

    2016-01-01

    A range of proxy observations have recently provided constraints on how Earth's hydrological cycle responded to early Eocene climatic changes. However, comparisons of proxy data to general circulation model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised. In this work, we undertake an intercomparison of GCM-derived precipitation and P - E distributions within the extended EoMIP ensemble (Eocene Modelling Intercomparison Project; Lunt et al., 2012), which includes previously published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure, and precipitation-relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to the preindustrial conditions. This is primarily due to elevated atmospheric paleo-CO2, resulting in elevated temperatures, although the effects of differences in paleogeography and ice sheets are also important in some models. For a given CO2 level, globally averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP=dT ) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa, and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that GCMs generally underestimate precipitation rates at high latitudes, although a possible seasonal bias of the proxies cannot be excluded. Models which warm these regions, either via elevated CO2 or by varying poorly constrained model parameter values, are most successful in simulating a

  5. lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based hydrological models

    Science.gov (United States)

    Pilz, Tobias; Francke, Till; Bronstert, Axel

    2017-08-01

    The characteristics of a landscape pose essential factors for hydrological processes. Therefore, an adequate representation of the landscape of a catchment in hydrological models is vital. However, many of such models exist differing, amongst others, in spatial concept and discretisation. The latter constitutes an essential pre-processing step, for which many different algorithms along with numerous software implementations exist. In that context, existing solutions are often model specific, commercial, or depend on commercial back-end software, and allow only a limited or no workflow automation at all. Consequently, a new package for the scientific software and scripting environment R, called lumpR, was developed. lumpR employs an algorithm for hillslope-based landscape discretisation directed to large-scale application via a hierarchical multi-scale approach. The package addresses existing limitations as it is free and open source, easily extendible to other hydrological models, and the workflow can be fully automated. Moreover, it is user-friendly as the direct coupling to a GIS allows for immediate visual inspection and manual adjustment. Sufficient control is furthermore retained via parameter specification and the option to include expert knowledge. Conversely, completely automatic operation also allows for extensive analysis of aspects related to landscape discretisation. In a case study, the application of the package is presented. A sensitivity analysis of the most important discretisation parameters demonstrates its efficient workflow automation. Considering multiple streamflow metrics, the employed model proved reasonably robust to the discretisation parameters. However, parameters determining the sizes of subbasins and hillslopes proved to be more important than the others, including the number of representative hillslopes, the number of attributes employed for the lumping algorithm, and the number of sub-discretisations of the representative hillslopes.

  6. Full-Scale Approximations of Spatio-Temporal Covariance Models for Large Datasets

    KAUST Repository

    Zhang, Bohai; Sang, Huiyan; Huang, Jianhua Z.

    2014-01-01

    of dataset and application of such models is not feasible for large datasets. This article extends the full-scale approximation (FSA) approach by Sang and Huang (2012) to the spatio-temporal context to reduce computational complexity. A reversible jump Markov

  7. Agrarian crisis in India: Smallholder Socio-hydrology explains small-scale farmers' suicides

    Science.gov (United States)

    Pande, Saket; Savenije, Hubert

    2016-04-01

    Maharashtra is one of the states in India that has witnessed one of the highest rates of farmer suicides as proportion of total number of suicides. Most of the farmer suicides in Maharashtra are from semi-arid divisions such as Marathwada where cotton has been historically grown. Other dominant crops produced include cereals, pulses, oilseeds and sugarcane. Cotton (fibers), oilseeds and sugarcane providing highest value addition per unit cultivated area and cereals and pulses the least. Hence it is not surprising that smallholders take risks growing high value crops without 'visualising' the risks it entails such as those corresponding to price and weather shocks. We deploy recently developed smallholder socio-hydrology modelling framework to understand the underlying dynamics of the crisis. It couples the dynamics of 6 main variables that are most relevant at the scale of a smallholder: water storage capacity (root zone storage and other ways of water storage), capital, livestock, soil fertility and fodder biomass. The hydroclimatic variability is accounted for at sub-annual scale and influences the socio-hydrology at annual scale. The model is applied to Marathwada division of Maharashtra to understand the dynamics of its cotton growing marginal farmers, using diverse data sets of precipitation, potential evaporation, agricultural census based farm inputs and prices. Results confirm existing narratives: low water storage capacities, no irrigation and poor access to alternative sources of incomes are to blame for the crisis. It suggests that smart indigenous solutions such as rain water harvesting and better integration of smallholder systems to efficient agricultural supply chains are needed to tackle this development challenge.

  8. Optimizing Prediction Using Bayesian Model Averaging: Examples Using Large-Scale Educational Assessments.

    Science.gov (United States)

    Kaplan, David; Lee, Chansoon

    2018-01-01

    This article provides a review of Bayesian model averaging as a means of optimizing the predictive performance of common statistical models applied to large-scale educational assessments. The Bayesian framework recognizes that in addition to parameter uncertainty, there is uncertainty in the choice of models themselves. A Bayesian approach to addressing the problem of model uncertainty is the method of Bayesian model averaging. Bayesian model averaging searches the space of possible models for a set of submodels that satisfy certain scientific principles and then averages the coefficients across these submodels weighted by each model's posterior model probability (PMP). Using the weighted coefficients for prediction has been shown to yield optimal predictive performance according to certain scoring rules. We demonstrate the utility of Bayesian model averaging for prediction in education research with three examples: Bayesian regression analysis, Bayesian logistic regression, and a recently developed approach for Bayesian structural equation modeling. In each case, the model-averaged estimates are shown to yield better prediction of the outcome of interest than any submodel based on predictive coverage and the log-score rule. Implications for the design of large-scale assessments when the goal is optimal prediction in a policy context are discussed.

  9. Adaptable Web Modules to Stimulate Active Learning in Engineering Hydrology using Data and Model Simulations of Three Regional Hydrologic Systems

    Science.gov (United States)

    Habib, E. H.; Tarboton, D. G.; Lall, U.; Bodin, M.; Rahill-Marier, B.; Chimmula, S.; Meselhe, E. A.; Ali, A.; Williams, D.; Ma, Y.

    2013-12-01

    server-based system. Open source web technologies and community-based tools are used to facilitate wide dissemination and adaptation by diverse, independent institutions. The new hydrologic learning modules are based on recent developments in hydrologic modeling, data, and resources. The modules are embedded in three regional-scale ecosystems, Coastal Louisiana, Florida Everglades, and Utah Great Salt Lake Basin. These sites provide a wealth of hydrologic concepts and scenarios that can be used in most water resource and hydrology curricula. The study develops several learning modules based on the three hydro-systems covering subjects such as: water-budget analysis, effects of human and natural changes, climate-hydrology teleconnections, and water-resource management scenarios. The new developments include an instructional interface to give critical guidance and support to the learner and an instructor's guide containing adaptation and implementation procedures to assist instructors in adopting and integrating the material into courses and provide a consistent experience. The design of the new hydrologic education developments will be transferable to independent institutions and adaptable both instructionally and technically through a server system capable of supporting additional developments by the educational community.

  10. Modelling of spatio-temporal precipitation relevant for urban hydrology with focus on scales, extremes and climate change

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen

    -correlation lengths for sub-daily extreme precipitation besides having too low intensities. Especially the wrong spatial correlation structure is disturbing from an urban hydrological point of view as short-term extremes will cover too much ground if derived directly from bias corrected regional climate model output...... of precipitation are compared and used to rank climate models with respect to performance metrics. The four different observational data sets themselves are compared at daily temporal scale with respect to climate indices for mean and extreme precipitation. Data density seems to be a crucial parameter for good...... happening in summer and most of the daily extremes in fall. This behaviour is in good accordance with reality where short term extremes originate in convective precipitation cells that occur when it is very warm and longer term extremes originate in frontal systems that dominate the fall and winter seasons...

  11. Review article: Hydrological modeling in glacierized catchments of central Asia – status and challenges

    OpenAIRE

    Y. Chen; W. Li; G. Fang; Z. Li

    2017-01-01

    Meltwater from glacierized catchments is one of the most important water supplies in central Asia. Therefore, the effects of climate change on glaciers and snow cover will have increasingly significant consequences for runoff. Hydrological modeling has become an indispensable research approach to water resources management in large glacierized river basins, but there is a lack of focus in the modeling of glacial discharge. This paper reviews the status of hydrological modeli...

  12. Development of a transverse mixing model for large scale impulsion phenomenon in tight lattice

    International Nuclear Information System (INIS)

    Liu, Xiaojing; Ren, Shuo; Cheng, Xu

    2017-01-01

    Highlights: • Experiment data of Krauss is used to validate the feasibility of CFD simulation method. • CFD simulation is performed to simulate the large scale impulsion phenomenon for tight-lattice bundle. • A mixing model to simulate the large scale impulsion phenomenon is proposed based on CFD result fitting. • The new developed mixing model has been added in the subchannel code. - Abstract: Tight-lattice is widely adopted in the innovative reactor fuel bundles design since it can increase the conversion ratio and improve the heat transfer between fuel bundles and coolant. It has been noticed that a large scale impulsion of cross-velocity exists in the gap region, which plays an important role on the transverse mixing flow and heat transfer. Although many experiments and numerical simulation have been carried out to study the impulsion of velocity, a model to describe the wave length, amplitude and frequency of mixing coefficient is still missing. This research work takes advantage of the CFD method to simulate the experiment of Krauss and to compare experiment data and simulation result in order to demonstrate the feasibility of simulation method and turbulence model. Then, based on this verified method and model, several simulations are performed with different Reynolds number and different Pitch-to-Diameter ratio. By fitting the CFD results achieved, a mixing model to simulate the large scale impulsion phenomenon is proposed and adopted in the current subchannel code. The new mixing model is applied to some fuel assembly analysis by subchannel calculation, it can be noticed that the new developed mixing model can reduce the hot channel factor and contribute to a uniform distribution of outlet temperature.

  13. Newtonian nudging for a Richards equation-based distributed hydrological model

    Science.gov (United States)

    Paniconi, Claudio; Marrocu, Marino; Putti, Mario; Verbunt, Mark

    The objective of data assimilation is to provide physically consistent estimates of spatially distributed environmental variables. In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimilation scheme. Nudging is shown to be successful in improving the hydrological simulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitivity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexible, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be readily extended to any of these features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation

  14. Modeling urbanized watershed flood response changes with distributed hydrological model: key hydrological processes, parameterization and case studies

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to

  15. An industrial perspective on bioreactor scale-down: what we can learn from combined large-scale bioprocess and model fluid studies.

    Science.gov (United States)

    Noorman, Henk

    2011-08-01

    For industrial bioreactor design, operation, control and optimization, the scale-down approach is often advocated to efficiently generate data on a small scale, and effectively apply suggested improvements to the industrial scale. In all cases it is important to ensure that the scale-down conditions are representative of the real large-scale bioprocess. Progress is hampered by limited detailed and local information from large-scale bioprocesses. Complementary to real fermentation studies, physical aspects of model fluids such as air-water in large bioreactors provide useful information with limited effort and cost. Still, in industrial practice, investments of time, capital and resources often prohibit systematic work, although, in the end, savings obtained in this way are trivial compared to the expenses that result from real process disturbances, batch failures, and non-flyers with loss of business opportunity. Here we try to highlight what can be learned from real large-scale bioprocess in combination with model fluid studies, and to provide suitable computation tools to overcome data restrictions. Focus is on a specific well-documented case for a 30-m(3) bioreactor. Areas for further research from an industrial perspective are also indicated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Predicting Phosphorus Dynamics Across Physiographic Regions Using a Mixed Hortonian Non-Hortonian Hydrology Model

    Science.gov (United States)

    Collick, A.; Easton, Z. M.; Auerbach, D.; Buchanan, B.; Kleinman, P. J. A.; Fuka, D.

    2017-12-01

    Predicting phosphorus (P) loss from agricultural watersheds depends on accurate representation of the hydrological and chemical processes governing P mobility and transport. In complex landscapes, P predictions are complicated by a broad range of soils with and without restrictive layers, a wide variety of agricultural management, and variable hydrological drivers. The Soil and Water Assessment Tool (SWAT) is a watershed model commonly used to predict runoff and non-point source pollution transport, but is commonly only used with Hortonian (traditional SWAT) or non-Hortonian (SWAT-VSA) initializations. Many shallow soils underlain by a restricting layer commonly generate saturation excess runoff from variable source areas (VSA), which is well represented in a re-conceptualized version, SWAT-VSA. However, many watersheds exhibit traits of both infiltration excess and saturation excess hydrology internally, based on the hydrologic distance from the stream, distribution of soils across the landscape, and characteristics of restricting layers. The objective of this research is to provide an initial look at integrating distributed predictive capabilities that consider both Hortonian and Non-Hortonian solutions simultaneously within a single SWAT-VSA initialization. We compare results from all three conceptual watershed initializations against measured surface runoff and stream P loads and to highlight the model's ability to drive sub-field management of P. All three initializations predict discharge similarly well (daily Nash-Sutcliffe Efficiencies above 0.5), but the new conceptual SWAT-VSA initialization performed best in predicting P export from the watershed, while also identifying critical source areas - those areas generating large runoff and P losses at the sub field level. These results support the use of mixed Hortonian non-Hortonian SWAT-VSA initializations in predicting watershed-scale P losses and identifying critical source areas of P loss in landscapes

  17. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    International Nuclear Information System (INIS)

    Reyes, Luz M.; Moreno, Claudia; Madriz Aguilar, José Edgar; Bellini, Mauricio

    2012-01-01

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  18. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    Science.gov (United States)

    Reyes, Luz M.; Moreno, Claudia; Madriz Aguilar, José Edgar; Bellini, Mauricio

    2012-10-01

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  19. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Luz M., E-mail: luzmarinareyes@gmail.com [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Moreno, Claudia, E-mail: claudia.moreno@cucei.udg.mx [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Madriz Aguilar, Jose Edgar, E-mail: edgar.madriz@red.cucei.udg.mx [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR) - Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)

    2012-10-22

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  20. Large scale electrolysers

    International Nuclear Information System (INIS)

    B Bello; M Junker

    2006-01-01

    Hydrogen production by water electrolysis represents nearly 4 % of the world hydrogen production. Future development of hydrogen vehicles will require large quantities of hydrogen. Installation of large scale hydrogen production plants will be needed. In this context, development of low cost large scale electrolysers that could use 'clean power' seems necessary. ALPHEA HYDROGEN, an European network and center of expertise on hydrogen and fuel cells, has performed for its members a study in 2005 to evaluate the potential of large scale electrolysers to produce hydrogen in the future. The different electrolysis technologies were compared. Then, a state of art of the electrolysis modules currently available was made. A review of the large scale electrolysis plants that have been installed in the world was also realized. The main projects related to large scale electrolysis were also listed. Economy of large scale electrolysers has been discussed. The influence of energy prices on the hydrogen production cost by large scale electrolysis was evaluated. (authors)

  1. Proving the ecosystem value through hydrological modelling

    International Nuclear Information System (INIS)

    Dorner, W; Spachinger, K; Metzka, R; Porter, M

    2008-01-01

    Ecosystems provide valuable functions. Also natural floodplains and river structures offer different types of ecosystem functions such as habitat function, recreational area and natural detention. From an economic stand point the loss (or rehabilitation) of these natural systems and their provided natural services can be valued as a damage (or benefit). Consequently these natural goods and services must be economically valued in project assessments e.g. cost-benefit-analysis or cost comparison. Especially in smaller catchments and river systems exists significant evidence that natural flood detention reduces flood risk and contributes to flood protection. Several research projects evaluated the mitigating effect of land use, river training and the loss of natural flood plains on development, peak and volume of floods. The presented project analysis the hypothesis that ignoring natural detention and hydrological ecosystem services could result in economically inefficient solutions for flood protection and mitigation. In test areas, subcatchments of the Danube in Germany, a combination of hydrological and hydrodynamic models with economic evaluation techniques was applied. Different forms of land use, river structure and flood protection measures were assed and compared from a hydrological and economic point of view. A hydrodynamic model was used to simulate flows to assess the extent of flood affected areas and damages to buildings and infrastructure as well as to investigate the impacts of levees and river structure on a local scale. These model results provided the basis for an economic assessment. Different economic valuation techniques, such as flood damage functions, cost comparison method and substation-approach were used to compare the outcomes of different hydrological scenarios from an economic point of view and value the ecosystem service. The results give significant evidence that natural detention must be evaluated as part of flood mitigation projects

  2. Regional scale hydrologic modeling of a karst-dominant geomorphology: The case study of the Island of Crete

    Science.gov (United States)

    Malagò, Anna; Efstathiou, Dionissios; Bouraoui, Fayçal; Nikolaidis, Nikolaos P.; Franchini, Marco; Bidoglio, Giovanni; Kritsotakis, Marinos

    2016-09-01

    Crete Island (Greece) is a karst dominated region that faces limited water supply and increased seasonal demand, especially during summer for agricultural and touristic uses. In addition, due to the mountainous terrain, interbasin water transfer is very limited. The resulting water imbalance requires a correct quantification of available water resources in view of developing appropriate management plans to face the problem of water shortage. The aim of this work is the development of a methodology using the SWAT model and a karst-flow model (KSWAT, Karst SWAT model) for the quantification of a spatially and temporally explicit hydrologic water balance of karst-dominated geomorphology in order to assess the sustainability of the actual water use. The application was conducted in the Island of Crete using both hard (long time series of streamflow and spring monitoring stations) and soft data (i.e. literature information of individual processes). The KSWAT model estimated the water balance under normal hydrological condition as follows: 6400 Mm3/y of precipitation, of which 40% (2500 Mm3/y) was lost through evapotranspiration, 5% was surface runoff and 55% percolated into the soil contributing to lateral flow (2%), and recharging the shallow (9%) and deep aquifer (44%). The water yield was estimated as 22% of precipitation, of which about half was the contribution from spring discharges (9% of precipitation). The application of the KSWAT model increased our knowledge about water resources availability and distribution in Crete under different hydrologic conditions. The model was able to capture the hydrology of the karst areas allowing a better management and planning of water resources under scarcity.

  3. A prototype framework for models of socio-hydrology: identification of key feedback loops and parameterisation approach

    Science.gov (United States)

    Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M. R.

    2014-06-01

    It is increasingly acknowledged that, in order to sustainably manage global freshwater resources, it is critical that we better understand the nature of human-hydrology interactions at the broader catchment system scale. Yet to date, a generic conceptual framework for building models of catchment systems that include adequate representation of socioeconomic systems - and the dynamic feedbacks between human and natural systems - has remained elusive. In an attempt to work towards such a model, this paper outlines a generic framework for models of socio-hydrology applicable to agricultural catchments, made up of six key components that combine to form the coupled system dynamics: namely, catchment hydrology, population, economics, environment, socioeconomic sensitivity and collective response. The conceptual framework posits two novel constructs: (i) a composite socioeconomic driving variable, termed the Community Sensitivity state variable, which seeks to capture the perceived level of threat to a community's quality of life, and acts as a key link tying together one of the fundamental feedback loops of the coupled system, and (ii) a Behavioural Response variable as the observable feedback mechanism, which reflects land and water management decisions relevant to the hydrological context. The framework makes a further contribution through the introduction of three macro-scale parameters that enable it to normalise for differences in climate, socioeconomic and political gradients across study sites. In this way, the framework provides for both macro-scale contextual parameters, which allow for comparative studies to be undertaken, and catchment-specific conditions, by way of tailored "closure relationships", in order to ensure that site-specific and application-specific contexts of socio-hydrologic problems can be accommodated. To demonstrate how such a framework would be applied, two socio-hydrological case studies, taken from the Australian experience, are presented

  4. iTree-Hydro: Snow hydrology update for the urban forest hydrology model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2011-01-01

    This article presents snow hydrology updates made to iTree-Hydro, previously called the Urban Forest Effects—Hydrology model. iTree-Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process-based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate...

  5. Hydrological response of a small catchment burned by experimental fire

    Directory of Open Access Journals (Sweden)

    C. R. Stoof

    2012-02-01

    Full Text Available Fire can considerably change hydrological processes, increasing the risk of extreme flooding and erosion events. Although hydrological processes are largely affected by scale, catchment-scale studies on the hydrological impact of fire in Europe are scarce, and nested approaches are rarely used. We performed a catchment-scale experimental fire to improve insight into the drivers of fire impact on hydrology. In north-central Portugal, rainfall, canopy interception, streamflow and soil moisture were monitored in small shrub-covered paired catchments pre- and post-fire. The shrub cover was medium dense to dense (44 to 84% and pre-fire canopy interception was on average 48.7% of total rainfall. Fire increased streamflow volumes 1.6 times more than predicted, resulting in increased runoff coefficients and changed rainfall-streamflow relationships – although the increase in streamflow per unit rainfall was only significant at the subcatchment-scale. Fire also fastened the response of topsoil moisture to rainfall from 2.7 to 2.1 h (p = 0.058, and caused more rapid drying of topsoils after rain events. Since soil physical changes due to fire were not apparent, we suggest that changes resulting from vegetation removal played an important role in increasing streamflow after fire. Results stress that fire impact on hydrology is largely affected by scale, highlight the hydrological impact of fire on small scales, and emphasize the risk of overestimating fire impact when upscaling plot-scale studies to the catchment-scale. Finally, they increase understanding of the processes contributing to post-fire flooding and erosion events.

  6. Regionalization of meso-scale physically based nitrogen modeling outputs to the macro-scale by the use of regression trees

    Science.gov (United States)

    Künne, A.; Fink, M.; Kipka, H.; Krause, P.; Flügel, W.-A.

    2012-06-01

    In this paper, a method is presented to estimate excess nitrogen on large scales considering single field processes. The approach was implemented by using the physically based model J2000-S to simulate the nitrogen balance as well as the hydrological dynamics within meso-scale test catchments. The model input data, the parameterization, the results and a detailed system understanding were used to generate the regression tree models with GUIDE (Loh, 2002). For each landscape type in the federal state of Thuringia a regression tree was calibrated and validated using the model data and results of excess nitrogen from the test catchments. Hydrological parameters such as precipitation and evapotranspiration were also used to predict excess nitrogen by the regression tree model. Hence they had to be calculated and regionalized as well for the state of Thuringia. Here the model J2000g was used to simulate the water balance on the macro scale. With the regression trees the excess nitrogen was regionalized for each landscape type of Thuringia. The approach allows calculating the potential nitrogen input into the streams of the drainage area. The results show that the applied methodology was able to transfer the detailed model results of the meso-scale catchments to the entire state of Thuringia by low computing time without losing the detailed knowledge from the nitrogen transport modeling. This was validated with modeling results from Fink (2004) in a catchment lying in the regionalization area. The regionalized and modeled excess nitrogen correspond with 94%. The study was conducted within the framework of a project in collaboration with the Thuringian Environmental Ministry, whose overall aim was to assess the effect of agro-environmental measures regarding load reduction in the water bodies of Thuringia to fulfill the requirements of the European Water Framework Directive (Bäse et al., 2007; Fink, 2006; Fink et al., 2007).

  7. One-Water Hydrologic Flow Model (MODFLOW-OWHM)

    Science.gov (United States)

    Hanson, Randall T.; Boyce, Scott E.; Schmid, Wolfgang; Hughes, Joseph D.; Mehl, Steffen W.; Leake, Stanley A.; Maddock, Thomas; Niswonger, Richard G.

    2014-01-01

    -constrained conditions. From large- to small-scale settings, MF-OWHM has the unique set of capabilities to simulate and analyze historical, present, and future conjunctive-use conditions. MF-OWHM is especially useful for the analysis of agricultural water use where few data are available for pumpage, land use, or agricultural information. The features presented in this IHM include additional linkages with SFR, SWR, Drain-Return (DRT), Multi-Node Wells (MNW1 and MNW2), and Unsaturated-Zone Flow (UZF). Thus, MF-OWHM helps to reduce the loss of water during simulation of the hydrosphere and helps to account for “all of the water everywhere and all of the time.” In addition to groundwater, surface-water, and landscape budgets, MF-OWHM provides more options for observations of land subsidence, hydraulic properties, and evapotranspiration (ET) than previous models. Detailed landscape budgets combined with output of estimates of actual evapotranspiration facilitates linkage to remotely sensed observations as input or as additional observations for parameter estimation or water-use analysis. The features of FMP have been extended to allow for temporally variable water-accounting units (farms) that can be linked to land-use models and the specification of both surface-water and groundwater allotments to facilitate sustainability analysis and connectivity to the Groundwater Management Process (GWM). An example model described in this report demonstrates the application of MF-OWHM with the addition of land subsidence and a vertically deforming mesh, delayed recharge through an unsaturated zone, rejected infiltration in a riparian area, changes in demand caused by deficiency in supply, and changes in multi-aquifer pumpage caused by constraints imposed through the Farm Process and the MNW2 Package, and changes in surface water such as runoff, streamflow, and canal flows through SFR and SWR linkages.

  8. Calibration of a distributed hydrologic model for six European catchments using remote sensing data

    Science.gov (United States)

    Stisen, S.; Demirel, M. C.; Mendiguren González, G.; Kumar, R.; Rakovec, O.; Samaniego, L. E.

    2017-12-01

    While observed streamflow has been the single reference for most conventional hydrologic model calibration exercises, the availability of spatially distributed remote sensing observations provide new possibilities for multi-variable calibration assessing both spatial and temporal variability of different hydrologic processes. In this study, we first identify the key transfer parameters of the mesoscale Hydrologic Model (mHM) controlling both the discharge and the spatial distribution of actual evapotranspiration (AET) across six central European catchments (Elbe, Main, Meuse, Moselle, Neckar and Vienne). These catchments are selected based on their limited topographical and climatic variability which enables to evaluate the effect of spatial parameterization on the simulated evapotranspiration patterns. We develop a European scale remote sensing based actual evapotranspiration dataset at a 1 km grid scale driven primarily by land surface temperature observations from MODIS using the TSEB approach. Using the observed AET maps we analyze the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mHM model. This model allows calibrating one-basin-at-a-time or all-basins-together using its unique structure and multi-parameter regionalization approach. Results will indicate any tradeoffs between spatial pattern and discharge simulation during model calibration and through validation against independent internal discharge locations. Moreover, added value on internal water balances will be analyzed.

  9. Remote sensing, hydrological modeling and in situ observations in snow cover research: A review

    Science.gov (United States)

    Dong, Chunyu

    2018-06-01

    Snow is an important component of the hydrological cycle. As a major part of the cryosphere, snow cover also represents a valuable terrestrial water resource. In the context of climate change, the dynamics of snow cover play a crucial role in rebalancing the global energy and water budgets. Remote sensing, hydrological modeling and in situ observations are three techniques frequently utilized for snow cover investigations. However, the uncertainties caused by systematic errors, scale gaps, and complicated snow physics, among other factors, limit the usability of these three approaches in snow studies. In this paper, an overview of the advantages, limitations and recent progress of the three methods is presented, and more effective ways to estimate snow cover properties are evaluated. The possibility of improving remotely sensed snow information using ground-based observations is discussed. As a rapidly growing source of volunteered geographic information (VGI), web-based geotagged photos have great potential to provide ground truth data for remotely sensed products and hydrological models and thus contribute to procedures for cloud removal, correction, validation, forcing and assimilation. Finally, this review proposes a synergistic framework for the future of snow cover research. This framework highlights the cross-scale integration of in situ and remotely sensed snow measurements and the assimilation of improved remote sensing data into hydrological models.

  10. Subdivision of Texas watersheds for hydrologic modeling.

    Science.gov (United States)

    2009-06-01

    The purpose of this report is to present a set of findings and examples for subdivision of watersheds for hydrologic modeling. Three approaches were used to examine the impact of watershed subdivision on modeled hydrologic response: (1) An equal-area...

  11. Validation of A Global Hydrological Model

    Science.gov (United States)

    Doell, P.; Lehner, B.; Kaspar, F.; Vassolo, S.

    Freshwater availability has been recognized as a global issue, and its consistent quan- tification not only in individual river basins but also at the global scale is required to support the sustainable use of water. The Global Hydrology Model WGHM, which is a submodel of the global water use and availability model WaterGAP 2, computes sur- face runoff, groundwater recharge and river discharge at a spatial resolution of 0.5. WGHM is based on the best global data sets currently available, including a newly developed drainage direction map and a data set of wetlands, lakes and reservoirs. It calculates both natural and actual discharge by simulating the reduction of river discharge by human water consumption (as computed by the water use submodel of WaterGAP 2). WGHM is calibrated against observed discharge at 724 gauging sta- tions (representing about 50% of the global land area) by adjusting a parameter of the soil water balance. It not only computes the long-term average water resources but also water availability indicators that take into account the interannual and seasonal variability of runoff and discharge. The reliability of the model results is assessed by comparing observed and simulated discharges at the calibration stations and at se- lected other stations. We conclude that reliable results can be obtained for basins of more than 20,000 km2. In particular, the 90% reliable monthly discharge is simu- lated well. However, there is the tendency that semi-arid and arid basins are modeled less satisfactorily than humid ones, which is partially due to neglecting river channel losses and evaporation of runoff from small ephemeral ponds in the model. Also, the hydrology of highly developed basins with large artificial storages, basin transfers and irrigation schemes cannot be simulated well. The seasonality of discharge in snow- dominated basins is overestimated by WGHM, and if the snow-dominated basin is uncalibrated, discharge is likely to be underestimated

  12. Coupling of Processes and Data in PennState Integrated Hydrologic Modeling (PIHM) System

    Science.gov (United States)

    Kumar, M.; Duffy, C.

    2007-12-01

    Full physical coupling, "natural" numerical coupling and parsimonious but accurate data coupling is needed to comprehensively and accurately capture the interaction between different components of a hydrologic continuum. Here we present a physically based, spatially distributed hydrologic model that incorporates all the three coupling strategies. Physical coupling of interception, snow melt, transpiration, overland flow, subsurface flow, river flow, macropore based infiltration and stormflow, flow through and over hydraulic structures likes weirs and dams, and evaporation from interception, ground and overland flow is performed. All the physically coupled components are numerically coupled through semi-discrete form of ordinary differential equations, that define each hydrologic process, using Finite-Volume based approach. The fully implicit solution methodology using CVODE solver solves for all the state variables simultaneously at each adaptive time steps thus providing robustness, stability and accuracy. The accurate data coupling is aided by use of constrained unstructured meshes, flexible data model and use of PIHMgis. The spatial adaptivity of decomposed domain and temporal adaptivity of the numerical solver facilitates capture of varied spatio-temporal scales that are inherent in hydrologic process interactions. The implementation of the model has been performed on a meso-scale Little-Juniata Watershed. Model results are validated by comparison of streamflow at multiple locations. We discuss some of the interesting hydrologic interactions between surface, subsurface and atmosphere witnessed during the year long simulation such as a) inverse relationship between evaporation from interception storage and transpiration b) relative influence of forcing (precipitation, temperature and radiation) and source (soil moisture and overland flow) on evaporation c) influence of local topography on gaining, loosing or "flow-through" behavior of river-aquifer interactions

  13. Evaluating the impact of farm scale innovation at catchment scale

    Science.gov (United States)

    van Breda, Phelia; De Clercq, Willem; Vlok, Pieter; Querner, Erik

    2014-05-01

    Hydrological modelling lends itself to other disciplines very well, normally as a process based system that acts as a catalogue of events taking place. These hydrological models are spatial-temporal in their design and are generally well suited for what-if situations in other disciplines. Scaling should therefore be a function of the purpose of the modelling. Process is always linked with scale or support but the temporal resolution can affect the results if the spatial scale is not suitable. The use of hydrological response units tends to lump area around physical features but disregards farm boundaries. Farm boundaries are often the more crucial uppermost resolution needed to gain more value from hydrological modelling. In the Letaba Catchment of South Africa, we find a generous portion of landuses, different models of ownership, different farming systems ranging from large commercial farms to small subsistence farming. All of these have the same basic right to water but water distribution in the catchment is somewhat of a problem. Since water quantity is also a problem, the water supply systems need to take into account that valuable production areas not be left without water. Clearly hydrological modelling should therefore be sensitive to specific landuse. As a measure of productivity, a system of small farmer production evaluation was designed. This activity presents a dynamic system outside hydrological modelling that is generally not being considered inside hydrological modelling but depends on hydrological modelling. For sustainable development, a number of important concepts needed to be aligned with activities in this region, and the regulatory actions also need to be adhered to. This study aimed at aligning the activities in a region to the vision and objectives of the regulatory authorities. South Africa's system of socio-economic development planning is complex and mostly ineffective. There are many regulatory authorities involved, often with unclear

  14. Hydrological drought across the world: impact of climate and physical catchment structure

    Directory of Open Access Journals (Sweden)

    H. A. J. Van Lanen

    2013-05-01

    Full Text Available Large-scale hydrological drought studies have demonstrated spatial and temporal patterns in observed trends, and considerable difference exists among global hydrological models in their ability to reproduce these patterns. In this study a controlled modeling experiment has been set up to systematically explore the role of climate and physical catchment structure (soils and groundwater systems to better understand underlying drought-generating mechanisms. Daily climate data (1958–2001 of 1495 grid cells across the world were selected that represent Köppen–Geiger major climate types. These data were fed into a conceptual hydrological model. Nine realizations of physical catchment structure were defined for each grid cell, i.e., three soils with different soil moisture supply capacity and three groundwater systems (quickly, intermediately and slowly responding. Hydrological drought characteristics (number, duration and standardized deficit volume were identified from time series of daily discharge. Summary statistics showed that the equatorial and temperate climate types (A- and C-climates had about twice as many drought events as the arid and polar types (B- and E-climates, and the durations of more extreme droughts were about half the length. Selected soils under permanent grassland were found to have a minor effect on hydrological drought characteristics, whereas groundwater systems had major impact. Groundwater systems strongly controlled the hydrological drought characteristics of all climate types, but particularly those of the wetter A-, C- and D-climates because of higher recharge. The median number of droughts for quickly responding groundwater systems was about three times higher than for slowly responding systems. Groundwater systems substantially affected the duration, particularly of the more extreme drought events. Bivariate probability distributions of drought duration and standardized deficit for combinations of K

  15. A large-scale multi-species spatial depletion model for overwintering waterfowl

    NARCIS (Netherlands)

    Baveco, J.M.; Kuipers, H.; Nolet, B.A.

    2011-01-01

    In this paper, we develop a model to evaluate the capacity of accommodation areas for overwintering waterfowl, at a large spatial scale. Each day geese are distributed over roosting sites. Based on the energy minimization principle, the birds daily decide which surrounding fields to exploit within

  16. Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model

    Science.gov (United States)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-06-01

    The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.

  17. Representing Northern Peatland Hydrology and Biogeochemistry with ALM Land Surface Model

    Science.gov (United States)

    Shi, X.; Ricciuto, D. M.; Thornton, P. E.; Hanson, P. J.; Xu, X.; Mao, J.; Warren, J.; Yuan, F.; Norby, R. J.; Sebestyen, S.; Griffiths, N.; Weston, D. J.; Walker, A.

    2017-12-01

    Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pool and vulnerability to hydrological change. Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. Firstly, we introduce a new configuration of the land model (ALM) of Accelerated Climate model for Energy (ACME), which includes a fully prognostic water table calculation for a vegetated peatland. Secondly, we couple our new hydrology treatment with vertically structured soil organic matter pool, and the addition of components from methane biogeochemistry. Thirdly, we introduce a new PFT for mosses and implement the water content dynamics and physiology of mosses. We inform and test our model based on SPRUCE experiment to get the reasonable results for the seasonal dynamics water table depths, water content dynamics and physiology of mosses, and correct soil carbon profiles. Then, we use our new model structure to test the how the water table depth and CH4 emission will respond to elevated CO2 and different warming scenarios.

  18. Large-scale tropospheric transport in the Chemistry-Climate Model Initiative (CCMI) simulations

    Science.gov (United States)

    Orbe, Clara; Yang, Huang; Waugh, Darryn W.; Zeng, Guang; Morgenstern, Olaf; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Plummer, David A.; Scinocca, John F.; Josse, Beatrice; Marecal, Virginie; Jöckel, Patrick; Oman, Luke D.; Strahan, Susan E.; Deushi, Makoto; Tanaka, Taichu Y.; Yoshida, Kohei; Akiyoshi, Hideharu; Yamashita, Yousuke; Stenke, Andreas; Revell, Laura; Sukhodolov, Timofei; Rozanov, Eugene; Pitari, Giovanni; Visioni, Daniele; Stone, Kane A.; Schofield, Robyn; Banerjee, Antara

    2018-05-01

    Understanding and modeling the large-scale transport of trace gases and aerosols is important for interpreting past (and projecting future) changes in atmospheric composition. Here we show that there are large differences in the global-scale atmospheric transport properties among the models participating in the IGAC SPARC Chemistry-Climate Model Initiative (CCMI). Specifically, we find up to 40 % differences in the transport timescales connecting the Northern Hemisphere (NH) midlatitude surface to the Arctic and to Southern Hemisphere high latitudes, where the mean age ranges between 1.7 and 2.6 years. We show that these differences are related to large differences in vertical transport among the simulations, in particular to differences in parameterized convection over the oceans. While stronger convection over NH midlatitudes is associated with slower transport to the Arctic, stronger convection in the tropics and subtropics is associated with faster interhemispheric transport. We also show that the differences among simulations constrained with fields derived from the same reanalysis products are as large as (and in some cases larger than) the differences among free-running simulations, most likely due to larger differences in parameterized convection. Our results indicate that care must be taken when using simulations constrained with analyzed winds to interpret the influence of meteorology on tropospheric composition.

  19. Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI simulations

    Directory of Open Access Journals (Sweden)

    C. Orbe

    2018-05-01

    Full Text Available Understanding and modeling the large-scale transport of trace gases and aerosols is important for interpreting past (and projecting future changes in atmospheric composition. Here we show that there are large differences in the global-scale atmospheric transport properties among the models participating in the IGAC SPARC Chemistry–Climate Model Initiative (CCMI. Specifically, we find up to 40 % differences in the transport timescales connecting the Northern Hemisphere (NH midlatitude surface to the Arctic and to Southern Hemisphere high latitudes, where the mean age ranges between 1.7 and 2.6 years. We show that these differences are related to large differences in vertical transport among the simulations, in particular to differences in parameterized convection over the oceans. While stronger convection over NH midlatitudes is associated with slower transport to the Arctic, stronger convection in the tropics and subtropics is associated with faster interhemispheric transport. We also show that the differences among simulations constrained with fields derived from the same reanalysis products are as large as (and in some cases larger than the differences among free-running simulations, most likely due to larger differences in parameterized convection. Our results indicate that care must be taken when using simulations constrained with analyzed winds to interpret the influence of meteorology on tropospheric composition.

  20. A seamless global hydrological monitoring and forecasting system for water resources assessment and hydrological hazard early warning

    Science.gov (United States)

    Sheffield, Justin; He, Xiaogang; Wood, Eric; Pan, Ming; Wanders, Niko; Zhan, Wang; Peng, Liqing

    2017-04-01

    surface model-flood inundation model to produce hydrological variables and indices at daily, 0.25-degree resolution, globally. The system is updated in near real-time (products from the system include real-time and forecast drought indices for precipitation, soil moisture, and streamflow, and flood magnitude and extent indices. The model outputs are complemented by satellite based products and indices based on satellite data for vegetation health (MODIS NDVI) and soil moisture (SMAP). We show examples of the validation of the system at regional scales, including how local information can significantly improve predictions, and examples of how the system can be used to understand large-scale water resource issues, and in real-world contexts for early warning, decision making and planning.

  1. Field observations at different scales for understanding hydrological processes in microcatchments at 2000m a.s.l. in Southern Ecuador

    Science.gov (United States)

    Bauer, F.; Huwe, B.

    2009-04-01

    In the Andes of Southern Ecuador at 2000m a.s.l. we investigate the hydrological behaviour of three steep microcatchments featuring nature and secondary forest as well as actively grazed pasture. Further locations are two landslides of different age. Within these microcatchments and sites we conducted dye tracer experiments to investigate potential lateral flow paths at pedon scale, monitored the soil water dynamic at plot scale and installed weirs to obtain discharge data from zero order catchments. Furthermore, Ksat measurements all over the microcatchments and sites were made to find dependencies on the topography. A special issue of the forested microcatchments is an organic layer mainly composed of fine roots emerging up to several dm. Composition, thickness and hydrological behaviour of this layer depends on the composition of the tree stand which in turn depends on the topographic position. Until now we have determined the organic layer hydrological parameters of a primary and a secondary forest by a laboratory irrigation device and inverse modelling. Most of the soils situated within the steep slopes were derived from shallow landslides and generally feature high rock fragment contents. Vertical percolation predominates in these soils, that seems to be controlled by the size distribution of the rock fragments. In this regard the effect of landslides on soil properties depends on the type of the landslide, the depth of the displaced material and the type of displacement. However, even at smaller scale soil properties on landslides can vary due to a heterogeneous mixture of substrates occurring with the landslide formation. Soils situated on ridges, plateaus and rotational landslides are denser with lower drainable porosities impeding vertical percolation in benefit for overland flow and lateral subsurface flow. Aims of the investigation are to assess the heterogeneity at the different scales and to find generalities, i.e. hydrological units to establish a

  2. Comparison of computer models for estimating hydrology and water quality in an agricultural watershed

    Science.gov (United States)

    Various computer models, ranging from simple to complex, have been developed to simulate hydrology and water quality from field to watershed scales. However, many users are uncertain about which model to choose when estimating water quantity and quality conditions in a watershed. This study compared...

  3. Integrating topography, hydrology and rock structure in weathering rate models of spring watersheds

    NARCIS (Netherlands)

    Pacheco, F.A.L.; Weijden, C.H. van der

    2012-01-01

    Weathering rate models designed for watersheds combine chemical data of discharging waters with morphologic and hydrologic parameters of the catchments. At the spring watershed scale, evaluation of morphologic parameters is subjective due to difficulties in conceiving the catchment geometry.

  4. A Smallholder Socio-hydrological Modelling Framework

    Science.gov (United States)

    Pande, S.; Savenije, H.; Rathore, P.

    2014-12-01

    Small holders are farmers who own less than 2 ha of farmland. They often have low productivity and thus remain at subsistence level. A fact that nearly 80% of Indian farmers are smallholders, who merely own a third of total farmlands and belong to the poorest quartile, but produce nearly 40% of countries foodgrains underlines the importance of understanding the socio-hydrology of a small holder. We present a framework to understand the socio-hydrological system dynamics of a small holder. It couples the dynamics of 6 main variables that are most relevant at the scale of a small holder: local storage (soil moisture and other water storage), capital, knowledge, livestock production, soil fertility and grass biomass production. The model incorporates rule-based adaptation mechanisms (for example: adjusting expenditures on food and fertilizers, selling livestocks etc.) of small holders when they face adverse socio-hydrological conditions, such as low annual rainfall, higher intra-annual variability in rainfall or variability in agricultural prices. It allows us to study sustainability of small holder farming systems under various settings. We apply the framework to understand the socio-hydrology of small holders in Aurangabad, Maharashtra, India. This district has witnessed suicides of many sugarcane farmers who could not extricate themselves out of the debt trap. These farmers lack irrigation and are susceptible to fluctuating sugar prices and intra-annual hydroclimatic variability. This presentation discusses two aspects in particular: whether government interventions to absolve the debt of farmers is enough and what is the value of investing in local storages that can buffer intra-annual variability in rainfall and strengthening the safety-nets either by creating opportunities for alternative sources of income or by crop diversification.

  5. Hydrologic modeling of the Columbia Plateau basalts

    International Nuclear Information System (INIS)

    Dove, F.H.; Cole, C.R.; Bond, F.W.; Zimmerman, D.A.

    1982-09-01

    The Office of Nuclear Waste Isolation (ONWI) directed the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program to conduct a technology demonstration of current performance assessment techniques for the Department of Energy (DOE) as applied to a nuclear waste repository in the Columbia Plateau Basalts. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The hydrologic simulation was divided into three major parts: (1) aquifer recharge calculations, (2) a regional hydrologic model, and (3) a local hydrologic model of the Pasco Basin. The presentation discusses the regional model. An estimate of the amount of water transmitted through the groundwater system was required to bound the transmissivity values and to estimate the transmissivity distributions for the deeper basalts. The multiple layer two-dimensional Variable Thickness Transient (VTT) code was selected as appropriate for the amount of data available and for the conditions existing in the regional systems. This model uses a finite difference formulation to represent the partial differential flow equation. The regional study area as defined for the VTT model was divided into 55 by 55 square pattern with each grid 5 kilometers on a side. The regional system was modeled as a held potential surface layer and two underlying basalt layers. The regional model established the boundary conditions for the hydrologic model the Pasco Basin

  6. Using isotopes to improve impact and hydrological predictions of land-surface schemes in global climate models

    International Nuclear Information System (INIS)

    McGuffie, K.; Henderson-Sellers, A.

    2002-01-01

    Global climate model (GCM) predictions of the impact of large-scale land-use change date back to 1984 as do the earliest isotopic studies of large-basin hydrology. Despite this coincidence in interest and geography, with both papers focussed on the Amazon, there have been few studies that have tried to exploit isotopic information with the goal of improving climate model simulations of the land-surface. In this paper we analyze isotopic results from the IAEA global data base specifically with the goal of identifying signatures of potential value for improving global and regional climate model simulations of the land-surface. Evaluation of climate model predictions of the impacts of deforestation of the Amazon has been shown to be of significance by recent results which indicate impacts occurring distant from the Amazon i.e. tele-connections causing climate change elsewhere around the globe. It is suggested that these could be similar in magnitude and extent to the global impacts of ENSO events. Validation of GCM predictions associated with Amazonian deforestation are increasingly urgently required because of the additional effects of other aspects of climate change, particularly synergies occurring between forest removal and greenhouse gas increases, especially CO 2 . Here we examine three decades distributions of deuterium excess across the Amazon and use the results to evaluate the relative importance of the fractionating (partial evaporation) and non-fractionating (transpiration) processes. These results illuminate GCM scenarios of importance to the regional climate and hydrology: (i) the possible impact of increased stomatal resistance in the rainforest caused by higher levels of atmospheric CO2 [4]; and (ii) the consequences of the combined effects of deforestation and global warming on the regions climate and hydrology

  7. Green Infrastructure and Watershed-Scale Hydrology in a Mixed Land Cover System

    Science.gov (United States)

    Hoghooghi, N.; Golden, H. E.; Bledsoe, B. P.

    2017-12-01

    Urbanization results in replacement of pervious areas (e.g., vegetation, topsoil) with impervious surfaces such as roads, roofs, and parking lots, which cause reductions in interception, evapotranspiration, and infiltration, and increases in surface runoff (overland flow) and pollutant loads and concentrations. Research on the effectiveness of different Green Infrastructure (GI), or Low Impact Development (LID), practices to reduce these negative impacts on stream flow and water quality has been mostly focused at the local scale (e.g., plots, small catchments). However, limited research has considered the broader-scale effects of LID, such as how LID practices influence water quantity, nutrient removal, and aquatic ecosystems at watershed scales, particularly in mixed land cover and land use systems. We use the Visualizing Ecosystem Land Management Assessments (VELMA) model to evaluate the effects of different LID practices on daily and long-term watershed-scale hydrology, including infiltration surface runoff. We focus on Shayler Crossing (SHC) watershed, a mixed land cover (61% urban, 24% agriculture, 15% forest) subwatershed of the East Fork Little Miami River watershed, Ohio, United States, with a drainage area of 0.94 km2. The model was calibrated to daily stream flow at the outlet of SHC watershed from 2009 to 2010 and was applied to evaluate diverse distributions (at 25% to 100% implementation levels) and types (e.g., pervious pavement and rain gardens) of LID across the watershed. Results show reduced surface water runoff and higher rates of infiltration concomitant with increasing LID implementation levels; however, this response varies between different LID practices. The highest magnitude response in streamflow at the watershed outlet is evident when a combination of LID practices is applied. The combined scenarios elucidate that the diverse watershed-scale hydrological responses of LID practices depend primarily on the type and extent of the implemented

  8. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  9. Flood Risk and Flood hazard maps - Visualisation of hydrological risks

    International Nuclear Information System (INIS)

    Spachinger, Karl; Dorner, Wolfgang; Metzka, Rudolf; Serrhini, Kamal; Fuchs, Sven

    2008-01-01

    Hydrological models are an important basis of flood forecasting and early warning systems. They provide significant data on hydrological risks. In combination with other modelling techniques, such as hydrodynamic models, they can be used to assess the extent and impact of hydrological events. The new European Flood Directive forces all member states to evaluate flood risk on a catchment scale, to compile maps of flood hazard and flood risk for prone areas, and to inform on a local level about these risks. Flood hazard and flood risk maps are important tools to communicate flood risk to different target groups. They provide compiled information to relevant public bodies such as water management authorities, municipalities, or civil protection agencies, but also to the broader public. For almost each section of a river basin, run-off and water levels can be defined based on the likelihood of annual recurrence, using a combination of hydrological and hydrodynamic models, supplemented by an analysis of historical records and mappings. In combination with data related to the vulnerability of a region risk maps can be derived. The project RISKCATCH addressed these issues of hydrological risk and vulnerability assessment focusing on the flood risk management process. Flood hazard maps and flood risk maps were compiled for Austrian and German test sites taking into account existing national and international guidelines. These maps were evaluated by eye-tracking using experimental graphic semiology. Sets of small-scale as well as large-scale risk maps were presented to test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented risk communication. A cognitive survey asking for negative and positive aspects and complexity of each single map complemented the experimental graphic semiology. The results indicate how risk maps can be improved to fit the needs of different user

  10. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-04-01

    Full Text Available Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrological process simulation in an inland river basin in China, Heihe River basin. It is divided into the upper, middle, and lower reaches based on the distinctive hydrological characteristics in the Heihe River basin, and three hydrological models are selected, applied, and tested to simulate the hydrological cycling processes for each reach. The upper reach is the contributing area with the complex runoff generation processes, therefore, the hydrological informatic modeling system (HIMS is utilized due to its combined runoff generation mechanisms. The middle reach has strong impacts of intensive human activities on the interactions of surface and subsurface flows, so a conceptual water balance model is applied to simulate the water balance process. For the lower reach, as the dissipative area with groundwater dominating the hydrological process, a groundwater modeling system with the embedment of MODFLOW model is applied to simulate the groundwater dynamics. Statistical parameters and water balance analysis prove that the three models have excellent performances in simulating the hydrological process of the three reaches. Therefore, it is an effective way to simulate the hydrological process of inland river basin with multiple hydrological models according to the characteristics of each subbasin.

  11. Evaluating cloud processes in large-scale models: Of idealized case studies, parameterization testbeds and single-column modelling on climate time-scales

    Science.gov (United States)

    Neggers, Roel

    2016-04-01

    Boundary-layer schemes have always formed an integral part of General Circulation Models (GCMs) used for numerical weather and climate prediction. The spatial and temporal scales associated with boundary-layer processes and clouds are typically much smaller than those at which GCMs are discretized, which makes their representation through parameterization a necessity. The need for generally applicable boundary-layer parameterizations has motivated many scientific studies, which in effect has created its own active research field in the atmospheric sciences. Of particular interest has been the evaluation of boundary-layer schemes at "process-level". This means that parameterized physics are studied in isolated mode from the larger-scale circulation, using prescribed forcings and excluding any upscale interaction. Although feedbacks are thus prevented, the benefit is an enhanced model transparency, which might aid an investigator in identifying model errors and understanding model behavior. The popularity and success of the process-level approach is demonstrated by the many past and ongoing model inter-comparison studies that have been organized by initiatives such as GCSS/GASS. A red line in the results of these studies is that although most schemes somehow manage to capture first-order aspects of boundary layer cloud fields, there certainly remains room for improvement in many areas. Only too often are boundary layer parameterizations still found to be at the heart of problems in large-scale models, negatively affecting forecast skills of NWP models or causing uncertainty in numerical predictions of future climate. How to break this parameterization "deadlock" remains an open problem. This presentation attempts to give an overview of the various existing methods for the process-level evaluation of boundary-layer physics in large-scale models. This includes i) idealized case studies, ii) longer-term evaluation at permanent meteorological sites (the testbed approach

  12. Required spatial resolution of hydrological models to evaluate urban flood resilience measures

    Science.gov (United States)

    Gires, A.; Giangola-Murzyn, A.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2012-04-01

    During a flood in urban area, several non-linear processes (rainfall, surface runoff, sewer flow, and sub-surface flow) interact. Fully distributed hydrological models are a useful tool to better understand these complex interactions between natural processes and man built environment. Developing an efficient model is a first step to improve the understanding of flood resilience in urban area. Given that the previously mentioned underlying physical phenomenon exhibit different relevant scales, determining the required spatial resolution of such model is tricky but necessary issue. For instance such model should be able to properly represent large scale effects of local scale flood resilience measures such as stop logs. The model should also be as simple as possible without being simplistic. In this paper we test two types of model. First we use an operational semi-distributed model over a 3400 ha peri-urban area located in Seine-Saint-Denis (North-East of Paris). In this model, the area is divided into sub-catchments of average size 17 ha that are considered as homogenous, and only the sewer discharge is modelled. The rainfall data, whose resolution is 1 km is space and 5 min in time, comes from the C-band radar of Trappes, located in the West of Paris, and operated by Météo-France. It was shown that the spatial resolution of both the model and the rainfall field did not enable to fully grasp the small scale rainfall variability. To achieve this, first an ensemble of realistic rainfall fields downscaled to a resolution of 100 m is generated with the help of multifractal space-time cascades whose characteristic exponents are estimated on the available radar data. Second the corresponding ensemble of sewer hydrographs is simulated by inputting each rainfall realization to the model. It appears that the probability distribution of the simulated peak flow exhibits a power-law behaviour. This indicates that there is a great uncertainty associated with small scale

  13. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  14. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    Directory of Open Access Journals (Sweden)

    Sam Ali Al

    2015-01-01

    Full Text Available The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simulations and Direct Numerical Simulations data regardless the Sub Grid Scale models. However, the agreement is less satisfactory with relatively coarse grid without using any wall models and the differences between Sub Grid Scale models are distinguishable. Using local wall model retuned the basic flow topology and reduced significantly the differences between the coarse meshed Large-Eddy Simulations and Direct Numerical Simulations data. The results show that the ability of local wall model to predict the separation zone depends strongly on its implementation way.

  15. Advancing the Implementation of Hydrologic Models as Web-based Applications

    Science.gov (United States)

    Dahal, P.; Tarboton, D. G.; Castronova, A. M.

    2017-12-01

    Advanced computer simulations are required to understand hydrologic phenomenon such as rainfall-runoff response, groundwater hydrology, snow hydrology, etc. Building a hydrologic model instance to simulate a watershed requires investment in data (diverse geospatial datasets such as terrain, soil) and computer resources, typically demands a wide skill set from the analyst, and the workflow involved is often difficult to reproduce. This work introduces a web-based prototype infrastructure in the form of a web application that provides researchers with easy to use access to complete hydrological modeling functionality. This includes creating the necessary geospatial and forcing data, preparing input files for a model by applying complex data preprocessing, running the model for a user defined watershed, and saving the results to a web repository. The open source Tethys Platform was used to develop the web app front-end Graphical User Interface (GUI). We used HydroDS, a webservice that provides data preparation processing capability to support backend computations used by the app. Results are saved in HydroShare, a hydrologic information system that supports the sharing of hydrologic data, model and analysis tools. The TOPographic Kinematic APproximation and Integration (TOPKAPI) model served as the example for which we developed a complete hydrologic modeling service to demonstrate the approach. The final product is a complete modeling system accessible through the web to create input files, and run the TOPKAPI hydrologic model for a watershed of interest. We are investigating similar functionality for the preparation of input to Regional Hydro-Ecological Simulation System (RHESSys). Key Words: hydrologic modeling, web services, hydrologic information system, HydroShare, HydroDS, Tethys Platform

  16. Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu; Taylor, Valerie

    2013-01-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore supercomputers: IBM POWER4, POWER5+ and BlueGene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks and Intel's MPI benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore supercomputers because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyrokinetic Toroidal Code (GTC) in magnetic fusion to validate our performance model of the hybrid application on these multicore supercomputers. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore supercomputers. © 2013 Elsevier Inc.

  17. Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu

    2013-12-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore supercomputers: IBM POWER4, POWER5+ and BlueGene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks and Intel\\'s MPI benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore supercomputers because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyrokinetic Toroidal Code (GTC) in magnetic fusion to validate our performance model of the hybrid application on these multicore supercomputers. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore supercomputers. © 2013 Elsevier Inc.

  18. HESS Opinions "The art of hydrology"*

    Directory of Open Access Journals (Sweden)

    H. H. G. Savenije

    2009-02-01

    Full Text Available Hydrological modelling is the same as developing and encoding a hydrological theory. A hydrological model is not a tool but a hypothesis. The whole discussion about the inadequacy of hydrological models we have witnessed of late, is related to the wrong concept of what a model is. Good models don't exist. Instead of looking for the "best" model, we should aim at developing better models. The process of modelling should be top-down, learning from the data while at the same time connection should be established with underlying physical theory (bottom-up. As a result of heterogeneity occurring at all scales in hydrology, there always remains a need for calibration of models. This implies that we need tailor-made and site-specific models. Only flexible models are fit for this modelling process, as opposed to most of the established software or "one-size-fits-all" models. The process of modelling requires imagination, inspiration, creativity, ingenuity, experience and skill. These are qualities that belong to the field of art. Hydrology is an art as much as it is science and engineering.

  19. Forcings and feedbacks on convection in the 2010 Pakistan flood: Modeling extreme precipitation with interactive large-scale ascent

    Science.gov (United States)

    Nie, Ji; Shaevitz, Daniel A.; Sobel, Adam H.

    2016-09-01

    Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. The causal relationships between these factors are often not obvious, however, the roles of different physical processes in producing the extreme precipitation event can be difficult to disentangle. Here we examine the large-scale forcings and convective heating feedback in the precipitation events, which caused the 2010 Pakistan flood within the Column Quasi-Geostrophic framework. A cloud-revolving model (CRM) is forced with large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation using input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. Numerical results show that the positive feedback of convective heating to large-scale dynamics is essential in amplifying the precipitation intensity to the observed values. Orographic lifting is the most important dynamic forcing in both events, while differential potential vorticity advection also contributes to the triggering of the first event. Horizontal moisture advection modulates the extreme events mainly by setting the environmental humidity, which modulates the amplitude of the convection's response to the dynamic forcings. When the CRM is replaced by either a single-column model (SCM) with parameterized convection or a dry model with a reduced effective static stability, the model results show substantial discrepancies compared with reanalysis data. The reasons for these discrepancies are examined, and the implications for global models and theoretical models are discussed.

  20. Coupling Hydrologic and Hydrodynamic Models to Estimate PMF

    Science.gov (United States)

    Felder, G.; Weingartner, R.

    2015-12-01

    Most sophisticated probable maximum flood (PMF) estimations derive the PMF from the probable maximum precipitation (PMP) by applying deterministic hydrologic models calibrated with observed data. This method is based on the assumption that the hydrological system is stationary, meaning that the system behaviour during the calibration period or the calibration event is presumed to be the same as it is during the PMF. However, as soon as a catchment-specific threshold is reached, the system is no longer stationary. At or beyond this threshold, retention areas, new flow paths, and changing runoff processes can strongly affect downstream peak discharge. These effects can be accounted for by coupling hydrologic and hydrodynamic models, a technique that is particularly promising when the expected peak discharge may considerably exceed the observed maximum discharge. In such cases, the coupling of hydrologic and hydraulic models has the potential to significantly increase the physical plausibility of PMF estimations. This procedure ensures both that the estimated extreme peak discharge does not exceed the physical limit based on riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered. Our study discusses the prospect of considering retention effects on PMF estimations by coupling hydrologic and hydrodynamic models. This method is tested by forcing PREVAH, a semi-distributed deterministic hydrological model, with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to externally force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). Finally, the PMF estimation results obtained using the coupled modelling approach are compared to the results obtained using ordinary hydrologic modelling.

  1. Development of fine-resolution analyses and expanded large-scale forcing properties: 2. Scale awareness and application to single-column model experiments

    Science.gov (United States)

    Feng, Sha; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Vogelmann, Andrew M.; Endo, Satoshi

    2015-01-01

    three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy's Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multiscale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scales larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.

  2. Large-scale model-based assessment of deer-vehicle collision risk.

    Directory of Open Access Journals (Sweden)

    Torsten Hothorn

    Full Text Available Ungulates, in particular the Central European roe deer Capreolus capreolus and the North American white-tailed deer Odocoileus virginianus, are economically and ecologically important. The two species are risk factors for deer-vehicle collisions and as browsers of palatable trees have implications for forest regeneration. However, no large-scale management systems for ungulates have been implemented, mainly because of the high efforts and costs associated with attempts to estimate population sizes of free-living ungulates living in a complex landscape. Attempts to directly estimate population sizes of deer are problematic owing to poor data quality and lack of spatial representation on larger scales. We used data on >74,000 deer-vehicle collisions observed in 2006 and 2009 in Bavaria, Germany, to model the local risk of deer-vehicle collisions and to investigate the relationship between deer-vehicle collisions and both environmental conditions and browsing intensities. An innovative modelling approach for the number of deer-vehicle collisions, which allows nonlinear environment-deer relationships and assessment of spatial heterogeneity, was the basis for estimating the local risk of collisions for specific road types on the scale of Bavarian municipalities. Based on this risk model, we propose a new "deer-vehicle collision index" for deer management. We show that the risk of deer-vehicle collisions is positively correlated to browsing intensity and to harvest numbers. Overall, our results demonstrate that the number of deer-vehicle collisions can be predicted with high precision on the scale of municipalities. In the densely populated and intensively used landscapes of Central Europe and North America, a model-based risk assessment for deer-vehicle collisions provides a cost-efficient instrument for deer management on the landscape scale. The measures derived from our model provide valuable information for planning road protection and defining

  3. Open source data assimilation framework for hydrological modeling

    Science.gov (United States)

    Ridler, Marc; Hummel, Stef; van Velzen, Nils; Katrine Falk, Anne; Madsen, Henrik

    2013-04-01

    An open-source data assimilation framework is proposed for hydrological modeling. Data assimilation (DA) in hydrodynamic and hydrological forecasting systems has great potential to improve predictions and improve model result. The basic principle is to incorporate measurement information into a model with the aim to improve model results by error minimization. Great strides have been made to assimilate traditional in-situ measurements such as discharge, soil moisture, hydraulic head and snowpack into hydrologic models. More recently, remotely sensed data retrievals of soil moisture, snow water equivalent or snow cover area, surface water elevation, terrestrial water storage and land surface temperature have been successfully assimilated in hydrological models. The assimilation algorithms have become increasingly sophisticated to manage measurement and model bias, non-linear systems, data sparsity (time & space) and undetermined system uncertainty. It is therefore useful to use a pre-existing DA toolbox such as OpenDA. OpenDA is an open interface standard for (and free implementation of) a set of tools to quickly implement DA and calibration for arbitrary numerical models. The basic design philosophy of OpenDA is to breakdown DA into a set of building blocks programmed in object oriented languages. To implement DA, a model must interact with OpenDA to create model instances, propagate the model, get/set variables (or parameters) and free the model once DA is completed. An open-source interface for hydrological models exists capable of all these tasks: OpenMI. OpenMI is an open source standard interface already adopted by key hydrological model providers. It defines a universal approach to interact with hydrological models during simulation to exchange data during runtime, thus facilitating the interactions between models and data sources. The interface is flexible enough so that models can interact even if the model is coded in a different language, represent

  4. High-resolution numerical modeling of meteorological and hydrological conditions during May 2014 floods in Serbia

    Science.gov (United States)

    Vujadinovic, Mirjam; Vukovic, Ana; Cvetkovic, Bojan; Pejanovic, Goran; Nickovic, Slobodan; Djurdjevic, Vladimir; Rajkovic, Borivoj; Djordjevic, Marija

    2015-04-01

    In May 2014 west Balkan region was affected by catastrophic floods in Serbia, Bosnia and Herzegovina and eastern parts of Croatia. Observed precipitation amount were extremely high, on many stations largest ever recorded. In the period from 12th to 18th of May, most of Serbia received between 50 to 100 mm of rainfall, while western parts of the country, which were influenced the most, had over 200 mm of rainfall, locally even more than 300 mm. This very intense precipitation came when the soil was already saturated after a very wet period during the second half of April and beginning of May, when most of Serbia received between 120 i 170 mm of rainfall. New abundant precipitation on already saturated soil increased surface and underground water flow, caused floods, soil erosion and landslides. High water levels, most of them record breaking, were measured on the Sava, Drina, Dunav, Kolubara, Ljig, Ub, Toplica, Tamnava, Jadar, Zapadna Morava, Velika Morava, Mlava and Pek river. Overall, two cities and 17 municipals were severely affected by the floods, 32000 people were evacuated from their homes, while 51 died. Material damage to the infrastructure, energy power system, crops, livestock funds and houses is estimated to more than 2 billion euro. Although the operational numerical weather forecast gave in generally good precipitation prediction, flood forecasting in this case was mainly done through the expert judgment rather than relying on dynamic hydrological modeling. We applied an integrated atmospheric-hydrologic modelling system to some of the most impacted catchments in order to timely simulate hydrological response, and examine its potentials as a flood warning system. The system is based on the Non-hydrostatic Multiscale Model NMMB, which is a numerical weather prediction model that can be used on a broad range of spatial and temporal scales. Its non-hydrostatic module allows high horizontal resolution and resolving cloud systems as well as large-scale

  5. Modification of input datasets for the Ensemble Streamflow Prediction based on large scale climatic indices and weather generator

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Daňhelka, J.

    2015-01-01

    Roč. 528, September (2015), s. 720-733 ISSN 0022-1694 Institutional support: RVO:67985874 Keywords : seasonal forecasting * ESP * large-scale climate * weather generator Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.043, year: 2015

  6. Integrating hydrologic modeling web services with online data sharing to prepare, store, and execute models in hydrology

    Science.gov (United States)

    Gan, T.; Tarboton, D. G.; Dash, P. K.; Gichamo, T.; Horsburgh, J. S.

    2017-12-01

    Web based apps, web services and online data and model sharing technology are becoming increasingly available to support research. This promises benefits in terms of collaboration, platform independence, transparency and reproducibility of modeling workflows and results. However, challenges still exist in real application of these capabilities and the programming skills researchers need to use them. In this research we combined hydrologic modeling web services with an online data and model sharing system to develop functionality to support reproducible hydrologic modeling work. We used HydroDS, a system that provides web services for input data preparation and execution of a snowmelt model, and HydroShare, a hydrologic information system that supports the sharing of hydrologic data, model and analysis tools. To make the web services easy to use, we developed a HydroShare app (based on the Tethys platform) to serve as a browser based user interface for HydroDS. In this integration, HydroDS receives web requests from the HydroShare app to process the data and execute the model. HydroShare supports storage and sharing of the results generated by HydroDS web services. The snowmelt modeling example served as a use case to test and evaluate this approach. We show that, after the integration, users can prepare model inputs or execute the model through the web user interface of the HydroShare app without writing program code. The model input/output files and metadata describing the model instance are stored and shared in HydroShare. These files include a Python script that is automatically generated by the HydroShare app to document and reproduce the model input preparation workflow. Once stored in HydroShare, inputs and results can be shared with other users, or published so that other users can directly discover, repeat or modify the modeling work. This approach provides a collaborative environment that integrates hydrologic web services with a data and model sharing

  7. Century long observation constrained global dynamic downscaling and hydrologic implication

    Science.gov (United States)

    Kim, H.; Yoshimura, K.; Chang, E.; Famiglietti, J. S.; Oki, T.

    2012-12-01

    It has been suggested that greenhouse gas induced warming climate causes the acceleration of large scale hydrologic cycles, and, indeed, many regions on the Earth have been suffered by hydrologic extremes getting more frequent. However, historical observations are not able to provide enough information in comprehensive manner to understand their long-term variability and/or global distributions. In this study, a century long high resolution global climate data is developed in order to break through existing limitations. 20th Century Reanalysis (20CR) which has relatively low spatial resolution (~2.0°) and longer term availability (140 years) is dynamically downscaled into global T248 (~0.5°) resolution using Experimental Climate Prediction Center (ECPC) Global Spectral Model (GSM) by spectral nudging data assimilation technique. Also, Global Precipitation Climatology Centre (GPCC) and Climate Research Unit (CRU) observational data are adopted to reduce model dependent uncertainty. Downscaled product successfully represents realistic geographical detail keeping low frequency signal in mean state and spatiotemporal variability, while previous bias correction method fails to reproduce high frequency variability. Newly developed data is used to investigate how long-term large scale terrestrial hydrologic cycles have been changed globally and how they have been interacted with various climate modes, such as El-Niño Southern Oscillation (ENSO) and Atlantic Multidecadal Oscillation (AMO). As a further application, it will be used to provide atmospheric boundary condition of multiple land surface models in the Global Soil Wetness Project Phase 3 (GSWP3).

  8. Deconstructing the deconstruction of Appalachia: Mountaintop mining effects on hydrology across temporal and spatial scales

    Science.gov (United States)

    Nippgen, F.; Ross, M. R. V.; Bernhardt, E. S.; McGlynn, B. L.

    2017-12-01

    Mountaintop mining (MTM) is an especially destructive form of surface coal mining. It is widespread in Central Appalachia and is practiced around the world. In the process of accessing coal seams up to several hundred meters below the surface, mountaintops and ridges are removed via explosives and heavy machinery with the resulting overburden pushed into nearby valleys. This broken up rock and soil material represents a largely unknown amount of storage for incoming precipitation that facilitates enhanced chemical weathering rates and increased dissolved solids exports to streams. However, assessing the independent impact of MTM can be difficult in the presence of other forms of mining, especially underground mining. Here, we evaluate the effect of MTM on water quantity and quality on annual, seasonal, and event time scales in two sets of paired watersheds in southwestern West Virginia impacted by MTM. On an annual timescale, the mined watersheds sustained baseflow throughout the year, while the first order watersheds ceased flowing during the latter parts of the growing season. In fractionally mined watersheds that continued to flow, the water in the stream was exclusively generated from mined portions of the watersheds, leading to elevated total dissolved solids in the stream water. On the event time scale, we analyzed 50 storm events over a water year for a range of hydrologic response metrics. The mined watersheds exhibited smaller runoff ratios and longer response times during the wet dormant season, but responded similarly to rainfall events during the growing season or even exceeded the runoff magnitude of the reference watersheds. Our research demonstrates a clear difference in hydrologic response between mined and unmined watersheds during the growing season and the dormant season that are detectable at annual, seasonal, and event time scales. For larger spatial scales (up to 2,000km2) the effect of MTM on water quantity is not as easily detectable. At

  9. Scaling Hydrologic Exchange Flows and Biogeochemical Reactions from Bedforms to Basins

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.

    2015-12-01

    River water moves in and out of the main channel along pathways that are perpendicular to the channel's main axis that flow across or beneath the ground surface. These hydrologic exchange flows (HEFs) are difficult to measure, yet no less important than a river's downstream flow, or exchanges with the atmosphere and deeper groundwater (Harvey and Gooseff, 2015, WRR). There are very few comprehensive investigations of exchange fluxes to understand patterns with river size and relative importance of specific types of exchanges. We used the physically based model NEXSS to simulate multiple scales of hyporheic flow and their cumulative effects on solute reaction in large basins (on the order of Chesapeake Bay basin or larger). Our goal was to explain where and when particular types of hyporheic flow are important in enhancing key biogeochemical reactions, such as organic carbon respiration and denitrification. Results demonstrate that hyporheic flux (expressed per unit area of streambed) varies surprisingly little across the continuum of first-order streams to eighth-order rivers, and vertical exchange beneath small bedforms dominates in comparison with lateral flow beneath gravel bars and meanders. Also, the river's entire volume is exchanged many times with hyporheic flow within a basin, and the turnover length (after one entire river volume is exchanged) is strongly influenced by hydrogeomorphic differences between physiographic regions as well as by river size. The cumulative effects on biogeochemical reactions were assessed using a the reaction significance factor, RSF, which computes the cumulative potential for hyporheic reactions using a dimensionless index that balances reaction progress in a single hyporheic flow path against overall processing efficiency of river turnover through hyporheic flow paths of that type. Reaction significance appears to be strongly dominated by hydrologic factors rather than biogeochemical factors, and seems to be dominated by

  10. Identifying influential data points in hydrological model calibration and their impact on streamflow predictions

    Science.gov (United States)

    Wright, David; Thyer, Mark; Westra, Seth

    2015-04-01

    Highly influential data points are those that have a disproportionately large impact on model performance, parameters and predictions. However, in current hydrological modelling practice the relative influence of individual data points on hydrological model calibration is not commonly evaluated. This presentation illustrates and evaluates several influence diagnostics tools that hydrological modellers can use to assess the relative influence of data. The feasibility and importance of including influence detection diagnostics as a standard tool in hydrological model calibration is discussed. Two classes of influence diagnostics are evaluated: (1) computationally demanding numerical "case deletion" diagnostics; and (2) computationally efficient analytical diagnostics, based on Cook's distance. These diagnostics are compared against hydrologically orientated diagnostics that describe changes in the model parameters (measured through the Mahalanobis distance), performance (objective function displacement) and predictions (mean and maximum streamflow). These influence diagnostics are applied to two case studies: a stage/discharge rating curve model, and a conceptual rainfall-runoff model (GR4J). Removing a single data point from the calibration resulted in differences to mean flow predictions of up to 6% for the rating curve model, and differences to mean and maximum flow predictions of up to 10% and 17%, respectively, for the hydrological model. When using the Nash-Sutcliffe efficiency in calibration, the computationally cheaper Cook's distance metrics produce similar results to the case-deletion metrics at a fraction of the computational cost. However, Cooks distance is adapted from linear regression with inherit assumptions on the data and is therefore less flexible than case deletion. Influential point detection diagnostics show great potential to improve current hydrological modelling practices by identifying highly influential data points. The findings of this

  11. Hydrologic impacts of thawing permafrost—A review

    Science.gov (United States)

    Walvoord, Michelle Ann; Kurylyk, Barret L.

    2016-01-01

    Where present, permafrost exerts a primary control on water fluxes, flowpaths, and distribution. Climate warming and related drivers of soil thermal change are expected to modify the distribution of permafrost, leading to changing hydrologic conditions, including alterations in soil moisture, connectivity of inland waters, streamflow seasonality, and the partitioning of water stored above and below ground. The field of permafrost hydrology is undergoing rapid advancement with respect to multiscale observations, subsurface characterization, modeling, and integration with other disciplines. However, gaining predictive capability of the many interrelated consequences of climate change is a persistent challenge due to several factors. Observations of hydrologic change have been causally linked to permafrost thaw, but applications of process-based models needed to support and enhance the transferability of empirical linkages have often been restricted to generalized representations. Limitations stem from inadequate baseline permafrost and unfrozen hydrogeologic characterization, lack of historical data, and simplifications in structure and process representation needed to counter the high computational demands of cryohydrogeologic simulations. Further, due in part to the large degree of subsurface heterogeneity of permafrost landscapes and the nonuniformity in thaw patterns and rates, associations between various modes of permafrost thaw and hydrologic change are not readily scalable; even trajectories of change can differ. This review highlights promising advances in characterization and modeling of permafrost regions and presents ongoing research challenges toward projecting hydrologic and ecologic consequences of permafrost thaw at time and spatial scales that are useful to managers and researchers.

  12. An assessment of basin-scale glaciological and hydrological sensitivities in the Hindu Kush-Himalaya

    NARCIS (Netherlands)

    Shea, Joseph M.; Immerzeel, Walter W.

    2016-01-01

    Glacier responses to future climate change will affect hydrology at sub-basin scales. The main goal of this study is to assess glaciological and hydrological sensitivities of sub-basins throughout the Hindu Kush-Himalaya region. We use a simple geometrical analysis based on a full glacier inventory

  13. Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery

    Directory of Open Access Journals (Sweden)

    Q. Wu

    2017-07-01

    Full Text Available In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling–spilling–merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow simulation and hydrologic connectivity analysis.

  14. Hydrologic Modeling at the National Water Center: Operational Implementation of the WRF-Hydro Model to support National Weather Service Hydrology

    Science.gov (United States)

    Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Fall, G. M.; Feng, X.; Fresch, M. A.; Gourley, J. J.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Smith, M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.; Zhang, Y.

    2015-12-01

    The National Weather Service (NWS) National Water Center(NWC) is collaborating with the NWS National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) to implement a first-of-its-kind operational instance of the Weather Research and Forecasting (WRF)-Hydro model over the Continental United States (CONUS) and contributing drainage areas on the NWS Weather and Climate Operational Supercomputing System (WCOSS) supercomputer. The system will provide seamless, high-resolution, continuously cycling forecasts of streamflow and other hydrologic outputs of value from both deterministic- and ensemble-type runs. WRF-Hydro will form the core of the NWC national water modeling strategy, supporting NWS hydrologic forecast operations along with emergency response and water management efforts of partner agencies. Input and output from the system will be comprehensively verified via the NWC Water Resource Evaluation Service. Hydrologic events occur on a wide range of temporal scales, from fast acting flash floods, to long-term flow events impacting water supply. In order to capture this range of events, the initial operational WRF-Hydro configuration will feature 1) hourly analysis runs, 2) short-and medium-range deterministic forecasts out to two day and ten day horizons and 3) long-range ensemble forecasts out to 30 days. All three of these configurations are underpinned by a 1km execution of the NoahMP land surface model, with channel routing taking place on 2.67 million NHDPlusV2 catchments covering the CONUS and contributing areas. Additionally, the short- and medium-range forecasts runs will feature surface and sub-surface routing on a 250m grid, while the hourly analyses will feature this same 250m routing in addition to nudging-based assimilation of US Geological Survey (USGS) streamflow observations. A limited number of major reservoirs will be configured within the model to begin to represent the first-order impacts of

  15. Influence of climate variability versus change at multi-decadal time scales on hydrological extremes

    Science.gov (United States)

    Willems, Patrick

    2014-05-01

    Recent studies have shown that rainfall and hydrological extremes do not randomly occur in time, but are subject to multidecadal oscillations. In addition to these oscillations, there are temporal trends due to climate change. Design statistics, such as intensity-duration-frequency (IDF) for extreme rainfall or flow-duration-frequency (QDF) relationships, are affected by both types of temporal changes (short term and long term). This presentation discusses these changes, how they influence water engineering design and decision making, and how this influence can be assessed and taken into account in practice. The multidecadal oscillations in rainfall and hydrological extremes were studied based on a technique for the identification and analysis of changes in extreme quantiles. The statistical significance of the oscillations was evaluated by means of a non-parametric bootstrapping method. Oscillations in large scale atmospheric circulation were identified as the main drivers for the temporal oscillations in rainfall and hydrological extremes. They also explain why spatial phase shifts (e.g. north-south variations in Europe) exist between the oscillation highs and lows. Next to the multidecadal climate oscillations, several stations show trends during the most recent decades, which may be attributed to climate change as a result of anthropogenic global warming. Such attribution to anthropogenic global warming is, however, uncertain. It can be done based on simulation results with climate models, but it is shown that the climate model results are too uncertain to enable a clear attribution. Water engineering design statistics, such as extreme rainfall IDF or peak or low flow QDF statistics, obviously are influenced by these temporal variations (oscillations, trends). It is shown in the paper, based on the Brussels 10-minutes rainfall data, that rainfall design values may be about 20% biased or different when based on short rainfall series of 10 to 15 years length, and

  16. Modification of input datasets for the Ensemble Streamflow Prediction based on large scale climatic indices and weather generator

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Daňhelka, J.

    2015-01-01

    Roč. 528, September (2015), s. 720-733 ISSN 0022-1694 Institutional support: RVO:67985874 Keywords : sea sonal forecasting * ESP * large-scale climate * weather generator Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.043, year: 2015

  17. airGR: a suite of lumped hydrological models in an R-package

    Science.gov (United States)

    Coron, Laurent; Perrin, Charles; Delaigue, Olivier; Andréassian, Vazken; Thirel, Guillaume

    2016-04-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years with the main objectives of designing models as efficient as possible in terms of streamflow simulation, applicable to a wide range of catchments and having low data requirements. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2015), called airGR, to make these models widely available. It includes: - the water balance annual GR1A (Mouehli et al., 2006), - the monthly GR2M (Mouehli, 2003) models, - three versions of the daily model, namely GR4J (Perrin et al., 2003), GR5J (Le Moine, 2008) and GR6J (Pushpalatha et al., 2011), - the hourly GR4H model (Mathevet, 2005), - a degree-day snow module CemaNeige (Valéry et al., 2014). The airGR package has been designed to facilitate the use by non-expert users and allow the addition of evaluation criteria, models or calibration algorithms selected by the end-user. Each model core is coded in FORTRAN to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria) are coded in R. The package is already used for educational purposes. The presentation will detail the main functionalities of the package and present a case

  18. Developing Flexible, Integrated Hydrologic Modeling Systems for Multiscale Analysis in the Midwest and Great Lakes Region

    Science.gov (United States)

    Hamlet, A. F.; Chiu, C. M.; Sharma, A.; Byun, K.; Hanson, Z.

    2016-12-01

    Physically based hydrologic modeling of surface and groundwater resources that can be flexibly and efficiently applied to support water resources policy/planning/management decisions at a wide range of spatial and temporal scales are greatly needed in the Midwest, where stakeholder access to such tools is currently a fundamental barrier to basic climate change assessment and adaptation efforts, and also the co-production of useful products to support detailed decision making. Based on earlier pilot studies in the Pacific Northwest Region, we are currently assembling a suite of end-to-end tools and resources to support various kinds of water resources planning and management applications across the region. One of the key aspects of these integrated tools is that the user community can access gridded products at any point along the end-to-end chain of models, looking backwards in time about 100 years (1915-2015), and forwards in time about 85 years using CMIP5 climate model projections. The integrated model is composed of historical and projected future meteorological data based on station observations and statistical and dynamically downscaled climate model output respectively. These gridded meteorological data sets serve as forcing data for the macro-scale VIC hydrologic model implemented over the Midwest at 1/16 degree resolution. High-resolution climate model (4km WRF) output provides inputs for the analyses of urban impacts, hydrologic extremes, agricultural impacts, and impacts to the Great Lakes. Groundwater recharge estimated by the surface water model provides input data for fine-scale and macro-scale groundwater models needed for specific applications. To highlight the multi-scale use of the integrated models in support of co-production of scientific information for decision making, we briefly describe three current case studies addressing different spatial scales of analysis: 1) Effects of climate change on the water balance of the Great Lakes, 2) Future

  19. Perspectives in using a remotely sensed dryness index in distributed hydrological models at river basin scale

    DEFF Research Database (Denmark)

    Andersen, Jens Asger; Sandholt, Inge; Jensen, Karsten Høgh

    2002-01-01

    In a previous study a spatially distributed hydrological model, based on the MIKE SHE code, was constructed and validated for the 375 000 km2 Senegal River basin in West Africa. The model was constructed using spatial data on topography, soil types and vegetation characteristics together with time...

  20. Cyberinfrastructure to Support Collaborative and Reproducible Computational Hydrologic Modeling

    Science.gov (United States)

    Goodall, J. L.; Castronova, A. M.; Bandaragoda, C.; Morsy, M. M.; Sadler, J. M.; Essawy, B.; Tarboton, D. G.; Malik, T.; Nijssen, B.; Clark, M. P.; Liu, Y.; Wang, S. W.

    2017-12-01

    Creating cyberinfrastructure to support reproducibility of computational hydrologic models is an important research challenge. Addressing this challenge requires open and reusable code and data with machine and human readable metadata, organized in ways that allow others to replicate results and verify published findings. Specific digital objects that must be tracked for reproducible computational hydrologic modeling include (1) raw initial datasets, (2) data processing scripts used to clean and organize the data, (3) processed model inputs, (4) model results, and (5) the model code with an itemization of all software dependencies and computational requirements. HydroShare is a cyberinfrastructure under active development designed to help users store, share, and publish digital research products in order to improve reproducibility in computational hydrology, with an architecture supporting hydrologic-specific resource metadata. Researchers can upload data required for modeling, add hydrology-specific metadata to these resources, and use the data directly within HydroShare.org for collaborative modeling using tools like CyberGIS, Sciunit-CLI, and JupyterHub that have been integrated with HydroShare to run models using notebooks, Docker containers, and cloud resources. Current research aims to implement the Structure For Unifying Multiple Modeling Alternatives (SUMMA) hydrologic model within HydroShare to support hypothesis-driven hydrologic modeling while also taking advantage of the HydroShare cyberinfrastructure. The goal of this integration is to create the cyberinfrastructure that supports hypothesis-driven model experimentation, education, and training efforts by lowering barriers to entry, reducing the time spent on informatics technology and software development, and supporting collaborative research within and across research groups.

  1. Probes of large-scale structure in the Universe

    International Nuclear Information System (INIS)

    Suto, Yasushi; Gorski, K.; Juszkiewicz, R.; Silk, J.

    1988-01-01

    Recent progress in observational techniques has made it possible to confront quantitatively various models for the large-scale structure of the Universe with detailed observational data. We develop a general formalism to show that the gravitational instability theory for the origin of large-scale structure is now capable of critically confronting observational results on cosmic microwave background radiation angular anisotropies, large-scale bulk motions and large-scale clumpiness in the galaxy counts. (author)

  2. Modelling Peatland Hydrology: Three cases from Northern Europe

    NARCIS (Netherlands)

    Querner, E.P.; Mioduszewski, W.; Povilaitis, A.; Slesicka, A.

    2010-01-01

    Many of the peatlands that used to extend over large parts of Northern Europe have been reclaimed for agriculture. Human influence continues to have a major impact on the hydrology of those that remain, affecting river flow and groundwater levels. In order to understand this hydrology it is

  3. Satellite altimetry over large hydrological basins

    Science.gov (United States)

    Calmant, Stephane

    2015-04-01

    The use of satellite altimetry for hydrological applications, either it is basin management or hydrological modeling really started with the 21st century. Before, during two decades, the efforts were concentrated on the data processing until a precision of a few decimeters could be achieved. Today, several web sites distribute hundreds of series spread over hundeds of rivers runing in the major basins of the world. Among these, the Amazon basin has been the most widely studied. Satellite altimetry is now routinely used in this transboundary basin to predict discharges ranging over 4 orders of magnitude. In a few years, satellite altimetry should evolve dramatically. This year, we should see the launchs of Jason-3 and that of Sentinel-3A operating in SAR mode. With SAR, the accuracy and resolution of a growing number of measurements should be improved. In 2020, SWOT will provide a full coverage that will join in a unique framework all the previous and forthcoming missions. These technical and thematical evolutions will be illustrated by examples taken in the Amazon and Congo basin.

  4. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin

    Science.gov (United States)

    Cui, X.; Liu, S.; Wei, X.

    2012-05-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed located in the upper reach of the Yangtze River Basin plays a strategic role in environmental protection and economic and social wellbeing for both the watershed and the entire Yangtze Basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently-completed research programs (one of them known as "973 of the China National Major Fundamental Science" with funding of 3.5 million USD in 2002 to 2008). This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful because the results from a small spatial scale (e.g. forest stand level) can help interpret the findings at a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation at both spatial scales. The impact magnitudes caused by forest harvesting indicate that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yields in the Minjiang River watershed. In addition, different types of forests have different magnitudes of ET with old-growth natural

  5. HYDROGRAV - Hydrological model calibration and terrestrial water storage monitoring from GRACE gravimetry and satellite altimetry, First results

    DEFF Research Database (Denmark)

    Andersen, O.B.; Krogh, P.E.; Michailovsky, C.

    2008-01-01

    Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration and terre...... change from 2002 to 2008 along with in-situ gravity time-lapse observations and radar altimetry monitoring of surface water for the southern Africa river basins will be presented.......Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration...... and terrestrial water storage monitoring. Merging remote sensing data from GRACE with other remote sensing data like satellite altimetry and also ground based observations are important to hydrological model calibration and water balance monitoring of large regions and can serve as either supplement or as vital...

  6. A semiparametric graphical modelling approach for large-scale equity selection.

    Science.gov (United States)

    Liu, Han; Mulvey, John; Zhao, Tianqi

    2016-01-01

    We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption.

  7. Numerically modelling the large scale coronal magnetic field

    Science.gov (United States)

    Panja, Mayukh; Nandi, Dibyendu

    2016-07-01

    The solar corona spews out vast amounts of magnetized plasma into the heliosphere which has a direct impact on the Earth's magnetosphere. Thus it is important that we develop an understanding of the dynamics of the solar corona. With our present technology it has not been possible to generate 3D magnetic maps of the solar corona; this warrants the use of numerical simulations to study the coronal magnetic field. A very popular method of doing this, is to extrapolate the photospheric magnetic field using NLFF or PFSS codes. However the extrapolations at different time intervals are completely independent of each other and do not capture the temporal evolution of magnetic fields. On the other hand full MHD simulations of the global coronal field, apart from being computationally very expensive would be physically less transparent, owing to the large number of free parameters that are typically used in such codes. This brings us to the Magneto-frictional model which is relatively simpler and computationally more economic. We have developed a Magnetofrictional Model, in 3D spherical polar co-ordinates to study the large scale global coronal field. Here we present studies of changing connectivities between active regions, in response to photospheric motions.

  8. Ship detection using STFT sea background statistical modeling for large-scale oceansat remote sensing image

    Science.gov (United States)

    Wang, Lixia; Pei, Jihong; Xie, Weixin; Liu, Jinyuan

    2018-03-01

    Large-scale oceansat remote sensing images cover a big area sea surface, which fluctuation can be considered as a non-stationary process. Short-Time Fourier Transform (STFT) is a suitable analysis tool for the time varying nonstationary signal. In this paper, a novel ship detection method using 2-D STFT sea background statistical modeling for large-scale oceansat remote sensing images is proposed. First, the paper divides the large-scale oceansat remote sensing image into small sub-blocks, and 2-D STFT is applied to each sub-block individually. Second, the 2-D STFT spectrum of sub-blocks is studied and the obvious different characteristic between sea background and non-sea background is found. Finally, the statistical model for all valid frequency points in the STFT spectrum of sea background is given, and the ship detection method based on the 2-D STFT spectrum modeling is proposed. The experimental result shows that the proposed algorithm can detect ship targets with high recall rate and low missing rate.

  9. Model Predictive Control for Flexible Power Consumption of Large-Scale Refrigeration Systems

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Stoustrup, Jakob; Rasmussen, Henrik

    2014-01-01

    A model predictive control (MPC) scheme is introduced to directly control the electrical power consumption of large-scale refrigeration systems. Deviation from the baseline of the consumption is corresponded to the storing and delivering of thermal energy. By virtue of such correspondence...

  10. Hydrologic Modeling of Conservation Farming Practices on the Palouse

    Science.gov (United States)

    van Wie, J.; Adam, J. C.; Ullman, J.

    2009-12-01

    The production of dryland crops such as wheat and barley in a semi-arid region requires a reliable and adequate water supply. This supply of water available for crop use is of heightened importance in areas such as the Palouse region of eastern Washington and northern Idaho where the majority of annual rainfall occurs during the winter months and must be retained in the soil through the dry summer growing season. Farmers can increase conservation of water at the field and watershed scales through the adoption of best management practices that incorporate tillage and crop residue management. This research analyzes conservation farming practices that may be implemented by representing them in a watershed-scale hydrologic model in order to determine whether these practices will effectively save water so that a stable crop yield may be insured. The Distributed Hydrology Soil Vegetation Model (DHSVM) is applied and calibrated to represent the physical changes to infiltration, evaporation, and runoff that result from altered soil and vegetation characteristics brought on by management practices. The model is calibrated with field observations at the basin scale as well as the point scale over individual plots that are under various implementations of conservation management scenarios. Conservation practices are accounted for in DHSVM by adjusting input parameters such as the porosity, roughness, and hydraulic conductivity of the soil to characterize varying levels of tillage. Vegetation parameters such as leaf area index and albedo are altered to represent different amounts of crop residue left on the field through the winter months. After calibration, the model is applied over the entire basin under scenarios representing traditional agricultural methods and a region-wide shift to conservation practices. The resulting water balance suggests that there is a potential to retain water in the seed-zone during the winter months by decreasing evaporation and runoff through

  11. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.

    Science.gov (United States)

    Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A

    2015-04-01

    The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts

    Science.gov (United States)

    Wongchuig Correa, Sly; Paiva, Rodrigo Cauduro Dias de; Espinoza, Jhan Carlo; Collischonn, Walter

    2017-06-01

    Recently developed methodologies such as climate reanalysis make it possible to create a historical record of climate systems. This paper proposes a methodology called Hydrological Retrospective (HR), which essentially simulates large rainfall datasets, using this as input into hydrological models to develop a record of past hydrology, making it possible to analyze past floods and droughts. We developed a methodology for the Amazon basin, where studies have shown an increase in the intensity and frequency of hydrological extreme events in recent decades. We used eight large precipitation datasets (more than 30 years) as input for a large scale hydrological and hydrodynamic model (MGB-IPH). HR products were then validated against several in situ discharge gauges controlling the main Amazon sub-basins, focusing on maximum and minimum events. For the most accurate HR, based on performance metrics, we performed a forecast skill of HR to detect floods and droughts, comparing the results with in-situ observations. A statistical temporal series trend was performed for intensity of seasonal floods and droughts in the entire Amazon basin. Results indicate that HR could represent most past extreme events well, compared with in-situ observed data, and was consistent with many events reported in literature. Because of their flow duration, some minor regional events were not reported in literature but were captured by HR. To represent past regional hydrology and seasonal hydrological extreme events, we believe it is feasible to use some large precipitation datasets such as i) climate reanalysis, which is mainly based on a land surface component, and ii) datasets based on merged products. A significant upward trend in intensity was seen in maximum annual discharge (related to floods) in western and northwestern regions and for minimum annual discharge (related to droughts) in south and central-south regions of the Amazon basin. Because of the global coverage of rainfall datasets

  13. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling

    Science.gov (United States)

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli

    2017-07-01

    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  14. The relation between geometry, hydrology and stability of complex hillslopes examined using low-dimensional hydrological models

    NARCIS (Netherlands)

    Talebi, A.

    2008-01-01

    Key words: Hillslope geometry, Hillslope hydrology, Hillslope stability, Complex hillslopes, Modeling shallow landslides, HSB model, HSB-SM model.

    The hydrologic response of a hillslope to rainfall involves a complex, transient saturated-unsaturated interaction that usually leads to a

  15. Appropriatie spatial scales to achieve model output uncertainty goals

    NARCIS (Netherlands)

    Booij, Martijn J.; Melching, Charles S.; Chen, Xiaohong; Chen, Yongqin; Xia, Jun; Zhang, Hailun

    2008-01-01

    Appropriate spatial scales of hydrological variables were determined using an existing methodology based on a balance in uncertainties from model inputs and parameters extended with a criterion based on a maximum model output uncertainty. The original methodology uses different relationships between

  16. A GIS Tool for evaluating and improving NEXRAD and its application in distributed hydrologic modeling

    Science.gov (United States)

    Zhang, X.; Srinivasan, R.

    2008-12-01

    In this study, a user friendly GIS tool was developed for evaluating and improving NEXRAD using raingauge data. This GIS tool can automatically read in raingauge and NEXRAD data, evaluate the accuracy of NEXRAD for each time unit, implement several geostatistical methods to improve the accuracy of NEXRAD through raingauge data, and output spatial precipitation map for distributed hydrologic model. The geostatistical methods incorporated in this tool include Simple Kriging with varying local means, Kriging with External Drift, Regression Kriging, Co-Kriging, and a new geostatistical method that was newly developed by Li et al. (2008). This tool was applied in two test watersheds at hourly and daily temporal scale. The preliminary cross-validation results show that incorporating raingauge data to calibrate NEXRAD can pronouncedly change the spatial pattern of NEXRAD and improve its accuracy. Using different geostatistical methods, the GIS tool was applied to produce long term precipitation input for a distributed hydrologic model - Soil and Water Assessment Tool (SWAT). Animated video was generated to vividly illustrate the effect of using different precipitation input data on distributed hydrologic modeling. Currently, this GIS tool is developed as an extension of SWAT, which is used as water quantity and quality modeling tool by USDA and EPA. The flexible module based design of this tool also makes it easy to be adapted for other hydrologic models for hydrological modeling and water resources management.

  17. Rainfall-runoff modelling and palaeoflood hydrology applied to reconstruct centennial scale records of flooding and aquifer recharge in ungauged ephemeral rivers

    Directory of Open Access Journals (Sweden)

    G. Benito

    2011-04-01

    Full Text Available In this study we propose a multi-source data approach for quantifying long-term flooding and aquifer recharge in ungauged ephemeral rivers. The methodology is applied to the Buffels River, at 9000 km2 the largest ephemeral river in Namaqualand (NW South Africa, a region with scarce stream flow records limiting research investigating hydrological response to global change. Daily discharge and annual flood series (1965–2006 were estimated from a distributed rainfall-runoff hydrological model (TETIS using rainfall gauge records located within the catchment. The model was calibrated and validated with data collected during a two year monitoring programme (2005–2006 at two stream flow stations, one each in the upper and lower reaches of the catchment. In addition to the modelled flow records, non-systematic flood data were reconstructed using both sedimentary and documentary evidence. The palaeoflood record identified at least 25 large floods during the last 700 yr; with the largest floods reaching a minimum discharge of 255 m3 s−1 (450 yr return period in the upper basin, and 510 m3 s−1 (100 yr return period in the lower catchment. Since AD 1925, the flood hydrology of the Buffels River has been characterised by a decrease in the magnitude and frequency of extreme floods, with palaeoflood discharges (period 1500–1921 five times greater than the largest modelled floods during the period 1965–2006. Large floods generated the highest hydrograph volumes, however their contribution to aquifer recharge is limited as this depends on other factors such as flood duration and storage capacity of the unsaturated zone prior to the flood. Floods having average return intervals of 5–10 yr (120–140 m3 s−1 and flowing for 12 days are able to fully saturate the Spektakel aquifer in the lower Buffels River basin. Alluvial aquifer storage capacity limiting potential recharge

  18. Deterministic sensitivity and uncertainty analysis for large-scale computer models

    International Nuclear Information System (INIS)

    Worley, B.A.; Pin, F.G.; Oblow, E.M.; Maerker, R.E.; Horwedel, J.E.; Wright, R.Q.

    1988-01-01

    This paper presents a comprehensive approach to sensitivity and uncertainty analysis of large-scale computer models that is analytic (deterministic) in principle and that is firmly based on the model equations. The theory and application of two systems based upon computer calculus, GRESS and ADGEN, are discussed relative to their role in calculating model derivatives and sensitivities without a prohibitive initial manpower investment. Storage and computational requirements for these two systems are compared for a gradient-enhanced version of the PRESTO-II computer model. A Deterministic Uncertainty Analysis (DUA) method that retains the characteristics of analytically computing result uncertainties based upon parameter probability distributions is then introduced and results from recent studies are shown. 29 refs., 4 figs., 1 tab

  19. Land-surface modelling in hydrological perspective

    DEFF Research Database (Denmark)

    Overgaard, Jesper; Rosbjerg, Dan; Butts, M.B.

    2006-01-01

    The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches......, and the difficulties inherent in various evaluation procedures are presented. Finally, the dynamic coupling of hydrological and atmospheric models is explored, and the perspectives of such efforts are discussed......., because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opportunities for evaluation of distributed land-surface models through application of remote sensing are discussed in detail...

  20. Human-Robot Teaming for Hydrologic Data Gathering at Multiple Scales

    Science.gov (United States)

    Peschel, J.; Young, S. N.

    2017-12-01

    The use of personal robot-assistive technology by researchers and practitioners for hydrologic data gathering has grown in recent years as barriers to platform capability, cost, and human-robot interaction have been overcome. One consequence to this growth is a broad availability of unmanned platforms that might or might not be suitable for a specific hydrologic investigation. Through multiple field studies, a set of recommendations has been developed to help guide novice through experienced users in choosing the appropriate unmanned platforms for a given application. This talk will present a series of hydrologic data sets gathered using a human-robot teaming approach that has leveraged unmanned aerial, ground, and surface vehicles over multiple scales. The field case studies discussed will be connected to the best practices, also provided in the presentation. This talk will be of interest to geoscience researchers and practitioners, in general, as well as those working in fields related to emerging technologies.