WorldWideScience

Sample records for large-scale community structure

  1. Rocky intertidal macrobenthic communities across a large-scale estuarine gradient

    Directory of Open Access Journals (Sweden)

    Luis Giménez

    2010-03-01

    Full Text Available We evaluated relationships between (1 salinity and species richness and (2 frontal zones and community structure for the rocky intertidal macrobenthic community of the Uruguayan coast. A large-scale sampling design (extent ~500 km covering 9 rocky shores across 3 intertidal levels was performed between September and November 2002. The linear relationship between salinity and species richness (minimum at the freshwater extreme and the lack of correlation between variation in salinity and richness rejected two previous empirical models, explaining variations in species richness along the salinity gradient. Other factors (e.g. turbidity may explain this discrepancy. The estuarine front defined two communities—freshwater and estuarine-marine—differing in species composition and richness. The freshwater community was characterised by low richness and few individuals confined to crevices or tide pools, and must be structured by physical processes (e.g. desiccation; the estuarine-marine community, with individuals occupying almost all available substrata, must be structured by both physical and biological processes. A marine front, separating estuarine and marine habitats, had a weak effect on community structure although estuarine and marine assemblages differed according to species characterising different functional groups. We conclude that the position of the estuarine frontal zones is important for explaining large-scale patterns of community structure in the study area.

  2. Understory fern community structure, growth and spore production responses to a large-scale hurricane experiment in a Puerto Rico rainforest

    Science.gov (United States)

    Joanne M. Sharpe; Aaron B. Shiels

    2014-01-01

    Ferns are abundant in most rainforest understories yet their responses to hurricanes have not been well studied. Fern community structure, growth and spore production were monitored for two years before and five years after a large-scale experiment that simulated two key components of severe hurricane disturbance: canopy openness and debris deposition. The canopy was...

  3. Probes of large-scale structure in the Universe

    International Nuclear Information System (INIS)

    Suto, Yasushi; Gorski, K.; Juszkiewicz, R.; Silk, J.

    1988-01-01

    Recent progress in observational techniques has made it possible to confront quantitatively various models for the large-scale structure of the Universe with detailed observational data. We develop a general formalism to show that the gravitational instability theory for the origin of large-scale structure is now capable of critically confronting observational results on cosmic microwave background radiation angular anisotropies, large-scale bulk motions and large-scale clumpiness in the galaxy counts. (author)

  4. Large Scale Community Detection Using a Small World Model

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Behera

    2017-11-01

    Full Text Available In a social network, small or large communities within the network play a major role in deciding the functionalities of the network. Despite of diverse definitions, communities in the network may be defined as the group of nodes that are more densely connected as compared to nodes outside the group. Revealing such hidden communities is one of the challenging research problems. A real world social network follows small world phenomena, which indicates that any two social entities can be reachable in a small number of steps. In this paper, nodes are mapped into communities based on the random walk in the network. However, uncovering communities in large-scale networks is a challenging task due to its unprecedented growth in the size of social networks. A good number of community detection algorithms based on random walk exist in literature. In addition, when large-scale social networks are being considered, these algorithms are observed to take considerably longer time. In this work, with an objective to improve the efficiency of algorithms, parallel programming framework like Map-Reduce has been considered for uncovering the hidden communities in social network. The proposed approach has been compared with some standard existing community detection algorithms for both synthetic and real-world datasets in order to examine its performance, and it is observed that the proposed algorithm is more efficient than the existing ones.

  5. Trends in large-scale testing of reactor structures

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    2003-01-01

    Large-scale tests of reactor structures have been conducted at Sandia National Laboratories since the late 1970s. This paper describes a number of different large-scale impact tests, pressurization tests of models of containment structures, and thermal-pressure tests of models of reactor pressure vessels. The advantages of large-scale testing are evident, but cost, in particular limits its use. As computer models have grown in size, such as number of degrees of freedom, the advent of computer graphics has made possible very realistic representation of results - results that may not accurately represent reality. A necessary condition to avoiding this pitfall is the validation of the analytical methods and underlying physical representations. Ironically, the immensely larger computer models sometimes increase the need for large-scale testing, because the modeling is applied to increasing more complex structural systems and/or more complex physical phenomena. Unfortunately, the cost of large-scale tests is a disadvantage that will likely severely limit similar testing in the future. International collaborations may provide the best mechanism for funding future programs with large-scale tests. (author)

  6. Large scale structure and baryogenesis

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    2001-08-01

    We discuss a possible connection between the large scale structure formation and the baryogenesis in the universe. An update review of the observational indications for the presence of a very large scale 120h -1 Mpc in the distribution of the visible matter of the universe is provided. The possibility to generate a periodic distribution with the characteristic scale 120h -1 Mpc through a mechanism producing quasi-periodic baryon density perturbations during inflationary stage, is discussed. The evolution of the baryon charge density distribution is explored in the framework of a low temperature boson condensate baryogenesis scenario. Both the observed very large scale of a the visible matter distribution in the universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage. Moreover, for some model's parameters a natural separation of matter superclusters from antimatter ones can be achieved. (author)

  7. Large-Scale Structure and Hyperuniformity of Amorphous Ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto

    2017-09-01

    We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.

  8. Large-scale structure of the Universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.

    1978-01-01

    The problems, discussed at the ''Large-scale Structure of the Universe'' symposium are considered on a popular level. Described are the cell structure of galaxy distribution in the Universe, principles of mathematical galaxy distribution modelling. The images of cell structures, obtained after reprocessing with the computer are given. Discussed are three hypothesis - vortical, entropic, adiabatic, suggesting various processes of galaxy and galaxy clusters origin. A considerable advantage of the adiabatic hypothesis is recognized. The relict radiation, as a method of direct studying the processes taking place in the Universe is considered. The large-scale peculiarities and small-scale fluctuations of the relict radiation temperature enable one to estimate the turbance properties at the pre-galaxy stage. The discussion of problems, pertaining to studying the hot gas, contained in galaxy clusters, the interactions within galaxy clusters and with the inter-galaxy medium, is recognized to be a notable contribution into the development of theoretical and observational cosmology

  9. Multi-scale associations between vegetation cover and woodland bird communities across a large agricultural region.

    Directory of Open Access Journals (Sweden)

    Karen Ikin

    Full Text Available Improving biodiversity conservation in fragmented agricultural landscapes has become an important global issue. Vegetation at the patch and landscape-scale is important for species occupancy and diversity, yet few previous studies have explored multi-scale associations between vegetation and community assemblages. Here, we investigated how patch and landscape-scale vegetation cover structure woodland bird communities. We asked: (1 How is the bird community associated with the vegetation structure of woodland patches and the amount of vegetation cover in the surrounding landscape? (2 Do species of conservation concern respond to woodland vegetation structure and surrounding vegetation cover differently to other species in the community? And (3 Can the relationships between the bird community and the woodland vegetation structure and surrounding vegetation cover be explained by the ecological traits of the species comprising the bird community? We studied 103 woodland patches (0.5 - 53.8 ha over two time periods across a large (6,800 km(2 agricultural region in southeastern Australia. We found that both patch vegetation and surrounding woody vegetation cover were important for structuring the bird community, and that these relationships were consistent over time. In particular, the occurrence of mistletoe within the patches and high values of woody vegetation cover within 1,000 ha and 10,000 ha were important, especially for bird species of conservation concern. We found that the majority of these species displayed similar, positive responses to patch and landscape vegetation attributes. We also found that these relationships were related to the foraging and nesting traits of the bird community. Our findings suggest that management strategies to increase both remnant vegetation quality and the cover of surrounding woody vegetation in fragmented agricultural landscapes may lead to improved conservation of bird communities.

  10. Large-scale assessment of benthic communities across multiple marine protected areas using an autonomous underwater vehicle.

    Science.gov (United States)

    Ferrari, Renata; Marzinelli, Ezequiel M; Ayroza, Camila Rezende; Jordan, Alan; Figueira, Will F; Byrne, Maria; Malcolm, Hamish A; Williams, Stefan B; Steinberg, Peter D

    2018-01-01

    Marine protected areas (MPAs) are designed to reduce threats to biodiversity and ecosystem functioning from anthropogenic activities. Assessment of MPAs effectiveness requires synchronous sampling of protected and non-protected areas at multiple spatial and temporal scales. We used an autonomous underwater vehicle to map benthic communities in replicate 'no-take' and 'general-use' (fishing allowed) zones within three MPAs along 7o of latitude. We recorded 92 taxa and 38 morpho-groups across three large MPAs. We found that important habitat-forming biota (e.g. massive sponges) were more prevalent and abundant in no-take zones, while short ephemeral algae were more abundant in general-use zones, suggesting potential short-term effects of zoning (5-10 years). Yet, short-term effects of zoning were not detected at the community level (community structure or composition), while community structure varied significantly among MPAs. We conclude that by allowing rapid, simultaneous assessments at multiple spatial scales, autonomous underwater vehicles are useful to document changes in marine communities and identify adequate scales to manage them. This study advanced knowledge of marine benthic communities and their conservation in three ways. First, we quantified benthic biodiversity and abundance, generating the first baseline of these benthic communities against which the effectiveness of three large MPAs can be assessed. Second, we identified the taxonomic resolution necessary to assess both short and long-term effects of MPAs, concluding that coarse taxonomic resolution is sufficient given that analyses of community structure at different taxonomic levels were generally consistent. Yet, observed differences were taxa-specific and may have not been evident using our broader taxonomic classifications, a classification of mid to high taxonomic resolution may be necessary to determine zoning effects on key taxa. Third, we provide an example of statistical analyses and

  11. Mapping the distribution of the denitrifier community at large scales (Invited)

    Science.gov (United States)

    Philippot, L.; Bru, D.; Ramette, A.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.

    2010-12-01

    Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 740 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.

  12. Epidemic spreading in weighted scale-free networks with community structure

    International Nuclear Information System (INIS)

    Chu, Xiangwei; Guan, Jihong; Zhang, Zhongzhi; Zhou, Shuigeng

    2009-01-01

    Many empirical studies reveal that the weights and community structure are ubiquitous in various natural and artificial networks. In this paper, based on the SI disease model, we investigate the epidemic spreading in weighted scale-free networks with community structure. Two exponents, α and β, are introduced to weight the internal edges and external edges, respectively; and a tunable probability parameter q is also introduced to adjust the strength of community structure. We find the external weighting exponent β plays a much more important role in slackening the epidemic spreading and reducing the danger brought by the epidemic than the internal weighting exponent α. Moreover, a novel result we find is that the strong community structure is no longer helpful for slackening the danger brought by the epidemic in the weighted cases. In addition, we show the hierarchical dynamics of the epidemic spreading in the weighted scale-free networks with communities which is also displayed in the famous BA scale-free networks

  13. Community Detection for Large Graphs

    KAUST Repository

    Peng, Chengbin; Kolda, Tamara G.; Pinar, Ali; Zhang, Zhihua; Keyes, David E.

    2014-01-01

    Many real world networks have inherent community structures, including social networks, transportation networks, biological networks, etc. For large scale networks with millions or billions of nodes in real-world applications, accelerating current

  14. Double inflation: A possible resolution of the large-scale structure problem

    International Nuclear Information System (INIS)

    Turner, M.S.; Villumsen, J.V.; Vittorio, N.; Silk, J.; Juszkiewicz, R.

    1986-11-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Ω = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of ∼100 Mpc, while the small-scale structure over ≤ 10 Mpc resembles that in a low density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations. 38 refs., 6 figs

  15. Multi-scale structural community organisation of the human genome.

    Science.gov (United States)

    Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin

    2017-04-11

    Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.

  16. Large-scale structure observables in general relativity

    International Nuclear Information System (INIS)

    Jeong, Donghui; Schmidt, Fabian

    2015-01-01

    We review recent studies that rigorously define several key observables of the large-scale structure of the Universe in a general relativistic context. Specifically, we consider (i) redshift perturbation of cosmic clock events; (ii) distortion of cosmic rulers, including weak lensing shear and magnification; and (iii) observed number density of tracers of the large-scale structure. We provide covariant and gauge-invariant expressions of these observables. Our expressions are given for a linearly perturbed flat Friedmann–Robertson–Walker metric including scalar, vector, and tensor metric perturbations. While we restrict ourselves to linear order in perturbation theory, the approach can be straightforwardly generalized to higher order. (paper)

  17. Community Detection for Large Graphs

    KAUST Repository

    Peng, Chengbin

    2014-05-04

    Many real world networks have inherent community structures, including social networks, transportation networks, biological networks, etc. For large scale networks with millions or billions of nodes in real-world applications, accelerating current community detection algorithms is in demand, and we present two approaches to tackle this issue -A K-core based framework that can accelerate existing community detection algorithms significantly; -A parallel inference algorithm via stochastic block models that can distribute the workload.

  18. Decoupling local mechanics from large-scale structure in modular metamaterials

    Science.gov (United States)

    Yang, Nan; Silverberg, Jesse L.

    2017-04-01

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  19. Similitude and scaling of large structural elements: Case study

    Directory of Open Access Journals (Sweden)

    M. Shehadeh

    2015-06-01

    Full Text Available Scaled down models are widely used for experimental investigations of large structures due to the limitation in the capacities of testing facilities along with the expenses of the experimentation. The modeling accuracy depends upon the model material properties, fabrication accuracy and loading techniques. In the present work the Buckingham π theorem is used to develop the relations (i.e. geometry, loading and properties between the model and a large structural element as that is present in the huge existing petroleum oil drilling rigs. The model is to be designed, loaded and treated according to a set of similitude requirements that relate the model to the large structural element. Three independent scale factors which represent three fundamental dimensions, namely mass, length and time need to be selected for designing the scaled down model. Numerical prediction of the stress distribution within the model and its elastic deformation under steady loading is to be made. The results are compared with those obtained from the full scale structure numerical computations. The effect of scaled down model size and material on the accuracy of the modeling technique is thoroughly examined.

  20. Hierarchical Cantor set in the large scale structure with torus geometry

    Energy Technology Data Exchange (ETDEWEB)

    Murdzek, R. [Physics Department, ' Al. I. Cuza' University, Blvd. Carol I, Nr. 11, Iassy 700506 (Romania)], E-mail: rmurdzek@yahoo.com

    2008-12-15

    The formation of large scale structures is considered within a model with string on toroidal space-time. Firstly, the space-time geometry is presented. In this geometry, the Universe is represented by a string describing a torus surface. Thereafter, the large scale structure of the Universe is derived from the string oscillations. The results are in agreement with the cellular structure of the large scale distribution and with the theory of a Cantorian space-time.

  1. Large grazers modify effects of aboveground-belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G. F. (Ciska); Geuverink, Elzemiek; Olff, Han; Schmid, Bernhard

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  2. Large grazers modify effects of aboveground–belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G.F.; Geuverink, E.; Olff, H.

    2012-01-01

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  3. Scale-Dependence of Processes Structuring Dung Beetle Metacommunities Using Functional Diversity and Community Deconstruction Approaches

    Science.gov (United States)

    da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution

  4. Some Statistics for Measuring Large-Scale Structure

    OpenAIRE

    Brandenberger, Robert H.; Kaplan, David M.; A, Stephen; Ramsey

    1993-01-01

    Good statistics for measuring large-scale structure in the Universe must be able to distinguish between different models of structure formation. In this paper, two and three dimensional ``counts in cell" statistics and a new ``discrete genus statistic" are applied to toy versions of several popular theories of structure formation: random phase cold dark matter model, cosmic string models, and global texture scenario. All three statistics appear quite promising in terms of differentiating betw...

  5. The origin of large scale cosmic structure

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Palmer, P.L.

    1985-01-01

    The paper concerns the origin of large scale cosmic structure. The evolution of density perturbations, the nonlinear regime (Zel'dovich's solution and others), the Gott and Rees clustering hierarchy, the spectrum of condensations, and biassed galaxy formation, are all discussed. (UK)

  6. Challenges for Large Scale Structure Theory

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will describe some of the outstanding questions in Cosmology where answers could be provided by observations of the Large Scale Structure of the Universe at late times.I will discuss some of the theoretical challenges which will have to be overcome to extract this information from the observations. I will describe some of the theoretical tools that might be useful to achieve this goal. 

  7. Neutrinos and large-scale structure

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.

    2015-01-01

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos

  8. Neutrinos and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Daniel J. [Daniel J. Eisenstein, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS #20, Cambridge, MA 02138 (United States)

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  9. Genetic 'fingerprints' to characterise microbial communities during organic overloading and in large-scale biogas plants

    Energy Technology Data Exchange (ETDEWEB)

    Kleyboecker, A.; Lerm, S.; Vieth, A.; Wuerdemann, H. [GeoForschungsZentrum Potsdam, Bio-Geo-Engineering, Potsdam (Germany); Miethling-Graff, R. [Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Agraroekologie; Wittmaier, M. [Institut fuer Kreislaufwirtschaft, Bremen (Germany)

    2007-07-01

    Since fermentation is a complex process, biogas reactors are still known as 'black boxes'. Mostly they are not run at their maximum loading rate due to the possible failure in the process by organic overloading. This means that there are still unused capacities to produce more biogas in less time. Investigations of different large-scale biogas plants showed that fermenters are operated containing different amounts of volatile fatty acids. These amounts can vary so much that one of two digestors, both possessing the same VFA concentration, does not produce gas anymore while the other is still at work. A reason for this phenomenon might be found in the composition of the microbial communities or in differences in the operation of the plants. To gain a better understanding of the 'black box', structural changes in microbial communities during controlled organic overloading in a laboratory and biocenosis of large-scale reactors were investigated. A genetic fingerprint based on 16S rDNA (PCR-SSCP) was used to characterise the microbial community. (orig.)

  10. On the universal character of the large scale structure of the universe

    International Nuclear Information System (INIS)

    Demianski, M.; International Center for Relativistic Astrophysics; Rome Univ.; Doroshkevich, A.G.

    1991-01-01

    We review different theories of formation of the large scale structure of the Universe. Special emphasis is put on the theory of inertial instability. We show that for a large class of initial spectra the resulting two point correlation functions are similar. We discuss also the adhesion theory which uses the Burgers equation, Navier-Stokes equation or coagulation process. We review the Zeldovich theory of gravitational instability and discuss the internal structure of pancakes. Finally we discuss the role of the velocity potential in determining the global characteristics of large scale structures (distribution of caustics, scale of voids, etc.). In the last chapter we list the main unsolved problems and main successes of the theory of formation of large scale structure. (orig.)

  11. Talking About The Smokes: a large-scale, community-based participatory research project.

    Science.gov (United States)

    Couzos, Sophia; Nicholson, Anna K; Hunt, Jennifer M; Davey, Maureen E; May, Josephine K; Bennet, Pele T; Westphal, Darren W; Thomas, David P

    2015-06-01

    To describe the Talking About The Smokes (TATS) project according to the World Health Organization guiding principles for conducting community-based participatory research (PR) involving indigenous peoples, to assist others planning large-scale PR projects. The TATS project was initiated in Australia in 2010 as part of the International Tobacco Control Policy Evaluation Project, and surveyed a representative sample of 2522 Aboriginal and Torres Strait Islander adults to assess the impact of tobacco control policies. The PR process of the TATS project, which aimed to build partnerships to create equitable conditions for knowledge production, was mapped and summarised onto a framework adapted from the WHO principles. Processes describing consultation and approval, partnerships and research agreements, communication, funding, ethics and consent, data and benefits of the research. The TATS project involved baseline and follow-up surveys conducted in 34 Aboriginal community-controlled health services and one Torres Strait community. Consistent with the WHO PR principles, the TATS project built on community priorities and strengths through strategic partnerships from project inception, and demonstrated the value of research agreements and trusting relationships to foster shared decision making, capacity building and a commitment to Indigenous data ownership. Community-based PR methodology, by definition, needs adaptation to local settings and priorities. The TATS project demonstrates that large-scale research can be participatory, with strong Indigenous community engagement and benefits.

  12. Epidemic Wave Dynamics Attributable to Urban Community Structure: A Theoretical Characterization of Disease Transmission in a Large Network

    Science.gov (United States)

    Eggo, Rosalind M; Lenczner, Michael

    2015-01-01

    Background Multiple waves of transmission during infectious disease epidemics represent a major public health challenge, but the ecological and behavioral drivers of epidemic resurgence are poorly understood. In theory, community structure—aggregation into highly intraconnected and loosely interconnected social groups—within human populations may lead to punctuated outbreaks as diseases progress from one community to the next. However, this explanation has been largely overlooked in favor of temporal shifts in environmental conditions and human behavior and because of the difficulties associated with estimating large-scale contact patterns. Objective The aim was to characterize naturally arising patterns of human contact that are capable of producing simulated epidemics with multiple wave structures. Methods We used an extensive dataset of proximal physical contacts between users of a public Wi-Fi Internet system to evaluate the epidemiological implications of an empirical urban contact network. We characterized the modularity (community structure) of the network and then estimated epidemic dynamics under a percolation-based model of infectious disease spread on the network. We classified simulated epidemics as multiwave using a novel metric and we identified network structures that were critical to the network’s ability to produce multiwave epidemics. Results We identified robust community structure in a large, empirical urban contact network from which multiwave epidemics may emerge naturally. This pattern was fueled by a special kind of insularity in which locally popular individuals were not the ones forging contacts with more distant social groups. Conclusions Our results suggest that ordinary contact patterns can produce multiwave epidemics at the scale of a single urban area without the temporal shifts that are usually assumed to be responsible. Understanding the role of community structure in epidemic dynamics allows officials to anticipate epidemic

  13. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  14. Lagrangian space consistency relation for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-01-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space

  15. The Large-Scale Structure of Scientific Method

    Science.gov (United States)

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  16. Cooling pipeline disposing structure for large-scaled cryogenic structure

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki.

    1996-01-01

    The present invention concerns an electromagnetic force supporting structure for superconductive coils. As the size of a cryogenic structure is increased, since it takes much cooling time, temperature difference between cooling pipelines and the cryogenic structure is increased over a wide range, and difference of heat shrinkage is increased to increase thermal stresses. Then, in the cooling pipelines for a large scaled cryogenic structure, the cooling pipelines and the structure are connected by way of a thin metal plate made of a material having a heat conductivity higher than that of the material of the structure by one digit or more, and the thin metal plate is bent. The displacement between the cryogenic structure and the cooling pipelines caused by heat shrinkage is absorbed by the elongation/shrinkage of the bent structure of the thin metal plate, and the thermal stresses due to the displacement is reduced. In addition, the heat of the cryogenic structures is transferred by way of the thin metal plate. Then, the cooling pipelines can be secured to the cryogenic structure such that cooling by heat transfer is enabled by absorbing a great deviation or three dimensional displacement due to the difference of the temperature distribution between the cryogenic structure enlarged in the scale and put into the three dimensional shape, and the cooling pipelines. (N.H.)

  17. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  18. Cross-Scale Variation in Biodiversity-Environment Links Illustrated by Coastal Sandflat Communities.

    Directory of Open Access Journals (Sweden)

    Casper Kraan

    Full Text Available Spatial variation in the composition of communities is the product of many biotic and environmental interactions. A neglected factor in the analysis of community distribution patterns is the multi-scale nature of the data, which has implications for understanding ecological processes and the development of conservation and environmental management practice. Drawing on recently established multivariate spatial analyses, we investigate whether including relationships between spatial structure and abiotic variables enable us to better discern patterns of species and communities across scales. Data comprised 1200 macrozoobenthic samples collected over an array of distances (30 cm to 1 km in three New Zealand harbours, as well as commonly used abiotic variables, such as sediment characteristics and chlorophyll a concentrations, measured at the same scales. Moran's eigenvector mapping was used to extract spatial scales at which communities were structured. Benthic communities, representing primarily bivalves, polychaetes and crustaceans, were spatially structured at four spatial scales, i.e. >100 m, 50-100 m, 50-15 m, and < 15 m. A broad selection of abiotic variables contributed to the large-scale variation, whereas a more limited set explained part of the fine-scale community structure. Across all scales, less than 30% of the variation in spatial structure was captured by our analysis. The large number of species (48 making up the 10 highest species scores based on redundancy analyses illustrate the variability of species-scale associations. Our results emphasise that abiotic variables and biodiversity are related at all scales investigated and stress the importance of assessing the relationship between environmental variables and the abundance and distribution of biological assemblages across a range of different scales.

  19. BigSUR: large-scale structured urban reconstruction

    KAUST Repository

    Kelly, Tom

    2017-11-22

    The creation of high-quality semantically parsed 3D models for dense metropolitan areas is a fundamental urban modeling problem. Although recent advances in acquisition techniques and processing algorithms have resulted in large-scale imagery or 3D polygonal reconstructions, such data-sources are typically noisy, and incomplete, with no semantic structure. In this paper, we present an automatic data fusion technique that produces high-quality structured models of city blocks. From coarse polygonal meshes, street-level imagery, and GIS footprints, we formulate a binary integer program that globally balances sources of error to produce semantically parsed mass models with associated facade elements. We demonstrate our system on four city regions of varying complexity; our examples typically contain densely built urban blocks spanning hundreds of buildings. In our largest example, we produce a structured model of 37 city blocks spanning a total of 1,011 buildings at a scale and quality previously impossible to achieve automatically.

  20. BigSUR: large-scale structured urban reconstruction

    KAUST Repository

    Kelly, Tom; Femiani, John; Wonka, Peter; Mitra, Niloy J.

    2017-01-01

    The creation of high-quality semantically parsed 3D models for dense metropolitan areas is a fundamental urban modeling problem. Although recent advances in acquisition techniques and processing algorithms have resulted in large-scale imagery or 3D polygonal reconstructions, such data-sources are typically noisy, and incomplete, with no semantic structure. In this paper, we present an automatic data fusion technique that produces high-quality structured models of city blocks. From coarse polygonal meshes, street-level imagery, and GIS footprints, we formulate a binary integer program that globally balances sources of error to produce semantically parsed mass models with associated facade elements. We demonstrate our system on four city regions of varying complexity; our examples typically contain densely built urban blocks spanning hundreds of buildings. In our largest example, we produce a structured model of 37 city blocks spanning a total of 1,011 buildings at a scale and quality previously impossible to achieve automatically.

  1. The intertidal community in West Greenland: Large-scale patterns and small-scale variation on ecosystem dynamics along a climate gradient

    DEFF Research Database (Denmark)

    Thyrring, Jakob; Blicher, Martin; Sejr, Mikael Kristian

    are largely unknown. The West Greenland coast is north - south orientated. This provides an ideal setting to study the impact of climate change on marine species population dynamics and distribution. We investigated the latitudinal changes in the rocky intertidal community along 18° latitudes (59-77°N......) in West Greenland. Using cleared quadrats we quantified patterns in abundance, biomass and species richness in the intertidal zone. We use this data to disentangle patterns in Arctic intertidal communities at different scales. We describe the effects of different environmental drivers and species...... interactions on distribution and dynamics of intertidal species. Our results indicate that changes in distribution and abundance of foundation species can have large effects on the ecosystem. We also show that the importance of small-scale variation may be of same magnitude as large- scale variation. Only...

  2. Puzzles of large scale structure and gravitation

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    2006-01-01

    We consider the puzzle of cosmic voids bounded by two-dimensional structures of galactic clusters as also a puzzle pointed out by Weinberg: How can the mass of a typical elementary particle depend on a cosmic parameter like the Hubble constant? An answer to the first puzzle is proposed in terms of 'Scaled' Quantum Mechanical like behaviour which appears at large scales. The second puzzle can be answered by showing that the gravitational mass of an elementary particle has a Machian character (see Ahmed N. Cantorian small worked, Mach's principle and the universal mass network. Chaos, Solitons and Fractals 2004;21(4))

  3. TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY

    International Nuclear Information System (INIS)

    Wang Xin; Chen Xuelei; Park, Changbom

    2012-01-01

    The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.

  4. Origin of the large scale structures of the universe

    International Nuclear Information System (INIS)

    Oaknin, David H.

    2004-01-01

    We revise the statistical properties of the primordial cosmological density anisotropies that, at the time of matter-radiation equality, seeded the gravitational development of large scale structures in the otherwise homogeneous and isotropic Friedmann-Robertson-Walker flat universe. Our analysis shows that random fluctuations of the density field at the same instant of equality and with comoving wavelength shorter than the causal horizon at that time can naturally account, when globally constrained to conserve the total mass (energy) of the system, for the observed scale invariance of the anisotropies over cosmologically large comoving volumes. Statistical systems with similar features are generically known as glasslike or latticelike. Obviously, these conclusions conflict with the widely accepted understanding of the primordial structures reported in the literature, which requires an epoch of inflationary cosmology to precede the standard expansion of the universe. The origin of the conflict must be found in the widespread, but unjustified, claim that scale invariant mass (energy) anisotropies at the instant of equality over comoving volumes of cosmological size, larger than the causal horizon at the time, must be generated by fluctuations in the density field with comparably large comoving wavelength

  5. Large-scale structure in the universe: Theory vs observations

    International Nuclear Information System (INIS)

    Kashlinsky, A.; Jones, B.J.T.

    1990-01-01

    A variety of observations constrain models of the origin of large scale cosmic structures. We review here the elements of current theories and comment in detail on which of the current observational data provide the principal constraints. We point out that enough observational data have accumulated to constrain (and perhaps determine) the power spectrum of primordial density fluctuations over a very large range of scales. We discuss the theories in the light of observational data and focus on the potential of future observations in providing even (and ever) tighter constraints. (orig.)

  6. Large-scale structures in turbulent Couette flow

    Science.gov (United States)

    Kim, Jung Hoon; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulation of fully developed turbulent Couette flow is performed with a large computational domain in the streamwise and spanwise directions (40 πh and 6 πh) to investigate streamwise-scale growth mechanism of the streamwise velocity fluctuating structures in the core region, where h is the channel half height. It is shown that long streamwise-scale structures (> 3 h) are highly energetic and they contribute to more than 80% of the turbulent kinetic energy and Reynolds shear stress, compared to previous studies in canonical Poiseuille flows. Instantaneous and statistical analysis show that negative-u' structures on the bottom wall in the Couette flow continuously grow in the streamwise direction due to mean shear, and they penetrate to the opposite moving wall. The geometric center of the log layer is observed in the centerline with a dominant outer peak in streamwise spectrum, and the maximum streamwise extent for structure is found in the centerline, similar to previous observation in turbulent Poiseuille flows at high Reynolds number. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure in the centerline. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  7. Nonlinear evolution of large-scale structure in the universe

    International Nuclear Information System (INIS)

    Frenk, C.S.; White, S.D.M.; Davis, M.

    1983-01-01

    Using N-body simulations we study the nonlinear development of primordial density perturbation in an Einstein--de Sitter universe. We compare the evolution of an initial distribution without small-scale density fluctuations to evolution from a random Poisson distribution. These initial conditions mimic the assumptions of the adiabatic and isothermal theories of galaxy formation. The large-scale structures which form in the two cases are markedly dissimilar. In particular, the correlation function xi(r) and the visual appearance of our adiabatic (or ''pancake'') models match better the observed distribution of galaxies. This distribution is characterized by large-scale filamentary structure. Because the pancake models do not evolve in a self-similar fashion, the slope of xi(r) steepens with time; as a result there is a unique epoch at which these models fit the galaxy observations. We find the ratio of cutoff length to correlation length at this time to be lambda/sub min//r 0 = 5.1; its expected value in a neutrino dominated universe is 4(Ωh) -1 (H 0 = 100h km s -1 Mpc -1 ). At early epochs these models predict a negligible amplitude for xi(r) and could explain the lack of measurable clustering in the Lyα absorption lines of high-redshift quasars. However, large-scale structure in our models collapses after z = 2. If this collapse precedes galaxy formation as in the usual pancake theory, galaxies formed uncomfortably recently. The extent of this problem may depend on the cosmological model used; the present series of experiments should be extended in the future to include models with Ω<1

  8. Community structure informs species geographic distributions

    KAUST Repository

    Montesinos-Navarro, Alicia

    2018-05-23

    Understanding what determines species\\' geographic distributions is crucial for assessing global change threats to biodiversity. Measuring limits on distributions is usually, and necessarily, done with data at large geographic extents and coarse spatial resolution. However, survival of individuals is determined by processes that happen at small spatial scales. The relative abundance of coexisting species (i.e. \\'community structure\\') reflects assembly processes occurring at small scales, and are often available for relatively extensive areas, so could be useful for explaining species distributions. We demonstrate that Bayesian Network Inference (BNI) can overcome several challenges to including community structure into studies of species distributions, despite having been little used to date. We hypothesized that the relative abundance of coexisting species can improve predictions of species distributions. In 1570 assemblages of 68 Mediterranean woody plant species we used BNI to incorporate community structure into Species Distribution Models (SDMs), alongside environmental information. Information on species associations improved SDM predictions of community structure and species distributions moderately, though for some habitat specialists the deviance explained increased by up to 15%. We demonstrate that most species associations (95%) were positive and occurred between species with ecologically similar traits. This suggests that SDM improvement could be because species co-occurrences are a proxy for local ecological processes. Our study shows that Bayesian Networks, when interpreted carefully, can be used to include local conditions into measurements of species\\' large-scale distributions, and this information can improve the predictions of species distributions.

  9. Hypersingular integral equations, waveguiding effects in Cantorian Universe and genesis of large scale structures

    International Nuclear Information System (INIS)

    Iovane, G.; Giordano, P.

    2005-01-01

    In this work we introduce the hypersingular integral equations and analyze a realistic model of gravitational waveguides on a cantorian space-time. A waveguiding effect is considered with respect to the large scale structure of the Universe, where the structure formation appears as if it were a classically self-similar random process at all astrophysical scales. The result is that it seems we live in an El Naschie's o (∞) Cantorian space-time, where gravitational lensing and waveguiding effects can explain the appearing Universe. In particular, we consider filamentary and planar large scale structures as possible refraction channels for electromagnetic radiation coming from cosmological structures. From this vision the Universe appears like a large self-similar adaptive mirrors set, thanks to three numerical simulations. Consequently, an infinite Universe is just an optical illusion that is produced by mirroring effects connected with the large scale structure of a finite and not a large Universe

  10. Dipolar modulation of Large-Scale Structure

    Science.gov (United States)

    Yoon, Mijin

    For the last two decades, we have seen a drastic development of modern cosmology based on various observations such as the cosmic microwave background (CMB), type Ia supernovae, and baryonic acoustic oscillations (BAO). These observational evidences have led us to a great deal of consensus on the cosmological model so-called LambdaCDM and tight constraints on cosmological parameters consisting the model. On the other hand, the advancement in cosmology relies on the cosmological principle: the universe is isotropic and homogeneous on large scales. Testing these fundamental assumptions is crucial and will soon become possible given the planned observations ahead. Dipolar modulation is the largest angular anisotropy of the sky, which is quantified by its direction and amplitude. We measured a huge dipolar modulation in CMB, which mainly originated from our solar system's motion relative to CMB rest frame. However, we have not yet acquired consistent measurements of dipolar modulations in large-scale structure (LSS), as they require large sky coverage and a number of well-identified objects. In this thesis, we explore measurement of dipolar modulation in number counts of LSS objects as a test of statistical isotropy. This thesis is based on two papers that were published in peer-reviewed journals. In Chapter 2 [Yoon et al., 2014], we measured a dipolar modulation in number counts of WISE matched with 2MASS sources. In Chapter 3 [Yoon & Huterer, 2015], we investigated requirements for detection of kinematic dipole in future surveys.

  11. Thermal interaction in crusted melt jets with large-scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Ken-ichiro; Sotome, Fuminori; Ishikawa, Michio [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering

    1998-01-01

    The objective of the present study is to experimentally observe thermal interaction which would be capable of triggering due to entrainment, or entrapment in crusted melt jets with `large-scale structure`. The present experiment was carried out by dropping molten zinc and molten tin of 100 grams, of which mass was sufficient to generate large-scale structures of melt jets. The experimental results show that the thermal interaction of entrapment type occurs in molten-zinc jets with rare probability, and the thermal interaction of entrainment type occurs in molten tin jets with high probability. The difference of thermal interaction between molten zinc and molten tin may attribute to differences of kinematic viscosity and melting point between them. (author)

  12. Novel material and structural design for large-scale marine protective devices

    International Nuclear Information System (INIS)

    Qiu, Ang; Lin, Wei; Ma, Yong; Zhao, Chengbi; Tang, Youhong

    2015-01-01

    Highlights: • Large-scale protective devices with different structural designs have been optimized. • Large-scale protective devices with novel material designs have been optimized. • Protective devices constructed of sandwich panels have the best anti-collision performance. • Protective devices with novel material design can reduce weight and construction cost. - Abstract: Large-scale protective devices must endure the impact of severe forces, large structural deformation, the increased stress and strain rate effects, and multiple coupling effects. In evaluation of the safety of conceptual design through simulation, several key parameters considered in this research are maximum impact force, energy dissipated by the impactor (e.g. a ship) and energy absorbed by the device and the impactor stroke. During impact, the main function of the ring beam structure is to resist and buffer the impact force between ship and bridge pile caps, which could guarantee that the magnitude of impact force meets the corresponding requirements. The means of improving anti-collision performance can be to increase the strength of the beam section or to exchange the steel material with novel fiber reinforced polymer laminates. The main function of the buoyancy tank is to absorb and transfer the ship’s kinetic energy through large plastic deformation, damage, or friction occurring within itself. The energy absorption effect can be improved by structure optimization or by the use of new sandwich panels. Structural and material optimization schemes are proposed on the basis of conceptual design in this research, and protective devices constructed of sandwich panels prove to have the best anti-collision performance

  13. CONSORT to community: translation of an RCT to a large-scale community intervention and learnings from evaluation of the upscaled program.

    Science.gov (United States)

    Moores, Carly Jane; Miller, Jacqueline; Perry, Rebecca Anne; Chan, Lily Lai Hang; Daniels, Lynne Allison; Vidgen, Helen Anna; Magarey, Anthea Margaret

    2017-11-29

    Translation encompasses the continuum from clinical efficacy to widespread adoption within the healthcare service and ultimately routine clinical practice. The Parenting, Eating and Activity for Child Health (PEACH™) program has previously demonstrated clinical effectiveness in the management of child obesity, and has been recently implemented as a large-scale community intervention in Queensland, Australia. This paper aims to describe the translation of the evaluation framework from a randomised controlled trial (RCT) to large-scale community intervention (PEACH™ QLD). Tensions between RCT paradigm and implementation research will be discussed along with lived evaluation challenges, responses to overcome these, and key learnings for future evaluation conducted at scale. The translation of evaluation from PEACH™ RCT to the large-scale community intervention PEACH™ QLD is described. While the CONSORT Statement was used to report findings from two previous RCTs, the REAIM framework was more suitable for the evaluation of upscaled delivery of the PEACH™ program. Evaluation of PEACH™ QLD was undertaken during the project delivery period from 2013 to 2016. Experiential learnings from conducting the evaluation of PEACH™ QLD to the described evaluation framework are presented for the purposes of informing the future evaluation of upscaled programs. Evaluation changes in response to real-time changes in the delivery of the PEACH™ QLD Project were necessary at stages during the project term. Key evaluation challenges encountered included the collection of complete evaluation data from a diverse and geographically dispersed workforce and the systematic collection of process evaluation data in real time to support program changes during the project. Evaluation of large-scale community interventions in the real world is challenging and divergent from RCTs which are rigourously evaluated within a more tightly-controlled clinical research setting. Constructs

  14. Co-Cure-Ply Resins for High Performance, Large-Scale Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — Large-scale composite structures are commonly joined by secondary bonding of molded-and-cured thermoset components. This approach may result in unpredictable joint...

  15. Fractals and the Large-Scale Structure in the Universe

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 4. Fractals and the Large-Scale Structure in the Universe - Is the Cosmological Principle Valid? A K Mittal T R Seshadri. General Article Volume 7 Issue 4 April 2002 pp 39-47 ...

  16. Primordial Non-Gaussianity in the Large-Scale Structure of the Universe

    Directory of Open Access Journals (Sweden)

    Vincent Desjacques

    2010-01-01

    generated the cosmological fluctuations observed today. Any detection of significant non-Gaussianity would thus have profound implications for our understanding of cosmic structure formation. The large-scale mass distribution in the Universe is a sensitive probe of the nature of initial conditions. Recent theoretical progress together with rapid developments in observational techniques will enable us to critically confront predictions of inflationary scenarios and set constraints as competitive as those from the Cosmic Microwave Background. In this paper, we review past and current efforts in the search for primordial non-Gaussianity in the large-scale structure of the Universe.

  17. Initial condition effects on large scale structure in numerical simulations of plane mixing layers

    Science.gov (United States)

    McMullan, W. A.; Garrett, S. J.

    2016-01-01

    In this paper, Large Eddy Simulations are performed on the spatially developing plane turbulent mixing layer. The simulated mixing layers originate from initially laminar conditions. The focus of this research is on the effect of the nature of the imposed fluctuations on the large-scale spanwise and streamwise structures in the flow. Two simulations are performed; one with low-level three-dimensional inflow fluctuations obtained from pseudo-random numbers, the other with physically correlated fluctuations of the same magnitude obtained from an inflow generation technique. Where white-noise fluctuations provide the inflow disturbances, no spatially stationary streamwise vortex structure is observed, and the large-scale spanwise turbulent vortical structures grow continuously and linearly. These structures are observed to have a three-dimensional internal geometry with branches and dislocations. Where physically correlated provide the inflow disturbances a "streaky" streamwise structure that is spatially stationary is observed, with the large-scale turbulent vortical structures growing with the square-root of time. These large-scale structures are quasi-two-dimensional, on top of which the secondary structure rides. The simulation results are discussed in the context of the varying interpretations of mixing layer growth that have been postulated. Recommendations are made concerning the data required from experiments in order to produce accurate numerical simulation recreations of real flows.

  18. Accelerating large-scale protein structure alignments with graphics processing units

    Directory of Open Access Journals (Sweden)

    Pang Bin

    2012-02-01

    Full Text Available Abstract Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs. As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU.

  19. Community response to large-scale federal projects: the case of the MX

    International Nuclear Information System (INIS)

    Albrecht, S.L.

    1983-01-01

    An analysis of community response to large-scale defense projects, such as the proposals to site MX missiles in Utah and Nevada, is one way to identify those factors likely to be important in determining community response to nuclear waste repository siting. This chapter gives a brief overview of the MX system's characteristics and the potential impacts it would have had on the rural areas, describes the patterns of community mobilization that occurred in Utah and Nevada, and suggests where this response may parallel community concerns about a repository siting. Three lessons from the MX experience are that local residents, asked to assume a disproportionate share of the negative impacts, should be involved in the siting process, that local residents should be treated as equal, and that compensation should be offered when local residents suffer from political expediency

  20. Large scale nuclear structure studies

    International Nuclear Information System (INIS)

    Faessler, A.

    1985-01-01

    Results of large scale nuclear structure studies are reported. The starting point is the Hartree-Fock-Bogoliubov solution with angular momentum and proton and neutron number projection after variation. This model for number and spin projected two-quasiparticle excitations with realistic forces yields in sd-shell nuclei similar good results as the 'exact' shell-model calculations. Here the authors present results for a pf-shell nucleus 46 Ti and results for the A=130 mass region where they studied 58 different nuclei with the same single-particle energies and the same effective force derived from a meson exchange potential. They carried out a Hartree-Fock-Bogoliubov variation after mean field projection in realistic model spaces. In this way, they determine for each yrast state the optimal mean Hartree-Fock-Bogoliubov field. They apply this method to 130 Ce and 128 Ba using the same effective nucleon-nucleon interaction. (Auth.)

  1. Mirror dark matter and large scale structure

    International Nuclear Information System (INIS)

    Ignatiev, A.Yu.; Volkas, R.R.

    2003-01-01

    Mirror matter is a dark matter candidate. In this paper, we reexamine the linear regime of density perturbation growth in a universe containing mirror dark matter. Taking adiabatic scale-invariant perturbations as the input, we confirm that the resulting processed power spectrum is richer than for the more familiar cases of cold, warm and hot dark matter. The new features include a maximum at a certain scale λ max , collisional damping below a smaller characteristic scale λ S ' , with oscillatory perturbations between the two. These scales are functions of the fundamental parameters of the theory. In particular, they decrease for decreasing x, the ratio of the mirror plasma temperature to that of the ordinary. For x∼0.2, the scale λ max becomes galactic. Mirror dark matter therefore leads to bottom-up large scale structure formation, similar to conventional cold dark matter, for x(less-or-similar sign)0.2. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime. The differences pertain to scales smaller than λ S ' in the linear regime, and generally in the nonlinear regime because mirror dark matter is chemically complex and to some extent dissipative. Lyman-α forest data and the early reionization epoch established by WMAP may hold the key to distinguishing mirror dark matter from WIMP-style cold dark matter

  2. Complex modular structure of large-scale brain networks

    Science.gov (United States)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  3. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field

    Science.gov (United States)

    Franklin, Rima B.; Mills, Aaron L.

    2003-01-01

    To better understand the distribution of soil microbial communities at multiple spatial scales, a survey was conducted to examine the spatial organization of community structure in a wheat field in eastern Virginia (USA). Nearly 200 soil samples were collected at a variety of separation distances ranging from 2.5 cm to 11 m. Whole-community DNA was extracted from each sample, and community structure was compared using amplified fragment length polymorphism (AFLP) DNA fingerprinting. Relative similarity was calculated between each pair of samples and compared using geostatistical variogram analysis to study autocorrelation as a function of separation distance. Spatial autocorrelation was found at scales ranging from 30 cm to more than 6 m, depending on the sampling extent considered. In some locations, up to four different correlation length scales were detected. The presence of nested scales of variability suggests that the environmental factors regulating the development of the communities in this soil may operate at different scales. Kriging was used to generate maps of the spatial organization of communities across the plot, and the results demonstrated that bacterial distributions can be highly structured, even within a habitat that appears relatively homogeneous at the plot and field scale. Different subsets of the microbial community were distributed differently across the plot, and this is thought to be due to the variable response of individual populations to spatial heterogeneity associated with soil properties. c2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

  4. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  5. Origin of large-scale cell structure in the universe

    International Nuclear Information System (INIS)

    Zel'dovich, Y.B.

    1982-01-01

    A qualitative explanation is offered for the characteristic global structure of the universe, wherein ''black'' regions devoid of galaxies are surrounded on all sides by closed, comparatively thin, ''bright'' layers populated by galaxies. The interpretation rests on some very general arguments regarding the growth of large-scale perturbations in a cold gas

  6. A large-scale soil-structure interaction experiment: Design and construction

    International Nuclear Information System (INIS)

    Tang, H.T.; Tang, Y.K.; Stepp, J.C.; Wall, I.B.; Lin, E.; Cheng, S.C.; Lee, S.K.

    1989-01-01

    This paper describes the design and construction phase of the Large-Scale Soil-Structure Interaction Experiment project jointly sponsored by EPRI and Taipower. The project has two objectives: 1. to obtain an earthquake database which can be used to substantiate soil-structure interaction (SSI) models and analysis methods; and 2. to quantify nuclear power plant reactor containment and internal components seismic margin based on earthquake experience data. These objectives were accomplished by recording and analyzing data from two instrumented, scaled down, reinforced concrete containment structures during seismic events. The two model structures are sited in a high seismic region in Taiwan (SMART-1). A strong-motion seismic array network is located at the site. The containment models (1/4- and 1/12-scale) were constructed and instrumented specially for this experiment. Construction was completed and data recording began in September 1985. By November 1986, 18 strong motion earthquakes ranging from Richter magnitude 4.5 to 7.0 were recorded. (orig./HP)

  7. Measuring the topology of large-scale structure in the universe

    Science.gov (United States)

    Gott, J. Richard, III

    1988-11-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.

  8. Measuring the topology of large-scale structure in the universe

    International Nuclear Information System (INIS)

    Gott, J.R. III

    1988-01-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data. 45 references

  9. Alignment between galaxies and large-scale structure

    International Nuclear Information System (INIS)

    Faltenbacher, A.; Li Cheng; White, Simon D. M.; Jing, Yi-Peng; Mao Shude; Wang Jie

    2009-01-01

    Based on the Sloan Digital Sky Survey DR6 (SDSS) and the Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(2θ)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L ∼ * ) galaxies out to projected separations of 60 h- 1 Mpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ∼ 25 deg. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for central galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference

  10. Divergence of perturbation theory in large scale structures

    Science.gov (United States)

    Pajer, Enrico; van der Woude, Drian

    2018-05-01

    We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.

  11. Impacts of a lengthening open water season on Alaskan coastal communities: deriving locally relevant indices from large-scale datasets and community observations

    Science.gov (United States)

    Rolph, Rebecca J.; Mahoney, Andrew R.; Walsh, John; Loring, Philip A.

    2018-05-01

    Using thresholds of physical climate variables developed from community observations, together with two large-scale datasets, we have produced local indices directly relevant to the impacts of a reduced sea ice cover on Alaska coastal communities. The indices include the number of false freeze-ups defined by transient exceedances of ice concentration prior to a corresponding exceedance that persists, false break-ups, timing of freeze-up and break-up, length of the open water duration, number of days when the winds preclude hunting via boat (wind speed threshold exceedances), the number of wind events conducive to geomorphological work or damage to infrastructure from ocean waves, and the number of these wind events with on- and along-shore components promoting water setup along the coastline. We demonstrate how community observations can inform use of large-scale datasets to derive these locally relevant indices. The two primary large-scale datasets are the Historical Sea Ice Atlas for Alaska and the atmospheric output from a regional climate model used to downscale the ERA-Interim atmospheric reanalysis. We illustrate the variability and trends of these indices by application to the rural Alaska communities of Kotzebue, Shishmaref, and Utqiaġvik (previously Barrow), although the same procedure and metrics can be applied to other coastal communities. Over the 1979-2014 time period, there has been a marked increase in the number of combined false freeze-ups and false break-ups as well as the number of days too windy for hunting via boat for all three communities, especially Utqiaġvik. At Utqiaġvik, there has been an approximate tripling of the number of wind events conducive to coastline erosion from 1979 to 2014. We have also found a delay in freeze-up and earlier break-up, leading to a lengthened open water period for all of the communities examined.

  12. Impacts of a lengthening open water season on Alaskan coastal communities: deriving locally relevant indices from large-scale datasets and community observations

    Directory of Open Access Journals (Sweden)

    R. J. Rolph

    2018-05-01

    Full Text Available Using thresholds of physical climate variables developed from community observations, together with two large-scale datasets, we have produced local indices directly relevant to the impacts of a reduced sea ice cover on Alaska coastal communities. The indices include the number of false freeze-ups defined by transient exceedances of ice concentration prior to a corresponding exceedance that persists, false break-ups, timing of freeze-up and break-up, length of the open water duration, number of days when the winds preclude hunting via boat (wind speed threshold exceedances, the number of wind events conducive to geomorphological work or damage to infrastructure from ocean waves, and the number of these wind events with on- and along-shore components promoting water setup along the coastline. We demonstrate how community observations can inform use of large-scale datasets to derive these locally relevant indices. The two primary large-scale datasets are the Historical Sea Ice Atlas for Alaska and the atmospheric output from a regional climate model used to downscale the ERA-Interim atmospheric reanalysis. We illustrate the variability and trends of these indices by application to the rural Alaska communities of Kotzebue, Shishmaref, and Utqiaġvik (previously Barrow, although the same procedure and metrics can be applied to other coastal communities. Over the 1979–2014 time period, there has been a marked increase in the number of combined false freeze-ups and false break-ups as well as the number of days too windy for hunting via boat for all three communities, especially Utqiaġvik. At Utqiaġvik, there has been an approximate tripling of the number of wind events conducive to coastline erosion from 1979 to 2014. We have also found a delay in freeze-up and earlier break-up, leading to a lengthened open water period for all of the communities examined.

  13. Use of large-scale acoustic monitoring to assess anthropogenic pressures on Orthoptera communities.

    Science.gov (United States)

    Penone, Caterina; Le Viol, Isabelle; Pellissier, Vincent; Julien, Jean-François; Bas, Yves; Kerbiriou, Christian

    2013-10-01

    Biodiversity monitoring at large spatial and temporal scales is greatly needed in the context of global changes. Although insects are a species-rich group and are important for ecosystem functioning, they have been largely neglected in conservation studies and policies, mainly due to technical and methodological constraints. Sound detection, a nondestructive method, is easily applied within a citizen-science framework and could be an interesting solution for insect monitoring. However, it has not yet been tested at a large scale. We assessed the value of a citizen-science program in which Orthoptera species (Tettigoniidae) were monitored acoustically along roads. We used Bayesian model-averaging analyses to test whether we could detect widely known patterns of anthropogenic effects on insects, such as the negative effects of urbanization or intensive agriculture on Orthoptera populations and communities. We also examined site-abundance correlations between years and estimated the biases in species detection to evaluate and improve the protocol. Urbanization and intensive agricultural landscapes negatively affected Orthoptera species richness, diversity, and abundance. This finding is consistent with results of previous studies of Orthoptera, vertebrates, carabids, and butterflies. The average mass of communities decreased as urbanization increased. The dispersal ability of communities increased as the percentage of agricultural land and, to a lesser extent, urban area increased. Despite changes in abundances over time, we found significant correlations between yearly abundances. We identified biases linked to the protocol (e.g., car speed or temperature) that can be accounted for ease in analyses. We argue that acoustic monitoring of Orthoptera along roads offers several advantages for assessing Orthoptera biodiversity at large spatial and temporal extents, particularly in a citizen science framework. © 2013 Society for Conservation Biology.

  14. Development of the simulation package 'ELSES' for extra-large-scale electronic structure calculation

    International Nuclear Information System (INIS)

    Hoshi, T; Fujiwara, T

    2009-01-01

    An early-stage version of the simulation package 'ELSES' (extra-large-scale electronic structure calculation) is developed for simulating the electronic structure and dynamics of large systems, particularly nanometer-scale and ten-nanometer-scale systems (see www.elses.jp). Input and output files are written in the extensible markup language (XML) style for general users. Related pre-/post-simulation tools are also available. A practical workflow and an example are described. A test calculation for the GaAs bulk system is shown, to demonstrate that the present code can handle systems with more than one atom species. Several future aspects are also discussed.

  15. Geophysical mapping of complex glaciogenic large-scale structures

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie

    2013-01-01

    This thesis presents the main results of a four year PhD study concerning the use of geophysical data in geological mapping. The study is related to the Geocenter project, “KOMPLEKS”, which focuses on the mapping of complex, large-scale geological structures. The study area is approximately 100 km2...... data types and co-interpret them in order to improve our geological understanding. However, in order to perform this successfully, methodological considerations are necessary. For instance, a structure indicated by a reflection in the seismic data is not always apparent in the resistivity data...... information) can be collected. The geophysical data are used together with geological analyses from boreholes and pits to interpret the geological history of the hill-island. The geophysical data reveal that the glaciotectonic structures truncate at the surface. The directions of the structures were mapped...

  16. Structure of exotic nuclei by large-scale shell model calculations

    International Nuclear Information System (INIS)

    Utsuno, Yutaka; Otsuka, Takaharu; Mizusaki, Takahiro; Honma, Michio

    2006-01-01

    An extensive large-scale shell-model study is conducted for unstable nuclei around N = 20 and N = 28, aiming to investigate how the shell structure evolves from stable to unstable nuclei and affects the nuclear structure. The structure around N = 20 including the disappearance of the magic number is reproduced systematically, exemplified in the systematics of the electromagnetic moments in the Na isotope chain. As a key ingredient dominating the structure/shell evolution in the exotic nuclei from a general viewpoint, we pay attention to the tensor force. Including a proper strength of the tensor force in the effective interaction, we successfully reproduce the proton shell evolution ranging from N = 20 to 28 without any arbitrary modifications in the interaction and predict the ground state of 42Si to contain a large deformed component

  17. What Shapes the Phylogenetic Structure of Anuran Communities in a Seasonal Environment? The Influence of Determinism at Regional Scale to Stochasticity or Antagonistic Forces at Local Scale.

    Science.gov (United States)

    Martins, Clarissa de Araújo; Roque, Fabio de Oliveira; Santos, Bráulio A; Ferreira, Vanda Lúcia; Strüssmann, Christine; Tomas, Walfrido Moraes

    2015-01-01

    Ecological communities are structured by both deterministic and stochastic processes. We investigated phylogenetic patterns at regional and local scales to understand the influences of seasonal processes in shaping the structure of anuran communities in the southern Pantanal wetland, Brazil. We assessed the phylogenetic structure at different scales, using the Net Relatedness Index (NRI), the Nearest Taxon Index (NTI), and phylobetadiversity indexes, as well as a permutation test, to evaluate the effect of seasonality. The anuran community was represented by a non-random set of species with a high degree of phylogenetic relatedness at the regional scale. However, at the local scale the phylogenetic structure of the community was weakly related with the seasonality of the system, indicating that oriented stochastic processes (e.g. colonization, extinction and ecological drift) and/or antagonist forces drive the structure of such communities in the southern Pantanal.

  18. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto; Watson, James R.; Jö nsson, Bror; Gasol, Josep M.; Salazar, Guillem; Acinas, Silvia G.; Estrada, Marta; Massana, Ramó n; Logares, Ramiro; Giner, Caterina R.; Pernice, Massimo C.; Olivar, M. Pilar; Citores, Leire; Corell, Jon; Rodrí guez-Ezpeleta, Naiara; Acuñ a, José Luis; Molina-Ramí rez, Axayacatl; Gonzá lez-Gordillo, J. Ignacio; Có zar, André s; Martí , Elisa; Cuesta, José A.; Agusti, Susana; Fraile-Nuez, Eugenio; Duarte, Carlos M.; Irigoien, Xabier; Chust, Guillem

    2018-01-01

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  19. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto

    2018-01-04

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  20. Structural Quality of Service in Large-Scale Networks

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup

    , telephony and data. To meet the requirements of the different applications, and to handle the increased vulnerability to failures, the ability to design robust networks providing good Quality of Service is crucial. However, most planning of large-scale networks today is ad-hoc based, leading to highly...... complex networks lacking predictability and global structural properties. The thesis applies the concept of Structural Quality of Service to formulate desirable global properties, and it shows how regular graph structures can be used to obtain such properties.......Digitalization has created the base for co-existence and convergence in communications, leading to an increasing use of multi service networks. This is for example seen in the Fiber To The Home implementations, where a single fiber is used for virtually all means of communication, including TV...

  1. Large-scale seismic test for soil-structure interaction research in Hualien, Taiwan

    International Nuclear Information System (INIS)

    Ueshima, T.; Kokusho, T.; Okamoto, T.

    1995-01-01

    It is important to evaluate dynamic soil-structure interaction more accurately in the aseismic design of important facilities such as nuclear power plants. A large-scale model structure with about 1/4th of commercial nuclear power plants was constructed on the gravelly layers in seismically active Hualien, Taiwan. This international joint project is called 'the Hualien LSST Project', where 'LSST' is short for Large-Scale Seismic Test. In this paper, research tasks and responsibilities, the process of the construction work and research tasks along the time-line, main results obtained up to now, and so on in this Project are described. (J.P.N.)

  2. LARGE-SCALE STRUCTURE OF THE UNIVERSE AS A COSMIC STANDARD RULER

    International Nuclear Information System (INIS)

    Park, Changbom; Kim, Young-Rae

    2010-01-01

    We propose to use the large-scale structure (LSS) of the universe as a cosmic standard ruler. This is possible because the pattern of large-scale distribution of matter is scale-dependent and does not change in comoving space during the linear-regime evolution of structure. By examining the pattern of LSS in several redshift intervals it is possible to reconstruct the expansion history of the universe, and thus to measure the cosmological parameters governing the expansion of the universe. The features of the large-scale matter distribution that can be used as standard rulers include the topology of LSS and the overall shapes of the power spectrum and correlation function. The genus, being an intrinsic topology measure, is insensitive to systematic effects such as the nonlinear gravitational evolution, galaxy biasing, and redshift-space distortion, and thus is an ideal cosmic ruler when galaxies in redshift space are used to trace the initial matter distribution. The genus remains unchanged as far as the rank order of density is conserved, which is true for linear and weakly nonlinear gravitational evolution, monotonic galaxy biasing, and mild redshift-space distortions. The expansion history of the universe can be constrained by comparing the theoretically predicted genus corresponding to an adopted set of cosmological parameters with the observed genus measured by using the redshift-comoving distance relation of the same cosmological model.

  3. The existence of very large-scale structures in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Goicoechea, L J; Martin-Mirones, J M [Universidad de Cantabria Santander, (ES)

    1989-09-01

    Assuming that the dipole moment observed in the cosmic background radiation (microwaves and X-rays) can be interpreted as a consequence of the motion of the observer toward a non-local and very large-scale structure in our universe, we study the perturbation of the m-z relation by this inhomogeneity, the dynamical contribution of sources to the dipole anisotropy in the X-ray background and the imprint that several structures with such characteristics would have had on the microwave background at the decoupling. We conclude that in this model the observed anisotropy in the microwave background on intermediate angular scales ({approx}10{sup 0}) may be in conflict with the existence of superstructures.

  4. Inflation and large scale structure formation after COBE

    International Nuclear Information System (INIS)

    Schaefer, R.K.; Shafi, Q.

    1992-06-01

    The simplest realizations of the new inflationary scenario typically give rise to primordial density fluctuations which deviate logarithmically from the scale free Harrison-Zeldovich spectrum. We consider a number of such examples and, in each case we normalize the amplitude of the fluctuations with the recent COBE measurement of the microwave background anisotropy. The predictions for the bulk velocities as well as anisotropies on smaller (1-2 degrees) angular scales are compared with the Harrison-Zeldovich case. Deviations from the latter range from a few to about 15 percent. We also estimate the redshift beyond which the quasars would not be expected to be seen. The inflationary quasar cutoff redshifts can vary by as much as 25% from the Harrison-Zeldovich case. We find that the inflationary scenario provides a good starting point for a theory of large scale structure in the universe provided the dark matter is a combination of cold plus (10-30%) hot components. (author). 27 refs, 1 fig., 1 tab

  5. Time-sliced perturbation theory for large scale structure I: general formalism

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego; Garny, Mathias; Sibiryakov, Sergey [Theory Division, CERN, CH-1211 Genève 23 (Switzerland); Ivanov, Mikhail M., E-mail: diego.blas@cern.ch, E-mail: mathias.garny@cern.ch, E-mail: mikhail.ivanov@cern.ch, E-mail: sergey.sibiryakov@cern.ch [FSB/ITP/LPPC, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland)

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.

  6. An algebraic sub-structuring method for large-scale eigenvalue calculation

    International Nuclear Information System (INIS)

    Yang, C.; Gao, W.; Bai, Z.; Li, X.; Lee, L.; Husbands, P.; Ng, E.

    2004-01-01

    We examine sub-structuring methods for solving large-scale generalized eigenvalue problems from a purely algebraic point of view. We use the term 'algebraic sub-structuring' to refer to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to provide approximate solutions to the original problem. We are interested in the question of which spectral components one should extract from each sub-structure in order to produce an approximate solution to the original problem with a desired level of accuracy. Error estimate for the approximation to the smallest eigenpair is developed. The estimate leads to a simple heuristic for choosing spectral components (modes) from each sub-structure. The effectiveness of such a heuristic is demonstrated with numerical examples. We show that algebraic sub-structuring can be effectively used to solve a generalized eigenvalue problem arising from the simulation of an accelerator structure. One interesting characteristic of this application is that the stiffness matrix produced by a hierarchical vector finite elements scheme contains a null space of large dimension. We present an efficient scheme to deflate this null space in the algebraic sub-structuring process

  7. Grid sensitivity capability for large scale structures

    Science.gov (United States)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  8. Observing the temperature of the big bang through large scale structure

    Science.gov (United States)

    Ferreira, Pedro G.; Magueijo, João

    2008-09-01

    It is an interesting possibility that the Universe underwent a period of thermal equilibrium at very early times. One expects a residue of this primordial state to be imprinted on the large scale structure of space time. In this paper, we study the morphology of this thermal residue in a universe whose early dynamics is governed by a scalar field. We calculate the amplitude of fluctuations on large scales and compare it with the imprint of vacuum fluctuations. We then use the observed power spectrum of fluctuations on the cosmic microwave background to place a constraint on the temperature of the Universe before and during inflation. We also present an alternative scenario, where the fluctuations are predominantly thermal and near scale-invariant.

  9. Inflationary tensor fossils in large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Dimastrogiovanni, Emanuela [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Fasiello, Matteo [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); Jeong, Donghui [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Kamionkowski, Marc, E-mail: ema@physics.umn.edu, E-mail: mrf65@case.edu, E-mail: duj13@psu.edu, E-mail: kamion@jhu.edu [Department of Physics and Astronomy, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218 (United States)

    2014-12-01

    Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to be satisfied. We then consider several examples of inflation models, such as non-attractor and solid-inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.

  10. Phylogenetic distribution of large-scale genome patchiness

    Directory of Open Access Journals (Sweden)

    Hackenberg Michael

    2008-04-01

    Full Text Available Abstract Background The phylogenetic distribution of large-scale genome structure (i.e. mosaic compositional patchiness has been explored mainly by analytical ultracentrifugation of bulk DNA. However, with the availability of large, good-quality chromosome sequences, and the recently developed computational methods to directly analyze patchiness on the genome sequence, an evolutionary comparative analysis can be carried out at the sequence level. Results The local variations in the scaling exponent of the Detrended Fluctuation Analysis are used here to analyze large-scale genome structure and directly uncover the characteristic scales present in genome sequences. Furthermore, through shuffling experiments of selected genome regions, computationally-identified, isochore-like regions were identified as the biological source for the uncovered large-scale genome structure. The phylogenetic distribution of short- and large-scale patchiness was determined in the best-sequenced genome assemblies from eleven eukaryotic genomes: mammals (Homo sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus, and Canis familiaris, birds (Gallus gallus, fishes (Danio rerio, invertebrates (Drosophila melanogaster and Caenorhabditis elegans, plants (Arabidopsis thaliana and yeasts (Saccharomyces cerevisiae. We found large-scale patchiness of genome structure, associated with in silico determined, isochore-like regions, throughout this wide phylogenetic range. Conclusion Large-scale genome structure is detected by directly analyzing DNA sequences in a wide range of eukaryotic chromosome sequences, from human to yeast. In all these genomes, large-scale patchiness can be associated with the isochore-like regions, as directly detected in silico at the sequence level.

  11. Large scale electronic structure calculations in the study of the condensed phase

    NARCIS (Netherlands)

    van Dam, H.J.J.; Guest, M.F.; Sherwood, P.; Thomas, J.M.H.; van Lenthe, J.H.; van Lingen, J.N.J.; Bailey, C.L.; Bush, I.J.

    2006-01-01

    We consider the role that large-scale electronic structure computations can now play in the modelling of the condensed phase. To structure our analysis, we consider four distict ways in which today's scientific targets can be re-scoped to take advantage of advances in computing resources: 1. time to

  12. Towards a Gravity Dual for the Large Scale Structure of the Universe

    CERN Document Server

    Kehagias, A.

    2016-01-01

    The dynamics of the large-scale structure of the universe enjoys at all scales, even in the highly non-linear regime, a Lifshitz symmetry during the matter-dominated period. In this paper we propose a general class of six-dimensional spacetimes which could be a gravity dual to the four-dimensional large-scale structure of the universe. In this set-up, the Lifshitz symmetry manifests itself as an isometry in the bulk and our universe is a four-dimensional brane moving in such six-dimensional bulk. After finding the correspondence between the bulk and the brane dynamical Lifshitz exponents, we find the intriguing result that the preferred value of the dynamical Lifshitz exponent of our observed universe, at both linear and non-linear scales, corresponds to a fixed point of the RGE flow of the dynamical Lifshitz exponent in the dual system where the symmetry is enhanced to the Schrodinger group containing a non-relativistic conformal symmetry. We also investigate the RGE flow between fixed points of the Lifshitz...

  13. Spatial fingerprints of community structure in human interaction network for an extensive set of large-scale regions.

    Science.gov (United States)

    Kallus, Zsófia; Barankai, Norbert; Szüle, János; Vattay, Gábor

    2015-01-01

    Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well-established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal-area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization.

  14. An improved method to characterise the modulation of small-scale turbulent by large-scale structures

    Science.gov (United States)

    Agostini, Lionel; Leschziner, Michael; Gaitonde, Datta

    2015-11-01

    A key aspect of turbulent boundary layer dynamics is ``modulation,'' which refers to degree to which the intensity of coherent large-scale structures (LS) cause an amplification or attenuation of the intensity of the small-scale structures (SS) through large-scale-linkage. In order to identify the variation of the amplitude of the SS motion, the envelope of the fluctuations needs to be determined. Mathis et al. (2009) proposed to define this latter by low-pass filtering the modulus of the analytic signal built from the Hilbert transform of SS. The validity of this definition, as a basis for quantifying the modulated SS signal, is re-examined on the basis of DNS data for a channel flow. The analysis shows that the modulus of the analytic signal is very sensitive to the skewness of its PDF, which is dependent, in turn, on the sign of the LS fluctuation and thus of whether these fluctuations are associated with sweeps or ejections. The conclusion is that generating an envelope by use of a low-pass filtering step leads to an important loss of information associated with the effects of the local skewness of the PDF of the SS on the modulation process. An improved Hilbert-transform-based method is proposed to characterize the modulation of SS turbulence by LS structures

  15. Solving large scale structure in ten easy steps with COLA

    Energy Technology Data Exchange (ETDEWEB)

    Tassev, Svetlin [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Zaldarriaga, Matias [School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540 (United States); Eisenstein, Daniel J., E-mail: stassev@cfa.harvard.edu, E-mail: matiasz@ias.edu, E-mail: deisenstein@cfa.harvard.edu [Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 10{sup 9}M{sub s}un/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10{sup 11}M{sub s}un/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.

  16. Large scale implementation of clinical medication reviews in Dutch community pharmacies: Drug-related problems and interventions

    NARCIS (Netherlands)

    Kempen, Thomas G. H.; Van De Steeg-Van Gompel, Caroline H. P. A.; Hoogland, Petra; Liu, Yuqian; Bouvy, Marcel L.

    2014-01-01

    Background: Research on the benefits of clinical medication reviews (CMRs) performed by pharmacists has been conducted mostly in controlled settings and has been widely published. Less is known of the effects after large scale implementation in community pharmacies. An online CMR tool enabled the

  17. Natural Length Scales of Ecological Systems: Applications at Community and Ecosystem Levels

    Directory of Open Access Journals (Sweden)

    Craig R. Johnson

    2009-06-01

    associated with loss of resilience in ecological systems and thus provide a means to interpret change in community composition. By extension, comparison of the CLSs of ostensibly similar communities at different points in space can reveal whether they experience similar underlying dynamics. Analysis of these models also reveals that species in the same community whose dynamics are largely independent indicate different length scales. These examples demonstrate the potential to apply CLSs in a decision-support role in determining scales for monitoring, interpreting whether change in community structure reflects a shift in underlying dynamics and therefore may warrant management intervention, and determining connectivities among species in complex ecological systems.

  18. Why small-scale cannabis growers stay small: five mechanisms that prevent small-scale growers from going large scale.

    Science.gov (United States)

    Hammersvik, Eirik; Sandberg, Sveinung; Pedersen, Willy

    2012-11-01

    Over the past 15-20 years, domestic cultivation of cannabis has been established in a number of European countries. New techniques have made such cultivation easier; however, the bulk of growers remain small-scale. In this study, we explore the factors that prevent small-scale growers from increasing their production. The study is based on 1 year of ethnographic fieldwork and qualitative interviews conducted with 45 Norwegian cannabis growers, 10 of whom were growing on a large-scale and 35 on a small-scale. The study identifies five mechanisms that prevent small-scale indoor growers from going large-scale. First, large-scale operations involve a number of people, large sums of money, a high work-load and a high risk of detection, and thus demand a higher level of organizational skills than for small growing operations. Second, financial assets are needed to start a large 'grow-site'. Housing rent, electricity, equipment and nutrients are expensive. Third, to be able to sell large quantities of cannabis, growers need access to an illegal distribution network and knowledge of how to act according to black market norms and structures. Fourth, large-scale operations require advanced horticultural skills to maximize yield and quality, which demands greater skills and knowledge than does small-scale cultivation. Fifth, small-scale growers are often embedded in the 'cannabis culture', which emphasizes anti-commercialism, anti-violence and ecological and community values. Hence, starting up large-scale production will imply having to renegotiate or abandon these values. Going from small- to large-scale cannabis production is a demanding task-ideologically, technically, economically and personally. The many obstacles that small-scale growers face and the lack of interest and motivation for going large-scale suggest that the risk of a 'slippery slope' from small-scale to large-scale growing is limited. Possible political implications of the findings are discussed. Copyright

  19. Galaxies distribution in the universe: large-scale statistics and structures

    International Nuclear Information System (INIS)

    Maurogordato, Sophie

    1988-01-01

    This research thesis addresses the distribution of galaxies in the Universe, and more particularly large scale statistics and structures. Based on an assessment of the main used statistical techniques, the author outlines the need to develop additional tools to correlation functions in order to characterise the distribution. She introduces a new indicator: the probability of a volume randomly tested in the distribution to be void. This allows a characterisation of void properties at the work scales (until 10h"-"1 Mpc) in the Harvard Smithsonian Center for Astrophysics Redshift Survey, or CfA catalog. A systematic analysis of statistical properties of different sub-samples has then been performed with respect to the size and location, luminosity class, and morphological type. This analysis is then extended to different scenarios of structure formation. A program of radial speed measurements based on observations allows the determination of possible relationships between apparent structures. The author also presents results of the search for south extensions of Perseus supernova [fr

  20. On soft limits of large-scale structure correlation functions

    International Nuclear Information System (INIS)

    Sagunski, Laura

    2016-08-01

    Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the

  1. On soft limits of large-scale structure correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Sagunski, Laura

    2016-08-15

    Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the

  2. Measures of large-scale structure in the CfA redshift survey slices

    International Nuclear Information System (INIS)

    De Lapparent, V.; Geller, M.J.; Huchra, J.P.

    1991-01-01

    Variations of the counts-in-cells with cell size are used here to define two statistical measures of large-scale clustering in three 6 deg slices of the CfA redshift survey. A percolation criterion is used to estimate the filling factor which measures the fraction of the total volume in the survey occupied by the large-scale structures. For the full 18 deg slice of the CfA redshift survey, f is about 0.25 + or - 0.05. After removing groups with more than five members from two of the slices, variations of the counts in occupied cells with cell size have a power-law behavior with a slope beta about 2.2 on scales from 1-10/h Mpc. Application of both this statistic and the percolation analysis to simulations suggests that a network of two-dimensional structures is a better description of the geometry of the clustering in the CfA slices than a network of one-dimensional structures. Counts-in-cells are also used to estimate at 0.3 galaxy h-squared/Mpc the average galaxy surface density in sheets like the Great Wall. 46 refs

  3. On the renormalization of the effective field theory of large scale structures

    International Nuclear Information System (INIS)

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P in ∼ k n . After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections

  4. On the renormalization of the effective field theory of large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Pajer, Enrico [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Zaldarriaga, Matias, E-mail: enrico.pajer@gmail.com, E-mail: matiasz@ias.edu [Institute for Advanced Study, Princeton, NJ 08544 (United States)

    2013-08-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P{sub in} ∼ k{sup n}. After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections.

  5. Study on the structure and level of electricity prices for Northwest-European large-scale consumers

    International Nuclear Information System (INIS)

    2006-06-01

    The aim of the study on the title subject is to make an overview of the structure and developments of electricity prices for large-scale consumers in Northwest-Europe (Netherlands, Germany, Belgium and France) and of current regulations for large-scale consumers in Europe [nl

  6. Political consultation and large-scale research

    International Nuclear Information System (INIS)

    Bechmann, G.; Folkers, H.

    1977-01-01

    Large-scale research and policy consulting have an intermediary position between sociological sub-systems. While large-scale research coordinates science, policy, and production, policy consulting coordinates science, policy and political spheres. In this very position, large-scale research and policy consulting lack of institutional guarantees and rational back-ground guarantee which are characteristic for their sociological environment. This large-scale research can neither deal with the production of innovative goods under consideration of rentability, nor can it hope for full recognition by the basis-oriented scientific community. Policy consulting knows neither the competence assignment of the political system to make decisions nor can it judge succesfully by the critical standards of the established social science, at least as far as the present situation is concerned. This intermediary position of large-scale research and policy consulting has, in three points, a consequence supporting the thesis which states that this is a new form of institutionalization of science: These are: 1) external control, 2) the organization form, 3) the theoretical conception of large-scale research and policy consulting. (orig.) [de

  7. Large-scale grid management

    International Nuclear Information System (INIS)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-01-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series

  8. Variation in the macrofaunal community over large temporal and spatial scales in the southern Yellow Sea

    Science.gov (United States)

    Xu, Yong; Sui, Jixing; Yang, Mei; Sun, Yue; Li, Xinzheng; Wang, Hongfa; Zhang, Baolin

    2017-09-01

    To detect large, temporal- and spatial-scale variations in the macrofaunal community in the southern Yellow Sea, data collected along the western, middle and eastern regions of the southern Yellow Sea from 1958 to 2014 were organized and analyzed. Statistical methods such as cluster analysis, non-metric multidimensional scaling ordination (nMDS), permutational multivariate analysis of variance (PERMANOVA), redundancy analysis (RDA) and canonical correspondence analysis (CCA) were applied. The abundance of polychaetes increased in the western region but decreased in the eastern region from 1958 to 2014, whereas the abundance of echinoderms showed an opposite trend. For the entire macrofaunal community, Margalef's richness (d), the Shannon-Wiener index (H‧) and Pielou's evenness (J‧) were significantly lower in the eastern region when compared with the other two regions. No significant temporal differences were found for d and H‧, but there were significantly lower values of J‧ in 2014. Considerable variation in the macrofaunal community structure over the past several decades and among the geographical regions at the species, genus and family levels were observed. The species, genera and families that contributed to the temporal variation in each region were also identified. The most conspicuous pattern was the increase in the species Ophiura sarsii vadicola in the eastern region. In the western region, five polychaetes (Ninoe palmata, Notomastus latericeus, Paralacydonia paradoxa, Paraprionospio pinnata and Sternaspis scutata) increased consistently from 1958 to 2014. The dominance curves showed that both the species diversity and the dominance patterns were relatively stable in the western and middle regions. Environmental parameters such as depth, temperature and salinity could only partially explain the observed biological variation in the southern Yellow Sea. Anthropogenic activities such as demersal fishing and other unmeasured environmental variables

  9. Non-gut baryogenesis and large scale structure of the universe

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    1995-07-01

    We discuss a mechanism for generating baryon density perturbations and study the evolution of the baryon charge density distribution in the framework of the low temperature baryogenesis scenario. This mechanism may be important for the large scale structure formation of the Universe and particularly, may be essential for understanding the existence of a characteristic scale of 130h -1 Mpc in the distribution of the visible matter. The detailed analysis showed that both the observed very large scale of the visible matter distribution in the Universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage. Moreover, according to our model, at present the visible part of the Universe may consist of baryonic and antibaryonic shells, sufficiently separated, so that annihilation radiation is not observed. This is an interesting possibility as far as the observational data of antiparticles in cosmic rays do not rule out the possibility of antimatter superclusters in the Universe. (author). 16 refs, 3 figs

  10. Environmental factors at different spatial scales governing soil fauna community patterns in fragmented forests.

    NARCIS (Netherlands)

    Martins da Silva, P.; Berg, M.P.; Serrano, A.R.M.; Dubs, F.; Sousa, J.P.

    2012-01-01

    Spatial and temporal changes in community structure of soil organisms may result from a myriad of processes operating at a hierarchy of spatial scales, from small-scale habitat conditions to species movements among patches and large-sale landscape features. To disentangle the relative importance of

  11. The topology of large-scale structure. III. Analysis of observations

    International Nuclear Information System (INIS)

    Gott, J.R. III; Weinberg, D.H.; Miller, J.; Thuan, T.X.; Schneider, S.E.

    1989-01-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a meatball topology. 66 refs

  12. The topology of large-scale structure. III - Analysis of observations

    Science.gov (United States)

    Gott, J. Richard, III; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.; Weinberg, David H.; Gammie, Charles; Polk, Kevin; Vogeley, Michael; Jeffrey, Scott; Bhavsar, Suketu P.; Melott, Adrian L.; Giovanelli, Riccardo; Hayes, Martha P.; Tully, R. Brent; Hamilton, Andrew J. S.

    1989-05-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.

  13. Large scale cluster computing workshop

    International Nuclear Information System (INIS)

    Dane Skow; Alan Silverman

    2002-01-01

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community

  14. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia.

    Science.gov (United States)

    Crane, Nicole L; Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle

    2017-01-01

    The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2-oceanic and inhabited (high human impact); and cluster 3-lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.

  15. Finding Community Structures In Social Activity Data

    KAUST Repository

    Peng, Chengbin

    2015-05-19

    Social activity data sets are increasing in number and volume. Finding community structure in such data is valuable in many applications. For example, understand- ing the community structure of social networks may reduce the spread of epidemics or boost advertising revenue; discovering partitions in tra c networks can help to optimize routing and to reduce congestion; finding a group of users with common interests can allow a system to recommend useful items. Among many aspects, qual- ity of inference and e ciency in finding community structures in such data sets are of paramount concern. In this thesis, we propose several approaches to improve com- munity detection in these aspects. The first approach utilizes the concept of K-cores to reduce the size of the problem. The K-core of a graph is the largest subgraph within which each node has at least K connections. We propose a framework that accelerates community detection. It first applies a traditional algorithm that is relatively slow to the K-core, and then uses a fast heuristic to infer community labels for the remaining nodes. The second approach is to scale the algorithm to multi-processor systems. We de- vise a scalable community detection algorithm for large networks based on stochastic block models. It is an alternating iterative algorithm using a maximum likelihood ap- proach. Compared with traditional inference algorithms for stochastic block models, our algorithm can scale to large networks and run on multi-processor systems. The time complexity is linear in the number of edges of the input network. The third approach is to improve the quality. We propose a framework for non- negative matrix factorization that allows the imposition of linear or approximately linear constraints on each factor. An example of the applications is to find community structures in bipartite networks, which is useful in recommender systems. Our algorithms are compared with the results in recent papers and their quality and e

  16. 2MASS Constraints on the Local Large-Scale Structure: A Challenge to LCDM?

    OpenAIRE

    Frith, W. J.; Shanks, T.; Outram, P. J.

    2004-01-01

    We investigate the large-scale structure of the local galaxy distribution using the recently completed 2 Micron All Sky Survey (2MASS). First, we determine the K-band number counts over the 4000 sq.deg. APM survey area where evidence for a large-scale `local hole' has previously been detected and compare them to a homogeneous prediction. Considering a LCDM form for the 2-point angular correlation function, the observed deficiency represents a 5 sigma fluctuation in the galaxy distribution. We...

  17. DEMNUni: massive neutrinos and the bispectrum of large scale structures

    Science.gov (United States)

    Ruggeri, Rossana; Castorina, Emanuele; Carbone, Carmelita; Sefusatti, Emiliano

    2018-03-01

    The main effect of massive neutrinos on the large-scale structure consists in a few percent suppression of matter perturbations on all scales below their free-streaming scale. Such effect is of particular importance as it allows to constraint the value of the sum of neutrino masses from measurements of the galaxy power spectrum. In this work, we present the first measurements of the next higher-order correlation function, the bispectrum, from N-body simulations that include massive neutrinos as particles. This is the simplest statistics characterising the non-Gaussian properties of the matter and dark matter halos distributions. We investigate, in the first place, the suppression due to massive neutrinos on the matter bispectrum, comparing our measurements with the simplest perturbation theory predictions, finding the approximation of neutrinos contributing at quadratic order in perturbation theory to provide a good fit to the measurements in the simulations. On the other hand, as expected, a linear approximation for neutrino perturbations would lead to Script O(fν) errors on the total matter bispectrum at large scales. We then attempt an extension of previous results on the universality of linear halo bias in neutrino cosmologies, to non-linear and non-local corrections finding consistent results with the power spectrum analysis.

  18. Spatial fingerprints of community structure in human interaction network for an extensive set of large-scale regions.

    Directory of Open Access Journals (Sweden)

    Zsófia Kallus

    Full Text Available Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well-established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal-area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization.

  19. The three-point function as a probe of models for large-scale structure

    International Nuclear Information System (INIS)

    Frieman, J.A.; Gaztanaga, E.

    1993-01-01

    The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard Ω = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R p ∼20 h -1 Mpc, e.g., low-matter-density (non-zero cosmological constant) models, open-quote tilted close-quote primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q J at large scales, r approx-gt R p . Current observational constraints on the three-point amplitudes Q 3 and S 3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales

  20. Segmentation and fragmentation of melt jets due to generation of large-scale structures. Observation in low subcooling conditions

    International Nuclear Information System (INIS)

    Sugiyama, Ken-ichiro; Yamada, Tsuyoshi

    1999-01-01

    In order to clarify a mechanism of melt-jet breakup and fragmentation entirely different from the mechanism of stripping, a series of experiments were carried out by using molten tin jets of 100 grams with initial temperatures from 250degC to 900degC. Molten tin jets with a small kinematic viscosity and a large thermal diffusivity were used to observe breakup and fragmentation of melt jets enhanced thermally and hydrodynamically. We observed jet columns with second-stage large-scale structures generated by the coalescence of large-scale structures recognized in the field of fluid mechanics. At a greater depth, the segmentation of jet columns between second-stage large-scale structures and the fragmentation of the segmented jet columns were observed. It is reasonable to consider that the segmentation and the fragmentation of jet columns are caused by the boiling of water hydrodynamically entrained within second-stage large-scale structures. (author)

  1. Development of the simulation package 'ELSES' for extra-large-scale electronic structure calculation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, T [Department of Applied Mathematics and Physics, Tottori University, Tottori 680-8550 (Japan); Fujiwara, T [Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (CREST-JST) (Japan)

    2009-02-11

    An early-stage version of the simulation package 'ELSES' (extra-large-scale electronic structure calculation) is developed for simulating the electronic structure and dynamics of large systems, particularly nanometer-scale and ten-nanometer-scale systems (see www.elses.jp). Input and output files are written in the extensible markup language (XML) style for general users. Related pre-/post-simulation tools are also available. A practical workflow and an example are described. A test calculation for the GaAs bulk system is shown, to demonstrate that the present code can handle systems with more than one atom species. Several future aspects are also discussed.

  2. Evidence for non-Abelian dark matter from large scale structure?

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    If dark matter multiplicity arises from a weakly coupled non-Abelian dark gauge group the corresponding "dark gluons" can have interesting signatures in cosmology which I will review: 1. the "dark gluons" contribute to the radiation content of the universe and 2. gluon interactions with the dark matter may explain the >3 sigma discrepancy between precision fits to the CMB from Planck and direct measurements of large scale structure in the universe.

  3. On the Soft Limit of the Large Scale Structure Power Spectrum: UV Dependence

    CERN Document Server

    Garny, Mathias; Porto, Rafael A; Sagunski, Laura

    2015-01-01

    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agr...

  4. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia.

    Directory of Open Access Journals (Sweden)

    Nicole L Crane

    Full Text Available The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water and uninhabited (low human impact; cluster 2-oceanic and inhabited (high human impact; and cluster 3-lagoonal (facing the inside of the lagoon and inhabited (highest human impact. Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp. is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.

  5. Planck 2013 results. XVII. Gravitational lensing by large-scale structure

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Basak, S.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Dechelette, T.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lavabre, A.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Pullen, A.R.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    On the arcminute angular scales probed by Planck, the CMB anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217GHz frequency bands with an overall significance of greater than 25sigma. We use the temperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting LCDM model for the Planck temperature power spectrum, showing that this measurement at z=1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing ...

  6. Optimization of Large-Scale Structural Systems

    DEFF Research Database (Denmark)

    Jensen, F. M.

    solutions to small problems with one or two variables to the optimization of large structures such as bridges, ships and offshore structures. The methods used for salving these problems have evolved from being classical differential calculus and calculus of variation to very advanced numerical techniques...

  7. Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations

    Directory of Open Access Journals (Sweden)

    José Gaite

    2013-05-01

    Full Text Available Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.

  8. Structure of Caribbean coral reef communities across a large gradient of fish biomass.

    Science.gov (United States)

    Newman, Marah J H; Paredes, Gustavo A; Sala, Enric; Jackson, Jeremy B C

    2006-11-01

    The collapse of Caribbean coral reefs has been attributed in part to historic overfishing, but whether fish assemblages can recover and how such recovery might affect the benthic reef community has not been tested across appropriate scales. We surveyed the biomass of reef communities across a range in fish abundance from 14 to 593 g m(-2), a gradient exceeding that of any previously reported for coral reefs. Increased fish biomass was correlated with an increased proportion of apex predators, which were abundant only inside large marine reserves. Increased herbivorous fish biomass was correlated with a decrease in fleshy algal biomass but corals have not yet recovered.

  9. Bird-community responses to habitat creation in a long-term, large-scale natural experiment.

    Science.gov (United States)

    Whytock, Robin C; Fuentes-Montemayor, Elisa; Watts, Kevin; Barbosa De Andrade, Patanjaly; Whytock, Rory T; French, Paul; Macgregor, Nicholas A; Park, Kirsty J

    2018-04-01

    Ecosystem function and resilience are compromised when habitats become fragmented due to land-use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape-scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post-agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10-160 years with ≥80% canopy cover and in landscapes with 0-17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local- and landscape-scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape

  10. Developing eThread Pipeline Using SAGA-Pilot Abstraction for Large-Scale Structural Bioinformatics

    Directory of Open Access Journals (Sweden)

    Anjani Ragothaman

    2014-01-01

    Full Text Available While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread—a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure.

  11. Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures.

    Science.gov (United States)

    Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana

    2016-01-01

    With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.

  12. EFT of large scale structures in redshift space

    Science.gov (United States)

    Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco; Zhao, Cheng; Chuang, Chia-Hsun

    2018-03-01

    We further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ=6 . We find that the IR resummation allows us to correctly reproduce the baryon acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k —depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z =0.56 and up to ℓ=2 matches the data at the percent level approximately up to k ˜0.13 h Mpc-1 or k ˜0.18 h Mpc-1 , depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.

  13. Systematic renormalization of the effective theory of Large Scale Structure

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Mirbabayi, Mehrdad; Pajer, Enrico

    2016-01-01

    A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k 2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.

  14. Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

    Science.gov (United States)

    Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; hide

    2013-01-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  15. Angular momentum-large-scale structure alignments in ΛCDM models and the SDSS

    Science.gov (United States)

    Paz, Dante J.; Stasyszyn, Federico; Padilla, Nelson D.

    2008-09-01

    We study the alignments between the angular momentum of individual objects and the large-scale structure in cosmological numerical simulations and real data from the Sloan Digital Sky Survey, Data Release 6 (SDSS-DR6). To this end, we measure anisotropies in the two point cross-correlation function around simulated haloes and observed galaxies, studying separately the one- and two-halo regimes. The alignment of the angular momentum of dark-matter haloes in Λ cold dark matter (ΛCDM) simulations is found to be dependent on scale and halo mass. At large distances (two-halo regime), the spins of high-mass haloes are preferentially oriented in the direction perpendicular to the distribution of matter; lower mass systems show a weaker trend that may even reverse to show an angular momentum in the plane of the matter distribution. In the one-halo term regime, the angular momentum is aligned in the direction perpendicular to the matter distribution; the effect is stronger than for the one-halo term and increases for higher mass systems. On the observational side, we focus our study on galaxies in the SDSS-DR6 with elongated apparent shapes, and study alignments with respect to the major semi-axis. We study five samples of edge-on galaxies; the full SDSS-DR6 edge-on sample, bright galaxies, faint galaxies, red galaxies and blue galaxies (the latter two consisting mainly of ellipticals and spirals, respectively). Using the two-halo term of the projected correlation function, we find an excess of structure in the direction of the major semi-axis for all samples; the red sample shows the highest alignment (2.7 +/- 0.8per cent) and indicates that the angular momentum of flattened spheroidals tends to be perpendicular to the large-scale structure. These results are in qualitative agreement with the numerical simulation results indicating that the angular momentum of galaxies could be built up as in the Tidal Torque scenario. The one-halo term only shows a significant alignment

  16. Large scale structures in liquid crystal/clay colloids

    Science.gov (United States)

    van Duijneveldt, Jeroen S.; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M.

    2005-04-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods.

  17. Large scale structures in liquid crystal/clay colloids

    International Nuclear Information System (INIS)

    Duijneveldt, Jeroen S van; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M

    2005-01-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods

  18. A large-scale soil-structure interaction experiment: Part I design and construction

    International Nuclear Information System (INIS)

    Tang, H.T.; Tang, Y.K.; Wall, I.B.; Lin, E.

    1987-01-01

    In the simulated earthquake experiments (SIMQUAKE) sponsored by EPRI, the detonation of vertical arrays of explosives propagated wave motions through the ground to the model structures. Although such a simulation can provide information about dynamic soil-structure interaction (SSI) characteristics in a strong motion environment, it lacks seismic wave scattering characteristics for studying seismic input to the soil-structure system and the effect of different kinds of wave composition to the soil-structure response. To supplement the inadequacy of the simulated earthquake SSI experiment, the Electric Power Research Institute (EPRI) and the Taiwan Power Company (Taipower) jointly sponsored a large scale SSI experiment in the field. The objectives of the experiment are: (1) to obtain actual strong motion earthquakes induced database in a soft-soil environment which will substantiate predictive and design SSI models;and (2) to assess nuclear power plant reactor containment internal components dynamic response and margins relating to actual earthquake-induced excitation. These objectives are accomplished by recording and analyzing data from two instrumented, scaled down, (1/4- and 1/12-scale) reinforced concrete containments sited in a high seismic region in Taiwan where a strong-motion seismic array network is located

  19. Towards a 'standard model' of large scale structure formation

    International Nuclear Information System (INIS)

    Shafi, Q.

    1994-01-01

    We explore constraints on inflationary models employing data on large scale structure mainly from COBE temperature anisotropies and IRAS selected galaxy surveys. In models where the tensor contribution to the COBE signal is negligible, we find that the spectral index of density fluctuations n must exceed 0.7. Furthermore the COBE signal cannot be dominated by the tensor component, implying n > 0.85 in such models. The data favors cold plus hot dark matter models with n equal or close to unity and Ω HDM ∼ 0.2 - 0.35. Realistic grand unified theories, including supersymmetric versions, which produce inflation with these properties are presented. (author). 46 refs, 8 figs

  20. Reconstructing Information in Large-Scale Structure via Logarithmic Mapping

    Science.gov (United States)

    Szapudi, Istvan

    We propose to develop a new method to extract information from large-scale structure data combining two-point statistics and non-linear transformations; before, this information was available only with substantially more complex higher-order statistical methods. Initially, most of the cosmological information in large-scale structure lies in two-point statistics. With non- linear evolution, some of that useful information leaks into higher-order statistics. The PI and group has shown in a series of theoretical investigations how that leakage occurs, and explained the Fisher information plateau at smaller scales. This plateau means that even as more modes are added to the measurement of the power spectrum, the total cumulative information (loosely speaking the inverse errorbar) is not increasing. Recently we have shown in Neyrinck et al. (2009, 2010) that a logarithmic (and a related Gaussianization or Box-Cox) transformation on the non-linear Dark Matter or galaxy field reconstructs a surprisingly large fraction of this missing Fisher information of the initial conditions. This was predicted by the earlier wave mechanical formulation of gravitational dynamics by Szapudi & Kaiser (2003). The present proposal is focused on working out the theoretical underpinning of the method to a point that it can be used in practice to analyze data. In particular, one needs to deal with the usual real-life issues of galaxy surveys, such as complex geometry, discrete sam- pling (Poisson or sub-Poisson noise), bias (linear, or non-linear, deterministic, or stochastic), redshift distortions, pro jection effects for 2D samples, and the effects of photometric redshift errors. We will develop methods for weak lensing and Sunyaev-Zeldovich power spectra as well, the latter specifically targetting Planck. In addition, we plan to investigate the question of residual higher- order information after the non-linear mapping, and possible applications for cosmology. Our aim will be to work out

  1. Equipment of visualization environment of a large-scale structural analysis system. Visualization using AVS/Express of an ADVENTURE system

    International Nuclear Information System (INIS)

    Miyazaki, Mikiya

    2004-02-01

    The data display work of visualization is done in many research fields, and a lot of special softwares for the specific purposes exist today. But such softwares have an interface to only a small number of solvers. In many simulations, data conversion for visualization software is required between analysis and visualization for the practical use. This report describes the equipment work of the data visualization environment where AVS/Express was installed in corresponding to many requests from the users of the large-scale structural analysis system which is prepared as an ITBL community software. This environment enables to use the ITBL visualization server as a visualization device after the computation on the ITBL computer. Moreover, a lot of use will be expected within the community in the ITBL environment by merging it into ITBL/AVS environment in the future. (author)

  2. Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography.

    Science.gov (United States)

    Marzinelli, Ezequiel M; Campbell, Alexandra H; Zozaya Valdes, Enrique; Vergés, Adriana; Nielsen, Shaun; Wernberg, Thomas; de Bettignies, Thibaut; Bennett, Scott; Caporaso, J Gregory; Thomas, Torsten; Steinberg, Peter D

    2015-10-01

    Interactions between hosts and associated microbial communities can fundamentally shape the development and ecology of 'holobionts', from humans to marine habitat-forming organisms such as seaweeds. In marine systems, planktonic microbial community structure is mainly driven by geography and related environmental factors, but the large-scale drivers of host-associated microbial communities are largely unknown. Using 16S-rRNA gene sequencing, we characterized 260 seaweed-associated bacterial and archaeal communities on the kelp Ecklonia radiata from three biogeographical provinces spanning 10° of latitude and 35° of longitude across the Australian continent. These phylogenetically and taxonomically diverse communities were more strongly and consistently associated with host condition than geographical location or environmental variables, and a 'core' microbial community characteristic of healthy kelps appears to be lost when hosts become stressed. Microbial communities on stressed individuals were more similar to each other among locations than those on healthy hosts. In contrast to biogeographical patterns of planktonic marine microbial communities, host traits emerge as critical determinants of associated microbial community structure of these holobionts, even at a continental scale. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    International Nuclear Information System (INIS)

    Alvarez, Marcello; Baldauf, T.; Bond, J. Richard; Dalal, N.; Putter, R. D.; Dore, O.; Green, Daniel; Hirata, Chris; Huang, Zhiqi; Huterer, Dragan; Jeong, Donghui; Johnson, Matthew C.; Krause, Elisabeth; Loverde, Marilena; Meyers, Joel; Meeburg, Daniel; Senatore, Leonardo; Shandera, Sarah; Silverstein, Eva; Slosar, Anze; Smith, Kendrick; Zaldarriaga, Matias; Assassi, Valentin; Braden, Jonathan; Hajian, Amir; Kobayashi, Takeshi; Stein, George; Engelen, Alexander van

    2014-01-01

    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large-scale structure is, however, from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude floc\

  4. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study

    Science.gov (United States)

    Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing

    2018-04-01

    Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.

  5. Seismic tests of a pile-supported structure in liquefiable sand using large-scale blast excitation

    International Nuclear Information System (INIS)

    Kamijo, Naotaka; Saito, Hideaki; Kusama, Kazuhiro; Kontani, Osamu; Nigbor, Robert

    2004-01-01

    Extensive, large-amplitude vibration tests of a pile-supported structure in a liquefiable sand deposit have been performed at a large-scale mining site. Ground motions from large-scale blasting operations were used as excitation forces for vibration tests. A simple pile-supported structure was constructed in an excavated 3 m-deep pit. The test pit was backfilled with 100% water-saturated clean uniform sand. Accelerations were measured on the pile-supported structure, in the sand in the test pit, and in the adjacent free field. Excess pore water pressures in the test pit and strains of one pile were also measured. Vibration tests were performed with six different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 20 Gals to 1353 Gals. These alternations of acceleration provided different degrees of liquefaction in the test pit. Sand boiling phenomena were observed in the test pit with larger input motions. This paper outlines vibration tests and investigates the test results

  6. Mapping spatial patterns of denitrifiers at large scales (Invited)

    Science.gov (United States)

    Philippot, L.; Ramette, A.; Saby, N.; Bru, D.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.

    2010-12-01

    Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 739 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.

  7. Large-Scale Structure Behind The Milky Way with ALFAZOA

    Science.gov (United States)

    Sanchez Barrantes, Monica; Henning, Patricia A.; Momjian, Emmanuel; McIntyre, Travis; Minchin, Robert F.

    2018-06-01

    The region of the sky behind the Milky Way (the Zone of Avoidance; ZOA) is not well studied due to high obscuration from gas and dust in our galaxy as well as stellar confusion, which results in low detection rate of galaxies in this region. Because of this, little is known about the distribution of galaxies in the ZOA, and other all sky redshift surveys have incomplete maps (e.g. the 2MASS Redshift survey in NIR has a gap of 5-8 deg around the Galactic plane). There is still controversy about the dipole anisotropy calculated from the comparison between the CMB and galaxy and redshift surveys, in part due to the incomplete sky mapping and redshift depth of these surveys. Fortunately, there is no ZOA at radio wavelengths because such wavelengths can pass unimpeded through dust and are not affected by stellar confusion. Therefore, we can detect and make a map of the distribution of obscured galaxies that contain the 21cm neutral hydrogen emission line, and trace the large-scale structure across the Galactic plane. The Arecibo L-Band Feed Array Zone of Avoidance (ALFAZOA) survey is a blind HI survey for galaxies behind the Milky Way that covers more than 1000 square degrees of the sky, conducted in two phases: shallow (completed) and deep (ongoing). We show the results of the finished shallow phase of the survey, which mapped a region between the galactic longitude l=30-75 deg, and latitude b <|10 deg|, and detected 418 galaxies to about 12,000 km/s, including galaxy properties and mapped large-scale structure. We do the same for new results from the deep phase, which is ongoing and covers 30 < l < 75 deg and b < |2| deg for the inner galaxy and 175 < l < 207 deg, with -2 < b < 1 for the outer galaxy.

  8. PubChemQC Project: A Large-Scale First-Principles Electronic Structure Database for Data-Driven Chemistry.

    Science.gov (United States)

    Nakata, Maho; Shimazaki, Tomomi

    2017-06-26

    Large-scale molecular databases play an essential role in the investigation of various subjects such as the development of organic materials, in silico drug design, and data-driven studies with machine learning. We have developed a large-scale quantum chemistry database based on first-principles methods. Our database currently contains the ground-state electronic structures of 3 million molecules based on density functional theory (DFT) at the B3LYP/6-31G* level, and we successively calculated 10 low-lying excited states of over 2 million molecules via time-dependent DFT with the B3LYP functional and the 6-31+G* basis set. To select the molecules calculated in our project, we referred to the PubChem Project, which was used as the source of the molecular structures in short strings using the InChI and SMILES representations. Accordingly, we have named our quantum chemistry database project "PubChemQC" ( http://pubchemqc.riken.jp/ ) and placed it in the public domain. In this paper, we show the fundamental features of the PubChemQC database and discuss the techniques used to construct the data set for large-scale quantum chemistry calculations. We also present a machine learning approach to predict the electronic structure of molecules as an example to demonstrate the suitability of the large-scale quantum chemistry database.

  9. Cosmological perturbations from quantum fluctuations to large scale structure

    International Nuclear Information System (INIS)

    Bardeen, J.M.

    1988-01-01

    Classical perturbation theory is developed from the 3 + 1 form of the Einstein equations. A somewhat unusual form of the perturbation equations in the synchronous gauge is recommended for carrying out computations, but interpretation is based on certain hypersurface-invariant combinations of the variables. The formalism is used to analyze the origin of density perturbations from quantum fluctuations during inflation, with particular emphasis on dealing with 'double inflation' and deviations from the Zel'dovich spectrum. The evolution of the density perturbation to the present gives the final density perturbation power spectrum, whose relationship to observed large scale structure is discussed in the context of simple cold-dark-matter biasing schemes. 86 refs

  10. Statistics and Dynamics in the Large-scale Structure of the Universe

    International Nuclear Information System (INIS)

    Matsubara, Takahiko

    2006-01-01

    In cosmology, observations and theories are related to each other by statistics in most cases. Especially, statistical methods play central roles in analyzing fluctuations in the universe, which are seeds of the present structure of the universe. The confrontation of the statistics and dynamics is one of the key methods to unveil the structure and evolution of the universe. I will review some of the major statistical methods in cosmology, in connection with linear and nonlinear dynamics of the large-scale structure of the universe. The present status of analyses of the observational data such as the Sloan Digital Sky Survey, and the future prospects to constrain the nature of exotic components of the universe such as the dark energy will be presented

  11. A correlation between the cosmic microwave background and large-scale structure in the Universe.

    Science.gov (United States)

    Boughn, Stephen; Crittenden, Robert

    2004-01-01

    Observations of distant supernovae and the fluctuations in the cosmic microwave background (CMB) indicate that the expansion of the Universe may be accelerating under the action of a 'cosmological constant' or some other form of 'dark energy'. This dark energy now appears to dominate the Universe and not only alters its expansion rate, but also affects the evolution of fluctuations in the density of matter, slowing down the gravitational collapse of material (into, for example, clusters of galaxies) in recent times. Additional fluctuations in the temperature of CMB photons are induced as they pass through large-scale structures and these fluctuations are necessarily correlated with the distribution of relatively nearby matter. Here we report the detection of correlations between recent CMB data and two probes of large-scale structure: the X-ray background and the distribution of radio galaxies. These correlations are consistent with those predicted by dark energy, indicating that we are seeing the imprint of dark energy on the growth of structure in the Universe.

  12. A European collaboration research programme to study and test large scale base isolated structures

    International Nuclear Information System (INIS)

    Renda, V.; Verzeletti, G.; Papa, L.

    1995-01-01

    The improvement of the technology of innovative anti-seismic mechanisms, as those for base isolation and energy dissipation, needs of testing capability for large scale models of structures integrated with these mechanisms. These kind experimental tests are of primary importance for the validation of design rules and the setting up of an advanced earthquake engineering for civil constructions of relevant interest. The Joint Research Centre of the European Commission offers the European Laboratory for Structural Assessment located at Ispra - Italy, as a focal point for an international european collaboration research programme to test large scale models of structure making use of innovative anti-seismic mechanisms. A collaboration contract, opened to other future contributions, has been signed with the national italian working group on seismic isolation (Gruppo di Lavoro sull's Isolamento Sismico GLIS) which includes the national research centre ENEA, the national electricity board ENEL, the industrial research centre ISMES and producer of isolators ALGA. (author). 3 figs

  13. Hierarchical formation of large scale structures of the Universe: observations and models

    International Nuclear Information System (INIS)

    Maurogordato, Sophie

    2003-01-01

    In this report for an Accreditation to Supervise Research (HDR), the author proposes an overview of her research works in cosmology. These works notably addressed the large scale distribution of the Universe (with constraints on the scenario of formation, and on the bias relationship, and the structuring of clusters), the analysis of galaxy clusters during coalescence, mass distribution within relaxed clusters [fr

  14. Promoting Handwashing Behavior: The Effects of Large-scale Community and School-level Interventions.

    Science.gov (United States)

    Galiani, Sebastian; Gertler, Paul; Ajzenman, Nicolas; Orsola-Vidal, Alexandra

    2016-12-01

    This paper analyzes a randomized experiment that uses novel strategies to promote handwashing with soap at critical points in time in Peru. It evaluates a large-scale comprehensive initiative that involved both community and school activities in addition to communication campaigns. The analysis indicates that the initiative was successful in reaching the target audience and in increasing the treated population's knowledge about appropriate handwashing behavior. These improvements translated into higher self-reported and observed handwashing with soap at critical junctures. However, no significant improvements in the health of children under the age of 5 years were observed. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Comparisons of benthic filter feeder communities before and after a large-scale capital dredging program.

    Science.gov (United States)

    Abdul Wahab, Muhammad Azmi; Fromont, Jane; Gomez, Oliver; Fisher, Rebecca; Jones, Ross

    2017-09-15

    Changes in turbidity, sedimentation and light over a two year large scale capital dredging program at Onslow, northwestern Australia, were quantified to assess their effects on filter feeder communities, in particular sponges. Community functional morphological composition was quantified using towed video surveys, while dive surveys allowed for assessments of species composition and chlorophyll content. Onslow is relatively diverse recording 150 sponge species. The area was naturally turbid (1.1 mean P 80 NTU), with inshore sites recording 6.5× higher turbidity than offshore localities, likely influenced by the Ashburton River discharge. Turbidity and sedimentation increased by up to 146% and 240% through dredging respectively, with corresponding decreases in light levels. The effects of dredging was variable, and despite existing caveats (i.e. bleaching event and passing of a cyclone), the persistence of sponges and the absence of a pronounced response post-dredging suggest environmental filtering or passive adaptation acquired pre-dredging may have benefited these communities. Copyright © 2017. Published by Elsevier Ltd.

  16. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    International Nuclear Information System (INIS)

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f NL in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology

  17. Probing cosmology with the homogeneity scale of the Universe through large scale structure surveys

    International Nuclear Information System (INIS)

    Ntelis, Pierros

    2017-01-01

    . It is thus possible to reconstruct the distribution of matter in 3 dimensions in gigantic volumes. We can then extract various statistical observables to measure the BAO scale and the scale of homogeneity of the universe. Using Data Release 12 CMASS galaxy catalogs, we obtained precision on the homogeneity scale reduced by 5 times compared to Wiggle Z measurement. At large scales, the universe is remarkably well described in linear order by the ΛCDM-model, the standard model of cosmology. In general, it is not necessary to take into account the nonlinear effects which complicate the model at small scales. On the other hand, at large scales, the measurement of our observables becomes very sensitive to the systematic effects. This is particularly true for the analysis of cosmic homogeneity, which requires an observational method so as not to bias the measurement. In order to study the homogeneity principle in a model independent way, we explore a new way to infer distances using cosmic clocks and type Ia Supernovae. This establishes the Cosmological Principle using only a small number of a priori assumption, i.e. the theory of General Relativity and astrophysical assumptions that are independent from Friedmann Universes and in extend the homogeneity assumption. This manuscript is as follows. After a short presentation of the knowledge in cosmology necessary for the understanding of this manuscript, presented in Chapter 1, Chapter 2 will deal with the challenges of the Cosmological Principle as well as how to overcome those. In Chapter 3, we will discuss the technical characteristics of the large scale structure surveys, in particular focusing on BOSS and eBOSS galaxy surveys. Chapter 4 presents the detailed analysis of the measurement of cosmic homogeneity and the various systematic effects likely to impact our observables. Chapter 5 will discuss how to use the cosmic homogeneity as a standard ruler to constrain dark energy models from current and future surveys. In

  18. High spatial resolution measurements of large-scale three-dimensional structures in a turbulent boundary layer

    Science.gov (United States)

    Atkinson, Callum; Buchmann, Nicolas; Kuehn, Matthias; Soria, Julio

    2011-11-01

    Large-scale three-dimensional (3D) structures in a turbulent boundary layer at Reθ = 2000 are examined via the streamwise extrapolation of time-resolved stereo particle image velocimetry (SPIV) measurements in a wall-normal spanwise plane using Taylor's hypothesis. Two overlapping SPIV systems are used to provide a field of view similar to that of direct numerical simulations (DNS) on the order of 50 δ × 1 . 5 δ × 3 . 0 δ in the streamwise, wall-normal and spanwise directions, respectively, with an interrogation window size of 40+ ×20+ ×60+ wall units. Velocity power spectra are compared with DNS to examine the effective resolution of these measurements and two-point correlations are performed to investigate the integral length scales associated with coherent velocity and vorticity fluctuations. Individual coherent structures are detected to provide statistics on the 3D size, spacing, and angular orientation of large-scale structures, as well as their contribution to the total turbulent kinetic energy and Reynolds shear stress. The support of the ARC through Discovery (and LIEF) grants is gratefully acknowledged.

  19. Tracking of large-scale structures in turbulent channel with direct numerical simulation of low Prandtl number passive scalar

    Science.gov (United States)

    Tiselj, Iztok

    2014-12-01

    Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and

  20. Cosmological parameters from large scale structure - geometric versus shape information

    CERN Document Server

    Hamann, Jan; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y Y

    2010-01-01

    The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\

  1. Retention of habitat complexity minimizes disassembly of reef fish communities following disturbance: a large-scale natural experiment.

    Directory of Open Access Journals (Sweden)

    Michael J Emslie

    Full Text Available High biodiversity ecosystems are commonly associated with complex habitats. Coral reefs are highly diverse ecosystems, but are under increasing pressure from numerous stressors, many of which reduce live coral cover and habitat complexity with concomitant effects on other organisms such as reef fishes. While previous studies have highlighted the importance of habitat complexity in structuring reef fish communities, they employed gradient or meta-analyses which lacked a controlled experimental design over broad spatial scales to explicitly separate the influence of live coral cover from overall habitat complexity. Here a natural experiment using a long term (20 year, spatially extensive (∼ 115,000 kms(2 dataset from the Great Barrier Reef revealed the fundamental importance of overall habitat complexity for reef fishes. Reductions of both live coral cover and habitat complexity had substantial impacts on fish communities compared to relatively minor impacts after major reductions in coral cover but not habitat complexity. Where habitat complexity was substantially reduced, species abundances broadly declined and a far greater number of fish species were locally extirpated, including economically important fishes. This resulted in decreased species richness and a loss of diversity within functional groups. Our results suggest that the retention of habitat complexity following disturbances can ameliorate the impacts of coral declines on reef fishes, so preserving their capacity to perform important functional roles essential to reef resilience. These results add to a growing body of evidence about the importance of habitat complexity for reef fishes, and represent the first large-scale examination of this question on the Great Barrier Reef.

  2. Planetary Structures And Simulations Of Large-scale Impacts On Mars

    Science.gov (United States)

    Swift, Damian; El-Dasher, B.

    2009-09-01

    The impact of large meteroids is a possible cause for isolated orogeny on bodies devoid of tectonic activity. On Mars, there is a significant, but not perfect, correlation between large, isolated volcanoes and antipodal impact craters. On Mercury and the Moon, brecciated terrain and other unusual surface features can be found at the antipodes of large impact sites. On Earth, there is a moderate correlation between long-lived mantle hotspots at opposite sides of the planet, with meteoroid impact suggested as a possible cause. If induced by impacts, the mechanisms of orogeny and volcanism thus appear to vary between these bodies, presumably because of differences in internal structure. Continuum mechanics (hydrocode) simulations have been used to investigate the response of planetary bodies to impacts, requiring assumptions about the structure of the body: its composition and temperature profile, and the constitutive properties (equation of state, strength, viscosity) of the components. We are able to predict theoretically and test experimentally the constitutive properties of matter under planetary conditions, with reasonable accuracy. To provide a reference series of simulations, we have constructed self-consistent planetary structures using simplified compositions (Fe core and basalt-like mantle), which turn out to agree surprisingly well with the moments of inertia. We have performed simulations of large-scale impacts, studying the transmission of energy to the antipodes. For Mars, significant antipodal heating to depths of a few tens of kilometers was predicted from compression waves transmitted through the mantle. Such heating is a mechanism for volcanism on Mars, possibly in conjunction with crustal cracking induced by surface waves. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure.

    Directory of Open Access Journals (Sweden)

    Ana-Maria Florescu

    2016-06-01

    Full Text Available Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes.

  4. Large scale identification and categorization of protein sequences using structured logistic regression.

    Directory of Open Access Journals (Sweden)

    Bjørn P Pedersen

    Full Text Available BACKGROUND: Structured Logistic Regression (SLR is a newly developed machine learning tool first proposed in the context of text categorization. Current availability of extensive protein sequence databases calls for an automated method to reliably classify sequences and SLR seems well-suited for this task. The classification of P-type ATPases, a large family of ATP-driven membrane pumps transporting essential cations, was selected as a test-case that would generate important biological information as well as provide a proof-of-concept for the application of SLR to a large scale bioinformatics problem. RESULTS: Using SLR, we have built classifiers to identify and automatically categorize P-type ATPases into one of 11 pre-defined classes. The SLR-classifiers are compared to a Hidden Markov Model approach and shown to be highly accurate and scalable. Representing the bulk of currently known sequences, we analysed 9.3 million sequences in the UniProtKB and attempted to classify a large number of P-type ATPases. To examine the distribution of pumps on organisms, we also applied SLR to 1,123 complete genomes from the Entrez genome database. Finally, we analysed the predicted membrane topology of the identified P-type ATPases. CONCLUSIONS: Using the SLR-based classification tool we are able to run a large scale study of P-type ATPases. This study provides proof-of-concept for the application of SLR to a bioinformatics problem and the analysis of P-type ATPases pinpoints new and interesting targets for further biochemical characterization and structural analysis.

  5. Cosmological large-scale structures beyond linear theory in modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bernardeau, Francis; Brax, Philippe, E-mail: francis.bernardeau@cea.fr, E-mail: philippe.brax@cea.fr [CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette Cédex (France)

    2011-06-01

    We consider the effect of modified gravity on the growth of large-scale structures at second order in perturbation theory. We show that modified gravity models changing the linear growth rate of fluctuations are also bound to change, although mildly, the mode coupling amplitude in the density and reduced velocity fields. We present explicit formulae which describe this effect. We then focus on models of modified gravity involving a scalar field coupled to matter, in particular chameleons and dilatons, where it is shown that there exists a transition scale around which the existence of an extra scalar degree of freedom induces significant changes in the coupling properties of the cosmic fields. We obtain the amplitude of this effect for realistic dilaton models at the tree-order level for the bispectrum, finding them to be comparable in amplitude to those obtained in the DGP and f(R) models.

  6. The topology of large-scale structure. III - Analysis of observations. [in universe

    Science.gov (United States)

    Gott, J. Richard, III; Weinberg, David H.; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.

    1989-01-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.

  7. Large-scale grid management; Storskala Nettforvaltning

    Energy Technology Data Exchange (ETDEWEB)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-07-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series.

  8. On the soft limit of the large scale structure power spectrum. UV dependence

    International Nuclear Information System (INIS)

    Garny, Mathias

    2015-08-01

    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an 'anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a ∝ 10% effect, and plausibly smaller.

  9. The linearly scaling 3D fragment method for large scale electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Zhengji [National Energy Research Scientific Computing Center (NERSC) (United States); Meza, Juan; Shan Hongzhang; Strohmaier, Erich; Bailey, David; Wang Linwang [Computational Research Division, Lawrence Berkeley National Laboratory (United States); Lee, Byounghak, E-mail: ZZhao@lbl.go [Physics Department, Texas State University (United States)

    2009-07-01

    The linearly scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  10. Zooplankton standing stock, community structure and diversity in the northern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.; Srivastava, Y.

    The effects of large scale oil spill, which occurred during the Gulf War in 1991 on zooplankton standing stock, community structure and diversity in the northern Arabian Sea were studied. Surface (1-0 m) and vertical zooplankton hauls (200-0 m, 250...

  11. The impact of large scale ionospheric structure on radio occultation retrievals

    Directory of Open Access Journals (Sweden)

    A. J. Mannucci

    2011-12-01

    Full Text Available We study the impact of large-scale ionospheric structure on the accuracy of radio occultation (RO retrievals. We use a climatological model of the ionosphere as well as an ionospheric data assimilation model to compare quiet and geomagnetically disturbed conditions. The presence of ionospheric electron density gradients during disturbed conditions increases the physical separation of the two GPS frequencies as the GPS signal traverses the ionosphere and atmosphere. We analyze this effect in detail using ray-tracing and a full geophysical retrieval system. During quiet conditions, our results are similar to previously published studies. The impact of a major ionospheric storm is analyzed using data from the 30 October 2003 "Halloween" superstorm period. At 40 km altitude, the refractivity bias under disturbed conditions is approximately three times larger than quiet time. These results suggest the need for ionospheric monitoring as part of an RO-based climate observation strategy. We find that even during quiet conditions, the magnitude of retrieval bias depends critically on assumed ionospheric electron density structure, which may explain variations in previously published bias estimates that use a variety of assumptions regarding large scale ionospheric structure. We quantify the impact of spacecraft orbit altitude on the magnitude of bending angle and retrieval error. Satellites in higher altitude orbits (700+ km tend to have lower residual biases due to the tendency of the residual bending to cancel between the top and bottomside ionosphere. Another factor affecting accuracy is the commonly-used assumption that refractive index is unity at the receiver. We conclude with remarks on the implications of this study for long-term climate monitoring using RO.

  12. Spatial scaling of bacterial community diversity at shallow hydrothermal vents: a global comparison

    Science.gov (United States)

    Pop Ristova, P.; Hassenrueck, C.; Molari, M.; Fink, A.; Bühring, S. I.

    2016-02-01

    Marine shallow hydrothermal vents are extreme environments, often characterized by discharge of fluids with e.g. high temperatures, low pH, and laden with elements toxic to higher organisms. They occur at continental margins around the world's oceans, but represent fragmented, isolated habitats of locally small areal coverage. Microorganisms contribute the main biomass at shallow hydrothermal vent ecosystems and build the basis of the food chain by autotrophic fixation of carbon both via chemosynthesis and photosynthesis, occurring simultaneously. Despite their importance and unique capacity to adapt to these extreme environments, little is known about the spatial scales on which the alpha- and beta-diversity of microbial communities vary at shallow vents, and how the geochemical habitat heterogeneity influences shallow vent biodiversity. Here for the first time we investigated the spatial scaling of microbial biodiversity patterns and their interconnectivity at geochemically diverse shallow vents on a global scale. This study presents data on the comparison of bacterial community structures on large (> 1000 km) and small (0.1 - 100 m) spatial scales as derived from ARISA and Illumina sequencing. Despite the fragmented global distribution of shallow hydrothermal vents, similarity of vent bacterial communities decreased with geographic distance, confirming the ubiquity of distance-decay relationship. Moreover, at all investigated vents, pH was the main factor locally structuring these communities, while temperature influenced both the alpha- and beta-diversity.

  13. Responses in large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Barreira, Alexandre; Schmidt, Fabian, E-mail: barreira@MPA-Garching.MPG.DE, E-mail: fabians@MPA-Garching.MPG.DE [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-06-01

    We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ''bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients , which are only a function of the hard wavenumber k . Further, the responses up to n -th order completely describe the ( n +2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance Cov{sup NG}{sub ℓ=0}( k {sub 1}, k {sub 2}), in the limit where one of the modes, say k {sub 2}, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k {sub 2} ∼< 0.06 h Mpc{sup −1}, and for any k {sub 1} ∼> 2 k {sub 2}. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.

  14. Responses in large-scale structure

    Science.gov (United States)

    Barreira, Alexandre; Schmidt, Fabian

    2017-06-01

    We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ``bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients, which are only a function of the hard wavenumber k. Further, the responses up to n-th order completely describe the (n+2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance CovNGl=0(k1,k2), in the limit where one of the modes, say k2, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k2 lesssim 0.06 h Mpc-1, and for any k1 gtrsim 2k2. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.

  15. The future of primordial features with large-scale structure surveys

    International Nuclear Information System (INIS)

    Chen, Xingang; Namjoo, Mohammad Hossein; Dvorkin, Cora; Huang, Zhiqi; Verde, Licia

    2016-01-01

    Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.

  16. The future of primordial features with large-scale structure surveys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xingang; Namjoo, Mohammad Hossein [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dvorkin, Cora [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Huang, Zhiqi [School of Physics and Astronomy, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, 510275 (China); Verde, Licia, E-mail: xingang.chen@cfa.harvard.edu, E-mail: dvorkin@physics.harvard.edu, E-mail: huangzhq25@sysu.edu.cn, E-mail: mohammad.namjoo@cfa.harvard.edu, E-mail: liciaverde@icc.ub.edu [ICREA and ICC-UB, University of Barcelona (IEEC-UB), Marti i Franques, 1, Barcelona 08028 (Spain)

    2016-11-01

    Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.

  17. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production

    NARCIS (Netherlands)

    Belila, A.; El-Chakhtoura, J.; Otaibi, N.; Muyzer, G.; Gonzalez-Gil, G.; Saikaly, P.E.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m3/d of drinking

  18. Bacterial community structure of a full-scale biofilter treating pig house exhaust air

    DEFF Research Database (Denmark)

    Kristiansen, Anja; Pedersen, Kristina Hadulla; Nielsen, Per Halkjær

    2011-01-01

    Biological air filters represent a promising tool for treating emissions of ammonia and odor from pig facilities. Quantitative fluorescence in situ hybridization (FISH) and 16S rRNA gene sequencing were used to investigate the bacterial community structure and diversity in a full-scale biofilter ...... consisting of two consecutive compartments (front and back filter). The analysis revealed a highly specialized bacterial community of limited diversity, dominated by a few groups of Betaproteobacteria (especially Comamonas) and diverse Bacteroidetes. Actinobacteria, Gammaproteobacteria......, and betaproteobacterial ammoniaoxidizers (Nitrosomonas eutropha/Nitrosococcus mobilis-lineage) were also quantitatively important. Only a few quantitative differences existed between the two filter compartments at the group level, with a lower relative abundance of Actinobacteria and a higher relative abundance...

  19. The prospect of modern thermomechanics in structural integrity calculations of large-scale pressure vessels

    Science.gov (United States)

    Fekete, Tamás

    2018-05-01

    Structural integrity calculations play a crucial role in designing large-scale pressure vessels. Used in the electric power generation industry, these kinds of vessels undergo extensive safety analyses and certification procedures before deemed feasible for future long-term operation. The calculations are nowadays directed and supported by international standards and guides based on state-of-the-art results of applied research and technical development. However, their ability to predict a vessel's behavior under accidental circumstances after long-term operation is largely limited by the strong dependence of the analysis methodology on empirical models that are correlated to the behavior of structural materials and their changes during material aging. Recently a new scientific engineering paradigm, structural integrity has been developing that is essentially a synergistic collaboration between a number of scientific and engineering disciplines, modeling, experiments and numerics. Although the application of the structural integrity paradigm highly contributed to improving the accuracy of safety evaluations of large-scale pressure vessels, the predictive power of the analysis methodology has not yet improved significantly. This is due to the fact that already existing structural integrity calculation methodologies are based on the widespread and commonly accepted 'traditional' engineering thermal stress approach, which is essentially based on the weakly coupled model of thermomechanics and fracture mechanics. Recently, a research has been initiated in MTA EK with the aim to review and evaluate current methodologies and models applied in structural integrity calculations, including their scope of validity. The research intends to come to a better understanding of the physical problems that are inherently present in the pool of structural integrity problems of reactor pressure vessels, and to ultimately find a theoretical framework that could serve as a well

  20. The build up of the correlation between halo spin and the large-scale structure

    Science.gov (United States)

    Wang, Peng; Kang, Xi

    2018-01-01

    Both simulations and observations have confirmed that the spin of haloes/galaxies is correlated with the large-scale structure (LSS) with a mass dependence such that the spin of low-mass haloes/galaxies tend to be parallel with the LSS, while that of massive haloes/galaxies tend to be perpendicular with the LSS. It is still unclear how this mass dependence is built up over time. We use N-body simulations to trace the evolution of the halo spin-LSS correlation and find that at early times the spin of all halo progenitors is parallel with the LSS. As time goes on, mass collapsing around massive halo is more isotropic, especially the recent mass accretion along the slowest collapsing direction is significant and it brings the halo spin to be perpendicular with the LSS. Adopting the fractional anisotropy (FA) parameter to describe the degree of anisotropy of the large-scale environment, we find that the spin-LSS correlation is a strong function of the environment such that a higher FA (more anisotropic environment) leads to an aligned signal, and a lower anisotropy leads to a misaligned signal. In general, our results show that the spin-LSS correlation is a combined consequence of mass flow and halo growth within the cosmic web. Our predicted environmental dependence between spin and large-scale structure can be further tested using galaxy surveys.

  1. Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient.

    Science.gov (United States)

    Egan, Cameron P; Callaway, Ragan M; Hart, Miranda M; Pither, Jason; Klironomos, John

    2017-04-01

    Despite the importance of arbuscular mycorrhizal (AM) fungi within terrestrial ecosystems, we know little about how natural AM fungal communities are structured. To date, the majority of studies examining AM fungal community diversity have focused on single habitats with similar environmental conditions, with relatively few studies having assessed the diversity of AM fungi over large-scale environmental gradients. In this study, we characterized AM fungal communities in the soil along a high-elevation gradient in the North American Rocky Mountains. We focused on phylogenetic patterns of AM fungal communities to gain insight into how AM fungal communities are naturally assembled. We found that alpine AM fungal communities had lower phylogenetic diversity relative to lower elevation communities, as well as being more heterogeneous in composition than either treeline or subalpine communities. AM fungal communities were phylogenetically clustered at all elevations sampled, suggesting that environmental filtering, either selection by host plants or fungal niches, is the primary ecological process structuring communities along the gradient.

  2. Large scale electrolysers

    International Nuclear Information System (INIS)

    B Bello; M Junker

    2006-01-01

    Hydrogen production by water electrolysis represents nearly 4 % of the world hydrogen production. Future development of hydrogen vehicles will require large quantities of hydrogen. Installation of large scale hydrogen production plants will be needed. In this context, development of low cost large scale electrolysers that could use 'clean power' seems necessary. ALPHEA HYDROGEN, an European network and center of expertise on hydrogen and fuel cells, has performed for its members a study in 2005 to evaluate the potential of large scale electrolysers to produce hydrogen in the future. The different electrolysis technologies were compared. Then, a state of art of the electrolysis modules currently available was made. A review of the large scale electrolysis plants that have been installed in the world was also realized. The main projects related to large scale electrolysis were also listed. Economy of large scale electrolysers has been discussed. The influence of energy prices on the hydrogen production cost by large scale electrolysis was evaluated. (authors)

  3. Leveraging disjoint communities for detecting overlapping community structure

    International Nuclear Information System (INIS)

    Chakraborty, Tanmoy

    2015-01-01

    Network communities represent mesoscopic structure for understanding the organization of real-world networks, where nodes often belong to multiple communities and form overlapping community structure in the network. Due to non-triviality in finding the exact boundary of such overlapping communities, this problem has become challenging, and therefore huge effort has been devoted to detect overlapping communities from the network.In this paper, we present PVOC (Permanence based Vertex-replication algorithm for Overlapping Community detection), a two-stage framework to detect overlapping community structure. We build on a novel observation that non-overlapping community structure detected by a standard disjoint community detection algorithm from a network has high resemblance with its actual overlapping community structure, except the overlapping part. Based on this observation, we posit that there is perhaps no need of building yet another overlapping community finding algorithm; but one can efficiently manipulate the output of any existing disjoint community finding algorithm to obtain the required overlapping structure. We propose a new post-processing technique that by combining with any existing disjoint community detection algorithm, can suitably process each vertex using a new vertex-based metric, called permanence, and thereby finds out overlapping candidates with their community memberships. Experimental results on both synthetic and large real-world networks show that PVOC significantly outperforms six state-of-the-art overlapping community detection algorithms in terms of high similarity of the output with the ground-truth structure. Thus our framework not only finds meaningful overlapping communities from the network, but also allows us to put an end to the constant effort of building yet another overlapping community detection algorithm. (paper)

  4. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests.

    Science.gov (United States)

    Hawkins, Bradford A; Rueda, Marta; Rangel, Thiago F; Field, Richard; Diniz-Filho, José Alexandre F; Linder, Peter

    2014-01-01

    Aim The fossil record has led to a historical explanation for forest diversity gradients within the cool parts of the Northern Hemisphere, founded on a limited ability of woody angiosperm clades to adapt to mid-Tertiary cooling. We tested four predictions of how this should be manifested in the phylogenetic structure of 91,340 communities: (1) forests to the north should comprise species from younger clades (families) than forests to the south; (2) average cold tolerance at a local site should be associated with the mean family age (MFA) of species; (3) minimum temperature should account for MFA better than alternative environmental variables; and (4) traits associated with survival in cold climates should evolve under a niche conservatism constraint. Location The contiguous United States. Methods We extracted angiosperms from the US Forest Service's Forest Inventory and Analysis database. MFA was calculated by assigning age of the family to which each species belongs and averaging across the species in each community. We developed a phylogeny to identify phylogenetic signal in five traits: realized cold tolerance, seed size, seed dispersal mode, leaf phenology and height. Phylogenetic signal representation curves and phylogenetic generalized least squares were used to compare patterns of trait evolution against Brownian motion. Eleven predictors structured at broad or local scales were generated to explore relationships between environment and MFA using random forest and general linear models. Results Consistent with predictions, (1) southern communities comprise angiosperm species from older families than northern communities, (2) cold tolerance is the trait most strongly associated with local MFA, (3) minimum temperature in the coldest month is the environmental variable that best describes MFA, broad-scale variables being much stronger correlates than local-scale variables, and (4) the phylogenetic structures of cold tolerance and at least one other trait

  5. Forest fragmentation and bird community dynamics: inference at regional scales

    Science.gov (United States)

    Boulinier, T.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Flather, C.H.; Pollock, K.H.

    2001-01-01

    With increasing fragmentation of natural areas and a dramatic reduction of forest cover in several parts of the world, quantifying the impact of such changes on species richness and community dynamics has been a subject of much concern. Here, we tested whether in more fragmented landscapes there was a lower number of area-sensitive species and higher local extinction and turnover rates, which could explain higher temporal variability in species richness. To investigate such potential landscape effects at a regional scale, we merged two independent, large-scale monitoring efforts: the North American Breeding Bird Survey (BBS) and the Land Use and Land Cover Classification data from the U.S. Geological Survey. We used methods that accounted for heterogeneity in the probability of detecting species to estimate species richness and temporal changes in the bird communities for BBS routes in three mid-Atlantic U.S. states. Forest breeding bird species were grouped prior to the analyses into area-sensitive and non-area-sensitive species according to previous studies. We tested predictions relating measures of forest structure at one point in time (1974) to species richness at that time and to parameters of forest bird community change over the following 22-yr-period (1975-1996). We used the mean size of forest patches to characterize landscape structure, as high correlations among landscape variables did not allow us to disentangle the relative roles of habitat fragmentation per se and habitat loss. As predicted, together with lower species richness for area-sensitive species on routes surrounded by landscapes with lower mean forest-patch size, we found higher mean year-to-year rates of local extinction. Moreover, the mean year-to-year rates of local turnover (proportion of locally new species) for area-sensitive species were also higher in landscapes with lower mean forest-patch size. These associations were not observed for the non-area-sensitive species group. These

  6. Inflation, large scale structure and particle physics

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences ... Hybrid inflation; Higgs scalar field; structure formation; curvation. ... We then discuss a particle physics model of supersymmetric hybrid inflation at the intermediate scale in which ... May 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board ...

  7. Primordial Non-Gaussianity and Bispectrum Measurements in the Cosmic Microwave Background and Large-Scale Structure

    Directory of Open Access Journals (Sweden)

    Michele Liguori

    2010-01-01

    Full Text Available The most direct probe of non-Gaussian initial conditions has come from bispectrum measurements of temperature fluctuations in the Cosmic Microwave Background and of the matter and galaxy distribution at large scales. Such bispectrum estimators are expected to continue to provide the best constraints on the non-Gaussian parameters in future observations. We review and compare the theoretical and observational problems, current results, and future prospects for the detection of a nonvanishing primordial component in the bispectrum of the Cosmic Microwave Background and large-scale structure, and the relation to specific predictions from different inflationary models.

  8. Long-term spatial and temporal microbial community dynamics in a large-scale drinking water distribution system with multiple disinfectant regimes.

    Science.gov (United States)

    Potgieter, Sarah; Pinto, Ameet; Sigudu, Makhosazana; du Preez, Hein; Ncube, Esper; Venter, Stephanus

    2018-08-01

    Long-term spatial-temporal investigations of microbial dynamics in full-scale drinking water distribution systems are scarce. These investigations can reveal the process, infrastructure, and environmental factors that influence the microbial community, offering opportunities to re-think microbial management in drinking water systems. Often, these insights are missed or are unreliable in short-term studies, which are impacted by stochastic variabilities inherent to large full-scale systems. In this two-year study, we investigated the spatial and temporal dynamics of the microbial community in a large, full scale South African drinking water distribution system that uses three successive disinfection strategies (i.e. chlorination, chloramination and hypochlorination). Monthly bulk water samples were collected from the outlet of the treatment plant and from 17 points in the distribution system spanning nearly 150 km and the bacterial community composition was characterised by Illumina MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Like previous studies, Alpha- and Betaproteobacteria dominated the drinking water bacterial communities, with an increase in Betaproteobacteria post-chloramination. In contrast with previous reports, the observed richness, diversity, and evenness of the bacterial communities were higher in the winter months as opposed to the summer months in this study. In addition to temperature effects, the seasonal variations were also likely to be influenced by changes in average water age in the distribution system and corresponding changes in disinfectant residual concentrations. Spatial dynamics of the bacterial communities indicated distance decay, with bacterial communities becoming increasingly dissimilar with increasing distance between sampling locations. These spatial effects dampened the temporal changes in the bulk water community and were the dominant factor when considering the entire distribution system. However

  9. Model abstraction addressing long-term simulations of chemical degradation of large-scale concrete structures

    International Nuclear Information System (INIS)

    Jacques, D.; Perko, J.; Seetharam, S.; Mallants, D.

    2012-01-01

    This paper presents a methodology to assess the spatial-temporal evolution of chemical degradation fronts in real-size concrete structures typical of a near-surface radioactive waste disposal facility. The methodology consists of the abstraction of a so-called full (complicated) model accounting for the multicomponent - multi-scale nature of concrete to an abstracted (simplified) model which simulates chemical concrete degradation based on a single component in the aqueous and solid phase. The abstracted model is verified against chemical degradation fronts simulated with the full model under both diffusive and advective transport conditions. Implementation in the multi-physics simulation tool COMSOL allows simulation of the spatial-temporal evolution of chemical degradation fronts in large-scale concrete structures. (authors)

  10. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  11. Imprints of the large-scale structure on AGN formation and evolution

    Science.gov (United States)

    Porqueres, Natàlia; Jasche, Jens; Enßlin, Torsten A.; Lavaux, Guilhem

    2018-04-01

    Black hole masses are found to correlate with several global properties of their host galaxies, suggesting that black holes and galaxies have an intertwined evolution and that active galactic nuclei (AGN) have a significant impact on galaxy evolution. Since the large-scale environment can also affect AGN, this work studies how their formation and properties depend on the environment. We have used a reconstructed three-dimensional high-resolution density field obtained from a Bayesian large-scale structure reconstruction method applied to the 2M++ galaxy sample. A web-type classification relying on the shear tensor is used to identify different structures on the cosmic web, defining voids, sheets, filaments, and clusters. We confirm that the environmental density affects the AGN formation and their properties. We found that the AGN abundance is equivalent to the galaxy abundance, indicating that active and inactive galaxies reside in similar dark matter halos. However, occurrence rates are different for each spectral type and accretion rate. These differences are consistent with the AGN evolutionary sequence suggested by previous authors, Seyferts and Transition objects transforming into low-ionization nuclear emission line regions (LINERs), the weaker counterpart of Seyferts. We conclude that AGN properties depend on the environmental density more than on the web-type. More powerful starbursts and younger stellar populations are found in high densities, where interactions and mergers are more likely. AGN hosts show smaller masses in clusters for Seyferts and Transition objects, which might be due to gas stripping. In voids, the AGN population is dominated by the most massive galaxy hosts.

  12. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Li Chunguang; Maini, Philip K

    2005-01-01

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  13. Semi-Automated Air-Coupled Impact-Echo Method for Large-Scale Parkade Structure

    Directory of Open Access Journals (Sweden)

    Tyler Epp

    2018-03-01

    Full Text Available Structural Health Monitoring (SHM has moved to data-dense systems, utilizing numerous sensor types to monitor infrastructure, such as bridges and dams, more regularly. One of the issues faced in this endeavour is the scale of the inspected structures and the time it takes to carry out testing. Installing automated systems that can provide measurements in a timely manner is one way of overcoming these obstacles. This study proposes an Artificial Neural Network (ANN application that determines intact and damaged locations from a small training sample of impact-echo data, using air-coupled microphones from a reinforced concrete beam in lab conditions and data collected from a field experiment in a parking garage. The impact-echo testing in the field is carried out in a semi-autonomous manner to expedite the front end of the in situ damage detection testing. The use of an ANN removes the need for a user-defined cutoff value for the classification of intact and damaged locations when a least-square distance approach is used. It is postulated that this may contribute significantly to testing time reduction when monitoring large-scale civil Reinforced Concrete (RC structures.

  14. Characterizing unknown systematics in large scale structure surveys

    International Nuclear Information System (INIS)

    Agarwal, Nishant; Ho, Shirley; Myers, Adam D.; Seo, Hee-Jong; Ross, Ashley J.; Bahcall, Neta; Brinkmann, Jonathan; Eisenstein, Daniel J.; Muna, Demitri; Palanque-Delabrouille, Nathalie; Yèche, Christophe; Pâris, Isabelle; Petitjean, Patrick; Schneider, Donald P.; Streblyanska, Alina; Weaver, Benjamin A.

    2014-01-01

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study

  15. Characterizing unknown systematics in large scale structure surveys

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Nishant; Ho, Shirley [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Seo, Hee-Jong [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Ross, Ashley J. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Bahcall, Neta [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States); Brinkmann, Jonathan [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Muna, Demitri [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Palanque-Delabrouille, Nathalie; Yèche, Christophe [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Pâris, Isabelle [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Petitjean, Patrick [Université Paris 6 et CNRS, Institut d' Astrophysique de Paris, 98bis blvd. Arago, 75014 Paris (France); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Streblyanska, Alina [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Weaver, Benjamin A., E-mail: nishanta@andrew.cmu.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2014-04-01

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.

  16. Biased Tracers in Redshift Space in the EFT of Large-Scale Structure

    Energy Technology Data Exchange (ETDEWEB)

    Perko, Ashley [Stanford U., Phys. Dept.; Senatore, Leonardo [KIPAC, Menlo Park; Jennings, Elise [Chicago U., KICP; Wechsler, Risa H. [Stanford U., Phys. Dept.

    2016-10-28

    The Effective Field Theory of Large-Scale Structure (EFTofLSS) provides a novel formalism that is able to accurately predict the clustering of large-scale structure (LSS) in the mildly non-linear regime. Here we provide the first computation of the power spectrum of biased tracers in redshift space at one loop order, and we make the associated code publicly available. We compare the multipoles $\\ell=0,2$ of the redshift-space halo power spectrum, together with the real-space matter and halo power spectra, with data from numerical simulations at $z=0.67$. For the samples we compare to, which have a number density of $\\bar n=3.8 \\cdot 10^{-2}(h \\ {\\rm Mpc}^{-1})^3$ and $\\bar n=3.9 \\cdot 10^{-4}(h \\ {\\rm Mpc}^{-1})^3$, we find that the calculation at one-loop order matches numerical measurements to within a few percent up to $k\\simeq 0.43 \\ h \\ {\\rm Mpc}^{-1}$, a significant improvement with respect to former techniques. By performing the so-called IR-resummation, we find that the Baryon Acoustic Oscillation peak is accurately reproduced. Based on the results presented here, long-wavelength statistics that are routinely observed in LSS surveys can be finally computed in the EFTofLSS. This formalism thus is ready to start to be compared directly to observational data.

  17. Community structure informs species geographic distributions

    KAUST Repository

    Montesinos-Navarro, Alicia; Estrada, Alba; Font, Xavier; Matias, Miguel G.; Meireles, Catarina; Mendoza, Manuel; Honrado, Joao P.; Prasad, Hari D.; Vicente, Joana R.; Early, Regan

    2018-01-01

    spatial resolution. However, survival of individuals is determined by processes that happen at small spatial scales. The relative abundance of coexisting species (i.e. 'community structure') reflects assembly processes occurring at small scales

  18. Large herbivores affect forest ecosystem functions by altering the structure of dung beetle communities

    Science.gov (United States)

    Iida, Taichi; Soga, Masashi; Koike, Shinsuke

    2018-04-01

    Dramatic increases in populations of large mammalian herbivores have become a major ecological issue, particularly in the northern hemisphere, due to their substantial impacts on both animal and plant communities through processes such as grazing, browsing, and trampling. However, little is known about the consequences of these population explosions on ecosystem functions. Here, we experimentally investigated how the population density of sika deer (Cervus nippon) in temperate deciduous forest areas in Japan affected the decomposition of mammal dung by dung beetles, which is a key process in forest ecosystems. We measured a range of environmental variables (e.g., vegetation cover, soil hardness) and the dung decomposition rate, measured as the amount of deer dung decomposed during one week, and sampled dung beetles at 16 study sites with three different deer densities (high/intermediate/low). We then used structural equation modeling to investigate the relationships between deer density, environmental variables, the biomass of dung beetles (classified into small or large species), and the dung decomposition rate. We found that the biomass of small species increased with increasing deer density, whereas that of large species was not related to deer density. Furthermore, the dung decomposition rate was positively related to the biomass of small species but unrelated to that of large species. Overall, our results showed that an increase in deer density affects the decomposition rate of mammal dung by changing the structure of dung beetle communities (i.e., increasing the number of small dung beetles). Such an understanding of how increases in large herbivore populations affect ecosystem functions is important for accurately evaluating the ecological consequences of their overabundance and ultimately managing their populations appropriately.

  19. Large-scale structural alteration of brain in epileptic children with SCN1A mutation

    Directory of Open Access Journals (Sweden)

    Yun-Jeong Lee

    2017-01-01

    Significance: This study showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients. Further longitudinal MRI studies with larger cohorts are required to confirm the effect of SCN1A gene mutation on structural brain development.

  20. The function of communities in protein interaction networks at multiple scales

    Directory of Open Access Journals (Sweden)

    Jones Nick S

    2010-07-01

    Full Text Available Abstract Background If biology is modular then clusters, or communities, of proteins derived using only protein interaction network structure should define protein modules with similar biological roles. We investigate the link between biological modules and network communities in yeast and its relationship to the scale at which we probe the network. Results Our results demonstrate that the functional homogeneity of communities depends on the scale selected, and that almost all proteins lie in a functionally homogeneous community at some scale. We judge functional homogeneity using a novel test and three independent characterizations of protein function, and find a high degree of overlap between these measures. We show that a high mean clustering coefficient of a community can be used to identify those that are functionally homogeneous. By tracing the community membership of a protein through multiple scales we demonstrate how our approach could be useful to biologists focusing on a particular protein. Conclusions We show that there is no one scale of interest in the community structure of the yeast protein interaction network, but we can identify the range of resolution parameters that yield the most functionally coherent communities, and predict which communities are most likely to be functionally homogeneous.

  1. The structure and large-scale organization of extreme cold waves over the conterminous United States

    Science.gov (United States)

    Xie, Zuowei; Black, Robert X.; Deng, Yi

    2017-12-01

    Extreme cold waves (ECWs) occurring over the conterminous United States (US) are studied through a systematic identification and documentation of their local synoptic structures, associated large-scale meteorological patterns (LMPs), and forcing mechanisms external to the US. Focusing on the boreal cool season (November-March) for 1950‒2005, a hierarchical cluster analysis identifies three ECW patterns, respectively characterized by cold surface air temperature anomalies over the upper midwest (UM), northwestern (NW), and southeastern (SE) US. Locally, ECWs are synoptically organized by anomalous high pressure and northerly flow. At larger scales, the UM LMP features a zonal dipole in the mid-tropospheric height field over North America, while the NW and SE LMPs each include a zonal wave train extending from the North Pacific across North America into the North Atlantic. The Community Climate System Model version 4 (CCSM4) in general simulates the three ECW patterns quite well and successfully reproduces the observed enhancements in the frequency of their associated LMPs. La Niña and the cool phase of the Pacific Decadal Oscillation (PDO) favor the occurrence of NW ECWs, while the warm PDO phase, low Arctic sea ice extent and high Eurasian snow cover extent (SCE) are associated with elevated SE-ECW frequency. Additionally, high Eurasian SCE is linked to increases in the occurrence likelihood of UM ECWs.

  2. The topology of large-scale structure. VI - Slices of the universe

    Science.gov (United States)

    Park, Changbom; Gott, J. R., III; Melott, Adrian L.; Karachentsev, I. D.

    1992-03-01

    Results of an investigation of the topology of large-scale structure in two observed slices of the universe are presented. Both slices pass through the Coma cluster and their depths are 100 and 230/h Mpc. The present topology study shows that the largest void in the CfA slice is divided into two smaller voids by a statistically significant line of galaxies. The topology of toy models like the white noise and bubble models is shown to be inconsistent with that of the observed slices. A large N-body simulation was made of the biased cloud dark matter model and the slices are simulated by matching them in selection functions and boundary conditions. The genus curves for these simulated slices are spongelike and have a small shift in the direction of a meatball topology like those of observed slices.

  3. The topology of large-scale structure. VI - Slices of the universe

    Science.gov (United States)

    Park, Changbom; Gott, J. R., III; Melott, Adrian L.; Karachentsev, I. D.

    1992-01-01

    Results of an investigation of the topology of large-scale structure in two observed slices of the universe are presented. Both slices pass through the Coma cluster and their depths are 100 and 230/h Mpc. The present topology study shows that the largest void in the CfA slice is divided into two smaller voids by a statistically significant line of galaxies. The topology of toy models like the white noise and bubble models is shown to be inconsistent with that of the observed slices. A large N-body simulation was made of the biased cloud dark matter model and the slices are simulated by matching them in selection functions and boundary conditions. The genus curves for these simulated slices are spongelike and have a small shift in the direction of a meatball topology like those of observed slices.

  4. Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus I region

    Energy Technology Data Exchange (ETDEWEB)

    Poidevin, Frédérick [UCL, KLB, Department of Physics and Astronomy, Gower Place, London WC1E 6BT (United Kingdom); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Angile, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Netterfield, Calvin B. [Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Canãda, Madrid (Spain); Fissel, Laura M.; Gandilo, Natalie N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Fukui, Yasuo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Matthews, Tristan G.; Novak, Giles [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca, E-mail: fpoidevin@iac.es [Physics Department, University of Puerto Rico, Rio Piedras Campus, Box 23343, UPR station, San Juan, PR 00931 (United States); and others

    2014-08-10

    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.

  5. Unifying Inference of Meso-Scale Structures in Networks.

    Science.gov (United States)

    Tunç, Birkan; Verma, Ragini

    2015-01-01

    Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities) of the brain, as well as its auxiliary characteristics (core-periphery).

  6. Unifying Inference of Meso-Scale Structures in Networks.

    Directory of Open Access Journals (Sweden)

    Birkan Tunç

    Full Text Available Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities of the brain, as well as its auxiliary characteristics (core-periphery.

  7. Discovery of small-scale-structure in the large molecule/dust distribution in the diffuse ISM

    Science.gov (United States)

    Cordiner, Martin A.; Fossey, Stephen J.; Sarre, Peter J.

    There is mounting evidence that far from being homogeneously distributed, interstellar matter can have a clumpy or filamentary structure on the scale of 10s to a few 1000s of AU and which is commonly described as small scale structure (SSS). Initially confined to VLBI HI observations and HI observations of high-velocity pulsars, evidence for SSS has also come indirectly from molecular radio studies of e.g. HCO+ and infrared absorption by H3+. Much of the recent data on SSS has been obtained through optical/UV detection of atomic and diatomic molecular lines. Is there small scale structure in the large molecule/dust distribution? While this question could in principle be explored by measuring differences in the interstellar extinction towards the components of binary stars, in practice this would be difficult. Rather we chose to investigate this by recording very high signal-to-noise spectra of diffuse interstellar absorption bands. Although the carriers remain unidentified, the diffuse bands are generally considered to be tracers of the large molecule/dust distribution and scale well with reddening. Using the Anglo-Australian Telescope we have made UCLES observations of pairs of stars with separations ranging between 500 and 30000 AU. The signal-to-noise achieved was up to 2000, thus allowing variations in central depth of less than a few tenths of a percent to be discernible. Striking differences in diffuse band strengths for closely spaced lines of sight are found showing clearly that there exists small-scale-structure in the large molecule/dust distribution. For example, in the Ophiuchus star-formation region the central depths for the λ6614 diffuse band towards the ρ Oph stars A, B, C and D/E all differ and range between 0.966 and 0.930. Further interesting behaviour is found when comparing the relative strengths of diffuse bands between closely parallel lines of sight. Taking again the ρ Oph group, for λ5797 the strengths follow the order DE > B > C > A

  8. Partially acoustic dark matter, interacting dark radiation, and large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Chacko, Zackaria [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States); Cui, Yanou [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States); Department of Physics and Astronomy, University of California-Riverside,University Ave, Riverside, CA 92521 (United States); Perimeter Institute, 31 Caroline Street, North Waterloo, Ontario N2L 2Y5 (Canada); Hong, Sungwoo [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States); Okui, Takemichi [Department of Physics, Florida State University,College Avenue, Tallahassee, FL 32306 (United States); Tsai, Yuhsinz [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States)

    2016-12-21

    The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H{sub 0} and the matter density perturbation σ{sub 8} inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ{sub 8} problem, while the presence of tightly coupled dark radiation ameliorates the H{sub 0} problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.

  9. Partially acoustic dark matter, interacting dark radiation, and large scale structure

    International Nuclear Information System (INIS)

    Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; Okui, Takemichi; Tsai, Yuhsinz

    2016-01-01

    The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.

  10. Nesting, Subsidiarity, and Community-based environmental Governance beyond the Local Scale

    Directory of Open Access Journals (Sweden)

    Graham Marshall

    2007-11-01

    Full Text Available Community-based approaches to environmental management have become widely adopted over the last two decades. From their origins in grassroots frustrations with governmental inabilities to solve local environmental problems, these approaches are now sponsored frequently by governments as a way of dealing with such problems at much higher spatial levels. However, this 'up-scaling' of community-based approaches has run well ahead of knowledge about how they might work. This article explores how Elinor Ostrom's 'nesting principle' for robust common property governance of large-scale common-pool resources might inform future up-scaling efforts. In particular, I consider how the design of nested governance systems for large-scale environmental problems might be guided by the principle of subsidiarity. The challenges of applying this principle are illustrated by Australia's experience in up-scaling community-based natural resource management from local groups comprising 20-30 members to regional bodies representing hundreds of thousands of people. Seven lessons are distilled for fostering community-based environmental governance as a multi-level system of nested enterprises.

  11. Measuring Cosmic Expansion and Large Scale Structure with Destiny

    Science.gov (United States)

    Benford, Dominic J.; Lauer, Tod R.

    2007-01-01

    Destiny is a simple, direct, low cost mission to determine the properties of dark energy by obtaining a cosmologically deep supernova (SN) type Ia Hubble diagram and by measuring the large-scale mass power spectrum over time. Its science instrument is a 1.65m space telescope, featuring a near-infrared survey camera/spectrometer with a large field of view. During its first two years, Destiny will detect, observe, and characterize 23000 SN Ia events over the redshift interval 0.4Destiny will be used in its third year as a high resolution, wide-field imager to conduct a weak lensing survey covering >lo00 square degrees to measure the large-scale mass power spectrum. The combination of surveys is much more powerful than either technique on its own, and will have over an order of magnitude greater sensitivity than will be provided by ongoing ground-based projects.

  12. Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations

    Science.gov (United States)

    Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.

    1996-07-01

    The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.

  13. Renormalization-group flow of the effective action of cosmological large-scale structures

    CERN Document Server

    Floerchinger, Stefan

    2017-01-01

    Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically, the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input ...

  14. Identification of the underlying factor structure of the Derriford Appearance Scale 24

    Directory of Open Access Journals (Sweden)

    Timothy P. Moss

    2015-07-01

    Full Text Available Background. The Derriford Appearance Scale24 (DAS24 is a widely used measure of distress and dysfunction in relation to self-consciousness of appearance. It has been used in clinical and research settings, and translated into numerous European and Asian languages. Hitherto, no study has conducted an analysis to determine the underlying factor structure of the scale.Methods. A large (n = 1,265 sample of community and hospital patients with a visible difference were recruited face to face or by post, and completed the DAS24.Results. A two factor solution was generated. An evaluation of the congruence of the factor solutions on each of the the hospital and the community samples using Tucker’s Coefficient of Congruence (rc = .979 and confirmatory factor analysis, which demonstrated a consistent factor structure. A main factor, general self consciousness (GSC, was represented by 18 items. Six items comprised a second factor, sexual and body self-consciousness (SBSC. The SBSC scale demonstrated greater sensitivity and specificity in identifying distress for sexually significant areas of the body.Discussion. The factor structure of the DAS24 facilitates a more nuanced interpretation of scores using this scale. Two conceptually and statistically coherent sub-scales were identified. The SBSC sub-scale offers a means of identifying distress and dysfunction around sexually significant areas of the body not previously possible with this scale.

  15. Large-Scale 3D Printing: The Way Forward

    Science.gov (United States)

    Jassmi, Hamad Al; Najjar, Fady Al; Ismail Mourad, Abdel-Hamid

    2018-03-01

    Research on small-scale 3D printing has rapidly evolved, where numerous industrial products have been tested and successfully applied. Nonetheless, research on large-scale 3D printing, directed to large-scale applications such as construction and automotive manufacturing, yet demands a great a great deal of efforts. Large-scale 3D printing is considered an interdisciplinary topic and requires establishing a blended knowledge base from numerous research fields including structural engineering, materials science, mechatronics, software engineering, artificial intelligence and architectural engineering. This review article summarizes key topics of relevance to new research trends on large-scale 3D printing, particularly pertaining (1) technological solutions of additive construction (i.e. the 3D printers themselves), (2) materials science challenges, and (3) new design opportunities.

  16. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    Science.gov (United States)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  17. Dissecting the large-scale galactic conformity

    Science.gov (United States)

    Seo, Seongu

    2018-01-01

    Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.

  18. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    1997-01-01

    This book deals with special relativity theory and its application to cosmology. It presents Einstein's theory of space and time in detail, and describes the large scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The book will be of interest to cosmologists, astrophysicists, theoretical

  19. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    2002-01-01

    This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g

  20. Sensitivity analysis for large-scale problems

    Science.gov (United States)

    Noor, Ahmed K.; Whitworth, Sandra L.

    1987-01-01

    The development of efficient techniques for calculating sensitivity derivatives is studied. The objective is to present a computational procedure for calculating sensitivity derivatives as part of performing structural reanalysis for large-scale problems. The scope is limited to framed type structures. Both linear static analysis and free-vibration eigenvalue problems are considered.

  1. Isocurvature modes and Baryon Acoustic Oscillations II: gains from combining CMB and Large Scale Structure

    International Nuclear Information System (INIS)

    Carbone, Carmelita; Mangilli, Anna; Verde, Licia

    2011-01-01

    We consider cosmological parameters estimation in the presence of a non-zero isocurvature contribution in the primordial perturbations. A previous analysis showed that even a tiny amount of isocurvature perturbation, if not accounted for, could affect standard rulers calibration from Cosmic Microwave Background observations such as those provided by the Planck mission, affect Baryon Acoustic Oscillations interpretation, and introduce biases in the recovered dark energy properties that are larger than forecasted statistical errors from future surveys. Extending on this work, here we adopt a general fiducial cosmology which includes a varying dark energy equation of state parameter and curvature. Beside Baryon Acoustic Oscillations measurements, we include the information from the shape of the galaxy power spectrum and consider a joint analysis of a Planck-like Cosmic Microwave Background probe and a future, space-based, Large Scale Structure probe not too dissimilar from recently proposed surveys. We find that this allows one to break the degeneracies that affect the Cosmic Microwave Background and Baryon Acoustic Oscillations combination. As a result, most of the cosmological parameter systematic biases arising from an incorrect assumption on the isocurvature fraction parameter f iso , become negligible with respect to the statistical errors. We find that the Cosmic Microwave Background and Large Scale Structure combination gives a statistical error σ(f iso ) ∼ 0.008, even when curvature and a varying dark energy equation of state are included, which is smaller that the error obtained from Cosmic Microwave Background alone when flatness and cosmological constant are assumed. These results confirm the synergy and complementarity between Cosmic Microwave Background and Large Scale Structure, and the great potential of future and planned galaxy surveys

  2. [Effect of environmental factors on macroinvertebrate community structure in the Huntai River basin in the Huntai River basin].

    Science.gov (United States)

    Li, Yan-li; Li, Yan-fen; Xu, Zong-xue

    2015-01-01

    In May-June 2012, macroinvertebrates were investigated at 66 sampling sites in the Huntai River basin in Northeast of China. A total of 72 macrobenthos species were collected, of which, 51 species (70.83%) were aquatic insects, 10 species (13.89%) were mollusks, 7 species (9.72%) were annelids, and 4 species (5.56%) were arthropods. First, 13 candidate metrics (EPT taxa, Dominant taxon%, Ephemeroptera%, Trichoptera%, mollusks%, Heptageniidae/Ephemeroptera; Hydropsychidae/ Trichoptera, Oligochaeta%, intolerant taxon% , tolerant taxon%, Collector%, Clingers%, Shannon-wiener index.) which belonged to six types were chosen to represent macroinvertebrate community structure by correlation analysis. Then, relationships between anthropogenic and physiography pressures and macroinvertebrate community structure variables were measured using redundancy analysis. Then, this study compared the relative influences of anthropogenic and physiographic pressures on macroinvertebrate community structure and the relative influences of anthropogenic pressures at reach, riparian and catchment scales by pRDA. The results showed all environmental factors explained 72.23% of the variation of macroinvertebrate community structure. In addition, a large proportion of the explained variability in macroinvertebrate community structure was related to anthropogenic pressures (48.9%) and to physiographic variables (11.8%), anthropogenic pressures at reach scale influenced most significantly macroinvertebrate community structure which explained 35.3% of the variation of macroinvertebrate community structure. pH, habitat, TN, CODMn, hardness, conductivity, total dissolved particle and ammonia influenced respectively explained 4%, 3.6%, 1.8%, 1.7%, 1.7%, 0.9%, 0.9% and 0.9% of the variation of macroinvertebrate community structure. The land use at riparian and catchment scale respectively explained 10% and 7% of the variation of macroinvertebrate community structure. Finally, the relationships of

  3. Neural ensemble communities: Open-source approaches to hardware for large-scale electrophysiology

    Science.gov (United States)

    Siegle, Joshua H.; Hale, Gregory J.; Newman, Jonathan P.; Voigts, Jakob

    2014-01-01

    One often-overlooked factor when selecting a platform for large-scale electrophysiology is whether or not a particular data acquisition system is “open” or “closed”: that is, whether or not the system’s schematics and source code are available to end users. Open systems have a reputation for being difficult to acquire, poorly documented, and hard to maintain. With the arrival of more powerful and compact integrated circuits, rapid prototyping services, and web-based tools for collaborative development, these stereotypes must be reconsidered. We discuss some of the reasons why multichannel extracellular electrophysiology could benefit from open-source approaches and describe examples of successful community-driven tool development within this field. In order to promote the adoption of open-source hardware and to reduce the need for redundant development efforts, we advocate a move toward standardized interfaces that connect each element of the data processing pipeline. This will give researchers the flexibility to modify their tools when necessary, while allowing them to continue to benefit from the high-quality products and expertise provided by commercial vendors. PMID:25528614

  4. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    Science.gov (United States)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  5. Large-scale influences in near-wall turbulence.

    Science.gov (United States)

    Hutchins, Nicholas; Marusic, Ivan

    2007-03-15

    Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.

  6. Technique for large-scale structural mapping at uranium deposits i in non-metamorphosed sedimentary cover rocks

    International Nuclear Information System (INIS)

    Kochkin, B.T.

    1985-01-01

    The technique for large-scale construction (1:1000 - 1:10000), reflecting small amplitude fracture plicate structures, is given for uranium deposits in non-metamorphozed sedimentary cover rocks. Structure drill log sections, as well as a set of maps with the results of area analysis of hidden disturbances, structural analysis of iso-pachous lines and facies of platform mantle horizons serve as sour ce materials for structural mapplotting. The steps of structural map construction are considered: 1) structural carcass construction; 2) reconstruction of structure contour; 3) time determination of structure initiation; 4) plotting of an additional geologic load

  7. Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos

    Science.gov (United States)

    Zurek, Wojciech H.; Quinn, Peter J.; Salmon, John K.; Warren, Michael S.

    1994-01-01

    Large N-body simulations on parallel supercomputers allow one to simultaneously investigate large-scale structure and the formation of galactic halos with unprecedented resolution. Our study shows that the masses as well as the spatial distribution of halos on scales of tens of megaparsecs in a cold dark matter (CDM) universe with the spectrum normalized to the anisotropies detected by Cosmic Background Explorer (COBE) is compatible with the observations. We also show that the average value of the relative pairwise velocity dispersion sigma(sub v) - used as a principal argument against COBE-normalized CDM models-is significantly lower for halos than for individual particles. When the observational methods of extracting sigma(sub v) are applied to the redshift catalogs obtained from the numerical experiments, estimates differ significantly between different observation-sized samples and overlap observational estimates obtained following the same procedure.

  8. Testing the Big Bang: Light elements, neutrinos, dark matter and large-scale structure

    Science.gov (United States)

    Schramm, David N.

    1991-01-01

    Several experimental and observational tests of the standard cosmological model are examined. In particular, a detailed discussion is presented regarding: (1) nucleosynthesis, the light element abundances, and neutrino counting; (2) the dark matter problems; and (3) the formation of galaxies and large-scale structure. Comments are made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing and the cosmological and astrophysical constraints on it.

  9. Projection Effects of Large-scale Structures on Weak-lensing Peak Abundances

    Science.gov (United States)

    Yuan, Shuo; Liu, Xiangkun; Pan, Chuzhong; Wang, Qiao; Fan, Zuhui

    2018-04-01

    High peaks in weak lensing (WL) maps originate dominantly from the lensing effects of single massive halos. Their abundance is therefore closely related to the halo mass function and thus a powerful cosmological probe. However, besides individual massive halos, large-scale structures (LSS) along lines of sight also contribute to the peak signals. In this paper, with ray-tracing simulations, we investigate the LSS projection effects. We show that for current surveys with a large shape noise, the stochastic LSS effects are subdominant. For future WL surveys with source galaxies having a median redshift z med ∼ 1 or higher, however, they are significant. For the cosmological constraints derived from observed WL high-peak counts, severe biases can occur if the LSS effects are not taken into account properly. We extend the model of Fan et al. by incorporating the LSS projection effects into the theoretical considerations. By comparing with simulation results, we demonstrate the good performance of the improved model and its applicability in cosmological studies.

  10. On the Renormalization of the Effective Field Theory of Large Scale Structures

    OpenAIRE

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory o...

  11. The Effect of Initial Inoculum Source on the Microbial Community Structure and Dynamics in Laboratory-Scale Sequencing Batch Reactors

    KAUST Repository

    Hernandez, Susana

    2011-07-01

    Understanding the factors that shapes the microbial community assembly in activated sludge wastewater treatment processes provide a conceptual foundation for improving process performance. The aim of this study was to compare two major theories (deterministic theory and neutral theory) regarding the assembly of microorganisms in activated sludge: Six lab-scale activated sludge sequencing batch reactors were inoculated with activated sludge collected from three different sources (domestic, industrial, and sugar industry WWTP). Additionally, two reactors were seeded with equal proportion of sludge from the three WWTPs. Duplicate reactors were used for each sludge source (i.e. domestic, industrial, sugar and mix). Reactors were operated in parallel for 11 weeks under identical conditions. Bacterial diversity and community structure in the eight SBRs were assessed by 16S rRNA gene pyrosequencing. The 16S rRNA gene sequences were analyzed using taxonomic and clustering analysis and by measuring diversity indices (Shannon-weaver and Chao1 indices). Cluster analysis revealed that the microbial community structure was dynamic and that replicate reactors evolved differently. Also the microbial community structure in the SBRs seeded with a different sludge did not converge after 11 weeks of operation under identical conditions. These results suggest that history and distribution of taxa in the source inoculum were stronger regulating factors in shaping bacterial community structure than environmental factors. This supports the neutral theory which states that the assembly of the local microbial community from the metacommunity is random and is regulated by the size and diversity of the metacommunity. Furthermore, sludge performance, measured by COD and ammonia removal, confirmed that broad-scale functions (e.g. COD removal) are not influenced by dynamics in the microbial composition, while specific functions (e.g. nitrification) are more susceptible to these changes.

  12. A new hybrid meta-heuristic algorithm for optimal design of large-scale dome structures

    Science.gov (United States)

    Kaveh, A.; Ilchi Ghazaan, M.

    2018-02-01

    In this article a hybrid algorithm based on a vibrating particles system (VPS) algorithm, multi-design variable configuration (Multi-DVC) cascade optimization, and an upper bound strategy (UBS) is presented for global optimization of large-scale dome truss structures. The new algorithm is called MDVC-UVPS in which the VPS algorithm acts as the main engine of the algorithm. The VPS algorithm is one of the most recent multi-agent meta-heuristic algorithms mimicking the mechanisms of damped free vibration of single degree of freedom systems. In order to handle a large number of variables, cascade sizing optimization utilizing a series of DVCs is used. Moreover, the UBS is utilized to reduce the computational time. Various dome truss examples are studied to demonstrate the effectiveness and robustness of the proposed method, as compared to some existing structural optimization techniques. The results indicate that the MDVC-UVPS technique is a powerful search and optimization method for optimizing structural engineering problems.

  13. A large scale analysis of information-theoretic network complexity measures using chemical structures.

    Directory of Open Access Journals (Sweden)

    Matthias Dehmer

    Full Text Available This paper aims to investigate information-theoretic network complexity measures which have already been intensely used in mathematical- and medicinal chemistry including drug design. Numerous such measures have been developed so far but many of them lack a meaningful interpretation, e.g., we want to examine which kind of structural information they detect. Therefore, our main contribution is to shed light on the relatedness between some selected information measures for graphs by performing a large scale analysis using chemical networks. Starting from several sets containing real and synthetic chemical structures represented by graphs, we study the relatedness between a classical (partition-based complexity measure called the topological information content of a graph and some others inferred by a different paradigm leading to partition-independent measures. Moreover, we evaluate the uniqueness of network complexity measures numerically. Generally, a high uniqueness is an important and desirable property when designing novel topological descriptors having the potential to be applied to large chemical databases.

  14. Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc

    Directory of Open Access Journals (Sweden)

    Kevin W. Hager

    2017-08-01

    Full Text Available The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, respectively. The Zetaproteobacterial-based communities had the highest richness and diversity, which supports the hypothesis that Zetaproteobacteria function as ecosystem engineers creating a physical habitat within a chemical environment promoting enhanced microbial diversity. Gammaproteobacteria were also high in abundance within the iron-dominated mats and some likely contribute to primary production. In addition, we also compare sampling scale, showing that bulk sampling of microbial mats yields higher diversity than micro-scale sampling. We present a comprehensive analysis and offer new insights into the community structure and diversity of lithotrophically-driven microbial mats from a hydrothermal region associated with high microbial biodiversity. Our study indicates an important functional role of for the Zetaproteobacteria altering the mat habitat and enhancing community interactions and complexity.

  15. The seesaw space, a vector space to identify and characterize large-scale structures at 1 AU

    Science.gov (United States)

    Lara, A.; Niembro, T.

    2017-12-01

    We introduce the seesaw space, an orthonormal space formed by the local and the global fluctuations of any of the four basic solar parameters: velocity, density, magnetic field and temperature at any heliospheric distance. The fluctuations compare the standard deviation of a moving average of three hours against the running average of the parameter in a month (consider as the local fluctuations) and in a year (global fluctuations) We created this new vectorial spaces to identify the arrival of transients to any spacecraft without the need of an observer. We applied our method to the one-minute resolution data of WIND spacecraft from 1996 to 2016. To study the behavior of the seesaw norms in terms of the solar cycle, we computed annual histograms and fixed piecewise functions formed by two log-normal distributions and observed that one of the distributions is due to large-scale structures while the other to the ambient solar wind. The norm values in which the piecewise functions change vary in terms of the solar cycle. We compared the seesaw norms of each of the basic parameters due to the arrival of coronal mass ejections, co-rotating interaction regions and sector boundaries reported in literature. High seesaw norms are due to large-scale structures. We found three critical values of the norms that can be used to determined the arrival of coronal mass ejections. We present as well general comparisons of the norms during the two maxima and the minimum solar cycle periods and the differences of the norms due to large-scale structures depending on each period.

  16. Use of Large-Scale Multi-Configuration EMI Measurements to Characterize Subsurface Structures of the Vadose Zone.

    Science.gov (United States)

    Huisman, J. A.; Brogi, C.; Pätzold, S.; Weihermueller, L.; von Hebel, C.; Van Der Kruk, J.; Vereecken, H.

    2017-12-01

    Subsurface structures of the vadose zone can play a key role in crop yield potential, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI can provide information about dominant shallow subsurface features. However, previous studies with EMI have typically not reached beyond the field scale. We used high-resolution large-scale multi-configuration EMI measurements to characterize patterns of soil structural organization (layering and texture) and their impact on crop productivity at the km2 scale. We collected EMI data on an agricultural area of 1 km2 (102 ha) near Selhausen (NRW, Germany). The area consists of 51 agricultural fields cropped in rotation. Therefore, measurements were collected between April and December 2016, preferably within few days after the harvest. EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid of 1 m resolution. Inspecting the ECa maps, we identified three main sub-areas with different subsurface heterogeneity. We also identified small-scale geomorphological structures as well as anthropogenic activities such as soil management and buried drainage networks. To identify areas with similar subsurface structures, we applied image classification techniques. We fused ECa maps obtained with different coil distances in a multiband image and applied supervised and unsupervised classification methodologies. Both showed good results in reconstructing observed patterns in plant productivity and the subsurface structures associated with them. However, the supervised methodology proved more efficient in classifying the whole study area. In a second step, we selected hundred locations within the study area and obtained a soil profile description with type, depth, and thickness of the soil horizons. Using this ground truth data it was possible to assign a typical soil profile to each of the main classes obtained from the classification. The proposed methodology was

  17. Time-scales of hydrological forcing on the geochemistry and bacterial community structure of temperate peat soils

    Science.gov (United States)

    Nunes, Flavia L. D.; Aquilina, Luc; De Ridder, Jo; Francez, André-Jean; Quaiser, Achim; Caudal, Jean-Pierre; Vandenkoornhuyse, Philippe; Dufresne, Alexis

    2015-10-01

    Peatlands are an important global carbon reservoir. The continued accumulation of carbon in peatlands depends on the persistence of anoxic conditions, in part induced by water saturation, which prevents oxidation of organic matter, and slows down decomposition. Here we investigate how and over what time scales the hydrological regime impacts the geochemistry and the bacterial community structure of temperate peat soils. Peat cores from two sites having contrasting groundwater budgets were subjected to four controlled drought-rewetting cycles. Pore water geochemistry and metagenomic profiling of bacterial communities showed that frequent water table drawdown induced lower concentrations of dissolved carbon, higher concentrations of sulfate and iron and reduced bacterial richness and diversity in the peat soil and water. Short-term drought cycles (3-9 day frequency) resulted in different communities from continuously saturated environments. Furthermore, the site that has more frequently experienced water table drawdown during the last two decades presented the most striking shifts in bacterial community structure, altering biogeochemical functioning of peat soils. Our results suggest that the increase in frequency and duration of drought conditions under changing climatic conditions or water resource use can induce profound changes in bacterial communities, with potentially severe consequences for carbon storage in temperate peatlands.

  18. Large-scale synthesis of YSZ nanopowder by Pechini method

    Indian Academy of Sciences (India)

    Administrator

    structure and chemical purity of 99⋅1% by inductively coupled plasma optical emission spectroscopy on a large scale. Keywords. Sol–gel; yttria-stabilized zirconia; large scale; nanopowder; Pechini method. 1. Introduction. Zirconia has attracted the attention of many scientists because of its tremendous thermal, mechanical ...

  19. The community structure of over-wintering larval and small juvenile fish in a large estuary

    Science.gov (United States)

    Munk, Peter; Cardinale, Massimiliano; Casini, Michele; Rudolphi, Ann-Christin

    2014-02-01

    The Skagerrak and Kattegat are estuarine straits of high hydrographical and ecological diversity, situated between the saline waters of the North Sea and the brackish waters of the Baltic Sea. These sustain important nursery grounds of many fish species, of which several overwinter during the larval and early juvenile stages. In order to give more insight into the communities of the overwintering ichthyoplankton in estuarine areas, we examine an annual series of observations from a standard survey carried out 1992-2010. Species differences and annual variability in distributions and abundances are described, and linkages between ichthyoplankton abundances and corresponding hydrographical information are analysed by GAM methods. Communities were dominated by herring, gobies, butterfish, sprat, pipefishes, lemon sole and European eel (i.e. glass eel), and all the sampled species showed large annual fluctuations in abundances. The species showed quite specific patterns of distribution although species assemblages with common distributional characteristics were identified. Within these assemblages, the ichthyoplankton abundances showed linkage to environmental characteristics described by bottom-depth and surface temperature and salinity. Hence the study points to a significant structuring of overwintering ichthyoplankton communities in large estuaries, based on the species habitat choice and its response to physical gradients.

  20. Primordial Magnetic Field Effects on the CMB and Large-Scale Structure

    Directory of Open Access Journals (Sweden)

    Dai G. Yamazaki

    2010-01-01

    Full Text Available Magnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF would be expected to manifest itself in the cosmic microwave background (CMB temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude Bλ and the power spectral index nB which have been deduced from the available CMB observational data by using our computational framework.

  1. Community turnover of wood-inhabiting fungi across hierarchical spatial scales.

    Directory of Open Access Journals (Sweden)

    Nerea Abrego

    Full Text Available For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor, forest site (random factor, nested within management type and study plots (randomly placed plots within each study site. To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet

  2. Ward identities and consistency relations for the large scale structure with multiple species

    International Nuclear Information System (INIS)

    Peloso, Marco; Pietroni, Massimo

    2014-01-01

    We present fully nonlinear consistency relations for the squeezed bispectrum of Large Scale Structure. These relations hold when the matter component of the Universe is composed of one or more species, and generalize those obtained in [1,2] in the single species case. The multi-species relations apply to the standard dark matter + baryons scenario, as well as to the case in which some of the fields are auxiliary quantities describing a particular population, such as dark matter halos or a specific galaxy class. If a large scale velocity bias exists between the different populations new terms appear in the consistency relations with respect to the single species case. As an illustration, we discuss two physical cases in which such a velocity bias can exist: (1) a new long range scalar force in the dark matter sector (resulting in a violation of the equivalence principle in the dark matter-baryon system), and (2) the distribution of dark matter halos relative to that of the underlying dark matter field

  3. Food-web structure of seagrass communities across different spatial scales and human impacts.

    Science.gov (United States)

    Coll, Marta; Schmidt, Allison; Romanuk, Tamara; Lotze, Heike K

    2011-01-01

    Seagrass beds provide important habitat for a wide range of marine species but are threatened by multiple human impacts in coastal waters. Although seagrass communities have been well-studied in the field, a quantification of their food-web structure and functioning, and how these change across space and human impacts has been lacking. Motivated by extensive field surveys and literature information, we analyzed the structural features of food webs associated with Zostera marina across 16 study sites in 3 provinces in Atlantic Canada. Our goals were to (i) quantify differences in food-web structure across local and regional scales and human impacts, (ii) assess the robustness of seagrass webs to simulated species loss, and (iii) compare food-web structure in temperate Atlantic seagrass beds with those of other aquatic ecosystems. We constructed individual food webs for each study site and cumulative webs for each province and the entire region based on presence/absence of species, and calculated 16 structural properties for each web. Our results indicate that food-web structure was similar among low impact sites across regions. With increasing human impacts associated with eutrophication, however, food-web structure show evidence of degradation as indicated by fewer trophic groups, lower maximum trophic level of the highest top predator, fewer trophic links connecting top to basal species, higher fractions of herbivores and intermediate consumers, and higher number of prey per species. These structural changes translate into functional changes with impacted sites being less robust to simulated species loss. Temperate Atlantic seagrass webs are similar to a tropical seagrass web, yet differed from other aquatic webs, suggesting consistent food-web characteristics across seagrass ecosystems in different regions. Our study illustrates that food-web structure and functioning of seagrass habitats change with human impacts and that the spatial scale of food-web analysis

  4. Food-web structure of seagrass communities across different spatial scales and human impacts.

    Directory of Open Access Journals (Sweden)

    Marta Coll

    Full Text Available Seagrass beds provide important habitat for a wide range of marine species but are threatened by multiple human impacts in coastal waters. Although seagrass communities have been well-studied in the field, a quantification of their food-web structure and functioning, and how these change across space and human impacts has been lacking. Motivated by extensive field surveys and literature information, we analyzed the structural features of food webs associated with Zostera marina across 16 study sites in 3 provinces in Atlantic Canada. Our goals were to (i quantify differences in food-web structure across local and regional scales and human impacts, (ii assess the robustness of seagrass webs to simulated species loss, and (iii compare food-web structure in temperate Atlantic seagrass beds with those of other aquatic ecosystems. We constructed individual food webs for each study site and cumulative webs for each province and the entire region based on presence/absence of species, and calculated 16 structural properties for each web. Our results indicate that food-web structure was similar among low impact sites across regions. With increasing human impacts associated with eutrophication, however, food-web structure show evidence of degradation as indicated by fewer trophic groups, lower maximum trophic level of the highest top predator, fewer trophic links connecting top to basal species, higher fractions of herbivores and intermediate consumers, and higher number of prey per species. These structural changes translate into functional changes with impacted sites being less robust to simulated species loss. Temperate Atlantic seagrass webs are similar to a tropical seagrass web, yet differed from other aquatic webs, suggesting consistent food-web characteristics across seagrass ecosystems in different regions. Our study illustrates that food-web structure and functioning of seagrass habitats change with human impacts and that the spatial scale of

  5. Rapid change with depth in megabenthic structure-forming communities of the Makapu'u deep-sea coral bed

    Science.gov (United States)

    Long, Dustin J.; Baco, Amy R.

    2014-01-01

    Seamounts are largely unexplored undersea mountains rising abruptly from the ocean floor, which can support an increased abundance and diversity of organisms. Deep-sea corals are important benthic structure-formers on current-swept hard substrates in these habitats. While depth is emerging as a factor structuring the fauna of seamounts on a large spatial scale, most work addressing deep-sea coral and seamount community structure has not considered the role of small-scale variation in species distributions. Video from six ROV dives over a depth range of ~320-530 m were analyzed to assess the diversity and density of benthic megafaunal invertebrates across the Makapu'u deep-sea coral bed, offshore of Oahu, Hawaii. At the same time, the physical environment along the dive track was surveyed to relate biotic patterns with abiotic variables including depth, aspect, rugosity, substrate, slope and relief to test the factors structuring community assemblages. Despite the narrow range examined, depth was found to be the strongest structuring gradient, and six unique macrobenthic communities were found, with a 93% faunal dissimilarity over the depth surveyed. Relief, rugosity and slope were also factors in the final model. Alcyonacean octocorals were the dominant macrofaunal invertebrates at all but the deepest depth zone. The commercially harvested precious coral C. secundum was the dominant species at depths 370-470 m, with a distribution that is on average deeper than similar areas. This may be artificial due to the past harvesting of this species on the shallower portion of its range. Primnoid octocorals were the most abundant octocoral family overall. This work yields new insight on the spatial ecology of seamounts, pointing out that community changes can occur over narrow depth ranges and that communities can be structured by small-scale physiography.

  6. Automatic Generation of Connectivity for Large-Scale Neuronal Network Models through Structural Plasticity.

    Science.gov (United States)

    Diaz-Pier, Sandra; Naveau, Mikaël; Butz-Ostendorf, Markus; Morrison, Abigail

    2016-01-01

    With the emergence of new high performance computation technology in the last decade, the simulation of large scale neural networks which are able to reproduce the behavior and structure of the brain has finally become an achievable target of neuroscience. Due to the number of synaptic connections between neurons and the complexity of biological networks, most contemporary models have manually defined or static connectivity. However, it is expected that modeling the dynamic generation and deletion of the links among neurons, locally and between different regions of the brain, is crucial to unravel important mechanisms associated with learning, memory and healing. Moreover, for many neural circuits that could potentially be modeled, activity data is more readily and reliably available than connectivity data. Thus, a framework that enables networks to wire themselves on the basis of specified activity targets can be of great value in specifying network models where connectivity data is incomplete or has large error margins. To address these issues, in the present work we present an implementation of a model of structural plasticity in the neural network simulator NEST. In this model, synapses consist of two parts, a pre- and a post-synaptic element. Synapses are created and deleted during the execution of the simulation following local homeostatic rules until a mean level of electrical activity is reached in the network. We assess the scalability of the implementation in order to evaluate its potential usage in the self generation of connectivity of large scale networks. We show and discuss the results of simulations on simple two population networks and more complex models of the cortical microcircuit involving 8 populations and 4 layers using the new framework.

  7. Evaluating neighborhood structures for modeling intercity diffusion of large-scale dengue epidemics.

    Science.gov (United States)

    Wen, Tzai-Hung; Hsu, Ching-Shun; Hu, Ming-Che

    2018-05-03

    Dengue fever is a vector-borne infectious disease that is transmitted by contact between vector mosquitoes and susceptible hosts. The literature has addressed the issue on quantifying the effect of individual mobility on dengue transmission. However, there are methodological concerns in the spatial regression model configuration for examining the effect of intercity-scale human mobility on dengue diffusion. The purposes of the study are to investigate the influence of neighborhood structures on intercity epidemic progression from pre-epidemic to epidemic periods and to compare definitions of different neighborhood structures for interpreting the spread of dengue epidemics. We proposed a framework for assessing the effect of model configurations on dengue incidence in 2014 and 2015, which were the most severe outbreaks in 70 years in Taiwan. Compared with the conventional model configuration in spatial regression analysis, our proposed model used a radiation model, which reflects population flow between townships, as a spatial weight to capture the structure of human mobility. The results of our model demonstrate better model fitting performance, indicating that the structure of human mobility has better explanatory power in dengue diffusion than the geometric structure of administration boundaries and geographic distance between centroids of cities. We also identified spatial-temporal hierarchy of dengue diffusion: dengue incidence would be influenced by its immediate neighboring townships during pre-epidemic and epidemic periods, and also with more distant neighbors (based on mobility) in pre-epidemic periods. Our findings suggest that the structure of population mobility could more reasonably capture urban-to-urban interactions, which implies that the hub cities could be a "bridge" for large-scale transmission and make townships that immediately connect to hub cities more vulnerable to dengue epidemics.

  8. Integration of community structure data reveals observable effects below sediment guideline thresholds in a large estuary

    KAUST Repository

    Tremblay, Louis A.

    2017-04-07

    The sustainable management of estuarine and coastal ecosystems requires robust frameworks due to the presence of multiple physical and chemical stressors. In this study, we assessed whether ecological health decline, based on community structure composition changes along a pollution gradient, occurred at levels below guideline threshold values for copper, zinc and lead. Canonical analysis of principal coordinates (CAP) was used to characterise benthic communities along a metal contamination gradient. The analysis revealed changes in benthic community distribution at levels below the individual guideline values for the three metals. These results suggest that field-based measures of ecological health analysed with multivariate tools can provide additional information to single metal guideline threshold values to monitor large systems exposed to multiple stressors.

  9. Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy

    Directory of Open Access Journals (Sweden)

    Leandros Perivolaropoulos

    2014-01-01

    Full Text Available A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”, the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole” and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.

  10. Fast unfolding of communities in large networks

    International Nuclear Information System (INIS)

    Blondel, Vincent D; Guillaume, Jean-Loup; Lambiotte, Renaud; Lefebvre, Etienne

    2008-01-01

    We propose a simple method to extract the community structure of large networks. Our method is a heuristic method that is based on modularity optimization. It is shown to outperform all other known community detection methods in terms of computation time. Moreover, the quality of the communities detected is very good, as measured by the so-called modularity. This is shown first by identifying language communities in a Belgian mobile phone network of 2 million customers and by analysing a web graph of 118 million nodes and more than one billion links. The accuracy of our algorithm is also verified on ad hoc modular networks

  11. The Hualien Large-Scale Seismic Test for soil-structure interaction research

    International Nuclear Information System (INIS)

    Tang, H.T.; Stepp, J.C.; Cheng, Y.H.

    1991-01-01

    A Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, has been initiated with the primary objective of obtaining earthquake-induced SSI data at a stiff soil site having similar prototypical nuclear power plant soil conditions. Preliminary soil boring, geophysical testing and ambient and earthquake-induced ground motion monitoring have been conducted to understand the experiment site conditions. More refined field and laboratory tests will be conducted such as the state-of-the-art freezing sampling technique and the large penetration test (LPT) method to characterize the soil constitutive behavior. The test model to be constructed will be similar to the Lotung model. The instrumentation layout will be designed to provide data for studies of SSI, spatial incoherence, soil stability, foundation uplifting, ground motion wave field and structural response. A consortium consisting of EPRI, Taipower, CRIEPI, TEPCO, CEA, EdF and Framatome has been established to carry out the project. It is envisaged that the Hualien SSI array will be ready to record earthquakes by the middle of 1992. The duration of the recording scheduled for five years. (author)

  12. Soil shapes community structure through fire.

    Science.gov (United States)

    Ojeda, Fernando; Pausas, Juli G; Verdú, Miguel

    2010-07-01

    Recurrent wildfires constitute a major selecting force in shaping the structure of plant communities. At the regional scale, fire favours phenotypic and phylogenetic clustering in Mediterranean woody plant communities. Nevertheless, the incidence of fire within a fire-prone region may present strong variations at the local, landscape scale. This study tests the prediction that woody communities on acid, nutrient-poor soils should exhibit more pronounced phenotypic and phylogenetic clustering patterns than woody communities on fertile soils, as a consequence of their higher flammability and, hence, presumably higher propensity to recurrent fire. Results confirm the predictions and show that habitat filtering driven by fire may be detected even in local communities from an already fire-filtered regional flora. They also provide a new perspective from which to consider a preponderant role of fire as a key evolutionary force in acid, infertile Mediterranean heathlands.

  13. The XChemExplorer graphical workflow tool for routine or large-scale protein–ligand structure determination

    Science.gov (United States)

    Krojer, Tobias; Talon, Romain; Pearce, Nicholas; Douangamath, Alice; Brandao-Neto, Jose; Dias, Alexandre; Marsden, Brian

    2017-01-01

    XChemExplorer (XCE) is a data-management and workflow tool to support large-scale simultaneous analysis of protein–ligand complexes during structure-based ligand discovery (SBLD). The user interfaces of established crystallo­graphic software packages such as CCP4 [Winn et al. (2011 ▸), Acta Cryst. D67, 235–242] or PHENIX [Adams et al. (2010 ▸), Acta Cryst. D66, 213–221] have entrenched the paradigm that a ‘project’ is concerned with solving one structure. This does not hold for SBLD, where many almost identical structures need to be solved and analysed quickly in one batch of work. Functionality to track progress and annotate structures is essential. XCE provides an intuitive graphical user interface which guides the user from data processing, initial map calculation, ligand identification and refinement up until data dissemination. It provides multiple entry points depending on the need of each project, enables batch processing of multiple data sets and records metadata, progress and annotations in an SQLite database. XCE is freely available and works on any Linux and Mac OS X system, and the only dependency is to have the latest version of CCP4 installed. The design and usage of this tool are described here, and its usefulness is demonstrated in the context of fragment-screening campaigns at the Diamond Light Source. It is routinely used to analyse projects comprising 1000 data sets or more, and therefore scales well to even very large ligand-design projects. PMID:28291762

  14. The XChemExplorer graphical workflow tool for routine or large-scale protein-ligand structure determination.

    Science.gov (United States)

    Krojer, Tobias; Talon, Romain; Pearce, Nicholas; Collins, Patrick; Douangamath, Alice; Brandao-Neto, Jose; Dias, Alexandre; Marsden, Brian; von Delft, Frank

    2017-03-01

    XChemExplorer (XCE) is a data-management and workflow tool to support large-scale simultaneous analysis of protein-ligand complexes during structure-based ligand discovery (SBLD). The user interfaces of established crystallographic software packages such as CCP4 [Winn et al. (2011), Acta Cryst. D67, 235-242] or PHENIX [Adams et al. (2010), Acta Cryst. D66, 213-221] have entrenched the paradigm that a `project' is concerned with solving one structure. This does not hold for SBLD, where many almost identical structures need to be solved and analysed quickly in one batch of work. Functionality to track progress and annotate structures is essential. XCE provides an intuitive graphical user interface which guides the user from data processing, initial map calculation, ligand identification and refinement up until data dissemination. It provides multiple entry points depending on the need of each project, enables batch processing of multiple data sets and records metadata, progress and annotations in an SQLite database. XCE is freely available and works on any Linux and Mac OS X system, and the only dependency is to have the latest version of CCP4 installed. The design and usage of this tool are described here, and its usefulness is demonstrated in the context of fragment-screening campaigns at the Diamond Light Source. It is routinely used to analyse projects comprising 1000 data sets or more, and therefore scales well to even very large ligand-design projects.

  15. Testing the big bang: Light elements, neutrinos, dark matter and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (United States) Fermi National Accelerator Lab., Batavia, IL (United States))

    1991-06-01

    In this series of lectures, several experimental and observational tests of the standard cosmological model are examined. In particular, detailed discussion is presented regarding nucleosynthesis, the light element abundances and neutrino counting; the dark matter problems; and the formation of galaxies and large-scale structure. Comments will also be made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing'' and the cosmological and astrophysical constraints on it. 126 refs., 8 figs., 2 tabs.

  16. Membrane biofilm communities in full-scale membrane bioreactors are not randomly assembled and consist of a core microbiome

    KAUST Repository

    Matar, Gerald Kamil

    2017-06-21

    Finding efficient biofouling control strategies requires a better understanding of the microbial ecology of membrane biofilm communities in membrane bioreactors (MBRs). Studies that characterized the membrane biofilm communities in lab-and pilot-scale MBRs are numerous, yet similar studies in full-scale MBRs are limited. Also, most of these studies have characterized the mature biofilm communities with very few studies addressing early biofilm communities. In this study, five full-scale MBRs located in Seattle (Washington, U.S.A.) were selected to address two questions concerning membrane biofilm communities (early and mature): (i) Is the assembly of biofilm communities (early and mature) the result of random immigration of species from the source community (i.e. activated sludge)? and (ii) Is there a core membrane biofilm community in full-scale MBRs? Membrane biofilm (early and mature) and activated sludge (AS) samples were collected from the five MBRs, and 16S rRNA gene sequencing was applied to investigate the bacterial communities of AS and membrane biofilms (early and mature). Alpha and beta diversity measures revealed clear differences in the bacterial community structure between the AS and biofilm (early and mature) samples in the five full-scale MBRs. These differences were mainly due to the presence of large number of unique but rare operational taxonomic units (∼13% of total reads in each MBR) in each sample. In contrast, a high percentage (∼87% of total reads in each MBR) of sequence reads was shared between AS and biofilm samples in each MBR, and these shared sequence reads mainly belong to the dominant taxa in these samples. Despite the large fraction of shared sequence reads between AS and biofilm samples, simulated biofilm communities from random sampling of the respective AS community revealed that biofilm communities differed significantly from the random assemblages (P < 0.001 for each MBR), indicating that the biofilm communities (early

  17. Management intensity at field and landscape levels affects the structure of generalist predator communities.

    Science.gov (United States)

    Rusch, Adrien; Birkhofer, Klaus; Bommarco, Riccardo; Smith, Henrik G; Ekbom, Barbara

    2014-07-01

    Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.

  18. Dynamic Arrest in Charged Colloidal Systems Exhibiting Large-Scale Structural Heterogeneities

    International Nuclear Information System (INIS)

    Haro-Perez, C.; Callejas-Fernandez, J.; Hidalgo-Alvarez, R.; Rojas-Ochoa, L. F.; Castaneda-Priego, R.; Quesada-Perez, M.; Trappe, V.

    2009-01-01

    Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics

  19. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure.

    Science.gov (United States)

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA) play key roles in determining the bacterial community structure. The COD: [Formula: see text] (C:N) ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters.

  20. Fluid-structure interaction in non-rigid pipeline systems - large scale validation experiments

    International Nuclear Information System (INIS)

    Heinsbroek, A.G.T.J.; Kruisbrink, A.C.H.

    1993-01-01

    The fluid-structure interaction computer code FLUSTRIN, developed by DELFT HYDRAULICS, enables the user to determine dynamic fluid pressures, structural stresses and displacements in a liquid-filled pipeline system under transient conditions. As such, the code is a useful tool to process and mechanical engineers in the safe design and operation of pipeline systems in nuclear power plants. To validate FLUSTRIN, experiments have been performed in a large scale 3D test facility. The test facility consists of a flexible pipeline system which is suspended by wires, bearings and anchors. Pressure surges, which excite the system, are generated by a fast acting shut-off valve. Dynamic pressures, structural displacements and strains (in total 70 signals) have been measured under well determined initial and boundary conditions. The experiments have been simulated with FLUSTRIN, which solves the acoustic equations using the method of characteristics (fluid) and the finite element method (structure). The agreement between experiments and simulations is shown to be good: frequencies, amplitudes and wave phenomena are well predicted by the numerical simulations. It is demonstrated that an uncoupled water hammer computation would render unreliable and useless results. (author)

  1. Report of the LASCAR forum: Large scale reprocessing plant safeguards

    International Nuclear Information System (INIS)

    1992-01-01

    This report has been prepared to provide information on the studies which were carried out from 1988 to 1992 under the auspices of the multinational forum known as Large Scale Reprocessing Plant Safeguards (LASCAR) on safeguards for four large scale reprocessing plants operated or planned to be operated in the 1990s. The report summarizes all of the essential results of these studies. The participants in LASCAR were from France, Germany, Japan, the United Kingdom, the United States of America, the Commission of the European Communities - Euratom, and the International Atomic Energy Agency

  2. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, M.; Wu, W.-M.; Wu, L.; He, Z.; Van Nostrand, J.D.; Deng, Y.; Luo, J.; Carley, J.; Ginder-Vogel, M.; Gentry, T.J.; Gu, B.; Watson, D.; Jardine, P.M.; Marsh, T.L.; Tiedje, J.M.; Hazen, T.C.; Criddle, C.S.; Zhou, J.

    2010-02-15

    A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 {micro}gl{sup -1}) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene array (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.

  3. Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Marcello [Univ. of Toronto, ON (Canada); Baldauf, T. [Inst. of Advanced Studies, Princeton, NJ (United States); Bond, J. Richard [Univ. of Toronto, ON (Canada); Canadian Inst. for Advanced Research, Toronto, ON (Canada); Dalal, N. [Univ. of Illinois, Urbana-Champaign, IL (United States); Putter, R. D. [Jet Propulsion Lab., Pasadena, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Dore, O. [Jet Propulsion Lab., Pasadena, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Green, Daniel [Univ. of Toronto, ON (Canada); Canadian Inst. for Advanced Research, Toronto, ON (Canada); Hirata, Chris [The Ohio State Univ., Columbus, OH (United States); Huang, Zhiqi [Univ. of Toronto, ON (Canada); Huterer, Dragan [Univ. of Michigan, Ann Arbor, MI (United States); Jeong, Donghui [Pennsylvania State Univ., University Park, PA (United States); Johnson, Matthew C. [York Univ., Toronto, ON (Canada); Perimeter Inst., Waterloo, ON (Canada); Krause, Elisabeth [Stanford Univ., CA (United States); Loverde, Marilena [Univ. of Chicago, IL (United States); Meyers, Joel [Univ. of Toronto, ON (Canada); Meeburg, Daniel [Univ. of Toronto, ON (Canada); Senatore, Leonardo [Stanford Univ., CA (United States); Shandera, Sarah [Pennsylvania State Univ., University Park, PA (United States); Silverstein, Eva [Stanford Univ., CA (United States); Slosar, Anze [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Kendrick [Perimeter Inst., Waterloo, Toronto, ON (Canada); Zaldarriaga, Matias [Univ. of Toronto, ON (Canada); Assassi, Valentin [Cambridge Univ. (United Kingdom); Braden, Jonathan [Univ. of Toronto, ON (Canada); Hajian, Amir [Univ. of Toronto, ON (Canada); Kobayashi, Takeshi [Perimeter Inst., Waterloo, Toronto, ON (Canada); Univ. of Toronto, ON (Canada); Stein, George [Univ. of Toronto, ON (Canada); Engelen, Alexander van [Univ. of Toronto, ON (Canada)

    2014-12-15

    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large-scale structure is, however, from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude f$loc\\atop{NL}$ (f$eq\\atop{NL}$), natural target levels of sensitivity are Δf$loc, eq\\atop{NL}$ ≃ 1. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.

  4. Soft-Pion theorems for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2014-01-01

    Consistency relations — which relate an N-point function to a squeezed (N+1)-point function — are useful in large scale structure (LSS) because of their non-perturbative nature: they hold even if the N-point function is deep in the nonlinear regime, and even if they involve astrophysically messy galaxy observables. The non-perturbative nature of the consistency relations is guaranteed by the fact that they are symmetry statements, in which the velocity plays the role of the soft pion. In this paper, we address two issues: (1) how to derive the relations systematically using the residual coordinate freedom in the Newtonian gauge, and relate them to known results in ζ-gauge (often used in studies of inflation); (2) under what conditions the consistency relations are violated. In the non-relativistic limit, our derivation reproduces the Newtonian consistency relation discovered by Kehagias and Riotto and Peloso and Pietroni. More generally, there is an infinite set of consistency relations, as is known in ζ-gauge. There is a one-to-one correspondence between symmetries in the two gauges; in particular, the Newtonian consistency relation follows from the dilation and special conformal symmetries in ζ-gauge. We probe the robustness of the consistency relations by studying models of galaxy dynamics and biasing. We give a systematic list of conditions under which the consistency relations are violated; violations occur if the galaxy bias is non-local in an infrared divergent way. We emphasize the relevance of the adiabatic mode condition, as distinct from symmetry considerations. As a by-product of our investigation, we discuss a simple fluid Lagrangian for LSS

  5. Nitrogen availability alters macrofungal basidiomycete Blackwell Publishing, Ltd. community structure in optimally fertilized loblolly pine forests

    Science.gov (United States)

    Ivan P. Edwards; Jennifer L. Cripliver; Andrew R. Gillespie; Kurt H. Johnsen; M. Scholler; Ronald F. Turco

    2004-01-01

    We investigated the effect of an optimal nutrition strategy designed to maximize loblolly pine (Pinus taeda) growth on the rank abundance structure and diversity of associated basidiomycete communities.We conducted both small- and large-scale below-ground surveys 10 years after the initiation of optimal...

  6. Up, down, and all around: scale-dependent spatial variation in rocky-shore communities of Fildes Peninsula, King George Island, Antarctica.

    Directory of Open Access Journals (Sweden)

    Nelson Valdivia

    Full Text Available Understanding the variation of biodiversity along environmental gradients and multiple spatial scales is relevant for theoretical and management purposes. Hereby, we analysed the spatial variability in diversity and structure of intertidal and subtidal macrobenthic Antarctic communities along vertical environmental stress gradients and across multiple horizontal spatial scales. Since biotic interactions and local topographic features are likely major factors for coastal assemblages, we tested the hypothesis that fine-scale processes influence the effects of the vertical environmental stress gradients on the macrobenthic diversity and structure. We used nested sampling designs in the intertidal and subtidal habitats, including horizontal spatial scales ranging from few centimetres to 1000s of metres along the rocky shore of Fildes Peninsula, King George Island. In both intertidal and subtidal habitats, univariate and multivariate analyses showed a marked vertical zonation in taxon richness and community structure. These patterns depended on the horizontal spatial scale of observation, as all analyses showed a significant interaction between height (or depth and the finer spatial scale analysed. Variance and pseudo-variance components supported our prediction for taxon richness, community structure, and the abundance of dominant species such as the filamentous green alga Urospora penicilliformis (intertidal, the herbivore Nacella concinna (intertidal, the large kelp-like Himantothallus grandifolius (subtidal, and the red crustose red alga Lithothamnion spp. (subtidal. We suggest that in coastal ecosystems strongly governed by physical factors, fine-scale processes (e.g. biotic interactions and refugia availability are still relevant for the structuring and maintenance of the local communities. The spatial patterns found in this study serve as a necessary benchmark to understand the dynamics and adaptation of natural assemblages in response to

  7. EFFECTS OF LARGE-SCALE POULTRY FARMS ON AQUATIC MICROBIAL COMMUNITIES: A MOLECULAR INVESTIGATION.

    Science.gov (United States)

    The effects of large-scale poultry production operations on water quality and human health are largely unknown. Poultry litter is frequently applied as fertilizer to agricultural lands adjacent to large poultry farms. Run-off from the land introduces a variety of stressors into t...

  8. Risk assessment of salinity and turbidity in Victoria (Australia) to stream insects' community structure does not always protect functional traits.

    Science.gov (United States)

    Kefford, Ben J; Schäfer, Ralf B; Metzeling, Leon

    2012-01-15

    Ecological risk assessments mostly consider measures of community composition (structure) across large spatial scales. These assessments, using species sensitivity distributions (SSDs) or the relative species retention (RSR), may not be protective of ecosystem functions and services at smaller spatial scales. Here we examine how changes in biological traits, as proxy for ecosystem functions/services, at a fine spatial scale relate to larger scale assessment of structure. We use functional traits of stream insect species in south-east Australia in two habitats (riffle and edge/pool). We find that the protection of community structure in terms of 95% of species over multiple sites against adverse effects of salinity (as electrical conductivity) and turbidity will mostly, but not always, protect traits at smaller scales. Considering different combinations of trait modalities, contaminants and habitat, a mean of 17.5% (range 0%-36.8) of cases would result in under-protection of trait modalities despite protecting species composition (in terms of Jaccard's Index). This under-protection of trait modalities is only because of the different spatial scales that community structure and the traits were considered. We recommend that where the protection of biological traits, ecosystem functions or ecosystem services from stressors is a management goal, protective targets should not be solely set using measures of community structure such as SSDs or RSR. To protect both structural and functional attributes separate risk assessments should be done. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. A BAYESIAN ESTIMATE OF THE CMB–LARGE-SCALE STRUCTURE CROSS-CORRELATION

    Energy Technology Data Exchange (ETDEWEB)

    Moura-Santos, E. [Instituto de Física, Universidade de São Paulo, Rua do Matão trav. R 187, 05508-090, São Paulo—SP (Brazil); Carvalho, F. C. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-210, Mossoró-RN (Brazil); Penna-Lima, M. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Novaes, C. P.; Wuensche, C. A., E-mail: emoura@if.usp.br, E-mail: fabiocabral@uern.br, E-mail: pennal@apc.in2p3.fr, E-mail: cawuenschel@das.inpe.br, E-mail: camilanovaes@on.br [Observatório Nacional, Rua General José Cristino 77, São Cristóvão, 20921-400, Rio de Janeiro, RJ (Brazil)

    2016-08-01

    Evidences for late-time acceleration of the universe are provided by multiple probes, such as Type Ia supernovae, the cosmic microwave background (CMB), and large-scale structure (LSS). In this work, we focus on the integrated Sachs–Wolfe (ISW) effect, i.e., secondary CMB fluctuations generated by evolving gravitational potentials due to the transition between, e.g., the matter and dark energy (DE) dominated phases. Therefore, assuming a flat universe, DE properties can be inferred from ISW detections. We present a Bayesian approach to compute the CMB–LSS cross-correlation signal. The method is based on the estimate of the likelihood for measuring a combined set consisting of a CMB temperature and galaxy contrast maps, provided that we have some information on the statistical properties of the fluctuations affecting these maps. The likelihood is estimated by a sampling algorithm, therefore avoiding the computationally demanding techniques of direct evaluation in either pixel or harmonic space. As local tracers of the matter distribution at large scales, we used the Two Micron All Sky Survey galaxy catalog and, for the CMB temperature fluctuations, the ninth-year data release of the Wilkinson Microwave Anisotropy Probe ( WMAP 9). The results show a dominance of cosmic variance over the weak recovered signal, due mainly to the shallowness of the catalog used, with systematics associated with the sampling algorithm playing a secondary role as sources of uncertainty. When combined with other complementary probes, the method presented in this paper is expected to be a useful tool to late-time acceleration studies in cosmology.

  10. Efficient Computation of Sparse Matrix Functions for Large-Scale Electronic Structure Calculations: The CheSS Library.

    Science.gov (United States)

    Mohr, Stephan; Dawson, William; Wagner, Michael; Caliste, Damien; Nakajima, Takahito; Genovese, Luigi

    2017-10-10

    We present CheSS, the "Chebyshev Sparse Solvers" library, which has been designed to solve typical problems arising in large-scale electronic structure calculations using localized basis sets. The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials and presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity of the matrices and scales linearly with respect to the number of nonzero entries, making it well-suited for large-scale calculations. The approach is particularly adapted for setups leading to small spectral widths of the involved matrices and outperforms alternative methods in this regime. By coupling CheSS to the DFT code BigDFT, we show that such a favorable setup is indeed possible in practice. In addition, the approach based on Chebyshev polynomials can be massively parallelized, and CheSS exhibits excellent scaling up to thousands of cores even for relatively small matrix sizes.

  11. Auxiliary basis expansions for large-scale electronic structure calculations.

    Science.gov (United States)

    Jung, Yousung; Sodt, Alex; Gill, Peter M W; Head-Gordon, Martin

    2005-05-10

    One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.

  12. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    OpenAIRE

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Usin...

  13. Participatory Design and the Challenges of Large-Scale Systems

    DEFF Research Database (Denmark)

    Simonsen, Jesper; Hertzum, Morten

    2008-01-01

    With its 10th biannual anniversary conference, Participatory Design (PD) is leaving its teens and must now be considered ready to join the adult world. In this article we encourage the PD community to think big: PD should engage in large-scale information-systems development and opt for a PD...

  14. The role of large-scale, extratropical dynamics in climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, T.G. [ed.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

  15. The role of large-scale, extratropical dynamics in climate change

    International Nuclear Information System (INIS)

    Shepherd, T.G.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop's University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database

  16. Energy Spectral Behaviors of Communication Networks of Open-Source Communities.

    Directory of Open Access Journals (Sweden)

    Jianmei Yang

    Full Text Available Large-scale online collaborative production activities in open-source communities must be accompanied by large-scale communication activities. Nowadays, the production activities of open-source communities, especially their communication activities, have been more and more concerned. Take CodePlex C # community for example, this paper constructs the complex network models of 12 periods of communication structures of the community based on real data; then discusses the basic concepts of quantum mapping of complex networks, and points out that the purpose of the mapping is to study the structures of complex networks according to the idea of quantum mechanism in studying the structures of large molecules; finally, according to this idea, analyzes and compares the fractal features of the spectra in different quantum mappings of the networks, and concludes that there are multiple self-similarity and criticality in the communication structures of the community. In addition, this paper discusses the insights and application conditions of different quantum mappings in revealing the characteristics of the structures. The proposed quantum mapping method can also be applied to the structural studies of other large-scale organizations.

  17. Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.; Kotok, E.V.; Novikov, I.D.; Polyudov, A.N.; Shandarin, S.F.; Sigov, Y.S.

    1980-01-01

    The results of a numerical experiment are given that describe the non-linear stages of the development of perturbations in gravitating matter density in the expanding Universe. This process simulates the formation of the large-scale structure of the Universe from an initially almost homogeneous medium. In the one- and two-dimensional cases of this numerical experiment the evolution of the system from 4096 point masses that interact gravitationally only was studied with periodic boundary conditions (simulation of the infinite space). The initial conditions were chosen that resulted from the theory of the evolution of small perturbations in the expanding Universe. The results of numerical experiments are systematically compared with the approximate analytic theory. The results of the calculations show that in the case of collisionless particles, as well as in the gas-dynamic case, the cellular structure appeared at the non-linear stage in the case of the adiabatic perturbations. The greater part of the matter is in thin layers that separate vast regions of low density. In a Robertson-Walker universe the cellular structure exists for a finite time and then fragments into a few compact objects. In the open Universe the cellular structure also exists if the amplitude of initial perturbations is large enough. But the following disruption of the cellular structure is more difficult because of too rapid an expansion of the Universe. The large-scale structure is frozen. (author)

  18. Analysis of ground response data at Lotung large-scale soil- structure interaction experiment site

    International Nuclear Information System (INIS)

    Chang, C.Y.; Mok, C.M.; Power, M.S.

    1991-12-01

    The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4-scale and 1/2-scale) of a nuclear plant containment structure at a site in Lotung (Tang, 1987), a seismically active region in northeast Taiwan. The models were constructed to gather data for the evaluation and validation of soil-structure interaction (SSI) analysis methodologies. Extensive instrumentation was deployed to record both structural and ground responses at the site during earthquakes. The experiment is generally referred to as the Lotung Large-Scale Seismic Test (LSST). As part of the LSST, two downhole arrays were installed at the site to record ground motions at depths as well as at the ground surface. Structural response and ground response have been recorded for a number of earthquakes (i.e. a total of 18 earthquakes in the period of October 1985 through November 1986) at the LSST site since the completion of the installation of the downhole instruments in October 1985. These data include those from earthquakes having magnitudes ranging from M L 4.5 to M L 7.0 and epicentral distances range from 4.7 km to 77.7 km. Peak ground surface accelerations range from 0.03 g to 0.21 g for the horizontal component and from 0.01 g to 0.20 g for the vertical component. The objectives of the study were: (1) to obtain empirical data on variations of earthquake ground motion with depth; (2) to examine field evidence of nonlinear soil response due to earthquake shaking and to determine the degree of soil nonlinearity; (3) to assess the ability of ground response analysis techniques including techniques to approximate nonlinear soil response to estimate ground motions due to earthquake shaking; and (4) to analyze earth pressures recorded beneath the basemat and on the side wall of the 1/4 scale model structure during selected earthquakes

  19. On a digital wireless impact-monitoring network for large-scale composite structures

    International Nuclear Information System (INIS)

    Yuan, Shenfang; Mei, Hanfei; Qiu, Lei; Ren, Yuanqiang

    2014-01-01

    Impact, which may occur during manufacture, service or maintenance, is one of the major concerns to be monitored throughout the lifetime of aircraft composite structures. Aiming at monitoring impacts online while minimizing the weight added to the aircraft to meet the strict limitations of aerospace engineering, this paper puts forward a new digital wireless network based on miniaturized wireless digital impact-monitoring nodes developed for large-scale composite structures. In addition to investigations on the design methods of the network architecture, time synchronization and implementation method, a conflict resolution method based on the feature parameters of digital sequences is first presented to address impact localization conflicts when several nodes are arranged close together. To verify the feasibility and stability of the wireless network, experiments are performed on a complex aircraft composite wing box and an unmanned aerial vehicle (UAV) composite wing. Experimental results show the successful design of the presented network. (paper)

  20. The cosmic large-scale structure, dark matter and the origin of galaxies

    CERN Document Server

    Frenk, Carlos S

    1998-01-01

    In this series of lectures, I will review the main events and processes which are thought to have led to the build of structure in the Universe. First, I will provide an overview of some basic ideas such as inflation, Big Bang nucleosynthesis, the microwave background radiation and gravitanional instability. I will then dicuss the evidence for dark matter in the universe and current ideas on the nature and amount of this dark matter, including their consequences for the values of the fundamental cosmological parameters. Next, I will review the processes that give rise to the cosmic large-scale structure, starting with a discussion of the main fluctuation damping mechanisms at early times and finishing with a description of the non-linear phases of evolution. I will discuss how these calculations compare with observations and present the current status of competing cosmological models. Finally I will summarize the most recent and very exciting developments in observational and theoretical studies of gala...

  1. Large-scale solar purchasing

    International Nuclear Information System (INIS)

    1999-01-01

    The principal objective of the project was to participate in the definition of a new IEA task concerning solar procurement (''the Task'') and to assess whether involvement in the task would be in the interest of the UK active solar heating industry. The project also aimed to assess the importance of large scale solar purchasing to UK active solar heating market development and to evaluate the level of interest in large scale solar purchasing amongst potential large scale purchasers (in particular housing associations and housing developers). A further aim of the project was to consider means of stimulating large scale active solar heating purchasing activity within the UK. (author)

  2. Micrometer scale guidance of mesenchymal stem cells to form structurally oriented large-scale tissue engineered cartilage.

    Science.gov (United States)

    Chou, Chih-Ling; Rivera, Alexander L; Williams, Valencia; Welter, Jean F; Mansour, Joseph M; Drazba, Judith A; Sakai, Takao; Baskaran, Harihara

    2017-09-15

    Current clinical methods to treat articular cartilage lesions provide temporary relief of the symptoms but fail to permanently restore the damaged tissue. Tissue engineering, using mesenchymal stem cells (MSCs) combined with scaffolds and bioactive factors, is viewed as a promising method for repairing cartilage injuries. However, current tissue engineered constructs display inferior mechanical properties compared to native articular cartilage, which could be attributed to the lack of structural organization of the extracellular matrix (ECM) of these engineered constructs in comparison to the highly oriented structure of articular cartilage ECM. We previously showed that we can guide MSCs undergoing chondrogenesis to align using microscale guidance channels on the surface of a two-dimensional (2-D) collagen scaffold, which resulted in the deposition of aligned ECM within the channels and enhanced mechanical properties of the constructs. In this study, we developed a technique to roll 2-D collagen scaffolds containing MSCs within guidance channels in order to produce a large-scale, three-dimensional (3-D) tissue engineered cartilage constructs with enhanced mechanical properties compared to current constructs. After rolling the MSC-scaffold constructs into a 3-D cylindrical structure, the constructs were cultured for 21days under chondrogenic culture conditions. The microstructure architecture and mechanical properties of the constructs were evaluated using imaging and compressive testing. Histology and immunohistochemistry of the constructs showed extensive glycosaminoglycan (GAG) and collagen type II deposition. Second harmonic generation imaging and Picrosirius red staining indicated alignment of neo-collagen fibers within the guidance channels of the constructs. Mechanical testing indicated that constructs containing the guidance channels displayed enhanced compressive properties compared to control constructs without these channels. In conclusion, using a novel

  3. Substrate type and free ammonia determine bacterial community structure in full-scale mesophilic anaerobic digesters treating cattle or swine manure

    Directory of Open Access Journals (Sweden)

    Jiabao eLi

    2015-11-01

    Full Text Available The microbial-mediated anaerobic digestion (AD process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA play key roles in determining the bacterial community structure. The COD: NH4+-N (C:N ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters.

  4. Stochastic inflation lattice simulations: Ultra-large scale structure of the universe

    International Nuclear Information System (INIS)

    Salopek, D.S.

    1990-11-01

    Non-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear interaction of long wavelength gravitational and scalar fields. Long wavelength fields have spatial gradients α -1 triangledown small compared to the Hubble radius, and they are described in terms of classical random fields that are fed by short wavelength quantum noise. Lattice Langevin calculations are given for a ''toy model'' with a scalar field interacting with an exponential potential where one can obtain exact analytic solutions of the Fokker-Planck equation. For single scalar field models that are consistent with current microwave background fluctuations, the fluctuations are Gaussian. However, for scales much larger than our observable Universe, one expects large metric fluctuations that are non-Guassian. This example illuminates non-Gaussian models involving multiple scalar fields which are consistent with current microwave background limits. 21 refs., 3 figs

  5. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  6. Effects of baryons on the statistical properties of large scale structure of the Universe

    International Nuclear Information System (INIS)

    Guillet, T.

    2010-01-01

    Observations of weak gravitational lensing will provide strong constraints on the cosmic expansion history and the growth rate of large scale structure, yielding clues to the properties and nature of dark energy. Their interpretation is impacted by baryonic physics, which are expected to modify the total matter distribution at small scales. My work has focused on determining and modeling the impact of baryons on the statistics of the large scale matter distribution in the Universe. Using numerical simulations, I have extracted the effect of baryons on the power spectrum, variance and skewness of the total density field as predicted by these simulations. I have shown that a model based on the halo model construction, featuring a concentrated central component to account for cool condensed baryons, is able to reproduce accurately, and down to very small scales, the measured amplifications of both the variance and skewness of the density field. Because of well-known issues with baryons in current cosmological simulations, I have extended the central component model to rely on as many observation-based ingredients as possible. As an application, I have studied the effect of baryons on the predictions of the upcoming Euclid weak lensing survey. During the course of this work, I have also worked at developing and extending the RAMSES code, in particular by developing a parallel self-gravity solver, which offers significant performance gains, in particular for the simulation of some astrophysical setups such as isolated galaxy or cluster simulations. (author) [fr

  7. LYα FOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT z > 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Khee-Gan; Hennawi, Joseph F.; Eilers, Anna-Christina [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Stark, Casey; White, Martin [Department of Astronomy, University of California at Berkeley, B-20 Hearst Field Annex 3411, Berkeley, CA 94720 (United States); Prochaska, J. Xavier [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Schlegel, David J. [University of California Observatories, Lick Observatory, 1156 High Street, Santa Cruz, CA 95064 (United States); Arinyo-i-Prats, Andreu [Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB), Martí Franquès 1, E-08028 Barcelona (Spain); Suzuki, Nao [Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Kashiwano-ha 5-1-5, Kashiwa-shi, Chiba (Japan); Croft, Rupert A. C. [Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Caputi, Karina I. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700-AV Groningen (Netherlands); Cassata, Paolo [Instituto de Fisica y Astronomia, Facultad de Ciencias, Universidad de Valparaiso, Av. Gran Bretana 1111, Casilla 5030, Valparaiso (Chile); Ilbert, Olivier; Le Brun, Vincent; Le Fèvre, Olivier [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Garilli, Bianca [INAF-IASF, Via Bassini 15, I-20133, Milano (Italy); Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Maccagni, Dario [INAF-Osservatorio Astronomico di Bologna, Via Ranzani,1, I-40127 Bologna (Italy); Nugent, Peter, E-mail: lee@mpia.de [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2014-11-01

    We present the first observations of foreground Lyα forest absorption from high-redshift galaxies, targeting 24 star-forming galaxies (SFGs) with z ∼ 2.3-2.8 within a 5' × 14' region of the COSMOS field. The transverse sightline separation is ∼2 h {sup –1} Mpc comoving, allowing us to create a tomographic reconstruction of the three-dimensional (3D) Lyα forest absorption field over the redshift range 2.20 ≤ z ≤ 2.45. The resulting map covers 6 h {sup –1} Mpc × 14 h {sup –1} Mpc in the transverse plane and 230 h {sup –1} Mpc along the line of sight with a spatial resolution of ≈3.5 h {sup –1} Mpc, and is the first high-fidelity map of a large-scale structure on ∼Mpc scales at z > 2. Our map reveals significant structures with ≳ 10 h {sup –1} Mpc extent, including several spanning the entire transverse breadth, providing qualitative evidence for the filamentary structures predicted to exist in the high-redshift cosmic web. Simulated reconstructions with the same sightline sampling, spectral resolution, and signal-to-noise ratio recover the salient structures present in the underlying 3D absorption fields. Using data from other surveys, we identified 18 galaxies with known redshifts coeval with our map volume, enabling a direct comparison with our tomographic map. This shows that galaxies preferentially occupy high-density regions, in qualitative agreement with the same comparison applied to simulations. Our results establish the feasibility of the CLAMATO survey, which aims to obtain Lyα forest spectra for ∼1000 SFGs over ∼1 deg{sup 2} of the COSMOS field, in order to map out the intergalactic medium large-scale structure at (z) ∼ 2.3 over a large volume (100 h {sup –1} Mpc){sup 3}.

  8. A topological analysis of large-scale structure, studied using the CMASS sample of SDSS-III

    International Nuclear Information System (INIS)

    Parihar, Prachi; Gott, J. Richard III; Vogeley, Michael S.; Choi, Yun-Young; Kim, Juhan; Kim, Sungsoo S.; Speare, Robert; Brownstein, Joel R.; Brinkmann, J.

    2014-01-01

    We study the three-dimensional genus topology of large-scale structure using the northern region of the CMASS Data Release 10 (DR10) sample of the SDSS-III Baryon Oscillation Spectroscopic Survey. We select galaxies with redshift 0.452 < z < 0.625 and with a stellar mass M stellar > 10 11.56 M ☉ . We study the topology at two smoothing lengths: R G = 21 h –1 Mpc and R G = 34 h –1 Mpc. The genus topology studied at the R G = 21 h –1 Mpc scale results in the highest genus amplitude observed to date. The CMASS sample yields a genus curve that is characteristic of one produced by Gaussian random phase initial conditions. The data thus support the standard model of inflation where random quantum fluctuations in the early universe produced Gaussian random phase initial conditions. Modest deviations in the observed genus from random phase are as expected from shot noise effects and the nonlinear evolution of structure. We suggest the use of a fitting formula motivated by perturbation theory to characterize the shift and asymmetries in the observed genus curve with a single parameter. We construct 54 mock SDSS CMASS surveys along the past light cone from the Horizon Run 3 (HR3) N-body simulations, where gravitationally bound dark matter subhalos are identified as the sites of galaxy formation. We study the genus topology of the HR3 mock surveys with the same geometry and sampling density as the observational sample and find the observed genus topology to be consistent with ΛCDM as simulated by the HR3 mock samples. We conclude that the topology of the large-scale structure in the SDSS CMASS sample is consistent with cosmological models having primordial Gaussian density fluctuations growing in accordance with general relativity to form galaxies in massive dark matter halos.

  9. Effects of Large-Scale Releases on the Genetic Structure of Red Sea Bream (Pagrus major, Temminck et Schlegel) Populations in Japan.

    Science.gov (United States)

    Blanco Gonzalez, Enrique; Aritaki, Masato; Knutsen, Halvor; Taniguchi, Nobuhiko

    2015-01-01

    Large-scale hatchery releases are carried out for many marine fish species worldwide; nevertheless, the long-term effects of this practice on the genetic structure of natural populations remains unclear. The lack of knowledge is especially evident when independent stock enhancement programs are conducted simultaneously on the same species at different geographical locations, as occurs with red sea bream (Pagrus major, Temminck et Schlegel) in Japan. In this study, we examined the putative effects of intensive offspring releases on the genetic structure of red sea bream populations along the Japanese archipelago by genotyping 848 fish at fifteen microsatellite loci. Our results suggests weak but consistent patterns of genetic divergence (F(ST) = 0.002, p Red sea bream in Japan appeared spatially structured with several patches of distinct allelic composition, which corresponded to areas receiving an important influx of fish of hatchery origin, either released intentionally or from unintentional escapees from aquaculture operations. In addition to impacts upon local populations inhabiting semi-enclosed embayments, large-scale releases (either intentionally or from unintentional escapes) appeared also to have perturbed genetic structure in open areas. Hence, results of the present study suggest that independent large-scale marine stock enhancement programs conducted simultaneously on one species at different geographical locations may compromise native genetic structure and lead to patchy patterns in population genetic structure.

  10. Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps.

    Science.gov (United States)

    Scott, Jarrod J; Budsberg, Kevin J; Suen, Garret; Wixon, Devin L; Balser, Teri C; Currie, Cameron R

    2010-03-29

    Leaf-cutter ants use fresh plant material to grow a mutualistic fungus that serves as the ants' primary food source. Within fungus gardens, various plant compounds are metabolized and transformed into nutrients suitable for ant consumption. This symbiotic association produces a large amount of refuse consisting primarily of partly degraded plant material. A leaf-cutter ant colony is thus divided into two spatially and chemically distinct environments that together represent a plant biomass degradation gradient. Little is known about the microbial community structure in gardens and dumps or variation between lab and field colonies. Using microbial membrane lipid analysis and a variety of community metrics, we assessed and compared the microbiota of fungus gardens and refuse dumps from both laboratory-maintained and field-collected colonies. We found that gardens contained a diverse and consistent community of microbes, dominated by Gram-negative bacteria, particularly gamma-Proteobacteria and Bacteroidetes. These findings were consistent across lab and field gardens, as well as host ant taxa. In contrast, dumps were enriched for Gram-positive and anaerobic bacteria. Broad-scale clustering analyses revealed that community relatedness between samples reflected system component (gardens/dumps) rather than colony source (lab/field). At finer scales samples clustered according to colony source. Here we report the first comparative analysis of the microbiota from leaf-cutter ant colonies. Our work reveals the presence of two distinct communities: one in the fungus garden and the other in the refuse dump. Though we find some effect of colony source on community structure, our data indicate the presence of consistently associated microbes within gardens and dumps. Substrate composition and system component appear to be the most important factor in structuring the microbial communities. These results thus suggest that resident communities are shaped by the plant degradation

  11. Large-scale fracture mechancis testing -- requirements and possibilities

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1993-01-01

    Application of fracture mechanics to very important and/or complicated structures, like reactor pressure vessels, brings also some questions about the reliability and precision of such calculations. These problems become more pronounced in cases of elastic-plastic conditions of loading and/or in parts with non-homogeneous materials (base metal and austenitic cladding, property gradient changes through material thickness) or with non-homogeneous stress fields (nozzles, bolt threads, residual stresses etc.). For such special cases some verification by large-scale testing is necessary and valuable. This paper discusses problems connected with planning of such experiments with respect to their limitations, requirements to a good transfer of received results to an actual vessel. At the same time, an analysis of possibilities of small-scale model experiments is also shown, mostly in connection with application of results between standard, small-scale and large-scale experiments. Experience from 30 years of large-scale testing in SKODA is used as an example to support this analysis. 1 fig

  12. RESTRUCTURING OF THE LARGE-SCALE SPRINKLERS

    Directory of Open Access Journals (Sweden)

    Paweł Kozaczyk

    2016-09-01

    Full Text Available One of the best ways for agriculture to become independent from shortages of precipitation is irrigation. In the seventies and eighties of the last century a number of large-scale sprinklers in Wielkopolska was built. At the end of 1970’s in the Poznan province 67 sprinklers with a total area of 6400 ha were installed. The average size of the sprinkler reached 95 ha. In 1989 there were 98 sprinklers, and the area which was armed with them was more than 10 130 ha. The study was conducted on 7 large sprinklers with the area ranging from 230 to 520 hectares in 1986÷1998. After the introduction of the market economy in the early 90’s and ownership changes in agriculture, large-scale sprinklers have gone under a significant or total devastation. Land on the State Farms of the State Agricultural Property Agency has leased or sold and the new owners used the existing sprinklers to a very small extent. This involved a change in crop structure, demand structure and an increase in operating costs. There has also been a threefold increase in electricity prices. Operation of large-scale irrigation encountered all kinds of barriers in practice and limitations of system solutions, supply difficulties, high levels of equipment failure which is not inclined to rational use of available sprinklers. An effect of a vision of the local area was to show the current status of the remaining irrigation infrastructure. The adopted scheme for the restructuring of Polish agriculture was not the best solution, causing massive destruction of assets previously invested in the sprinkler system.

  13. Collective response to public health emergencies and large-scale disasters: putting hospitals at the core of community resilience.

    Science.gov (United States)

    Paturas, James L; Smith, Deborah; Smith, Stewart; Albanese, Joseph

    2010-07-01

    Healthcare organisations are a critical part of a community's resilience and play a prominent role as the backbone of medical response to natural and manmade disasters. The importance of healthcare organisations, in particular hospitals, to remain operational extends beyond the necessity to sustain uninterrupted medical services for the community, in the aftermath of a large-scale disaster. Hospitals are viewed as safe havens where affected individuals go for shelter, food, water and psychosocial assistance, as well as to obtain information about missing family members or learn of impending dangers related to the incident. The ability of hospitals to respond effectively to high-consequence incidents producing a massive arrival of patients that disrupt daily operations requires surge capacity and capability. The activation of hospital emergency support functions provides an approach by which hospitals manage a short-term shortfall of hospital personnel through the reallocation of hospital employees, thereby obviating the reliance on external qualified volunteers for surge capacity and capability. Recent revisions to the Joint Commission's hospital emergency preparedness standard have impelled healthcare facilities to participate actively in community-wide planning, rather than confining planning exclusively to a single healthcare facility, in order to harmonise disaster management strategies and effectively coordinate the allocation of community resources and expertise across all local response agencies.

  14. Large scale phononic metamaterials for seismic isolation

    International Nuclear Information System (INIS)

    Aravantinos-Zafiris, N.; Sigalas, M. M.

    2015-01-01

    In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials

  15. Large transverse momentum processes in a non-scaling parton model

    International Nuclear Information System (INIS)

    Stirling, W.J.

    1977-01-01

    The production of large transverse momentum mesons in hadronic collisions by the quark fusion mechanism is discussed in a parton model which gives logarithmic corrections to Bjorken scaling. It is found that the moments of the large transverse momentum structure function exhibit a simple scale breaking behaviour similar to the behaviour of the Drell-Yan and deep inelastic structure functions of the model. An estimate of corresponding experimental consequences is made and the extent to which analogous results can be expected in an asymptotically free gauge theory is discussed. A simple set of rules is presented for incorporating the logarithmic corrections to scaling into all covariant parton model calculations. (Auth.)

  16. What Will the Neighbors Think? Building Large-Scale Science Projects Around the World

    International Nuclear Information System (INIS)

    Jones, Craig; Mrotzek, Christian; Toge, Nobu; Sarno, Doug

    2007-01-01

    Public participation is an essential ingredient for turning the International Linear Collider into a reality. Wherever the proposed particle accelerator is sited in the world, its neighbors -- in any country -- will have something to say about hosting a 35-kilometer-long collider in their backyards. When it comes to building large-scale physics projects, almost every laboratory has a story to tell. Three case studies from Japan, Germany and the US will be presented to examine how community relations are handled in different parts of the world. How do particle physics laboratories interact with their local communities? How do neighbors react to building large-scale projects in each region? How can the lessons learned from past experiences help in building the next big project? These and other questions will be discussed to engage the audience in an active dialogue about how a large-scale project like the ILC can be a good neighbor.

  17. Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism

    CERN Document Server

    Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey

    2016-01-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This pave...

  18. Linear velocity fields in non-Gaussian models for large-scale structure

    Science.gov (United States)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  19. Computational Cosmology: from the Early Universe to the Large Scale Structure

    Directory of Open Access Journals (Sweden)

    Peter Anninos

    1998-09-01

    Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on thosecalculations designed to test different models of cosmology against the observed Universe.

  20. Computational Cosmology: From the Early Universe to the Large Scale Structure.

    Science.gov (United States)

    Anninos, Peter

    2001-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  1. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    Science.gov (United States)

    Lombriser, Lucas; Lima, Nelson A.

    2017-02-01

    With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar-tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar-tensor modification of gravity.

  2. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Lombriser, Lucas, E-mail: llo@roe.ac.uk; Lima, Nelson A.

    2017-02-10

    With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.

  3. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    Directory of Open Access Journals (Sweden)

    Lucas Lombriser

    2017-02-01

    Full Text Available With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.

  4. Three-point phase correlations: A new measure of non-linear large-scale structure

    CERN Document Server

    Wolstenhulme, Richard; Obreschkow, Danail

    2015-01-01

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...

  5. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    Science.gov (United States)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach

  6. x- and xi-scaling of the Nuclear Structure Function at Large x

    International Nuclear Information System (INIS)

    Arrington, J.; Armstrong, C. S.; Averett, T.; Baker, O. K.; Bever, L. de; Bochna, C. W.; Boeglin, W.; Bray, B.; Carlini, R. D.; Collins, G.; Cothran, C.; Crabb, D.; Day, D.; Dunne, J. A.; Dutta, D.; Ent, R.; Filippone, B. W.; Honegger, A.; Hughes, E. W.; Jensen, J.; Jourdan, J.; Keppel, C. E.; Koltenuk, D. M.; Lindgren, R.; Lung, A.; Mack, D. J.; McCarthy, J.; McKeown, R. D.; Meekins, D.; Mitchell, J. H.; Mkrtchyan, H. G.; Niculescu, G.; Niculescu, I.; Petitjean, T.; Rondon, O.; Sick, I.; Smith, C.; Terburg, B.; Vulcan, W. F.; Wood, S. A.; Yan, C.; Zhao, J.; Zihlmann, B.

    2001-01-01

    Inclusive electron scattering data are presented for 2 H and Fe targets at an incident electron energy of 4.045 GeV for a range of momentum transfers from Q 2 = 1 to 7 (GeV/c) 2 . Data were taken at Jefferson Laboratory for low values of energy loss, corresponding to values of Bjorken x greater than or near 1. The structure functions do not show scaling in x in this range, where inelastic scattering is not expected to dominate the cross section. The data do show scaling, however, in the Nachtmann variable ξ. This scaling may be the result of Bloom Gilman duality in the nucleon structure function combined with the Fermi motion of the nucleons in the nucleus. The resulting extension of scaling to larger values of ξ opens up the possibility of accessing nuclear structure functions in the high-x region at lower values of Q 2 than previously believed

  7. Kinematic morphology of large-scale structure: evolution from potential to rotational flow

    International Nuclear Information System (INIS)

    Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L.

    2014-01-01

    As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.

  8. Kinematic morphology of large-scale structure: evolution from potential to rotational flow

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2014-09-20

    As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.

  9. Development of fine-resolution analyses and expanded large-scale forcing properties: 2. Scale awareness and application to single-column model experiments

    Science.gov (United States)

    Feng, Sha; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Vogelmann, Andrew M.; Endo, Satoshi

    2015-01-01

    three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy's Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multiscale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scales larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.

  10. Covariance, correlation matrix, and the multiscale community structure of networks.

    Science.gov (United States)

    Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing

    2010-07-01

    Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.

  11. Local and regional effects on community structure of dung beetles in a mainland-island scenario.

    Directory of Open Access Journals (Sweden)

    Pedro Giovâni da Silva

    Full Text Available Understanding the ecological mechanisms driving beta diversity is a major goal of community ecology. Metacommunity theory brings new ways of thinking about the structure of local communities, including processes occurring at different spatial scales. In addition to new theories, new methods have been developed which allow the partitioning of individual and shared contributions of environmental and spatial effects, as well as identification of species and sites that have importance in the generation of beta diversity along ecological gradients. We analyzed the spatial distribution of dung beetle communities in areas of Atlantic Forest in a mainland-island scenario in southern Brazil, with the objective of identifying the mechanisms driving composition, abundance and biomass at three spatial scales (mainland-island, areas and sites. We sampled 20 sites across four large areas, two on the mainland and two on the island. The distribution of our sampling sites was hierarchical and areas are isolated. We used standardized protocols to assess environmental heterogeneity and sample dung beetles. We used spatial eigenfunctions analysis to generate the spatial patterns of sampling points. Environmental heterogeneity showed strong variation among sites and a mild increase with increasing spatial scale. The analysis of diversity partitioning showed an increase in beta diversity with increasing spatial scale. Variation partitioning based on environmental and spatial variables suggests that environmental heterogeneity is the most important driver of beta diversity at the local scale. The spatial effects were significant only at larger spatial scales. Our study presents a case where environmental heterogeneity seems to be the main factor structuring communities at smaller scales, while spatial effects are more important at larger scales. The increase in beta diversity that occurs at larger scales seems to be the result of limitation in species dispersal

  12. Computational Cosmology: from the Early Universe to the Large Scale Structure

    Directory of Open Access Journals (Sweden)

    Anninos Peter

    2001-01-01

    Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  13. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  14. Transitioning a home telehealth project into a sustainable, large-scale service: a qualitative study.

    Science.gov (United States)

    Wade, Victoria A; Taylor, Alan D; Kidd, Michael R; Carati, Colin

    2016-05-16

    This study was a component of the Flinders Telehealth in the Home project, which tested adding home telehealth to existing rehabilitation, palliative care and geriatric outreach services. Due to the known difficulty of transitioning telehealth projects services, a qualitative study was conducted to produce a preferred implementation approach for sustainable and large-scale operations, and a process model that offers practical advice for achieving this goal. Initially, semi-structured interviews were conducted with senior clinicians, health service managers and policy makers, and a thematic analysis of the interview transcripts was undertaken to identify the range of options for ongoing operations, plus the factors affecting sustainability. Subsequently, the interviewees and other decision makers attended a deliberative forum in which participants were asked to select a preferred model for future implementation. Finally, all data from the study was synthesised by the researchers to produce a process model. 19 interviews with senior clinicians, managers, and service development staff were conducted, finding strong support for home telehealth but a wide diversity of views on governance, models of clinical care, technical infrastructure operations, and data management. The deliberative forum worked through these options and recommended a collaborative consortium approach for large-scale implementation. The process model proposes that the key factor for large-scale implementation is leadership support, which is enabled by 1) showing solutions to the problems of service demand, budgetary pressure and the relationship between hospital and primary care, 2) demonstrating how home telehealth aligns with health service policies, and 3) achieving clinician acceptance through providing evidence of benefit and developing new models of clinical care. Two key actions to enable change were marketing telehealth to patients, clinicians and policy-makers, and building a community of

  15. The overlapping community structure of structural brain network in young healthy individuals.

    Directory of Open Access Journals (Sweden)

    Kai Wu

    2011-05-01

    Full Text Available Community structure is a universal and significant feature of many complex networks in biology, society, and economics. Community structure has also been revealed in human brain structural and functional networks in previous studies. However, communities overlap and share many edges and nodes. Uncovering the overlapping community structure of complex networks remains largely unknown in human brain networks. Here, using regional gray matter volume, we investigated the structural brain network among 90 brain regions (according to a predefined anatomical atlas in 462 young, healthy individuals. Overlapped nodes between communities were defined by assuming that nodes (brain regions can belong to more than one community. We demonstrated that 90 brain regions were organized into 5 overlapping communities associated with several well-known brain systems, such as the auditory/language, visuospatial, emotion, decision-making, social, control of action, memory/learning, and visual systems. The overlapped nodes were mostly involved in an inferior-posterior pattern and were primarily related to auditory and visual perception. The overlapped nodes were mainly attributed to brain regions with higher node degrees and nodal efficiency and played a pivotal role in the flow of information through the structural brain network. Our results revealed fuzzy boundaries between communities by identifying overlapped nodes and provided new insights into the understanding of the relationship between the structure and function of the human brain. This study provides the first report of the overlapping community structure of the structural network of the human brain.

  16. Phase synchronization on small-world networks with community structure

    International Nuclear Information System (INIS)

    Xiao-Hua, Wang; Li-Cheng, Jiao; Jian-She, Wu

    2010-01-01

    In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by the ratio of inter- to intra-community connectivity, and a smaller r corresponds to a stronger community structure. The structure properties, including the degree distribution, clustering, the communication efficiency and modularity are also analysed for the network. In addition, by using the Kuramoto model, we investigated the phase synchronization on this network, and found that increasing the fuzziness of community structure will markedly enhance the network synchronizability; however, in an abnormal region (r ≤ 0.001), the network has even worse synchronizability than the case of isolated communities (r = 0). Furthermore, this network exhibits a remarkable synchronization behaviour in topological scales: the oscillators of high densely interconnected communities synchronize more easily, and more rapidly than the whole network. (general)

  17. Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure

    Science.gov (United States)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.

  18. Elevational characteristics of the archaeal community in full-scale activated sludge wastewater treatment plants at a 3,660-meter elevational scale.

    Science.gov (United States)

    Niu, Lihua; Zhang, Xue; Li, Yi; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Wang, Qing

    2017-07-01

    Due to the important roles of archaea in wastewater treatment processes, archaeal communities have been studied extensively in various anaerobic reactors, but the knowledge of archaeal communities in full-scale activated sludge wastewater treatment plants (WWTPs) remains quite poor. In this study, 454-pyrosequencing was for the first time employed to investigate archaeal communities from 20 full-scale activated sludge WWTPs distributed at a 3,660-meter elevational scale in China. Results showed that archaeal communities from WWTPs were dominated by Methanosarcinales (84.6%). A core archaeal population (94.5%) composed of Methanosaeta, Methanosarcina, Methanogenium and Methanobrevibacter was shared among WWTPs. The elevational pattern of archaeal communities was observed in WWTPs, with an elevational threshold associated with archaeal community richness and structures at approximately 1,500 meters above sea level (masl). A declining trend in community richness with increasing elevation was observed at higher elevations, whereas no trend was presented at lower elevations. Spearman correlation analysis indicated that the archaeal community richness at higher elevations was associated with more environmental variables than that at lower elevations. Redundancy analysis indicated that wastewater variables were the dominant contributors to the variation of community structures at higher elevations, followed by operational variables and elevation.

  19. Quantum cosmological origin of large scale structures of the universe

    International Nuclear Information System (INIS)

    Anini, Y.

    1989-07-01

    In this paper, the initial quantum state of matter perturbations about de Sitter minisuperspace model is found. For a large class of boundary conditions (bcs), including those of Hartle-Hawking and Vilenkin, the resulting quantum state is the de Sitter invariant vacuum. This result is found to depend only on the regularity requirement at the euclidean origin of spacetime which is common to all reasonable (bcs). The initial value of the density perturbations implied by these quantum fluctuations are found and evaluated at the initial horizon crossing. The perturbations are found to have an almost scale independent spectrum, and an amplitude which depends on the scale at which inflation took place. The amplitude would have the right value if the scale of inflation is H ≤ 10 15 Gev. (author). 9 refs

  20. Magnetic storm generation by large-scale complex structure Sheath/ICME

    Science.gov (United States)

    Grigorenko, E. E.; Yermolaev, Y. I.; Lodkina, I. G.; Yermolaev, M. Y.; Riazantseva, M.; Borodkova, N. L.

    2017-12-01

    We study temporal profiles of interplanetary plasma and magnetic field parameters as well as magnetospheric indices. We use our catalog of large-scale solar wind phenomena for 1976-2000 interval (see the catalog for 1976-2016 in web-side ftp://ftp.iki.rssi.ru/pub/omni/ prepared on basis of OMNI database (Yermolaev et al., 2009)) and the double superposed epoch analysis method (Yermolaev et al., 2010). Our analysis showed (Yermolaev et al., 2015) that average profiles of Dst and Dst* indices decrease in Sheath interval (magnetic storm activity increases) and increase in ICME interval. This profile coincides with inverted distribution of storm numbers in both intervals (Yermolaev et al., 2017). This behavior is explained by following reasons. (1) IMF magnitude in Sheath is higher than in Ejecta and closed to value in MC. (2) Sheath has 1.5 higher efficiency of storm generation than ICME (Nikolaeva et al., 2015). The most part of so-called CME-induced storms are really Sheath-induced storms and this fact should be taken into account during Space Weather prediction. The work was in part supported by the Russian Science Foundation, grant 16-12-10062. References. 1. Nikolaeva N.S., Y. I. Yermolaev and I. G. Lodkina (2015), Modeling of the corrected Dst* index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Res., 53(2), 119-127 2. Yermolaev Yu. I., N. S. Nikolaeva, I. G. Lodkina and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Res., , 47(2), 81-94 3. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, 2177-2186 4. Yermolaev Yu. I., I. G. Lodkina, N. S. Nikolaeva and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch

  1. Identification of Large-Scale Structure Fluctuations in IC Engines using POD-Based Conditional Averaging

    Directory of Open Access Journals (Sweden)

    Buhl Stefan

    2016-01-01

    Full Text Available Cycle-to-Cycle Variations (CCV in IC engines is a well-known phenomenon and the definition and quantification is well-established for global quantities such as the mean pressure. On the other hand, the definition of CCV for local quantities, e.g. the velocity or the mixture distribution, is less straightforward. This paper proposes a new method to identify and calculate cyclic variations of the flow field in IC engines emphasizing the different contributions from large-scale energetic (coherent structures, identified by a combination of Proper Orthogonal Decomposition (POD and conditional averaging, and small-scale fluctuations. Suitable subsets required for the conditional averaging are derived from combinations of the the POD coefficients of the second and third mode. Within each subset, the velocity is averaged and these averages are compared to the ensemble-averaged velocity field, which is based on all cycles. The resulting difference of the subset-average and the global-average is identified as a cyclic fluctuation of the coherent structures. Then, within each subset, remaining fluctuations are obtained from the difference between the instantaneous fields and the corresponding subset average. The proposed methodology is tested for two data sets obtained from scale resolving engine simulations. For the first test case, the numerical database consists of 208 independent samples of a simplified engine geometry. For the second case, 120 cycles for the well-established Transparent Combustion Chamber (TCC benchmark engine are considered. For both applications, the suitability of the method to identify the two contributions to CCV is discussed and the results are directly linked to the observed flow field structures.

  2. Adapting to large-scale changes in Advanced Placement Biology, Chemistry, and Physics: the impact of online teacher communities

    Science.gov (United States)

    Frumin, Kim; Dede, Chris; Fischer, Christian; Foster, Brandon; Lawrenz, Frances; Eisenkraft, Arthur; Fishman, Barry; Jurist Levy, Abigail; McCoy, Ayana

    2018-03-01

    Over the past decade, the field of teacher professional learning has coalesced around core characteristics of high quality professional development experiences (e.g. Borko, Jacobs, & Koellner, 2010. Contemporary approaches to teacher professional development. In P. L. Peterson, E. Baker, & B. McGaw (Eds.), International encyclopedia of education (Vol. 7, pp. 548-556). Oxford: Elsevier.; Darling-Hammond, Hyler, & Gardner, 2017. Effective teacher professional development. Palo Alto, CA: Learning Policy Institute). Many countries have found these advances of great interest because of a desire to build teacher capacity in science education and across the full curriculum. This paper continues this progress by examining the role and impact of an online professional development community within the top-down, large-scale curriculum and assessment revision of Advanced Placement (AP) Biology, Chemistry, and Physics. This paper is part of a five-year, longitudinal, U.S. National Science Foundation-funded project to study the relative effectiveness of various types of professional development in enabling teachers to adapt to the revised AP course goals and exams. Of the many forms of professional development our research has examined, preliminary analyses indicated that participation in the College Board's online AP Teacher Community (APTC) - where teachers can discuss teaching strategies, share resources, and connect with each other - had positive, direct, and statistically significant association with teacher self-reported shifts in practice and with gains in student AP scores (Fishman et al., 2014). This study explored how usage of the online APTC might be useful to teachers and examined a more robust estimate of these effects. Findings from the experience of AP teachers may be valuable in supporting other large-scale curriculum changes, such as the U.S. Next Generation Science Standards or Common Core Standards, as well as parallel curricular shifts in other countries.

  3. Computing the universe: how large-scale simulations illuminate galaxies and dark energy

    Science.gov (United States)

    O'Shea, Brian

    2015-04-01

    High-performance and large-scale computing is absolutely to understanding astronomical objects such as stars, galaxies, and the cosmic web. This is because these are structures that operate on physical, temporal, and energy scales that cannot be reasonably approximated in the laboratory, and whose complexity and nonlinearity often defies analytic modeling. In this talk, I show how the growth of computing platforms over time has facilitated our understanding of astrophysical and cosmological phenomena, focusing primarily on galaxies and large-scale structure in the Universe.

  4. Strong influence of regional species pools on continent-wide structuring of local communities

    DEFF Research Database (Denmark)

    Lessard, Jean-Philippe; Borregaard, Michael Krabbe; Fordyce, James A.

    2012-01-01

    pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use...... of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution...... of climatic niches influences the phylogenetic structure of regional source pools and that the influence of regional source pools on local community structure is strong....

  5. Native fish conservation areas: a vision for large-scale conservation of native fish communities

    Science.gov (United States)

    Jack E. Williams; Richard N. Williams; Russell F. Thurow; Leah Elwell; David P. Philipp; Fred A. Harris; Jeffrey L. Kershner; Patrick J. Martinez; Dirk Miller; Gordon H. Reeves; Christopher A. Frissell; James R. Sedell

    2011-01-01

    The status of freshwater fishes continues to decline despite substantial conservation efforts to reverse this trend and recover threatened and endangered aquatic species. Lack of success is partially due to working at smaller spatial scales and focusing on habitats and species that are already degraded. Protecting entire watersheds and aquatic communities, which we...

  6. Review of ultimate pressure capacity test of containment structure and scale model design techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Moon; Choi, In Kil [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This study was performed to obtain the basic knowledge of the scaled model test through the review of experimental studies conducted in foreign countries. The results of this study will be used for the wall segment test planed in next year. It was concluded from the previous studies that the larger the model, the greater the trust of the community in the obtained results. It is recommended that a scale model 1/4 - 1/6 be suitable considering the characteristics of concrete, reinforcement, liner and tendon. Such a large scale model test require large amounts of time and budget. Because of these reasons, it is concluded that the containment wall segment test with analytical studies is efficient for the verification of the ultimate pressure capacity of the containment structures. 57 refs., 46 figs., 11 tabs. (Author)

  7. Strong influence of regional species pools on continent-wide structuring of local communities

    OpenAIRE

    Lessard, Jean-Philippe; Borregaard, Michael K.; Fordyce, James A.; Rahbek, Carsten; Weiser, Michael D.; Dunn, Robert R.; Sanders, Nathan J.

    2011-01-01

    There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that...

  8. Large scale organized motion in isothermal swirling flow through an axisymmetric dump combustor

    International Nuclear Information System (INIS)

    Daddis, E.D.; Lieber, B.B.; Nejad, A.S.; Ahmed, S.A.

    1990-01-01

    This paper reports on velocity measurements that were obtained in a model axisymmetric dump combustor which included a coaxial swirler by means of a two component laser Doppler velocimeter (LDV) at a Reynolds number of 125,000. The frequency spectrum of the velocity fluctuations is obtained via the Fast Fourier Transform (FFT). The velocity field downstream of the dump plane is characterized, in addition to background turbulence, by large scale organized structures which are manifested as sharp spikes of the spectrum at relatively low frequencies. The decomposition of velocity disturbances to background turbulence and large scale structures can then be achieved through spectral methods which include matched filters and spectral factorization. These methods are demonstrated here for axial velocity obtained one step height downstream of the dump plane. Subsequent analysis of the various velocity disturbances shows that large scale structures account for about 25% of the apparent normal stresses at this particular location. Naturally, large scale structures evolve spatially and their contribution to the apparent stress tensor may vary depending on the location in the flow field

  9. Facile and large-scale preparation of sandwich-structured graphene-metal oxide composites as anode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Fang, Hongmei; Zhao, Li; Yue, Wenbo; Wang, Yuan; Jiang, Yang; Zhang, Yuan

    2015-01-01

    Graphene-based metal oxides are desirable as potential anode materials for lithium-ion batteries (LIBs) owing to their superior electrochemical properties. In this work, sandwich-structured graphene-metal oxide (ZnO, NiO) composites are facilely synthesized on a large scale through self-assembly of graphene oxide nanosheets and metal ammine complexes, and then thermal decomposition of the self-assembled products. ZnO or NiO nanoparticles with diameters of 5∼10 nm are immobilized between the layers of graphene nanosheets, which may provide the space for accommodating the volume change of metal oxides during cycles, and highly improve the electronic conductivity of the composites. Accordingly, these sandwich-structured composites exhibit enhanced electrochemical performances compared to metal oxide particles or stacked graphene nanosheets. This facile synthesis method is very suitable for the large-scale production of three-dimensional graphene-based composites as high-performance anodes for LIBs.

  10. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  11. Adaptive visualization for large-scale graph

    International Nuclear Information System (INIS)

    Nakamura, Hiroko; Shinano, Yuji; Ohzahata, Satoshi

    2010-01-01

    We propose an adoptive visualization technique for representing a large-scale hierarchical dataset within limited display space. A hierarchical dataset has nodes and links showing the parent-child relationship between the nodes. These nodes and links are described using graphics primitives. When the number of these primitives is large, it is difficult to recognize the structure of the hierarchical data because many primitives are overlapped within a limited region. To overcome this difficulty, we propose an adaptive visualization technique for hierarchical datasets. The proposed technique selects an appropriate graph style according to the nodal density in each area. (author)

  12. Stabilization Algorithms for Large-Scale Problems

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg

    2006-01-01

    The focus of the project is on stabilization of large-scale inverse problems where structured models and iterative algorithms are necessary for computing approximate solutions. For this purpose, we study various iterative Krylov methods and their abilities to produce regularized solutions. Some......-curve. This heuristic is implemented as a part of a larger algorithm which is developed in collaboration with G. Rodriguez and P. C. Hansen. Last, but not least, a large part of the project has, in different ways, revolved around the object-oriented Matlab toolbox MOORe Tools developed by PhD Michael Jacobsen. New...

  13. Large-scale data analytics

    CERN Document Server

    Gkoulalas-Divanis, Aris

    2014-01-01

    Provides cutting-edge research in large-scale data analytics from diverse scientific areas Surveys varied subject areas and reports on individual results of research in the field Shares many tips and insights into large-scale data analytics from authors and editors with long-term experience and specialization in the field

  14. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes

    International Nuclear Information System (INIS)

    Hu, Wei; Yang, Chao; Lin, Lin; Yang, Jinlong

    2014-01-01

    With the help of the recently developed SIESTA-pole (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - PEXSI (pole expansion and selected inversion) method [L. Lin, A. García, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)], we perform Kohn-Sham density functional theory calculations to study the stability and electronic structure of hydrogen passivated hexagonal graphene nanoflakes (GNFs) with up to 11 700 atoms. We find the electronic properties of GNFs, including their cohesive energy, edge formation energy, highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap, edge states, and aromaticity, depend sensitively on the type of edges (armchair graphene nanoflakes (ACGNFs) and zigzag graphene nanoflakes (ZZGNFs)), size and the number of electrons. We observe that, due to the edge-induced strain effect in ACGNFs, large-scale ACGNFs’ edge formation energy decreases as their size increases. This trend does not hold for ZZGNFs due to the presence of many edge states in ZZGNFs. We find that the energy gaps E g of GNFs all decay with respect to 1/L, where L is the size of the GNF, in a linear fashion. But as their size increases, ZZGNFs exhibit more localized edge states. We believe the presence of these states makes their gap decrease more rapidly. In particular, when L is larger than 6.40 nm, we find that ZZGNFs exhibit metallic characteristics. Furthermore, we find that the aromatic structures of GNFs appear to depend only on whether the system has 4N or 4N + 2 electrons, where N is an integer

  15. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei, E-mail: whu@lbl.gov, E-mail: linlin@lbl.gov, E-mail: cyang@lbl.gov, E-mail: jlyang@ustc.edu.cn; Yang, Chao, E-mail: whu@lbl.gov, E-mail: linlin@lbl.gov, E-mail: cyang@lbl.gov, E-mail: jlyang@ustc.edu.cn [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lin, Lin, E-mail: whu@lbl.gov, E-mail: linlin@lbl.gov, E-mail: cyang@lbl.gov, E-mail: jlyang@ustc.edu.cn [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Mathematics, University of California, Berkeley, California 94720 (United States); Yang, Jinlong, E-mail: whu@lbl.gov, E-mail: linlin@lbl.gov, E-mail: cyang@lbl.gov, E-mail: jlyang@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-12-07

    With the help of the recently developed SIESTA-pole (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - PEXSI (pole expansion and selected inversion) method [L. Lin, A. García, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)], we perform Kohn-Sham density functional theory calculations to study the stability and electronic structure of hydrogen passivated hexagonal graphene nanoflakes (GNFs) with up to 11 700 atoms. We find the electronic properties of GNFs, including their cohesive energy, edge formation energy, highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap, edge states, and aromaticity, depend sensitively on the type of edges (armchair graphene nanoflakes (ACGNFs) and zigzag graphene nanoflakes (ZZGNFs)), size and the number of electrons. We observe that, due to the edge-induced strain effect in ACGNFs, large-scale ACGNFs’ edge formation energy decreases as their size increases. This trend does not hold for ZZGNFs due to the presence of many edge states in ZZGNFs. We find that the energy gaps E{sub g} of GNFs all decay with respect to 1/L, where L is the size of the GNF, in a linear fashion. But as their size increases, ZZGNFs exhibit more localized edge states. We believe the presence of these states makes their gap decrease more rapidly. In particular, when L is larger than 6.40 nm, we find that ZZGNFs exhibit metallic characteristics. Furthermore, we find that the aromatic structures of GNFs appear to depend only on whether the system has 4N or 4N + 2 electrons, where N is an integer.

  16. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes.

    Science.gov (United States)

    Hu, Wei; Lin, Lin; Yang, Chao; Yang, Jinlong

    2014-12-07

    With the help of the recently developed SIESTA-pole (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - PEXSI (pole expansion and selected inversion) method [L. Lin, A. García, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)], we perform Kohn-Sham density functional theory calculations to study the stability and electronic structure of hydrogen passivated hexagonal graphene nanoflakes (GNFs) with up to 11,700 atoms. We find the electronic properties of GNFs, including their cohesive energy, edge formation energy, highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap, edge states, and aromaticity, depend sensitively on the type of edges (armchair graphene nanoflakes (ACGNFs) and zigzag graphene nanoflakes (ZZGNFs)), size and the number of electrons. We observe that, due to the edge-induced strain effect in ACGNFs, large-scale ACGNFs' edge formation energy decreases as their size increases. This trend does not hold for ZZGNFs due to the presence of many edge states in ZZGNFs. We find that the energy gaps E(g) of GNFs all decay with respect to 1/L, where L is the size of the GNF, in a linear fashion. But as their size increases, ZZGNFs exhibit more localized edge states. We believe the presence of these states makes their gap decrease more rapidly. In particular, when L is larger than 6.40 nm, we find that ZZGNFs exhibit metallic characteristics. Furthermore, we find that the aromatic structures of GNFs appear to depend only on whether the system has 4N or 4N + 2 electrons, where N is an integer.

  17. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-01-01

    structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination

  18. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters.

    Science.gov (United States)

    Haig, Sarah-Jane; Quince, Christopher; Davies, Robert L; Dorea, Caetano C; Collins, Gavin

    2014-09-15

    Previous laboratory-scale studies to characterise the functional microbial ecology of slow sand filters have suffered from methodological limitations that could compromise their relevance to full-scale systems. Therefore, to ascertain if laboratory-scale slow sand filters (L-SSFs) can replicate the microbial community and water quality production of industrially operated full-scale slow sand filters (I-SSFs), eight cylindrical L-SSFs were constructed and were used to treat water from the same source as the I-SSFs. Half of the L-SSFs sand beds were composed of sterilized sand (sterile) from the industrial filters and the other half with sand taken directly from the same industrial filter (non-sterile). All filters were operated for 10 weeks, with the microbial community and water quality parameters sampled and analysed weekly. To characterize the microbial community phyla-specific qPCR assays and 454 pyrosequencing of the 16S rRNA gene were used in conjunction with an array of statistical techniques. The results demonstrate that it is possible to mimic both the water quality production and the structure of the microbial community of full-scale filters in the laboratory - at all levels of taxonomic classification except OTU - thus allowing comparison of LSSF experiments with full-scale units. Further, it was found that the sand type composing the filter bed (non-sterile or sterile), the water quality produced, the age of the filters and the depth of sand samples were all significant factors in explaining observed differences in the structure of the microbial consortia. This study is the first to the authors' knowledge that demonstrates that scaled-down slow sand filters can accurately reproduce the water quality and microbial consortia of full-scale slow sand filters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    Science.gov (United States)

    Dednam, W.; Botha, A. E.

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  20. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    International Nuclear Information System (INIS)

    Dednam, W; Botha, A E

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  1. Strong influence of regional species pools on continent-wide structuring of local communities.

    Science.gov (United States)

    Lessard, Jean-Philippe; Borregaard, Michael K; Fordyce, James A; Rahbek, Carsten; Weiser, Michael D; Dunn, Robert R; Sanders, Nathan J

    2012-01-22

    There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use a continent-wide dataset of local ant communities and implement ecologically explicit source pool definitions to examine the relative importance of regional species pools and local interactions for shaping community structure. Then we assess which factors underlie systematic variation in the structure of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution of climatic niches influences the phylogenetic structure of regional source pools and that the influence of regional source pools on local community structure is strong.

  2. Single-field consistency relations of large scale structure part III: test of the equivalence principle

    Energy Technology Data Exchange (ETDEWEB)

    Creminelli, Paolo [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste, 34151 (Italy); Gleyzes, Jérôme; Vernizzi, Filippo [CEA, Institut de Physique Théorique, Gif-sur-Yvette cédex, F-91191 France (France); Hui, Lam [Physics Department and Institute for Strings, Cosmology and Astroparticle Physics, Columbia University, New York, NY, 10027 (United States); Simonović, Marko, E-mail: creminel@ictp.it, E-mail: jerome.gleyzes@cea.fr, E-mail: lhui@astro.columbia.edu, E-mail: msimonov@sissa.it, E-mail: filippo.vernizzi@cea.fr [SISSA, via Bonomea 265, Trieste, 34136 (Italy)

    2014-06-01

    The recently derived consistency relations for Large Scale Structure do not hold if the Equivalence Principle (EP) is violated. We show it explicitly in a toy model with two fluids, one of which is coupled to a fifth force. We explore the constraints that galaxy surveys can set on EP violation looking at the squeezed limit of the 3-point function involving two populations of objects. We find that one can explore EP violations of order 10{sup −3}÷10{sup −4} on cosmological scales. Chameleon models are already very constrained by the requirement of screening within the Solar System and only a very tiny region of the parameter space can be explored with this method. We show that no violation of the consistency relations is expected in Galileon models.

  3. Isolating relativistic effects in large-scale structure

    Science.gov (United States)

    Bonvin, Camille

    2014-12-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  4. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    Science.gov (United States)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we

  5. Conditional sampling technique to test the applicability of the Taylor hypothesis for the large-scale coherent structures

    Science.gov (United States)

    Hussain, A. K. M. F.

    1980-01-01

    Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.

  6. A new method of presentation the large-scale magnetic field structure on the Sun and solar corona

    Science.gov (United States)

    Ponyavin, D. I.

    1995-01-01

    The large-scale photospheric magnetic field, measured at Stanford, has been analyzed in terms of surface harmonics. Changes of the photospheric field which occur within whole solar rotation period can be resolved by this analysis. For this reason we used daily magnetograms of the line-of-sight magnetic field component observed from Earth over solar disc. We have estimated the period during which day-to-day full disc magnetograms must be collected. An original algorithm was applied to resolve time variations of spherical harmonics that reflect time evolution of large-scale magnetic field within solar rotation period. This method of magnetic field presentation can be useful enough in lack of direct magnetograph observations due to sometimes bad weather conditions. We have used the calculated surface harmonics to reconstruct the large-scale magnetic field structure on the source surface near the sun - the origin of heliospheric current sheet and solar wind streams. The obtained results have been compared with spacecraft in situ observations and geomagnetic activity. We tried to show that proposed technique can trace shon-time variations of heliospheric current sheet and short-lived solar wind streams. We have compared also our results with those obtained traditionally from potential field approximation and extrapolation using synoptic charts as initial boundary conditions.

  7. Large-Scale Mapping of Tree-Community Composition as a Surrogate of Forest Degradation in Bornean Tropical Rain Forests

    Directory of Open Access Journals (Sweden)

    Shogoro Fujiki

    2016-12-01

    Full Text Available Assessment of the progress of the Aichi Biodiversity Targets set by the Convention on Biological Diversity (CBD and the safeguarding of ecosystems from the perverse negative impacts caused by Reducing Emissions from Deforestation and Forest Degradation Plus (REDD+ requires the development of spatiotemporally robust and sensitive indicators of biodiversity and ecosystem health. Recently, it has been proposed that tree-community composition based on count-plot surveys could serve as a robust, sensitive, and cost-effective indicator for forest intactness in Bornean logged-over rain forests. In this study, we developed an algorithm to map tree-community composition across the entire landscape based on Landsat imagery. We targeted six forest management units (FMUs, each of which ranged from 50,000 to 100,000 ha in area, covering a broad geographic range spanning the most area of Borneo. Approximately fifty 20 m-radius circular plots were established in each FMU, and the differences in tree-community composition at a genus level among plots were examined for trees with diameter at breast height ≥10 cm using an ordination with non-metric multidimensional scaling (nMDS. Subsequently, we developed a linear regression model based on Landsat metrics (e.g., reflectance value, vegetation indices and textures to explain the nMDS axis-1 scores of the plots, and extrapolated the model to the landscape to establish a tree-community composition map in each FMU. The adjusted R2 values based on a cross-validation approach between the predicted and observed nMDS axis-1 scores indicated a close correlation, ranging from 0.54 to 0.69. Histograms of the frequency distributions of extrapolated nMDS axis-1 scores were derived from each map and used to quantitatively diagnose the forest intactness of the FMUs. Our study indicated that tree-community composition, which was reported as a robust indicator of forest intactness, could be mapped at a landscape level to

  8. Reliability analysis of large scaled structures by optimization technique

    International Nuclear Information System (INIS)

    Ishikawa, N.; Mihara, T.; Iizuka, M.

    1987-01-01

    This paper presents a reliability analysis based on the optimization technique using PNET (Probabilistic Network Evaluation Technique) method for the highly redundant structures having a large number of collapse modes. This approach makes the best use of the merit of the optimization technique in which the idea of PNET method is used. The analytical process involves the minimization of safety index of the representative mode, subjected to satisfaction of the mechanism condition and of the positive external work. The procedure entails the sequential performance of a series of the NLP (Nonlinear Programming) problems, where the correlation condition as the idea of PNET method pertaining to the representative mode is taken as an additional constraint to the next analysis. Upon succeeding iterations, the final analysis is achieved when a collapse probability at the subsequent mode is extremely less than the value at the 1st mode. The approximate collapse probability of the structure is defined as the sum of the collapse probabilities of the representative modes classified by the extent of correlation. Then, in order to confirm the validity of the proposed method, the conventional Monte Carlo simulation is also revised by using the collapse load analysis. Finally, two fairly large structures were analyzed to illustrate the scope and application of the approach. (orig./HP)

  9. Impact of large-scale tides on cosmological distortions via redshift-space power spectrum

    Science.gov (United States)

    Akitsu, Kazuyuki; Takada, Masahiro

    2018-03-01

    Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.

  10. Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure.

    Directory of Open Access Journals (Sweden)

    Gabriela Moura

    Full Text Available BACKGROUND: Codon usage and codon-pair context are important gene primary structure features that influence mRNA decoding fidelity. In order to identify general rules that shape codon-pair context and minimize mRNA decoding error, we have carried out a large scale comparative codon-pair context analysis of 119 fully sequenced genomes. METHODOLOGIES/PRINCIPAL FINDINGS: We have developed mathematical and software tools for large scale comparative codon-pair context analysis. These methodologies unveiled general and species specific codon-pair context rules that govern evolution of mRNAs in the 3 domains of life. We show that evolution of bacterial and archeal mRNA primary structure is mainly dependent on constraints imposed by the translational machinery, while in eukaryotes DNA methylation and tri-nucleotide repeats impose strong biases on codon-pair context. CONCLUSIONS: The data highlight fundamental differences between prokaryotic and eukaryotic mRNA decoding rules, which are partially independent of codon usage.

  11. Sustainability of small reservoirs and large scale water availability under current conditions and climate change

    NARCIS (Netherlands)

    Krol, Martinus S.; de Vries, Marjella J.; van Oel, Pieter R.; Carlos de Araújo, José

    2011-01-01

    Semi-arid river basins often rely on reservoirs for water supply. Small reservoirs may impact on large-scale water availability both by enhancing availability in a distributed sense and by subtracting water for large downstream user communities, e.g. served by large reservoirs. Both of these impacts

  12. Structured approaches to large-scale systems: Variational integrators for interconnected Lagrange-Dirac systems and structured model reduction on Lie groups

    Science.gov (United States)

    Parks, Helen Frances

    This dissertation presents two projects related to the structured integration of large-scale mechanical systems. Structured integration uses the considerable differential geometric structure inherent in mechanical motion to inform the design of numerical integration schemes. This process improves the qualitative properties of simulations and becomes especially valuable as a measure of accuracy over long time simulations in which traditional Gronwall accuracy estimates lose their meaning. Often, structured integration schemes replicate continuous symmetries and their associated conservation laws at the discrete level. Such is the case for variational integrators, which discretely replicate the process of deriving equations of motion from variational principles. This results in the conservation of momenta associated to symmetries in the discrete system and conservation of a symplectic form when applicable. In the case of Lagrange-Dirac systems, variational integrators preserve a discrete analogue of the Dirac structure preserved in the continuous flow. In the first project of this thesis, we extend Dirac variational integrators to accommodate interconnected systems. We hope this work will find use in the fields of control, where a controlled system can be thought of as a "plant" system joined to its controller, and in the approach of very large systems, where modular modeling may prove easier than monolithically modeling the entire system. The second project of the thesis considers a different approach to large systems. Given a detailed model of the full system, can we reduce it to a more computationally efficient model without losing essential geometric structures in the system? Asked without the reference to structure, this is the essential question of the field of model reduction. The answer there has been a resounding yes, with Principal Orthogonal Decomposition (POD) with snapshots rising as one of the most successful methods. Our project builds on previous work

  13. How mammalian predation contributes to tropical tree community structure.

    Science.gov (United States)

    Paine, C E Timothy; Beck, Harald; Terborgh, John

    2016-12-01

    The recruitment of seedlings from seeds is the key demographic transition for rain forest trees. Though tropical forest mammals are known to consume many seeds, their effects on tree community structure remain little known. To evaluate their effects, we monitored 8,000 seeds of 24 tree species using exclosure cages that were selectively permeable to three size classes of mammals for up to 4.4 years. Small and medium-bodied mammals removed many more seeds than did large mammals, and they alone generated beta diversity and negative density dependence, whereas all mammals reduced diversity and shaped local species composition. Thus, small and medium-bodied mammals more strongly contributed to community structure and promoted species coexistence than did large mammals. Given that seedling recruitment is seed limited for most species, alterations to the composition of the community of mammalian seed predators is expected to have long-term consequences for tree community structure in tropical forests. © 2016 by the Ecological Society of America.

  14. Large-scale hydraulic structure of a seismogenic fault at 10 km depth (Gole Larghe Fault Zone, Italian Southern Alps)

    Science.gov (United States)

    Bistacchi, Andrea; Di Toro, Giulio; Smith, Steve; Mittempergher, Silvia; Garofalo, Paolo

    2014-05-01

    The definition of hydraulic properties of fault zones is a major issue in structural geology, seismology, and in several applications (hydrocarbons, hydrogeology, CO2 sequestration, etc.). The permeability of fault rocks can be measured in laboratory experiments, but its upscaling to large-scale structures is not straightforward. For instance, typical permeability of fine-grained fault rock samples is in the 10-18-10-20 m2 range, but, according to seismological estimates, the large-scale permeability of active fault zones can be as high as 10-10 m2. Solving this issue is difficult because in-situ measurements of large-scale permeability have been carried out just at relatively shallow depths - mainly in oil wells and exceptionally in active tectonic settings (e.g. SAFOD at 3 km), whilst deeper experiments have been performed only in the stable continental crust (e.g. KTB at 9 km). In this study, we apply discrete fracture-network (DFN) modelling techniques developed for shallow aquifers (mainly in nuclear waste storage projects like Yucca Mountain) and in the oil industry, in order to model the hydraulic structure of the Gole Larghe Fault Zone (GLFZ, Italian Southern Alps). This fault, now exposed in world-class glacier-polished outcrops, has been exhumed from ca. 8 km, where it was characterized by a well-documented seismic activity, but also by hydrous fluid flow evidenced by alteration halos and precipitation of hydrothermal minerals in veins and along cataclasites. The GLFZ does not show a classical seal structure that in other fault zones corresponds to a core zone characterized by fine-grained fault rocks. However, permeability is heterogeneous and the permeability tensor is strongly anisotropic due to fracture preferential orientation. We will show with numerical experiments that this hydraulic structure results in a channelized fluid flow (which is consistent with the observed hydrothermal alteration pattern). This results in a counterintuitive situation

  15. Ethics of large-scale change

    OpenAIRE

    Arler, Finn

    2006-01-01

      The subject of this paper is long-term large-scale changes in human society. Some very significant examples of large-scale change are presented: human population growth, human appropriation of land and primary production, the human use of fossil fuels, and climate change. The question is posed, which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, th...

  16. Large-scale Comparative Study of Hi-C-based Chromatin 3D Structure Modeling Methods

    KAUST Repository

    Wang, Cheng

    2018-05-17

    Chromatin is a complex polymer molecule in eukaryotic cells, primarily consisting of DNA and histones. Many works have shown that the 3D folding of chromatin structure plays an important role in DNA expression. The recently proposed Chro- mosome Conformation Capture technologies, especially the Hi-C assays, provide us an opportunity to study how the 3D structures of the chromatin are organized. Based on the data from Hi-C experiments, many chromatin 3D structure modeling methods have been proposed. However, there is limited ground truth to validate these methods and no robust chromatin structure alignment algorithms to evaluate the performance of these methods. In our work, we first made a thorough literature review of 25 publicly available population Hi-C-based chromatin 3D structure modeling methods. Furthermore, to evaluate and to compare the performance of these methods, we proposed a novel data simulation method, which combined the population Hi-C data and single-cell Hi-C data without ad hoc parameters. Also, we designed a global and a local alignment algorithms to measure the similarity between the templates and the chromatin struc- tures predicted by different modeling methods. Finally, the results from large-scale comparative tests indicated that our alignment algorithms significantly outperform the algorithms in literature.

  17. Linking genes to ecosystem trace gas fluxes in a large-scale model system

    Science.gov (United States)

    Meredith, L. K.; Cueva, A.; Volkmann, T. H. M.; Sengupta, A.; Troch, P. A.

    2017-12-01

    Soil microorganisms mediate biogeochemical cycles through biosphere-atmosphere gas exchange with significant impact on atmospheric trace gas composition. Improving process-based understanding of these microbial populations and linking their genomic potential to the ecosystem-scale is a challenge, particularly in soil systems, which are heterogeneous in biodiversity, chemistry, and structure. In oligotrophic systems, such as the Landscape Evolution Observatory (LEO) at Biosphere 2, atmospheric trace gas scavenging may supply critical metabolic needs to microbial communities, thereby promoting tight linkages between microbial genomics and trace gas utilization. This large-scale model system of three initially homogenous and highly instrumented hillslopes facilitates high temporal resolution characterization of subsurface trace gas fluxes at hundreds of sampling points, making LEO an ideal location to study microbe-mediated trace gas fluxes from the gene to ecosystem scales. Specifically, we focus on the metabolism of ubiquitous atmospheric reduced trace gases hydrogen (H2), carbon monoxide (CO), and methane (CH4), which may have wide-reaching impacts on microbial community establishment, survival, and function. Additionally, microbial activity on LEO may facilitate weathering of the basalt matrix, which can be studied with trace gas measurements of carbonyl sulfide (COS/OCS) and carbon dioxide (O-isotopes in CO2), and presents an additional opportunity for gene to ecosystem study. This work will present initial measurements of this suite of trace gases to characterize soil microbial metabolic activity, as well as links between spatial and temporal variability of microbe-mediated trace gas fluxes in LEO and their relation to genomic-based characterization of microbial community structure (phylogenetic amplicons) and genetic potential (metagenomics). Results from the LEO model system will help build understanding of the importance of atmospheric inputs to

  18. Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents

    OpenAIRE

    Klos, P.; Menéndez, J.; Gazit, D.; Schwenk, A.

    2013-01-01

    We perform state-of-the-art large-scale shell-model calculations of the structure factors for elastic spin-dependent WIMP scattering off 129,131Xe, 127I, 73Ge, 19F, 23Na, 27Al, and 29Si. This comprehensive survey covers the non-zero-spin nuclei relevant to direct dark matter detection. We include a pedagogical presentation of the formalism necessary to describe elastic and inelastic WIMP-nucleus scattering. The valence spaces and nuclear interactions employed have been previously used in nucl...

  19. On Hierarchical Extensions of Large-Scale 4-regular Grid Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Patel, A.; Knudsen, Thomas Phillip

    2004-01-01

    dependencies between the number of nodes and the distances in the structures. The perfect square mesh is introduced for hierarchies, and it is shown that applying ordered hierarchies in this way results in logarithmic dependencies between the number of nodes and the distances, resulting in better scaling...... structures. For example, in a mesh of 391876 nodes the average distance is reduced from 417.33 to 17.32 by adding hierarchical lines. This is gained by increasing the number of lines by 4.20% compared to the non-hierarchical structure. A similar hierarchical extension of the torus structure also results...

  20. Large-Scale Structure of the Carina Nebula.

    Science.gov (United States)

    Smith; Egan; Carey; Price; Morse; Price

    2000-04-01

    Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of approximately 100 pc, the thermal infrared emission from the giant H ii region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H ii region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.

  1. On the scaling features of high-latitude geomagnetic field fluctuations during a large geomagnetic storm

    Science.gov (United States)

    De Michelis, Paola; Federica Marcucci, Maria; Consolini, Giuseppe

    2015-04-01

    Recently we have investigated the spatial distribution of the scaling features of short-time scale magnetic field fluctuations using measurements from several ground-based geomagnetic observatories distributed in the northern hemisphere. We have found that the scaling features of fluctuations of the horizontal magnetic field component at time scales below 100 minutes are correlated with the geomagnetic activity level and with changes in the currents flowing in the ionosphere. Here, we present a detailed analysis of the dynamical changes of the magnetic field scaling features as a function of the geomagnetic activity level during the well-known large geomagnetic storm occurred on July, 15, 2000 (the Bastille event). The observed dynamical changes are discussed in relationship with the changes of the overall ionospheric polar convection and potential structure as reconstructed using SuperDARN data. This work is supported by the Italian National Program for Antarctic Research (PNRA) - Research Project 2013/AC3.08 and by the European Community's Seventh Framework Programme ([FP7/2007-2013]) under Grant no. 313038/STORM and

  2. Bounds on isocurvature perturbations from cosmic microwave background and large scale structure data.

    Science.gov (United States)

    Crotty, Patrick; García-Bellido, Juan; Lesgourgues, Julien; Riazuelo, Alain

    2003-10-24

    We obtain very stringent bounds on the possible cold dark matter, baryon, and neutrino isocurvature contributions to the primordial fluctuations in the Universe, using recent cosmic microwave background and large scale structure data. Neglecting the possible effects of spatial curvature, tensor perturbations, and reionization, we perform a Bayesian likelihood analysis with nine free parameters, and find that the amplitude of the isocurvature component cannot be larger than about 31% for the cold dark matter mode, 91% for the baryon mode, 76% for the neutrino density mode, and 60% for the neutrino velocity mode, at 2sigma, for uncorrelated models. For correlated adiabatic and isocurvature components, the fraction could be slightly larger. However, the cross-correlation coefficient is strongly constrained, and maximally correlated/anticorrelated models are disfavored. This puts strong bounds on the curvaton model.

  3. The prisoner's dilemma in structured scale-free networks

    International Nuclear Information System (INIS)

    Li Xing; Wu Yonghui; Zhang Zhongzhi; Zhou Shuigeng; Rong Zhihai

    2009-01-01

    The conventional wisdom is that scale-free networks are prone to cooperation spreading. In this paper we investigate the cooperative behavior on the structured scale-free network. In contrast to the conventional wisdom that scale-free networks are prone to cooperation spreading, the evolution of cooperation is inhibited on the structured scale-free network when the prisoner's dilemma (PD) game is modeled. First, we demonstrate that neither the scale-free property nor the high clustering coefficient is responsible for the inhibition of cooperation spreading on the structured scale-free network. Then we provide one heuristic method to argue that the lack of age correlations and its associated 'large-world' behavior in the structured scale-free network inhibit the spread of cooperation. These findings may help enlighten further studies on the evolutionary dynamics of the PD game in scale-free networks

  4. Contribution of large scale coherence to wind turbine power: A large eddy simulation study in periodic wind farms

    Science.gov (United States)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2018-03-01

    Length scales of eddies involved in the power generation of infinite wind farms are studied by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from large eddy simulations (LES). Large-scale structures with an order of magnitude bigger than the turbine rotor diameter (D ) are shown to have substantial contribution to wind power. Varying dynamics in the intermediate scales (D -10 D ) are also observed from a parametric study involving interturbine distances and hub height of the turbines. Further insight about the eddies responsible for the power generation have been provided from the scaling analysis of two-dimensional premultiplied spectra of MKE flux. The LES code is developed in a high Reynolds number near-wall modeling framework, using an open-source spectral element code Nek5000, and the wind turbines have been modelled using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated against the statistical results from the previous literature. The study is expected to improve our understanding of the complex multiscale dynamics in the domain of large wind farms and identify the length scales that contribute to the power. This information can be useful for design of wind farm layout and turbine placement that take advantage of the large-scale structures contributing to wind turbine power.

  5. Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle X-ray scattering experiments

    CERN Document Server

    Marliere, C; Etienne, P; Woignier, T; Dieudonné, P; Phalippou, J

    2001-01-01

    During the last few years the bulk structure of silica aerogels has been extensively studied mainly by scattering techniques (neutrons, X-rays, light). It has been shown that small silica particles aggregate to constitute a fractal network. Its spatial extension and fractal dimension are strongly dependent on the synthesis conditions (e.g., pH of gelifying solutions). These typical lengths range from 1 to 10 nm. Ultra-small angle X-ray scattering (USAXS) and atomic force microscopy (AFM) experiments have been carried out on aerogels at different steps of densification. The results presented in this paper reveal the existence of a spatial arrangement of the solid part at a very large length scale. The evolution of this very large-scale structure during the densification process has been studied and reveals a contraction of this macro-structure made of aggregates of clusters. (16 refs).

  6. Measuring chronic condition self-management in an Australian community: factor structure of the revised Partners in Health (PIH) scale.

    Science.gov (United States)

    Smith, David; Harvey, Peter; Lawn, Sharon; Harris, Melanie; Battersby, Malcolm

    2017-01-01

    To evaluate the factor structure of the revised Partners in Health (PIH) scale for measuring chronic condition self-management in a representative sample from the Australian community. A series of consultations between clinical groups underpinned the revision of the PIH. The factors in the revised instrument were proposed to be: knowledge of illness and treatment, patient-health professional partnership, recognition and management of symptoms and coping with chronic illness. Participants (N = 904) reporting having a chronic illness completed the revised 12-item scale. Two a priori models, the 4-factor and bi-factor models were then evaluated using Bayesian confirmatory factor analysis (BCFA). Final model selection was established on model complexity, posterior predictive p values and deviance information criterion. Both 4-factor and bi-factor BCFA models with small informative priors for cross-loadings provided an acceptable fit with the data. The 4-factor model was shown to provide a better and more parsimonious fit with the observed data in terms of substantive theory. McDonald's omega coefficients indicated that the reliability of subscale raw scores was mostly in the acceptable range. The findings showed that the PIH scale is a relevant and structurally valid instrument for measuring chronic condition self-management in an Australian community. The PIH scale may help health professionals to introduce the concept of self-management to their patients and provide assessment of areas of self-management. A limitation is the narrow range of validated PIH measurement properties to date. Further research is needed to evaluate other important properties such as test-retest reliability, responsiveness over time and content validity.

  7. Large-Scale Science Observatories: Building on What We Have Learned from USArray

    Science.gov (United States)

    Woodward, R.; Busby, R.; Detrick, R. S.; Frassetto, A.

    2015-12-01

    With the NSF-sponsored EarthScope USArray observatory, the Earth science community has built the operational capability and experience to tackle scientific challenges at the largest scales, such as a Subduction Zone Observatory. In the first ten years of USArray, geophysical instruments were deployed across roughly 2% of the Earth's surface. The USArray operated a rolling deployment of seismic stations that occupied ~1,700 sites across the USA, made co-located atmospheric observations, occupied hundreds of sites with magnetotelluric sensors, expanded a backbone reference network of seismic stations, and provided instruments to PI-led teams that deployed thousands of additional seismic stations. USArray included a comprehensive outreach component that directly engaged hundreds of students at over 50 colleges and universities to locate station sites and provided Earth science exposure to roughly 1,000 landowners who hosted stations. The project also included a comprehensive data management capability that received, archived and distributed data, metadata, and data products; data were acquired and distributed in real time. The USArray project was completed on time and under budget and developed a number of best practices that can inform other large-scale science initiatives that the Earth science community is contemplating. Key strategies employed by USArray included: using a survey, rather than hypothesis-driven, mode of observation to generate comprehensive, high quality data on a large-scale for exploration and discovery; making data freely and openly available to any investigator from the very onset of the project; and using proven, commercial, off-the-shelf systems to ensure a fast start and avoid delays due to over-reliance on unproven technology or concepts. Scope was set ambitiously, but managed carefully to avoid overextending. Configuration was controlled to ensure efficient operations while providing consistent, uniform observations. Finally, community

  8. Large-scale structuring of a rotating plasma due to plasma macroinstabilities

    International Nuclear Information System (INIS)

    Kikuchi, Toshinori; Ikehata, Takashi; Sato, Naoyuki; Watahiki, Takeshi; Tanabe, Toshio; Mase, Hiroshi

    1995-01-01

    The formation of coherent structures during plasma macroinstabilities have been of interest in view of the nonlinear plasma physics. In the present paper, we have investigated in detail, the mechanism and specific features of large-scale structuring of a rotating plasma. In the case of weak magnetic field, the plasma ejected from a plasma gun has a high beta value (β > 1) so that it expands rapidly across the magnetic field excluding a magnetic flux from its interior. Then, the boundary between the expanding plasma and the magnetic field becomes unstable against Rayleigh-Taylor instability. This instability has the higher growth rate at the shorter wavelength and the mode appears as flute. These features of the instability are confirmed by the observation of radial plasma jets with the azimuthal mode number m=20-40 in the early time of the plasma expansion. In the case of strong magnetic field, on the other hand, the plasma little expands and rotates at two times the ion sound speed. Especially, we observe spiral jets of m=2 instead of short-wavelength radial jets. This mode appears only when a glass target is installed or a dense neutral gas is introduced around the plasma to give the plasma a frictional force. From these results and with reference to the theory of plasma instabilities, the centrifugal instability caused by a combination of the velocity shear and centrifugal force is concluded to be responsible for the formation of spiral jets. (author)

  9. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro......-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 mu m. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  10. The large-scale environment from cosmological simulations - I. The baryonic cosmic web

    Science.gov (United States)

    Cui, Weiguang; Knebe, Alexander; Yepes, Gustavo; Yang, Xiaohu; Borgani, Stefano; Kang, Xi; Power, Chris; Staveley-Smith, Lister

    2018-01-01

    Using a series of cosmological simulations that includes one dark-matter-only (DM-only) run, one gas cooling-star formation-supernova feedback (CSF) run and one that additionally includes feedback from active galactic nuclei (AGNs), we classify the large-scale structures with both a velocity-shear-tensor code (VWEB) and a tidal-tensor code (PWEB). We find that the baryonic processes have almost no impact on large-scale structures - at least not when classified using aforementioned techniques. More importantly, our results confirm that the gas component alone can be used to infer the filamentary structure of the universe practically un-biased, which could be applied to cosmology constraints. In addition, the gas filaments are classified with its velocity (VWEB) and density (PWEB) fields, which can theoretically connect to the radio observations, such as H I surveys. This will help us to bias-freely link the radio observations with dark matter distributions at large scale.

  11. Large scale structure from the Higgs fields of the supersymmetric standard model

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Di Clemente, V.; King, S.F.

    2003-01-01

    We propose an alternative implementation of the curvaton mechanism for generating the curvature perturbations which does not rely on a late decaying scalar decoupled from inflation dynamics. In our mechanism the supersymmetric Higgs scalars are coupled to the inflaton in a hybrid inflation model, and this allows the conversion of the isocurvature perturbations of the Higgs fields to the observed curvature perturbations responsible for large scale structure to take place during reheating. We discuss an explicit model which realizes this mechanism in which the μ term in the Higgs superpotential is generated after inflation by the vacuum expectation value of a singlet field. The main prediction of the model is that the spectral index should deviate significantly from unity, vertical bar n-1 vertical bar ∼0.1. We also expect relic isocurvature perturbations in neutralinos and baryons, but no significant departures from Gaussianity and no observable effects of gravity waves in the CMB spectrum

  12. The impacts of triclosan on anaerobic community structures, function, and antimicrobial resistance.

    Science.gov (United States)

    McNamara, Patrick J; LaPara, Timothy M; Novak, Paige J

    2014-07-01

    Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in U.S. biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan.

  13. Environment and host as large-scale controls of ectomycorrhizal fungi.

    Science.gov (United States)

    van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I

    2018-06-06

    Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.

  14. Emergence of structured communities through evolutionary dynamics.

    Science.gov (United States)

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Study of Large-Scale Wave Structure and Development of Equatorial Plasma Bubbles Using the C/NOFS Satellite

    Science.gov (United States)

    2012-10-31

    scientific journals. The papers are listed below in chronological order. Kelley, M.C., F.S. Rodrigues, J.J. Makela, R. Tsunoda, P.A. Roddy, D.E. Hunton...source region be located on the dip equator. To illustrate, Figure 6 presents a sequence of satellite OLR maps, which were taken over Peru on 19-20...to large-scale wave structure and equatorial spread F, presented at the International Symposium for Equatorial Aeronomy, Paracas, Peru , March 2012

  16. THREE-POINT PHASE CORRELATIONS: A NEW MEASURE OF NONLINEAR LARGE-SCALE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Wolstenhulme, Richard; Bonvin, Camille [Kavli Institute for Cosmology Cambridge and Institute of Astronomy, Madingley Road, Cambridge CB3 OHA (United Kingdom); Obreschkow, Danail [International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia)

    2015-05-10

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the nonlinear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F{sub 2}, which governs the nonlinear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1σ agreement for separations r ≳ 30 h{sup −1} Mpc. Fitting formulae for the power spectrum and the nonlinear coupling kernel at small scales allow us to extend our prediction into the strongly nonlinear regime, where we find a 1σ agreement with the simulations for r ≳ 2 h{sup −1} Mpc. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the nonlinear regime of gravity, with less contamination from the power spectrum variance.

  17. Mummy Lake: An unroofed ceremonial structure within a large-scale ritual landscape

    Science.gov (United States)

    Benson, Larry V.; Griffin, Eleanor R.; Stein, J.R.; Friedman, R. A.; Andrae, S. W.

    2014-01-01

    The structure at Mesa Verde National Park known historically as Mummy Lake and more recently as Far View Reservoir is not part of a water collection, impoundment, or redistribution system. We offer an alternative explanation for the function of Mummy Lake. We suggest that it is an unroofed ceremonial structure, and that it serves as an essential component of a Chacoan ritual landscape. A wide constructed avenue articulates Mummy Lake with Far View House and Pipe Shrine House. The avenue continues southward for approximately 6 km where it apparently divides connecting with Spruce Tree House and Sun Temple/Cliff Palace. The avenue has previously been interpreted as an irrigation ditch fed by water impounded at Mummy Lake; however, it conforms in every respect to alignments described as Chacoan roads. Tree-ring dates indicate that the construction of Spruce Tree House and Cliff Palace began about A.D. 1225, roughly coincident with the abandonment of the Far View community. This pattern of periodically relocating the focus of an Anasazi community by retiring existing ritual structures and linking them to newly constructed facilities by means of broad avenues was first documented by Fowler and Stein (1992) in Manuelito Canyon, New Mexico. Periods of intense drought appear to have contributed to the relocation of prehistoric Native Americans from the Far View group to Cliff Palace/Spruce Tree House in the mid-13th century and eventually to the abandonment of all Anasazi communities in southwestern Colorado in the late-13th century.

  18. The synergetic effects of turbulence and turbidity on the zooplankton community structure in large, shallow Lake Taihu.

    Science.gov (United States)

    Zhou, Jian; Qin, Boqiang; Han, Xiaoxia

    2018-01-01

    Climate change is predicted to influence the heat budget of aquatic ecosystems and, in turn, affect the stability of the water column leading to increased turbulence coupled with enhanced turbidity. However, the synergetic effects of turbulence and turbidity on zooplankton community structure remain to be understood in large, shallow lakes. To determine the possible synergetic effects of these factors on zooplankton communities, a 15-day mesocosm experiment was carried out and tested under four turbulence and turbidity regimes namely control (ɛ = 0, 7.6 ± 4.2 NTU), low (ɛ = 6.01 × 10 -8  m 2  s -3 , 19.4 ± 8.6 NTU), medium (ɛ = 2.95 × 10 -5  m 2  s -3 , 55.2 ± 14.4 NTU), and high (ɛ = 2.39 × 10 -4  m 2  s -3 , 741.6 ± 105.2 NTU) conditions, which were comparable to the natural conditions in Lake Taihu. Results clearly showed the negative effects of turbulence and turbidity on zooplankton survival, which also differed among taxa. Specifically, increased turbulence and turbidity levels influenced the competition among zooplankton species, which resulted to the shift from being large body crustacean-dominated (copepods and cladocerans) to rotifer-dominated community after 3 days. The shift could be associated with the decrease in vulnerability of crustaceans in such environments. Our findings suggested that changes in the level of both turbidity and turbulence in natural aquatic systems would have significant repercussions on the zooplankton communities, which could contribute to the better understanding of community and food web dynamics in lake ecosystems exposed to natural mixing/disturbances.

  19. Large-scale impact cratering on the terrestrial planets

    International Nuclear Information System (INIS)

    Grieve, R.A.F.

    1982-01-01

    The crater densities on the earth and moon form the basis for a standard flux-time curve that can be used in dating unsampled planetary surfaces and constraining the temporal history of endogenic geologic processes. Abundant evidence is seen not only that impact cratering was an important surface process in planetary history but also that large imapact events produced effects that were crucial in scale. By way of example, it is noted that the formation of multiring basins on the early moon was as important in defining the planetary tectonic framework as plate tectonics is on the earth. Evidence from several planets suggests that the effects of very-large-scale impacts go beyond the simple formation of an impact structure and serve to localize increased endogenic activity over an extended period of geologic time. Even though no longer occurring with the frequency and magnitude of early solar system history, it is noted that large scale impact events continue to affect the local geology of the planets. 92 references

  20. Modeling microbial community structure and functional diversity across time and space.

    Science.gov (United States)

    Larsen, Peter E; Gibbons, Sean M; Gilbert, Jack A

    2012-07-01

    Microbial communities exhibit exquisitely complex structure. Many aspects of this complexity, from the number of species to the total number of interactions, are currently very difficult to examine directly. However, extraordinary efforts are being made to make these systems accessible to scientific investigation. While recent advances in high-throughput sequencing technologies have improved accessibility to the taxonomic and functional diversity of complex communities, monitoring the dynamics of these systems over time and space - using appropriate experimental design - is still expensive. Fortunately, modeling can be used as a lens to focus low-resolution observations of community dynamics to enable mathematical abstractions of functional and taxonomic dynamics across space and time. Here, we review the approaches for modeling bacterial diversity at both the very large and the very small scales at which microbial systems interact with their environments. We show that modeling can help to connect biogeochemical processes to specific microbial metabolic pathways. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Novel algorithm of large-scale simultaneous linear equations

    International Nuclear Information System (INIS)

    Fujiwara, T; Hoshi, T; Yamamoto, S; Sogabe, T; Zhang, S-L

    2010-01-01

    We review our recently developed methods of solving large-scale simultaneous linear equations and applications to electronic structure calculations both in one-electron theory and many-electron theory. This is the shifted COCG (conjugate orthogonal conjugate gradient) method based on the Krylov subspace, and the most important issue for applications is the shift equation and the seed switching method, which greatly reduce the computational cost. The applications to nano-scale Si crystals and the double orbital extended Hubbard model are presented.

  2. Photorealistic large-scale urban city model reconstruction.

    Science.gov (United States)

    Poullis, Charalambos; You, Suya

    2009-01-01

    The rapid and efficient creation of virtual environments has become a crucial part of virtual reality applications. In particular, civil and defense applications often require and employ detailed models of operations areas for training, simulations of different scenarios, planning for natural or man-made events, monitoring, surveillance, games, and films. A realistic representation of the large-scale environments is therefore imperative for the success of such applications since it increases the immersive experience of its users and helps reduce the difference between physical and virtual reality. However, the task of creating such large-scale virtual environments still remains a time-consuming and manual work. In this work, we propose a novel method for the rapid reconstruction of photorealistic large-scale virtual environments. First, a novel, extendible, parameterized geometric primitive is presented for the automatic building identification and reconstruction of building structures. In addition, buildings with complex roofs containing complex linear and nonlinear surfaces are reconstructed interactively using a linear polygonal and a nonlinear primitive, respectively. Second, we present a rendering pipeline for the composition of photorealistic textures, which unlike existing techniques, can recover missing or occluded texture information by integrating multiple information captured from different optical sensors (ground, aerial, and satellite).

  3. Plant pathogens structure arthropod communities across multiple spatial and temporal scales

    NARCIS (Netherlands)

    Tack, A.J.M.; Dicke, M.

    2013-01-01

    Plant pathogens and herbivores frequently co-occur on the same host plants. Despite this, little is known about the impact of their interactions on the structure of plant-based ecological communities. Here, we synthesize evidence that indicates that plant pathogens may profoundly impact arthropod

  4. A method of orbital analysis for large-scale first-principles simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ohwaki, Tsukuru [Advanced Materials Laboratory, Nissan Research Center, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523 (Japan); Otani, Minoru [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ozaki, Taisuke [Research Center for Simulation Science (RCSS), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2014-06-28

    An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF{sub 4})

  5. A method of orbital analysis for large-scale first-principles simulations

    International Nuclear Information System (INIS)

    Ohwaki, Tsukuru; Otani, Minoru; Ozaki, Taisuke

    2014-01-01

    An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF 4 )

  6. Investigating the dependence of SCM simulated precipitation and clouds on the spatial scale of large-scale forcing at SGP

    Science.gov (United States)

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    2017-08-01

    Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version of the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. Other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.

  7. State of the Art in Large-Scale Soil Moisture Monitoring

    Science.gov (United States)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  8. Implementation of highly parallel and large scale GW calculations within the OpenAtom software

    Science.gov (United States)

    Ismail-Beigi, Sohrab

    The need to describe electronic excitations with better accuracy than provided by band structures produced by Density Functional Theory (DFT) has been a long-term enterprise for the computational condensed matter and materials theory communities. In some cases, appropriate theoretical frameworks have existed for some time but have been difficult to apply widely due to computational cost. For example, the GW approximation incorporates a great deal of important non-local and dynamical electronic interaction effects but has been too computationally expensive for routine use in large materials simulations. OpenAtom is an open source massively parallel ab initiodensity functional software package based on plane waves and pseudopotentials (http://charm.cs.uiuc.edu/OpenAtom/) that takes advantage of the Charm + + parallel framework. At present, it is developed via a three-way collaboration, funded by an NSF SI2-SSI grant (ACI-1339804), between Yale (Ismail-Beigi), IBM T. J. Watson (Glenn Martyna) and the University of Illinois at Urbana Champaign (Laxmikant Kale). We will describe the project and our current approach towards implementing large scale GW calculations with OpenAtom. Potential applications of large scale parallel GW software for problems involving electronic excitations in semiconductor and/or metal oxide systems will be also be pointed out.

  9. Experimental and numerical modelling of ductile crack propagation in large-scale shell structures

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Törnquist, R.

    2004-01-01

    plastic and controlled conditions. The test specimen can be deformed either in combined in-plane bending and extension or in pure extension. Experimental results are described for 5 and 10 mm thick aluminium and steel plates. By performing an inverse finite-element analysis of the experimental results......This paper presents a combined experimental-numerical procedure for development and calibration of macroscopic crack propagation criteria in large-scale shell structures. A novel experimental set-up is described in which a mode-I crack can be driven 400 mm through a 20(+) mm thick plate under fully...... for steel and aluminium plates, mainly as curves showing the critical element deformation versus the shell element size. These derived crack propagation criteria are then validated against a separate set of experiments considering centre crack specimens (CCS) which have a different crack-tip constraint...

  10. Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, Karen [MIT; Marzouk, Youssef [MIT

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to

  11. Uncovering the community structure associated with the diffusion dynamics on networks

    International Nuclear Information System (INIS)

    Cheng, Xue-Qi; Shen, Hua-Wei

    2010-01-01

    As two main focuses of the study of complex networks, the community structure and the dynamics on networks have both attracted much attention in various scientific fields. However, it is still an open question how the community structure is associated with the dynamics on complex networks. In this paper, through investigating the diffusion process taking place on networks, we demonstrate that the intrinsic community structure of networks can be revealed by the stable local equilibrium states of the diffusion process. Furthermore, we show that such community structure can be directly identified through the optimization of the conductance of the network, which measures how easily the diffusion among different communities occurs. Tests on benchmark networks indicate that the conductance optimization method significantly outperforms the modularity optimization methods in identifying the community structure of networks. Applications to real world networks also demonstrate the effectiveness of the conductance optimization method. This work provides insights into the multiple topological scales of complex networks, and the community structure obtained can naturally reflect the diffusion capability of the underlying network

  12. Large-scale multimedia modeling applications

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.; Buck, J.W.; Whelan, G.; Strenge, D.L.; Castleton, K.J.; Gelston, G.M.

    1995-08-01

    Over the past decade, the US Department of Energy (DOE) and other agencies have faced increasing scrutiny for a wide range of environmental issues related to past and current practices. A number of large-scale applications have been undertaken that required analysis of large numbers of potential environmental issues over a wide range of environmental conditions and contaminants. Several of these applications, referred to here as large-scale applications, have addressed long-term public health risks using a holistic approach for assessing impacts from potential waterborne and airborne transport pathways. Multimedia models such as the Multimedia Environmental Pollutant Assessment System (MEPAS) were designed for use in such applications. MEPAS integrates radioactive and hazardous contaminants impact computations for major exposure routes via air, surface water, ground water, and overland flow transport. A number of large-scale applications of MEPAS have been conducted to assess various endpoints for environmental and human health impacts. These applications are described in terms of lessons learned in the development of an effective approach for large-scale applications

  13. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef.

    Science.gov (United States)

    Hackerott, Serena; Valdivia, Abel; Cox, Courtney E; Silbiger, Nyssa J; Bruno, John F

    2017-01-01

    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

  14. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef

    Directory of Open Access Journals (Sweden)

    Serena Hackerott

    2017-05-01

    Full Text Available Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

  15. Hierarchical fiber-optic-based sensing system: impact damage monitoring of large-scale CFRP structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Banshoya, Hidehiko; Takeda, Nobuo; Tsukamoto, Haruka

    2011-01-01

    This study proposes a novel fiber-optic-based hierarchical sensing concept for monitoring randomly induced damage in large-scale composite structures. In a hierarchical system, several kinds of specialized devices are hierarchically combined to form a sensing network. Specifically, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with an optical fiber network through transducing mechanisms. The distributed devices detect damage, and the fiber-optic network gathers the damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of a hierarchical sensing system through comparison with existing fiber-optic-based systems, and an impact damage detection system was then proposed to validate the new concept. The sensor devices were developed based on comparative vacuum monitoring (CVM), and Brillouin-based distributed strain measurement was utilized to identify damaged areas. Verification tests were conducted step-by-step, beginning with a basic test using a single sensor unit, and, finally, the proposed monitoring system was successfully verified using a carbon fiber reinforced plastic (CFRP) fuselage demonstrator. It was clearly confirmed that the hierarchical system has better repairability, higher robustness, and a wider monitorable area compared to existing systems

  16. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester.

    Science.gov (United States)

    Ariesyady, Herto Dwi; Ito, Tsukasa; Okabe, Satoshi

    2007-04-01

    Functional Bacteria and Archaea community structures of a full-scale anaerobic sludge digester were investigated by using a full-cycle 16S rRNA approach followed by microautoradiography (MAR)-fluorescent in situ hybridization (FISH) technique and micromanipulation. FISH analysis with a comprehensive set of 16S and 23S rRNA-targeted oligonucleotide probes based on 16S rRNA clone libraries revealed that the Gram-positive bacteria represented by probe HGC69A-hybridized Actinobacteria (8.5+/-1.4% of total 4', 6-diamidino-2-phenylindole (DAPI)-stained cells) and probe LGC354-hybridized Firmicutes (3.8+/-0.8%) were the major phylogenetic bacterial phyla, followed by Bacteroidetes (4.0+/-1.2%) and Chloroflexi (3.7+/-0.8%). The probe MX825-hybridized Methanosaeta (7.6+/-0.8%) was the most abundant archaeal group, followed by Methanomicrobiales (2.8+/-0.6%) and Methanobacteriaceae (2.7+/-0.4%). The functional community structures (diversity and relative abundance) of major trophic groups were quantitatively analyzed by MAR-FISH. The results revealed that glucose-degrading microbial community had higher abundance (ca. 10.6+/-4.9% of total DAPI-stained cells) and diversity (at least seven phylogenetic groups) as compared with fatty acid-utilizing microbial communities, which were more specialized to a few phylogenetic groups. Despite the dominance of Betaproteobacteria, members of Chloroflexi, Smithella, Syntrophomonas and Methanosaeta groups dominated the [(14)C]glucose-, [(14)C]propionate-, [(14)C]butyrate- and [(14)C]acetate-utilizing microorganism community, and accounted for 27.7+/-4.3%, 29.6+/-7.0%, 34.5+/-7.6% and 18.2+/-9.5%, respectively. In spite of low abundance (ca. 1%), the hitherto unknown metabolic functions of Spirochaeta and candidate phylum of TM7 as well as Synergistes were found to be glucose and acetate utilization, respectively.

  17. Large-scale motions in the universe: a review

    International Nuclear Information System (INIS)

    Burstein, D.

    1990-01-01

    The expansion of the universe can be retarded in localised regions within the universe both by the presence of gravity and by non-gravitational motions generated in the post-recombination universe. The motions of galaxies thus generated are called 'peculiar motions', and the amplitudes, size scales and coherence of these peculiar motions are among the most direct records of the structure of the universe. As such, measurements of these properties of the present-day universe provide some of the severest tests of cosmological theories. This is a review of the current evidence for large-scale motions of galaxies out to a distance of ∼5000 km s -1 (in an expanding universe, distance is proportional to radial velocity). 'Large-scale' in this context refers to motions that are correlated over size scales larger than the typical sizes of groups of galaxies, up to and including the size of the volume surveyed. To orient the reader into this relatively new field of study, a short modern history is given together with an explanation of the terminology. Careful consideration is given to the data used to measure the distances, and hence the peculiar motions, of galaxies. The evidence for large-scale motions is presented in a graphical fashion, using only the most reliable data for galaxies spanning a wide range in optical properties and over the complete range of galactic environments. The kinds of systematic errors that can affect this analysis are discussed, and the reliability of these motions is assessed. The predictions of two models of large-scale motion are compared to the observations, and special emphasis is placed on those motions in which our own Galaxy directly partakes. (author)

  18. Universal Scaling Relations in Scale-Free Structure Formation

    Science.gov (United States)

    Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.

    2018-04-01

    A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM∝M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters and even dark matter halos. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power law tail of dA/d lnΣ∝Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D∝R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM halos) tend to a ρ∝R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation and detailed "full physics" hydrodynamical simulations. We find that these power-laws are good first order descriptions in all cases.

  19. Design of a Large-scale Three-dimensional Flexible Arrayed Tactile Sensor

    Directory of Open Access Journals (Sweden)

    Junxiang Ding

    2011-01-01

    Full Text Available This paper proposes a new type of large-scale three-dimensional flexible arrayed tactile sensor based on conductive rubber. It can be used to detect three-dimensional force information on the continuous surface of the sensor, which realizes a true skin type tactile sensor. The widely used method of liquid rubber injection molding (LIMS method is used for "the overall injection molding" sample preparation. The structure details of staggered nodes and a new decoupling algorithm of force analysis are given. Simulation results show that the sensor based on this structure can achieve flexible measurement of large-scale 3-D tactile sensor arrays.

  20. Inter-subject FDG PET Brain Networks Exhibit Multi-scale Community Structure with Different Normalization Techniques.

    Science.gov (United States)

    Sperry, Megan M; Kartha, Sonia; Granquist, Eric J; Winkelstein, Beth A

    2018-07-01

    Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.

  1. Dynamical community structure of populations evolving on genotype networks

    International Nuclear Information System (INIS)

    Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna

    2015-01-01

    Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics

  2. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure

    OpenAIRE

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bact...

  3. Decentralized Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad

    2013-01-01

    problem is formulated as a centralized large-scale optimization problem but is then decomposed into smaller subproblems that are solved locally by each unit connected to an aggregator. For large-scale systems the method is faster than solving the full problem and can be distributed to include an arbitrary...

  4. Topographically Engineered Large Scale Nanostructures for Plasmonic Biosensing

    Science.gov (United States)

    Xiao, Bo; Pradhan, Sangram K.; Santiago, Kevin C.; Rutherford, Gugu N.; Pradhan, Aswini K.

    2016-04-01

    We demonstrate that a nanostructured metal thin film can achieve enhanced transmission efficiency and sharp resonances and use a large-scale and high-throughput nanofabrication technique for the plasmonic structures. The fabrication technique combines the features of nanoimprint and soft lithography to topographically construct metal thin films with nanoscale patterns. Metal nanogratings developed using this method show significantly enhanced optical transmission (up to a one-order-of-magnitude enhancement) and sharp resonances with full width at half maximum (FWHM) of ~15nm in the zero-order transmission using an incoherent white light source. These nanostructures are sensitive to the surrounding environment, and the resonance can shift as the refractive index changes. We derive an analytical method using a spatial Fourier transformation to understand the enhancement phenomenon and the sensing mechanism. The use of real-time monitoring of protein-protein interactions in microfluidic cells integrated with these nanostructures is demonstrated to be effective for biosensing. The perpendicular transmission configuration and large-scale structures provide a feasible platform without sophisticated optical instrumentation to realize label-free surface plasmon resonance (SPR) sensing.

  5. Searching for signatures of dark matter-dark radiation interaction in observations of large-scale structure

    Science.gov (United States)

    Pan, Zhen; Kaplinghat, Manoj; Knox, Lloyd

    2018-05-01

    In this paper, we conduct a search in the latest large-scale structure measurements for signatures of the dark matter-dark radiation interaction proposed by Buen-Abad et al. (2015). We show that prior claims of an inference of this interaction at ˜3 σ significance rely on a use of the Sunyaev-Zeldovich cluster mass function that ignores uncertainty in the mass-observable relationship. Including this uncertainty we find that the inferred level of interaction remains consistent with the data, but so does zero interaction; i.e., there is no longer a preference for nonzero interaction. We also point out that inference of the shape and amplitude of the matter power spectrum from Ly α forest measurements is highly inconsistent with the predictions of the Λ CDM model conditioned on Planck cosmic microwave background temperature, polarization, and lensing power spectra, and that the dark matter-dark radiation model can restore that consistency. We also phenomenologically generalize the model of Buen-Abad et al. (2015) to allow for interaction rates with different scalings with temperature, and find that the original scaling is preferred by the data.

  6. Cosmological Parameter Estimation with Large Scale Structure Observations

    CERN Document Server

    Di Dio, Enea; Durrer, Ruth; Lesgourgues, Julien

    2014-01-01

    We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, $C_\\ell(z_1,z_2)$, calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard $P(k)$ analysis with the new $C_\\ell(z_1,z_2)$ method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the $P(k)$ analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, $C_0(z_1,z_2)$.

  7. Large scale structure from viscous dark matter

    CERN Document Server

    Blas, Diego; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-01-01

    Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 \\, h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to varia...

  8. Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools

    Directory of Open Access Journals (Sweden)

    M. Anushka S. Perera

    2015-07-01

    Full Text Available This paper discusses the topics related to automating parameter, disturbance and state estimation analysis of large-scale complex nonlinear dynamic systems using free programming tools. For large-scale complex systems, before implementing any state estimator, the system should be analyzed for structural observability and the structural observability analysis can be automated using Modelica and Python. As a result of structural observability analysis, the system may be decomposed into subsystems where some of them may be observable --- with respect to parameter, disturbances, and states --- while some may not. The state estimation process is carried out for those observable subsystems and the optimum number of additional measurements are prescribed for unobservable subsystems to make them observable. In this paper, an industrial case study is considered: the copper production process at Glencore Nikkelverk, Kristiansand, Norway. The copper production process is a large-scale complex system. It is shown how to implement various state estimators, in Python, to estimate parameters and disturbances, in addition to states, based on available measurements.

  9. Automating large-scale reactor systems

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1985-01-01

    This paper conveys a philosophy for developing automated large-scale control systems that behave in an integrated, intelligent, flexible manner. Methods for operating large-scale systems under varying degrees of equipment degradation are discussed, and a design approach that separates the effort into phases is suggested. 5 refs., 1 fig

  10. A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures

    Science.gov (United States)

    Peng, Heng; Liu, Yinghua; Chen, Haofeng

    2018-05-01

    In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.

  11. Development of a community's self-efficacy scale for preventing social isolation among community-dwelling older people (Mimamori Scale).

    Science.gov (United States)

    Tadaka, Etsuko; Kono, Ayumi; Ito, Eriko; Kanaya, Yukiko; Dai, Yuka; Imamatsu, Yuki; Itoi, Waka

    2016-11-28

    Among older people in developed countries, social isolation leading to solitary death has become a public health issue of vital importance. Such isolation could be prevented by monitoring at-risk individuals at the neighborhood level and by implementing supportive networks at the community level. However, a means of measuring community confidence in these measures has not been established. This study is aimed at developing the Community's Self-Efficacy Scale (CSES; Mimamori scale in Japanese) for community members preventing social isolation among older people. The CSES is a self-administered questionnaire developed on the basis of Bandura's self-efficacy theory. The survey was given to a general population (GEN) sample (n = 6,000) and community volunteer (CVOL) sample (n = 1,297). Construct validity was determined using confirmatory factor analysis. Internal consistency was calculated using Cronbach's alpha. The Generative Concern Scale (GCS-R) and Brief Sense of Community Scale (BSCS) were also administered to assess criterion-related validity of the CSES. In total, 3,484 and 859 valid responses were received in the GEN and CVOL groups, respectively. The confirmatory factor analysis identified eight items from two domains-community network and neighborhood watch-with goodness of fit index = 0.984, adjusted goodness of fit index = 0.970, comparative fit index = 0.988, and root mean square error of approximation = 0.047. Cronbach's alpha for the entire CSES was 0.87 and for the subscales was 0.80 and higher. The score of the entire CSES was positively correlated with the GCS-R in both the GEN (r = 0.80, p social isolation among older people. The scale is potentially useful for promoting health policies, practices, and interventions within communities. This may help prevent social isolation among older people and contribute to overall well-being in aging societies in Japan and abroad.

  12. Mixing Metaphors: Building Infrastructure for Large Scale School Turnaround

    Science.gov (United States)

    Peurach, Donald J.; Neumerski, Christine M.

    2015-01-01

    The purpose of this analysis is to increase understanding of the possibilities and challenges of building educational infrastructure--the basic, foundational structures, systems, and resources--to support large-scale school turnaround. Building educational infrastructure often exceeds the capacity of schools, districts, and state education…

  13. Radiography with cosmic-ray and compact accelerator muons; Exploring inner-structure of large-scale objects and landforms.

    Science.gov (United States)

    Nagamine, Kanetada

    2016-01-01

    Cosmic-ray muons (CRM) arriving from the sky on the surface of the earth are now known to be used as radiography purposes to explore the inner-structure of large-scale objects and landforms, ranging in thickness from meter to kilometers scale, such as volcanic mountains, blast furnaces, nuclear reactors etc. At the same time, by using muons produced by compact accelerators (CAM), advanced radiography can be realized for objects with a thickness in the sub-millimeter to meter range, with additional exploration capability such as element identification and bio-chemical analysis. In the present report, principles, methods and specific research examples of CRM transmission radiography are summarized after which, principles, methods and perspective views of the future CAM radiography are described.

  14. Epidemic spreading on complex networks with overlapping and non-overlapping community structure

    Science.gov (United States)

    Shang, Jiaxing; Liu, Lianchen; Li, Xin; Xie, Feng; Wu, Cheng

    2015-02-01

    Many real-world networks exhibit community structure where vertices belong to one or more communities. Recent studies show that community structure plays an import role in epidemic spreading. In this paper, we investigate how the extent of overlap among communities affects epidemics. In order to experiment on the characteristic of overlapping communities, we propose a rewiring algorithm that can change the community structure from overlapping to non-overlapping while maintaining the degree distribution of the network. We simulate the Susceptible-Infected-Susceptible (SIS) epidemic process on synthetic scale-free networks and real-world networks by applying our rewiring algorithm. Experiments show that epidemics spread faster on networks with higher level of overlapping communities. Furthermore, overlapping communities' effect interacts with the average degree's effect. Our work further illustrates the important role of overlapping communities in the process of epidemic spreading.

  15. A large-scale study of epilepsy in Ecuador: methodological aspects.

    Science.gov (United States)

    Placencia, M; Suarez, J; Crespo, F; Sander, J W; Shorvon, S D; Ellison, R H; Cascante, S M

    1992-01-01

    The methodology is presented of a large-scale study of epilepsy carried out in a highland area in northern Ecuador, South America, covering a population of 72,121 people; The study was carried out in two phases, the first, a cross-sectional phase, consisted of a house-to-house survey of all persons in this population, screening for epileptic seizures using a specially designed questionnaire. Possible cases identified in screening were assessed in a cascade diagnostic procedure applied by general doctors and neurologists. Its objectives were: to establish a comprehensive epidemiological profile of epileptic seizures; to describe the clinical phenomenology of this condition in the community; to validate methods for diagnosis and classification of epileptic seizures by a non-specialised team; and to ascertain the community's knowledge, attitudes and practices regarding epilepsy. A sample was selected in this phase in order to study the social aspects of epilepsy in this community. The second phase, which was longitudinal, assessed the ability of non-specialist care in the treatment of epilepsy. It consisted of a prospective clinical trial of antiepileptic therapy in untreated patients using two standard anti-epileptic drugs. Patients were followed for 12 months by a multidisciplinary team consisting of a primary health worker, rural doctor, neurologist, anthropologist, and psychologist. Standardised, reproducible instruments and methods were used. This study was carried out through co-operation between the medical profession, political agencies and the pharmaceutical industry, at an international level. We consider this a model for further large-scale studies of this type.

  16. Validation of two scales for measuring participation and perceived stigma in Chinese community-based rehabilitation programs.

    Science.gov (United States)

    Chung, Eva Yin-Han; Lam, Gigi

    2018-05-29

    The World Health Organization has asserted the importance of enhancing participation of people with disabilities within the International Classification of Functioning, Disability and Health framework. Participation is regarded as a vital outcome in community-based rehabilitation. The actualization of the right to participate is limited by social stigma and discrimination. To date, there is no validated instrument for use in Chinese communities to measure participation restriction or self-perceived stigma. This study aimed to translate and validate the Participation Scale and the Explanatory Model Interview Catalogue (EMIC) Stigma Scale for use in Chinese communities with people with physical disabilities. The Chinese versions of the Participation Scale and the EMIC stigma scale were administered to 264 adults with physical disabilities. The two scales were examined separately. The reliability analysis was studied in conjunction with the construct validity. Reliability analysis was conducted to assess the internal consistency and item-total correlation. Exploratory factor analysis was conducted to investigate the latent patterns of relationships among variables. A Rasch model analysis was conducted to test the dimensionality, internal validity, item hierarchy, and scoring category structure of the two scales. Both the Participation Scale and the EMIC stigma scale were confirmed to have good internal consistency and high item-total correlation. Exploratory factor analysis revealed the factor structure of the two scales, which demonstrated the fitting of a pattern of variables within the studied construct. The Participation Scale was found to be multidimensional, whereas the EMIC stigma scale was confirmed to be unidimensional. The item hierarchies of the Participation Scale and the EMIC stigma scale were discussed and were regarded as compatible with the cultural characteristics of Chinese communities. The Chinese versions of the Participation Scale and the EMIC

  17. [Species, functional, structural diversity of typical plant communities and their responses to environmental factors in Miao Archipelago, China.

    Science.gov (United States)

    Zheng, Li Ting; Su, Tian; Liu, Xiang Yu; Yin, Fang; Guo, Chao; Tuo, Bin; Yan, En Rong

    2018-02-01

    Island vegetation plays an important role in biodiversity research across the world. The study of plant diversity in island is helpful for understanding the mechanism of plant diversity maintenance under land-sea interaction. Here, four typical plant communities (Quercus acutissima community, Robinia pseudoacacia community, Pinus thunbergii community and Vitex negundo community) in Miao Archipelago were selected to examine the species, functional and structural diversities and their responses to environmental factors at the community scale by using species diversity indices, functional diversity indices, as well as structural diversity indices. The results showed that the species richness and Rao index of P. thunbergii community was higher than that of Q. acutissima community and R. pseudoacacia community, but the structural diversity was lower. The species diversity and structural diversity of V. Negundo shrub were lower than that of forest community, but the functional diversity was higher than some forest communities. The relationship between the diversity of typical plant communities in island area illustrated a significant positive correlation between species richness with Rao index and tree height diversity, however the correlation with functional evenness was significantly negative. The structural diversity and functional evenness were determined by slope with negative and positive relationships, respectively. Functional heterogeneity, functional divergence and species diversity were affected largely by soil physical and chemical properties, displaying the positive relationship with soil bulk density and soil total carbon content, and a negative relationship with soil water content. In conclusion, diversity pattern of plant community in Miao Archipelago reflected not only the characteristics in mainland vegetation but also the special nature of the sea island.

  18. Reviving large-scale projects

    International Nuclear Information System (INIS)

    Desiront, A.

    2003-01-01

    For the past decade, most large-scale hydro development projects in northern Quebec have been put on hold due to land disputes with First Nations. Hydroelectric projects have recently been revived following an agreement signed with Aboriginal communities in the province who recognized the need to find new sources of revenue for future generations. Many Cree are working on the project to harness the waters of the Eastmain River located in the middle of their territory. The work involves building an 890 foot long dam, 30 dikes enclosing a 603 square-km reservoir, a spillway, and a power house with 3 generating units with a total capacity of 480 MW of power for start-up in 2007. The project will require the use of 2,400 workers in total. The Cree Construction and Development Company is working on relations between Quebec's 14,000 Crees and the James Bay Energy Corporation, the subsidiary of Hydro-Quebec which is developing the project. Approximately 10 per cent of the $735-million project has been designated for the environmental component. Inspectors ensure that the project complies fully with environmental protection guidelines. Total development costs for Eastmain-1 are in the order of $2 billion of which $735 million will cover work on site and the remainder will cover generating units, transportation and financial charges. Under the treaty known as the Peace of the Braves, signed in February 2002, the Quebec government and Hydro-Quebec will pay the Cree $70 million annually for 50 years for the right to exploit hydro, mining and forest resources within their territory. The project comes at a time when electricity export volumes to the New England states are down due to growth in Quebec's domestic demand. Hydropower is a renewable and non-polluting source of energy that is one of the most acceptable forms of energy where the Kyoto Protocol is concerned. It was emphasized that large-scale hydro-electric projects are needed to provide sufficient energy to meet both

  19. Future changes in large-scale transport and stratosphere-troposphere exchange

    Science.gov (United States)

    Abalos, M.; Randel, W. J.; Kinnison, D. E.; Garcia, R. R.

    2017-12-01

    Future changes in large-scale transport are investigated in long-term (1955-2099) simulations of the Community Earth System Model - Whole Atmosphere Community Climate Model (CESM-WACCM) under an RCP6.0 climate change scenario. We examine artificial passive tracers in order to isolate transport changes from future changes in emissions and chemical processes. The model suggests enhanced stratosphere-troposphere exchange in both directions (STE), with decreasing tropospheric and increasing stratospheric tracer concentrations in the troposphere. Changes in the different transport processes are evaluated using the Transformed Eulerian Mean continuity equation, including parameterized convective transport. Dynamical changes associated with the rise of the tropopause height are shown to play a crucial role on future transport trends.

  20. Function assessment of coastal ecosystem based on phytoplankton community structure

    DEFF Research Database (Denmark)

    Haraguchi, Lumi

    2018-01-01

    on phytoplankton community structure; and 3) investigating the role of planktonic communities on the cycling of dissolved organic matter. Those objectives were addressed focusing the temperate mesohaline estuary of Roskilde Fjord (Denmark). Paper I, explores the use of Pulse-shape recording flow cytometry (PFCM...... as an energy reservoir, buffering changes in the nutrient supply. Finally, the results embedded in this thesis demonstrate the importance of integrating different time scales to understand functioning of phytoplankton communities. Phytoplankton dynamics should not be regarded just in light of inorganic......This Ph.D. project aimed to improve the knowledge on phytoplankton community structure and its influence in the carbon transfer and nutrient cycling in coastal waters, by: 1) assessing the importance of phytoplankton

  1. The Software Reliability of Large Scale Integration Circuit and Very Large Scale Integration Circuit

    OpenAIRE

    Artem Ganiyev; Jan Vitasek

    2010-01-01

    This article describes evaluation method of faultless function of large scale integration circuits (LSI) and very large scale integration circuits (VLSI). In the article there is a comparative analysis of factors which determine faultless of integrated circuits, analysis of already existing methods and model of faultless function evaluation of LSI and VLSI. The main part describes a proposed algorithm and program for analysis of fault rate in LSI and VLSI circuits.

  2. Temporal and spatial influences incur reconfiguration of Arctic heathland soil bacterial community structure.

    Science.gov (United States)

    Hill, Richard; Saetnan, Eli R; Scullion, John; Gwynn-Jones, Dylan; Ostle, Nick; Edwards, Arwyn

    2016-06-01

    Microbial responses to Arctic climate change could radically alter the stability of major stores of soil carbon. However, the sensitivity of plot-scale experiments simulating climate change effects on Arctic heathland soils to potential confounding effects of spatial and temporal changes in soil microbial communities is unknown. Here, the variation in heathland soil bacterial communities at two survey sites in Sweden between spring and summer 2013 and at scales between 0-1 m and, 1-100 m and between sites (> 100 m) were investigated in parallel using 16S rRNA gene T-RFLP and amplicon sequencing. T-RFLP did not reveal spatial structuring of communities at scales structuring effects may not confound comparison between plot-scale treatments, temporal change is a significant influence. Moreover, the prominence of two temporally exclusive keystone taxa suggests that the stability of Arctic heathland soil bacterial communities could be disproportionally influenced by seasonal perturbations affecting individual taxa. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Analysis for Large Scale Integration of Electric Vehicles into Power Grids

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Xiaoru

    2011-01-01

    Electric Vehicles (EVs) provide a significant opportunity for reducing the consumption of fossil energies and the emission of carbon dioxide. With more and more electric vehicles integrated in the power systems, it becomes important to study the effects of EV integration on the power systems......, especially the low and middle voltage level networks. In the paper, the basic structure and characteristics of the electric vehicles are introduced. The possible impacts of large scale integration of electric vehicles on the power systems especially the advantage to the integration of the renewable energies...... are discussed. Finally, the research projects related to the large scale integration of electric vehicles into the power systems are introduced, it will provide reference for large scale integration of Electric Vehicles into power grids....

  4. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies.

    Science.gov (United States)

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H; Michel, Jennifer Carlisle; Claxton, Derek P; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K Christopher; Gouaux, Eric

    2014-11-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in overexpression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol, we show how to use small-scale transient transfection and fluorescence-detection size-exclusion chromatography (FSEC) experiments using a GFP-His8-tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI(-) (N-acetylglucosaminyltransferase I-negative) cells in suspension culture and overexpress the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl) for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4-6 weeks.

  5. GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks.

    Science.gov (United States)

    Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R

    2012-01-01

    In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.

  6. GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks.

    Directory of Open Access Journals (Sweden)

    S M Hadi Hosseini

    Full Text Available In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC and functional data analyses (FDA, in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL and healthy matched Controls (CON. The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.

  7. Punishment sustains large-scale cooperation in prestate warfare

    Science.gov (United States)

    Mathew, Sarah; Boyd, Robert

    2011-01-01

    Understanding cooperation and punishment in small-scale societies is crucial for explaining the origins of human cooperation. We studied warfare among the Turkana, a politically uncentralized, egalitarian, nomadic pastoral society in East Africa. Based on a representative sample of 88 recent raids, we show that the Turkana sustain costly cooperation in combat at a remarkably large scale, at least in part, through punishment of free-riders. Raiding parties comprised several hundred warriors and participants are not kin or day-to-day interactants. Warriors incur substantial risk of death and produce collective benefits. Cowardice and desertions occur, and are punished by community-imposed sanctions, including collective corporal punishment and fines. Furthermore, Turkana norms governing warfare benefit the ethnolinguistic group, a population of a half-million people, at the expense of smaller social groupings. These results challenge current views that punishment is unimportant in small-scale societies and that human cooperation evolved in small groups of kin and familiar individuals. Instead, these results suggest that cooperation at the larger scale of ethnolinguistic units enforced by third-party sanctions could have a deep evolutionary history in the human species. PMID:21670285

  8. Large Scale Laser Two-Photon Polymerization Structuring for Fabrication of Artificial Polymeric Scaffolds for Regenerative Medicine

    International Nuclear Information System (INIS)

    Malinauskas, M.; Purlys, V.; Zukauskas, A.; Rutkauskas, M.; Danilevicius, P.; Paipulas, D.; Bickauskaite, G.; Gadonas, R.; Piskarskas, A.; Bukelskis, L.; Baltriukiene, D.; Bukelskiene, V.; Sirmenis, R.; Gaidukeviciute, A.; Sirvydis, V.

    2010-01-01

    We present a femtosecond Laser Two-Photon Polymerization (LTPP) system of large scale three-dimensional structuring for applications in tissue engineering. The direct laser writing system enables fabrication of artificial polymeric scaffolds over a large area (up to cm in lateral size) with sub-micrometer resolution which could find practical applications in biomedicine and surgery. Yb:KGW femtosecond laser oscillator (Pharos, Light Conversion. Co. Ltd.) is used as an irradiation source (75 fs, 515 nm (frequency doubled), 80 MHz). The sample is mounted on wide range linear motor driven stages having 10 nm sample positioning resolution (XY--ALS130-100, Z--ALS130-50, Aerotech, Inc.). These stages guarantee an overall travelling range of 100 mm into X and Y directions and 50 mm in Z direction and support the linear scanning speed up to 300 mm/s. By moving the sample three-dimensionally the position of laser focus in the photopolymer is changed and one is able to write complex 3D (three-dimensional) structures. An illumination system and CMOS camera enables online process monitoring. Control of all equipment is automated via custom made computer software ''3D-Poli'' specially designed for LTPP applications. Structures can be imported from computer aided design STereoLihography (stl) files or programmed directly. It can be used for rapid LTPP structuring in various photopolymers (SZ2080, AKRE19, PEG-DA-258) which are known to be suitable for bio-applications. Microstructured scaffolds can be produced on different substrates like glass, plastic and metal. In this paper, we present microfabricated polymeric scaffolds over a large area and growing of adult rabbit myogenic stem cells on them. Obtained results show the polymeric scaffolds to be applicable for cell growth practice. It exhibit potential to use it for artificial pericardium in the experimental model in the future.

  9. Large Scale Laser Two-Photon Polymerization Structuring for Fabrication of Artificial Polymeric Scaffolds for Regenerative Medicine

    Science.gov (United States)

    Malinauskas, M.; Purlys, V.; Žukauskas, A.; Rutkauskas, M.; Danilevičius, P.; Paipulas, D.; Bičkauskaitė, G.; Bukelskis, L.; Baltriukienė, D.; Širmenis, R.; Gaidukevičiutė, A.; Bukelskienė, V.; Gadonas, R.; Sirvydis, V.; Piskarskas, A.

    2010-11-01

    We present a femtosecond Laser Two-Photon Polymerization (LTPP) system of large scale three-dimensional structuring for applications in tissue engineering. The direct laser writing system enables fabrication of artificial polymeric scaffolds over a large area (up to cm in lateral size) with sub-micrometer resolution which could find practical applications in biomedicine and surgery. Yb:KGW femtosecond laser oscillator (Pharos, Light Conversion. Co. Ltd.) is used as an irradiation source (75 fs, 515 nm (frequency doubled), 80 MHz). The sample is mounted on wide range linear motor driven stages having 10 nm sample positioning resolution (XY—ALS130-100, Z—ALS130-50, Aerotech, Inc.). These stages guarantee an overall travelling range of 100 mm into X and Y directions and 50 mm in Z direction and support the linear scanning speed up to 300 mm/s. By moving the sample three-dimensionally the position of laser focus in the photopolymer is changed and one is able to write complex 3D (three-dimensional) structures. An illumination system and CMOS camera enables online process monitoring. Control of all equipment is automated via custom made computer software "3D-Poli" specially designed for LTPP applications. Structures can be imported from computer aided design STereoLihography (stl) files or programmed directly. It can be used for rapid LTPP structuring in various photopolymers (SZ2080, AKRE19, PEG-DA-258) which are known to be suitable for bio-applications. Microstructured scaffolds can be produced on different substrates like glass, plastic and metal. In this paper, we present microfabricated polymeric scaffolds over a large area and growing of adult rabbit myogenic stem cells on them. Obtained results show the polymeric scaffolds to be applicable for cell growth practice. It exhibit potential to use it for artificial pericardium in the experimental model in the future.

  10. Hierarchical, decentralized control system for large-scale smart-structures

    International Nuclear Information System (INIS)

    Algermissen, Stephan; Fröhlich, Tim; Monner, Hans Peter

    2014-01-01

    Active control of sound and vibration has gained much attention in all kinds of industries in the past decade. Future prospects for maximizing airline passenger comfort are especially promising. The objectives of recent research projects in this area are the reduction of noise transmission through thin walled structures such as fuselages, linings or interior elements. Besides different external noise sources, such as the turbulent boundary layer, rotor or jet noise, the actuator and sensor placement as well as different control concepts are addressed. Mostly, the work is focused on a single panel or section of the fuselage, neglecting the fact that for effective noise reduction the entire fuselage has to be taken into account. Nevertheless, extending the scope of an active system from a single panel to the entire fuselage increases the effort for control hardware dramatically. This paper presents a control concept for large structures using distributed control nodes. Each node has the capability to execute a vibration or noise controller for a specific part or section of the fuselage. For maintenance, controller tuning or performance measurement, all nodes are connected to a host computer via Universal Serial Bus (USB). This topology allows a partitioning and distributing of tasks. The nodes execute the low-level control functions. High-level tasks like maintenance, system identification and control synthesis are operated by the host using streamed data from the nodes. By choosing low-price nodes, a very cost effective way of implementing an active system for large structures is realized. Besides the system identification and controller synthesis on the host computer, a detailed view on the hardware and software concept for the nodes is given. Finally, the results of an experimental test of a system running a robust vibration controller at an active panel demonstrator are shown. (paper)

  11. Managing large-scale models: DBS

    International Nuclear Information System (INIS)

    1981-05-01

    A set of fundamental management tools for developing and operating a large scale model and data base system is presented. Based on experience in operating and developing a large scale computerized system, the only reasonable way to gain strong management control of such a system is to implement appropriate controls and procedures. Chapter I discusses the purpose of the book. Chapter II classifies a broad range of generic management problems into three groups: documentation, operations, and maintenance. First, system problems are identified then solutions for gaining management control are disucssed. Chapters III, IV, and V present practical methods for dealing with these problems. These methods were developed for managing SEAS but have general application for large scale models and data bases

  12. Large Scale Self-Organizing Information Distribution System

    National Research Council Canada - National Science Library

    Low, Steven

    2005-01-01

    This project investigates issues in "large-scale" networks. Here "large-scale" refers to networks with large number of high capacity nodes and transmission links, and shared by a large number of users...

  13. Hierarchical system for autonomous sensing-healing of delamination in large-scale composite structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Sun, Denghao; Takeda, Nobuo

    2014-01-01

    This study combines our hierarchical fiber-optic-based delamination detection system with a microvascular self-healing material to develop the first autonomous sensing-healing system applicable to large-scale composite structures. In this combined system, embedded vascular modules are connected through check valves to a surface-mounted supply tube of a pressurized healing agent while fiber-optic-based sensors monitor the internal pressure of these vascular modules. When delamination occurs, the healing agent flows into the vascular modules breached by the delamination and infiltrates the damage for healing. At the same time, the pressure sensors identify the damaged modules by detecting internal pressure changes. This paper begins by describing the basic concept of the combined system and by discussing the advantages that arise from its hierarchical nature. The feasibility of the system is then confirmed through delamination infiltration tests. Finally, the hierarchical system is validated in a plate specimen by focusing on the detection and infiltration of the damage. Its self-diagnostic function is also demonstrated. (paper)

  14. Automatic management software for large-scale cluster system

    International Nuclear Information System (INIS)

    Weng Yunjian; Chinese Academy of Sciences, Beijing; Sun Gongxing

    2007-01-01

    At present, the large-scale cluster system faces to the difficult management. For example the manager has large work load. It needs to cost much time on the management and the maintenance of large-scale cluster system. The nodes in large-scale cluster system are very easy to be chaotic. Thousands of nodes are put in big rooms so that some managers are very easy to make the confusion with machines. How do effectively carry on accurate management under the large-scale cluster system? The article introduces ELFms in the large-scale cluster system. Furthermore, it is proposed to realize the large-scale cluster system automatic management. (authors)

  15. A community empowerment approach to the HIV response among sex workers: effectiveness, challenges, and considerations for implementation and scale-up.

    Science.gov (United States)

    Kerrigan, Deanna; Kennedy, Caitlin E; Morgan-Thomas, Ruth; Reza-Paul, Sushena; Mwangi, Peninah; Win, Kay Thi; McFall, Allison; Fonner, Virginia A; Butler, Jennifer

    2015-01-10

    A community empowerment-based response to HIV is a process by which sex workers take collective ownership of programmes to achieve the most effective HIV outcomes and address social and structural barriers to their overall health and human rights. Community empowerment has increasingly gained recognition as a key approach for addressing HIV in sex workers, with its focus on addressing the broad context within which the heightened risk for infection takes places in these individuals. However, large-scale implementation of community empowerment-based approaches has been scarce. We undertook a comprehensive review of community empowerment approaches for addressing HIV in sex workers. Within this effort, we did a systematic review and meta-analysis of the effectiveness of community empowerment in sex workers in low-income and middle-income countries. We found that community empowerment-based approaches to addressing HIV among sex workers were significantly associated with reductions in HIV and other sexually transmitted infections, and with increases in consistent condom use with all clients. Despite the promise of a community-empowerment approach, we identified formidable structural barriers to implementation and scale-up at various levels. These barriers include regressive international discourses and funding constraints; national laws criminalising sex work; and intersecting social stigmas, discrimination, and violence. The evidence base for community empowerment in sex workers needs to be strengthened and diversified, including its role in aiding access to, and uptake of, combination interventions for HIV prevention. Furthermore, social and political change are needed regarding the recognition of sex work as work, both globally and locally, to encourage increased support for community empowerment responses to HIV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. GPU-Accelerated Large-Scale Electronic Structure Theory on Titan with a First-Principles All-Electron Code

    Science.gov (United States)

    Huhn, William Paul; Lange, Björn; Yu, Victor; Blum, Volker; Lee, Seyong; Yoon, Mina

    Density-functional theory has been well established as the dominant quantum-mechanical computational method in the materials community. Large accurate simulations become very challenging on small to mid-scale computers and require high-performance compute platforms to succeed. GPU acceleration is one promising approach. In this talk, we present a first implementation of all-electron density-functional theory in the FHI-aims code for massively parallel GPU-based platforms. Special attention is paid to the update of the density and to the integration of the Hamiltonian and overlap matrices, realized in a domain decomposition scheme on non-uniform grids. The initial implementation scales well across nodes on ORNL's Titan Cray XK7 supercomputer (8 to 64 nodes, 16 MPI ranks/node) and shows an overall speed up in runtime due to utilization of the K20X Tesla GPUs on each Titan node of 1.4x, with the charge density update showing a speed up of 2x. Further acceleration opportunities will be discussed. Work supported by the LDRD Program of ORNL managed by UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  17. Management of social and economic impacts associated with the construction of large-scale projects: experiences from the Western coal development communities

    Energy Technology Data Exchange (ETDEWEB)

    Greene, M.R.; Curry, M.G.

    1977-06-01

    The construction and operation of large-scale energy or resource development projects are accompanied by environmental, social, and economic changes or impacts. Impact assessment is the key tool used to determine which impact areas will most severely affect the community and will thus need to be managed. Impact management, only recently recognized as part of the assessment process, includes public and private actions to ameliorate impacts. The use of available impact management strategies can affect the outcome or change in the social and economic environment in a community. Therefore, an inventory of available strategies and the capabilities of local governments to use such strategies should be an integral part of any social and economic impact assessment. This provides a link between impact assessment and management. This report provides an introductory analysis to some of the more complex issues raised by social and economic impact management, with experiences cited from Western coal-development communities. Following an introduction, the paper is divided into sections corresponding to the major social and economic impacts experienced by rural communities surrounding an energy development. Each section contains a brief introductory description of the types of problems typically associated with the impact sector, and a discussion of management strategies either proposed or implemented for the impact. The management strategies are presented in tabular form, indicating the level of government responsible for implementation. 10 tables, 72 references. (MCW)

  18. Permafrost soil characteristics and microbial community structure across a boreal forest watershed vary over short spatial scales and dictate community responses to thaw.

    Science.gov (United States)

    Stegen, J.; Bottos, E. M.; Kennedy, D.; Romero, E. B.; Fansler, S.; Chu, R. K.; Tfaily, M.; Jansson, J.; Bernstein, H. C.; Brown, J. M.; Markillie, L. M.

    2017-12-01

    Understanding drivers of permafrost microbial community structure and function is critical for understanding permafrost microbiology and predicting ecosystem responses to thaw; however, studies describing ecological controls on these communities are lacking. We hypothesize that permafrost communities are uniquely shaped by constraints imposed by prolonged freezing, and decoupled from the selective factors that influence non-permafrost soil communities, but that pre-thaw environmental and community characteristics will be strong determinants of community structure and function post-thaw. We characterized patterns of environmental variation and microbial community composition in sixty permafrost samples spanning landscape gradients in a boreal forest watershed, and monitored community responses to thaw. Consistent with our hypothesis, we found that, proportionally, the strongest process influencing permafrost community composition was dispersal limitation (0.36), exceeding the influence of homogenous selection (0.21) and variable selection (0.16), and that deterministic selection arose primarily from energetic constraints of the permafrost environment. Our data supported a structural equation model in which organic carbon thermodynamics and organic acid content, influenced redox conditions and total selection. Post-thaw community composition was found to be driven primarily by pre-thaw community composition, indicating a strong influence of historical conditions. Together, these results suggest that community responses to thaw may be highly varied over short distances and that changes in community structure and function are likely to be drastic, as changes to system hydrology mobilize organisms and nutrients, thereby relieving the primary constraints on the system. These findings are being integrated with metabolomic and metatranscriptomic analyses to improve understanding of how pre-thaw conditions can be used to predict microbial activity post-thaw.

  19. Detecting Multi-scale Structures in Chandra Images of Centaurus A

    Science.gov (United States)

    Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.

    1999-12-01

    Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.

  20. The Italian version of the Depression Anxiety Stress Scales-21: Factor structure and psychometric properties on community and clinical samples.

    Science.gov (United States)

    Bottesi, Gioia; Ghisi, Marta; Altoè, Gianmarco; Conforti, Erica; Melli, Gabriele; Sica, Claudio

    2015-07-01

    The Depression Anxiety Stress Scales-21 (DASS-21) is the short version of a self-report measure that was originally developed to provide maximum differentiation between depressive and anxious symptoms. Despite encouraging evidence, the factor structure and other features of the DASS-21 are yet to be firmly established. A community sample of 417 participants and two clinical groups (32 depressive patients and 25 anxious patients) completed the Italian version of the DASS-21 along with several measures of psychopathology. Confirmatory factor analyses suggested that the DASS-21 is a measure of general distress plus three additional orthogonal dimensions (anxiety, depression, and stress). The internal consistency and temporal stability of the measure were good; each DASS-21 scale correlated more strongly with a measure of a similar construct, demonstrating good convergent and divergent validity. Lastly, the DASS-21 demonstrated good criterion-oriented validity. The validity of the Italian DASS-21 and its utility, both for community and clinical individuals, are supported. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  2. Inference of functional properties from large-scale analysis of enzyme superfamilies.

    Science.gov (United States)

    Brown, Shoshana D; Babbitt, Patricia C

    2012-01-02

    As increasingly large amounts of data from genome and other sequencing projects become available, new approaches are needed to determine the functions of the proteins these genes encode. We show how large-scale computational analysis can help to address this challenge by linking functional information to sequence and structural similarities using protein similarity networks. Network analyses using three functionally diverse enzyme superfamilies illustrate the use of these approaches for facile updating and comparison of available structures for a large superfamily, for creation of functional hypotheses for metagenomic sequences, and to summarize the limits of our functional knowledge about even well studied superfamilies.

  3. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale

    DEFF Research Database (Denmark)

    Cao, Haichuan; Chen, Ruirui; Wang, Libing

    2016-01-01

    Considering the extensive functional redundancy in microbial communities and great difficulty in elucidating it based on taxonomic structure, studies on the biogeography of soil microbial activity at large spatial scale are as important as microbial community structure. Eighty-four soil samples...... scaling clearly revealed that soil microbial activities showed distinct differentiation at different sites over a regional spatial scale, which were strongly affected by soil pH, total P, rainfall, temperature, soil type and location. In addition, microbial community structure was greatly influenced...... scales. There are common (distance, climate, pH and soil type) but differentiated aspects (TP, SOC and N) in the biogeography of soil microbial community structure and activity....

  4. Large-scale micromagnetic simulation of Nd-Fe-B sintered magnets with Dy-rich shell structures

    Directory of Open Access Journals (Sweden)

    T. Oikawa

    2016-05-01

    Full Text Available Large-scale micromagnetic simulations have been performed using the energy minimization method on a model with structural features similar to those of Dy grain boundary diffusion (GBD-processed sintered magnets. Coercivity increases as a linear function of the anisotropy field of the Dy-rich shell, which is independent of Dy composition in the core as long as the shell thickness is greater than about 15 nm. This result shows that the Dy contained in the initial sintered magnets prior to the GBD process is not essential for enhancing coercivity. Magnetization reversal patterns indicate that coercivity is strongly influenced by domain wall pinning at the grain boundary. This observation is found to be consistent with the one-dimensional pinning theory.

  5. Large-Scale Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  6. Is scale-up of community mobilisation among sex workers really possible in complex urban environments? The case of Mumbai, India.

    Science.gov (United States)

    Kongelf, Anine; Bandewar, Sunita V S; Bharat, Shalini; Collumbien, Martine

    2015-01-01

    In the last decade, community mobilisation (CM) interventions targeting female sex workers (FSWs) have been scaled-up in India's national response to the HIV epidemic. This included the Bill and Melinda Gates Foundation's Avahan programme which adopted a business approach to plan and manage implementation at scale. With the focus of evaluation efforts on measuring effectiveness and health impacts there has been little analysis thus far of the interaction of the CM interventions with the sex work industry in complex urban environments. Between March and July 2012 semi-structured, in-depth interviews and focus group discussions were conducted with 63 HIV intervention implementers, to explore challenges of HIV prevention among FSWs in Mumbai. A thematic analysis identified contextual factors that impact CM implementation. Large-scale interventions are not only impacted by, but were shown to shape the dynamic social context. Registration practices and programme monitoring were experienced as stigmatising, reflected in shifting client preferences towards women not disclosing as 'sex workers'. This combined with urban redevelopment and gentrification of traditional red light areas, forcing dispersal and more 'hidden' ways of solicitation, further challenging outreach and collectivisation. Participants reported that brothel owners and 'pimps' continued to restrict access to sex workers and the heterogeneous 'community' of FSWs remains fragmented with high levels of mobility. Stakeholder engagement was poor and mobilising around HIV prevention not compelling. Interventions largely failed to respond to community needs as strong target-orientation skewed activities towards those most easily measured and reported. Large-scale interventions have been impacted by and contributed to an increasingly complex sex work environment in Mumbai, challenging outreach and mobilisation efforts. Sex workers remain a vulnerable and disempowered group needing continued support and more

  7. Is scale-up of community mobilisation among sex workers really possible in complex urban environments? The case of Mumbai, India.

    Directory of Open Access Journals (Sweden)

    Anine Kongelf

    Full Text Available In the last decade, community mobilisation (CM interventions targeting female sex workers (FSWs have been scaled-up in India's national response to the HIV epidemic. This included the Bill and Melinda Gates Foundation's Avahan programme which adopted a business approach to plan and manage implementation at scale. With the focus of evaluation efforts on measuring effectiveness and health impacts there has been little analysis thus far of the interaction of the CM interventions with the sex work industry in complex urban environments.Between March and July 2012 semi-structured, in-depth interviews and focus group discussions were conducted with 63 HIV intervention implementers, to explore challenges of HIV prevention among FSWs in Mumbai. A thematic analysis identified contextual factors that impact CM implementation. Large-scale interventions are not only impacted by, but were shown to shape the dynamic social context. Registration practices and programme monitoring were experienced as stigmatising, reflected in shifting client preferences towards women not disclosing as 'sex workers'. This combined with urban redevelopment and gentrification of traditional red light areas, forcing dispersal and more 'hidden' ways of solicitation, further challenging outreach and collectivisation. Participants reported that brothel owners and 'pimps' continued to restrict access to sex workers and the heterogeneous 'community' of FSWs remains fragmented with high levels of mobility. Stakeholder engagement was poor and mobilising around HIV prevention not compelling. Interventions largely failed to respond to community needs as strong target-orientation skewed activities towards those most easily measured and reported.Large-scale interventions have been impacted by and contributed to an increasingly complex sex work environment in Mumbai, challenging outreach and mobilisation efforts. Sex workers remain a vulnerable and disempowered group needing continued support

  8. Large scale food retailing as an intervention for diet and health: quasi-experimental evaluation of a natural experiment.

    Science.gov (United States)

    Cummins, Steven; Petticrew, Mark; Higgins, Cassie; Findlay, Anne; Sparks, Leigh

    2005-12-01

    To assess the effect on fruit and vegetable consumption, self reported, and psychological health of a "natural experiment"-the introduction of large scale food retailing in a deprived Scottish community. Prospective quasi-experimental design comparing baseline and follow up data in an "intervention" community with a matched "comparison" community in Glasgow, UK. 412 men and women aged 16 or over for whom follow up data on fruit and vegetable consumption and GHQ-12 were available. Fruit and vegetable consumption in portions per day, poor self reported health, and poor psychological health (GHQ-12). Adjusting for age, sex, educational attainment, and employment status there was no population impact on daily fruit and vegetable consumption, self reported, and psychological health. There was some evidence for a net reduction in the prevalence of poor psychological health for residents who directly engaged with the intervention. Government policy has advocated using large scale food retailing as a social intervention to improve diet and health in poor communities. In contrast with a previous uncontrolled study this study did not find evidence for a net intervention effect on fruit and vegetable consumption, although there was evidence for an improvement in psychological health for those who directly engaged with the intervention. Although definitive conclusions about the effect of large scale retailing on diet and health in deprived communities cannot be drawn from non-randomised controlled study designs, evaluations of the impacts of natural experiments may offer the best opportunity to generate evidence about the health impacts of retail interventions in poor communities.

  9. Additional renewable energy growth through small-scale community orientated energy policies

    International Nuclear Information System (INIS)

    Hain, J.J.; Ault, G.W.; Galloway, S.J.; Cruden, A.; McDonald, J.R.

    2005-01-01

    This paper summarises the energy policies that the UK Government has enacted in order to achieve its renewable targets by 2010. Current policies are designed primarily to support large-scale renewable projects through Renewable Obligation Certificates, Levy Exemption Certificates and capital grant schemes. Non-profit domestic and non-profit community renewable projects are also eligible for grant support. First-hand experience of privately owned renewable projects indicate that existing renewable policy is insufficient in its support of both small-scale and community-based profit oriented renewable energy (RE) schemes. Primary and secondary survey information suggests that people living in regions where RE will be situated may generally be inclined to support broader uses of renewables in these regions. Small-scale renewables can make a significant cumulative contribution to the RE mix. The results reported in this paper support the contention that the Government could go further towards approaching its targets through rural-focused changes to its energy incentive programmes

  10. FR-type radio sources in COSMOS: relation of radio structure to size, accretion modes and large-scale environment

    Science.gov (United States)

    Vardoulaki, Eleni; Faustino Jimenez Andrade, Eric; Delvecchio, Ivan; Karim, Alexander; Smolčić, Vernesa; Magnelli, Benjamin; Bertoldi, Frank; Schinnener, Eva; Sargent, Mark; Finoguenov, Alexis; VLA COSMOS Team

    2018-01-01

    The radio sources associated with active galactic nuclei (AGN) can exhibit a variety of radio structures, from simple to more complex, giving rise to a variety of classification schemes. The question which still remains open, given deeper surveys revealing new populations of radio sources, is whether this plethora of radio structures can be attributed to the physical properties of the host or to the environment. Here we present an analysis on the radio structure of radio-selected AGN from the VLA-COSMOS Large Project at 3 GHz (JVLA-COSMOS; Smolčić et al.) in relation to: 1) their linear projected size, 2) the Eddington ratio, and 3) the environment their hosts lie within. We classify these as FRI (jet-like) and FRII (lobe-like) based on the FR-type classification scheme, and compare them to a sample of jet-less radio AGN in JVLA-COSMOS. We measure their linear projected sizes using a semi-automatic machine learning technique. Their Eddington ratios are calculated from X-ray data available for COSMOS. As environmental probes we take the X-ray groups (hundreds kpc) and the density fields (~Mpc-scale) in COSMOS. We find that FRII radio sources are on average larger than FRIs, which agrees with literature. But contrary to past studies, we find no dichotomy in FR objects in JVLA-COSMOS given their Eddington ratios, as on average they exhibit similar values. Furthermore our results show that the large-scale environment does not explain the observed dichotomy in lobe- and jet-like FR-type objects as both types are found on similar environments, but it does affect the shape of the radio structure introducing bents for objects closer to the centre of an X-ray group.

  11. Economic and fiscal impacts of large-scale development projects: implications for nuclear waste repositories

    International Nuclear Information System (INIS)

    Leistritz, F.L.; Murdock, S.H.; Texas A and M Univ., College Station)

    1982-01-01

    This paper deals with the local economic and fiscal implications of siting high-level nuclear waste repositories in rural areas. The economic and fiscal effects of repository development fall into two categories: (1) standard impacts similar to those that would be associated with developing any large-scale industrial facility in an isolated area; (2) special impacts that result from the hazardous nature of the nuclear materials stored and from federal ownership of the facility. Standard economic and fiscal impacts include employment effects (direct and secondary), local income changes, alterations in community price structures, effects on community services, and changes in revenues and costs for local jurisdictions. Special impacts include the possibility of diminished activity in other basic economic sectors, negative effects on the area's long-term growth prospects and a consequent dampening of investment in the local trade an service sectors, additional costs for local jurisdictions (e.g., for preparing evacuation plans), and limited local tax revenues resulting from the tax-exempt status of the facility. These special effects are difficult to quantify and require additional analysis. 47 references, 1 figure, 4 tables

  12. Large Mines and the Community : Socioeconomic and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    1 janv. 2001 ... Large Mines and the Community : Socioeconomic and Environmental Effects in Latin America, Canada, and Spain. Couverture du livre Large Mines and the Community : Socioeconomic and Environmental Effects in Latin America. Directeur(s):. Gary McMahon et Felix Remy. Maison(s) d'édition: Banque ...

  13. Large-Scale Astrophysical Visualization on Smartphones

    Science.gov (United States)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  14. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele

    2015-08-23

    The interaction between scales is investigated in a turbulent mixing layer. The large-scale amplitude modulation of the small scales already observed in other works depends on the crosswise location. Large-scale positive fluctuations correlate with a stronger activity of the small scales on the low speed-side of the mixing layer, and a reduced activity on the high speed-side. However, from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  15. Evaluation of defect density by top-view large scale AFM on metamorphic structures grown by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Gocalinska, Agnieszka, E-mail: agnieszka.gocalinska@tyndall.ie; Manganaro, Marina; Dimastrodonato, Valeria; Pelucchi, Emanuele

    2015-09-15

    Highlights: • Metamorphic buffer layers of In{sub x}Ga{sub 1−x}As were grown by MOVPE and characterised by AFM and TEM. • It was found that AFM provides sufficient information to estimate threading defect density in metamorphic structures, even when significant roughness is present. • When planar-view TEM is lacking, a combination of cross-sectional TEM and large scale AFM can provide good evaluation of the material quality. • It is fast, cheap and non-destructive – can be very useful in development process of complicated structures, requiring multiple test growths and characterisation. - Abstract: We demonstrate an atomic force microscopy based method for estimation of defect density by identification of threading dislocations on a non-flat surface resulting from metamorphic growth. The discussed technique can be applied as an everyday evaluation tool for the quality of epitaxial structures and allow for cost reduction, as it lessens the amount of the transmission electron microscopy analysis required at the early stages of projects. Metamorphic structures with low surface defectivities (below 10{sup 6}) were developed successfully with the application of the technique, proving its usefulness in process optimisation.

  16. Design study on sodium cooled large-scale reactor

    International Nuclear Information System (INIS)

    Murakami, Tsutomu; Hishida, Masahiko; Kisohara, Naoyuki

    2004-07-01

    In Phase 1 of the 'Feasibility Studies on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2, design improvement for further cost reduction of establishment of the plant concept has been performed. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2003, which is the third year of Phase 2. In the JFY2003 design study, critical subjects related to safety, structural integrity and thermal hydraulics which found in the last fiscal year has been examined and the plant concept has been modified. Furthermore, fundamental specifications of main systems and components have been set and economy has been evaluated. In addition, as the interim evaluation of the candidate concept of the FBR fuel cycle is to be conducted, cost effectiveness and achievability for the development goal were evaluated and the data of the three large-scale reactor candidate concepts were prepared. As a results of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  17. Design study on sodium-cooled large-scale reactor

    International Nuclear Information System (INIS)

    Shimakawa, Yoshio; Nibe, Nobuaki; Hori, Toru

    2002-05-01

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled large-scale reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2001, which is the first year of Phase 2. In the JFY2001 design study, a plant concept has been constructed based on the design of the advanced loop type reactor, and fundamental specifications of main systems and components have been set. Furthermore, critical subjects related to safety, structural integrity, thermal hydraulics, operability, maintainability and economy have been examined and evaluated. As a result of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  18. Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity.

    Science.gov (United States)

    Lee, Karen J I; Calder, Grant M; Hindle, Christopher R; Newman, Jacob L; Robinson, Simon N; Avondo, Jerome J H Y; Coen, Enrico S

    2017-01-01

    Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Scale modeling of reinforced concrete structures subjected to seismic loading

    International Nuclear Information System (INIS)

    Dove, R.C.

    1983-01-01

    Reinforced concrete, Category I structures are so large that the possibility of seismicly testing the prototype structures under controlled conditions is essentially nonexistent. However, experimental data, from which important structural properties can be determined and existing and new methods of seismic analysis benchmarked, are badly needed. As a result, seismic experiments on scaled models are of considerable interest. In this paper, the scaling laws are developed in some detail so that assumptions and choices based on judgement can be clearly recognized and their effects discussed. The scaling laws developed are then used to design a reinforced concrete model of a Category I structure. Finally, how scaling is effected by various types of damping (viscous, structural, and Coulomb) is discussed

  20. Integration, Provenance, and Temporal Queries for Large-Scale Knowledge Bases

    OpenAIRE

    Gao, Shi

    2016-01-01

    Knowledge bases that summarize web information in RDF triples deliver many benefits, including support for natural language question answering and powerful structured queries that extract encyclopedic knowledge via SPARQL. Large scale knowledge bases grow rapidly in terms of scale and significance, and undergo frequent changes in both schema and content. Two critical problems have thus emerged: (i) how to support temporal queries that explore the history of knowledge bases or flash-back to th...

  1. Cloud-enabled large-scale land surface model simulations with the NASA Land Information System

    Science.gov (United States)

    Duffy, D.; Vaughan, G.; Clark, M. P.; Peters-Lidard, C. D.; Nijssen, B.; Nearing, G. S.; Rheingrover, S.; Kumar, S.; Geiger, J. V.

    2017-12-01

    Developed by the Hydrological Sciences Laboratory at NASA Goddard Space Flight Center (GSFC), the Land Information System (LIS) is a high-performance software framework for terrestrial hydrology modeling and data assimilation. LIS provides the ability to integrate satellite and ground-based observational products and advanced modeling algorithms to extract land surface states and fluxes. Through a partnership with the National Center for Atmospheric Research (NCAR) and the University of Washington, the LIS model is currently being extended to include the Structure for Unifying Multiple Modeling Alternatives (SUMMA). With the addition of SUMMA in LIS, meaningful simulations containing a large multi-model ensemble will be enabled and can provide advanced probabilistic continental-domain modeling capabilities at spatial scales relevant for water managers. The resulting LIS/SUMMA application framework is difficult for non-experts to install due to the large amount of dependencies on specific versions of operating systems, libraries, and compilers. This has created a significant barrier to entry for domain scientists that are interested in using the software on their own systems or in the cloud. In addition, the requirement to support multiple run time environments across the LIS community has created a significant burden on the NASA team. To overcome these challenges, LIS/SUMMA has been deployed using Linux containers, which allows for an entire software package along with all dependences to be installed within a working runtime environment, and Kubernetes, which orchestrates the deployment of a cluster of containers. Within a cloud environment, users can now easily create a cluster of virtual machines and run large-scale LIS/SUMMA simulations. Installations that have taken weeks and months can now be performed in minutes of time. This presentation will discuss the steps required to create a cloud-enabled large-scale simulation, present examples of its use, and

  2. Large eddy simulation of a buoyancy-aided flow in a non-uniform channel – Buoyancy effects on large flow structures

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); He, S., E-mail: s.he@sheffield.ac.uk [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2017-02-15

    Highlights: • Buoyancy may greatly redistribute the flow in a non-uniform channel. • Flow structures in the narrow gap are greatly changed when buoyancy is strong. • Large flow structures exist in wider gap, which is enhanced when heat is strong. • Buoyancy reduces mixing factor caused by large flow structures in narrow gap. - Abstract: It has been a long time since the ‘abnormal’ turbulent intensity distribution and high inter-sub-channel mixing rates were observed in the vicinity of the narrow gaps formed by the fuel rods in nuclear reactors. The extraordinary flow behaviour was first described as periodic flow structures by Hooper and Rehme (1984). Since then, the existences of large flow structures were demonstrated by many researchers in various non-uniform flow channels. It has been proved by many authors that the Strouhal number of the flow structure in the isothermal flow is dependent on the size of the narrow gap, not the Reynolds number once it is sufficiently large. This paper reports a numerical investigation on the effect of buoyancy on the large flow structures. A buoyancy-aided flow in a tightly-packed rod-bundle-like channel is modelled using large eddy simulation (LES) together with the Boussinesq approximation. The behaviour of the large flow structures in the gaps of the flow passage are studied using instantaneous flow fields, spectrum analysis and correlation analysis. It is found that the non-uniform buoyancy force in the cross section of the flow channel may greatly redistribute the velocity field once the overall buoyancy force is sufficiently strong, and consequently modify the large flow structures. The temporal and axial spatial scales of the large flow structures are influenced by buoyancy in a way similar to that turbulence is influenced. These scales reduce when the flow is laminarised, but start increasing in the turbulence regeneration region. The spanwise scale of the flow structures in the narrow gap remains more or

  3. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    Science.gov (United States)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  4. Responses of Soil Microbial Community Structure and Diversity to Agricultural Deintensification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jian; S.HU; RUI Wen-Yi; C.TU; H.G.DIAB; F.J.LOUWS; J.P.MUELLER; N.CREAMER; M.BELL; M.G.WAGGER

    2005-01-01

    Using a scheme of agricultural fields with progressively less intensive management (deintensification), different management practices in six agroecosystems located near Goldsboro, NC, USA were tested in a large-scale experiment, including two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT), an organic farming system (OR), an integrated cropping system with animals (IN), a successional field (SU), and a plantation woodlot (WO). Microbial phospholipid fatty acid (PLFA) profiles and substrate utilization patterns (BIOLOG ECO plates) were measured to examine the effects of deintensification on the structure and diversity of soil microbial communities. Principle component analyses of PLFA and BIOLOG data showed that the microbial community structure diverged among the soils of the six systems.Lower microbial diversity was found in lowly managed ecosystem than that in intensive and moderately managed agroecosystems, and both fungal contribution to the total identified PLFAs and the ratio of microbial biomass C/N increased along with agricultural deintensification. Significantly higher ratios of C/N (P < 0.05) were found in the WO and SU systems, and for fungal/bacterial PLFAs in the WO system (P < 0.05). There were also significant decreases (P < 0.05)along with agricultural deintensification for contributions of total bacterial and gram positive (G+) bacterial PLFAs.Agricultural deintensification could facilitate the development of microbial communities that favor soil fungi over bacteria.

  5. Large-scale transport across narrow gaps in rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Guellouz, M.S.; Tavoularis, S. [Univ. of Ottawa (Canada)

    1995-09-01

    Flow visualization and how-wire anemometry were used to investigate the velocity field in a rectangular channel containing a single cylindrical rod, which could be traversed on the centreplane to form gaps of different widths with the plane wall. The presence of large-scale, quasi-periodic structures in the vicinity of the gap has been demonstrated through flow visualization, spectral analysis and space-time correlation measurements. These structures are seen to exist even for relatively large gaps, at least up to W/D=1.350 (W is the sum of the rod diameter, D, and the gap width). The above measurements appear to compatible with the field of a street of three-dimensional, counter-rotating vortices, whose detailed structure, however, remains to be determined. The convection speed and the streamwise spacing of these vortices have been determined as functions of the gap size.

  6. Environmental species sorting dominates forest-bird community assembly across scales.

    Science.gov (United States)

    Özkan, Korhan; Svenning, Jens-Christian; Jeppesen, Erik

    2013-01-01

    Environmental species sorting and dispersal are seen as key factors in community assembly, but their relative importance and scale dependence remain uncertain, as the extent to which communities are consistently assembled throughout their biomes. To address these issues, we analysed bird metacommunity structure in a 1200-km(2) forested landscape (Istranca Forests) in Turkish Thrace at the margin of the Western Palaearctic (WP) temperate-forest biome. First, we used spatial regressions and Mantel tests to assess the relative importance of environmental and spatial factors as drivers of local species richness and composition within the metacommunity. Second, we analysed species' abundance-occupancy relationship across the metacommunity and used null models to assess whether occupancy is determined by species' environmental niches. Third, we used generalized linear models to test for links between species' metacommunity-wide occupancy and their broader WP regional populations and assessed whether these links are consistent with environmental species sorting. There was strong environmental control on local species richness and composition patterns within the metacommunity, but non-environmental spatial factors had also an important joint role. Null model analyses on randomized communities showed that species' occupancy across the metacommunity was strongly determined by species' environmental niches, with occupancy being related to niche position marginality. Species' metacommunity-wide occupancy correlated with their local abundance as well as with their range size and total abundance for the whole WP, suggesting that the same assembly mechanisms act consistently across local to regional scales. A species specialization index that was estimated by bird species' habitat use across France, incorporating both niche position and breadth, was significantly related to species' occupancy and abundance at both metacommunity and WP regional scales. Hence, the same niche

  7. Vibration tests on pile-group foundations using large-scale blast excitation

    International Nuclear Information System (INIS)

    Tanaka, Hideo; Hijikata, Katsuichirou; Hashimoto, Takayuki; Fujiwara, Kazushige; Kontani, Osamu; Miyamoto, Yuji; Suzuki, Atsushi

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. One structure had 25 steel tubular piles and the other had 4 piles. The super-structures were exactly the same. The test pit was backfilled with sand of appropriate grain size distributions in order to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1683 cm/s 2 according to the distances between the test site and the blast areas. Maximum strains were 13,400 micro-strains were recorded at the pile top of the 4-pile structure, which means that these piles were subjected to yielding

  8. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    Science.gov (United States)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  9. Using Agent Base Models to Optimize Large Scale Network for Large System Inventories

    Science.gov (United States)

    Shameldin, Ramez Ahmed; Bowling, Shannon R.

    2010-01-01

    The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.

  10. Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.

    Science.gov (United States)

    Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling

    2015-11-01

    In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.

  11. Predicting taxonomic and functional structure of microbial communities in acid mine drainage.

    Science.gov (United States)

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-06-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  12. A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing.

    Science.gov (United States)

    Rueda, Ana; Vitousek, Sean; Camus, Paula; Tomás, Antonio; Espejo, Antonio; Losada, Inigo J; Barnard, Patrick L; Erikson, Li H; Ruggiero, Peter; Reguero, Borja G; Mendez, Fernando J

    2017-07-11

    Coastal communities throughout the world are exposed to numerous and increasing threats, such as coastal flooding and erosion, saltwater intrusion and wetland degradation. Here, we present the first global-scale analysis of the main drivers of coastal flooding due to large-scale oceanographic factors. Given the large dimensionality of the problem (e.g. spatiotemporal variability in flood magnitude and the relative influence of waves, tides and surge levels), we have performed a computer-based classification to identify geographical areas with homogeneous climates. Results show that 75% of coastal regions around the globe have the potential for very large flooding events with low probabilities (unbounded tails), 82% are tide-dominated, and almost 49% are highly susceptible to increases in flooding frequency due to sea-level rise.

  13. Climate extremes drive changes in functional community structure.

    Science.gov (United States)

    Boucek, Ross E; Rehage, Jennifer S

    2014-06-01

    The response of communities to climate extremes can be quite variable. Much of this variation has been attributed to differences in community-specific functional trait diversity, as well as community composition. Yet, few if any studies have explicitly tested the response of the functional trait structure of communities following climate extremes (CEs). Recently in South Florida, two independent, but sequential potential CEs took place, a 2010 cold front, followed by a 2011 drought, both of which had profound impacts on a subtropical estuarine fish community. These CEs provided an opportunity to test whether the structure of South Florida fish communities following each extreme was a result of species-specific differences in functional traits. From historical temperature (1927-2012) and freshwater inflows records into the estuary (1955-2012), we determined that the cold front was a statistically extreme disturbance, while the drought was not, but rather a decadal rare disturbance. The two disturbances predictably affected different parts of functional community structure and thus different component species. The cold front virtually eliminated tropical species, including large-bodied snook, mojarra species, nonnative cichlids, and striped mullet, while having little affect on temperate fishes. Likewise, the drought severely impacted freshwater fishes including Florida gar, bowfin, and two centrarchids, with little effect on euryhaline species. Our findings illustrate the ability of this approach to predict and detect both the filtering effects of different types of disturbances and the implications of the resulting changes in community structure. Further, we highlight the value of this approach to developing predictive frameworks for better understanding community responses to global change. © 2014 John Wiley & Sons Ltd.

  14. Measuring α in the early universe: CMB temperature, large-scale structure, and Fisher matrix analysis

    International Nuclear Information System (INIS)

    Martins, C. J. A. P.; Melchiorri, A.; Trotta, R.; Bean, R.; Rocha, G.; Avelino, P. P.; Viana, P. T. P.

    2002-01-01

    We extend our recent work on the effects of a time-varying fine-structure constant α in the cosmic microwave background by providing a thorough analysis of the degeneracies between α and the other cosmological parameters, and discussing ways to break these with both existing and/or forthcoming data. In particular, we present the state-of-the-art cosmic microwave background constraints on α through a combined analysis of the BOOMERanG, MAXIMA and DASI data sets. We also present a novel discussion of the constraints on α coming from large-scale structure observations, focusing in particular on the power spectrum from the 2dF survey. Our results are consistent with no variation in α from the epoch of recombination to the present day, and restrict any such variation to be less than about 4%. We show that the forthcoming Microwave Anisotropy Probe and Planck experiments will be able to break most of the currently existing degeneracies between α and other parameters, and measure α to better than percent accuracy

  15. Large-scale structural and textual similarity-based mining of knowledge graph to predict drug-drug interactions

    KAUST Repository

    Abdelaziz, Ibrahim; Fokoue, Achille; Hassanzadeh, Oktie; Zhang, Ping; Sadoghi, Mohammad

    2017-01-01

    Drug-Drug Interactions (DDIs) are a major cause of preventable Adverse Drug Reactions (ADRs), causing a significant burden on the patients’ health and the healthcare system. It is widely known that clinical studies cannot sufficiently and accurately identify DDIs for new drugs before they are made available on the market. In addition, existing public and proprietary sources of DDI information are known to be incomplete and/or inaccurate and so not reliable. As a result, there is an emerging body of research on in-silico prediction of drug-drug interactions. In this paper, we present Tiresias, a large-scale similarity-based framework that predicts DDIs through link prediction. Tiresias takes in various sources of drug-related data and knowledge as inputs, and provides DDI predictions as outputs. The process starts with semantic integration of the input data that results in a knowledge graph describing drug attributes and relationships with various related entities such as enzymes, chemical structures, and pathways. The knowledge graph is then used to compute several similarity measures between all the drugs in a scalable and distributed framework. In particular, Tiresias utilizes two classes of features in a knowledge graph: local and global features. Local features are derived from the information directly associated to each drug (i.e., one hop away) while global features are learnt by minimizing a global loss function that considers the complete structure of the knowledge graph. The resulting similarity metrics are used to build features for a large-scale logistic regression model to predict potential DDIs. We highlight the novelty of our proposed Tiresias and perform thorough evaluation of the quality of the predictions. The results show the effectiveness of Tiresias in both predicting new interactions among existing drugs as well as newly developed drugs.

  16. Large-scale structural and textual similarity-based mining of knowledge graph to predict drug-drug interactions

    KAUST Repository

    Abdelaziz, Ibrahim

    2017-06-12

    Drug-Drug Interactions (DDIs) are a major cause of preventable Adverse Drug Reactions (ADRs), causing a significant burden on the patients’ health and the healthcare system. It is widely known that clinical studies cannot sufficiently and accurately identify DDIs for new drugs before they are made available on the market. In addition, existing public and proprietary sources of DDI information are known to be incomplete and/or inaccurate and so not reliable. As a result, there is an emerging body of research on in-silico prediction of drug-drug interactions. In this paper, we present Tiresias, a large-scale similarity-based framework that predicts DDIs through link prediction. Tiresias takes in various sources of drug-related data and knowledge as inputs, and provides DDI predictions as outputs. The process starts with semantic integration of the input data that results in a knowledge graph describing drug attributes and relationships with various related entities such as enzymes, chemical structures, and pathways. The knowledge graph is then used to compute several similarity measures between all the drugs in a scalable and distributed framework. In particular, Tiresias utilizes two classes of features in a knowledge graph: local and global features. Local features are derived from the information directly associated to each drug (i.e., one hop away) while global features are learnt by minimizing a global loss function that considers the complete structure of the knowledge graph. The resulting similarity metrics are used to build features for a large-scale logistic regression model to predict potential DDIs. We highlight the novelty of our proposed Tiresias and perform thorough evaluation of the quality of the predictions. The results show the effectiveness of Tiresias in both predicting new interactions among existing drugs as well as newly developed drugs.

  17. Large-scale perspective as a challenge

    NARCIS (Netherlands)

    Plomp, M.G.A.

    2012-01-01

    1. Scale forms a challenge for chain researchers: when exactly is something ‘large-scale’? What are the underlying factors (e.g. number of parties, data, objects in the chain, complexity) that determine this? It appears to be a continuum between small- and large-scale, where positioning on that

  18. Algorithm 896: LSA: Algorithms for Large-Scale Optimization

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan

    2009-01-01

    Roč. 36, č. 3 (2009), 16-1-16-29 ISSN 0098-3500 R&D Pro jects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : algorithms * design * large-scale optimization * large-scale nonsmooth optimization * large-scale nonlinear least squares * large-scale nonlinear minimax * large-scale systems of nonlinear equations * sparse pro blems * partially separable pro blems * limited-memory methods * discrete Newton methods * quasi-Newton methods * primal interior-point methods Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.904, year: 2009

  19. Scale interactions in a mixing layer – the role of the large-scale gradients

    KAUST Repository

    Fiscaletti, D.

    2016-02-15

    © 2016 Cambridge University Press. The interaction between the large and the small scales of turbulence is investigated in a mixing layer, at a Reynolds number based on the Taylor microscale of , via direct numerical simulations. The analysis is performed in physical space, and the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale activity. It is found that positive large-scale velocity fluctuations correspond to large vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to low vorticity r.m.s. on the high-speed side. The relationship between large and small scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale velocity fluctuations. On the contrary, the correlation coefficient is nearly constant throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with the large-scale velocity gradients. Therefore, the small-scale activity appears closely related to large-scale gradients, while the correlation between the small-scale activity and the large-scale velocity fluctuations is shown to reflect a property of the large scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass filtered (large scales) velocity fields tend to be aligned when examined within vortical tubes. These results provide evidence for the so-called \\'scale invariance\\' (Meneveau & Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1-32), and suggest that some of the large-scale characteristics are not lost at the small scales, at least at the Reynolds number achieved in the present simulation.

  20. Parallel Computational Fluid Dynamics 2007 : Implementations and Experiences on Large Scale and Grid Computing

    CERN Document Server

    2009-01-01

    At the 19th Annual Conference on Parallel Computational Fluid Dynamics held in Antalya, Turkey, in May 2007, the most recent developments and implementations of large-scale and grid computing were presented. This book, comprised of the invited and selected papers of this conference, details those advances, which are of particular interest to CFD and CFD-related communities. It also offers the results related to applications of various scientific and engineering problems involving flows and flow-related topics. Intended for CFD researchers and graduate students, this book is a state-of-the-art presentation of the relevant methodology and implementation techniques of large-scale computing.

  1. Inference of Functional Properties from Large-scale Analysis of Enzyme Superfamilies*

    Science.gov (United States)

    Brown, Shoshana D.; Babbitt, Patricia C.

    2012-01-01

    As increasingly large amounts of data from genome and other sequencing projects become available, new approaches are needed to determine the functions of the proteins these genes encode. We show how large-scale computational analysis can help to address this challenge by linking functional information to sequence and structural similarities using protein similarity networks. Network analyses using three functionally diverse enzyme superfamilies illustrate the use of these approaches for facile updating and comparison of available structures for a large superfamily, for creation of functional hypotheses for metagenomic sequences, and to summarize the limits of our functional knowledge about even well studied superfamilies. PMID:22069325

  2. Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks.

    Science.gov (United States)

    Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Trautwein, Fynn-Mathis; Kanske, Philipp; Singer, Tania

    2017-02-01

    Functional neuroimaging studies have suggested the existence of 2 largely distinct social cognition networks, one for theory of mind (taking others' cognitive perspective) and another for empathy (sharing others' affective states). To address whether these networks can also be dissociated at the level of brain structure, we combined behavioral phenotyping across multiple socio-cognitive tasks with 3-Tesla MRI cortical thickness and structural covariance analysis in 270 healthy adults, recruited across 2 sites. Regional thickness mapping only provided partial support for divergent substrates, highlighting that individual differences in empathy relate to left insular-opercular thickness while no correlation between thickness and mentalizing scores was found. Conversely, structural covariance analysis showed clearly divergent network modulations by socio-cognitive and -affective phenotypes. Specifically, individual differences in theory of mind related to structural integration between temporo-parietal and dorsomedial prefrontal regions while empathy modulated the strength of dorsal anterior insula networks. Findings were robust across both recruitment sites, suggesting generalizability. At the level of structural network embedding, our study provides a double dissociation between empathy and mentalizing. Moreover, our findings suggest that structural substrates of higher-order social cognition are reflected rather in interregional networks than in the the local anatomical markup of specific regions per se. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. HOW ECOLOGICAL COMMUNITIES ARE STRUCTURED: A REVIEW ON ECOLOGICAL ASSEMBLY RULES

    Directory of Open Access Journals (Sweden)

    Gabriel Jaime Colorado Zuluaga

    Full Text Available Whether biological communities are deterministic or stochastic assemblages of species has long been a central topic of ecology. The widely demonstrated presence of structural patterns in nature may imply the existence of rules that regulate the organization of ecological communities. In this review, I present a compilation of major assembly rules that fundament, in a great proportion, the community assembly theory. Initially, I present a general overview of key concepts associated to the assembly of communities, in particular the origin of assembly rules, definition, the problem of scale and underlying mechanisms in the structure of ecological communities. Subsequently, two major approaches or paradigms (i.e. species-based and trait-based for the assembly of communities are discussed. Finally, major tested assembly rules are explored and discussed under the light of available published literature.

  4. Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden maritime oak stand

    Science.gov (United States)

    Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.

    2014-12-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when

  5. Large-scale matrix-handling subroutines 'ATLAS'

    International Nuclear Information System (INIS)

    Tsunematsu, Toshihide; Takeda, Tatsuoki; Fujita, Keiichi; Matsuura, Toshihiko; Tahara, Nobuo

    1978-03-01

    Subroutine package ''ATLAS'' has been developed for handling large-scale matrices. The package is composed of four kinds of subroutines, i.e., basic arithmetic routines, routines for solving linear simultaneous equations and for solving general eigenvalue problems and utility routines. The subroutines are useful in large scale plasma-fluid simulations. (auth.)

  6. Validating the Factor Structure of the Self-Report Psychopathy Scale in a Community Sample

    Science.gov (United States)

    Mahmut, Mehmet K.; Menictas, Con; Stevenson, Richard J.; Homewood, Judi

    2011-01-01

    Currently, there is no standard self-report measure of psychopathy in community-dwelling samples that parallels the most commonly used measure of psychopathy in forensic and clinical samples, the Psychopathy Checklist. A promising instrument is the Self-Report Psychopathy scale (SRP), which was derived from the original version the Psychopathy…

  7. Dynamical links between small- and large-scale mantle heterogeneity: Seismological evidence

    Science.gov (United States)

    Frost, Daniel A.; Garnero, Edward J.; Rost, Sebastian

    2018-01-01

    We identify PKP • PKP scattered waves (also known as P‧ •P‧) from earthquakes recorded at small-aperture seismic arrays at distances less than 65°. P‧ •P‧ energy travels as a PKP wave through the core, up into the mantle, then scatters back down through the core to the receiver as a second PKP. P‧ •P‧ waves are unique in that they allow scattering heterogeneities throughout the mantle to be imaged. We use array-processing methods to amplify low amplitude, coherent scattered energy signals and resolve their incoming direction. We deterministically map scattering heterogeneity locations from the core-mantle boundary to the surface. We use an extensive dataset with sensitivity to a large volume of the mantle and a location method allowing us to resolve and map more heterogeneities than have previously been possible, representing a significant increase in our understanding of small-scale structure within the mantle. Our results demonstrate that the distribution of scattering heterogeneities varies both radially and laterally. Scattering is most abundant in the uppermost and lowermost mantle, and a minimum in the mid-mantle, resembling the radial distribution of tomographically derived whole-mantle velocity heterogeneity. We investigate the spatial correlation of scattering heterogeneities with large-scale tomographic velocities, lateral velocity gradients, the locations of deep-seated hotspots and subducted slabs. In the lowermost 1500 km of the mantle, small-scale heterogeneities correlate with regions of low seismic velocity, high lateral seismic gradient, and proximity to hotspots. In the upper 1000 km of the mantle there is no significant correlation between scattering heterogeneity location and subducted slabs. Between 600 and 900 km depth, scattering heterogeneities are more common in the regions most remote from slabs, and close to hotspots. Scattering heterogeneities show an affinity for regions close to slabs within the upper 200 km of the

  8. Large-scale synthesis of hierarchical-structured weissite (Cu2−xTe) flake arrays and their catalytic properties

    International Nuclear Information System (INIS)

    Cao, Xinjiang; Yan, Shancheng; Ortiz, Lazarus Santiago; Liang, Gaofeng; Sun, Bo; Huang, Ningping; Xiao, Zhongdang

    2014-01-01

    Graphical abstract: - Highlights: • Large-scale Cu 2−x Te flake arrays grown on copper foam were synthesized. • They possess superior catalytic efficiency on methylene blue with the assistance of H 2 O 2 . • The effects of preparing conditions on the growth of Cu 2−x Te flake arrays were investigated. - Abstract: Large-scale weissite (Cu 2−x Te) flake arrays with three-dimensional (3D) hierarchical structure have been successfully fabricated via a facile one-step solution-phase strategy through the reaction of tellurium powder and copper foam. At the end of the reaction Cu 2−x Te flakes were distributed evenly on the surface of a porous solid copper substrate. Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis showed the abundance of flakes grown on the 3D porous copper architecture, while X-ray diffraction (XRD) and energy-dispersive X-ray spectra (EDS) were used to determine the crystal structure and phase composition of these products. A series of experiments discovered that the size and morphology of the products could be affected by some reactive parameters including the reaction time, synthesis temperature and volume ratio of absolute ethanol/deionized water. Catalysis experiments using the in situ synthesized of Cu 2−x Te flakes to catalyze the degradation of methylene blue (MB) demonstrated the strong catalytic ability of these flakes

  9. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  10. Generation and saturation of large-scale flows in flute turbulence

    International Nuclear Information System (INIS)

    Sandberg, I.; Isliker, H.; Pavlenko, V. P.; Hizanidis, K.; Vlahos, L.

    2005-01-01

    The excitation and suppression of large-scale anisotropic modes during the temporal evolution of a magnetic-curvature-driven electrostatic flute instability are numerically investigated. The formation of streamerlike structures is attributed to the linear development of the instability while the subsequent excitation of the zonal modes is the result of the nonlinear coupling between linearly grown flute modes. When the amplitudes of the zonal modes become of the same order as that of the streamer modes, the flute instabilities get suppressed and poloidal (zonal) flows dominate. In the saturated state that follows, the dominant large-scale modes of the potential and the density are self-organized in different ways, depending on the value of the ion temperature

  11. Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient.

    Science.gov (United States)

    Pillsbury, Finn C; Miller, James R

    2008-07-01

    Urbanization has been cited as an important factor in worldwide amphibian declines, and although recent work has illustrated the important influence of broad-scale ecological patterns and processes on amphibian populations, little is known about the factors structuring amphibian communities in urban landscapes. We therefore examined amphibian community responses to wetland habitat availability and landscape characteristics along an urban-rural gradient in central Iowa, USA, a region experiencing rapid suburban growth. We conducted call surveys at 61 wetlands to estimate anuran calling activity, and quantified wetland habitat structure and landscape context. We used canonical correspondence analysis (CCA) to examine patterns in anuran community structure and identify the most important variables associated with those patterns. Urban density at the landscape scale had a significant negative influence on overall anuran abundance and diversity. While every species exhibited a decrease in abundance with increasing urban density, this pattern was especially pronounced for species requiring post-breeding upland habitats. Anurans most affected by urbanization were those associated with short hydroperiods, early breeding activity, and substantial upland habitat use. We suggest that broad-scale landscape fragmentation is an important factor underlying anuran community structure in this region, possibly due to limitations on the accessibility of otherwise suitable habitat in fragmented urban landscapes. This study underscores the importance of a regional approach to amphibian conservation in urban and urbanizing areas; in fragmented landscapes, a network of interconnected wetland and upland habitats may be more likely to support a successful, diverse anuran community than will isolated sites.

  12. Clustering structures of large proteins using multifractal analyses based on a 6-letter model and hydrophobicity scale of amino acids

    International Nuclear Information System (INIS)

    Yang Jianyi; Yu Zuguo; Anh, Vo

    2009-01-01

    The Schneider and Wrede hydrophobicity scale of amino acids and the 6-letter model of protein are proposed to study the relationship between the primary structure and the secondary structural classification of proteins. Two kinds of multifractal analyses are performed on the two measures obtained from these two kinds of data on large proteins. Nine parameters from the multifractal analyses are considered to construct the parameter spaces. Each protein is represented by one point in these spaces. A procedure is proposed to separate large proteins in the α, β, α + β and α/β structural classes in these parameter spaces. Fisher's linear discriminant algorithm is used to assess our clustering accuracy on the 49 selected large proteins. Numerical results indicate that the discriminant accuracies are satisfactory. In particular, they reach 100.00% and 84.21% in separating the α proteins from the {β, α + β, α/β} proteins in a parameter space; 92.86% and 86.96% in separating the β proteins from the {α + β, α/β} proteins in another parameter space; 91.67% and 83.33% in separating the α/β proteins from the α + β proteins in the last parameter space.

  13. LARGE-SCALE FILAMENTARY STRUCTURES AROUND THE VIRGO CLUSTER REVISITED

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk; Rey, Soo-Chang; Lee, Youngdae; Lee, Woong; Chung, Jiwon [Department of Astronomy and Space Science, Chungnam National University, 99 Daehak-ro, Daejeon 305-764 (Korea, Republic of); Bureau, Martin [Sub-department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Yoon, Hyein; Chung, Aeree [Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Jerjen, Helmut [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Lisker, Thorsten [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Jeong, Hyunjin; Sung, Eon-Chang, E-mail: screy@cnu.ac.kr, E-mail: star4citizen@kasi.re.kr [Korea Astronomy and Space Science institute, 776 Daedeokdae-ro, Daejeon 305-348 (Korea, Republic of)

    2016-12-20

    We revisit the filamentary structures of galaxies around the Virgo cluster, exploiting a larger data set, based on the HyperLeda database, than previous studies. In particular, this includes a large number of low-luminosity galaxies, resulting in better sampled individual structures. We confirm seven known structures in the distance range 4  h {sup −1} Mpc < SGY < 16  h {sup −1} Mpc, now identified as filaments, where SGY is the axis of the supergalactic coordinate system roughly along the line of sight. The Hubble diagram of the filament galaxies suggests they are infalling toward the main body of the Virgo cluster. We propose that the collinear distribution of giant elliptical galaxies along the fundamental axis of the Virgo cluster is smoothly connected to two of these filaments (Leo II A and B). Behind the Virgo cluster (16  h {sup −1} Mpc < SGY < 27  h {sup −1} Mpc), we also identify a new filament elongated toward the NGC 5353/4 group (“NGC 5353/4 filament”) and confirm a sheet that includes galaxies from the W and M clouds of the Virgo cluster (“W–M sheet”). In the Hubble diagram, the NGC 5353/4 filament galaxies show infall toward the NGC 5353/4 group, whereas the W–M sheet galaxies do not show hints of gravitational influence from the Virgo cluster. The filamentary structures identified can now be used to better understand the generic role of filaments in the build-up of galaxy clusters at z  ≈ 0.

  14. Developing A Large-Scale, Collaborative, Productive Geoscience Education Network

    Science.gov (United States)

    Manduca, C. A.; Bralower, T. J.; Egger, A. E.; Fox, S.; Ledley, T. S.; Macdonald, H.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.

    2012-12-01

    Over the past 15 years, the geoscience education community has grown substantially and developed broad and deep capacity for collaboration and dissemination of ideas. While this community is best viewed as emergent from complex interactions among changing educational needs and opportunities, we highlight the role of several large projects in the development of a network within this community. In the 1990s, three NSF projects came together to build a robust web infrastructure to support the production and dissemination of on-line resources: On The Cutting Edge (OTCE), Earth Exploration Toolbook, and Starting Point: Teaching Introductory Geoscience. Along with the contemporaneous Digital Library for Earth System Education, these projects engaged geoscience educators nationwide in exploring professional development experiences that produced lasting on-line resources, collaborative authoring of resources, and models for web-based support for geoscience teaching. As a result, a culture developed in the 2000s in which geoscience educators anticipated that resources for geoscience teaching would be shared broadly and that collaborative authoring would be productive and engaging. By this time, a diverse set of examples demonstrated the power of the web infrastructure in supporting collaboration, dissemination and professional development . Building on this foundation, more recent work has expanded both the size of the network and the scope of its work. Many large research projects initiated collaborations to disseminate resources supporting educational use of their data. Research results from the rapidly expanding geoscience education research community were integrated into the Pedagogies in Action website and OTCE. Projects engaged faculty across the nation in large-scale data collection and educational research. The Climate Literacy and Energy Awareness Network and OTCE engaged community members in reviewing the expanding body of on-line resources. Building Strong

  15. Graph-based linear scaling electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Germann, Timothy C.; Bock, Nicolas [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mniszewski, Susan M.; Mohd-Yusof, Jamal; Wall, Michael E.; Djidjev, Hristo [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rubensson, Emanuel H. [Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala (Sweden)

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  16. How CMB and large-scale structure constrain chameleon interacting dark energy

    International Nuclear Information System (INIS)

    Boriero, Daniel; Das, Subinoy; Wong, Yvonne Y.Y.

    2015-01-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H 0 tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H 0 value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys

  17. How CMB and large-scale structure constrain chameleon interacting dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Boriero, Daniel [Fakultät für Physik, Universität Bielefeld, Universitätstr. 25, Bielefeld (Germany); Das, Subinoy [Indian Institute of Astrophisics, Bangalore, 560034 (India); Wong, Yvonne Y.Y., E-mail: boriero@physik.uni-bielefeld.de, E-mail: subinoy@iiap.res.in, E-mail: yvonne.y.wong@unsw.edu.au [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)

    2015-07-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.

  18. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients.

    Science.gov (United States)

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P; Ritchie, Robert O

    2015-12-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required.

  19. Error and attack tolerance of synchronization in Hindmarsh–Rose neural networks with community structure

    International Nuclear Information System (INIS)

    Li, Chun-Hsien; Yang, Suh-Yuh

    2014-01-01

    Synchronization is one of the most important features observed in large-scale complex networks of interacting dynamical systems. As is well known, there is a close relation between the network topology and the network synchronizability. Using the coupled Hindmarsh–Rose neurons with community structure as a model network, in this paper we explore how failures of the nodes due to random errors or intentional attacks affect the synchronizability of community networks. The intentional attacks are realized by removing a fraction of the nodes with high values in some centrality measure such as the centralities of degree, eigenvector, betweenness and closeness. According to the master stability function method, we employ the algebraic connectivity of the considered community network as an indicator to examine the network synchronizability. Numerical evidences show that the node failure strategy based on the betweenness centrality has the most influence on the synchronizability of community networks. With this node failure strategy for a given network with a fixed number of communities, we find that the larger the degree of communities, the worse the network synchronizability; however, for a given network with a fixed degree of communities, we observe that the more the number of communities, the better the network synchronizability.

  20. Two-Level Chebyshev Filter Based Complementary Subspace Method: Pushing the Envelope of Large-Scale Electronic Structure Calculations.

    Science.gov (United States)

    Banerjee, Amartya S; Lin, Lin; Suryanarayana, Phanish; Yang, Chao; Pask, John E

    2018-06-12

    We describe a novel iterative strategy for Kohn-Sham density functional theory calculations aimed at large systems (>1,000 electrons), applicable to metals and insulators alike. In lieu of explicit diagonalization of the Kohn-Sham Hamiltonian on every self-consistent field (SCF) iteration, we employ a two-level Chebyshev polynomial filter based complementary subspace strategy to (1) compute a set of vectors that span the occupied subspace of the Hamiltonian; (2) reduce subspace diagonalization to just partially occupied states; and (3) obtain those states in an efficient, scalable manner via an inner Chebyshev filter iteration. By reducing the necessary computation to just partially occupied states and obtaining these through an inner Chebyshev iteration, our approach reduces the cost of large metallic calculations significantly, while eliminating subspace diagonalization for insulating systems altogether. We describe the implementation of the method within the framework of the discontinuous Galerkin (DG) electronic structure method and show that this results in a computational scheme that can effectively tackle bulk and nano systems containing tens of thousands of electrons, with chemical accuracy, within a few minutes or less of wall clock time per SCF iteration on large-scale computing platforms. We anticipate that our method will be instrumental in pushing the envelope of large-scale ab initio molecular dynamics. As a demonstration of this, we simulate a bulk silicon system containing 8,000 atoms at finite temperature, and obtain an average SCF step wall time of 51 s on 34,560 processors; thus allowing us to carry out 1.0 ps of ab initio molecular dynamics in approximately 28 h (of wall time).