WorldWideScience

Sample records for large-scale atomistic simulations

  1. Atomistic mechanism of graphene growth on a SiC substrate: Large-scale molecular dynamics simulations based on a new charge-transfer bond-order type potential

    Science.gov (United States)

    Takamoto, So; Yamasaki, Takahiro; Nara, Jun; Ohno, Takahisa; Kaneta, Chioko; Hatano, Asuka; Izumi, Satoshi

    2018-03-01

    Thermal decomposition of silicon carbide is a promising approach for the fabrication of graphene. However, the atomistic growth mechanism of graphene remains unclear. This paper describes the development of a new charge-transfer interatomic potential. Carbon bonds with a wide variety of characteristics can be reproduced by the proposed vectorized bond-order term. A large-scale thermal decomposition simulation enables us to observe the continuous growth process of the multiring carbon structure. The annealing simulation reveals the atomistic process by which the multiring carbon structure is transformed to flat graphene involving only six-membered rings. Also, it is found that the surface atoms of the silicon carbide substrate enhance the homogeneous graphene formation.

  2. Atomistic simulations of graphite etching at realistic time scales.

    Science.gov (United States)

    Aussems, D U B; Bal, K M; Morgan, T W; van de Sanden, M C M; Neyts, E C

    2017-10-01

    Hydrogen-graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe time-scale limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of ∼10 20 m -2 s -1 . The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C-C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching - chemical erosion - is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.

  3. Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

    Directory of Open Access Journals (Sweden)

    Pavel V. Komarov

    2013-09-01

    Full Text Available Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic and minority (hydrophilic subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25–50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping mechanism as a significant contributor to the proton conductivity.

  4. Atomistic simulations of materials: Methods for accurate potentials and realistic time scales

    Science.gov (United States)

    Tiwary, Pratyush

    This thesis deals with achieving more realistic atomistic simulations of materials, by developing accurate and robust force-fields, and algorithms for practical time scales. I develop a formalism for generating interatomic potentials for simulating atomistic phenomena occurring at energy scales ranging from lattice vibrations to crystal defects to high-energy collisions. This is done by fitting against an extensive database of ab initio results, as well as to experimental measurements for mixed oxide nuclear fuels. The applicability of these interactions to a variety of mixed environments beyond the fitting domain is also assessed. The employed formalism makes these potentials applicable across all interatomic distances without the need for any ambiguous splining to the well-established short-range Ziegler-Biersack-Littmark universal pair potential. We expect these to be reliable potentials for carrying out damage simulations (and molecular dynamics simulations in general) in nuclear fuels of varying compositions for all relevant atomic collision energies. A hybrid stochastic and deterministic algorithm is proposed that while maintaining fully atomistic resolution, allows one to achieve milliseconds and longer time scales for several thousands of atoms. The method exploits the rare event nature of the dynamics like other such methods, but goes beyond them by (i) not having to pick a scheme for biasing the energy landscape, (ii) providing control on the accuracy of the boosted time scale, (iii) not assuming any harmonic transition state theory (HTST), and (iv) not having to identify collective coordinates or interesting degrees of freedom. The method is validated by calculating diffusion constants for vacancy-mediated diffusion in iron metal at low temperatures, and comparing against brute-force high temperature molecular dynamics. We also calculate diffusion constants for vacancy diffusion in tantalum metal, where we compare against low-temperature HTST as well

  5. Atomistic Simulations of Small-scale Materials Tests of Nuclear Materials

    International Nuclear Information System (INIS)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun

    2012-01-01

    Degradation of materials properties under neutron irradiation is one of the key issues affecting the lifetime of nuclear reactors. Evaluating the property changes of materials due to irradiations and understanding the role of microstructural changes on mechanical properties are required for ensuring reliable and safe operation of a nuclear reactor. However, high dose of neuron irradiation capabilities are rather limited and it is difficult to discriminate various factors affecting the property changes of materials. Ion beam irradiation can be used to investigate radiation damage to materials in a controlled way, but has the main limitation of small penetration depth in the length scale of micro meters. Over the past decade, the interest in the investigations of size-dependent mechanical properties has promoted the development of various small-scale materials tests, e.g. nanoindentation and micro/nano-pillar compression tests. Small-scale materials tests can address the issue of the limitation of small penetration depth of ion irradiation. In this paper, we present small-scale materials tests (experiments and simulation) which are applied to study the size and irradiation effects on mechanical properties. We have performed molecular dynamics simulations of nanoindentation and nanopillar compression tests. These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials

  6. Large-scale computing with Quantum Espresso

    International Nuclear Information System (INIS)

    Giannozzi, P.; Cavazzoni, C.

    2009-01-01

    This paper gives a short introduction to Quantum Espresso: a distribution of software for atomistic simulations in condensed-matter physics, chemical physics, materials science, and to its usage in large-scale parallel computing.

  7. Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory

    Directory of Open Access Journals (Sweden)

    Vashishta P.

    2011-05-01

    Full Text Available A linear-scaling algorithm based on a divide-and-conquer (DC scheme is designed to perform large-scale molecular-dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT. This scheme is applied to the thermite reaction at an Al/Fe2O3 interface. It is found that mass diffusion and reaction rate at the interface are enhanced by a concerted metal-oxygen flip mechanism. Preliminary simulations are carried out for an aluminum particle in water based on the conventional DFT, as a target system for large-scale DC-DFT simulations. A pair of Lewis acid and base sites on the aluminum surface preferentially catalyzes hydrogen production in a low activation-barrier mechanism found in the simulations

  8. Amp: A modular approach to machine learning in atomistic simulations

    Science.gov (United States)

    Khorshidi, Alireza; Peterson, Andrew A.

    2016-10-01

    Electronic structure calculations, such as those employing Kohn-Sham density functional theory or ab initio wavefunction theories, have allowed for atomistic-level understandings of a wide variety of phenomena and properties of matter at small scales. However, the computational cost of electronic structure methods drastically increases with length and time scales, which makes these methods difficult for long time-scale molecular dynamics simulations or large-sized systems. Machine-learning techniques can provide accurate potentials that can match the quality of electronic structure calculations, provided sufficient training data. These potentials can then be used to rapidly simulate large and long time-scale phenomena at similar quality to the parent electronic structure approach. Machine-learning potentials usually take a bias-free mathematical form and can be readily developed for a wide variety of systems. Electronic structure calculations have favorable properties-namely that they are noiseless and targeted training data can be produced on-demand-that make them particularly well-suited for machine learning. This paper discusses our modular approach to atomistic machine learning through the development of the open-source Atomistic Machine-learning Package (Amp), which allows for representations of both the total and atom-centered potential energy surface, in both periodic and non-periodic systems. Potentials developed through the atom-centered approach are simultaneously applicable for systems with various sizes. Interpolation can be enhanced by introducing custom descriptors of the local environment. We demonstrate this in the current work for Gaussian-type, bispectrum, and Zernike-type descriptors. Amp has an intuitive and modular structure with an interface through the python scripting language yet has parallelizable fortran components for demanding tasks; it is designed to integrate closely with the widely used Atomic Simulation Environment (ASE), which

  9. Parallel Atomistic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    HEFFELFINGER,GRANT S.

    2000-01-18

    Algorithms developed to enable the use of atomistic molecular simulation methods with parallel computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged) interactions are included. While strategies for obtaining parallel molecular simulations have been developed for the full variety of atomistic simulation methods, molecular dynamics and Monte Carlo have received the most attention. Three main types of parallel molecular dynamics simulations have been developed, the replicated data decomposition, the spatial decomposition, and the force decomposition. For Monte Carlo simulations, parallel algorithms have been developed which can be divided into two categories, those which require a modified Markov chain and those which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein structure determination are also reviewed and issues such as how to measure parallel efficiency, especially in the case of parallel Monte Carlo algorithms with modified Markov chains are discussed.

  10. Elastic dipoles of point defects from atomistic simulations

    Science.gov (United States)

    Varvenne, Céline; Clouet, Emmanuel

    2017-12-01

    The interaction of point defects with an external stress field or with other structural defects is usually well described within continuum elasticity by the elastic dipole approximation. Extraction of the elastic dipoles from atomistic simulations is therefore a fundamental step to connect an atomistic description of the defect with continuum models. This can be done either by a fitting of the point-defect displacement field, by a summation of the Kanzaki forces, or by a linking equation to the residual stress. We perform here a detailed comparison of these different available methods to extract elastic dipoles, and show that they all lead to the same values when the supercell of the atomistic simulations is large enough and when the anharmonic region around the point defect is correctly handled. But, for small simulation cells compatible with ab initio calculations, only the definition through the residual stress appears tractable. The approach is illustrated by considering various point defects (vacancy, self-interstitial, and hydrogen solute atom) in zirconium, using both empirical potentials and ab initio calculations.

  11. Atomistic Simulation of Initiation in Hexanitrostilbene

    Science.gov (United States)

    Shan, Tzu-Ray; Wixom, Ryan; Yarrington, Cole; Thompson, Aidan

    2015-06-01

    We report on the effect of cylindrical voids on hot spot formation, growth and chemical reaction initiation in hexanitrostilbene (HNS) crystals subjected to shock. Large-scale, reactive molecular dynamics simulations are performed using the reactive force field (ReaxFF) as implemented in the LAMMPS software. The ReaxFF force field description for HNS has been validated previously by comparing the isothermal equation of state to available diamond anvil cell (DAC) measurements and density function theory (DFT) calculations and by comparing the primary dissociation pathway to ab initio calculations. Micron-scale molecular dynamics simulations of a supported shockwave propagating through the HNS crystal along the [010] orientation are performed with an impact velocity (or particle velocity) of 1.25 km/s, resulting in shockwave propagation at 4.0 km/s in the bulk material and a bulk shock pressure of ~ 11GPa. The effect of cylindrical void sizes varying from 0.02 to 0.1 μm on hot spot formation and growth rate has been studied. Interaction between multiple voids in the HNS crystal and its effect on hot spot formation will also be addressed. Results from the micron-scale atomistic simulations are compared with hydrodynamics simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  12. Robust mode space approach for atomistic modeling of realistically large nanowire transistors

    Science.gov (United States)

    Huang, Jun Z.; Ilatikhameneh, Hesameddin; Povolotskyi, Michael; Klimeck, Gerhard

    2018-01-01

    Nanoelectronic transistors have reached 3D length scales in which the number of atoms is countable. Truly atomistic device representations are needed to capture the essential functionalities of the devices. Atomistic quantum transport simulations of realistically extended devices are, however, computationally very demanding. The widely used mode space (MS) approach can significantly reduce the numerical cost, but a good MS basis is usually very hard to obtain for atomistic full-band models. In this work, a robust and parallel algorithm is developed to optimize the MS basis for atomistic nanowires. This enables engineering-level, reliable tight binding non-equilibrium Green's function simulation of nanowire metal-oxide-semiconductor field-effect transistor (MOSFET) with a realistic cross section of 10 nm × 10 nm using a small computer cluster. This approach is applied to compare the performance of InGaAs and Si nanowire n-type MOSFETs (nMOSFETs) with various channel lengths and cross sections. Simulation results with full-band accuracy indicate that InGaAs nanowire nMOSFETs have no drive current advantage over their Si counterparts for cross sections up to about 10 nm × 10 nm.

  13. Atomistic computer simulations a practical guide

    CERN Document Server

    Brazdova, Veronika

    2013-01-01

    Many books explain the theory of atomistic computer simulations; this book teaches you how to run them This introductory ""how to"" title enables readers to understand, plan, run, and analyze their own independent atomistic simulations, and decide which method to use and which questions to ask in their research project. It is written in a clear and precise language, focusing on a thorough understanding of the concepts behind the equations and how these are used in the simulations. As a result, readers will learn how to design the computational model and which parameters o

  14. Hierarchical Approach to 'Atomistic' 3-D MOSFET Simulation

    Science.gov (United States)

    Asenov, Asen; Brown, Andrew R.; Davies, John H.; Saini, Subhash

    1999-01-01

    We present a hierarchical approach to the 'atomistic' simulation of aggressively scaled sub-0.1 micron MOSFET's. These devices are so small that their characteristics depend on the precise location of dopant atoms within them, not just on their average density. A full-scale three-dimensional drift-diffusion atomistic simulation approach is first described and used to verify more economical, but restricted, options. To reduce processor time and memory requirements at high drain voltage, we have developed a self-consistent option based on a solution of the current continuity equation restricted to a thin slab of the channel. This is coupled to the solution of the Poisson equation in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison to the full self-consistent solution. At low drain voltage, a single solution of the nonlinear Poisson equation is sufficient to extract the current with satisfactory accuracy. In this case, the current is calculated by solving the current continuity equation in a drift approximation only, also in a thin slab containing the MOSFET channel. The regions of applicability for the different components of this hierarchical approach are illustrated in example simulations covering the random dopant-induced threshold voltage fluctuations, threshold voltage lowering, threshold voltage asymmetry, and drain current fluctuations.

  15. Ionic diffusion in quartz studied by transport measurements, SIMS and atomistic simulations

    International Nuclear Information System (INIS)

    Sartbaeva, Asel; Wells, Stephen A; Redfern, Simon A T; Hinton, Richard W; Reed, Stephen J B

    2005-01-01

    Ionic diffusion in the quartz-β-eucryptite system is studied by DC transport measurements, SIMS and atomistic simulations. Transport data show a large transient increase in ionic current at the α-β phase transition of quartz (the Hedvall effect). The SIMS data indicate two diffusion processes, one involving rapid Li + motion and the other involving penetration of Al and Li atoms into quartz at the phase transition. Atomistic simulations explain why the fine microstructure of twin domain walls in quartz near the transition does not hinder Li + diffusion

  16. Quantum-based Atomistic Simulation of Transition Metals

    International Nuclear Information System (INIS)

    Moriarty, J A; Benedict, L X; Glosli, J N; Hood, R Q; Orlikowski, D A; Patel, M V; Soderlind, P; Streitz, F H; Tang, M; Yang, L H

    2005-01-01

    First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in d-electron transition metals within density-functional quantum mechanics. In mid-period bcc metals, where multi-ion angular forces are important to structural properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions of pressure and temperature. Recent algorithm improvements have also led to a more general matrix representation of MGPT beyond canonical bands allowing increased accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed, and the current development of temperature-dependent potentials

  17. Comparative simulations of microjetting using atomistic and continuous approaches in the presence of viscosity and surface tension

    Science.gov (United States)

    Durand, O.; Jaouen, S.; Soulard, L.; Heuzé, O.; Colombet, L.

    2017-10-01

    We compare, at similar scales, the processes of microjetting and ejecta production from shocked roughened metal surfaces by using atomistic and continuous approaches. The atomistic approach is based on very large scale molecular dynamics (MD) simulations with systems containing up to 700 × 106 atoms. The continuous approach is based on Eulerian hydrodynamics simulations with adaptive mesh refinement; the simulations take into account the effects of viscosity and surface tension, and the equation of state is calculated from the MD simulations. The microjetting is generated by shock-loading above its fusion point a three-dimensional tin crystal with an initial sinusoidal free surface perturbation, the crystal being set in contact with a vacuum. Several samples with homothetic wavelengths and amplitudes of defect are simulated in order to investigate the influence of viscosity and surface tension of the metal. The simulations show that the hydrodynamic code reproduces with very good agreement the profiles, calculated from the MD simulations, of the ejected mass and velocity along the jet. Both codes also exhibit a similar fragmentation phenomenology of the metallic liquid sheets ejected, although the fragmentation seed is different. We show in particular, that it depends on the mesh size in the continuous approach.

  18. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches...

  19. Physically representative atomistic modeling of atomic-scale friction

    Science.gov (United States)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the

  20. Analysis of Twisting of Cellulose Nanofibrils in Atomistic Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Paavilainen, S.; Rog, T.; Vattulainen, I.

    2011-01-01

    We use atomistic molecular dynamics simulations to study the crystal structure of cellulose nanofibrils, whose sizes are comparable with the crystalline parts in commercial nanocellulose. The simulations show twisting, whose rate of relaxation is strongly temperature dependent. Meanwhile......, no significant bending or stretching of nanocellulose is discovered. Considerations of atomic-scale interaction patterns bring about that the twisting arises from hydrogen bonding within and between the chains in a fibril....

  1. Hierarchical Statistical 3D ' Atomistic' Simulation of Decanano MOSFETs: Drift-Diffusion, Hydrodynamic and Quantum Mechanical Approaches

    Science.gov (United States)

    Asenov, Asen; Brown, A. R.; Slavcheva, G.; Davies, J. H.

    2000-01-01

    When MOSFETs are scaled to deep submicron dimensions the discreteness and randomness of the dopant charges in the channel region introduces significant fluctuations in the device characteristics. This effect, predicted 20 year ago, has been confirmed experimentally and in simulation studies. The impact of the fluctuations on the functionality, yield, and reliability of the corresponding systems shifts the paradigm of the numerical device simulation. It becomes insufficient to simulate only one device representing one macroscopical design in a continuous charge approximation. An ensemble of macroscopically identical but microscopically different devices has to be characterized by simulation of statistically significant samples. The aims of the numerical simulations shift from predicting the characteristics of a single device with continuous doping towards estimating the mean values and the standard deviations of basic design parameters such as threshold voltage, subthreshold slope, transconductance, drive current, etc. for the whole ensemble of 'atomistically' different devices in the system. It has to be pointed out that even the mean values obtained from 'atomistic' simulations are not identical to the values obtained from continuous doping simulations. In this paper we present a hierarchical approach to the 'atomistic' simulation of aggressively scaled decanano MOSFETs. A full scale 3D drift-diffusion'atomostic' simulation approach is first described and used for verification of the more economical, but also more restricted, options. To reduce the processor time and memory requirements at high drain voltage we have developed a self-consistent option based on a thin slab solution of the current continuity equation only in the channel region. This is coupled to the Poisson's equation solution in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison with the full self-consistent solution. At low drain

  2. Scalable Atomistic Simulation Algorithms for Materials Research

    Directory of Open Access Journals (Sweden)

    Aiichiro Nakano

    2002-01-01

    Full Text Available A suite of scalable atomistic simulation programs has been developed for materials research based on space-time multiresolution algorithms. Design and analysis of parallel algorithms are presented for molecular dynamics (MD simulations and quantum-mechanical (QM calculations based on the density functional theory. Performance tests have been carried out on 1,088-processor Cray T3E and 1,280-processor IBM SP3 computers. The linear-scaling algorithms have enabled 6.44-billion-atom MD and 111,000-atom QM calculations on 1,024 SP3 processors with parallel efficiency well over 90%. production-quality programs also feature wavelet-based computational-space decomposition for adaptive load balancing, spacefilling-curve-based adaptive data compression with user-defined error bound for scalable I/O, and octree-based fast visibility culling for immersive and interactive visualization of massive simulation data.

  3. An object oriented Python interface for atomistic simulations

    Science.gov (United States)

    Hynninen, T.; Himanen, L.; Parkkinen, V.; Musso, T.; Corander, J.; Foster, A. S.

    2016-01-01

    Programmable simulation environments allow one to monitor and control calculations efficiently and automatically before, during, and after runtime. Environments directly accessible in a programming environment can be interfaced with powerful external analysis tools and extensions to enhance the functionality of the core program, and by incorporating a flexible object based structure, the environments make building and analysing computational setups intuitive. In this work, we present a classical atomistic force field with an interface written in Python language. The program is an extension for an existing object based atomistic simulation environment.

  4. Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary.

    Science.gov (United States)

    Yang, Shengfeng; Chen, Youping

    2015-03-08

    In this paper, we present the development of a concurrent atomistic-continuum (CAC) methodology for simulation of the grain boundary (GB) structures and their interaction with other defects in ionic materials. Simulation results show that the CAC simulation allows a smooth passage of cracks through the atomistic-continuum interface without the need for additional constitutive rules or special numerical treatment; both the atomic-scale structures and the energies of the four different [001] tilt GBs in bi-crystal strontium titanate obtained by CAC compare well with those obtained by existing experiments and density function theory calculations. Although 98.4% of the degrees of freedom of the simulated atomistic system have been eliminated in a coarsely meshed finite-element region, the CAC results, including the stress-strain responses, the GB-crack interaction mechanisms and the effect of the interaction on the fracture strength, are comparable with that of all-atom molecular dynamics simulation results. In addition, CAC simulation results show that the GB-crack interaction has a significant effect on the fracture behaviour of bi-crystal strontium titanate; not only the misorientation angle but also the atomic-level details of the GB structure influence the effect of the GB on impeding crack propagation.

  5. Effect of Single-Electron Interface Trapping in Decanano MOSFETs: A 3D Atomistic Simulation Study

    Science.gov (United States)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.

    2000-01-01

    We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random telegraph signal (RTS) amplitudes on the device dimensions and on the position of the trapped charge in the channel are studied in detail. Later, in full-scale, atomistic simulations assuming discrete charge for both randomly placed dopants and the trapped electron, we highlight the importance of current percolation and of traps with strategic position where the trapped electron blocks a dominant current path.

  6. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    International Nuclear Information System (INIS)

    Liedke, Bartosz

    2011-01-01

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general

  7. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liedke, Bartosz

    2011-03-24

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In

  8. Atomistic simulations in Si processing: Bridging the gap between atoms and experiments

    International Nuclear Information System (INIS)

    Marques, Luis A.; Pelaz, Lourdes; Lopez, Pedro; Aboy, Maria; Santos, Ivan; Barbolla, Juan

    2005-01-01

    With devices shrinking to nanometric scale, process simulation tools have to shift from continuum models to an atomistic description of the material. However, the limited sizes and time scales accessible for detailed atomistic techniques usually lead to the difficult task of relating the information obtained from simulations to experimental data. The solution consists of the use of a hierarchical simulation scheme: more fundamental techniques are employed to extract parameters and models that are then feed into less detailed simulators which allow direct comparison with experiments. This scheme will be illustrated with the modeling of the amorphization and recrystallization of Si, which has been defined as a key challenge in the last edition of the International Technology Roadmap for Semiconductors. The model is based on the bond defect or IV pair, which is used as the building block of the amorphous phase. The properties of this defect have been studied using ab initio methods and classical molecular dynamics techniques. It is shown that the recombination of this defect depends on the surrounding bond defects, which accounts for the cooperative nature of the amorphization and recrystallization processes. The implementation of this model in a kinetic Monte Carlo code allows extracting data directly comparable with experiments. This approach provides physical insight on the amorphization and recrystallization mechanisms and a tool for the optimization of solid-phase epitaxial-related processes

  9. DoGlycans-Tools for Preparing Carbohydrate Structures for Atomistic Simulations of Glycoproteins, Glycolipids, and Carbohydrate Polymers for GROMACS

    DEFF Research Database (Denmark)

    Danne, Reinis; Poojari, Chetan; Martinez-Seara, Hector

    2017-01-01

    Carbohydrates constitute a structurally and functionally diverse group of biological molecules and macromolecules. In cells they are involved in, e.g., energy storage, signaling, and cell-cell recognition. All of these phenomena take place in atomistic scales, thus atomistic simulation would...... be the method of choice to explore how carbohydrates function. However, the progress in the field is limited by the lack of appropriate tools for preparing carbohydrate structures and related topology files for the simulation models. Here we present tools that fill this gap. Applications where the tools...

  10. Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations

    Science.gov (United States)

    Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.

    2009-01-01

    Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.

  11. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....

  12. Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding

    Science.gov (United States)

    Knoch, Fabian; Schäfer, Ken; Diezemann, Gregor; Speck, Thomas

    2018-01-01

    We present a dynamic coarse-graining technique that allows one to simulate the mechanical unfolding of biomolecules or molecular complexes on experimentally relevant time scales. It is based on Markov state models (MSMs), which we construct from molecular dynamics simulations using the pulling coordinate as an order parameter. We obtain a sequence of MSMs as a function of the discretized pulling coordinate, and the pulling process is modeled by switching among the MSMs according to the protocol applied to unfold the complex. This way we cover seven orders of magnitude in pulling speed. In the region of rapid pulling, we additionally perform steered molecular dynamics simulations and find excellent agreement between the results of the fully atomistic and the dynamically coarse-grained simulations. Our technique allows the determination of the rates of mechanical unfolding in a dynamical range from approximately 10-8/ns to 1/ns thus reaching experimentally accessible time regimes without abandoning atomistic resolution.

  13. Large-scale numerical simulations of plasmas

    International Nuclear Information System (INIS)

    Hamaguchi, Satoshi

    2004-01-01

    The recent trend of large scales simulations of fusion plasma and processing plasmas is briefly summarized. Many advanced simulation techniques have been developed for fusion plasmas and some of these techniques are now applied to analyses of processing plasmas. (author)

  14. Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yongfeng Zhang; Paul C Millett; Michael R Tonks; Xian-Ming Bai; S Bulent Biner

    2013-10-01

    In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.

  15. Learning from large scale neural simulations

    DEFF Research Database (Denmark)

    Serban, Maria

    2017-01-01

    Large-scale neural simulations have the marks of a distinct methodology which can be fruitfully deployed to advance scientific understanding of the human brain. Computer simulation studies can be used to produce surrogate observational data for better conceptual models and new how...

  16. A new scaling approach for the mesoscale simulation of magnetic domain structures using Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, B., E-mail: radhakrishnb@ornl.gov; Eisenbach, M.; Burress, T.A.

    2017-06-15

    Highlights: • Developed new scaling technique for dipole–dipole interaction energy. • Developed new scaling technique for exchange interaction energy. • Used scaling laws to extend atomistic simulations to micrometer length scale. • Demonstrated transition from mono-domain to vortex magnetic structure. • Simulated domain wall width and transition length scale agree with experiments. - Abstract: A new scaling approach has been proposed for the spin exchange and the dipole–dipole interaction energy as a function of the system size. The computed scaling laws are used in atomistic Monte Carlo simulations of magnetic moment evolution to predict the transition from single domain to a vortex structure as the system size increases. The width of a 180° – domain wall extracted from the simulated structures is in close agreement with experimentally values for an F–Si alloy. The transition size from a single domain to a vortex structure is also in close agreement with theoretically predicted and experimentally measured values for Fe.

  17. Atomistic simulations of Mg-Cu metallic glasses: Mechanical properties

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2004-01-01

    The atomistic mechanisms of plastic deformation in amorphous metals are far from being understood. We have derived potential parameters for molecular dynamics simulations of Mg-Cu amorphous alloys using the Effective Medium Theory. We have simulated the formation of alloys by cooling from the melt...

  18. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  19. Large-Scale Reactive Atomistic Simulation of Shock-induced Initiation Processes in Energetic Materials

    Science.gov (United States)

    Thompson, Aidan

    2013-06-01

    Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we

  20. Atomistic Monte Carlo Simulation of Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Daniel Wüstner

    2014-01-01

    Full Text Available Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA for the phospholipid dipalmitoylphosphatidylcholine (DPPC. We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.

  1. Probing the Mechanism of pH-Induced Large-Scale Conformational Changes in Dengue Virus Envelope Protein Using Atomistic Simulations

    Science.gov (United States)

    Prakash, Meher K.; Barducci, Alessandro; Parrinello, Michele

    2010-01-01

    Abstract One of the key steps in the infection of the cell by dengue virus is a pH-induced conformational change of the viral envelope proteins. These envelope proteins undergo a rearrangement from a dimer to a trimer, with large conformational changes in the monomeric unit. In this article, metadynamics simulations were used to enable us to understand the mechanism of these large-scale changes in the monomer. By using all-atom, explicit solvent simulations of the monomers, the stability of the protein structure is studied under low and high pH conditions. Free energy profiles obtained along appropriate collective coordinates demonstrate that pH affects the domain interface in both the conformations of E monomer, stabilizing one and destabilizing the other. These simulations suggest a mechanism with an intermediate detached state between the two monomeric structures. Using further analysis, we comment on the key residue interactions responsible for the instability and the pH-sensing role of a histidine that could not otherwise be studied experimentally. The insights gained from this study and methodology can be extended for studying similar mechanisms in the E proteins of the other members of class II flavivirus family. PMID:20643078

  2. Atomistic simulations of contact area and conductance at nanoscale interfaces.

    Science.gov (United States)

    Hu, Xiaoli; Martini, Ashlie

    2017-11-09

    Atomistic simulations were used to study conductance across the interface between a nanoscale gold probe and a graphite surface with a step edge. Conductance on the graphite terrace was observed to increase with load and be approximately proportional to contact area calculated from the positions of atoms in the interface. The relationship between area and conductance was further explored by varying the position of the contact relative to the location of the graphite step edge. These simulations reproduced a previously-reported current dip at step edges measured experimentally and the trend was explained by changes in both contact area and the distribution of distances between atoms in the interface. The novel approach reported here provides a foundation for future studies of the fundamental relationships between conductance, load and surface topography at the atomic scale.

  3. Insights into the charge carrier terahertz mobility in polyfluorenes from large-scale atomistic simulations and time-resolved terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Vukmirović, N.; Ponseca, C.S.; Němec, Hynek; Yartsev, A.; Sundström, V.

    2012-01-01

    Roč. 116, č. 37 (2012), s. 19665-1972 ISSN 1932-7447 Institutional research plan: CEZ:AV0Z10100520 Keywords : charge carrier mobility * time-resolved terahertz spectroscopy * multiscale atomistic calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.814, year: 2012

  4. Definition and detection of contact in atomistic simulations

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    In atomistic simulations, contact depends on the accurate detection of contacting atoms as well as their contact area. While it is common to define contact between atoms based on the so-called ‘contact distance’ where the interatomic potential energy reaches its minimum, this discounts, for example,

  5. Definition and detection of contact in atomistic simulations

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    2015-01-01

    In atomistic simulations, contact depends on the accurate detection of contacting atoms as well as their contact area. While it is common to define contact between atoms based on the so-called ‘contact distance’ where the interatomic potential energy reaches its minimum, this discounts, for example,

  6. Atomistic simulations of dislocation processes in copper

    DEFF Research Database (Denmark)

    Vegge, T.; Jacobsen, K.W.

    2002-01-01

    We discuss atomistic simulations of dislocation processes in copper based on effective medium theory interatomic potentials. Results on screw dislocation structures and processes are reviewed with particular focus on point defect mobilities and processes involving cross slip. For example......, the stability of screw dislocation dipoles is discussed. We show that the presence of jogs will strongly influence cross slip barriers and dipole stability. We furthermore present some new results on jogged edge dislocations and edge dislocation dipoles. The jogs are found to be extended, and simulations...

  7. 3d visualization of atomistic simulations on every desktop

    Science.gov (United States)

    Peled, Dan; Silverman, Amihai; Adler, Joan

    2013-08-01

    Once upon a time, after making simulations, one had to go to a visualization center with fancy SGI machines to run a GL visualization and make a movie. More recently, OpenGL and its mesa clone have let us create 3D on simple desktops (or laptops), whether or not a Z-buffer card is present. Today, 3D a la Avatar is a commodity technique, presented in cinemas and sold for home TV. However, only a few special research centers have systems large enough for entire classes to view 3D, or special immersive facilities like visualization CAVEs or walls, and not everyone finds 3D immersion easy to view. For maximum physics with minimum effort a 3D system must come to each researcher and student. So how do we create 3D visualization cheaply on every desktop for atomistic simulations? After several months of attempts to select commodity equipment for a whole room system, we selected an approach that goes back a long time, even predating GL. The old concept of anaglyphic stereo relies on two images, slightly displaced, and viewed through colored glasses, or two squares of cellophane from a regular screen/projector or poster. We have added this capability to our AViz atomistic visualization code in its new, 6.1 version, which is RedHat, CentOS and Ubuntu compatible. Examples using data from our own research and that of other groups will be given.

  8. 3d visualization of atomistic simulations on every desktop

    International Nuclear Information System (INIS)

    Peled, Dan; Silverman, Amihai; Adler, Joan

    2013-01-01

    Once upon a time, after making simulations, one had to go to a visualization center with fancy SGI machines to run a GL visualization and make a movie. More recently, OpenGL and its mesa clone have let us create 3D on simple desktops (or laptops), whether or not a Z-buffer card is present. Today, 3D a la Avatar is a commodity technique, presented in cinemas and sold for home TV. However, only a few special research centers have systems large enough for entire classes to view 3D, or special immersive facilities like visualization CAVEs or walls, and not everyone finds 3D immersion easy to view. For maximum physics with minimum effort a 3D system must come to each researcher and student. So how do we create 3D visualization cheaply on every desktop for atomistic simulations? After several months of attempts to select commodity equipment for a whole room system, we selected an approach that goes back a long time, even predating GL. The old concept of anaglyphic stereo relies on two images, slightly displaced, and viewed through colored glasses, or two squares of cellophane from a regular screen/projector or poster. We have added this capability to our AViz atomistic visualization code in its new, 6.1 version, which is RedHat, CentOS and Ubuntu compatible. Examples using data from our own research and that of other groups will be given

  9. Multi-scale modelling of ions in solution: from atomistic descriptions to chemical engineering

    International Nuclear Information System (INIS)

    Molina, J.J.

    2011-01-01

    Ions in solution play a fundamental role in many physical, chemical, and biological processes. The PUREX process used in the nuclear industry to the treatment of spent nuclear fuels is considered as an example. For industrial applications these systems are usually described using simple analytical models which are fitted to reproduce the available experimental data. In this work, we propose a multi-scale coarse graining procedure to derive such models from atomistic descriptions. First, parameters for classical force-fields of ions in solution are extracted from ab-initio calculations. Effective (McMillan-Mayer) ion-ion potentials are then derived from radial distribution functions measured in classical molecular dynamics simulations, allowing us to define an implicit solvent model of electrolytes. Finally, perturbation calculations are performed to define the best possible representation for these systems, in terms of charged hard-sphere models. Our final model is analytical and contains no free 'fitting' parameters. It shows good agreement with the exact results obtained from Monte-Carlo simulations for the thermodynamic and structural properties. Development of a similar model for the electrolyte viscosity, from information derived from atomistic descriptions, is also introduced. (author)

  10. Quantum Corrections to the 'Atomistic' MOSFET Simulations

    Science.gov (United States)

    Asenov, Asen; Slavcheva, G.; Kaya, S.; Balasubramaniam, R.

    2000-01-01

    We have introduced in a simple and efficient manner quantum mechanical corrections in our 3D 'atomistic' MOSFET simulator using the density gradient formalism. We have studied in comparison with classical simulations the effect of the quantum mechanical corrections on the simulation of random dopant induced threshold voltage fluctuations, the effect of the single charge trapping on interface states and the effect of the oxide thickness fluctuations in decanano MOSFETs with ultrathin gate oxides. The introduction of quantum corrections enhances the threshold voltage fluctuations but does not affect significantly the amplitude of the random telegraph noise associated with single carrier trapping. The importance of the quantum corrections for proper simulation of oxide thickness fluctuation effects has also been demonstrated.

  11. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    OpenAIRE

    Qiang Liu; Yi Qin; Guodong Li

    2018-01-01

    Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal...

  12. Computer code for the atomistic simulation of lattice defects and dynamics

    International Nuclear Information System (INIS)

    Schiffgens, J.O.; Graves, N.J.; Oster, C.A.

    1980-04-01

    This document has been prepared to satisfy the need for a detailed, up-to-date description of a computer code that can be used to simulate phenomena on an atomistic level. COMENT was written in FORTRAN IV and COMPASS (CDC assembly language) to solve the classical equations of motion for a large number of atoms interacting according to a given force law, and to perform the desired ancillary analysis of the resulting data. COMENT is a dual-purpose intended to describe static defect configurations as well as the detailed motion of atoms in a crystal lattice. It can be used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect migration, and defect stability

  13. Atomistic simulation of solid solution hardening in Mg/Al alloys: Examination of composition scaling and thermo-mechanical relationships

    International Nuclear Information System (INIS)

    Yi, Peng; Cammarata, Robert C.; Falk, Michael L.

    2016-01-01

    Dislocation mobility in a solid solution was studied using atomistic simulations of an Mg/Al system. The critical resolved shear stress (CRSS) for the dislocations on the basal plane was calculated at temperatures from 0 K to 500 K with solute concentrations from 0 to 7 at%, and with four different strain rates. Solute hardening of the CRSS is decomposed into two contributions: one scales with c 2/3 , where c is the solute concentration, and the other scales with c 1 . The former was consistent with the Labusch model for local solute obstacles, and the latter was related to the athermal plateau stress due to the long range solute effect. A thermo-mechanical model was then used to analyze the temperature and strain rate dependences of the CRSS, and it yielded self-consistent and realistic results. The scaling laws were confirmed and the thermo-mechanical model was successfully parameterized using experimental measurements of the CRSS for Mg/Al alloys under quasi-static conditions. The predicted strain rate sensitivity from the experimental measurements of the CRSS is in reasonable agreement with separate mechanical tests. The concentration scaling and the thermo-mechanical relationships provide a potential tool to analytically relate the structural and thermodynamic parameters on the microscopic level with the macroscopic mechanical properties arising from dislocation mediated deformation.

  14. Atomistic simulations of bulk, surface and interfacial polymer properties

    Science.gov (United States)

    Natarajan, Upendra

    In chapter I, quasi-static molecular mechanics based simulations are used to estimate the activation energy of phenoxy rings flips in the amorphous region of a semicrystalline polyimide. Intra and intermolecular contributions to the flip activation energy, the torsional cooperativity accompanying the flip, and the effect of the flip on the motion in the glassy bulk state, are looked at. Also, comparison of the weighted mean activation energy is made with experimental data from solid state NMR measurements; the simulated value being 17.5 kcal/mol., while the experimental value was observed to be 10.5 kcal/mol. Chapter II deals with construction of random copolymer thin films of styrene-butadiene (SB) and styrene-butadiene-acrylonitrile (SBA). The structure and properties of the free surfaces presented by these thin films are analysed by, the atom mass density profiles, backbone bond orientation function, and the spatial distribution of acrylonitrile groups and styrene rings. The surface energies of SB and SBA are calculated using an atomistic equation and are compared with experimental data in the literature. In chapter III, simulations of polymer-polymer interfaces between like and unlike polymers, specifically cis-polybutadiene (PBD) and atatic polypropylene (PP), are presented. The structure of an incompatible polymer-polymer interface, and the estimation of the thermodynamic work of adhesion and interfacial energy between different incompatible polymers, form the focus here. The work of adhesion is calculated using an atomistic equation and is further used in a macroscopic equation to estimate the interfacial energy. The interfacial energy is compared with typical values for other immiscible systems in the literature. The interfacial energy compared very well with interfacial energy values for a few other immiscible hydrocarbon pairs. In chapter IV, the study proceeds to look at the interactions between nonpolar and polar small molecules with SB and SBA thin

  15. Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Martin L. [Univ. of Colorado, Boulder, CO (United States); Talmage, Mellisa J. [Univ. of Colorado, Boulder, CO (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); West, Neil [Univ. of Colorado, Boulder, CO (United States); Gullett, Philip Michael [Mississippi State Univ., Mississippi State, MS (United States); Miller, David C. [Univ. of Colorado, Boulder, CO (United States); Spark, Kevin [Univ. of Colorado, Boulder, CO (United States); Diao, Jiankuai [Univ. of Colorado, Boulder, CO (United States); Horstemeyer, Mark F. [Mississippi State Univ., Mississippi State, MS (United States); Zimmerman, Jonathan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gall, K. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-10-01

    Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project

  16. Accelerating large-scale phase-field simulations with GPU

    Directory of Open Access Journals (Sweden)

    Xiaoming Shi

    2017-10-01

    Full Text Available A new package for accelerating large-scale phase-field simulations was developed by using GPU based on the semi-implicit Fourier method. The package can solve a variety of equilibrium equations with different inhomogeneity including long-range elastic, magnetostatic, and electrostatic interactions. Through using specific algorithm in Compute Unified Device Architecture (CUDA, Fourier spectral iterative perturbation method was integrated in GPU package. The Allen-Cahn equation, Cahn-Hilliard equation, and phase-field model with long-range interaction were solved based on the algorithm running on GPU respectively to test the performance of the package. From the comparison of the calculation results between the solver executed in single CPU and the one on GPU, it was found that the speed on GPU is enormously elevated to 50 times faster. The present study therefore contributes to the acceleration of large-scale phase-field simulations and provides guidance for experiments to design large-scale functional devices.

  17. Atomistic simulation of MgO nanowires subject to electromagnetic wave

    International Nuclear Information System (INIS)

    Wang, Xianqiao; Lee, James D

    2010-01-01

    This work is concerned with the application of atomistic field theory (AFT) in modeling and simulation of polarizable materials under an electromagnetic (EM) field. AFT enables us to express an atomic scale local property of a multi-element crystalline (which has more than one kind of atom in the unit cell) system in terms of the distortions of lattice cells and the rearrangement of atoms within the lattice cell, thereby making AFT suitable to fully reproduce both acoustic and optical branches in phonon dispersion relations. Due to the applied EM field, the inhomogeneous motions of discrete atoms in the polarizable crystal give rise to the rearrangement of microstructure and polarization. The AFT and its corresponding finite element implementation are briefly introduced. Single-crystal MgO nanowires under an EM field is modeled and simulated. The numerical results have demonstrated that AFT can serve as a tool to analyze the electromagnetic phenomena of multi-element crystal materials at micro/nano-level within a field framework

  18. Visual Data-Analytics of Large-Scale Parallel Discrete-Event Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Caitlin; Carothers, Christopher D.; Mubarak, Misbah; Carns, Philip; Ross, Robert; Li, Jianping Kelvin; Ma, Kwan-Liu

    2016-11-13

    Parallel discrete-event simulation (PDES) is an important tool in the codesign of extreme-scale systems because PDES provides a cost-effective way to evaluate designs of highperformance computing systems. Optimistic synchronization algorithms for PDES, such as Time Warp, allow events to be processed without global synchronization among the processing elements. A rollback mechanism is provided when events are processed out of timestamp order. Although optimistic synchronization protocols enable the scalability of large-scale PDES, the performance of the simulations must be tuned to reduce the number of rollbacks and provide an improved simulation runtime. To enable efficient large-scale optimistic simulations, one has to gain insight into the factors that affect the rollback behavior and simulation performance. We developed a tool for ROSS model developers that gives them detailed metrics on the performance of their large-scale optimistic simulations at varying levels of simulation granularity. Model developers can use this information for parameter tuning of optimistic simulations in order to achieve better runtime and fewer rollbacks. In this work, we instrument the ROSS optimistic PDES framework to gather detailed statistics about the simulation engine. We have also developed an interactive visualization interface that uses the data collected by the ROSS instrumentation to understand the underlying behavior of the simulation engine. The interface connects real time to virtual time in the simulation and provides the ability to view simulation data at different granularities. We demonstrate the usefulness of our framework by performing a visual analysis of the dragonfly network topology model provided by the CODES simulation framework built on top of ROSS. The instrumentation needs to minimize overhead in order to accurately collect data about the simulation performance. To ensure that the instrumentation does not introduce unnecessary overhead, we perform a

  19. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2013-01-01

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide

  20. Passing waves from atomistic to continuum

    Science.gov (United States)

    Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping

    2018-02-01

    Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.

  1. A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films

    International Nuclear Information System (INIS)

    Miller, Ronald E.; Shilkrot, L.E.; Curtin, William A.

    2004-01-01

    The phenomenon of 2D nanoindentation of circular 'Brinell' indenter into a single crystal metal thin film bonded to a rigid substrate is investigated. The simulation method is the coupled atomistics and discrete dislocation (CADD) model recently developed by the authors. The CADD model couples a continuum region containing any number of discrete dislocations to an atomistic region, and permits accurate, automatic detection and passing of dislocations between the atomistic and continuum regions. The CADD model allows for a detailed study of nanoindentation to large penetration depths (up to 60 A here) using only a small region of atoms just underneath the indenter where dislocation nucleation, cross-slip, and annihilation occur. Indentation of a model hexagonal aluminum crystal shows: (i) the onset of homogeneous dislocation nucleation at points away from the points of maximum resolved shear stress; (ii) size-dependence of the material hardness, (iii) the role of dislocation dissociation on deformation; (iv) reverse plasticity, including nucleation of dislocations on unloading and annihilation; (v) permanent deformation, including surface uplift, after full unloading; (vi) the effects of film thickness on the load-displacement response; and (vii) the differences between displacement and force controlled loading. This application demonstrates the power of the CADD method in capturing both long-range dislocation plasticity and short-range atomistic phenomena. The use of CADD permits for a clear study of the physical and mechanical influence of both complex plastic flow and non-continuum atomistic-level processes on the macroscopic response of material under indentation loading

  2. Relaxation of a steep density gradient in a simple fluid: Comparison between atomistic and continuum modeling

    International Nuclear Information System (INIS)

    Pourali, Meisam; Maghari, Ali; Meloni, Simone; Magaletti, Francesco; Casciola, Carlo Massimo; Ciccotti, Giovanni

    2014-01-01

    We compare dynamical nonequilibrium molecular dynamics and continuum simulations of the dynamics of relaxation of a fluid system characterized by a non-uniform density profile. Results match quite well as long as the lengthscale of density nonuniformities are greater than the molecular scale (∼10 times the molecular size). In presence of molecular scale features some of the continuum fields (e.g., density and momentum) are in good agreement with atomistic counterparts, but are smoother. On the contrary, other fields, such as the temperature field, present very large difference with respect to reference (atomistic) ones. This is due to the limited accuracy of some of the empirical relations used in continuum models, the equation of state of the fluid in the present example

  3. Dynamic aspects of dislocation motion: atomistic simulations

    International Nuclear Information System (INIS)

    Bitzek, Erik; Gumbsch, Peter

    2005-01-01

    Atomistic simulations of accelerating edge and screw dislocations were carried out to study the dynamics of dislocations in a face centered cubic metal. Using two different embedded atom potentials for nickel and a simple slab geometry, the Peierls stress, the effective mass, the line tension and the drag coefficient were determined. A dislocation intersecting an array of voids is used to study dynamic effects in dislocation-obstacle interactions. A pronounced effect caused by inertial overshooting is found. A dynamic line tension model is developed which reproduces the simulation results. The model can be used to easily estimate the magnitude of inertial effects in the interaction of dislocations with localized obstacles for different obstacle strengths, -spacings and temperatures

  4. Solid solution hardening in face centered binary alloys: Gliding statistics of a dislocation in random solid solution by atomistic simulation

    International Nuclear Information System (INIS)

    Patinet, S.

    2009-12-01

    The glide of edge and screw dislocation in solid solution is modeled through atomistic simulations in two model alloys of Ni(Al) and Al(Mg) described within the embedded atom method. Our approach is based on the study of the elementary interaction between dislocations and solutes to derive solid solution hardening of face centered cubic binary alloys. We identify the physical origins of the intensity and range of the interaction between a dislocation and a solute atom. The thermally activated crossing of a solute atom by a dislocation is studied at the atomistic scale. We show that hardening of edge and screw segments are similar. We develop a line tension model that reproduces quantitatively the atomistic calculations of the flow stress. We identify the universality class to which the dislocation depinning transition in solid solution belongs. (author)

  5. Multiscale modeling of dislocation processes in BCC tantalum: bridging atomistic and mesoscale simulations

    International Nuclear Information System (INIS)

    Yang, L H; Tang, M; Moriarty, J A

    2001-01-01

    Plastic deformation in bcc metals at low temperatures and high-strain rates is controlled by the motion of a/2 screw dislocations, and understanding the fundamental atomistic processes of this motion is essential to develop predictive multiscale models of crystal plasticity. The multiscale modeling approach presented here for bcc Ta is based on information passing, where results of simulations at the atomic scale are used in simulations of plastic deformation at mesoscopic length scales via dislocation dynamics (DD). The relevant core properties of a/2 screw dislocations in Ta have been obtained using quantum-based interatomic potentials derived from model generalized pseudopotential theory and an ab-initio data base together with an accurate Green's-function simulation method that implements flexible boundary conditions. In particular, the stress-dependent activation enthalpy for the lowest-energy kink-pair mechanism has been calculated and fitted to a revealing analytic form. This is the critical quantity determining dislocation mobility in the DD simulations, and the present activation enthalpy is found to be in good agreement with the previous empirical form used to explain the temperature dependence of the yield stress

  6. Atomistic simulation studies of iron sulphide, platinum antimonide and platinum arsenide

    CSIR Research Space (South Africa)

    Ngoepe, PE

    2005-09-01

    Full Text Available The authors present the results of atomistic simulations using derived interatomic potentials for the pyrite-structured metal chalcogenides FeS2, PtSb2 and PtAs2. Structural and elastic constants were calculated and compared with experimental...

  7. Adaptive resolution simulation of an atomistic protein in MARTINI water

    International Nuclear Information System (INIS)

    Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J.; Praprotnik, Matej

    2014-01-01

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecular dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations

  8. Atomistic computer simulations of FePt nanoparticles. Thermodynamic and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M.

    2007-12-20

    In the present dissertation, a hierarchical multiscale approach for modeling FePt nanoparticles by atomistic computer simulations is developed. By describing the interatomic interactions on different levels of sophistication, various time and length scales can be accessed. Methods range from static quantum-mechanic total-energy calculations of small periodic systems to simulations of whole particles over an extended time by using simple lattice Hamiltonians. By employing these methods, the energetic and thermodynamic stability of non-crystalline multiply twinned FePt nanoparticles is investigated. Subsequently, the thermodynamics of the order-disorder transition in FePt nanoparticles is analyzed, including the influence of particle size, composition and modified surface energies by different chemical surroundings. In order to identify processes that reduce or enhance the rate of transformation from the disordered to the ordered state, the kinetics of the ordering transition in FePt nanoparticles is finally investigated by assessing the contributions of surface and volume diffusion. (orig.)

  9. Large-scale simulations with distributed computing: Asymptotic scaling of ballistic deposition

    International Nuclear Information System (INIS)

    Farnudi, Bahman; Vvedensky, Dimitri D

    2011-01-01

    Extensive kinetic Monte Carlo simulations are reported for ballistic deposition (BD) in (1 + 1) dimensions. The large system sizes L observed for the onset of asymptotic scaling (L ≅ 2 12 ) explains the widespread discrepancies in previous reports for exponents of BD in one and likely in higher dimensions. The exponents obtained directly from our simulations, α = 0.499 ± 0.004 and β = 0.336 ± 0.004, capture the exact values α = 1/2 and β = 1/3 for the one-dimensional Kardar-Parisi-Zhang equation. An analysis of our simulations suggests a criterion for identifying the onset of true asymptotic scaling, which enables a more informed evaluation of exponents for BD in higher dimensions. These simulations were made possible by the Simulation through Social Networking project at the Institute for Advanced Studies in Basic Sciences in 2007, which was re-launched in November 2010.

  10. Fatigue mechanisms in an austenitic steel under cyclic loading: Experiments and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Soppa, E.A., E-mail: ewa.soppa@mpa.uni-stuttgart.de; Kohler, C., E-mail: christopher.kohler@mpa.uni-stuttgart.de; Roos, E., E-mail: eberhard.roos@mpa.uni-stuttgart.de

    2014-03-01

    Experimental investigations on the austenitic stainless steel X6CrNiNb18-10 (AISI – 347) and concomitant atomistic simulations of a FeNi nanocrystalline model system have been performed in order to understand the basic mechanisms of fatigue damage under cyclic loading. Using electron backscatter diffraction (EBSD) the influence of deformation induced martensitic transformation and NbC size distribution on the fatigue crack formation has been demonstrated. The martensite nucleates prevalently at grain boundaries, triple points and at the specimen free surface and forms small (∼1 µm sized) differently oriented grains. The atomistic simulations show the role of regions of a high density of stacking faults for the martensitic transformation.

  11. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  12. Large-eddy simulation with accurate implicit subgrid-scale diffusion

    NARCIS (Netherlands)

    B. Koren (Barry); C. Beets

    1996-01-01

    textabstractA method for large-eddy simulation is presented that does not use an explicit subgrid-scale diffusion term. Subgrid-scale effects are modelled implicitly through an appropriate monotone (in the sense of Spekreijse 1987) discretization method for the advective terms. Special attention is

  13. Computer code for the atomistic simulation of lattice defects and dynamics. [COMENT code

    Energy Technology Data Exchange (ETDEWEB)

    Schiffgens, J.O.; Graves, N.J.; Oster, C.A.

    1980-04-01

    This document has been prepared to satisfy the need for a detailed, up-to-date description of a computer code that can be used to simulate phenomena on an atomistic level. COMENT was written in FORTRAN IV and COMPASS (CDC assembly language) to solve the classical equations of motion for a large number of atoms interacting according to a given force law, and to perform the desired ancillary analysis of the resulting data. COMENT is a dual-purpose intended to describe static defect configurations as well as the detailed motion of atoms in a crystal lattice. It can be used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect migration, and defect stability.

  14. Fermi-level effects in semiconductor processing: A modeling scheme for atomistic kinetic Monte Carlo simulators

    Science.gov (United States)

    Martin-Bragado, I.; Castrillo, P.; Jaraiz, M.; Pinacho, R.; Rubio, J. E.; Barbolla, J.; Moroz, V.

    2005-09-01

    Atomistic process simulation is expected to play an important role for the development of next generations of integrated circuits. This work describes an approach for modeling electric charge effects in a three-dimensional atomistic kinetic Monte Carlo process simulator. The proposed model has been applied to the diffusion of electrically active boron and arsenic atoms in silicon. Several key aspects of the underlying physical mechanisms are discussed: (i) the use of the local Debye length to smooth out the atomistic point-charge distribution, (ii) algorithms to correctly update the charge state in a physically accurate and computationally efficient way, and (iii) an efficient implementation of the drift of charged particles in an electric field. High-concentration effects such as band-gap narrowing and degenerate statistics are also taken into account. The efficiency, accuracy, and relevance of the model are discussed.

  15. Large-scale derived flood frequency analysis based on continuous simulation

    Science.gov (United States)

    Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several

  16. Peridynamics as a rigorous coarse-graining of atomistics for multiscale materials design

    International Nuclear Information System (INIS)

    Lehoucq, Richard B.; Aidun, John Bahram; Silling, Stewart Andrew; Sears, Mark P.; Kamm, James R.; Parks, Michael L.

    2010-01-01

    atomistic simulations, e.g., molecular dynamics and density functional theory (DFT). The latter two atomistic techniques are handicapped by the onerous length and time scales associated with simulating mesoscopic materials. Simulating such mesoscopic materials is likely to require, and greatly benefit from multiscale simulations coupling DFT, MD, PD, and explicit transient dynamic finite element methods FEM (e.g., Presto). The proposed work fills the gap needed to enable multiscale materials simulations.

  17. Atomistically-informed dislocation dynamics in FCC crystals

    International Nuclear Information System (INIS)

    Martinez, E.; Marian, J.; Arsenlis, A.; Victoria, M.; Martinez, E.; Victoria, M.; Perlado, J.M.

    2008-01-01

    Full text of publication follows. We will present a nodal dislocation dynamics (DD) model to simulate plastic processes in fcc crystals. The model explicitly accounts for all slip systems and Burgers vectors observed in fcc systems, including stacking faults and partial dislocations. We derive simple conservation rules that describe all partial dislocation interactions rigorously and allow us to model and quantify cross-slip processes, the structure and strength of dislocation junctions, and the formation of fcc-specific structures such as stacking fault tetrahedra. The DD framework is built upon isotropic non-singular linear elasticity, and supports itself on information transmitted from the atomistic scale. In this fashion, connection between the meso and micro scales is attained self-consistently with core parameters fitted to atomistic data. We perform a series of targeted simulations to demonstrate the capabilities of the model, including dislocation reactions and dissociations and dislocation junction strength. Additionally we map the four-dimensional stress space relevant for cross-slip and relate our fundings to the plastic behaviour of' monocrystalline fcc metals. (authors)

  18. Large-scale computing techniques for complex system simulations

    CERN Document Server

    Dubitzky, Werner; Schott, Bernard

    2012-01-01

    Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and

  19. Proceedings of the meeting on large scale computer simulation research

    International Nuclear Information System (INIS)

    2004-04-01

    The meeting to summarize the collaboration activities for FY2003 on the Large Scale Computer Simulation Research was held January 15-16, 2004 at Theory and Computer Simulation Research Center, National Institute for Fusion Science. Recent simulation results, methodologies and other related topics were presented. (author)

  20. Atomistic simulations of highly conductive molecular transport junctions under realistic conditions

    KAUST Repository

    French, William R.; Iacovella, Christopher R.; Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano; Cummings, Peter T.

    2013-01-01

    We report state-of-the-art atomistic simulations combined with high-fidelity conductance calculations to probe structure-conductance relationships in Au-benzenedithiolate (BDT)-Au junctions under elongation. Our results demonstrate that large increases in conductance are associated with the formation of monatomic chains (MACs) of Au atoms directly connected to BDT. An analysis of the electronic structure of the simulated junctions reveals that enhancement in the s-like states in Au MACs causes the increases in conductance. Other structures also result in increased conductance but are too short-lived to be detected in experiment, while MACs remain stable for long simulation times. Examinations of thermally evolved junctions with and without MACs show negligible overlap between conductance histograms, indicating that the increase in conductance is related to this unique structural change and not thermal fluctuation. These results, which provide an excellent explanation for a recently observed anomalous experimental result [Bruot et al., Nat. Nanotechnol., 2012, 7, 35-40], should aid in the development of mechanically responsive molecular electronic devices. © 2013 The Royal Society of Chemistry.

  1. Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension

    International Nuclear Information System (INIS)

    Lu, Qiang; Gao, Wei; Huang, Rui

    2011-01-01

    Atomistic simulations are performed to study the nonlinear mechanical behavior of graphene nanoribbons under quasistatic uniaxial tension, emphasizing the effects of edge structures (armchair and zigzag, without and with hydrogen passivation) on elastic modulus and fracture strength. The numerical results are analyzed within a theoretical model of thermodynamics, which enables determination of the bulk strain energy density, the edge energy density and the hydrogen adsorption energy density as nonlinear functions of the applied strain based on static molecular mechanics simulations. These functions can be used to describe mechanical behavior of graphene nanoribbons from the initial linear elasticity to fracture. It is found that the initial Young's modulus of a graphene nanoribbon depends on the ribbon width and the edge chirality. Furthermore, it is found that the nominal strain to fracture is considerably lower for graphene nanoribbons with armchair edges than for ribbons with zigzag edges. Molecular dynamics simulations reveal two distinct fracture nucleation mechanisms: homogeneous nucleation for the zigzag-edged graphene nanoribbons and edge-controlled heterogeneous nucleation for the armchair-edged ribbons. The modeling and simulations in this study highlight the atomistic mechanisms for the nonlinear mechanical behavior of graphene nanoribbons with the edge effects, which is potentially important for developing integrated graphene-based devices

  2. Large Scale Simulation Platform for NODES Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Sotorrio, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qin, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Min, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-27

    This report summarizes the Large Scale (LS) simulation platform created for the Eaton NODES project. The simulation environment consists of both wholesale market simulator and distribution simulator and includes the CAISO wholesale market model and a PG&E footprint of 25-75 feeders to validate the scalability under a scenario of 33% RPS in California with additional 17% of DERS coming from distribution and customers. The simulator can generate hourly unit commitment, 5-minute economic dispatch, and 4-second AGC regulation signals. The simulator is also capable of simulating greater than 10k individual controllable devices. Simulated DERs include water heaters, EVs, residential and light commercial HVAC/buildings, and residential-level battery storage. Feeder-level voltage regulators and capacitor banks are also simulated for feeder-level real and reactive power management and Vol/Var control.

  3. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    Science.gov (United States)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  4. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2018-05-01

    Full Text Available Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal computer, a Graphics Processing Unit (GPU-based, high-performance computing method using the OpenACC application was adopted to parallelize the shallow water model. An unstructured data management method was presented to control the data transportation between the GPU and CPU (Central Processing Unit with minimum overhead, and then both computation and data were offloaded from the CPU to the GPU, which exploited the computational capability of the GPU as much as possible. The parallel model was validated using various benchmarks and real-world case studies. The results demonstrate that speed-ups of up to one order of magnitude can be achieved in comparison with the serial model. The proposed parallel model provides a fast and reliable tool with which to quickly assess flood hazards in large-scale areas and, thus, has a bright application prospect for dynamic inundation risk identification and disaster assessment.

  5. Temperature specification in atomistic molecular dynamics and its impact on simulation efficacy

    Science.gov (United States)

    Ocaya, R. O.; Terblans, J. J.

    2017-10-01

    Temperature is a vital thermodynamical function for physical systems. Knowledge of system temperature permits assessment of system ergodicity, entropy, system state and stability. Rapid theoretical and computational developments in the fields of condensed matter physics, chemistry, material science, molecular biology, nanotechnology and others necessitate clarity in the temperature specification. Temperature-based materials simulations, both standalone and distributed computing, are projected to grow in prominence over diverse research fields. In this article we discuss the apparent variability of temperature modeling formalisms used currently in atomistic molecular dynamics simulations, with respect to system energetics,dynamics and structural evolution. Commercial simulation programs, which by nature are heuristic, do not openly discuss this fundamental question. We address temperature specification in the context of atomistic molecular dynamics. We define a thermostat at 400K relative to a heat bath at 300K firstly using a modified ab-initio Newtonian method, and secondly using a Monte-Carlo method. The thermostatic vacancy formation and cohesion energies, equilibrium lattice constant for FCC copper is then calculated. Finally we compare and contrast the results.

  6. Development of porous structure simulator for multi-scale simulation of irregular porous catalysts

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Suzuki, Ai; Sahnoun, Riadh; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A.; Miyamoto, Akira

    2008-01-01

    Efficient development of highly functional porous materials, used as catalysts in the automobile industry, demands a meticulous knowledge of the nano-scale interface at the electronic and atomistic scale. However, it is often difficult to correlate the microscopic interfacial interactions with macroscopic characteristics of the materials; for instance, the interaction between a precious metal and its support oxide with long-term sintering properties of the catalyst. Multi-scale computational chemistry approaches can contribute to bridge the gap between micro- and macroscopic characteristics of these materials; however this type of multi-scale simulations has been difficult to apply especially to porous materials. To overcome this problem, we have developed a novel mesoscopic approach based on a porous structure simulator. This simulator can construct automatically irregular porous structures on a computer, enabling simulations with complex meso-scale structures. Moreover, in this work we have developed a new method to simulate long-term sintering properties of metal particles on porous catalysts. Finally, we have applied the method to the simulation of sintering properties of Pt on alumina support. This newly developed method has enabled us to propose a multi-scale simulation approach for porous catalysts

  7. Atomistic Simulation of the Rate-Dependent Ductile-to-Brittle Failure Transition in Bicrystalline Metal Nanowires.

    Science.gov (United States)

    Tao, Weiwei; Cao, Penghui; Park, Harold S

    2018-02-14

    The mechanical properties and plastic deformation mechanisms of metal nanowires have been studied intensely for many years. One of the important yet unresolved challenges in this field is to bridge the gap in properties and deformation mechanisms reported for slow strain rate experiments (∼10 -2 s -1 ), and high strain rate molecular dynamics (MD) simulations (∼10 8 s -1 ) such that a complete understanding of strain rate effects on mechanical deformation and plasticity can be obtained. In this work, we use long time scale atomistic modeling based on potential energy surface exploration to elucidate the atomistic mechanisms governing a strain-rate-dependent incipient plasticity and yielding transition for face centered cubic (FCC) copper and silver nanowires. The transition occurs for both metals with both pristine and rough surfaces for all computationally accessible diameters (ductile-to-brittle transition in failure mode similar to previous experimental studies on bicrystalline silver nanowires is observed, which is driven by differences in dislocation activity and grain boundary mobility as compared to the high strain rate case.

  8. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.

    Science.gov (United States)

    Rapaport, D C

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.

  9. Large-scale simulations of plastic neural networks on neuromorphic hardware

    Directory of Open Access Journals (Sweden)

    James Courtney Knight

    2016-04-01

    Full Text Available SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Rather than using bespoke analog or digital hardware, the basic computational unit of a SpiNNaker system is a general-purpose ARM processor, allowing it to be programmed to simulate a wide variety of neuron and synapse models. This flexibility is particularly valuable in the study of biological plasticity phenomena. A recently proposed learning rule based on the Bayesian Confidence Propagation Neural Network (BCPNN paradigm offers a generic framework for modeling the interaction of different plasticity mechanisms using spiking neurons. However, it can be computationally expensive to simulate large networks with BCPNN learning since it requires multiple state variables for each synapse, each of which needs to be updated every simulation time-step. We discuss the trade-offs in efficiency and accuracy involved in developing an event-based BCPNN implementation for SpiNNaker based on an analytical solution to the BCPNN equations, and detail the steps taken to fit this within the limited computational and memory resources of the SpiNNaker architecture. We demonstrate this learning rule by learning temporal sequences of neural activity within a recurrent attractor network which we simulate at scales of up to 20000 neurons and 51200000 plastic synapses: the largest plastic neural network ever to be simulated on neuromorphic hardware. We also run a comparable simulation on a Cray XC-30 supercomputer system and find that, if it is to match the run-time of our SpiNNaker simulation, the super computer system uses approximately more power. This suggests that cheaper, more power efficient neuromorphic systems are becoming useful discovery tools in the study of plasticity in large-scale brain models.

  10. Remote collaboration system based on large scale simulation

    International Nuclear Information System (INIS)

    Kishimoto, Yasuaki; Sugahara, Akihiro; Li, J.Q.

    2008-01-01

    Large scale simulation using super-computer, which generally requires long CPU time and produces large amount of data, has been extensively studied as a third pillar in various advanced science fields in parallel to theory and experiment. Such a simulation is expected to lead new scientific discoveries through elucidation of various complex phenomena, which are hardly identified only by conventional theoretical and experimental approaches. In order to assist such large simulation studies for which many collaborators working at geographically different places participate and contribute, we have developed a unique remote collaboration system, referred to as SIMON (simulation monitoring system), which is based on client-server system control introducing an idea of up-date processing, contrary to that of widely used post-processing. As a key ingredient, we have developed a trigger method, which transmits various requests for the up-date processing from the simulation (client) running on a super-computer to a workstation (server). Namely, the simulation running on a super-computer actively controls the timing of up-date processing. The server that has received the requests from the ongoing simulation such as data transfer, data analyses, and visualizations, etc. starts operations according to the requests during the simulation. The server makes the latest results available to web browsers, so that the collaborators can monitor the results at any place and time in the world. By applying the system to a specific simulation project of laser-matter interaction, we have confirmed that the system works well and plays an important role as a collaboration platform on which many collaborators work with one another

  11. Mechanical properties of silicon in subsurface damage layer from nano-grinding studied by atomistic simulation

    Science.gov (United States)

    Zhang, Zhiwei; Chen, Pei; Qin, Fei; An, Tong; Yu, Huiping

    2018-05-01

    Ultra-thin silicon wafer is highly demanded by semi-conductor industry. During wafer thinning process, the grinding technology will inevitably induce damage to the surface and subsurface of silicon wafer. To understand the mechanism of subsurface damage (SSD) layer formation and mechanical properties of SSD layer, atomistic simulation is the effective tool to perform the study, since the SSD layer is in the scale of nanometer and hardly to be separated from underneath undamaged silicon. This paper is devoted to understand the formation of SSD layer, and the difference between mechanical properties of damaged silicon in SSD layer and ideal silicon. With the atomistic model, the nano-grinding process could be performed between a silicon workpiece and diamond tool under different grinding speed. To reach a thinnest SSD layer, nano-grinding speed will be optimized in the range of 50-400 m/s. Mechanical properties of six damaged silicon workpieces with different depths of cut will be studied. The SSD layer from each workpiece will be isolated, and a quasi-static tensile test is simulated to perform on the isolated SSD layer. The obtained stress-strain curve is an illustration of overall mechanical properties of SSD layer. By comparing the stress-strain curves of damaged silicon and ideal silicon, a degradation of Young's modulus, ultimate tensile strength (UTS), and strain at fracture is observed.

  12. Mechanical properties of silicon in subsurface damage layer from nano-grinding studied by atomistic simulation

    Directory of Open Access Journals (Sweden)

    Zhiwei Zhang

    2018-05-01

    Full Text Available Ultra-thin silicon wafer is highly demanded by semi-conductor industry. During wafer thinning process, the grinding technology will inevitably induce damage to the surface and subsurface of silicon wafer. To understand the mechanism of subsurface damage (SSD layer formation and mechanical properties of SSD layer, atomistic simulation is the effective tool to perform the study, since the SSD layer is in the scale of nanometer and hardly to be separated from underneath undamaged silicon. This paper is devoted to understand the formation of SSD layer, and the difference between mechanical properties of damaged silicon in SSD layer and ideal silicon. With the atomistic model, the nano-grinding process could be performed between a silicon workpiece and diamond tool under different grinding speed. To reach a thinnest SSD layer, nano-grinding speed will be optimized in the range of 50-400 m/s. Mechanical properties of six damaged silicon workpieces with different depths of cut will be studied. The SSD layer from each workpiece will be isolated, and a quasi-static tensile test is simulated to perform on the isolated SSD layer. The obtained stress-strain curve is an illustration of overall mechanical properties of SSD layer. By comparing the stress-strain curves of damaged silicon and ideal silicon, a degradation of Young’s modulus, ultimate tensile strength (UTS, and strain at fracture is observed.

  13. Long-time atomistic simulations with the Parallel Replica Dynamics method

    Science.gov (United States)

    Perez, Danny

    Molecular Dynamics (MD) -- the numerical integration of atomistic equations of motion -- is a workhorse of computational materials science. Indeed, MD can in principle be used to obtain any thermodynamic or kinetic quantity, without introducing any approximation or assumptions beyond the adequacy of the interaction potential. It is therefore an extremely powerful and flexible tool to study materials with atomistic spatio-temporal resolution. These enviable qualities however come at a steep computational price, hence limiting the system sizes and simulation times that can be achieved in practice. While the size limitation can be efficiently addressed with massively parallel implementations of MD based on spatial decomposition strategies, allowing for the simulation of trillions of atoms, the same approach usually cannot extend the timescales much beyond microseconds. In this article, we discuss an alternative parallel-in-time approach, the Parallel Replica Dynamics (ParRep) method, that aims at addressing the timescale limitation of MD for systems that evolve through rare state-to-state transitions. We review the formal underpinnings of the method and demonstrate that it can provide arbitrarily accurate results for any definition of the states. When an adequate definition of the states is available, ParRep can simulate trajectories with a parallel speedup approaching the number of replicas used. We demonstrate the usefulness of ParRep by presenting different examples of materials simulations where access to long timescales was essential to access the physical regime of interest and discuss practical considerations that must be addressed to carry out these simulations. Work supported by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  14. Atomistic simulation of graphene-based polymer nanocomposites

    International Nuclear Information System (INIS)

    Rissanou, Anastassia N.; Bačová, Petra; Harmandaris, Vagelis

    2016-01-01

    Polymer/graphene nanostructured systems are hybrid materials which have attracted great attention the last years both for scientific and technological reasons. In the present work atomistic Molecular Dynamics simulations are performed for the study of graphene-based polymer nanocomposites composed of pristine, hydrogenated and carboxylated graphene sheets dispersed in polar (PEO) and nonpolar (PE) short polymer matrices (i.e., matrices containing chains of low molecular weight). Our focus is twofold; the one is the study of the structural and dynamical properties of short polymer chains and the way that they are affected by functionalized graphene sheets while the other is the effect of the polymer matrices on the behavior of graphene sheets.

  15. Large-scale Intelligent Transporation Systems simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

    1995-06-01

    A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  16. Dynamic characteristics of nanoindentation using atomistic simulation

    International Nuclear Information System (INIS)

    Fang, Te-Hua; Chang, Wen-Yang; Huang, Jian-Jin

    2009-01-01

    Atomistic simulations are used to investigate how the nanoindentation mechanism influences dislocation nucleation under molecular dynamic behavior on the aluminum (0 0 1) surface. The characteristics of molecular dynamics in terms of various nucleation criteria are explored, including various molecular models, a multi-step load/unload cycle, deformation mechanism of atoms, tilt angle of the indenter, and slip vectors. Simulation results show that both the plastic energy and the adhesive force increase with increasing nanoindentation depths. The maximum forces for all indentation depths decrease with increasing multi-step load/unload cycle time. Dislocation nucleation, gliding, and interaction occur along Shockley partials on (1 1 1) slip planes. The indentation force applied along the normal direction, a tilt angle of 0 o , is smaller than the force component that acts on the surface atoms. The corresponding slip vector of the atoms in the (1 1 1) plane has low-energy sessile stair-rod dislocations in the pyramid of intrinsic stacking faults.

  17. Dynamic characteristics of nanoindentation using atomistic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Te-Hua, E-mail: fang.tehua@msa.hinet.net [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China); Chang, Wen-Yang [Microsystems Technology Center, Industrial Technology Research Institute, Tainan 709, Taiwan (China); Huang, Jian-Jin [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China)

    2009-06-15

    Atomistic simulations are used to investigate how the nanoindentation mechanism influences dislocation nucleation under molecular dynamic behavior on the aluminum (0 0 1) surface. The characteristics of molecular dynamics in terms of various nucleation criteria are explored, including various molecular models, a multi-step load/unload cycle, deformation mechanism of atoms, tilt angle of the indenter, and slip vectors. Simulation results show that both the plastic energy and the adhesive force increase with increasing nanoindentation depths. The maximum forces for all indentation depths decrease with increasing multi-step load/unload cycle time. Dislocation nucleation, gliding, and interaction occur along Shockley partials on (1 1 1) slip planes. The indentation force applied along the normal direction, a tilt angle of 0{sup o}, is smaller than the force component that acts on the surface atoms. The corresponding slip vector of the atoms in the (1 1 1) plane has low-energy sessile stair-rod dislocations in the pyramid of intrinsic stacking faults.

  18. Large scale particle simulations in a virtual memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Million, R.; Wagner, J.S.; Tajima, T.

    1983-01-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceeds the computer core size. The required address space is automatically mapped onto slow disc memory the the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Assesses to slow memory significantly reduce the excecution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time. (orig.)

  19. Large-scale particle simulations in a virtual-memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Wagner, J.S.; Tajima, T.; Million, R.

    1982-08-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceed the computer core size. The required address space is automatically mapped onto slow disc memory by the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Accesses to slow memory significantly reduce the execution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time

  20. Atomic scale simulations for improved CRUD and fuel performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-06

    A more mechanistic description of fuel performance codes can be achieved by deriving models and parameters from atomistic scale simulations rather than fitting models empirically to experimental data. The same argument applies to modeling deposition of corrosion products on fuel rods (CRUD). Here are some results from publications in 2016 carried out using the CASL allocation at LANL.

  1. Atomistic simulations of surfactant adsorption kinetics at interfaces

    Science.gov (United States)

    Iskrenova, Eugeniya; Patnaik, Soumya

    2014-03-01

    Heat transfer control and enhancement is an important and challenging problem in a variety of industrial and technological applications including aircraft thermal management. The role of additives in nucleate boiling and phase change in general has long been recognized and studied experimentally and modeled theoretically but in-depth description and atomistic understanding of the multiscale processes involved are still needed for better prediction and control of the heat transfer efficiency. Surfactant additives have been experimentally observed to either enhance or inhibit the boiling heat transfer depending on the surfactant concentration and chemistry and, on a molecular level, their addition leads to dynamic surface tension and changes in interfacial and transfer properties, thus contributing to the complexity of the problem. We present our atomistic modeling study of the interfacial adsorption kinetics of aqueous surfactant (sodium dodecyl sulfate) systems at a range of concentrations at room and boiling temperatures. Classical molecular dynamics and Umbrella Sampling simulations were used to study the surfactant transport properties and estimate the adsorption and desorption rates at liquid-vacuum and liquid-solid interfaces. The authors gratefully acknowledge funding from AFOSR Thermal Science Program and the Air Force Research Laboratory DoD Supercomputing Resource Center for computing time and resources.

  2. Development of the simulation package 'ELSES' for extra-large-scale electronic structure calculation

    International Nuclear Information System (INIS)

    Hoshi, T; Fujiwara, T

    2009-01-01

    An early-stage version of the simulation package 'ELSES' (extra-large-scale electronic structure calculation) is developed for simulating the electronic structure and dynamics of large systems, particularly nanometer-scale and ten-nanometer-scale systems (see www.elses.jp). Input and output files are written in the extensible markup language (XML) style for general users. Related pre-/post-simulation tools are also available. A practical workflow and an example are described. A test calculation for the GaAs bulk system is shown, to demonstrate that the present code can handle systems with more than one atom species. Several future aspects are also discussed.

  3. Control of density fluctuations in atomistic-continuum simulations of dense liquids

    DEFF Research Database (Denmark)

    Kotsalis, E.M.; Walther, Jens Honore; Koumoutsakos, P.

    2007-01-01

    with a continuum solver for the simulation of the Navier-Stokes equations. The lack of periodic boundary conditions in the molecular dynamics simulations hinders the proper accounting for the virial pressure leading to spurious density fluctuations at the continuum-atomistic interface. An ad hoc boundary force...... is usually employed to remedy this situation.We propose the calculation of this boundary force using a control algorithm that explicitly cancels the density fluctuations. The results demonstrate that the present approach outperforms state-of-the-art algorithms. The conceptual and algorithmic simplicity...

  4. De Novo Ultrascale Atomistic Simulations On High-End Parallel Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, A; Kalia, R K; Nomura, K; Sharma, A; Vashishta, P; Shimojo, F; van Duin, A; Goddard, III, W A; Biswas, R; Srivastava, D; Yang, L H

    2006-09-04

    We present a de novo hierarchical simulation framework for first-principles based predictive simulations of materials and their validation on high-end parallel supercomputers and geographically distributed clusters. In this framework, high-end chemically reactive and non-reactive molecular dynamics (MD) simulations explore a wide solution space to discover microscopic mechanisms that govern macroscopic material properties, into which highly accurate quantum mechanical (QM) simulations are embedded to validate the discovered mechanisms and quantify the uncertainty of the solution. The framework includes an embedded divide-and-conquer (EDC) algorithmic framework for the design of linear-scaling simulation algorithms with minimal bandwidth complexity and tight error control. The EDC framework also enables adaptive hierarchical simulation with automated model transitioning assisted by graph-based event tracking. A tunable hierarchical cellular decomposition parallelization framework then maps the O(N) EDC algorithms onto Petaflops computers, while achieving performance tunability through a hierarchy of parameterized cell data/computation structures, as well as its implementation using hybrid Grid remote procedure call + message passing + threads programming. High-end computing platforms such as IBM BlueGene/L, SGI Altix 3000 and the NSF TeraGrid provide an excellent test grounds for the framework. On these platforms, we have achieved unprecedented scales of quantum-mechanically accurate and well validated, chemically reactive atomistic simulations--1.06 billion-atom fast reactive force-field MD and 11.8 million-atom (1.04 trillion grid points) quantum-mechanical MD in the framework of the EDC density functional theory on adaptive multigrids--in addition to 134 billion-atom non-reactive space-time multiresolution MD, with the parallel efficiency as high as 0.998 on 65,536 dual-processor BlueGene/L nodes. We have also achieved an automated execution of hierarchical QM

  5. An efficient atomistic quantum mechanical simulation on InAs band-to-band tunneling field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Jiang, Xiang-Wei; Li, Shu-Shen [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Lin-Wang, E-mail: lwwang@lbl.gov [Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-03-24

    We have presented a fully atomistic quantum mechanical simulation method on band-to-band tunneling (BTBT) field-effect transistors (FETs). Our simulation approach is based on the linear combination of bulk band method with empirical pseudopotentials, which is an atomist method beyond the effective-mass approximation or k.p perturbation method, and can be used to simulate real-size devices (∼10{sup 5} atoms) efficiently (∼5 h on a few computational cores). Using this approach, we studied the InAs dual-gate BTBT FETs. The I-V characteristics from our approach agree very well with the tight-binding non-equilibrium Green's function results, yet our method costs much less computationally. In addition, we have studied ways to increase the tunneling current and analyzed the effects of different mechanisms for that purpose.

  6. An efficient atomistic quantum mechanical simulation on InAs band-to-band tunneling field-effect transistors

    International Nuclear Information System (INIS)

    Wang, Zhi; Jiang, Xiang-Wei; Li, Shu-Shen; Wang, Lin-Wang

    2014-01-01

    We have presented a fully atomistic quantum mechanical simulation method on band-to-band tunneling (BTBT) field-effect transistors (FETs). Our simulation approach is based on the linear combination of bulk band method with empirical pseudopotentials, which is an atomist method beyond the effective-mass approximation or k.p perturbation method, and can be used to simulate real-size devices (∼10 5 atoms) efficiently (∼5 h on a few computational cores). Using this approach, we studied the InAs dual-gate BTBT FETs. The I-V characteristics from our approach agree very well with the tight-binding non-equilibrium Green's function results, yet our method costs much less computationally. In addition, we have studied ways to increase the tunneling current and analyzed the effects of different mechanisms for that purpose

  7. Components for Atomistic-to-Continuum Multiscale Modeling of Flow in Micro- and Nanofluidic Systems

    Directory of Open Access Journals (Sweden)

    Helgi Adalsteinsson

    2008-01-01

    Full Text Available Micro- and nanofluidics pose a series of significant challenges for science-based modeling. Key among those are the wide separation of length- and timescales between interface phenomena and bulk flow and the spatially heterogeneous solution properties near solid-liquid interfaces. It is not uncommon for characteristic scales in these systems to span nine orders of magnitude from the atomic motions in particle dynamics up to evolution of mass transport at the macroscale level, making explicit particle models intractable for all but the simplest systems. Recently, atomistic-to-continuum (A2C multiscale simulations have gained a lot of interest as an approach to rigorously handle particle-level dynamics while also tracking evolution of large-scale macroscale behavior. While these methods are clearly not applicable to all classes of simulations, they are finding traction in systems in which tight-binding, and physically important, dynamics at system interfaces have complex effects on the slower-evolving large-scale evolution of the surrounding medium. These conditions allow decomposition of the simulation into discrete domains, either spatially or temporally. In this paper, we describe how features of domain decomposed simulation systems can be harnessed to yield flexible and efficient software for multiscale simulations of electric field-driven micro- and nanofluidics.

  8. A continuum-atomistic simulation of heat transfer in micro- and nano-flows

    International Nuclear Information System (INIS)

    Liu Jin; Chen Shiyi; Nie Xiaobo; Robbins, Mark O.

    2007-01-01

    We develop a hybrid atomistic-continuum scheme for simulating micro- and nano-flows with heat transfer. The approach is based on spatial 'domain decomposition' in which molecular dynamics (MD) is used in regions where atomistic details are important, while classical continuum fluid dynamics is used in the remaining regions. The two descriptions are matched in a coupling region where we ensure continuity of mass, momentum, energy and their fluxes. The scheme for including the energy equation is implemented in 1-D and 2-D, and used to study steady and unsteady heat transfer in channel flows with and without nano roughness. Good agreement between hybrid results and analytical or pure MD results is found, demonstrating the accuracy of this multiscale method and its potential applications in thermal engineering

  9. Simulating Surface-Enhanced Hyper-Raman Scattering Using Atomistic Electrodynamics-Quantum Mechanical Models.

    Science.gov (United States)

    Hu, Zhongwei; Chulhai, Dhabih V; Jensen, Lasse

    2016-12-13

    Surface-enhanced hyper-Raman scattering (SEHRS) is the two-photon analogue of surface-enhanced Raman scattering (SERS), which has proven to be a powerful tool to study molecular structures and surface enhancements. However, few theoretical approaches to SEHRS exist and most neglect the atomistic descriptions of the metal surface and molecular resonance effects. In this work, we present two atomistic electrodynamics-quantum mechanical models to simulate SEHRS. The first is the discrete interaction model/quantum mechanical (DIM/QM) model, which combines an atomistic electrodynamics model of the nanoparticle with a time-dependent density functional theory description of the molecule. The second model is a dressed-tensors method that describes the molecule as a point-dipole and point-quadrupole object interacting with the enhanced local field and field-gradients (FG) from the nanoparticle. In both of these models, the resonance effects are treated efficiently by means of damped quadratic response theory. Using these methods, we simulate SEHRS spectra for benzene and pyridine. Our results show that the FG effects in SEHRS play an important role in determining both the surface selection rules and the enhancements. We find that FG effects are more important in SEHRS than in SERS. We also show that the spectral features of small molecules can be accurately described by accounting for the interactions between the molecule and the local field and FG of the nanoparticle. However, at short distances between the metal and molecule, we find significant differences in the SEHRS enhancements predicted using the DIM/QM and the dressed-tensors methods.

  10. From HADES to PARADISE-atomistic simulation of defects in minerals

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Stephen C; Cooke, David J; Kerisit, Sebastien; Marmier, Arnaud S; Taylor, Sarah L; Taylor, Stuart N [Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom)

    2004-07-14

    The development of the HADES code by Michael Norgett in the 1970s enabled, for the first time, the routine simulation of point defects in inorganic solids at the atomic scale. Using examples from current research we illustrate how the scope and applications of atomistic simulations have widened with time and yet still follow an approach readily identifiable with this early work. Firstly we discuss the use of the Mott-Littleton methodology to study the segregation of various isovalent cations to the (00.1) and (01.2) surfaces of haematite ({alpha}-Fe{sub 2}O{sub 3}). The results show that the size of the impurities has a considerable effect on the magnitude of the segregation energy. We then extend these simulations to investigate the effect of the concentration of the impurities at the surface on the segregation process using a supercell approach. We consider next the effect of segregation to stepped surfaces illustrating this with recent work on segregation of La{sup 3+} to CaF{sub 2} surfaces, which show enhanced segregation to step edges. We discuss next the application of lattice dynamics to modelling point defects in complex oxide materials by applying this to the study of hydrogen incorporation into {beta}-Mg{sub 2}SiO{sub 4}. Finally our attention is turned to a method for considering the surface energy of physically defective surfaces and we illustrate its approach by considering the low index surfaces of {alpha}-Al{sub 2}O{sub 3}.

  11. Initial condition effects on large scale structure in numerical simulations of plane mixing layers

    Science.gov (United States)

    McMullan, W. A.; Garrett, S. J.

    2016-01-01

    In this paper, Large Eddy Simulations are performed on the spatially developing plane turbulent mixing layer. The simulated mixing layers originate from initially laminar conditions. The focus of this research is on the effect of the nature of the imposed fluctuations on the large-scale spanwise and streamwise structures in the flow. Two simulations are performed; one with low-level three-dimensional inflow fluctuations obtained from pseudo-random numbers, the other with physically correlated fluctuations of the same magnitude obtained from an inflow generation technique. Where white-noise fluctuations provide the inflow disturbances, no spatially stationary streamwise vortex structure is observed, and the large-scale spanwise turbulent vortical structures grow continuously and linearly. These structures are observed to have a three-dimensional internal geometry with branches and dislocations. Where physically correlated provide the inflow disturbances a "streaky" streamwise structure that is spatially stationary is observed, with the large-scale turbulent vortical structures growing with the square-root of time. These large-scale structures are quasi-two-dimensional, on top of which the secondary structure rides. The simulation results are discussed in the context of the varying interpretations of mixing layer growth that have been postulated. Recommendations are made concerning the data required from experiments in order to produce accurate numerical simulation recreations of real flows.

  12. Addressing uncertainty in atomistic machine learning

    DEFF Research Database (Denmark)

    Peterson, Andrew A.; Christensen, Rune; Khorshidi, Alireza

    2017-01-01

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predi......Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility...... of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We...... suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate...

  13. Large scale atomistic approaches to thermal transport and phonon scattering in nanostructured materials

    Science.gov (United States)

    Savic, Ivana

    2012-02-01

    Decreasing the thermal conductivity of bulk materials by nanostructuring and dimensionality reduction, or by introducing some amount of disorder represents a promising strategy in the search for efficient thermoelectric materials [1]. For example, considerable improvements of the thermoelectric efficiency in nanowires with surface roughness [2], superlattices [3] and nanocomposites [4] have been attributed to a significantly reduced thermal conductivity. In order to accurately describe thermal transport processes in complex nanostructured materials and directly compare with experiments, the development of theoretical and computational approaches that can account for both anharmonic and disorder effects in large samples is highly desirable. We will first summarize the strengths and weaknesses of the standard atomistic approaches to thermal transport (molecular dynamics [5], Boltzmann transport equation [6] and Green's function approach [7]) . We will then focus on the methods based on the solution of the Boltzmann transport equation, that are computationally too demanding, at present, to treat large scale systems and thus to investigate realistic materials. We will present a Monte Carlo method [8] to solve the Boltzmann transport equation in the relaxation time approximation [9], that enables computation of the thermal conductivity of ordered and disordered systems with a number of atoms up to an order of magnitude larger than feasible with straightforward integration. We will present a comparison between exact and Monte Carlo Boltzmann transport results for small SiGe nanostructures and then use the Monte Carlo method to analyze the thermal properties of realistic SiGe nanostructured materials. This work is done in collaboration with Davide Donadio, Francois Gygi, and Giulia Galli from UC Davis.[4pt] [1] See e.g. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).[0pt] [2] A. I. Hochbaum et al, Nature 451, 163 (2008).[0pt

  14. Large-scale ground motion simulation using GPGPU

    Science.gov (United States)

    Aoi, S.; Maeda, T.; Nishizawa, N.; Aoki, T.

    2012-12-01

    Huge computation resources are required to perform large-scale ground motion simulations using 3-D finite difference method (FDM) for realistic and complex models with high accuracy. Furthermore, thousands of various simulations are necessary to evaluate the variability of the assessment caused by uncertainty of the assumptions of the source models for future earthquakes. To conquer the problem of restricted computational resources, we introduced the use of GPGPU (General purpose computing on graphics processing units) which is the technique of using a GPU as an accelerator of the computation which has been traditionally conducted by the CPU. We employed the CPU version of GMS (Ground motion Simulator; Aoi et al., 2004) as the original code and implemented the function for GPU calculation using CUDA (Compute Unified Device Architecture). GMS is a total system for seismic wave propagation simulation based on 3-D FDM scheme using discontinuous grids (Aoi&Fujiwara, 1999), which includes the solver as well as the preprocessor tools (parameter generation tool) and postprocessor tools (filter tool, visualization tool, and so on). The computational model is decomposed in two horizontal directions and each decomposed model is allocated to a different GPU. We evaluated the performance of our newly developed GPU version of GMS on the TSUBAME2.0 which is one of the Japanese fastest supercomputer operated by the Tokyo Institute of Technology. First we have performed a strong scaling test using the model with about 22 million grids and achieved 3.2 and 7.3 times of the speed-up by using 4 and 16 GPUs. Next, we have examined a weak scaling test where the model sizes (number of grids) are increased in proportion to the degree of parallelism (number of GPUs). The result showed almost perfect linearity up to the simulation with 22 billion grids using 1024 GPUs where the calculation speed reached to 79.7 TFlops and about 34 times faster than the CPU calculation using the same number

  15. REIONIZATION ON LARGE SCALES. I. A PARAMETRIC MODEL CONSTRUCTED FROM RADIATION-HYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Battaglia, N.; Trac, H.; Cen, R.; Loeb, A.

    2013-01-01

    We present a new method for modeling inhomogeneous cosmic reionization on large scales. Utilizing high-resolution radiation-hydrodynamic simulations with 2048 3 dark matter particles, 2048 3 gas cells, and 17 billion adaptive rays in a L = 100 Mpc h –1 box, we show that the density and reionization redshift fields are highly correlated on large scales (∼> 1 Mpc h –1 ). This correlation can be statistically represented by a scale-dependent linear bias. We construct a parametric function for the bias, which is then used to filter any large-scale density field to derive the corresponding spatially varying reionization redshift field. The parametric model has three free parameters that can be reduced to one free parameter when we fit the two bias parameters to simulation results. We can differentiate degenerate combinations of the bias parameters by combining results for the global ionization histories and correlation length between ionized regions. Unlike previous semi-analytic models, the evolution of the reionization redshift field in our model is directly compared cell by cell against simulations and performs well in all tests. Our model maps the high-resolution, intermediate-volume radiation-hydrodynamic simulations onto lower-resolution, larger-volume N-body simulations (∼> 2 Gpc h –1 ) in order to make mock observations and theoretical predictions

  16. Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase γ

    DEFF Research Database (Denmark)

    Euro, Liliya; Haapanen, Outi; Róg, Tomasz

    2017-01-01

    of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable......DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site...... changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory β-subunit, and (3) formation of a putative transient replisome-binding platform...

  17. Molecular Dynamics Simulations for Resolving Scaling Laws of Polyethylene Melts

    Directory of Open Access Journals (Sweden)

    Kazuaki Z. Takahashi

    2017-01-01

    Full Text Available Long-timescale molecular dynamics simulations were performed to estimate the actual physical nature of a united-atom model of polyethylene (PE. Several scaling laws for representative polymer properties are compared to theoretical predictions. Internal structure results indicate a clear departure from theoretical predictions that assume ideal chain statics. Chain motion deviates from predictions that assume ideal motion of short chains. With regard to linear viscoelasticity, the presence or absence of entanglements strongly affects the duration of the theoretical behavior. Overall, the results indicate that Gaussian statics and dynamics are not necessarily established for real atomistic models of PE. Moreover, the actual physical nature should be carefully considered when using atomistic models for applications that expect typical polymer behaviors.

  18. Robust large-scale parallel nonlinear solvers for simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any

  19. Characteristics of Tornado-Like Vortices Simulated in a Large-Scale Ward-Type Simulator

    Science.gov (United States)

    Tang, Zhuo; Feng, Changda; Wu, Liang; Zuo, Delong; James, Darryl L.

    2018-02-01

    Tornado-like vortices are simulated in a large-scale Ward-type simulator to further advance the understanding of such flows, and to facilitate future studies of tornado wind loading on structures. Measurements of the velocity fields near the simulator floor and the resulting floor surface pressures are interpreted to reveal the mean and fluctuating characteristics of the flow as well as the characteristics of the static-pressure deficit. We focus on the manner in which the swirl ratio and the radial Reynolds number affect these characteristics. The transition of the tornado-like flow from a single-celled vortex to a dual-celled vortex with increasing swirl ratio and the impact of this transition on the flow field and the surface-pressure deficit are closely examined. The mean characteristics of the surface-pressure deficit caused by tornado-like vortices simulated at a number of swirl ratios compare well with the corresponding characteristics recorded during full-scale tornadoes.

  20. Believability in simplifications of large scale physically based simulation

    KAUST Repository

    Han, Donghui; Hsu, Shu-wei; McNamara, Ann; Keyser, John

    2013-01-01

    We verify two hypotheses which are assumed to be true only intuitively in many rigid body simulations. I: In large scale rigid body simulation, viewers may not be able to perceive distortion incurred by an approximated simulation method. II: Fixing objects under a pile of objects does not affect the visual plausibility. Visual plausibility of scenarios simulated with these hypotheses assumed true are measured using subjective rating from viewers. As expected, analysis of results supports the truthfulness of the hypotheses under certain simulation environments. However, our analysis discovered four factors which may affect the authenticity of these hypotheses: number of collisions simulated simultaneously, homogeneity of colliding object pairs, distance from scene under simulation to camera position, and simulation method used. We also try to find an objective metric of visual plausibility from eye-tracking data collected from viewers. Analysis of these results indicates that eye-tracking does not present a suitable proxy for measuring plausibility or distinguishing between types of simulations. © 2013 ACM.

  1. Large Scale Simulations of the Euler Equations on GPU Clusters

    KAUST Repository

    Liebmann, Manfred; Douglas, Craig C.; Haase, Gundolf; Horvá th, Zoltá n

    2010-01-01

    The paper investigates the scalability of a parallel Euler solver, using the Vijayasundaram method, on a GPU cluster with 32 Nvidia Geforce GTX 295 boards. The aim of this research is to enable large scale fluid dynamics simulations with up to one

  2. GPU-Accelerated Sparse Matrix Solvers for Large-Scale Simulations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Many large-scale numerical simulations can be broken down into common mathematical routines. While the applications may differ, the need to perform functions such as...

  3. Simulation test of PIUS-type reactor with large scale experimental apparatus

    International Nuclear Information System (INIS)

    Tamaki, M.; Tsuji, Y.; Ito, T.; Tasaka, K.; Kukita, Yutaka

    1995-01-01

    A large scale experimental apparatus for simulating the PIUS-type reactor has been constructed keeping the volumetric scaling ratio to the realistic reactor model. Fundamental experiments such as a steady state operation and a pump trip simulation were performed. Experimental results were compared with those obtained by the small scale apparatus in JAERI. We have already reported the effectiveness of the feedback control for the primary loop pump speed (PI control) for the stable operation. In this paper this feedback system is modified and the PID control is introduced. This new system worked well for the operation of the PIUS-type reactor even in a rapid transient condition. (author)

  4. Experimental simulation of microinteractions in large scale explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Luo, R.; Yuen, W.W.; Theofanous, T.G. [California Univ., Santa Barbara, CA (United States). Center for Risk Studies and Safety

    1998-01-01

    This paper presents data and analysis of recent experiments conducted in the SIGMA-2000 facility to simulate microinteractions in large scale explosions. Specifically, the fragmentation behavior of a high temperature molten steel drop under high pressure (beyond critical) conditions are investigated. The current data demonstrate, for the first time, the effect of high pressure in suppressing the thermal effect of fragmentation under supercritical conditions. The results support the microinteractions idea, and the ESPROSE.m prediction of fragmentation rate. (author)

  5. SIMON: Remote collaboration system based on large scale simulation

    International Nuclear Information System (INIS)

    Sugawara, Akihiro; Kishimoto, Yasuaki

    2003-01-01

    Development of SIMON (SImulation MONitoring) system is described. SIMON aims to investigate many physical phenomena of tokamak type nuclear fusion plasma by simulation and to exchange information and to carry out joint researches with scientists in the world using internet. The characteristics of SIMON are followings; 1) decrease load of simulation by trigger sending method, 2) visualization of simulation results and hierarchical structure of analysis, 3) decrease of number of license by using command line when software is used, 4) improvement of support for using network of simulation data output by use of HTML (Hyper Text Markup Language), 5) avoidance of complex built-in work in client part and 6) small-sized and portable software. The visualization method of large scale simulation, remote collaboration system by HTML, trigger sending method, hierarchical analytical method, introduction into three-dimensional electromagnetic transportation code and technologies of SIMON system are explained. (S.Y.)

  6. Application of parallel computing techniques to a large-scale reservoir simulation

    International Nuclear Information System (INIS)

    Zhang, Keni; Wu, Yu-Shu; Ding, Chris; Pruess, Karsten

    2001-01-01

    Even with the continual advances made in both computational algorithms and computer hardware used in reservoir modeling studies, large-scale simulation of fluid and heat flow in heterogeneous reservoirs remains a challenge. The problem commonly arises from intensive computational requirement for detailed modeling investigations of real-world reservoirs. This paper presents the application of a massive parallel-computing version of the TOUGH2 code developed for performing large-scale field simulations. As an application example, the parallelized TOUGH2 code is applied to develop a three-dimensional unsaturated-zone numerical model simulating flow of moisture, gas, and heat in the unsaturated zone of Yucca Mountain, Nevada, a potential repository for high-level radioactive waste. The modeling approach employs refined spatial discretization to represent the heterogeneous fractured tuffs of the system, using more than a million 3-D gridblocks. The problem of two-phase flow and heat transfer within the model domain leads to a total of 3,226,566 linear equations to be solved per Newton iteration. The simulation is conducted on a Cray T3E-900, a distributed-memory massively parallel computer. Simulation results indicate that the parallel computing technique, as implemented in the TOUGH2 code, is very efficient. The reliability and accuracy of the model results have been demonstrated by comparing them to those of small-scale (coarse-grid) models. These comparisons show that simulation results obtained with the refined grid provide more detailed predictions of the future flow conditions at the site, aiding in the assessment of proposed repository performance

  7. Investigating the dependence of SCM simulated precipitation and clouds on the spatial scale of large-scale forcing at SGP

    Science.gov (United States)

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    2017-08-01

    Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version of the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. Other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.

  8. Large-scale tropospheric transport in the Chemistry-Climate Model Initiative (CCMI) simulations

    Science.gov (United States)

    Orbe, Clara; Yang, Huang; Waugh, Darryn W.; Zeng, Guang; Morgenstern, Olaf; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Plummer, David A.; Scinocca, John F.; Josse, Beatrice; Marecal, Virginie; Jöckel, Patrick; Oman, Luke D.; Strahan, Susan E.; Deushi, Makoto; Tanaka, Taichu Y.; Yoshida, Kohei; Akiyoshi, Hideharu; Yamashita, Yousuke; Stenke, Andreas; Revell, Laura; Sukhodolov, Timofei; Rozanov, Eugene; Pitari, Giovanni; Visioni, Daniele; Stone, Kane A.; Schofield, Robyn; Banerjee, Antara

    2018-05-01

    Understanding and modeling the large-scale transport of trace gases and aerosols is important for interpreting past (and projecting future) changes in atmospheric composition. Here we show that there are large differences in the global-scale atmospheric transport properties among the models participating in the IGAC SPARC Chemistry-Climate Model Initiative (CCMI). Specifically, we find up to 40 % differences in the transport timescales connecting the Northern Hemisphere (NH) midlatitude surface to the Arctic and to Southern Hemisphere high latitudes, where the mean age ranges between 1.7 and 2.6 years. We show that these differences are related to large differences in vertical transport among the simulations, in particular to differences in parameterized convection over the oceans. While stronger convection over NH midlatitudes is associated with slower transport to the Arctic, stronger convection in the tropics and subtropics is associated with faster interhemispheric transport. We also show that the differences among simulations constrained with fields derived from the same reanalysis products are as large as (and in some cases larger than) the differences among free-running simulations, most likely due to larger differences in parameterized convection. Our results indicate that care must be taken when using simulations constrained with analyzed winds to interpret the influence of meteorology on tropospheric composition.

  9. Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI simulations

    Directory of Open Access Journals (Sweden)

    C. Orbe

    2018-05-01

    Full Text Available Understanding and modeling the large-scale transport of trace gases and aerosols is important for interpreting past (and projecting future changes in atmospheric composition. Here we show that there are large differences in the global-scale atmospheric transport properties among the models participating in the IGAC SPARC Chemistry–Climate Model Initiative (CCMI. Specifically, we find up to 40 % differences in the transport timescales connecting the Northern Hemisphere (NH midlatitude surface to the Arctic and to Southern Hemisphere high latitudes, where the mean age ranges between 1.7 and 2.6 years. We show that these differences are related to large differences in vertical transport among the simulations, in particular to differences in parameterized convection over the oceans. While stronger convection over NH midlatitudes is associated with slower transport to the Arctic, stronger convection in the tropics and subtropics is associated with faster interhemispheric transport. We also show that the differences among simulations constrained with fields derived from the same reanalysis products are as large as (and in some cases larger than the differences among free-running simulations, most likely due to larger differences in parameterized convection. Our results indicate that care must be taken when using simulations constrained with analyzed winds to interpret the influence of meteorology on tropospheric composition.

  10. Atomistic simulations of dislocation-precipitate interactions emphasize importance of cross-slip

    International Nuclear Information System (INIS)

    Singh, C.V.; Mateos, A.J.; Warner, D.H.

    2011-01-01

    This work examines the interaction of screw dislocations with Guinier-Preston (GP) zones using atomistic simulations. Both Orowan looping and cross-slip mechanisms are found to control the interactions. Cross-slip, occurring both at zero and finite temperatures, is found to either significantly reduce or enhance precipitate strengthening, depending upon the orientation of the dislocation-GP zone interaction. The orientation dependence, and its dependence on temperature, provides a micromechanical explanation for the experiments of Muraishi et al. (Philos. Mag. A 82 (2002) 2755).

  11. Large-scale modeling of epileptic seizures: scaling properties of two parallel neuronal network simulation algorithms.

    Science.gov (United States)

    Pesce, Lorenzo L; Lee, Hyong C; Hereld, Mark; Visser, Sid; Stevens, Rick L; Wildeman, Albert; van Drongelen, Wim

    2013-01-01

    Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.

  12. Large-Scale Modeling of Epileptic Seizures: Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms

    Directory of Open Access Journals (Sweden)

    Lorenzo L. Pesce

    2013-01-01

    Full Text Available Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons and processor pool sizes (1 to 256 processors. Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.

  13. Structural and functional analysis of glycoprotein butyrylcholinesterase using atomistic molecular dynamics

    Science.gov (United States)

    Bernardi, Austen; Faller, Roland

    Atomistic molecular dynamics (MD) has proven to be a powerful tool for studying the structure and dynamics of biological systems on nanosecond to microsecond time scales and nanometer length scales. In this work we study the effects of modifying the glycan distribution on the structure and function of full length monomeric butyrylcholinesterase (BChE). BChE exists as a monomer, dimer, or tetramer, and is a therapeutic glycoprotein with nine asparagine glycosylation sites per monomer. Each monomer acts as a stoichiometric scavenger for organophosphorus (OP) nerve agents (e.g. sarin, soman). Glycan distributions are highly heterogeneous and have been shown experimentally to affect certain glycoproteins' stability and reactivity. We performed structural analysis of various biologically relevant glycoforms of BChE using classical atomistic MD. Functional analysis was performed through binding energy simulations using umbrella sampling with BChE and OP cofactors. Additionally, we assess the quality of the glycans' conformational sampling. We found that the glycan distribution has a significant effect on the structure and function of BChE on timescales available to atomistic MD. This project is funded by the DTRA Grant HDTRA1-15-1-0054.

  14. Review of Dynamic Modeling and Simulation of Large Scale Belt Conveyor System

    Science.gov (United States)

    He, Qing; Li, Hong

    Belt conveyor is one of the most important devices to transport bulk-solid material for long distance. Dynamic analysis is the key to decide whether the design is rational in technique, safe and reliable in running, feasible in economy. It is very important to study dynamic properties, improve efficiency and productivity, guarantee conveyor safe, reliable and stable running. The dynamic researches and applications of large scale belt conveyor are discussed. The main research topics, the state-of-the-art of dynamic researches on belt conveyor are analyzed. The main future works focus on dynamic analysis, modeling and simulation of main components and whole system, nonlinear modeling, simulation and vibration analysis of large scale conveyor system.

  15. The TeraShake Computational Platform for Large-Scale Earthquake Simulations

    Science.gov (United States)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  16. Near-ideal strength in metal nanotubes revealed by atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingfei; Xiao, Fei [Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433 (China); Deng, Chuang, E-mail: dengc@ad.umanitoba.ca [Department of Mechanical and Manufacturing Engineering, The University of Manitoba, 15Gillson Street, Winnipeg, Manitoba R3T 5V6 (Canada)

    2013-12-02

    Here we report extraordinary mechanical properties revealed by atomistic simulations in metal nanotubes with hollow interior that have been long overlooked. Particularly, the yield strength in [1 1 1] Au nanotubes is found to be up to 60% higher than the corresponding solid Au nanowire, which approaches the theoretical ideal strength in Au. Furthermore, a remarkable transition from sharp to smooth yielding is observed in Au nanotubes with decreasing wall thickness. The ultrahigh tensile strength in [1 1 1] Au nanotube might originate from the repulsive image force exerted by the interior surface against dislocation nucleation from the outer surface.

  17. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    Directory of Open Access Journals (Sweden)

    Sam Ali Al

    2015-01-01

    Full Text Available The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simulations and Direct Numerical Simulations data regardless the Sub Grid Scale models. However, the agreement is less satisfactory with relatively coarse grid without using any wall models and the differences between Sub Grid Scale models are distinguishable. Using local wall model retuned the basic flow topology and reduced significantly the differences between the coarse meshed Large-Eddy Simulations and Direct Numerical Simulations data. The results show that the ability of local wall model to predict the separation zone depends strongly on its implementation way.

  18. Cerebral methodology based computing to estimate real phenomena from large-scale nuclear simulation

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2011-01-01

    Our final goal is to estimate real phenomena from large-scale nuclear simulations by using computing processes. Large-scale simulations mean that they include scale variety and physical complexity so that corresponding experiments and/or theories do not exist. In nuclear field, it is indispensable to estimate real phenomena from simulations in order to improve the safety and security of nuclear power plants. Here, the analysis of uncertainty included in simulations is needed to reveal sensitivity of uncertainty due to randomness, to reduce the uncertainty due to lack of knowledge and to lead a degree of certainty by verification and validation (V and V) and uncertainty quantification (UQ) processes. To realize this, we propose 'Cerebral Methodology based Computing (CMC)' as computing processes with deductive and inductive approaches by referring human reasoning processes. Our idea is to execute deductive and inductive simulations contrasted with deductive and inductive approaches. We have established its prototype system and applied it to a thermal displacement analysis of a nuclear power plant. The result shows that our idea is effective to reduce the uncertainty and to get the degree of certainty. (author)

  19. Development of the simulation package 'ELSES' for extra-large-scale electronic structure calculation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, T [Department of Applied Mathematics and Physics, Tottori University, Tottori 680-8550 (Japan); Fujiwara, T [Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (CREST-JST) (Japan)

    2009-02-11

    An early-stage version of the simulation package 'ELSES' (extra-large-scale electronic structure calculation) is developed for simulating the electronic structure and dynamics of large systems, particularly nanometer-scale and ten-nanometer-scale systems (see www.elses.jp). Input and output files are written in the extensible markup language (XML) style for general users. Related pre-/post-simulation tools are also available. A practical workflow and an example are described. A test calculation for the GaAs bulk system is shown, to demonstrate that the present code can handle systems with more than one atom species. Several future aspects are also discussed.

  20. Self-evolving atomistic kinetic Monte Carlo: fundamentals and applications

    International Nuclear Information System (INIS)

    Xu Haixuan; Osetsky, Yuri N; Stoller, Roger E

    2012-01-01

    The fundamentals of the framework and the details of each component of the self-evolving atomistic kinetic Monte Carlo (SEAKMC) are presented. The strength of this new technique is the ability to simulate dynamic processes with atomistic fidelity that is comparable to molecular dynamics (MD) but on a much longer time scale. The observation that the dimer method preferentially finds the saddle point (SP) with the lowest energy is investigated and found to be true only for defects with high symmetry. In order to estimate the fidelity of dynamics and accuracy of the simulation time, a general criterion is proposed and applied to two representative problems. Applications of SEAKMC for investigating the diffusion of interstitials and vacancies in bcc iron are presented and compared directly with MD simulations, demonstrating that SEAKMC provides results that formerly could be obtained only through MD. The correlation factor for interstitial diffusion in the dumbbell configuration, which is extremely difficult to obtain using MD, is predicted using SEAKMC. The limitations of SEAKMC are also discussed. The paper presents a comprehensive picture of the SEAKMC method in both its unique predictive capabilities and technically important details.

  1. Identifying Conformational-Selection and Induced-Fit Aspects in the Binding-Induced Folding of PMI from Markov State Modeling of Atomistic Simulations.

    Science.gov (United States)

    Paul, Fabian; Noé, Frank; Weikl, Thomas R

    2018-03-27

    Unstructured proteins and peptides typically fold during binding to ligand proteins. A challenging problem is to identify the mechanism and kinetics of these binding-induced folding processes in experiments and atomistic simulations. In this Article, we present a detailed picture for the folding of the inhibitor peptide PMI into a helix during binding to the oncoprotein fragment 25-109 Mdm2 obtained from atomistic, explicit-water simulations and Markov state modeling. We find that binding-induced folding of PMI is highly parallel and can occur along a multitude of pathways. Some pathways are induced-fit-like with binding occurring prior to PMI helix formation, while other pathways are conformational-selection-like with binding after helix formation. On the majority of pathways, however, binding is intricately coupled to folding, without clear temporal ordering. A central feature of these pathways is PMI motion on the Mdm2 surface, along the binding groove of Mdm2 or over the rim of this groove. The native binding groove of Mdm2 thus appears as an asymmetric funnel for PMI binding. Overall, binding-induced folding of PMI does not fit into the classical picture of induced fit or conformational selection that implies a clear temporal ordering of binding and folding events. We argue that this holds in general for binding-induced folding processes because binding and folding events in these processes likely occur on similar time scales and do exhibit the time-scale separation required for temporal ordering.

  2. Large-scale simulation of ductile fracture process of microstructured materials

    International Nuclear Information System (INIS)

    Tian Rong; Wang Chaowei

    2011-01-01

    The promise of computational science in the extreme-scale computing era is to reduce and decompose macroscopic complexities into microscopic simplicities with the expense of high spatial and temporal resolution of computing. In materials science and engineering, the direct combination of 3D microstructure data sets and 3D large-scale simulations provides unique opportunity for the development of a comprehensive understanding of nano/microstructure-property relationships in order to systematically design materials with specific desired properties. In the paper, we present a framework simulating the ductile fracture process zone in microstructural detail. The experimentally reconstructed microstructural data set is directly embedded into a FE mesh model to improve the simulation fidelity of microstructure effects on fracture toughness. To the best of our knowledge, it is for the first time that the linking of fracture toughness to multiscale microstructures in a realistic 3D numerical model in a direct manner is accomplished. (author)

  3. Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow

    NARCIS (Netherlands)

    Holmen, J.; Hughes, T.J.R.; Oberai, A.A.; Wells, G.N.

    2004-01-01

    The variational multiscale method has been shown to perform well for large-eddy simulation (LES) of turbulent flows. The method relies upon a partition of the resolved velocity field into large- and small-scale components. The subgrid model then acts only on the small scales of motion, unlike

  4. Large Scale Monte Carlo Simulation of Neutrino Interactions Using the Open Science Grid and Commercial Clouds

    International Nuclear Information System (INIS)

    Norman, A.; Boyd, J.; Davies, G.; Flumerfelt, E.; Herner, K.; Mayer, N.; Mhashilhar, P.; Tamsett, M.; Timm, S.

    2015-01-01

    Modern long baseline neutrino experiments like the NOvA experiment at Fermilab, require large scale, compute intensive simulations of their neutrino beam fluxes and backgrounds induced by cosmic rays. The amount of simulation required to keep the systematic uncertainties in the simulation from dominating the final physics results is often 10x to 100x that of the actual detector exposure. For the first physics results from NOvA this has meant the simulation of more than 2 billion cosmic ray events in the far detector and more than 200 million NuMI beam spill simulations. Performing these high statistics levels of simulation have been made possible for NOvA through the use of the Open Science Grid and through large scale runs on commercial clouds like Amazon EC2. We details the challenges in performing large scale simulation in these environments and how the computing infrastructure for the NOvA experiment has been adapted to seamlessly support the running of different simulation and data processing tasks on these resources. (paper)

  5. Dynamic subgrid scale model of large eddy simulation of cross bundle flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1996-01-01

    The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  6. Atomistic simulation of the premelting of iron and aluminum : Implications for high-pressure melting-curve measurements

    NARCIS (Netherlands)

    Starikov, Sergey V.; Stegailov, Vladimir V.

    2009-01-01

    Using atomistic simulations we show the importance of the surface premelting phenomenon for the melting-curve measurements at high pressures. The model under consideration mimics the experimental conditions deployed for melting studies with diamond-anvil cells. The iron is considered in this work

  7. Finite element analysis of an atomistically derived cohesive model for brittle fracture

    International Nuclear Information System (INIS)

    Lloyd, J T; McDowell, D L; Zimmerman, J A; Jones, R E; Zhou, X W

    2011-01-01

    In order to apply information from molecular dynamics (MD) simulations in problems governed by engineering length and time scales, a coarse graining methodology must be used. In previous work by Zhou et al (2009 Acta Mater. 57 4671–86), a traction-separation cohesive model was developed using results from MD simulations with atomistic-to-continuum measures of stress and displacement. Here, we implement this cohesive model within a combined finite element/cohesive surface element framework (referred to as a finite element approach or FEA), and examine the ability for the atomistically informed FEA to directly reproduce results from MD. We find that FEA shows close agreement of both stress and crack opening displacement profiles at the cohesive interface, although some differences do exist that can be attributed to the stochastic nature of finite temperature MD. The FEA methodology is then used to study slower loading rates that are computationally expensive for MD. We find that the crack growth process initially exhibits a rate-independent relationship between crack length and boundary displacement, followed by a rate-dependent regime where, at a given amount of boundary displacement, a lower applied strain rate produces a longer crack length. Our method is also extended to larger length scales by simulating a compact tension fracture-mechanics specimen with sub-micrometer dimensions. Such a simulation shows a computational speedup of approximately four orders of magnitude over conventional atomistic simulation, while exhibiting the expected fracture-mechanics response. Finally, differences between FEA and MD are explored with respect to ensemble and temperature effects in MD, and their impact on the cohesive model and crack growth behavior. These results enable us to make several recommendations to improve the methodology used to derive cohesive laws from MD simulations. In light of this work, which has critical implications for efforts to derive continuum laws

  8. ORAC: a molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level.

    Science.gov (United States)

    Marsili, Simone; Signorini, Giorgio Federico; Chelli, Riccardo; Marchi, Massimo; Procacci, Piero

    2010-04-15

    We present the new release of the ORAC engine (Procacci et al., Comput Chem 1997, 18, 1834), a FORTRAN suite to simulate complex biosystems at the atomistic level. The previous release of the ORAC code included multiple time steps integration, smooth particle mesh Ewald method, constant pressure and constant temperature simulations. The present release has been supplemented with the most advanced techniques for enhanced sampling in atomistic systems including replica exchange with solute tempering, metadynamics and steered molecular dynamics. All these computational technologies have been implemented for parallel architectures using the standard MPI communication protocol. ORAC is an open-source program distributed free of charge under the GNU general public license (GPL) at http://www.chim.unifi.it/orac. 2009 Wiley Periodicals, Inc.

  9. Drug design: Insights from atomistic simulations

    International Nuclear Information System (INIS)

    Collu, F.; Spiga, E.; Kumar, A.; Hajjar, E.; Vargiu, A.V.; Ceccarelli, M.; Ruggerone, P.

    2009-01-01

    Computer simulations have become a widely used and powerful tool to study the behaviour of many-particle and many-interaction systems and processes such as nucleic acid dynamics, drug-DNA interactions, enzymatic processes, membrane, antibiotics. The increased reliability of computational techniques has made possible to plane a bottom-up approach in drug design, i.e. designing molecules with improved properties starting from the knowledge of the molecular mechanisms. However, the in silico techniques have to face the fact that the number of degrees of freedom involved in biological systems is very large while the time scale of several biological processes is not accessible to standard simulations. Algorithms and methods have been developed and are still under construction to bridge these gaps. Here we review the activities of our group focussed on the time-scale bottleneck and, in particular, on the use of the meta dynamics scheme that allows the investigation of rare events in reasonable computer time without reducing the accuracy of the calculation. In particular, we have devoted particular attention to the characterization at microscopic level of translocation of antibiotics through membrane pores, aiming at the identification of structural and dynamical features helpful for a rational drug design.

  10. The Roles of Sparse Direct Methods in Large-scale Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoye S.; Gao, Weiguo; Husbands, Parry J.R.; Yang, Chao; Ng, Esmond G.

    2005-06-27

    Sparse systems of linear equations and eigen-equations arise at the heart of many large-scale, vital simulations in DOE. Examples include the Accelerator Science and Technology SciDAC (Omega3P code, electromagnetic problem), the Center for Extended Magnetohydrodynamic Modeling SciDAC(NIMROD and M3D-C1 codes, fusion plasma simulation). The Terascale Optimal PDE Simulations (TOPS)is providing high-performance sparse direct solvers, which have had significant impacts on these applications. Over the past several years, we have been working closely with the other SciDAC teams to solve their large, sparse matrix problems arising from discretization of the partial differential equations. Most of these systems are very ill-conditioned, resulting in extremely poor convergence deployed our direct methods techniques in these applications, which achieved significant scientific results as well as performance gains. These successes were made possible through the SciDAC model of computer scientists and application scientists working together to take full advantage of terascale computing systems and new algorithms research.

  11. The Roles of Sparse Direct Methods in Large-scale Simulations

    International Nuclear Information System (INIS)

    Li, Xiaoye S.; Gao, Weiguo; Husbands, Parry J.R.; Yang, Chao; Ng, Esmond G.

    2005-01-01

    Sparse systems of linear equations and eigen-equations arise at the heart of many large-scale, vital simulations in DOE. Examples include the Accelerator Science and Technology SciDAC (Omega3P code, electromagnetic problem), the Center for Extended Magnetohydrodynamic Modeling SciDAC(NIMROD and M3D-C1 codes, fusion plasma simulation). The Terascale Optimal PDE Simulations (TOPS)is providing high-performance sparse direct solvers, which have had significant impacts on these applications. Over the past several years, we have been working closely with the other SciDAC teams to solve their large, sparse matrix problems arising from discretization of the partial differential equations. Most of these systems are very ill-conditioned, resulting in extremely poor convergence deployed our direct methods techniques in these applications, which achieved significant scientific results as well as performance gains. These successes were made possible through the SciDAC model of computer scientists and application scientists working together to take full advantage of terascale computing systems and new algorithms research

  12. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    International Nuclear Information System (INIS)

    Seppä, Jeremias; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Lassila, Antti; Reischl, Bernhard; Raiteri, Paolo; Rohl, Andrew L; Nordlund, Kai

    2017-01-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation. (paper)

  13. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    Science.gov (United States)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek

    2017-01-01

    We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.

  14. Degenerate Ising model for atomistic simulation of crystal-melt interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schebarchov, D., E-mail: Dmitri.Schebarchov@gmail.com [University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Schulze, T. P., E-mail: schulze@math.utk.edu [Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300 (United States); Hendy, S. C. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Department of Physics, University of Auckland, Auckland 1010 (New Zealand)

    2014-02-21

    One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level.

  15. Degenerate Ising model for atomistic simulation of crystal-melt interfaces

    International Nuclear Information System (INIS)

    Schebarchov, D.; Schulze, T. P.; Hendy, S. C.

    2014-01-01

    One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level

  16. A method of orbital analysis for large-scale first-principles simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ohwaki, Tsukuru [Advanced Materials Laboratory, Nissan Research Center, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523 (Japan); Otani, Minoru [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ozaki, Taisuke [Research Center for Simulation Science (RCSS), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2014-06-28

    An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF{sub 4})

  17. A method of orbital analysis for large-scale first-principles simulations

    International Nuclear Information System (INIS)

    Ohwaki, Tsukuru; Otani, Minoru; Ozaki, Taisuke

    2014-01-01

    An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF 4 )

  18. Sensitivity technologies for large scale simulation

    International Nuclear Information System (INIS)

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias; Wilcox, Lucas C.; Hill, Judith C.; Ghattas, Omar; Berggren, Martin Olof; Akcelik, Volkan; Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  19. From beta-relaxation to alpha-decay: Atomistic picture from molecular dynamics simulations for glass-forming Ni0.5Zr0.5 melt

    Energy Technology Data Exchange (ETDEWEB)

    Teichler, Helmar [Inst. Materialphysik, Univ Goettingen (Germany)

    2013-07-01

    In glass-forming melts the decay of structural fluctuation shows the well known transition from beta-relaxation (von-Schweidler law with exponent b) to alpha-decay (KWW law with exponent beta). Here we present results from molecular dynamics simulations for a metallic glass forming Ni0.5Zr0.5 model aimed at giving an understanding of this transition on the atomistic scale. At the considered temperature below mode coupling Tc, the dynamics of the system can be interpreted by residence of the particles in their neighbour cages and escape from the cages as rare processes. Our analysis yields that the fraction of residing particles is characterized by a hierarchical law in time, with von-Schweidler b explicitly related to the exponent of this law. In the alpha-decay regime the stretching exponent reflects, in addition, floating of the cages due to strain effects of escaped particles. Accordingly, the change from beta-relaxation to alpha-decay indicates the transition from low to large fraction of escaped particles.

  20. Atomistic simulation of the coupled adsorption and unfolding of protein GB1 on the polystyrenes nanoparticle surface

    Science.gov (United States)

    Xiao, HuiFang; Huang, Bin; Yao, Ge; Kang, WenBin; Gong, Sheng; Pan, Hai; Cao, Yi; Wang, Jun; Zhang, Jian; Wang, Wei

    2018-03-01

    Understanding the processes of protein adsorption/desorption on nanoparticles' surfaces is important for the development of new nanotechnology involving biomaterials; however, an atomistic resolution picture for these processes and for the simultaneous protein conformational change is missing. Here, we report the adsorption of protein GB1 on a polystyrene nanoparticle surface using atomistic molecular dynamic simulations. Enabled by metadynamics, we explored the relevant phase space and identified three protein states, each involving both the adsorbed and desorbed modes. We also studied the change of the secondary and tertiary structures of GB1 during adsorption and the dominant interactions between the protein and surface in different adsorption stages. The results we obtained from simulation were found to be more adequate and complete than the previous one. We believe the model presented in this paper, in comparison with the previous ones, is a better theoretical model to understand and explain the experimental results.

  1. Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations

    Science.gov (United States)

    Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.

    1996-07-01

    The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.

  2. Atomistic simulations indicate cardiolipin to have an integral role in the structure of the cytochrome bc(1) complex

    DEFF Research Database (Denmark)

    Poyry, S.; Cramariuc, O.; Postila, P. A.

    2013-01-01

    by both ensuring the structural integrity of the protein complex and also by taking part in the proton uptake. Yet, the atom-scale understanding of these highly charged four-tail lipids in the cyt bc(1) function has remained quite unclear. We consider this issue through atomistic molecular dynamics...... the description of the role of the surrounding lipid environment: in addition to the specific CL-protein interactions, we observe the protein domains on the positive side of the membrane to settle against the lipids. Altogether, the simulations discussed in this article provide novel views into the dynamics...... simulations that are applied to the entire cyt bc(1) dimer of the purple photosynthetic bacterium Rhodobacter capsulatus embedded in a lipid bilayer. We find CLs to spontaneously diffuse to the dimer interface to the immediate vicinity of the higher potential heme b groups of the complex's catalytic Q...

  3. Multiscale Simulations Using Particles

    DEFF Research Database (Denmark)

    Walther, Jens Honore

    vortex methods for problems in continuum fluid dynamics, dissipative particle dynamics for flow at the meso scale, and atomistic molecular dynamics simulations of nanofluidic systems. We employ multiscale techniques to breach the atomistic and continuum scales to study fundamental problems in fluid...... dynamics. Recent work on the thermophoretic motion of water nanodroplets confined inside carbon nanotubes, and multiscale techniques for polar liquids will be discussed in detail at the symposium....

  4. Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations

    Directory of Open Access Journals (Sweden)

    José Gaite

    2013-05-01

    Full Text Available Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.

  5. Efficient graph-based dynamic load-balancing for parallel large-scale agent-based traffic simulation

    NARCIS (Netherlands)

    Xu, Y.; Cai, W.; Aydt, H.; Lees, M.; Tolk, A.; Diallo, S.Y.; Ryzhov, I.O.; Yilmaz, L.; Buckley, S.; Miller, J.A.

    2014-01-01

    One of the issues of parallelizing large-scale agent-based traffic simulations is partitioning and load-balancing. Traffic simulations are dynamic applications where the distribution of workload in the spatial domain constantly changes. Dynamic load-balancing at run-time has shown better efficiency

  6. Plasmonic resonances of nanoparticles from large-scale quantum mechanical simulations

    Science.gov (United States)

    Zhang, Xu; Xiang, Hongping; Zhang, Mingliang; Lu, Gang

    2017-09-01

    Plasmonic resonance of metallic nanoparticles results from coherent motion of its conduction electrons, driven by incident light. For the nanoparticles less than 10 nm in diameter, localized surface plasmonic resonances become sensitive to the quantum nature of the conduction electrons. Unfortunately, quantum mechanical simulations based on time-dependent Kohn-Sham density functional theory are computationally too expensive to tackle metal particles larger than 2 nm. Herein, we introduce the recently developed time-dependent orbital-free density functional theory (TD-OFDFT) approach which enables large-scale quantum mechanical simulations of plasmonic responses of metallic nanostructures. Using TD-OFDFT, we have performed quantum mechanical simulations to understand size-dependent plasmonic response of Na nanoparticles and plasmonic responses in Na nanoparticle dimers and trimers. An outlook of future development of the TD-OFDFT method is also presented.

  7. Lightweight computational steering of very large scale molecular dynamics simulations

    International Nuclear Information System (INIS)

    Beazley, D.M.

    1996-01-01

    We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show how this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages

  8. Thermodynamics of grain boundary premelting in alloys. II. Atomistic simulation

    International Nuclear Information System (INIS)

    Williams, P.L.; Mishin, Y.

    2009-01-01

    We apply the semi-grand-canonical Monte Carlo method with an embedded-atom potential to study grain boundary (GB) premelting in Cu-rich Cu-Ag alloys. The Σ5 GB chosen for this study becomes increasingly disordered near the solidus line while its local chemical composition approaches the liquidus composition at the same temperature. This behavior indicates the formation of a thin layer of the liquid phase in the GB when the grain composition approaches the solidus. The thickness of the liquid layer remains finite and the GB can be overheated/oversaturated to metastable states slightly above the solidus. The premelting behavior found by the simulations is qualitatively consistent with the phase-field model of the same binary system presented in Part I of this work [Mishin Y, Boettinger WJ, Warren JA, McFadden GB. Acta Mater, in press]. Although this agreement is encouraging, we discuss several problems arising when atomistic simulations are compared with phase-field modeling.

  9. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p 0.46, p 0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  10. Atomistic modeling of dropwise condensation

    Energy Technology Data Exchange (ETDEWEB)

    Sikarwar, B. S., E-mail: bssikarwar@amity.edu; Singh, P. L. [Department of Mechanical Engineering, Amity University Uttar Pradesh, Noida (India); Muralidhar, K.; Khandekar, S. [Department of Mechanical Engineering, IIT Kanpur (India)

    2016-05-23

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smaller sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.

  11. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool

    International Nuclear Information System (INIS)

    Stukowski, Alexander

    2010-01-01

    The Open Visualization Tool (OVITO) is a new 3D visualization software designed for post-processing atomistic data obtained from molecular dynamics or Monte Carlo simulations. Unique analysis, editing and animations functions are integrated into its easy-to-use graphical user interface. The software is written in object-oriented C++, controllable via Python scripts and easily extendable through a plug-in interface. It is distributed as open-source software and can be downloaded from the website http://ovito.sourceforge.net/

  12. Collaborative Simulation Grid: Multiscale Quantum-Mechanical/Classical Atomistic Simulations on Distributed PC Clusters in the US and Japan

    Science.gov (United States)

    Kikuchi, Hideaki; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; Iyetomi, Hiroshi; Ogata, Shuji; Kouno, Takahisa; Shimojo, Fuyuki; Tsuruta, Kanji; Saini, Subhash; hide

    2002-01-01

    A multidisciplinary, collaborative simulation has been performed on a Grid of geographically distributed PC clusters. The multiscale simulation approach seamlessly combines i) atomistic simulation backed on the molecular dynamics (MD) method and ii) quantum mechanical (QM) calculation based on the density functional theory (DFT), so that accurate but less scalable computations are performed only where they are needed. The multiscale MD/QM simulation code has been Grid-enabled using i) a modular, additive hybridization scheme, ii) multiple QM clustering, and iii) computation/communication overlapping. The Gridified MD/QM simulation code has been used to study environmental effects of water molecules on fracture in silicon. A preliminary run of the code has achieved a parallel efficiency of 94% on 25 PCs distributed over 3 PC clusters in the US and Japan, and a larger test involving 154 processors on 5 distributed PC clusters is in progress.

  13. Atomistic simulation of hydrogen dynamics near dislocations in vanadium hydrides

    International Nuclear Information System (INIS)

    Ogawa, Hiroshi

    2015-01-01

    Highlights: • Hydrogen–dislocation interaction was simulated by molecular dynamics method. • Different distribution of H atoms were observed at edge and screw dislocation. • Planner distribution of hydrogen may be caused by partialized edge dislocation. • Hydrogen diffusivity was reduced in both edge and screw dislocation models. • Pipe diffusion was observed for edge dislocation but not for screw dislocation. - Abstract: Kinetics of interstitial hydrogen atoms near dislocation cores were analyzed by atomistic simulation. Classical molecular dynamics method was applied to model structures of edge and screw dislocations in α-phase vanadium hydride. Simulation showed that hydrogen atoms aggregate near dislocation cores. The spatial distribution of hydrogen has a planner shape at edge dislocation due to dislocation partialization, and a cylindrical shape at screw dislocation. Simulated self-diffusion coefficients of hydrogen atoms in dislocation models were a half- to one-order lower than that of dislocation-free model. Arrhenius plot of self-diffusivity showed slightly different activation energies for edge and screw dislocations. Directional dependency of hydrogen diffusion near dislocation showed high and low diffusivity along edge and screw dislocation lines, respectively, hence so called ‘pipe diffusion’ possibly occur at edge dislocation but does not at screw dislocation

  14. The large-scale environment from cosmological simulations - I. The baryonic cosmic web

    Science.gov (United States)

    Cui, Weiguang; Knebe, Alexander; Yepes, Gustavo; Yang, Xiaohu; Borgani, Stefano; Kang, Xi; Power, Chris; Staveley-Smith, Lister

    2018-01-01

    Using a series of cosmological simulations that includes one dark-matter-only (DM-only) run, one gas cooling-star formation-supernova feedback (CSF) run and one that additionally includes feedback from active galactic nuclei (AGNs), we classify the large-scale structures with both a velocity-shear-tensor code (VWEB) and a tidal-tensor code (PWEB). We find that the baryonic processes have almost no impact on large-scale structures - at least not when classified using aforementioned techniques. More importantly, our results confirm that the gas component alone can be used to infer the filamentary structure of the universe practically un-biased, which could be applied to cosmology constraints. In addition, the gas filaments are classified with its velocity (VWEB) and density (PWEB) fields, which can theoretically connect to the radio observations, such as H I surveys. This will help us to bias-freely link the radio observations with dark matter distributions at large scale.

  15. Large-scale micromagnetics simulations with dipolar interaction using all-to-all communications

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2016-05-01

    Full Text Available We implement on our micromagnetics simulator low-complexity parallel fast-Fourier-transform algorithms, which reduces the frequency of all-to-all communications from six to two times. Almost all the computation time of micromagnetics simulation is taken up by the calculation of the magnetostatic field which can be calculated using the fast Fourier transform method. The results show that the simulation time is decreased with good scalability, even if the micromagentics simulation is performed using 8192 physical cores. This high parallelization effect enables large-scale micromagentics simulation using over one billion to be performed. Because massively parallel computing is needed to simulate the magnetization dynamics of real permanent magnets composed of many micron-sized grains, it is expected that our simulator reveals how magnetization dynamics influences the coercivity of the permanent magnet.

  16. Large-scale simulations of error-prone quantum computation devices

    International Nuclear Information System (INIS)

    Trieu, Doan Binh

    2009-01-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2±0.2) x 10 -6 . For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431±0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced technology, i

  17. Model abstraction addressing long-term simulations of chemical degradation of large-scale concrete structures

    International Nuclear Information System (INIS)

    Jacques, D.; Perko, J.; Seetharam, S.; Mallants, D.

    2012-01-01

    This paper presents a methodology to assess the spatial-temporal evolution of chemical degradation fronts in real-size concrete structures typical of a near-surface radioactive waste disposal facility. The methodology consists of the abstraction of a so-called full (complicated) model accounting for the multicomponent - multi-scale nature of concrete to an abstracted (simplified) model which simulates chemical concrete degradation based on a single component in the aqueous and solid phase. The abstracted model is verified against chemical degradation fronts simulated with the full model under both diffusive and advective transport conditions. Implementation in the multi-physics simulation tool COMSOL allows simulation of the spatial-temporal evolution of chemical degradation fronts in large-scale concrete structures. (authors)

  18. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    Science.gov (United States)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  19. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    Science.gov (United States)

    Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim

    2017-06-01

    Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water

  20. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    Directory of Open Access Journals (Sweden)

    T. Wolf-Grosse

    2017-06-01

    Full Text Available Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s−1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES experiments with the Parallelised Large-Eddy Simulation Model (PALM for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a

  1. Atomistic spin dynamics simulations on Mn-doped GaAs and CuMn

    Energy Technology Data Exchange (ETDEWEB)

    Hellsvik, Johan, E-mail: johan.hellsvik@fysik.uu.s [Department of Physics and Materials Science, Uppsala University, Box 530, SE-751 21 Uppsala (Sweden)

    2010-01-01

    The magnetic dynamical behavior of two random alloys have been investigated in atomistic spin dynamics (ASD) simulations. For both materials, magnetic exchange parameters calculated with first principles electronic structure methods were used. From experiments it is well known that CuMn is a highly frustrated magnetic system and a good manifestation of a Heisenberg spin glass. In our ASD simulations the behavior of the autocorrelation function indicate spin glass behavior. The diluted magnetic semiconductor (DMS) Mn-doped GaAs is engineered with hopes of high enough Curie temperatures to operate in spintronic devices. Impurities such as As antisites and Mn interstitials change the exhange couplings from being mainly ferromagnetic to also have antiferromagnetic components. We explore how the resulting frustration affects the magnetization dynamics for a varying rate of As antisites.

  2. Automatic Optimization for Large-Scale Real-Time Coastal Water Simulation

    Directory of Open Access Journals (Sweden)

    Shunli Wang

    2016-01-01

    Full Text Available We introduce an automatic optimization approach for the simulation of large-scale coastal water. To solve the singular problem of water waves obtained with the traditional model, a hybrid deep-shallow-water model is estimated by using an automatic coupling algorithm. It can handle arbitrary water depth and different underwater terrain. As a certain feature of coastal terrain, coastline is detected with the collision detection technology. Then, unnecessary water grid cells are simplified by the automatic simplification algorithm according to the depth. Finally, the model is calculated on Central Processing Unit (CPU and the simulation is implemented on Graphics Processing Unit (GPU. We show the effectiveness of our method with various results which achieve real-time rendering on consumer-level computer.

  3. Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations

    Science.gov (United States)

    Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele

    2016-12-01

    Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.

  4. Establishment of DNS database in a turbulent channel flow by large-scale simulations

    OpenAIRE

    Abe, Hiroyuki; Kawamura, Hiroshi; 阿部 浩幸; 河村 洋

    2008-01-01

    In the present study, we establish statistical DNS (Direct Numerical Simulation) database in a turbulent channel flow with passive scalar transport at high Reynolds numbers and make the data available at our web site (http://murasun.me.noda.tus.ac.jp/turbulence/). The established database is reported together with the implementation of large-scale simulations, representative DNS results and results on turbulence model testing using the DNS data.

  5. Large eddy simulation of new subgrid scale model for three-dimensional bundle flows

    International Nuclear Information System (INIS)

    Barsamian, H.R.; Hassan, Y.A.

    2004-01-01

    Having led to increased inefficiencies and power plant shutdowns fluid flow induced vibrations within heat exchangers are of great concern due to tube fretting-wear or fatigue failures. Historically, scaling law and measurement accuracy problems were encountered for experimental analysis at considerable effort and expense. However, supercomputers and accurate numerical methods have provided reliable results and substantial decrease in cost. In this investigation Large Eddy Simulation has been successfully used to simulate turbulent flow by the numeric solution of the incompressible, isothermal, single phase Navier-Stokes equations. The eddy viscosity model and a new subgrid scale model have been utilized to model the smaller eddies in the flow domain. A triangular array flow field was considered and numerical simulations were performed in two- and three-dimensional fields, and were compared to experimental findings. Results show good agreement of the numerical findings to that of the experimental, and solutions obtained with the new subgrid scale model represent better energy dissipation for the smaller eddies. (author)

  6. Large-scale agent-based social simulation : A study on epidemic prediction and control

    NARCIS (Netherlands)

    Zhang, M.

    2016-01-01

    Large-scale agent-based social simulation is gradually proving to be a versatile methodological approach for studying human societies, which could make contributions from policy making in social science, to distributed artificial intelligence and agent technology in computer science, and to theory

  7. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    Science.gov (United States)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; hide

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  8. An efficient and novel computation method for simulating diffraction patterns from large-scale coded apertures on large-scale focal plane arrays

    Science.gov (United States)

    Shrekenhamer, Abraham; Gottesman, Stephen R.

    2012-10-01

    A novel and memory efficient method for computing diffraction patterns produced on large-scale focal planes by largescale Coded Apertures at wavelengths where diffraction effects are significant has been developed and tested. The scheme, readily implementable on portable computers, overcomes the memory limitations of present state-of-the-art simulation codes such as Zemax. The method consists of first calculating a set of reference complex field (amplitude and phase) patterns on the focal plane produced by a single (reference) central hole, extending to twice the focal plane array size, with one such pattern for each Line-of-Sight (LOS) direction and wavelength in the scene, and with the pattern amplitude corresponding to the square-root of the spectral irradiance from each such LOS direction in the scene at selected wavelengths. Next the set of reference patterns is transformed to generate pattern sets for other holes. The transformation consists of a translational pattern shift corresponding to each hole's position offset and an electrical phase shift corresponding to each hole's position offset and incoming radiance's direction and wavelength. The set of complex patterns for each direction and wavelength is then summed coherently and squared for each detector to yield a set of power patterns unique for each direction and wavelength. Finally the set of power patterns is summed to produce the full waveband diffraction pattern from the scene. With this tool researchers can now efficiently simulate diffraction patterns produced from scenes by large-scale Coded Apertures onto large-scale focal plane arrays to support the development and optimization of coded aperture masks and image reconstruction algorithms.

  9. Large Scale Beam-beam Simulations for the CERN LHC using Distributed Computing

    CERN Document Server

    Herr, Werner; McIntosh, E; Schmidt, F

    2006-01-01

    We report on a large scale simulation of beam-beam effects for the CERN Large Hadron Collider (LHC). The stability of particles which experience head-on and long-range beam-beam effects was investigated for different optical configurations and machine imperfections. To cover the interesting parameter space required computing resources not available at CERN. The necessary resources were available in the LHC@home project, based on the BOINC platform. At present, this project makes more than 60000 hosts available for distributed computing. We shall discuss our experience using this system during a simulation campaign of more than six months and describe the tools and procedures necessary to ensure consistent results. The results from this extended study are presented and future plans are discussed.

  10. Large-scale simulations of error-prone quantum computation devices

    Energy Technology Data Exchange (ETDEWEB)

    Trieu, Doan Binh

    2009-07-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2{+-}0.2) x 10{sup -6}. For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431{+-}0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced

  11. A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides.

    Science.gov (United States)

    Nie, Yifan; Liang, Chaoping; Cha, Pil-Ryung; Colombo, Luigi; Wallace, Robert M; Cho, Kyeongjae

    2017-06-07

    Controlled growth of crystalline solids is critical for device applications, and atomistic modeling methods have been developed for bulk crystalline solids. Kinetic Monte Carlo (KMC) simulation method provides detailed atomic scale processes during a solid growth over realistic time scales, but its application to the growth modeling of van der Waals (vdW) heterostructures has not yet been developed. Specifically, the growth of single-layered transition metal dichalcogenides (TMDs) is currently facing tremendous challenges, and a detailed understanding based on KMC simulations would provide critical guidance to enable controlled growth of vdW heterostructures. In this work, a KMC simulation method is developed for the growth modeling on the vdW epitaxy of TMDs. The KMC method has introduced full material parameters for TMDs in bottom-up synthesis: metal and chalcogen adsorption/desorption/diffusion on substrate and grown TMD surface, TMD stacking sequence, chalcogen/metal ratio, flake edge diffusion and vacancy diffusion. The KMC processes result in multiple kinetic behaviors associated with various growth behaviors observed in experiments. Different phenomena observed during vdW epitaxy process are analysed in terms of complex competitions among multiple kinetic processes. The KMC method is used in the investigation and prediction of growth mechanisms, which provide qualitative suggestions to guide experimental study.

  12. Copy of Using Emulation and Simulation to Understand the Large-Scale Behavior of the Internet.

    Energy Technology Data Exchange (ETDEWEB)

    Adalsteinsson, Helgi; Armstrong, Robert C.; Chiang, Ken; Gentile, Ann C.; Lloyd, Levi; Minnich, Ronald G.; Vanderveen, Keith; Van Randwyk, Jamie A; Rudish, Don W.

    2008-10-01

    We report on the work done in the late-start LDRDUsing Emulation and Simulation toUnderstand the Large-Scale Behavior of the Internet. We describe the creation of a researchplatform that emulates many thousands of machines to be used for the study of large-scale inter-net behavior. We describe a proof-of-concept simple attack we performed in this environment.We describe the successful capture of a Storm bot and, from the study of the bot and furtherliterature search, establish large-scale aspects we seek to understand via emulation of Storm onour research platform in possible follow-on work. Finally, we discuss possible future work.3

  13. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    Directory of Open Access Journals (Sweden)

    C. M. R. Mateo

    2017-10-01

    Full Text Available Global-scale river models (GRMs are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC is assumed, simulation results deteriorate with finer spatial resolution; Nash–Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  14. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    Science.gov (United States)

    Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan

    2017-10-01

    Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  15. Dislocations and elementary processes of plasticity in FCC metals: atomic scale simulations

    International Nuclear Information System (INIS)

    Rodney, D.

    2000-01-01

    We present atomic-scale simulations of two elementary processes of FCC crystal plasticity. The first study consists in the simulation by molecular dynamics, in a nickel crystal, of the interactions between an edge dislocation and glissile interstitial loops of the type that form under irradiation in displacement cascades. The simulations show various atomic-scale interaction processes leading to the absorption and drag of the loops by the dislocation. These reactions certainly contribute to the formation of the 'clear bands' observed in deformed irradiated materials. The simulations also allow to study quantitatively the role of the glissile loops in irradiation hardening. In particular, dislocation unpinning stresses for certain pinning mechanisms are evaluated from the simulations. The second study consists first in the generalization in three dimensions of the quasi-continuum method (QCM), a multi-scale simulation method which couples atomistic techniques and the finite element method. In the QCM, regions close to dislocation cores are simulated at the atomic-scale while the rest of the crystal is simulated with a lower resolution by means of a discretization of the displacement fields using the finite element method. The QCM is then tested on the simulation of the formation and breaking of dislocation junctions in an aluminum crystal. Comparison of the simulations with an elastic model of dislocation junctions shows that the structure and strength of the junctions are dominated by elastic line tension effects, as is assumed in classical theories. (author)

  16. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    OpenAIRE

    Sam Ali Al; Szasz Robert; Revstedt Johan

    2015-01-01

    The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simu...

  17. Contribution of large scale coherence to wind turbine power: A large eddy simulation study in periodic wind farms

    Science.gov (United States)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2018-03-01

    Length scales of eddies involved in the power generation of infinite wind farms are studied by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from large eddy simulations (LES). Large-scale structures with an order of magnitude bigger than the turbine rotor diameter (D ) are shown to have substantial contribution to wind power. Varying dynamics in the intermediate scales (D -10 D ) are also observed from a parametric study involving interturbine distances and hub height of the turbines. Further insight about the eddies responsible for the power generation have been provided from the scaling analysis of two-dimensional premultiplied spectra of MKE flux. The LES code is developed in a high Reynolds number near-wall modeling framework, using an open-source spectral element code Nek5000, and the wind turbines have been modelled using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated against the statistical results from the previous literature. The study is expected to improve our understanding of the complex multiscale dynamics in the domain of large wind farms and identify the length scales that contribute to the power. This information can be useful for design of wind farm layout and turbine placement that take advantage of the large-scale structures contributing to wind turbine power.

  18. On the Fidelity of Semi-distributed Hydrologic Model Simulations for Large Scale Catchment Applications

    Science.gov (United States)

    Ajami, H.; Sharma, A.; Lakshmi, V.

    2017-12-01

    Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.

  19. Multi-scale properties of large eddy simulations: correlations between resolved-scale velocity-field increments and subgrid-scale quantities

    Science.gov (United States)

    Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca

    2018-06-01

    We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.

  20. Large eddy simulation of bundle turbulent flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1995-01-01

    Large eddy simulation may be defined as simulation of a turbulent flow in which the large scale motions are explicitly resolved while the small scale motions are modeled. This results into a system of equations that require closure models. The closure models relate the effects of the small scale motions onto the large scale motions. There have been several models developed, the most popular is the Smagorinsky eddy viscosity model. A new model has recently been introduced by Lee that modified the Smagorinsky model. Using both of the above mentioned closure models, two different geometric arrangements were used in the simulation of turbulent cross flow within rigid tube bundles. An inlined array simulations was performed for a deep bundle (10,816 nodes) as well as an inlet/outlet simulation (57,600 nodes). Comparisons were made to available experimental data. Flow visualization enabled the distinction of different characteristics within the flow such as jet switching effects in the wake of the bundle flow for the inlet/outlet simulation case, as well as within tube bundles. The results indicate that the large eddy simulation technique is capable of turbulence prediction and may be used as a viable engineering tool with the careful consideration of the subgrid scale model. (author)

  1. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study

    Science.gov (United States)

    Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing

    2018-04-01

    Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.

  2. Planetary Structures And Simulations Of Large-scale Impacts On Mars

    Science.gov (United States)

    Swift, Damian; El-Dasher, B.

    2009-09-01

    The impact of large meteroids is a possible cause for isolated orogeny on bodies devoid of tectonic activity. On Mars, there is a significant, but not perfect, correlation between large, isolated volcanoes and antipodal impact craters. On Mercury and the Moon, brecciated terrain and other unusual surface features can be found at the antipodes of large impact sites. On Earth, there is a moderate correlation between long-lived mantle hotspots at opposite sides of the planet, with meteoroid impact suggested as a possible cause. If induced by impacts, the mechanisms of orogeny and volcanism thus appear to vary between these bodies, presumably because of differences in internal structure. Continuum mechanics (hydrocode) simulations have been used to investigate the response of planetary bodies to impacts, requiring assumptions about the structure of the body: its composition and temperature profile, and the constitutive properties (equation of state, strength, viscosity) of the components. We are able to predict theoretically and test experimentally the constitutive properties of matter under planetary conditions, with reasonable accuracy. To provide a reference series of simulations, we have constructed self-consistent planetary structures using simplified compositions (Fe core and basalt-like mantle), which turn out to agree surprisingly well with the moments of inertia. We have performed simulations of large-scale impacts, studying the transmission of energy to the antipodes. For Mars, significant antipodal heating to depths of a few tens of kilometers was predicted from compression waves transmitted through the mantle. Such heating is a mechanism for volcanism on Mars, possibly in conjunction with crustal cracking induced by surface waves. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Atomistic Simulation of Intrinsic Defects and Trivalent and Tetravalent Ion Doping in Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Ricardo D. S. Santos

    2014-01-01

    Full Text Available Atomistic simulation techniques have been employed in order to investigate key issues related to intrinsic defects and a variety of dopants from trivalent and tetravalent ions. The most favorable intrinsic defect is determined to be a scheme involving calcium and hydroxyl vacancies. It is found that trivalent ions have an energetic preference for the Ca site, while tetravalent ions can enter P sites. Charge compensation is predicted to occur basically via three schemes. In general, the charge compensation via the formation of calcium vacancies is more favorable. Trivalent dopant ions are more stable than tetravalent dopants.

  4. Testing of Large-Scale ICV Glasses with Hanford LAW Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Kim, Dong-Sang; Vienna, John D.; Matyas, Josef; Smith, Donald E.; Schweiger, Michael J.; Yeager, John D.

    2005-03-01

    Preliminary glass compositions for immobilizing Hanford low-activity waste (LAW) by the in-container vitrification (ICV) process were initially fabricated at crucible- and engineering-scale, including simulants and actual (radioactive) LAW. Glasses were characterized for vapor hydration test (VHT) and product consistency test (PCT) responses and crystallinity (both quenched and slow-cooled samples). Selected glasses were tested for toxicity characteristic leach procedure (TCLP) responses, viscosity, and electrical conductivity. This testing showed that glasses with LAW loading of 20 mass% can be made readily and meet all product constraints by a far margin. Glasses with over 22 mass% Na2O can be made to meet all other product quality and process constraints. Large-scale testing was performed at the AMEC, Geomelt Division facility in Richland. Three tests were conducted using simulated LAW with increasing loadings of 12, 17, and 20 mass% Na2O. Glass samples were taken from the test products in a manner to represent the full expected range of product performance. These samples were characterized for composition, density, crystalline and non-crystalline phase assemblage, and durability using the VHT, PCT, and TCLP tests. The results, presented in this report, show that the AMEC ICV product with meets all waste form requirements with a large margin. These results provide strong evidence that the Hanford LAW can be successfully vitrified by the ICV technology and can meet all the constraints related to product quality. The economic feasibility of the ICV technology can be further enhanced by subsequent optimization.

  5. Optimal kernel shape and bandwidth for atomistic support of continuum stress

    International Nuclear Information System (INIS)

    Ulz, Manfred H; Moran, Sean J

    2013-01-01

    The treatment of atomistic scale interactions via molecular dynamics simulations has recently found favour for multiscale modelling within engineering. The estimation of stress at a continuum point on the atomistic scale requires a pre-defined kernel function. This kernel function derives the stress at a continuum point by averaging the contribution from atoms within a region surrounding the continuum point. This averaging volume, and therefore the associated stress at a continuum point, is highly dependent on the bandwidth and shape of the kernel. In this paper we propose an effective and entirely data-driven strategy for simultaneously computing the optimal shape and bandwidth for the kernel. We thoroughly evaluate our proposed approach on copper using three classical elasticity problems. Our evaluation yields three key findings: firstly, our technique can provide a physically meaningful estimation of kernel bandwidth; secondly, we show that a uniform kernel is preferred, thereby justifying the default selection of this kernel shape in future work; and thirdly, we can reliably estimate both of these attributes in a data-driven manner, obtaining values that lead to an accurate estimation of the stress at a continuum point. (paper)

  6. Large Scale Simulations of the Euler Equations on GPU Clusters

    KAUST Repository

    Liebmann, Manfred

    2010-08-01

    The paper investigates the scalability of a parallel Euler solver, using the Vijayasundaram method, on a GPU cluster with 32 Nvidia Geforce GTX 295 boards. The aim of this research is to enable large scale fluid dynamics simulations with up to one billion elements. We investigate communication protocols for the GPU cluster to compensate for the slow Gigabit Ethernet network between the GPU compute nodes and to maintain overall efficiency. A diesel engine intake-port and a nozzle, meshed in different resolutions, give good real world examples for the scalability tests on the GPU cluster. © 2010 IEEE.

  7. Atomistic simulations of screw dislocations in bcc tungsten: From core structures and static properties to interaction with vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ke [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Niu, Liang-Liang [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI 48109 (United States); Jin, Shuo, E-mail: jinshuo@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Shu, Xiaolin [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Xie, Hongxian [School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132 (China); Wang, Lifang; Lu, Guang-Hong [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China)

    2017-02-15

    Atomistic simulations have been used to investigate the core structures, static properties of isolated 1/2 <1 1 1> screw dislocations, and their interaction with vacancies in bcc tungsten (W) based on three empirical interatomic potentials. Differential displacement maps show that only one embedded atom method potential is able to reproduce the compact non-degenerate core as evidenced by ab initio calculations. The obtained strain energy and stress distribution from atomistic simulations are, in general, consistent with elasticity theory predictions. In particular, one component of the calculated shear stress, which is not present according to elasticity theory, is non-negligible in the core region of our dislocation model. The differences between the results calculated from three interatomic potentials are in details, such as the specific value and the symmetry, but the trend of spatial distributions of static properties in the long range are close to each other. By calculating the binding energies between the dislocations and vacancies, we demonstrate that the dislocations act as vacancy sinks, which may be important for the nucleation and growth of hydrogen bubbles in W under irradiation.

  8. The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation.

    Science.gov (United States)

    Tian, Yang; Liu, Zhilin; Li, Xiaoqian; Zhang, Lihua; Li, Ruiqing; Jiang, Ripeng; Dong, Fang

    2018-05-01

    Ultrasonic sonotrodes play an essential role in transmitting power ultrasound into the large-scale metallic casting. However, cavitation erosion considerably impairs the in-service performance of ultrasonic sonotrodes, leading to marginal microstructural refinement. In this work, the cavitation erosion behaviour of ultrasonic sonotrodes in large-scale castings was explored using the industry-level experiments of Al alloy cylindrical ingots (i.e. 630 mm in diameter and 6000 mm in length). When introducing power ultrasound, severe cavitation erosion was found to reproducibly occur at some specific positions on ultrasonic sonotrodes. However, there is no cavitation erosion present on the ultrasonic sonotrodes that were not driven by electric generator. Vibratory examination showed cavitation erosion depended on the vibration state of ultrasonic sonotrodes. Moreover, a finite element (FE) model was developed to simulate the evolution and distribution of acoustic pressure in 3-D solidification volume. FE simulation results confirmed that significant dynamic interaction between sonotrodes and melts only happened at some specific positions corresponding to severe cavitation erosion. This work will allow for developing more advanced ultrasonic sonotrodes with better cavitation erosion-resistance, in particular for large-scale castings, from the perspectives of ultrasonic physics and mechanical design. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Atomistic minimal model for estimating profile of electrodeposited nanopatterns

    Science.gov (United States)

    Asgharpour Hassankiadeh, Somayeh; Sadeghi, Ali

    2018-06-01

    We develop a computationally efficient and methodologically simple approach to realize molecular dynamics simulations of electrodeposition. Our minimal model takes into account the nontrivial electric field due a sharp electrode tip to perform simulations of the controllable coating of a thin layer on a surface with an atomic precision. On the atomic scale a highly site-selective electrodeposition of ions and charged particles by means of the sharp tip of a scanning probe microscope is possible. A better understanding of the microscopic process, obtained mainly from atomistic simulations, helps us to enhance the quality of this nanopatterning technique and to make it applicable in fabrication of nanowires and nanocontacts. In the limit of screened inter-particle interactions, it is feasible to run very fast simulations of the electrodeposition process within the framework of the proposed model and thus to investigate how the shape of the overlayer depends on the tip-sample geometry and dielectric properties, electrolyte viscosity, etc. Our calculation results reveal that the sharpness of the profile of a nano-scale deposited overlayer is dictated by the normal-to-sample surface component of the electric field underneath the tip.

  10. Impacts of different characterizations of large-scale background on simulated regional-scale ozone over the continental United States

    Science.gov (United States)

    Hogrefe, Christian; Liu, Peng; Pouliot, George; Mathur, Rohit; Roselle, Shawn; Flemming, Johannes; Lin, Meiyun; Park, Rokjin J.

    2018-03-01

    from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.

  11. Random number generators for large-scale parallel Monte Carlo simulations on FPGA

    Science.gov (United States)

    Lin, Y.; Wang, F.; Liu, B.

    2018-05-01

    Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.

  12. A method of integration of atomistic simulations and continuum mechanics by collecting of dynamical systems with dimensional reduction

    International Nuclear Information System (INIS)

    Kaczmarek, J.

    2002-01-01

    Elementary processes responsible for phenomena in material are frequently related to scale close to atomic one. Therefore atomistic simulations are important for material sciences. On the other hand continuum mechanics is widely applied in mechanics of materials. It seems inevitable that both methods will gradually integrate. A multiscale method of integration of these approaches called collection of dynamical systems with dimensional reduction is introduced in this work. The dimensional reduction procedure realizes transition between various scale models from an elementary dynamical system (EDS) to a reduced dynamical system (RDS). Mappings which transform variables and forces, skeletal dynamical system (SDS) and a set of approximation and identification methods are main components of this procedure. The skeletal dynamical system is a set of dynamical systems parameterized by some constants and has variables related to the dimensionally reduced model. These constants are identified with the aid of solutions of the elementary dynamical system. As a result we obtain a dimensionally reduced dynamical system which describes phenomena in an averaged way in comparison with the EDS. Concept of integration of atomistic simulations with continuum mechanics consists in using a dynamical system describing evolution of atoms as an elementary dynamical system. Then, we introduce a continuum skeletal dynamical system within the dimensional reduction procedure. In order to construct such a system we have to modify a continuum mechanics formulation to some degree. Namely, we formalize scale of averaging for continuum theory and as a result we consider continuum with finite-dimensional fields only. Then, realization of dimensional reduction is possible. A numerical example of realization of the dimensional reduction procedure is shown. We consider a one dimensional chain of atoms interacting by Lennard-Jones potential. Evolution of this system is described by an elementary

  13. Use of a large-scale rainfall simulator reveals novel insights into stemflow generation

    Science.gov (United States)

    Levia, D. F., Jr.; Iida, S. I.; Nanko, K.; Sun, X.; Shinohara, Y.; Sakai, N.

    2017-12-01

    Detailed knowledge of stemflow generation and its effects on both hydrological and biogoechemical cycling is important to achieve a holistic understanding of forest ecosystems. Field studies and a smaller set of experiments performed under laboratory conditions have increased our process-based knowledge of stemflow production. Building upon these earlier works, a large-scale rainfall simulator was employed to deepen our understanding of stemflow generation processes. The use of the large-scale rainfall simulator provides a unique opportunity to examine a range of rainfall intensities under constant conditions that are difficult under natural conditions due to the variable nature of rainfall intensities in the field. Stemflow generation and production was examined for three species- Cryptomeria japonica D. Don (Japanese cedar), Chamaecyparis obtusa (Siebold & Zucc.) Endl. (Japanese cypress), Zelkova serrata Thunb. (Japanese zelkova)- under both leafed and leafless conditions at several different rainfall intensities (15, 20, 30, 40, 50, and 100 mm h-1) using a large-scale rainfall simulator in National Research Institute for Earth Science and Disaster Resilience (Tsukuba, Japan). Stemflow production and rates and funneling ratios were examined in relation to both rainfall intensity and canopy structure. Preliminary results indicate a dynamic and complex response of the funneling ratios of individual trees to different rainfall intensities among the species examined. This is partly the result of different canopy structures, hydrophobicity of vegetative surfaces, and differential wet-up processes across species and rainfall intensities. This presentation delves into these differences and attempts to distill them into generalizable patterns, which can advance our theories of stemflow generation processes and ultimately permit better stewardship of forest resources. ________________ Funding note: This research was supported by JSPS Invitation Fellowship for Research in

  14. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  15. Atomistic picture for the folding pathway of a hybrid-1 type human telomeric DNA G-quadruplex.

    Directory of Open Access Journals (Sweden)

    Yunqiang Bian

    2014-04-01

    Full Text Available In this work we studied the folding process of the hybrid-1 type human telomeric DNA G-quadruplex with solvent and K(+ ions explicitly modeled. Enabled by the powerful bias-exchange metadynamics and large-scale conventional molecular dynamic simulations, the free energy landscape of this G-DNA was obtained for the first time and four folding intermediates were identified, including a triplex and a basically formed quadruplex. The simulations also provided atomistic pictures for the structures and cation binding patterns of the intermediates. The results showed that the structure formation and cation binding are cooperative and mutually supporting each other. The syn/anti reorientation dynamics of the intermediates was also investigated. It was found that the nucleotides usually take correct syn/anti configurations when they form native and stable hydrogen bonds with the others, while fluctuating between two configurations when they do not. Misfolded intermediates with wrong syn/anti configurations were observed in the early intermediates but not in the later ones. Based on the simulations, we also discussed the roles of the non-native interactions. Besides, the formation process of the parallel conformation in the first two G-repeats and the associated reversal loop were studied. Based on the above results, we proposed a folding pathway for the hybrid-1 type G-quadruplex with atomistic details, which is new and more complete compared with previous ones. The knowledge gained for this type of G-DNA may provide a general insight for the folding of the other G-quadruplexes.

  16. Single asperity nanocontacts: Comparison between molecular dynamics simulations and continuum mechanics models

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    Abstract Using classical molecular dynamics, atomic scale simulations of normal contact between a nominally flat substrate and different atomistic and non-atomistic spherical particles were performed to investigate the applicability of classical contact theories at the nanoscale, and further

  17. Molecular cooperativity and compatibility via full atomistic simulation

    Science.gov (United States)

    Kwan Yang, Kenny

    Civil engineering has customarily focused on problems from a large-scale perspective, encompassing structures such as bridges, dams, and infrastructure. However, present day challenges in conjunction with advances in nanotechnology have forced a re-focusing of expertise. The use of atomistic and molecular approaches to study material systems opens the door to significantly improve material properties. The understanding that material systems themselves are structures, where their assemblies can dictate design capacities and failure modes makes this problem well suited for those who possess expertise in structural engineering. At the same time, a focus has been given to the performance metrics of materials at the nanoscale, including strength, toughness, and transport properties (e.g., electrical, thermal). Little effort has been made in the systematic characterization of system compatibility -- e.g., how to make disparate material building blocks behave in unison. This research attempts to develop bottom-up molecular scale understanding of material behavior, with the global objective being the application of this understanding into material design/characterization at an ultimate functional scale. In particular, it addresses the subject of cooperativity at the nano-scale. This research aims to define the conditions which dictate when discrete molecules may behave as a single, functional unit, thereby facilitating homogenization and up-scaling approaches, setting bounds for assembly, and providing a transferable assessment tool across molecular systems. Following a macro-scale pattern where the compatibility of deformation plays a vital role in the structural design, novel geometrical cooperativity metrics based on the gyration tensor are derived with the intention to define nano-cooperativity in a generalized way. The metrics objectively describe the general size, shape and orientation of the structure. To validate the derived measures, a pair of ideal macromolecules

  18. Representative elements: A step to large-scale fracture system simulation

    International Nuclear Information System (INIS)

    Clemo, T.M.

    1987-01-01

    Large-scale simulation of flow and transport in fractured media requires the development of a technique to represent the effect of a large number of fractures. Representative elements are used as a tool to model a subset of a fracture system as a single distributed entity. Representative elements are part of a modeling concept called dual permeability. Dual permeability modeling combines discrete fracture simulation of the most important fractures with the distributed modeling of the less important fracture of a fracture system. This study investigates the use of stochastic analysis to determine properties of representative elements. Given an assumption of fully developed laminar flow, the net fracture conductivities and hence flow velocities can be determined from descriptive statistics of fracture spacing, orientation, aperture, and extent. The distribution of physical characteristics about their mean leads to a distribution of the associated conductivities. The variance of hydraulic conductivity induces dispersion into the transport process. Simple fracture systems are treated to demonstrate the usefulness of stochastic analysis. Explicit equations for conductivity of an element are developed and the dispersion characteristics are shown. Explicit formulation of the hydraulic conductivity and transport dispersion reveals the dependence of these important characteristics on the parameters used to describe the fracture system. Understanding these dependencies will help to focus efforts to identify the characteristics of fracture systems. Simulations of stochastically generated fracture sets do not provide this explicit functional dependence on the fracture system parameters. 12 refs., 6 figs

  19. Aggregated Representation of Distribution Networks for Large-Scale Transmission Network Simulations

    DEFF Research Database (Denmark)

    Göksu, Ömer; Altin, Müfit; Sørensen, Poul Ejnar

    2014-01-01

    As a common practice of large-scale transmission network analysis the distribution networks have been represented as aggregated loads. However, with increasing share of distributed generation, especially wind and solar power, in the distribution networks, it became necessary to include...... the distributed generation within those analysis. In this paper a practical methodology to obtain aggregated behaviour of the distributed generation is proposed. The methodology, which is based on the use of the IEC standard wind turbine models, is applied on a benchmark distribution network via simulations....

  20. Molecular modeling and simulation of atactic polystyrene/amorphous silica nanocomposites

    International Nuclear Information System (INIS)

    Mathioudakis, I; Vogiatzis, G G; Tzoumanekas, C; Theodorou, D N

    2016-01-01

    The local structure, segmental dynamics, topological analysis of entanglement networks and mechanical properties of atactic polystyrene - amorphous silica nanocomposites are studied via molecular simulations using two interconnected levels of representation: (a) A coarse - grained level. Equilibration at all length scales at this level is achieved via connectivity - altering Monte Carlo simulations. (b) An atomistic level. Initial configurations for atomistic Molecular Dynamics (MD) simulations are obtained by reverse mapping well- equilibrated coarse-grained configurations. By analyzing atomistic MD trajectories, the polymer density profile is found to exhibit layering in the vicinity of the nanoparticle surface. The dynamics of polystyrene (in neat and filled melt systems) is characterized in terms of bond orientation. Well-equilibrated coarse-grained long-chain configurations are reduced to entanglement networks via topological analysis with the CReTA algorithm. Atomistic simulation results for the mechanical properties are compared to the experimental measurements and other computational works. (paper)

  1. Cloud-enabled large-scale land surface model simulations with the NASA Land Information System

    Science.gov (United States)

    Duffy, D.; Vaughan, G.; Clark, M. P.; Peters-Lidard, C. D.; Nijssen, B.; Nearing, G. S.; Rheingrover, S.; Kumar, S.; Geiger, J. V.

    2017-12-01

    Developed by the Hydrological Sciences Laboratory at NASA Goddard Space Flight Center (GSFC), the Land Information System (LIS) is a high-performance software framework for terrestrial hydrology modeling and data assimilation. LIS provides the ability to integrate satellite and ground-based observational products and advanced modeling algorithms to extract land surface states and fluxes. Through a partnership with the National Center for Atmospheric Research (NCAR) and the University of Washington, the LIS model is currently being extended to include the Structure for Unifying Multiple Modeling Alternatives (SUMMA). With the addition of SUMMA in LIS, meaningful simulations containing a large multi-model ensemble will be enabled and can provide advanced probabilistic continental-domain modeling capabilities at spatial scales relevant for water managers. The resulting LIS/SUMMA application framework is difficult for non-experts to install due to the large amount of dependencies on specific versions of operating systems, libraries, and compilers. This has created a significant barrier to entry for domain scientists that are interested in using the software on their own systems or in the cloud. In addition, the requirement to support multiple run time environments across the LIS community has created a significant burden on the NASA team. To overcome these challenges, LIS/SUMMA has been deployed using Linux containers, which allows for an entire software package along with all dependences to be installed within a working runtime environment, and Kubernetes, which orchestrates the deployment of a cluster of containers. Within a cloud environment, users can now easily create a cluster of virtual machines and run large-scale LIS/SUMMA simulations. Installations that have taken weeks and months can now be performed in minutes of time. This presentation will discuss the steps required to create a cloud-enabled large-scale simulation, present examples of its use, and

  2. Anatomically detailed and large-scale simulations studying synapse loss and synchrony using NeuroBox

    Directory of Open Access Journals (Sweden)

    Markus eBreit

    2016-02-01

    Full Text Available The morphology of neurons and networks plays an important role in processing electrical and biochemical signals. Based on neuronal reconstructions, which are becoming abundantly available through databases such as NeuroMorpho.org, numerical simulations of Hodgkin-Huxley-type equations, coupled to biochemical models, can be performed in order to systematically investigate the influence of cellular morphology and the connectivity pattern in networks on the underlying function. Development in the area of synthetic neural network generation and morphology reconstruction from microscopy data has brought forth the software tool NeuGen. Coupling this morphology data (either from databases, synthetic or reconstruction to the simulation platform UG 4 (which harbors a neuroscientific portfolio and VRL-Studio, has brought forth the extendible toolbox NeuroBox. NeuroBox allows users to perform numerical simulations on hybrid-dimensional morphology representations. The code basis is designed in a modular way, such that e.g. new channel or synapse types can be added to the library. Workflows can be specified through scripts or through the VRL-Studio graphical workflow representation. Third-party tools, such as ImageJ, can be added to NeuroBox workflows. In this paper, NeuroBox is used to study the electrical and biochemical effects of synapse loss vs. synchrony in neurons, to investigate large morphology data sets within detailed biophysical simulations, and used to demonstrate the capability of utilizing high-performance computing infrastructure for large scale network simulations. Using new synapse distribution methods and Finite Volume based numerical solvers for compartment-type models, our results demonstrate how an increase in synaptic synchronization can compensate synapse loss at the electrical and calcium level, and how detailed neuronal morphology can be integrated in large-scale network simulations.

  3. Comparison of Large eddy dynamo simulation using dynamic sub-grid scale (SGS) model with a fully resolved direct simulation in a rotating spherical shell

    Science.gov (United States)

    Matsui, H.; Buffett, B. A.

    2017-12-01

    The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.

  4. On the rejection-based algorithm for simulation and analysis of large-scale reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Zunino, Roberto, E-mail: roberto.zunino@unitn.it [Department of Mathematics, University of Trento, Trento (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento, Trento (Italy)

    2015-06-28

    Stochastic simulation for in silico studies of large biochemical networks requires a great amount of computational time. We recently proposed a new exact simulation algorithm, called the rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)], to improve simulation performance by postponing and collapsing as much as possible the propensity updates. In this paper, we analyze the performance of this algorithm in detail, and improve it for simulating large-scale biochemical reaction networks. We also present a new algorithm, called simultaneous RSSA (SRSSA), which generates many independent trajectories simultaneously for the analysis of the biochemical behavior. SRSSA improves simulation performance by utilizing a single data structure across simulations to select reaction firings and forming trajectories. The memory requirement for building and storing the data structure is thus independent of the number of trajectories. The updating of the data structure when needed is performed collectively in a single operation across the simulations. The trajectories generated by SRSSA are exact and independent of each other by exploiting the rejection-based mechanism. We test our new improvement on real biological systems with a wide range of reaction networks to demonstrate its applicability and efficiency.

  5. Large-scale matrix-handling subroutines 'ATLAS'

    International Nuclear Information System (INIS)

    Tsunematsu, Toshihide; Takeda, Tatsuoki; Fujita, Keiichi; Matsuura, Toshihiko; Tahara, Nobuo

    1978-03-01

    Subroutine package ''ATLAS'' has been developed for handling large-scale matrices. The package is composed of four kinds of subroutines, i.e., basic arithmetic routines, routines for solving linear simultaneous equations and for solving general eigenvalue problems and utility routines. The subroutines are useful in large scale plasma-fluid simulations. (auth.)

  6. Constraint methods that accelerate free-energy simulations of biomolecules.

    Science.gov (United States)

    Perez, Alberto; MacCallum, Justin L; Coutsias, Evangelos A; Dill, Ken A

    2015-12-28

    Atomistic molecular dynamics simulations of biomolecules are critical for generating narratives about biological mechanisms. The power of atomistic simulations is that these are physics-based methods that satisfy Boltzmann's law, so they can be used to compute populations, dynamics, and mechanisms. But physical simulations are computationally intensive and do not scale well to the sizes of many important biomolecules. One way to speed up physical simulations is by coarse-graining the potential function. Another way is to harness structural knowledge, often by imposing spring-like restraints. But harnessing external knowledge in physical simulations is problematic because knowledge, data, or hunches have errors, noise, and combinatoric uncertainties. Here, we review recent principled methods for imposing restraints to speed up physics-based molecular simulations that promise to scale to larger biomolecules and motions.

  7. Mobility and stability of large vacancy and vacancy-copper clusters in iron: An atomistic kinetic Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Castin, N., E-mail: ncastin@sckcen.be [Studiecentrum voor Kernenergie - Centre d' Etudes de l' energie Nucleaire (SCK-CEN), Nuclear Materials Science Institute, Unit Structural Materials Modelling and Microstructure-Boeretang 200, B2400 Mol (Belgium); Pascuet, M.I., E-mail: pascuet@cnea.gov.ar [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Malerba, L. [Studiecentrum voor Kernenergie - Centre d' Etudes de l' energie Nucleaire (SCK-CEN), Nuclear Materials Science Institute, Unit Structural Materials Modelling and Microstructure-Boeretang 200, B2400 Mol (Belgium)

    2012-10-15

    The formation of Cu-rich precipitates under irradiation is a major cause for changes in the mechanical response to load of reactor pressure vessel steels. In previous works, it has been shown that the mechanism under which precipitation occurs is governed by diffusion of vacancy-copper (VCu) complexes, also in the absence of irradiation. Coarse-grained computer models (such as object kinetic Monte Carlo) aimed at simulating irradiation processes in model alloys or steels should therefore explicitly include the mobility of Cu precipitates, as a consequence of vacancy hops at their surface. For this purpose, in this work we calculate diffusion coefficients and lifetimes for a large variety of VCu complexes. We use an innovative atomistic model, where vacancy migration energies are calculated with little approximations, taking into account all effects of static relaxation and long-range chemical interaction as predicted by an interatomic potential. Our results show that, contrary to what intuition might suggest, saturation in vacancies tend to slow down the transport of Cu atoms.

  8. Comparison of atomistic and elasticity approaches for carbon diffusion near line defects in {alpha}-iron

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, R.G.A., E-mail: rgaveiga@gmail.com [Universite de Lyon, INSA Lyon, Laboratoire MATEIS, UMR CNRS 5510, 25 Avenue Jean Capelle, F69621, Villeurbanne (France); Perez, M. [Universite de Lyon, INSA Lyon, Laboratoire MATEIS, UMR CNRS 5510, 25 Avenue Jean Capelle, F69621, Villeurbanne (France); Becquart, C.S. [Unite Materiaux et Transformations (UMET), Ecole Nationale Superieure de Chimie de Lille, UMR CNRS 8207, Bat. C6, F59655 Villeneuve d' Ascq Cedex (France); Laboratoire commun EDF-CNRS Etude et Modelisation des Microstructures pour le Vieillissement des Materiaux (EM2VM) (France); Clouet, E. [Service de Recherches de Metallurgie Physique, CEA/Saclay, 91191 Gif-sur-Yvette (France); Domain, C. [EDF, Recherche et Developpement, Materiaux et Mecanique des Composants, Les Renardieres, F77250 Moret sur Loing (France); Laboratoire commun EDF-CNRS Etude et Modelisation des Microstructures pour le Vieillissement des Materiaux (EM2VM) (France)

    2011-10-15

    Energy barriers for carbon migration in the neighborhood of line defects in body-centered cubic iron have been obtained by atomistic simulations. For this purpose, molecular statics with an Fe-C interatomic potential, based on the embedded atom method, has been employed. Results of these simulations have been compared to the predictions of anisotropic elasticity theory. The agreement is better for a carbon atom sitting on an octahedral site (energy minimum) than one on a tetrahedral site (saddle point). Absolute differences in the energy barriers obtained by the two methods are usually below 5 meV at distances larger than 1.5 nm from a screw dislocation and 2 nm (up to 4 nm in the glide plane) from the edge dislocation. Atomistic kinetic Monte Carlo simulations performed at T = 300 K and additional analysis based on the activation energies obtained by both methods show that they are in good qualitative agreement, despite some important quantitative discrepancies due to the large absolute errors found near the dislocation cores.

  9. Stearic acid spin labels in lipid bilayers :  insight through atomistic simulations

    NARCIS (Netherlands)

    Stimson, L.M.; Dong, L.; Karttunen, M.E.J.; Wisniewska, A.; Dutka, M.; Róg, T.

    2007-01-01

    Spin-labeled stearic acid species are commonly used for electron paramagnetic resonance (EPR) studies of cell membranes to investigate phase transitions, fluidity, and other physical properties. In this paper, we use large-scale molecular dynamics simulations to investigate the position and behavior

  10. Coupled large-eddy simulation and morphodynamics of a large-scale river under extreme flood conditions

    Science.gov (United States)

    Khosronejad, Ali; Sotiropoulos, Fotis; Stony Brook University Team

    2016-11-01

    We present a coupled flow and morphodynamic simulations of extreme flooding in 3 km long and 300 m wide reach of the Mississippi River in Minnesota, which includes three islands and hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the VFS-Geophysics model to investigate the flow and bed evolution of the river during a 500 year flood. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. The geometrical data of the river, islands and structures are obtained from LiDAR, sub-aqueous sonar and in-situ surveying to construct a digital map of the river bathymetry. Our simulation results for the bed evolution of the river reveal complex sediment dynamics near the hydraulic structures. The numerically captured scour depth near some of the structures reach a maximum of about 10 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems. This work was funded by a Grant from Minnesota Dept. of Transportation.

  11. Large scale molecular simulations of nanotoxicity.

    Science.gov (United States)

    Jimenez-Cruz, Camilo A; Kang, Seung-gu; Zhou, Ruhong

    2014-01-01

    The widespread use of nanomaterials in biomedical applications has been accompanied by an increasing interest in understanding their interactions with tissues, cells, and biomolecules, and in particular, on how they might affect the integrity of cell membranes and proteins. In this mini-review, we present a summary of some of the recent studies on this important subject, especially from the point of view of large scale molecular simulations. The carbon-based nanomaterials and noble metal nanoparticles are the main focus, with additional discussions on quantum dots and other nanoparticles as well. The driving forces for adsorption of fullerenes, carbon nanotubes, and graphene nanosheets onto proteins or cell membranes are found to be mainly hydrophobic interactions and the so-called π-π stacking (between aromatic rings), while for the noble metal nanoparticles the long-range electrostatic interactions play a bigger role. More interestingly, there are also growing evidences showing that nanotoxicity can have implications in de novo design of nanomedicine. For example, the endohedral metallofullerenol Gd@C₈₂(OH)₂₂ is shown to inhibit tumor growth and metastasis by inhibiting enzyme MMP-9, and graphene is illustrated to disrupt bacteria cell membranes by insertion/cutting as well as destructive extraction of lipid molecules. These recent findings have provided a better understanding of nanotoxicity at the molecular level and also suggested therapeutic potential by using the cytotoxicity of nanoparticles against cancer or bacteria cells. © 2014 Wiley Periodicals, Inc.

  12. Large-scale Validation of AMIP II Land-surface Simulations: Preliminary Results for Ten Models

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T J; Henderson-Sellers, A; Irannejad, P; McGuffie, K; Zhang, H

    2005-12-01

    This report summarizes initial findings of a large-scale validation of the land-surface simulations of ten atmospheric general circulation models that are entries in phase II of the Atmospheric Model Intercomparison Project (AMIP II). This validation is conducted by AMIP Diagnostic Subproject 12 on Land-surface Processes and Parameterizations, which is focusing on putative relationships between the continental climate simulations and the associated models' land-surface schemes. The selected models typify the diversity of representations of land-surface climate that are currently implemented by the global modeling community. The current dearth of global-scale terrestrial observations makes exacting validation of AMIP II continental simulations impractical. Thus, selected land-surface processes of the models are compared with several alternative validation data sets, which include merged in-situ/satellite products, climate reanalyses, and off-line simulations of land-surface schemes that are driven by observed forcings. The aggregated spatio-temporal differences between each simulated process and a chosen reference data set then are quantified by means of root-mean-square error statistics; the differences among alternative validation data sets are similarly quantified as an estimate of the current observational uncertainty in the selected land-surface process. Examples of these metrics are displayed for land-surface air temperature, precipitation, and the latent and sensible heat fluxes. It is found that the simulations of surface air temperature, when aggregated over all land and seasons, agree most closely with the chosen reference data, while the simulations of precipitation agree least. In the latter case, there also is considerable inter-model scatter in the error statistics, with the reanalyses estimates of precipitation resembling the AMIP II simulations more than to the chosen reference data. In aggregate, the simulations of land-surface latent and

  13. Towards Agent-Based Simulation of Emerging and Large-Scale Social Networks. Examples of the Migrant Crisis and MMORPGs

    Directory of Open Access Journals (Sweden)

    Schatten, Markus

    2016-10-01

    Full Text Available Large-scale agent based simulation of social networks is described in the context of the migrant crisis in Syria and the EU as well as massively multi-player on-line role playing games (MMORPG. The recipeWorld system by Terna and Fontana is proposed as a possible solution to simulating large-scale social networks. The initial system has been re-implemented using the Smart Python multi-Agent Development Environment (SPADE and Pyinteractive was used for visualization. We present initial models of simulation that we plan to develop further in future studies. Thus this paper is research in progress that will hopefully establish a novel agent-based modelling system in the context of the ModelMMORPG project.

  14. Particle physics and polyedra proximity calculation for hazard simulations in large-scale industrial plants

    Science.gov (United States)

    Plebe, Alice; Grasso, Giorgio

    2016-12-01

    This paper describes a system developed for the simulation of flames inside an open-source 3D computer graphic software, Blender, with the aim of analyzing in virtual reality scenarios of hazards in large-scale industrial plants. The advantages of Blender are of rendering at high resolution the very complex structure of large industrial plants, and of embedding a physical engine based on smoothed particle hydrodynamics. This particle system is used to evolve a simulated fire. The interaction of this fire with the components of the plant is computed using polyhedron separation distance, adopting a Voronoi-based strategy that optimizes the number of feature distance computations. Results on a real oil and gas refining industry are presented.

  15. Parallel continuous simulated tempering and its applications in large-scale molecular simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Tianwu; Yu, Linglin; Zhang, Chong [Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas 77005 (United States); Ma, Jianpeng, E-mail: jpma@bcm.tmc.edu [Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas 77005 (United States); Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, Texas 77030 (United States)

    2014-07-28

    In this paper, we introduce a parallel continuous simulated tempering (PCST) method for enhanced sampling in studying large complex systems. It mainly inherits the continuous simulated tempering (CST) method in our previous studies [C. Zhang and J. Ma, J. Chem. Phys. 130, 194112 (2009); C. Zhang and J. Ma, J. Chem. Phys. 132, 244101 (2010)], while adopts the spirit of parallel tempering (PT), or replica exchange method, by employing multiple copies with different temperature distributions. Differing from conventional PT methods, despite the large stride of total temperature range, the PCST method requires very few copies of simulations, typically 2–3 copies, yet it is still capable of maintaining a high rate of exchange between neighboring copies. Furthermore, in PCST method, the size of the system does not dramatically affect the number of copy needed because the exchange rate is independent of total potential energy, thus providing an enormous advantage over conventional PT methods in studying very large systems. The sampling efficiency of PCST was tested in two-dimensional Ising model, Lennard-Jones liquid and all-atom folding simulation of a small globular protein trp-cage in explicit solvent. The results demonstrate that the PCST method significantly improves sampling efficiency compared with other methods and it is particularly effective in simulating systems with long relaxation time or correlation time. We expect the PCST method to be a good alternative to parallel tempering methods in simulating large systems such as phase transition and dynamics of macromolecules in explicit solvent.

  16. Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars

    International Nuclear Information System (INIS)

    Zhong Yuan; Gall, Ken; Zhu Ting

    2012-01-01

    Molecular dynamics simulations are performed to study the atomistic mechanisms governing the pseudoelasticity and shape memory in nickel–titanium (NiTi) nanostructures. For a 〈1 1 0〉 – oriented nanopillar subjected to compressive loading–unloading, we observe either a pseudoelastic or shape memory response, depending on the applied strain and temperature that control the reversibility of phase transformation and deformation twinning. We show that irreversible twinning arises owing to the dislocation pinning of twin boundaries, while hierarchically twinned microstructures facilitate the reversible twinning. The nanoscale size effects are manifested as the load serration, stress plateau and large hysteresis loop in stress–strain curves that result from the high stresses required to drive the nucleation-controlled phase transformation and deformation twinning in nanosized volumes. Our results underscore the importance of atomistically resolved modeling for understanding the phase and deformation reversibilities that dictate the pseudoelasticity and shape memory behavior in nanostructured shape memory alloys.

  17. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations.

    Science.gov (United States)

    Anandakrishnan, Ramu; Aguilar, Boris; Onufriev, Alexey V

    2012-07-01

    The accuracy of atomistic biomolecular modeling and simulation studies depend on the accuracy of the input structures. Preparing these structures for an atomistic modeling task, such as molecular dynamics (MD) simulation, can involve the use of a variety of different tools for: correcting errors, adding missing atoms, filling valences with hydrogens, predicting pK values for titratable amino acids, assigning predefined partial charges and radii to all atoms, and generating force field parameter/topology files for MD. Identifying, installing and effectively using the appropriate tools for each of these tasks can be difficult for novice and time-consuming for experienced users. H++ (http://biophysics.cs.vt.edu/) is a free open-source web server that automates the above key steps in the preparation of biomolecular structures for molecular modeling and simulations. H++ also performs extensive error and consistency checking, providing error/warning messages together with the suggested corrections. In addition to numerous minor improvements, the latest version of H++ includes several new capabilities and options: fix erroneous (flipped) side chain conformations for HIS, GLN and ASN, include a ligand in the input structure, process nucleic acid structures and generate a solvent box with specified number of common ions for explicit solvent MD.

  18. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  19. ROSA-IV Large Scale Test Facility (LSTF) system description for second simulated fuel assembly

    International Nuclear Information System (INIS)

    1990-10-01

    The ROSA-IV Program's Large Scale Test Facility (LSTF) is a test facility for integral simulation of thermal-hydraulic response of a pressurized water reactor (PWR) during small break loss-of-coolant accidents (LOCAs) and transients. In this facility, the PWR core nuclear fuel rods are simulated using electric heater rods. The simulated fuel assembly which was installed during the facility construction was replaced with a new one in 1988. The first test with this second simulated fuel assembly was conducted in December 1988. This report describes the facility configuration and characteristics as of this date (December 1988) including the new simulated fuel assembly design and the facility changes which were made during the testing with the first assembly as well as during the renewal of the simulated fuel assembly. (author)

  20. Parallel Motion Simulation of Large-Scale Real-Time Crowd in a Hierarchical Environmental Model

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2012-01-01

    Full Text Available This paper presents a parallel real-time crowd simulation method based on a hierarchical environmental model. A dynamical model of the complex environment should be constructed to simulate the state transition and propagation of individual motions. By modeling of a virtual environment where virtual crowds reside, we employ different parallel methods on a topological layer, a path layer and a perceptual layer. We propose a parallel motion path matching method based on the path layer and a parallel crowd simulation method based on the perceptual layer. The large-scale real-time crowd simulation becomes possible with these methods. Numerical experiments are carried out to demonstrate the methods and results.

  1. Algebraic mesh generation for large scale viscous-compressible aerodynamic simulation

    International Nuclear Information System (INIS)

    Smith, R.E.

    1984-01-01

    Viscous-compressible aerodynamic simulation is the numerical solution of the compressible Navier-Stokes equations and associated boundary conditions. Boundary-fitted coordinate systems are well suited for the application of finite difference techniques to the Navier-Stokes equations. An algebraic approach to boundary-fitted coordinate systems is one where an explicit functional relation describes a mesh on which a solution is obtained. This approach has the advantage of rapid-precise mesh control. The basic mathematical structure of three algebraic mesh generation techniques is described. They are transfinite interpolation, the multi-surface method, and the two-boundary technique. The Navier-Stokes equations are transformed to a computational coordinate system where boundary-fitted coordinates can be applied. Large-scale computation implies that there is a large number of mesh points in the coordinate system. Computation of viscous compressible flow using boundary-fitted coordinate systems and the application of this computational philosophy on a vector computer are presented

  2. Large-Scale Brain Simulation and Disorders of Consciousness. Mapping Technical and Conceptual Issues

    Directory of Open Access Journals (Sweden)

    Michele Farisco

    2018-04-01

    Full Text Available Modeling and simulations have gained a leading position in contemporary attempts to describe, explain, and quantitatively predict the human brain’s operations. Computer models are highly sophisticated tools developed to achieve an integrated knowledge of the brain with the aim of overcoming the actual fragmentation resulting from different neuroscientific approaches. In this paper we investigate the plausibility of simulation technologies for emulation of consciousness and the potential clinical impact of large-scale brain simulation on the assessment and care of disorders of consciousness (DOCs, e.g., Coma, Vegetative State/Unresponsive Wakefulness Syndrome, Minimally Conscious State. Notwithstanding their technical limitations, we suggest that simulation technologies may offer new solutions to old practical problems, particularly in clinical contexts. We take DOCs as an illustrative case, arguing that the simulation of neural correlates of consciousness is potentially useful for improving treatments of patients with DOCs.

  3. Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan Patrick; Schultz, Peter Andrew; Crozier, Paul; Moore, Stan Gerald; Swiler, Laura Painton; Stephens, John Adam; Trott, Christian Robert; Foiles, Stephen Martin; Tucker, Garritt J. (Drexel University)

    2014-09-01

    This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers

  4. Oligopolistic competition in wholesale electricity markets: Large-scale simulation and policy analysis using complementarity models

    Science.gov (United States)

    Helman, E. Udi

    This dissertation conducts research into the large-scale simulation of oligopolistic competition in wholesale electricity markets. The dissertation has two parts. Part I is an examination of the structure and properties of several spatial, or network, equilibrium models of oligopolistic electricity markets formulated as mixed linear complementarity problems (LCP). Part II is a large-scale application of such models to the electricity system that encompasses most of the United States east of the Rocky Mountains, the Eastern Interconnection. Part I consists of Chapters 1 to 6. The models developed in this part continue research into mixed LCP models of oligopolistic electricity markets initiated by Hobbs [67] and subsequently developed by Metzler [87] and Metzler, Hobbs and Pang [88]. Hobbs' central contribution is a network market model with Cournot competition in generation and a price-taking spatial arbitrage firm that eliminates spatial price discrimination by the Cournot firms. In one variant, the solution to this model is shown to be equivalent to the "no arbitrage" condition in a "pool" market, in which a Regional Transmission Operator optimizes spot sales such that the congestion price between two locations is exactly equivalent to the difference in the energy prices at those locations (commonly known as locational marginal pricing). Extensions to this model are presented in Chapters 5 and 6. One of these is a market model with a profit-maximizing arbitrage firm. This model is structured as a mathematical program with equilibrium constraints (MPEC), but due to the linearity of its constraints, can be solved as a mixed LCP. Part II consists of Chapters 7 to 12. The core of these chapters is a large-scale simulation of the U.S. Eastern Interconnection applying one of the Cournot competition with arbitrage models. This is the first oligopolistic equilibrium market model to encompass the full Eastern Interconnection with a realistic network representation (using

  5. Simple Model for Simulating Characteristics of River Flow Velocity in Large Scale

    Directory of Open Access Journals (Sweden)

    Husin Alatas

    2015-01-01

    Full Text Available We propose a simple computer based phenomenological model to simulate the characteristics of river flow velocity in large scale. We use shuttle radar tomography mission based digital elevation model in grid form to define the terrain of catchment area. The model relies on mass-momentum conservation law and modified equation of motion of falling body in inclined plane. We assume inelastic collision occurs at every junction of two river branches to describe the dynamics of merged flow velocity.

  6. Single molecule translocation in smectics illustrates the challenge for time-mapping in simulations on multiple scales.

    Science.gov (United States)

    Mukherjee, Biswaroop; Peter, Christine; Kremer, Kurt

    2017-09-21

    Understanding the connections between the characteristic dynamical time scales associated with a coarse-grained (CG) and a detailed representation is central to the applicability of the coarse-graining methods to understand molecular processes. The process of coarse graining leads to an accelerated dynamics, owing to the smoothening of the underlying free-energy landscapes. Often a single time-mapping factor is used to relate the time scales associated with the two representations. We critically examine this idea using a model system ideally suited for this purpose. Single molecular transport properties are studied via molecular dynamics simulations of the CG and atomistic representations of a liquid crystalline, azobenzene containing mesogen, simulated in the smectic and the isotropic phases. The out-of-plane dynamics in the smectic phase occurs via molecular hops from one smectic layer to the next. Hopping can occur via two mechanisms, with and without significant reorientation. The out-of-plane transport can be understood as a superposition of two (one associated with each mode of transport) independent continuous time random walks for which a single time-mapping factor would be rather inadequate. A comparison of the free-energy surfaces, relevant to the out-of-plane transport, qualitatively supports the above observations. Thus, this work underlines the need for building CG models that exhibit both structural and dynamical consistency to the underlying atomistic model.

  7. Single molecule translocation in smectics illustrates the challenge for time-mapping in simulations on multiple scales

    Science.gov (United States)

    Mukherjee, Biswaroop; Peter, Christine; Kremer, Kurt

    2017-09-01

    Understanding the connections between the characteristic dynamical time scales associated with a coarse-grained (CG) and a detailed representation is central to the applicability of the coarse-graining methods to understand molecular processes. The process of coarse graining leads to an accelerated dynamics, owing to the smoothening of the underlying free-energy landscapes. Often a single time-mapping factor is used to relate the time scales associated with the two representations. We critically examine this idea using a model system ideally suited for this purpose. Single molecular transport properties are studied via molecular dynamics simulations of the CG and atomistic representations of a liquid crystalline, azobenzene containing mesogen, simulated in the smectic and the isotropic phases. The out-of-plane dynamics in the smectic phase occurs via molecular hops from one smectic layer to the next. Hopping can occur via two mechanisms, with and without significant reorientation. The out-of-plane transport can be understood as a superposition of two (one associated with each mode of transport) independent continuous time random walks for which a single time-mapping factor would be rather inadequate. A comparison of the free-energy surfaces, relevant to the out-of-plane transport, qualitatively supports the above observations. Thus, this work underlines the need for building CG models that exhibit both structural and dynamical consistency to the underlying atomistic model.

  8. Development of computational infrastructure to support hyper-resolution large-ensemble hydrology simulations from local-to-continental scales

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of computational infrastructure to support hyper-resolution large-ensemble hydrology simulations from local-to-continental scales A move is currently...

  9. Parallel multiscale simulations of a brain aneurysm

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, Leopold [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Fedosov, Dmitry A. [Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich 52425 (Germany); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)

    2013-07-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in

  10. Parallel multiscale simulations of a brain aneurysm

    International Nuclear Information System (INIS)

    Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em

    2013-01-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in

  11. Crack growth and fracture toughness of amorphous Li-Si anodes: Mechanisms and role of charging/discharging studied by atomistic simulations

    Science.gov (United States)

    Khosrownejad, S. M.; Curtin, W. A.

    2017-10-01

    Fracture is the main cause of degradation and capacity fading in lithiated silicon during cycling. Experiments on the fracture of lithiated silicon show conflicting results, and so mechanistic models can help interpret experiments and guide component design. Here, large-scale K-controlled atomistic simulations of crack propagation (R-curve KI vs. Δa) are performed at LixSi compositions x = 0.5 , 1.0 , 1.5 for as-quenched/relaxed samples and at x = 0.5 , 1.0 for samples created by discharging from higher Li compositions. In all cases, the fracture mechanism is void nucleation, growth, and coalescence. In as-quenched materials, with increasing Li content the plastic flow stress and elastic moduli decrease but void nucleation and growth happen at smaller stress, so that the initial fracture toughness KIc ≈ 1.0 MPa√{ m} decreases slightly but the initial fracture energy JIc ≈ 10.5J/m2 is similar. After 10 nm of crack growth, the fracture toughnesses increase and become similar at KIc ≈ 1.9 MPa√{ m} across all compositions. Plane-strain equi-biaxial expansion simulations of uncracked samples provide complementary information on void nucleation and growth. The simulations are interpreted within the framework of Gurson model for ductile fracture, which predicts JIc = ασy D where α ≃ 1 and D is the void spacing, and good agreement is found. In spite of flowing plastically, the fracture toughness of LixSi is low because voids nucleate within nano-sized distances ahead of the crack (D ≈ 1nm). Scaling simulation results to experimental conditions, reasonable agreement with experimentally-estimated fracture toughnesses is obtained. The discharging process facilitates void nucleation but decreases the flow stress (as shown previously), leading to enhanced fracture toughness at all levels of crack growth. Therefore, the fracture behavior of lithiated silicon at a given composition is not a material property but instead depends on the history of charging

  12. Systematic methods for defining coarse-grained maps in large biomolecules.

    Science.gov (United States)

    Zhang, Zhiyong

    2015-01-01

    Large biomolecules are involved in many important biological processes. It would be difficult to use large-scale atomistic molecular dynamics (MD) simulations to study the functional motions of these systems because of the computational expense. Therefore various coarse-grained (CG) approaches have attracted rapidly growing interest, which enable simulations of large biomolecules over longer effective timescales than all-atom MD simulations. The first issue in CG modeling is to construct CG maps from atomic structures. In this chapter, we review the recent development of a novel and systematic method for constructing CG representations of arbitrarily complex biomolecules, in order to preserve large-scale and functionally relevant essential dynamics (ED) at the CG level. In this ED-CG scheme, the essential dynamics can be characterized by principal component analysis (PCA) on a structural ensemble, or elastic network model (ENM) of a single atomic structure. Validation and applications of the method cover various biological systems, such as multi-domain proteins, protein complexes, and even biomolecular machines. The results demonstrate that the ED-CG method may serve as a very useful tool for identifying functional dynamics of large biomolecules at the CG level.

  13. Proceedings of joint meeting of the 6th simulation science symposium and the NIFS collaboration research 'large scale computer simulation'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Joint meeting of the 6th Simulation Science Symposium and the NIFS Collaboration Research 'Large Scale Computer Simulation' was held on December 12-13, 2002 at National Institute for Fusion Science, with the aim of promoting interdisciplinary collaborations in various fields of computer simulations. The present meeting attended by more than 40 people consists of the 11 invited and 22 contributed papers, of which topics were extended not only to fusion science but also to related fields such as astrophysics, earth science, fluid dynamics, molecular dynamics, computer science etc. (author)

  14. Mechanisms of recognition and binding of α-TTP to the plasma membrane by multi-scale molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Christos eLamprakis

    2015-07-01

    Full Text Available We used multiple sets of simulations both at the atomistic and coarse-grained level of resolution, to investigate interaction and binding of α-tochoperol transfer protein (α-TTP to phosphatidylinositol phosphate lipids (PIPs. Our calculations indicate that enrichment of membranes with such lipids facilitate membrane anchoring. Atomistic models suggest that PIP can be incorporated into the binding cavity of α-TTP and therefore confirm that such protein can work as lipid exchanger between the endosome and the plasma membrane. Comparison of the atomistic models of the α-TTP / PIPs complex with membrane-bound α-TTP revealed different roles for the various basic residues composing the basic patch that is key for the protein / ligand interaction. Such residues are of critical importance as several point mutations at their position lead to severe forms of ataxia with vitamin E deficiency (AVED phenotypes. Specifically, R221 is main residue responsible for the stabilisation of the complex. R68 and R192 exchange strong interactions in the protein or in the membrane complex only, suggesting that the two residues alternate contact formation, thus facilitating lipid flipping from the membrane into the protein cavity during the lipid exchange process. Finally, R59 shows weaker interactions with PIPs anyway with a clear preference for specific phosphorylation positions, hinting a role in early membrane selectivity for the protein. Altogether, our simulations reveal significant aspects at the atomistic scale of interactions of α-TTP with the plasma membrane and with PIP, providing clarifications on the mechanism of intracellular vitamin E trafficking and helping establishing the role of key residue for the functionality of α-TTP.

  15. Large-scale patterns in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Hardenberg, J. von; Parodi, A.; Passoni, G.; Provenzale, A.; Spiegel, E.A.

    2008-01-01

    Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 10 5 and 10 8 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied

  16. GENASIS Mathematics : Object-oriented manifolds, operations, and solvers for large-scale physics simulations

    Science.gov (United States)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2018-01-01

    The large-scale computer simulation of a system of physical fields governed by partial differential equations requires some means of approximating the mathematical limit of continuity. For example, conservation laws are often treated with a 'finite-volume' approach in which space is partitioned into a large number of small 'cells,' with fluxes through cell faces providing an intuitive discretization modeled on the mathematical definition of the divergence operator. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of simple meshes and the evolution of generic conserved currents thereon, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes inaugurate the Mathematics division of our developing astrophysics simulation code GENASIS (Gen eral A strophysical Si mulation S ystem), which will be expanded over time to include additional meshing options, mathematical operations, solver types, and solver variations appropriate for many multiphysics applications.

  17. Test-particle simulations of SEP propagation in IMF with large-scale fluctuations

    Science.gov (United States)

    Kelly, J.; Dalla, S.; Laitinen, T.

    2012-11-01

    The results of full-orbit test-particle simulations of SEPs propagating through an IMF which exhibits large-scale fluctuations are presented. A variety of propagation conditions are simulated - scatter-free, and scattering with mean free path, λ, of 0.3 and 2.0 AU - and the cross-field transport of SEPs is investigated. When calculating cross-field displacements the Parker spiral geometry is accounted for and the role of magnetic field expansion is taken into account. It is found that transport across the magnetic field is enhanced in the λ =0.3 AU and λ =2 AU cases, compared to the scatter-free case, with the λ =2 AU case in particular containing outlying particles that had strayed a large distance across the IMF. Outliers are catergorized by means of Chauvenet's criterion and it is found that typically between 1 and 2% of the population falls within this category. The ratio of latitudinal to longitudinal diffusion coefficient perpendicular to the magnetic field is typically 0.2, suggesting that transport in latitude is less efficient.

  18. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    Science.gov (United States)

    Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-11-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.

  19. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    International Nuclear Information System (INIS)

    Kurucz, Charles N.; Waite, Thomas D.; Otano, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-01-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1 ) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60 Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater

  20. Simulation research on the process of large scale ship plane segmentation intelligent workshop

    Science.gov (United States)

    Xu, Peng; Liao, Liangchuang; Zhou, Chao; Xue, Rui; Fu, Wei

    2017-04-01

    Large scale ship plane segmentation intelligent workshop is a new thing, and there is no research work in related fields at home and abroad. The mode of production should be transformed by the existing industry 2.0 or part of industry 3.0, also transformed from "human brain analysis and judgment + machine manufacturing" to "machine analysis and judgment + machine manufacturing". In this transforming process, there are a great deal of tasks need to be determined on the aspects of management and technology, such as workshop structure evolution, development of intelligent equipment and changes in business model. Along with them is the reformation of the whole workshop. Process simulation in this project would verify general layout and process flow of large scale ship plane section intelligent workshop, also would analyze intelligent workshop working efficiency, which is significant to the next step of the transformation of plane segmentation intelligent workshop.

  1. A dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows

    International Nuclear Information System (INIS)

    Singh, Satbir; You, Donghyun

    2013-01-01

    Highlights: ► A new SGS model is developed for LES of turbulent flows in complex geometries. ► A dynamic global-coefficient SGS model is coupled with a scale-similarity model. ► Overcome some of difficulties associated with eddy-viscosity closures. ► Does not require averaging or clipping of the model coefficient for stabilization. ► The predictive capability is demonstrated in a number of turbulent flow simulations. -- Abstract: A dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations

  2. Atomistic simulation of fatigue in face centred cubic metals

    International Nuclear Information System (INIS)

    Fan, Zhengxuan

    2016-01-01

    Fatigue is one of the major damage mechanisms of metals. It is characterized by strong environmental effects and wide lifetime dispersions which must be better understood. Different face centred cubic metals, al, Cu, Ni, and Ag are analyzed. The mechanical behaviour of surface steps naturally created by the glide of dislocations subjected to cyclic loading is examined using molecular dynamics simulations in vacuum and in air for Cu and Ni. an atomistic reconstruction phenomenon is observed at these surface steps which can induce strong irreversibility. Three different mechanisms of reconstruction are defined. Surface slip irreversibility under cyclic loading is analyzed. all surface steps are intrinsically irreversible under usual fatigue laboratory loading amplitude without the arrival of opposite sign dislocations on direct neighbor plane.With opposite sign dislocations on non direct neighbour planes, irreversibility cumulates cycle by cycle and a micro-notch is produced whose depth gradually increases.Oxygen environment affects the surface (first stage of oxidation) but does not lead to higher irreversibility as it has no major influence on the different mechanisms linked to surface relief evolution.a rough estimation of surface irreversibility is carried out for pure edge dislocations in persistent slip bands in so-called wavy materials. It gives an irreversibility fraction between 0.5 and 0.75 in copper in vacuum and in air, in agreement with recent atomic force microscopy measurements.Crack propagation mechanisms are simulated in inert environment. Cracks can propagate owing to the irreversibility of generated dislocations because of their mutual interactions up to the formation of dislocation junctions. (author) [fr

  3. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    Science.gov (United States)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  4. Commercial applications of large-scale Research and Development computer simulation technologies

    International Nuclear Information System (INIS)

    Kuok Mee Ling; Pascal Chen; Wen Ho Lee

    1998-01-01

    The potential commercial applications of two large-scale R and D computer simulation technologies are presented. One such technology is based on the numerical solution of the hydrodynamics equations, and is embodied in the two-dimensional Eulerian code EULE2D, which solves the hydrodynamic equations with various models for the equation of state (EOS), constitutive relations and fracture mechanics. EULE2D is an R and D code originally developed to design and analyze conventional munitions for anti-armor penetrations such as shaped charges, explosive formed projectiles, and kinetic energy rods. Simulated results agree very well with actual experiments. A commercial application presented here is the design and simulation of shaped charges for oil and gas well bore perforation. The other R and D simulation technology is based on the numerical solution of Maxwell's partial differential equations of electromagnetics in space and time, and is implemented in the three-dimensional code FDTD-SPICE, which solves Maxwell's equations in the time domain with finite-differences in the three spatial dimensions and calls SPICE for information when nonlinear active devices are involved. The FDTD method has been used in the radar cross-section modeling of military aircrafts and many other electromagnetic phenomena. The coupling of FDTD method with SPICE, a popular circuit and device simulation program, provides a powerful tool for the simulation and design of microwave and millimeter-wave circuits containing nonlinear active semiconductor devices. A commercial application of FDTD-SPICE presented here is the simulation of a two-element active antenna system. The simulation results and the experimental measurements are in excellent agreement. (Author)

  5. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    Science.gov (United States)

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscal...

  6. Scale interactions in a mixing layer – the role of the large-scale gradients

    KAUST Repository

    Fiscaletti, D.

    2016-02-15

    © 2016 Cambridge University Press. The interaction between the large and the small scales of turbulence is investigated in a mixing layer, at a Reynolds number based on the Taylor microscale of , via direct numerical simulations. The analysis is performed in physical space, and the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale activity. It is found that positive large-scale velocity fluctuations correspond to large vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to low vorticity r.m.s. on the high-speed side. The relationship between large and small scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale velocity fluctuations. On the contrary, the correlation coefficient is nearly constant throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with the large-scale velocity gradients. Therefore, the small-scale activity appears closely related to large-scale gradients, while the correlation between the small-scale activity and the large-scale velocity fluctuations is shown to reflect a property of the large scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass filtered (large scales) velocity fields tend to be aligned when examined within vortical tubes. These results provide evidence for the so-called \\'scale invariance\\' (Meneveau & Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1-32), and suggest that some of the large-scale characteristics are not lost at the small scales, at least at the Reynolds number achieved in the present simulation.

  7. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludig–Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)

    2015-11-14

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.

  8. Prediction and validation of diffusion coefficients in a model drug delivery system using microsecond atomistic molecular dynamics simulation and vapour sorption analysis.

    Science.gov (United States)

    Forrey, Christopher; Saylor, David M; Silverstein, Joshua S; Douglas, Jack F; Davis, Eric M; Elabd, Yossef A

    2014-10-14

    Diffusion of small to medium sized molecules in polymeric medical device materials underlies a broad range of public health concerns related to unintended leaching from or uptake into implantable medical devices. However, obtaining accurate diffusion coefficients for such systems at physiological temperature represents a formidable challenge, both experimentally and computationally. While molecular dynamics simulation has been used to accurately predict the diffusion coefficients, D, of a handful of gases in various polymers, this success has not been extended to molecules larger than gases, e.g., condensable vapours, liquids, and drugs. We present atomistic molecular dynamics simulation predictions of diffusion in a model drug eluting system that represent a dramatic improvement in accuracy compared to previous simulation predictions for comparable systems. We find that, for simulations of insufficient duration, sub-diffusive dynamics can lead to dramatic over-prediction of D. We present useful metrics for monitoring the extent of sub-diffusive dynamics and explore how these metrics correlate to error in D. We also identify a relationship between diffusion and fast dynamics in our system, which may serve as a means to more rapidly predict diffusion in slowly diffusing systems. Our work provides important precedent and essential insights for utilizing atomistic molecular dynamics simulations to predict diffusion coefficients of small to medium sized molecules in condensed soft matter systems.

  9. An atomistic methodology of energy release rate for graphene at nanoscale

    International Nuclear Information System (INIS)

    Zhang, Zhen; Lee, James D.; Wang, Xianqiao

    2014-01-01

    Graphene is a single layer of carbon atoms packed into a honeycomb architecture, serving as a fundamental building block for electric devices. Understanding the fracture mechanism of graphene under various conditions is crucial for tailoring the electrical and mechanical properties of graphene-based devices at atomic scale. Although most of the fracture mechanics concepts, such as stress intensity factors, are not applicable in molecular dynamics simulation, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at nanoscale. This work introduces an atomistic simulation methodology, based on the energy release rate, as a tool to unveil the fracture mechanism of graphene at nanoscale. This methodology can be easily extended to any atomistic material system. We have investigated both opening mode and mixed mode at different temperatures. Simulation results show that the critical energy release rate of graphene is independent of initial crack length at low temperature. Graphene with inclined pre-crack possesses higher fracture strength and fracture deformation but smaller critical energy release rate compared with the graphene with vertical pre-crack. Owing to its anisotropy, graphene with armchair chirality always has greater critical energy release rate than graphene with zigzag chirality. The increase of temperature leads to the reduction of fracture strength, fracture deformation, and the critical energy release rate of graphene. Also, higher temperature brings higher randomness of energy release rate of graphene under a variety of predefined crack lengths. The energy release rate is independent of the strain rate as long as the strain rate is small enough

  10. Extending atomistic scale chemistry to mesoscale model of condensed-phase deflagration

    Science.gov (United States)

    Joshi, Kaushik; Chaudhuri, Santanu

    2017-01-01

    Predictive simulations connecting chemistry that follow the shock or thermal initiation of energetic materials to subsequent deflagration or detonation events is currently outside the realm of possibilities. Molecular dynamics and first-principles based dynamics have made progress in understanding reactions in picosecond to nanosecond time scale. Results from thermal ignition of different phases of RDX show a complex reaction network and emergence of a deterministic behavior for critical temperature before ignition and hot spot growth rates. The kinetics observed is dependent on the hot spot temperature, system size and thermal conductivity. For cases where ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. The gradual temperature and pressure increase in the incubation period is accompanied by accumulation of heavier polyradicals. The challenge of connecting such chemistry in mesoscale simulations remain in reducing the complexity of chemistry. The hot spot growth kinetics in RDX grains and interfaces is an important challenge for reactive simulations aiming to fill in the gaps in our knowledge in the nanoseconds to microseconds time scale. The results discussed indicate that the mesoscale chemistry may include large polyradical molecules in dense reactive mix reaching an instability point at certain temperatures and pressures.

  11. Properties of the Membrane Binding Component of Catechol-O-methyltransferase Revealed by Atomistic Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Orlowski, A.; St-Pierre, J. F.; Magarkar, A.

    2011-01-01

    We used atomistic simulations to study the membrane-bound form of catechol-O-methyltransferase (MB-COMT). In particular we investigated the 26-residue transmembrane a-helical segment of MB-COMT together with the 24-residue fragment that links the transmembrane component to the main protein unit...... that was not included in our model. In numerous independent simulations we observed the formation of a salt bridge between ARC 27 and GLU40. The salt bridge closed the flexible loop that formed in the linker and kept it in the vicinity of the membrane-water interface. All simulations supported this conclusion...... that the linker has a clear affinity for the interface and preferentially arranges its residues to reside next to the membrane, without a tendency to relocate into the water phase. Furthermore, an extensive analysis of databases for sequences of membrane proteins that have a single transmembrane helical segment...

  12. A Novel CPU/GPU Simulation Environment for Large-Scale Biologically-Realistic Neural Modeling

    Directory of Open Access Journals (Sweden)

    Roger V Hoang

    2013-10-01

    Full Text Available Computational Neuroscience is an emerging field that provides unique opportunities to studycomplex brain structures through realistic neural simulations. However, as biological details are added tomodels, the execution time for the simulation becomes longer. Graphics Processing Units (GPUs are now being utilized to accelerate simulations due to their ability to perform computations in parallel. As such, they haveshown significant improvement in execution time compared to Central Processing Units (CPUs. Most neural simulators utilize either multiple CPUs or a single GPU for better performance, but still show limitations in execution time when biological details are not sacrificed. Therefore, we present a novel CPU/GPU simulation environment for large-scale biological networks,the NeoCortical Simulator version 6 (NCS6. NCS6 is a free, open-source, parallelizable, and scalable simula-tor, designed to run on clusters of multiple machines, potentially with high performance computing devicesin each of them. It has built-in leaky-integrate-and-fire (LIF and Izhikevich (IZH neuron models, but usersalso have the capability to design their own plug-in interface for different neuron types as desired. NCS6is currently able to simulate one million cells and 100 million synapses in quasi real time by distributing dataacross these heterogeneous clusters of CPUs and GPUs.

  13. Challenges in analysing and visualizing large-scale molecular dynamics simulations: domain and defect formation in lung surfactant monolayers

    International Nuclear Information System (INIS)

    Mendez-Villuendas, E; Baoukina, S; Tieleman, D P

    2012-01-01

    Molecular dynamics simulations have rapidly grown in size and complexity, as computers have become more powerful and molecular dynamics software more efficient. Using coarse-grained models like MARTINI system sizes of the order of 50 nm × 50 nm × 50 nm can be simulated on commodity clusters on microsecond time scales. For simulations of biological membranes and monolayers mimicking lung surfactant this enables large-scale transformation and complex mixtures of lipids and proteins. Here we use a simulation of a monolayer with three phospholipid components, cholesterol, lung surfactant proteins, water, and ions on a ten microsecond time scale to illustrate some current challenges in analysis. In the simulation, phase separation occurs followed by formation of a bilayer fold in which lipids and lung surfactant protein form a highly curved structure in the aqueous phase. We use Voronoi analysis to obtain detailed physical properties of the different components and phases, and calculate local mean and Gaussian curvatures of the bilayer fold.

  14. Lattice Thermal Conductivity from Atomistic Simulations: ZrB2 and HfB2

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  15. Dynamic subgrid scale model used in a deep bundle turbulence prediction using the large eddy simulation method

    International Nuclear Information System (INIS)

    Barsamian, H.R.; Hassan, Y.A.

    1996-01-01

    Turbulence is one of the most commonly occurring phenomena of engineering interest in the field of fluid mechanics. Since most flows are turbulent, there is a significant payoff for improved predictive models of turbulence. One area of concern is the turbulent buffeting forces experienced by the tubes in steam generators of nuclear power plants. Although the Navier-Stokes equations are able to describe turbulent flow fields, the large number of scales of turbulence limit practical flow field calculations with current computing power. The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (Smagorinsky, 1963) (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  16. Data for Figures and Tables in "Impacts of Different Characterizations of Large-Scale Background on Simulated Regional-Scale Ozone Over the Continental U.S."

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains the data used in the Figures and Tables of the manuscript "Impacts of Different Characterizations of Large-Scale Background on Simulated...

  17. Atomistic Modeling of Corrosion Events at the Interface between a Metal and Its Environment

    Directory of Open Access Journals (Sweden)

    Christopher D. Taylor

    2012-01-01

    Full Text Available Atomistic simulation is a powerful tool for probing the structure and properties of materials and the nature of chemical reactions. Corrosion is a complex process that involves chemical reactions occurring at the interface between a material and its environment and is, therefore, highly suited to study by atomistic modeling techniques. In this paper, the complex nature of corrosion processes and mechanisms is briefly reviewed. Various atomistic methods for exploring corrosion mechanisms are then described, and recent applications in the literature surveyed. Several instances of the application of atomistic modeling to corrosion science are then reviewed in detail, including studies of the metal-water interface, the reaction of water on electrified metallic interfaces, the dissolution of metal atoms from metallic surfaces, and the role of competitive adsorption in controlling the chemical nature and structure of a metallic surface. Some perspectives are then given concerning the future of atomistic modeling in the field of corrosion science.

  18. Investigation of the Contamination Control in a Cleaning Room with a Moving AGV by 3D Large-Scale Simulation

    Directory of Open Access Journals (Sweden)

    Qing-He Yao

    2013-01-01

    Full Text Available The motions of the airflow induced by the movement of an automatic guided vehicle (AGV in a cleanroom are numerically studied by large-scale simulation. For this purpose, numerical experiments scheme based on domain decomposition method is designed. Compared with the related past research, the high Reynolds number is treated by large-scale computation in this work. A domain decomposition Lagrange-Galerkin method is employed to approximate the Navier-Stokes equations and the convection diffusion equation; the stiffness matrix is symmetric and an incomplete balancing preconditioned conjugate gradient (PCG method is employed to solve the linear algebra system iteratively. The end wall effects are readily viewed, and the necessity of the extension to 3 dimensions is confirmed. The effect of the high efficiency particular air (HEPA filter on contamination control is studied and the proper setting of the speed of the clean air flow is also investigated. More details of the recirculation zones are revealed by the 3D large-scale simulation.

  19. An atomistic study of the deformation behavior of tungsten nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shuozhi [University of California, California NanoSystems Institute, Santa Barbara, CA (United States); Su, Yanqing [University of California, Department of Mechanical Engineering, Santa Barbara, CA (United States); Chen, Dengke [Georgia Institute of Technology, GWW School of Mechanical Engineering, Atlanta, GA (United States); Li, Longlei [Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA (United States)

    2017-12-15

    Large-scale atomistic simulations are performed to study tensile and compressive left angle 112 right angle loading of single-crystalline nanowires in body-centered cubic tungsten (W). Effects of loading mode, wire cross-sectional shape, wire size, strain rate, and crystallographic orientations of the lateral surfaces are explored. Uniaxial deformation of a W bulk single crystal is also investigated for reference. Our results reveal a strong tension-compression asymmetry in both the stress-strain response and the deformation behavior due to different yielding/failure modes: while the nanowires fail by brittle fracture under tensile loading, they yield by nucleation of dislocations from the wire surface under compressive loading. It is found that (1) nanowires have a higher strength than the bulk single crystal; (2) with a cross-sectional size larger than 10 nm, there exists a weak dependence of strength on wire size; (3) when the wire size is equal to or smaller than 10 nm, nanowires buckle under compressive loading; (4) the cross-sectional shape, strain rate, and crystallographic orientations of the lateral surfaces affect the strength and the site of defect initiation but not the overall deformation behavior. (orig.)

  20. Large eddy simulation of transitional flow in an idealized stenotic blood vessel: evaluation of subgrid scale models.

    Science.gov (United States)

    Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A; Frankel, Steven H

    2014-07-01

    In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, "Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow," J. Fluid Mech., 582, pp. 253-280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, "Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method," J. Comput. Phys., 227(13), pp. 6660-6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, "General Circulation Experiments With the Primitive Equations," Mon. Weather Rev., 91(10), pp. 99-164), recently developed Vreman model (Vreman, 2004, "An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications," Phys. Fluids, 16(10), pp. 3670-3681), and the Sigma model (Nicoud et al., 2011, "Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations," Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) ("OpenFOAM," http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo.

  1. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I. (University of California, San Diego); Winey, J. Michael (Washington State University); Gupta, Yogendra Mohan (Washington State University); Lane, J. Matthew D.; Ditmire, Todd (University of Texas at Austin); Quevedo, Hernan J. (University of Texas at Austin)

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  2. Contextual Compression of Large-Scale Wind Turbine Array Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Potter, Kristin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clyne, John [National Center for Atmospheric Research (NCAR)

    2017-12-04

    Data sizes are becoming a critical issue particularly for HPC applications. We have developed a user-driven lossy wavelet-based storage model to facilitate the analysis and visualization of large-scale wind turbine array simulations. The model stores data as heterogeneous blocks of wavelet coefficients, providing high-fidelity access to user-defined data regions believed the most salient, while providing lower-fidelity access to less salient regions on a block-by-block basis. In practice, by retaining the wavelet coefficients as a function of feature saliency, we have seen data reductions in excess of 94 percent, while retaining lossless information in the turbine-wake regions most critical to analysis and providing enough (low-fidelity) contextual information in the upper atmosphere to track incoming coherent turbulent structures. Our contextual wavelet compression approach has allowed us to deliver interative visual analysis while providing the user control over where data loss, and thus reduction in accuracy, in the analysis occurs. We argue this reduced but contextualized representation is a valid approach and encourages contextual data management.

  3. Redox reactions with empirical potentials: Atomistic battery discharge simulations

    OpenAIRE

    Dapp, Wolf B.; Müser, Martin H.

    2013-01-01

    Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each ...

  4. Real-world-time simulation of memory consolidation in a large-scale cerebellar model

    Directory of Open Access Journals (Sweden)

    Masato eGosui

    2016-03-01

    Full Text Available We report development of a large-scale spiking network model of thecerebellum composed of more than 1 million neurons. The model isimplemented on graphics processing units (GPUs, which are dedicatedhardware for parallel computing. Using 4 GPUs simultaneously, we achieve realtime simulation, in which computer simulation ofcerebellar activity for 1 sec completes within 1 sec in thereal-world time, with temporal resolution of 1 msec.This allows us to carry out a very long-term computer simulationof cerebellar activity in a practical time with millisecond temporalresolution. Using the model, we carry out computer simulationof long-term gain adaptation of optokinetic response (OKR eye movementsfor 5 days aimed to study the neural mechanisms of posttraining memoryconsolidation. The simulation results are consistent with animal experimentsand our theory of posttraining memory consolidation. These resultssuggest that realtime computing provides a useful means to studya very slow neural process such as memory consolidation in the brain.

  5. Proceedings of joint meeting of the 6th simulation science symposium and the NIFS collaboration research 'large scale computer simulation'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Joint meeting of the 6th Simulation Science Symposium and the NIFS Collaboration Research 'Large Scale Computer Simulation' was held on December 12-13, 2002 at National Institute for Fusion Science, with the aim of promoting interdisciplinary collaborations in various fields of computer simulations. The present meeting attended by more than 40 people consists of the 11 invited and 22 contributed papers, of which topics were extended not only to fusion science but also to related fields such as astrophysics, earth science, fluid dynamics, molecular dynamics, computer science etc. (author)

  6. Simulating the Physical World

    Science.gov (United States)

    Berendsen, Herman J. C.

    2004-06-01

    The simulation of physical systems requires a simplified, hierarchical approach which models each level from the atomistic to the macroscopic scale. From quantum mechanics to fluid dynamics, this book systematically treats the broad scope of computer modeling and simulations, describing the fundamental theory behind each level of approximation. Berendsen evaluates each stage in relation to its applications giving the reader insight into the possibilities and limitations of the models. Practical guidance for applications and sample programs in Python are provided. With a strong emphasis on molecular models in chemistry and biochemistry, this book will be suitable for advanced undergraduate and graduate courses on molecular modeling and simulation within physics, biophysics, physical chemistry and materials science. It will also be a useful reference to all those working in the field. Additional resources for this title including solutions for instructors and programs are available online at www.cambridge.org/9780521835275. The first book to cover the wide range of modeling and simulations, from atomistic to the macroscopic scale, in a systematic fashion Providing a wealth of background material, it does not assume advanced knowledge and is eminently suitable for course use Contains practical examples and sample programs in Python

  7. Life as an emergent phenomenon: studies from a large-scale boid simulation and web data

    Science.gov (United States)

    Ikegami, Takashi; Mototake, Yoh-ichi; Kobori, Shintaro; Oka, Mizuki; Hashimoto, Yasuhiro

    2017-11-01

    A large group with a special structure can become the mother of emergence. We discuss this hypothesis in relation to large-scale boid simulations and web data. In the boid swarm simulations, the nucleation, organization and collapse dynamics were found to be more diverse in larger flocks than in smaller flocks. In the second analysis, large web data, consisting of shared photos with descriptive tags, tended to group together users with similar tendencies, allowing the network to develop a core-periphery structure. We show that the generation rate of novel tags and their usage frequencies are high in the higher-order cliques. In this case, novelty is not considered to arise randomly; rather, it is generated as a result of a large and structured network. We contextualize these results in terms of adjacent possible theory and as a new way to understand collective intelligence. We argue that excessive information and material flow can become a source of innovation. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  8. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing

    2013-10-02

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide) dimethyl ether, CH3O(CH 2CH2O)nCH3 (PEO for short) is a widely applied physical solvent that forms the major organic constituent of a class of novel nanoparticle-based absorbents. Good predictions were obtained for pressure-composition-density relations for CO2 + PEO oligomers (2 ≤ n ≤ 12), using the Potoff force field for PEO [J. Chem. Phys. 136, 044514 (2012)] together with the TraPPE model for CO2 [AIChE J. 47, 1676 (2001)]. Water effects on Henrys constant of CO2 in PEO have also been investigated. Addition of modest amounts of water in PEO produces a relatively small increase in Henrys constant. Dependence of the calculated Henrys constant on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. © 2013 Taylor & Francis.

  9. Large-scale and Long-duration Simulation of a Multi-stage Eruptive Solar Event

    Science.gov (United States)

    Jiang, chaowei; Hu, Qiang; Wu, S. T.

    2015-04-01

    We employ a data-driven 3D MHD active region evolution model by using the Conservation Element and Solution Element (CESE) numerical method. This newly developed model retains the full MHD effects, allowing time-dependent boundary conditions and time evolution studies. The time-dependent simulation is driven by measured vector magnetograms and the method of MHD characteristics on the bottom boundary. We have applied the model to investigate the coronal magnetic field evolution of AR11283 which was characterized by a pre-existing sigmoid structure in the core region and multiple eruptions, both in relatively small and large scales. We have succeeded in producing the core magnetic field structure and the subsequent eruptions of flux-rope structures (see https://dl.dropboxusercontent.com/u/96898685/large.mp4 for an animation) as the measured vector magnetograms on the bottom boundary evolve in time with constant flux emergence. The whole process, lasting for about an hour in real time, compares well with the corresponding SDO/AIA and coronagraph imaging observations. From these results, we show the capability of the model, largely data-driven, that is able to simulate complex, topological, and highly dynamic active region evolutions. (We acknowledge partial support of NSF grants AGS 1153323 and AGS 1062050, and data support from SDO/HMI and AIA teams).

  10. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    Science.gov (United States)

    Veiga, R. G. A.; Perez, M.; Becquart, C. S.; Domain, C.

    2013-01-01

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  11. Comparison of void strengthening in fcc and bcc metals: Large-scale atomic-level modelling

    International Nuclear Information System (INIS)

    Osetsky, Yu.N.; Bacon, D.J.

    2005-01-01

    Strengthening due to voids can be a significant radiation effect in metals. Treatment of this by elasticity theory of dislocations is difficult when atomic structure of the obstacle and dislocation is influential. In this paper, we report results of large-scale atomic-level modelling of edge dislocation-void interaction in fcc (copper) and bcc (iron) metals. Voids of up to 5 nm diameter were studied over the temperature range from 0 to 600 K. We demonstrate that atomistic modelling is able to reveal important effects, which are beyond the continuum approach. Some arise from features of the dislocation core and crystal structure, others involve dislocation climb and temperature effects

  12. Molecular Simulations of Cyclic Loading Behavior of Carbon Nanotubes Using the Atomistic Finite Element Method

    Directory of Open Access Journals (Sweden)

    Jianfeng Wang

    2009-01-01

    Full Text Available The potential applications of carbon nanotubes (CNT in many engineered bionanomaterials and electromechanical devices have imposed an urgent need on the understanding of the fatigue behavior and mechanism of CNT under cyclic loading conditions. To date, however, very little work has been done in this field. This paper presents the results of a theoretical study on the behavior of CNT subject to cyclic tensile and compressive loads using quasi-static molecular simulations. The Atomistic Finite Element Method (AFEM has been applied in the study. It is shown that CNT exhibited extreme cyclic loading resistance with yielding strain and strength becoming constant within limited number of loading cycles. Viscoelastic behavior including nonlinear elasticity, hysteresis, preconditioning (stress softening, and large strain have been observed. Chiral symmetry was found to have appreciable effects on the cyclic loading behavior of CNT. Mechanisms of the observed behavior have been revealed by close examination of the intrinsic geometric and mechanical features of tube structure. It was shown that the accumulated residual defect-free morphological deformation was the primary mechanism responsible for the cyclic failure of CNT, while the bond rotating and stretching experienced during loading/unloading played a dominant role on the strength, strain and modulus behavior of CNT.

  13. Dislocation-stacking fault tetrahedron interaction: what can we learn from atomic-scale modelling

    International Nuclear Information System (INIS)

    Osetsky, Yu.N.; Stoller, R.E.; Matsukawa, Y.

    2004-01-01

    The high number density of stacking fault tetrahedra (SFTs) observed in irradiated fcc metals suggests that they should contribute to radiation-induced hardening and, therefore, taken into account when estimating mechanical properties changes of irradiated materials. The central issue is describing the individual interaction between a moving dislocation and an SFT, which is characterized by a very fine size scale, ∼100 nm. This scale is amenable to both in situ TEM experiments and large-scale atomic modelling. In this paper we present results of an atomistic simulation of dislocation-SFT interactions using molecular dynamics (MD). The results are compared with observations from in situ deformation experiments. It is demonstrated that in some cases the simulations and experimental observations are quite similar, suggesting a reasonable interpretation of experimental observations

  14. Coarse-grained simulations of polyelectrolyte complexes: MARTINI models for poly(styrene sulfonate) and poly(diallyldimethylammonium)

    Energy Technology Data Exchange (ETDEWEB)

    Vögele, Martin [Institute for Computational Physics, University of Stuttgart, Stuttgart (Germany); Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt a. M. (Germany); Holm, Christian; Smiatek, Jens, E-mail: smiatek@icp.uni-stuttgart.de [Institute for Computational Physics, University of Stuttgart, Stuttgart (Germany)

    2015-12-28

    We present simulations of aqueous polyelectrolyte complexes with new MARTINI models for the charged polymers poly(styrene sulfonate) and poly(diallyldimethylammonium). Our coarse-grained polyelectrolyte models allow us to study large length and long time scales with regard to chemical details and thermodynamic properties. The results are compared to the outcomes of previous atomistic molecular dynamics simulations and verify that electrostatic properties are reproduced by our MARTINI coarse-grained approach with reasonable accuracy. Structural similarity between the atomistic and the coarse-grained results is indicated by a comparison between the pair radial distribution functions and the cumulative number of surrounding particles. Our coarse-grained models are able to quantitatively reproduce previous findings like the correct charge compensation mechanism and a reduced dielectric constant of water. These results can be interpreted as the underlying reason for the stability of polyelectrolyte multilayers and complexes and validate the robustness of the proposed models.

  15. Coarse-grained simulations of polyelectrolyte complexes: MARTINI models for poly(styrene sulfonate) and poly(diallyldimethylammonium)

    International Nuclear Information System (INIS)

    Vögele, Martin; Holm, Christian; Smiatek, Jens

    2015-01-01

    We present simulations of aqueous polyelectrolyte complexes with new MARTINI models for the charged polymers poly(styrene sulfonate) and poly(diallyldimethylammonium). Our coarse-grained polyelectrolyte models allow us to study large length and long time scales with regard to chemical details and thermodynamic properties. The results are compared to the outcomes of previous atomistic molecular dynamics simulations and verify that electrostatic properties are reproduced by our MARTINI coarse-grained approach with reasonable accuracy. Structural similarity between the atomistic and the coarse-grained results is indicated by a comparison between the pair radial distribution functions and the cumulative number of surrounding particles. Our coarse-grained models are able to quantitatively reproduce previous findings like the correct charge compensation mechanism and a reduced dielectric constant of water. These results can be interpreted as the underlying reason for the stability of polyelectrolyte multilayers and complexes and validate the robustness of the proposed models

  16. The role of large-scale, extratropical dynamics in climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, T.G. [ed.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

  17. The role of large-scale, extratropical dynamics in climate change

    International Nuclear Information System (INIS)

    Shepherd, T.G.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop's University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database

  18. Shape evolution of nanostructures by thermal and ion beam processing. Modeling and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Roentzsch, L.

    2007-07-01

    Single-crystalline nanostructures often exhibit gradients of surface (and/or interface) curvature that emerge from fabrication and growth processes or from thermal fluctuations. Thus, the system-inherent capillary force can initiate morphological transformations during further processing steps or during operation at elevated temperature. Therefore and because of the ongoing miniaturization of functional structures which causes a general rise in surface-to-volume ratios, solid-state capillary phenomena will become increasingly important: On the one hand diffusion-mediated capillary processes can be of practical use in view of non-conventional nanostructure fabrication methods based on self-organization mechanisms, on the other hand they can destroy the integrity of nanostructures which can go along with the failure of functionality. Additionally, capillarity-induced shape transformations are effected and can thereby be controlled by applied fields and forces (guided or driven evolution). With these prospects and challenges at hand, formation and shape transformation of single-crystalline nanostructures due to the system-inherent capillary force in combination with external fields or forces are investigated in the frame of this dissertation by means of atomistic computer simulations. For the exploration (search, description, and prediction) of reaction pathways of nanostructure shape transformations, kinetic Monte Carlo (KMC) simulations are the method of choice. Since the employed KMC code is founded on a cellular automaton principle, the spatio-temporal development of lattice-based N-particle systems (N up to several million) can be followed for time spans of several orders of magnitude, while considering local phenomena due to atomic-scale effects like diffusion, nucleation, dissociation, or ballistic displacements. In this work, the main emphasis is put on nanostructures which have a cylindrical geometry, for example, nanowires (NWs), nanorods, nanotubes etc

  19. Shape evolution of nanostructures by thermal and ion beam processing. Modeling and atomistic simulations

    International Nuclear Information System (INIS)

    Roentzsch, L.

    2007-01-01

    Single-crystalline nanostructures often exhibit gradients of surface (and/or interface) curvature that emerge from fabrication and growth processes or from thermal fluctuations. Thus, the system-inherent capillary force can initiate morphological transformations during further processing steps or during operation at elevated temperature. Therefore and because of the ongoing miniaturization of functional structures which causes a general rise in surface-to-volume ratios, solid-state capillary phenomena will become increasingly important: On the one hand diffusion-mediated capillary processes can be of practical use in view of non-conventional nanostructure fabrication methods based on self-organization mechanisms, on the other hand they can destroy the integrity of nanostructures which can go along with the failure of functionality. Additionally, capillarity-induced shape transformations are effected and can thereby be controlled by applied fields and forces (guided or driven evolution). With these prospects and challenges at hand, formation and shape transformation of single-crystalline nanostructures due to the system-inherent capillary force in combination with external fields or forces are investigated in the frame of this dissertation by means of atomistic computer simulations. For the exploration (search, description, and prediction) of reaction pathways of nanostructure shape transformations, kinetic Monte Carlo (KMC) simulations are the method of choice. Since the employed KMC code is founded on a cellular automaton principle, the spatio-temporal development of lattice-based N-particle systems (N up to several million) can be followed for time spans of several orders of magnitude, while considering local phenomena due to atomic-scale effects like diffusion, nucleation, dissociation, or ballistic displacements. In this work, the main emphasis is put on nanostructures which have a cylindrical geometry, for example, nanowires (NWs), nanorods, nanotubes etc

  20. Large-scale introduction of wind power stations in the Swedish grid: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, L

    1978-08-01

    This report describes a simulation study on the factors to be considered if wind power were to be introduced to the south Swedish power grid on a large scale. The simulations are based upon a heuristic power generation planning model, developed for the purpose. The heuristic technique reflects the actual running strategies of a big power company with suitable accuracy. All simulations refer to certain typical days in 1976 to which all wind data and system characteristics are related. The installed amount of wind power will not be subject to optimization. All differences between planned and real wind power generation is equalized by regulation of the hydro power. The simulations made differ according to how the installed amount of wind power is handled in the power generation planning. The simulations indicate that the power system examined could well bear an introduction of wind power up to a level of 20% of the total power installed. This result is of course valid only for the days examined and does not necessarily apply to the present day structure of the system.

  1. Atomistic simulations of the yielding of gold nanowires

    International Nuclear Information System (INIS)

    Diao Jiankuai; Gall, Ken; Dunn, Martin L.; Zimmerman, Jonathan A.

    2006-01-01

    We performed atomistic simulations to study the effect of free surfaces on the yielding of gold nanowires. Tensile surface stresses on the surfaces of the nanowires cause them to contract along the length with respect to the bulk face-centered cubic lattice and induce compressive stress in the interior. When the cross-sectional area of a nanowire is less than 2.45 nm x 2.45 nm, the wire yields under its surface stresses. Under external forces and surface stresses, nanowires yield via the nucleation and propagation of the {1 1 1} partial dislocations. The magnitudes of the tensile and compressive yield stress of nanowires increase and decrease, respectively, with a decrease of the wire width. The magnitude of the tensile yield stress is much larger than that of the compressive yield stress for small nanowires, while for small nanowires, tensile and compressive yield stresses have similar magnitudes. The critical resolved shear stress (RSS) by external forces depends on wire width, orientation and loading condition (tension vs. compression). However, the critical RSS in the interior of the nanowires, which is exerted by both the external force and the surface-stress-induced compressive stress, does not change significantly with wire width for same orientation and same loading condition, and can thus serve as a 'local' criterion. This local criterion is invoked to explain the observed size dependence of yield behavior and tensile/compressive yield stress asymmetry, considering surface stress effects and different slip systems active in tensile and compressive yielding

  2. Long time scale simulation of a grain boundary in copper

    DEFF Research Database (Denmark)

    Pedersen, A.; Henkelman, G.; Schiøtz, Jakob

    2009-01-01

    A general, twisted and tilted, grain boundary in copper has been simulated using the adaptive kinetic Monte Carlo method to study the atomistic structure of the non-crystalline region and the mechanism of annealing events that occur at low temperature. The simulated time interval spanned 67 mu s...... was also observed. In the final low-energy configurations, the thickness of the region separating the crystalline grains corresponds to just one atomic layer, in good agreement with reported experimental observations. The simulated system consists of 1307 atoms and atomic interactions were described using...

  3. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    Science.gov (United States)

    Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

    2016-01-01

    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

  4. Can pyrene probes be used to measure lateral pressure profiles of lipid membranes? Perspective through atomistic simulations

    DEFF Research Database (Denmark)

    Franova, M. D.; Vattulainen, I.; Ollila, O. H. S.

    2014-01-01

    The lateral pressure profile of lipid bilayers has gained a lot of attention, since changes in the pressure profile have been suggested to shift the membrane protein conformational equilibrium. This relation has been mostly studied with theoretical methods, especially with molecular dynamics....../monomer fluorescence ratio has been assumed to represent the lateral pressure in the location of the pyrene moieties. Here, we consider the validity of this assumption through atomistic molecular dynamics simulations in a DOPC (dioleoylphosphatidylcholine) membrane, which hosts di-pyr-PC probes with different acyl...... simulations, since established methods to measure the lateral pressure profile experimentally have not been available. The only experiments that have attempted to gauge the lateral pressure profile have been done by using di-pyrenyl-phosphatidylcholine (di-pyr-PC) probes. In these experiments, the excimer...

  5. Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics

    KAUST Repository

    Kumar, Rohit

    2017-08-11

    It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.

  6. Local-scale high-resolution atmospheric dispersion model using large-eddy simulation. LOHDIM-LES

    International Nuclear Information System (INIS)

    Nakayama, Hiromasa; Nagai, Haruyasu

    2016-03-01

    We developed LOcal-scale High-resolution atmospheric DIspersion Model using Large-Eddy Simulation (LOHDIM-LES). This dispersion model is designed based on LES which is effective to reproduce unsteady behaviors of turbulent flows and plume dispersion. The basic equations are the continuity equation, the Navier-Stokes equation, and the scalar conservation equation. Buildings and local terrain variability are resolved by high-resolution grids with a few meters and these turbulent effects are represented by immersed boundary method. In simulating atmospheric turbulence, boundary layer flows are generated by a recycling turbulent inflow technique in a driver region set up at the upstream of the main analysis region. This turbulent inflow data are imposed at the inlet of the main analysis region. By this approach, the LOHDIM-LES can provide detailed information on wind velocities and plume concentration in the investigated area. (author)

  7. Multi-Scale Modelling of Deformation and Fracture in a Biomimetic Apatite-Protein Composite: Molecular-Scale Processes Lead to Resilience at the μm-Scale.

    Directory of Open Access Journals (Sweden)

    Dirk Zahn

    Full Text Available Fracture mechanisms of an enamel-like hydroxyapatite-collagen composite model are elaborated by means of molecular and coarse-grained dynamics simulation. Using fully atomistic models, we uncover molecular-scale plastic deformation and fracture processes initiated at the organic-inorganic interface. Furthermore, coarse-grained models are developed to investigate fracture patterns at the μm-scale. At the meso-scale, micro-fractures are shown to reduce local stress and thus prevent material failure after loading beyond the elastic limit. On the basis of our multi-scale simulation approach, we provide a molecular scale rationalization of this phenomenon, which seems key to the resilience of hierarchical biominerals, including teeth and bone.

  8. Tracking of large-scale structures in turbulent channel with direct numerical simulation of low Prandtl number passive scalar

    Science.gov (United States)

    Tiselj, Iztok

    2014-12-01

    Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and

  9. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    Science.gov (United States)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  10. Large eddy simulations of compressible magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Grete, Philipp

    2016-01-01

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  11. Large eddy simulations of compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Grete, Philipp

    2017-02-01

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  12. Large Scale Solar Heating

    DEFF Research Database (Denmark)

    Heller, Alfred

    2001-01-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out...... model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors......). Simulation programs are proposed as control supporting tool for daily operation and performance prediction of central solar heating plants. Finaly the CSHP technolgy is put into persepctive with respect to alternatives and a short discussion on the barries and breakthrough of the technology are given....

  13. Higher order moments of the matter distribution in scale-free cosmological simulations with large dynamic range

    Science.gov (United States)

    Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro

    1994-01-01

    We calculate reduced moments (xi bar)(sub q) of the matter density fluctuations, up to order q = 5, from counts in cells produced by particle-mesh numerical simulations with scale-free Gaussian initial conditions. We use power-law spectra P(k) proportional to k(exp n) with indices n = -3, -2, -1, 0, 1. Due to the supposed absence of characteristic times or scales in our models, all quantities are expected to depend on a single scaling variable. For each model, the moments at all times can be expressed in terms of the variance (xi bar)(sub 2), alone. We look for agreement with the hierarchical scaling ansatz, according to which ((xi bar)(sub q)) proportional to ((xi bar)(sub 2))(exp (q - 1)). For n less than or equal to -2 models, we find strong deviations from the hierarchy, which are mostly due to the presence of boundary problems in the simulations. A small, residual signal of deviation from the hierarchical scaling is however also found in n greater than or equal to -1 models. The wide range of spectra considered and the large dynamic range, with careful checks of scaling and shot-noise effects, allows us to reliably detect evolution away from the perturbation theory result.

  14. Lattice models for large-scale simulations of coherent wave scattering

    Science.gov (United States)

    Wang, Shumin; Teixeira, Fernando L.

    2004-01-01

    Lattice approximations for partial differential equations describing physical phenomena are commonly used for the numerical simulation of many problems otherwise intractable by pure analytical approaches. The discretization inevitably leads to many of the original symmetries to be broken or modified. In the case of Maxwell’s equations for example, invariance and isotropy of the speed of light in vacuum is invariably lost because of the so-called grid dispersion. Since it is a cumulative effect, grid dispersion is particularly harmful for the accuracy of results of large-scale simulations of scattering problems. Grid dispersion is usually combated by either increasing the lattice resolution or by employing higher-order schemes with larger stencils for the space and time derivatives. Both alternatives lead to increased computational cost to simulate a problem of a given physical size. Here, we introduce a general approach to develop lattice approximations with reduced grid dispersion error for a given stencil (and hence at no additional computational cost). The present approach is based on first obtaining stencil coefficients in the Fourier domain that minimize the maximum grid dispersion error for wave propagation at all directions (minimax sense). The resulting coefficients are then expanded into a Taylor series in terms of the frequency variable and incorporated into time-domain (update) equations after an inverse Fourier transformation. Maximally flat (Butterworth) or Chebyshev filters are subsequently used to minimize the wave speed variations for a given frequency range of interest. The use of such filters also allows for the adjustment of the grid dispersion characteristics so as to minimize not only the local dispersion error but also the accumulated phase error in a frequency range of interest.

  15. Sonoporation at Small and Large Length Scales: Effect of Cavitation Bubble Collapse on Membranes.

    Science.gov (United States)

    Fu, Haohao; Comer, Jeffrey; Cai, Wensheng; Chipot, Christophe

    2015-02-05

    Ultrasound has emerged as a promising means to effect controlled delivery of therapeutic agents through cell membranes. One possible mechanism that explains the enhanced permeability of lipid bilayers is the fast contraction of cavitation bubbles produced on the membrane surface, thereby generating large impulses, which, in turn, enhance the permeability of the bilayer to small molecules. In the present contribution, we investigate the collapse of bubbles of different diameters, using atomistic and coarse-grained molecular dynamics simulations to calculate the force exerted on the membrane. The total impulse can be computed rigorously in numerical simulations, revealing a superlinear dependence of the impulse on the radius of the bubble. The collapse affects the structure of a nearby immobilized membrane, and leads to partial membrane invagination and increased water permeation. The results of the present study are envisioned to help optimize the use of ultrasound, notably for the delivery of drugs.

  16. Dissecting the large-scale galactic conformity

    Science.gov (United States)

    Seo, Seongu

    2018-01-01

    Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.

  17. Large-scale numerical simulations on two-phase flow behavior in a fuel bundle of RMWR with the earth simulator

    International Nuclear Information System (INIS)

    Kazuyuki, Takase; Hiroyuki, Yoshida; Hidesada, Tamai; Hajime, Akimoto; Yasuo, Ose

    2003-01-01

    Fluid flow characteristics in a fuel bundle of a reduced-moderation light water reactor (RMWR) with a tight-lattice core were analyzed numerically using a newly developed two-phase flow analysis code under the full bundle size condition. Conventional analysis methods such as sub-channel codes need composition equations based on the experimental data. In case that there are no experimental data regarding to the thermal-hydraulics in the tight-lattice core, therefore, it is difficult to obtain high prediction accuracy on the thermal design of the RMWR. Then the direct numerical simulations with the earth simulator were chosen. The axial velocity distribution in a fuel bundle changed sharply around a grid spacer and its quantitative evaluation was obtained from the present preliminary numerical study. The high prospect was acquired on the possibility of establishment of the thermal design procedure of the RMWR by large-scale direct simulations. (authors)

  18. Choosing the best partition of the output from a large-scale simulation

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Chelsea Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Casleton, Emily Michele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-26

    Data partitioning becomes necessary when a large-scale simulation produces more data than can be feasibly stored. The goal is to partition the data, typically so that every element belongs to one and only one partition, and store summary information about the partition, either a representative value plus an estimate of the error or a distribution. Once the partitions are determined and the summary information stored, the raw data is discarded. This process can be performed in-situ; meaning while the simulation is running. When creating the partitions there are many decisions that researchers must make. For instance, how to determine once an adequate number of partitions have been created, how are the partitions created with respect to dividing the data, or how many variables should be considered simultaneously. In addition, decisions must be made for how to summarize the information within each partition. Because of the combinatorial number of possible ways to partition and summarize the data, a method of comparing the different possibilities will help guide researchers into choosing a good partitioning and summarization scheme for their application.

  19. Large scale simulation of liquid water transport in a gas diffusion layer of polymer electrolyte membrane fuel cells using the lattice Boltzmann method

    Science.gov (United States)

    Sakaida, Satoshi; Tabe, Yutaka; Chikahisa, Takemi

    2017-09-01

    A method for the large-scale simulation with the lattice Boltzmann method (LBM) is proposed for liquid water movement in a gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells. The LBM is able to analyze two-phase flows in complex structures, however the simulation domain is limited due to heavy computational loads. This study investigates a variety means to reduce computational loads and increase the simulation areas. One is applying an LBM treating two-phases as having the same density, together with keeping numerical stability with large time steps. The applicability of this approach is confirmed by comparing the results with rigorous simulations using actual density. The second is establishing the maximum limit of the Capillary number that maintains flow patterns similar to the precise simulation; this is attempted as the computational load is inversely proportional to the Capillary number. The results show that the Capillary number can be increased to 3.0 × 10-3, where the actual operation corresponds to Ca = 10-5∼10-8. The limit is also investigated experimentally using an enlarged scale model satisfying similarity conditions for the flow. Finally, a demonstration is made of the effects of pore uniformity in GDL as an example of a large-scale simulation covering a channel.

  20. Multiscale modelling of precipitation in concentrated alloys: from atomistic Monte Carlo simulations to cluster dynamics I thermodynamics

    Science.gov (United States)

    Lépinoux, J.; Sigli, C.

    2018-01-01

    In a recent paper, the authors showed how the clusters free energies are constrained by the coagulation probability, and explained various anomalies observed during the precipitation kinetics in concentrated alloys. This coagulation probability appeared to be a too complex function to be accurately predicted knowing only the cluster distribution in Cluster Dynamics (CD). Using atomistic Monte Carlo (MC) simulations, it is shown that during a transformation at constant temperature, after a short transient regime, the transformation occurs at quasi-equilibrium. It is proposed to use MC simulations until the system quasi-equilibrates then to switch to CD which is mean field but not limited by a box size like MC. In this paper, we explain how to take into account the information available before the quasi-equilibrium state to establish guidelines to safely predict the cluster free energies.

  1. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    Science.gov (United States)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  2. Fast Bound Methods for Large Scale Simulation with Application for Engineering Optimization

    Science.gov (United States)

    Patera, Anthony T.; Peraire, Jaime; Zang, Thomas A. (Technical Monitor)

    2002-01-01

    In this work, we have focused on fast bound methods for large scale simulation with application for engineering optimization. The emphasis is on the development of techniques that provide both very fast turnaround and a certificate of Fidelity; these attributes ensure that the results are indeed relevant to - and trustworthy within - the engineering context. The bound methodology which underlies this work has many different instantiations: finite element approximation; iterative solution techniques; and reduced-basis (parameter) approximation. In this grant we have, in fact, treated all three, but most of our effort has been concentrated on the first and third. We describe these below briefly - but with a pointer to an Appendix which describes, in some detail, the current "state of the art."

  3. AACSD: An atomistic analyzer for crystal structure and defects

    Science.gov (United States)

    Liu, Z. R.; Zhang, R. F.

    2018-01-01

    We have developed an efficient command-line program named AACSD (Atomistic Analyzer for Crystal Structure and Defects) for the post-analysis of atomic configurations generated by various atomistic simulation codes. The program has implemented not only the traditional filter methods like the excess potential energy (EPE), the centrosymmetry parameter (CSP), the common neighbor analysis (CNA), the common neighborhood parameter (CNP), the bond angle analysis (BAA), and the neighbor distance analysis (NDA), but also the newly developed ones including the modified centrosymmetry parameter (m-CSP), the orientation imaging map (OIM) and the local crystallographic orientation (LCO). The newly proposed OIM and LCO methods have been extended for all three crystal structures including face centered cubic, body centered cubic and hexagonal close packed. More specially, AACSD can be easily used for the atomistic analysis of metallic nanocomposite with each phase to be analyzed independently, which provides a unique pathway to capture their dynamic evolution of various defects on the fly. In this paper, we provide not only a throughout overview on various theoretical methods and their implementation into AACSD program, but some critical evaluations, specific testing and applications, demonstrating the capability of the program on each functionality.

  4. Large eddy simulations of compressible magnetohydrodynamic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Grete, Philipp

    2016-09-09

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  5. The effects of large scale processing on caesium leaching from cemented simulant sodium nitrate waste

    International Nuclear Information System (INIS)

    Lee, D.J.; Brown, D.J.

    1982-01-01

    The effects of large scale processing on the properties of cemented simulant sodium nitrate waste have been investigated. Leach tests have been performed on full-size drums, cores and laboratory samples of cement formulations containing Ordinary Portland Cement (OPC), Sulphate Resisting Portland Cement (SRPC) and a blended cement (90% ground granulated blast furnace slag/10% OPC). In addition, development of the cement hydration exotherms with time and the temperature distribution in 220 dm 3 samples have been followed. (author)

  6. Prediction of irradiation induced microstructures in the AgCu model alloy using a multiscale method coupling atomistic and phase field modelling

    OpenAIRE

    Demange, Gilles; Pontikis, Vassilis; Lunéville, Laurence; Simeone, David

    2016-01-01

    In this work, a multiscale approach based on phase field was developed to simulate the microstructure's evolution under irradiation in binary systems, from atomic to microstructural scale. For that purpose, an efficient numerical scheme was developed. In the case of AgCu alloy under Krypton ions irradiation, phenomenological parameters were computed using atomistic methods, as a function of the temperature and the irradiation flux. As a result, we predicted the influence of the irradiation fl...

  7. Contextual Compression of Large-Scale Wind Turbine Array Simulations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Potter, Kristin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clyne, John [National Center for Atmospheric Research

    2017-11-03

    Data sizes are becoming a critical issue particularly for HPC applications. We have developed a user-driven lossy wavelet-based storage model to facilitate the analysis and visualization of large-scale wind turbine array simulations. The model stores data as heterogeneous blocks of wavelet coefficients, providing high-fidelity access to user-defined data regions believed the most salient, while providing lower-fidelity access to less salient regions on a block-by-block basis. In practice, by retaining the wavelet coefficients as a function of feature saliency, we have seen data reductions in excess of 94 percent, while retaining lossless information in the turbine-wake regions most critical to analysis and providing enough (low-fidelity) contextual information in the upper atmosphere to track incoming coherent turbulent structures. Our contextual wavelet compression approach has allowed us to deliver interactive visual analysis while providing the user control over where data loss, and thus reduction in accuracy, in the analysis occurs. We argue this reduced but contexualized representation is a valid approach and encourages contextual data management.

  8. Adaptive spacetime method using Riemann jump conditions for coupled atomistic-continuum dynamics

    International Nuclear Information System (INIS)

    Kraczek, B.; Miller, S.T.; Haber, R.B.; Johnson, D.D.

    2010-01-01

    We combine the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics with the mathematically consistent Atomistic Discontinuous Galerkin (ADG) method in a new scheme that concurrently couples continuum and atomistic models of dynamic response in solids. The formulation couples non-overlapping continuum and atomistic models across sharp interfaces by weakly enforcing jump conditions, for both momentum balance and kinematic compatibility, using Riemann values to preserve the characteristic structure of the underlying hyperbolic system. Momentum balances to within machine-precision accuracy over every element, on each atom, and over the coupled system, with small, controllable energy dissipation in the continuum region that ensures numerical stability. When implemented on suitable unstructured spacetime grids, the continuum SDG model offers linear computational complexity in the number of elements and powerful adaptive analysis capabilities that readily bridge between atomic and continuum scales in both space and time. A special trace operator for the atomic velocities and an associated atomistic traction field enter the jump conditions at the coupling interface. The trace operator depends on parameters that specify, at the scale of the atomic spacing, the position of the coupling interface relative to the atoms. In a key finding, we demonstrate that optimizing these parameters suppresses spurious reflections at the coupling interface without the use of non-physical damping or special boundary conditions. We formulate the implicit SDG-ADG coupling scheme in up to three spatial dimensions, and describe an efficient iterative solution scheme that outperforms common explicit schemes, such as the Velocity Verlet integrator. Numerical examples, in 1dxtime and employing both linear and nonlinear potentials, demonstrate the performance of the SDG-ADG method and show how adaptive spacetime meshing reconciles disparate time steps and resolves atomic-scale signals in

  9. A long-term, continuous simulation approach for large-scale flood risk assessments

    Science.gov (United States)

    Falter, Daniela; Schröter, Kai; Viet Dung, Nguyen; Vorogushyn, Sergiy; Hundecha, Yeshewatesfa; Kreibich, Heidi; Apel, Heiko; Merz, Bruno

    2014-05-01

    The Regional Flood Model (RFM) is a process based model cascade developed for flood risk assessments of large-scale basins. RFM consists of four model parts: the rainfall-runoff model SWIM, a 1D channel routing model, a 2D hinterland inundation model and the flood loss estimation model for residential buildings FLEMOps+r. The model cascade was recently undertaken a proof-of-concept study at the Elbe catchment (Germany) to demonstrate that flood risk assessments, based on a continuous simulation approach, including rainfall-runoff, hydrodynamic and damage estimation models, are feasible for large catchments. The results of this study indicated that uncertainties are significant, especially for hydrodynamic simulations. This was basically a consequence of low data quality and disregarding dike breaches. Therefore, RFM was applied with a refined hydraulic model setup for the Elbe tributary Mulde. The study area Mulde catchment comprises about 6,000 km2 and 380 river-km. The inclusion of more reliable information on overbank cross-sections and dikes considerably improved the results. For the application of RFM for flood risk assessments, long-term climate input data is needed to drive the model chain. This model input was provided by a multi-site, multi-variate weather generator that produces sets of synthetic meteorological data reproducing the current climate statistics. The data set comprises 100 realizations of 100 years of meteorological data. With the proposed continuous simulation approach of RFM, we simulated a virtual period of 10,000 years covering the entire flood risk chain including hydrological, 1D/2D hydrodynamic and flood damage estimation models. This provided a record of around 2.000 inundation events affecting the study area with spatially detailed information on inundation depths and damage to residential buildings on a resolution of 100 m. This serves as basis for a spatially consistent, flood risk assessment for the Mulde catchment presented in

  10. How anacetrapib inhibits the activity of the cholesteryl ester transfer protein? Perspective through atomistic simulations

    DEFF Research Database (Denmark)

    Aijanen, T.; Koivuniemi, A.; Javanainen, M.

    2014-01-01

    Cholesteryl ester transfer protein (CETP) mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides) and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity...... and thereby raise high density lipoprotein (HDL)-cholesterol and decrease low density lipoprotein (LDL)-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics...... simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site...

  11. Simulation of Initiation in Hexanitrostilbene

    Science.gov (United States)

    Thompson, Aidan; Shan, Tzu-Ray; Yarrington, Cole; Wixom, Ryan

    We report on the effect of isolated voids and pairs of nearby voids on hot spot formation, growth and chemical reaction initiation in hexanitrostilbene (HNS) crystals subjected to shock loading. Large-scale, reactive molecular dynamics simulations are performed using the reactive force field (ReaxFF) as implemented in the LAMMPS software. The ReaxFF force field description for HNS has been validated previously by comparing the isothermal equation of state to available diamond anvil cell (DAC) measurements and density function theory (DFT) calculations. Micron-scale molecular dynamics simulations of a supported shockwave propagating in HNS crystal along the [010] orientation are performed (up = 1.25 km/s, Us =4.0 km/s, P = 11GPa.) We compare the effect on hot spot formation and growth rate of isolated cylindrical voids up to 0.1 µm in size with that of two 50nm voids set 100nm apart. Results from the micron-scale atomistic simulations are compared with hydrodynamics simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lock- heed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  12. Large scale electrolysers

    International Nuclear Information System (INIS)

    B Bello; M Junker

    2006-01-01

    Hydrogen production by water electrolysis represents nearly 4 % of the world hydrogen production. Future development of hydrogen vehicles will require large quantities of hydrogen. Installation of large scale hydrogen production plants will be needed. In this context, development of low cost large scale electrolysers that could use 'clean power' seems necessary. ALPHEA HYDROGEN, an European network and center of expertise on hydrogen and fuel cells, has performed for its members a study in 2005 to evaluate the potential of large scale electrolysers to produce hydrogen in the future. The different electrolysis technologies were compared. Then, a state of art of the electrolysis modules currently available was made. A review of the large scale electrolysis plants that have been installed in the world was also realized. The main projects related to large scale electrolysis were also listed. Economy of large scale electrolysers has been discussed. The influence of energy prices on the hydrogen production cost by large scale electrolysis was evaluated. (authors)

  13. Large-Eddy Simulations of Flows in Complex Terrain

    Science.gov (United States)

    Kosovic, B.; Lundquist, K. A.

    2011-12-01

    Large-eddy simulation as a methodology for numerical simulation of turbulent flows was first developed to study turbulent flows in atmospheric by Lilly (1967). The first LES were carried by Deardorff (1970) who used these simulations to study atmospheric boundary layers. Ever since, LES has been extensively used to study canonical atmospheric boundary layers, in most cases flat plate boundary layers under the assumption of horizontal homogeneity. Carefully designed LES of canonical convective and neutrally stratified and more recently stably stratified atmospheric boundary layers have contributed significantly to development of better understanding of these flows and their parameterizations in large scale models. These simulations were often carried out using codes specifically designed and developed for large-eddy simulations of horizontally homogeneous flows with periodic lateral boundary conditions. Recent developments in multi-scale numerical simulations of atmospheric flows enable numerical weather prediction (NWP) codes such as ARPS (Chow and Street, 2009), COAMPS (Golaz et al., 2009) and Weather Research and Forecasting model, to be used nearly seamlessly across a wide range of atmospheric scales from synoptic down to turbulent scales in atmospheric boundary layers. Before we can with confidence carry out multi-scale simulations of atmospheric flows, NWP codes must be validated for accurate performance in simulating flows over complex or inhomogeneous terrain. We therefore carry out validation of WRF-LES for simulations of flows over complex terrain using data from Askervein Hill (Taylor and Teunissen, 1985, 1987) and METCRAX (Whiteman et al., 2008) field experiments. WRF's nesting capability is employed with a one-way nested inner domain that includes complex terrain representation while the coarser outer nest is used to spin up fully developed atmospheric boundary layer turbulence and thus represent accurately inflow to the inner domain. LES of a

  14. Coupled climate model simulations of Mediterranean winter cyclones and large-scale flow patterns

    Directory of Open Access Journals (Sweden)

    B. Ziv

    2013-03-01

    Full Text Available The study aims to evaluate the ability of global, coupled climate models to reproduce the synoptic regime of the Mediterranean Basin. The output of simulations of the 9 models included in the IPCC CMIP3 effort is compared to the NCEP-NCAR reanalyzed data for the period 1961–1990. The study examined the spatial distribution of cyclone occurrence, the mean Mediterranean upper- and lower-level troughs, the inter-annual variation and trend in the occurrence of the Mediterranean cyclones, and the main large-scale circulation patterns, represented by rotated EOFs of 500 hPa and sea level pressure. The models reproduce successfully the two maxima in cyclone density in the Mediterranean and their locations, the location of the average upper- and lower-level troughs, the relative inter-annual variation in cyclone occurrences and the structure of the four leading large scale EOFs. The main discrepancy is the models' underestimation of the cyclone density in the Mediterranean, especially in its western part. The models' skill in reproducing the cyclone distribution is found correlated with their spatial resolution, especially in the vertical. The current improvement in model spatial resolution suggests that their ability to reproduce the Mediterranean cyclones would be improved as well.

  15. Adaptive resolution simulation of an atomistic DNA molecule in MARTINI salt solution

    NARCIS (Netherlands)

    Zavadlav, J.; Podgornik, R.; Melo, M.n.; Marrink, S.j.; Praprotnik, M.

    2016-01-01

    We present a dual-resolution model of a deoxyribonucleic acid (DNA) molecule in a bathing solution, where we concurrently couple atomistic bundled water and ions with the coarse-grained MAR- TINI model of the solvent. We use our fine-grained salt solution model as a solvent in the inner shell

  16. Uncertainties of Large-Scale Forcing Caused by Surface Turbulence Flux Measurements and the Impacts on Cloud Simulations at the ARM SGP Site

    Science.gov (United States)

    Tang, S.; Xie, S.; Tang, Q.; Zhang, Y.

    2017-12-01

    Two types of instruments, the eddy correlation flux measurement system (ECOR) and the energy balance Bowen ratio system (EBBR), are used at the Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site to measure surface latent and sensible fluxes. ECOR and EBBR typically sample different land surface types, and the domain-mean surface fluxes derived from ECOR and EBBR are not always consistent. The uncertainties of the surface fluxes will have impacts on the derived large-scale forcing data and further affect the simulations of single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulation models (LES), especially for the shallow-cumulus clouds which are mainly driven by surface forcing. This study aims to quantify the uncertainties of the large-scale forcing caused by surface turbulence flux measurements and investigate the impacts on cloud simulations using long-term observations from the ARM SGP site.

  17. Evaluation of the regional climate response in Australia to large-scale climate modes in the historical NARCliM simulations

    Science.gov (United States)

    Fita, L.; Evans, J. P.; Argüeso, D.; King, A.; Liu, Y.

    2017-10-01

    NARCliM (New South Wales (NSW)/Australian Capital Territory (ACT) Regional Climate Modelling project) is a regional climate modeling project for the Australian area. It is providing a comprehensive dynamically downscaled climate dataset for the CORDEX-AustralAsia region at 50-km resolution, and south-East Australia at a resolution of 10 km. The first phase of NARCliM produced 60-year long reanalysis driven regional simulations to allow evaluation of the regional model performance. This long control period (1950-2009) was used so that the model ability to capture the impact of large scale climate modes on Australian climate could be examined. Simulations are evaluated using a gridded observational dataset. Results show that using model independence as a criteria for choosing atmospheric model configuration from different possible sets of parameterizations may contribute to the regional climate models having different overall biases. The regional models generally capture the regional climate response to large-scale modes better than the driving reanalysis, though no regional model improves on all aspects of the simulated climate.

  18. Simulation of buoyancy induced gas mixing tests performed in a large scale containment facility using GOTHIC code

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z.; Chin, Y.S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    This paper compares containment thermal-hydraulics simulations performed using GOTHIC against a past test set of large scale buoyancy induced helium-air-steam mixing experiments that had been performed at the AECL's Chalk River Laboratories. A number of typical post-accident containment phenomena, including thermal/gas stratification, natural convection, cool air entrainment, steam condensation on concrete walls and active local air cooler, were covered. The results provide useful insights into hydrogen gas mixing behaviour following a loss-of-coolant accident and demonstrate GOTHIC's capability in simulating these phenomena. (author)

  19. Simulation of buoyancy induced gas mixing tests performed in a large scale containment facility using GOTHIC code

    International Nuclear Information System (INIS)

    Liang, Z.; Chin, Y.S.

    2014-01-01

    This paper compares containment thermal-hydraulics simulations performed using GOTHIC against a past test set of large scale buoyancy induced helium-air-steam mixing experiments that had been performed at the AECL's Chalk River Laboratories. A number of typical post-accident containment phenomena, including thermal/gas stratification, natural convection, cool air entrainment, steam condensation on concrete walls and active local air cooler, were covered. The results provide useful insights into hydrogen gas mixing behaviour following a loss-of-coolant accident and demonstrate GOTHIC's capability in simulating these phenomena. (author)

  20. Physics and performances of III-V nanowire broken-gap heterojunction TFETs using an efficient tight-binding mode-space NEGF model enabling million-atom nanowire simulations.

    Science.gov (United States)

    Afzalian, A; Vasen, T; Ramvall, P; Shen, T-M; Wu, J; Passlack, M

    2018-06-27

    We report the capability to simulate in a quantum-mechanical atomistic fashion record-large nanowire devices, featuring several hundred to millions of atoms and a diameter up to 18.2 nm. We have employed a tight-binding mode-space NEGF technique demonstrating by far the fastest (up to 10 000  ×  faster) but accurate (error  <  1%) atomistic simulations to date. Such technique and capability opens new avenues to explore and understand the physics of nanoscale and mesoscopic devices dominated by quantum effects. In particular, our method addresses in an unprecedented way the technologically-relevant case of band-to-band tunneling (BTBT) in III-V nanowire broken-gap heterojunction tunnel-FETs (HTFETs). We demonstrate an accurate match of simulated BTBT currents to experimental measurements in a 12 nm diameter InAs NW and in an InAs/GaSb Esaki tunneling diode. We apply our TB MS simulations and report the first in-depth atomistic study of the scaling potential of III-V GAA nanowire HTFETs including the effect of electron-phonon scattering and discrete dopant impurity band tails, quantifying the benefits of this technology for low-power low-voltage CMOS applications.

  1. Contact area of rough spheres: Large scale simulations and simple scaling laws

    Energy Technology Data Exchange (ETDEWEB)

    Pastewka, Lars, E-mail: lars.pastewka@kit.edu [Institute for Applied Materials & MicroTribology Center muTC, Karlsruhe Institute of Technology, Engelbert-Arnold-Straße 4, 76131 Karlsruhe (Germany); Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Robbins, Mark O., E-mail: mr@pha.jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States)

    2016-05-30

    We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the whole range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.

  2. Contact area of rough spheres: Large scale simulations and simple scaling laws

    Science.gov (United States)

    Pastewka, Lars; Robbins, Mark O.

    2016-05-01

    We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the whole range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.

  3. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-08-01

    Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM) simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i) modify a DGVM for simulating land surface water balances; (ii) evaluate the modified model in simulating actual evapotranspiration (ET), soil moisture, and surface runoff at regional or watershed scales; and (iii) gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH) model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ) DGVM. To evaluate the model we ran LH using historical (1981-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981-2006 (R2 > 0.46, p 0.52). The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences day method for snowmelt computation, the addition of the solar radiation effect on snowmelt enabled LH to better simulate monthly stream flow in winter and early spring for rivers located at mid-to-high latitudes. In addition, LH

  4. Dislocations and elementary processes of plasticity in FCC metals: atomic scale simulations; Dislocations et processus elementaires de la plasticite dans les metaux CFC: apports des simulations a l'echelle atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rodney, D

    2000-07-01

    We present atomic-scale simulations of two elementary processes of FCC crystal plasticity. The first study consists in the simulation by molecular dynamics, in a nickel crystal, of the interactions between an edge dislocation and glissile interstitial loops of the type that form under irradiation in displacement cascades. The simulations show various atomic-scale interaction processes leading to the absorption and drag of the loops by the dislocation. These reactions certainly contribute to the formation of the 'clear bands' observed in deformed irradiated materials. The simulations also allow to study quantitatively the role of the glissile loops in irradiation hardening. In particular, dislocation unpinning stresses for certain pinning mechanisms are evaluated from the simulations. The second study consists first in the generalization in three dimensions of the quasi-continuum method (QCM), a multi-scale simulation method which couples atomistic techniques and the finite element method. In the QCM, regions close to dislocation cores are simulated at the atomic-scale while the rest of the crystal is simulated with a lower resolution by means of a discretization of the displacement fields using the finite element method. The QCM is then tested on the simulation of the formation and breaking of dislocation junctions in an aluminum crystal. Comparison of the simulations with an elastic model of dislocation junctions shows that the structure and strength of the junctions are dominated by elastic line tension effects, as is assumed in classical theories. (author)

  5. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    Science.gov (United States)

    Dednam, W.; Botha, A. E.

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  6. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    International Nuclear Information System (INIS)

    Dednam, W; Botha, A E

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  7. Atomistic k ⋅ p theory

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Craig E., E-mail: craig-pryor@uiowa.edu [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Pistol, M.-E., E-mail: mats-erik.pistol@ftf.lth.se [NanoLund and Solid State Physics, Lund University, P.O. Box 118, 221 00 Lund (Sweden)

    2015-12-14

    Pseudopotentials, tight-binding models, and k ⋅ p theory have stood for many years as the standard techniques for computing electronic states in crystalline solids. Here, we present the first new method in decades, which we call atomistic k ⋅ p theory. In its usual formulation, k ⋅ p theory has the advantage of depending on parameters that are directly related to experimentally measured quantities, however, it is insensitive to the locations of individual atoms. We construct an atomistic k ⋅ p theory by defining envelope functions on a grid matching the crystal lattice. The model parameters are matrix elements which are obtained from experimental results or ab initio wave functions in a simple way. This is in contrast to the other atomistic approaches in which parameters are fit to reproduce a desired dispersion and are not expressible in terms of fundamental quantities. This fitting is often very difficult. We illustrate our method by constructing a four-band atomistic model for a diamond/zincblende crystal and show that it is equivalent to the sp{sup 3} tight-binding model. We can thus directly derive the parameters in the sp{sup 3} tight-binding model from experimental data. We then take the atomistic limit of the widely used eight-band Kane model and compute the band structures for all III–V semiconductors not containing nitrogen or boron using parameters fit to experimental data. Our new approach extends k ⋅ p theory to problems in which atomistic precision is required, such as impurities, alloys, polytypes, and interfaces. It also provides a new approach to multiscale modeling by allowing continuum and atomistic k ⋅ p models to be combined in the same system.

  8. Lipid Exchange Mechanism of the Cholesteryl Ester Transfer Protein Clarified by Atomistic and Coarse-grained Simulations

    DEFF Research Database (Denmark)

    Koivuniemi, A.; Vuorela, T.; Kovanen, P. T.

    2012-01-01

    molecular dynamics simulations to unravel the mechanisms associated with the CETP-mediated lipid exchange. To this end we used both atomistic and coarse-grained models whose results were consistent with each other. We found CETP to bind to the surface of high density lipoprotein (HDL) -like lipid droplets......Cholesteryl ester transfer protein (CETP) transports cholesteryl esters, triglycerides, and phospholipids between different lipoprotein fractions in blood plasma. The inhibition of CETP has been shown to be a sound strategy to prevent and treat the development of coronary heart disease. We employed...... evidence that helix X acts as a lid which conducts lipid exchange by alternating the open and closed states. The findings have potential for the design of novel molecular agents to inhibit the activity of CETP....

  9. Properties of liquid clusters in large-scale molecular dynamics nucleation simulations

    International Nuclear Information System (INIS)

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K.; Tanaka, Hidekazu

    2014-01-01

    We have performed large-scale Lennard-Jones molecular dynamics simulations of homogeneous vapor-to-liquid nucleation, with 10 9 atoms. This large number allows us to resolve extremely low nucleation rates, and also provides excellent statistics for cluster properties over a wide range of cluster sizes. The nucleation rates, cluster growth rates, and size distributions are presented in Diemand et al. [J. Chem. Phys. 139, 74309 (2013)], while this paper analyses the properties of the clusters. We explore the cluster temperatures, density profiles, potential energies, and shapes. A thorough understanding of the properties of the clusters is crucial to the formulation of nucleation models. Significant latent heat is retained by stable clusters, by as much as ΔkT = 0.1ε for clusters with size i = 100. We find that the clusters deviate remarkably from spherical—with ellipsoidal axis ratios for critical cluster sizes typically within b/c = 0.7 ± 0.05 and a/c = 0.5 ± 0.05. We examine cluster spin angular momentum, and find that it plays a negligible role in the cluster dynamics. The interfaces of large, stable clusters are thinner than planar equilibrium interfaces by 10%−30%. At the critical cluster size, the cluster central densities are between 5% and 30% lower than the bulk liquid expectations. These lower densities imply larger-than-expected surface areas, which increase the energy cost to form a surface, which lowers nucleation rates

  10. Double inflation: A possible resolution of the large-scale structure problem

    International Nuclear Information System (INIS)

    Turner, M.S.; Villumsen, J.V.; Vittorio, N.; Silk, J.; Juszkiewicz, R.

    1986-11-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Ω = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of ∼100 Mpc, while the small-scale structure over ≤ 10 Mpc resembles that in a low density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations. 38 refs., 6 figs

  11. Large-Scale Structure and Hyperuniformity of Amorphous Ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto

    2017-09-01

    We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.

  12. Atomistic to Continuum Multiscale and Multiphysics Simulation of NiTi Shape Memory Alloy

    Science.gov (United States)

    Gur, Sourav

    Shape memory alloys (SMAs) are materials that show reversible, thermo-elastic, diffusionless, displacive (solid to solid) phase transformation, due to the application of temperature and/ or stress (/strain). Among different SMAs, NiTi is a popular one. NiTi shows reversible phase transformation, the shape memory effect (SME), where irreversible deformations are recovered upon heating, and superelasticity (SE), where large strains imposed at high enough temperatures are fully recovered. Phase transformation process in NiTi SMA is a very complex process that involves the competition between developed internal strain and phonon dispersion instability. In NiTi SMA, phase transformation occurs over a wide range of temperature and/ or stress (strain) which involves, evolution of different crystalline phases (cubic austenite i.e. B2, different monoclinic variant of martensite i.e. B19', and orthorhombic B19 or BCO structures). Further, it is observed from experimental and computational studies that the evolution kinetics and growth rate of different phases in NiTi SMA vary significantly over a wide spectrum of spatio-temporal scales, especially with length scales. At nano-meter length scale, phase transformation temperatures, critical transformation stress (or strain) and phase fraction evolution change significantly with sample or simulation cell size and grain size. Even, below a critical length scale, the phase transformation process stops. All these aspects make NiTi SMA very interesting to the science and engineering research community and in this context, the present focuses on the following aspects. At first this study address the stability, evolution and growth kinetics of different phases (B2 and variants of B19'), at different length scales, starting from the atomic level and ending at the continuum macroscopic level. The effects of simulation cell size, grain size, and presence of free surface and grain boundary on the phase transformation process

  13. Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review.

    Science.gov (United States)

    Kumar, Rajesh; Parashar, Avinash

    2016-01-07

    Due to their exceptional mechanical properties, thermal conductivity and a wide band gap (5-6 eV), boron nitride nanotubes and nanosheets have promising applications in the field of engineering and biomedical science. Accurate modeling of failure or fracture in a nanomaterial inherently involves coupling of atomic domains of cracks and voids as well as a deformation mechanism originating from grain boundaries. This review highlights the recent progress made in the atomistic modeling of boron nitride nanofillers. Continuous improvements in computational power have made it possible to study the structural properties of these nanofillers at the atomistic scale.

  14. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    Directory of Open Access Journals (Sweden)

    A. F. Van Loon

    2012-11-01

    Full Text Available Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that participated in the model intercomparison project of WATCH (WaterMIP. For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity, drought propagation features (pooling, attenuation, lag, lengthening, and hydrological drought typology (classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought.

    Drought characteristics simulated by large-scale models clearly reflected drought propagation; i.e. drought events became fewer and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having fewer and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of classical rainfall deficit droughts, and an

  15. Large-scale numerical simulations of star formation put to the test

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Haugbølle, Troels

    2016-01-01

    (SEDs), calculated from large-scalenumerical simulations, to observational studies, thereby aiding in boththe interpretation of the observations and in testing the fidelity ofthe simulations. Methods: The adaptive mesh refinement code,RAMSES, is used to simulate the evolution of a 5 pc × 5 pc ×5 pc...... to calculate evolutionary tracers Tbol andLsmm/Lbol. It is shown that, while the observeddistributions of the tracers are well matched by the simulation, theygenerally do a poor job of tracking the protostellar ages. Disks formearly in the simulation, with 40% of the Class 0 protostars beingencircled by one...

  16. Multi-scale modeling of inter-granular fracture in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, S. Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A hierarchical multi-scale approach is pursued in this work to investigate the influence of porosity, pore and grain size on the intergranular brittle fracture in UO2. In this approach, molecular dynamics simulations are performed to obtain the fracture properties for different grain boundary types. A phase-field model is then utilized to perform intergranular fracture simulations of representative microstructures with different porosities, pore and grain sizes. In these simulations the grain boundary fracture properties obtained from molecular dynamics simulations are used. The responses from the phase-field fracture simulations are then fitted with a stress-based brittle fracture model usable at the engineering scale. This approach encapsulates three different length and time scales, and allows the development of microstructurally informed engineering scale model from properties evaluated at the atomistic scale.

  17. Bayesian hierarchical model for large-scale covariance matrix estimation.

    Science.gov (United States)

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  18. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    NARCIS (Netherlands)

    Loon, van A.F.; Huijgevoort, van M.H.J.; Lanen, van H.A.J.

    2012-01-01

    Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological

  19. Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study

    Science.gov (United States)

    Li, Jun; Fu, Siyao; He, Haibo; Jia, Hongfei; Li, Yanzhong; Guo, Yi

    2015-11-01

    Large-scale regional evacuation is an important part of national security emergency response plan. Large commercial shopping area, as the typical service system, its emergency evacuation is one of the hot research topics. A systematic methodology based on Cellular Automata with the Dynamic Floor Field and event driven model has been proposed, and the methodology has been examined within context of a case study involving the evacuation within a commercial shopping mall. Pedestrians walking is based on Cellular Automata and event driven model. In this paper, the event driven model is adopted to simulate the pedestrian movement patterns, the simulation process is divided into normal situation and emergency evacuation. The model is composed of four layers: environment layer, customer layer, clerk layer and trajectory layer. For the simulation of movement route of pedestrians, the model takes into account purchase intention of customers and density of pedestrians. Based on evacuation model of Cellular Automata with Dynamic Floor Field and event driven model, we can reflect behavior characteristics of customers and clerks at the situations of normal and emergency evacuation. The distribution of individual evacuation time as a function of initial positions and the dynamics of the evacuation process is studied. Our results indicate that the evacuation model using the combination of Cellular Automata with Dynamic Floor Field and event driven scheduling can be used to simulate the evacuation of pedestrian flows in indoor areas with complicated surroundings and to investigate the layout of shopping mall.

  20. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2007-06-01

    Full Text Available A set of coupled ocean-atmosphere simulations using state of the art climate models is now available for the Last Glacial Maximum and the Mid-Holocene through the second phase of the Paleoclimate Modeling Intercomparison Project (PMIP2. This study presents the large-scale features of the simulated climates and compares the new model results to those of the atmospheric models from the first phase of the PMIP, for which sea surface temperature was prescribed or computed using simple slab ocean formulations. We consider the large-scale features of the climate change, pointing out some of the major differences between the different sets of experiments. We show in particular that systematic differences between PMIP1 and PMIP2 simulations are due to the interactive ocean, such as the amplification of the African monsoon at the Mid-Holocene or the change in precipitation in mid-latitudes at the LGM. Also the PMIP2 simulations are in general in better agreement with data than PMIP1 simulations.

  1. Coupling Strategies Investigation of Hybrid Atomistic-Continuum Method Based on State Variable Coupling

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2017-01-01

    Full Text Available Different configurations of coupling strategies influence greatly the accuracy and convergence of the simulation results in the hybrid atomistic-continuum method. This study aims to quantitatively investigate this effect and offer the guidance on how to choose the proper configuration of coupling strategies in the hybrid atomistic-continuum method. We first propose a hybrid molecular dynamics- (MD- continuum solver in LAMMPS and OpenFOAM that exchanges state variables between the atomistic region and the continuum region and evaluate different configurations of coupling strategies using the sudden start Couette flow, aiming to find the preferable configuration that delivers better accuracy and efficiency. The major findings are as follows: (1 the C→A region plays the most important role in the overlap region and the “4-layer-1” combination achieves the best precision with a fixed width of the overlap region; (2 the data exchanging operation only needs a few sampling points closer to the occasions of interactions and decreasing the coupling exchange operations can reduce the computational load with acceptable errors; (3 the nonperiodic boundary force model with a smoothing parameter of 0.1 and a finer parameter of 20 can not only achieve the minimum disturbance near the MD-continuum interface but also keep the simulation precision.

  2. Artificial intelligence applied to atomistic kinetic Monte Carlo simulations in Fe-Cu alloys

    International Nuclear Information System (INIS)

    Djurabekova, F.G.; Domingos, R.; Cerchiara, G.; Castin, N.; Vincent, E.; Malerba, L.

    2007-01-01

    Vacancy migration energies as functions of the local atomic configuration (LAC) in Fe-Cu alloys have been systematically tabulated using an appropriate interatomic potential for the alloy of interest. Subsets of these tabulations have been used to train an artificial neural network (ANN) to predict all vacancy migration energies depending on the LAC. The error in the prediction of the ANN has been evaluated by a fuzzy logic system (FLS), allowing a feedback to be introduced for further training, to improve the ANN prediction. This artificial intelligence (AI) system is used to develop a novel approach to atomistic kinetic Monte Carlo (AKMC) simulations, aimed at providing a better description of the kinetic path followed by the system through diffusion of solute atoms in the alloy via vacancy mechanism. Fe-Cu has been chosen because of the importance of Cu precipitation in Fe in connection with the embrittlement of reactor pressure vessels of existing nuclear power plants. In this paper the method is described in some detail and the first results of its application are presented and briefly discussed

  3. Artificial intelligence applied to atomistic kinetic Monte Carlo simulations in Fe-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Djurabekova, F.G. [Reactor Materials Research Unit, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Domingos, R. [Reactor Materials Research Unit, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Cerchiara, G. [Department of Nuclear and Production Engineering, University of Pisa (Italy); Castin, N. [Catholic University of Louvain-la-Neuve (Belgium); Vincent, E. [LMPGM UMR-8517, University of Lille I, Villeneuve d' Ascq (France); Malerba, L. [Reactor Materials Research Unit, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)]. E-mail: lmalerba@sckcen.be

    2007-02-15

    Vacancy migration energies as functions of the local atomic configuration (LAC) in Fe-Cu alloys have been systematically tabulated using an appropriate interatomic potential for the alloy of interest. Subsets of these tabulations have been used to train an artificial neural network (ANN) to predict all vacancy migration energies depending on the LAC. The error in the prediction of the ANN has been evaluated by a fuzzy logic system (FLS), allowing a feedback to be introduced for further training, to improve the ANN prediction. This artificial intelligence (AI) system is used to develop a novel approach to atomistic kinetic Monte Carlo (AKMC) simulations, aimed at providing a better description of the kinetic path followed by the system through diffusion of solute atoms in the alloy via vacancy mechanism. Fe-Cu has been chosen because of the importance of Cu precipitation in Fe in connection with the embrittlement of reactor pressure vessels of existing nuclear power plants. In this paper the method is described in some detail and the first results of its application are presented and briefly discussed.

  4. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Directory of Open Access Journals (Sweden)

    G. Tang

    2012-08-01

    Full Text Available Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i modify a DGVM for simulating land surface water balances; (ii evaluate the modified model in simulating actual evapotranspiration (ET, soil moisture, and surface runoff at regional or watershed scales; and (iii gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ DGVM. To evaluate the model we ran LH using historical (1981–2006 climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981–2006 (R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficient > 0.52. The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences < 15% with observed values for these rivers. Compared to a degree-day method for snowmelt computation, the addition of the solar radiation effect on snowmelt

  5. Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods

    International Nuclear Information System (INIS)

    Gray, S.K.; Noid, D.W.; Sumpter, B.G.

    1994-01-01

    We test the suitability of a variety of explicit symplectic integrators for molecular dynamics calculations on Hamiltonian systems. These integrators are extremely simple algorithms with low memory requirements, and appear to be well suited for large scale simulations. We first apply all the methods to a simple test case using the ideas of Berendsen and van Gunsteren. We then use the integrators to generate long time trajectories of a 1000 unit polyethylene chain. Calculations are also performed with two popular but nonsymplectic integrators. The most efficient integrators of the set investigated are deduced. We also discuss certain variations on the basic symplectic integration technique

  6. System Dynamics Simulation of Large-Scale Generation System for Designing Wind Power Policy in China

    Directory of Open Access Journals (Sweden)

    Linna Hou

    2015-01-01

    Full Text Available This paper focuses on the impacts of renewable energy policy on a large-scale power generation system, including thermal power, hydropower, and wind power generation. As one of the most important clean energy, wind energy has been rapidly developed in the world. But in recent years there is a serious waste of wind power equipment and investment in China leading to many problems in the industry from wind power planning to its integration. One way overcoming the difficulty is to analyze the influence of wind power policy on a generation system. This paper builds a system dynamics (SD model of energy generation to simulate the results of wind energy generation policies based on a complex system. And scenario analysis method is used to compare the effectiveness and efficiency of these policies. The case study shows that the combinations of lower portfolio goal and higher benchmark price and those of higher portfolio goal and lower benchmark price have large differences in both effectiveness and efficiency. On the other hand, the combinations of uniformly lower or higher portfolio goal and benchmark price have similar efficiency, but different effectiveness. Finally, an optimal policy combination can be chosen on the basis of policy analysis in the large-scale power system.

  7. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    OpenAIRE

    Xerxes D. Arsiwalla; Riccardo eZucca; Alberto eBetella; Enrique eMartinez; David eDalmazzo; Pedro eOmedas; Gustavo eDeco; Gustavo eDeco; Paul F.M.J. Verschure; Paul F.M.J. Verschure

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  8. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    OpenAIRE

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martínez, Enrique, 1961-; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  9. Large Scale Earth's Bow Shock with Northern IMF as Simulated by ...

    Indian Academy of Sciences (India)

    results with the available MHD simulations under same scaled solar wind. (SW) and (IMF) ... their effects in dissipating flow-energy, in heating matter, in accelerating particles to high, presumably ... such as hybrid models (Omidi et al. 2013 ...

  10. Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy

    Science.gov (United States)

    Canuto, V. M.

    1994-01-01

    The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The

  11. Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops

    Science.gov (United States)

    Bonny, G.; Bakaev, A.; Terentyev, D.; Zhurkin, E.; Posselt, M.

    2018-01-01

    The exact nature of the radiation defects causing hardening in reactor structural steels consists of several components that are not yet clearly determined. While generally, the hardening is attributed to dislocation loops, voids and secondary phases (radiation-induced precipitates), recent advanced experimental and computational studies point to the importance of solute-rich clusters (SRCs). Depending on the exact composition of the steel, SRCs may contain Mn, Ni and Cu (e.g. in reactor pressure vessel steels) or Ni, Cr, Si, Mn (e.g. in high-chromium steels for generation IV and fusion applications). One of the hypotheses currently implied to explain their formation is the process of radiation-induced diffusion and segregation of these elements to small dislocation loops (heterogeneous nucleation), so that the distinction between SRCs and loops becomes somewhat blurred. In this work, we perform an atomistic study to investigate the enrichment of loops by Ni and Cr solutes and their interaction with an edge dislocation. The dislocation loops decorated with Ni and Cr solutes are obtained by Monte Carlo simulations, while the effect of solute segregation on the loop's strength and interaction mechanism is then addressed by large scale molecular dynamics simulations. The synergy of the Cr-Ni interaction and their competition to occupy positions in the dislocation loop core are specifically clarified.

  12. Atomistic simulation on charge mobility of amorphous tris(8-hydroxyquinoline) aluminum (Alq3): origin of Poole-Frenkel-type behavior.

    Science.gov (United States)

    Nagata, Yuki; Lennartz, Christian

    2008-07-21

    The atomistic simulation of charge transfer process for an amorphous Alq(3) system is reported. By employing electrostatic potential charges, we calculate site energies and find that the standard deviation of site energy distribution is about twice as large as predicted in previous research. The charge mobility is calculated via the Miller-Abrahams formalism and the master equation approach. We find that the wide site energy distribution governs Poole-Frenkel-type behavior of charge mobility against electric field, while the spatially correlated site energy is not a dominant mechanism of Poole-Frenkel behavior in the range from 2x10(5) to 1.4x10(6) V/cm. Also we reveal that randomly meshed connectivities are, in principle, required to account for the Poole-Frenkel mechanism. Charge carriers find a zigzag pathway at low electric field, while they find a straight pathway along electric field when a high electric field is applied. In the space-charge-limited current scheme, the charge-carrier density increases with electric field strength so that the nonlinear behavior of charge mobility is enhanced through the strong charge-carrier density dependence of charge mobility.

  13. Adaptive resolution simulation of a biomolecule and its hydration shell: Structural and dynamical properties

    International Nuclear Information System (INIS)

    Fogarty, Aoife C.; Potestio, Raffaello; Kremer, Kurt

    2015-01-01

    A fully atomistic modelling of many biophysical and biochemical processes at biologically relevant length- and time scales is beyond our reach with current computational resources, and one approach to overcome this difficulty is the use of multiscale simulation techniques. In such simulations, when system properties necessitate a boundary between resolutions that falls within the solvent region, one can use an approach such as the Adaptive Resolution Scheme (AdResS), in which solvent particles change their resolution on the fly during the simulation. Here, we apply the existing AdResS methodology to biomolecular systems, simulating a fully atomistic protein with an atomistic hydration shell, solvated in a coarse-grained particle reservoir and heat bath. Using as a test case an aqueous solution of the regulatory protein ubiquitin, we first confirm the validity of the AdResS approach for such systems, via an examination of protein and solvent structural and dynamical properties. We then demonstrate how, in addition to providing a computational speedup, such a multiscale AdResS approach can yield otherwise inaccessible physical insights into biomolecular function. We use our methodology to show that protein structure and dynamics can still be correctly modelled using only a few shells of atomistic water molecules. We also discuss aspects of the AdResS methodology peculiar to biomolecular simulations

  14. Adaptive resolution simulation of a biomolecule and its hydration shell: Structural and dynamical properties

    Energy Technology Data Exchange (ETDEWEB)

    Fogarty, Aoife C., E-mail: fogarty@mpip-mainz.mpg.de; Potestio, Raffaello, E-mail: potestio@mpip-mainz.mpg.de; Kremer, Kurt, E-mail: kremer@mpip-mainz.mpg.de [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)

    2015-05-21

    A fully atomistic modelling of many biophysical and biochemical processes at biologically relevant length- and time scales is beyond our reach with current computational resources, and one approach to overcome this difficulty is the use of multiscale simulation techniques. In such simulations, when system properties necessitate a boundary between resolutions that falls within the solvent region, one can use an approach such as the Adaptive Resolution Scheme (AdResS), in which solvent particles change their resolution on the fly during the simulation. Here, we apply the existing AdResS methodology to biomolecular systems, simulating a fully atomistic protein with an atomistic hydration shell, solvated in a coarse-grained particle reservoir and heat bath. Using as a test case an aqueous solution of the regulatory protein ubiquitin, we first confirm the validity of the AdResS approach for such systems, via an examination of protein and solvent structural and dynamical properties. We then demonstrate how, in addition to providing a computational speedup, such a multiscale AdResS approach can yield otherwise inaccessible physical insights into biomolecular function. We use our methodology to show that protein structure and dynamics can still be correctly modelled using only a few shells of atomistic water molecules. We also discuss aspects of the AdResS methodology peculiar to biomolecular simulations.

  15. Computing the universe: how large-scale simulations illuminate galaxies and dark energy

    Science.gov (United States)

    O'Shea, Brian

    2015-04-01

    High-performance and large-scale computing is absolutely to understanding astronomical objects such as stars, galaxies, and the cosmic web. This is because these are structures that operate on physical, temporal, and energy scales that cannot be reasonably approximated in the laboratory, and whose complexity and nonlinearity often defies analytic modeling. In this talk, I show how the growth of computing platforms over time has facilitated our understanding of astrophysical and cosmological phenomena, focusing primarily on galaxies and large-scale structure in the Universe.

  16. Simulation of the optical coating deposition

    Science.gov (United States)

    Grigoriev, Fedor; Sulimov, Vladimir; Tikhonravov, Alexander

    2018-04-01

    A brief review of the mathematical methods of thin-film growth simulation and results of their applications is presented. Both full-atomistic and multi-scale approaches that were used in the studies of thin-film deposition are considered. The results of the structural parameter simulation including density profiles, roughness, porosity, point defect concentration, and others are discussed. The application of the quantum level methods to the simulation of the thin-film electronic and optical properties is considered. Special attention is paid to the simulation of the silicon dioxide thin films.

  17. Approaches to large scale unsaturated flow in heterogeneous, stratified, and fractured geologic media

    International Nuclear Information System (INIS)

    Ababou, R.

    1991-08-01

    This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs

  18. Nesting Large-Eddy Simulations Within Mesoscale Simulations for Wind Energy Applications

    Science.gov (United States)

    Lundquist, J. K.; Mirocha, J. D.; Chow, F. K.; Kosovic, B.; Lundquist, K. A.

    2008-12-01

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES) account for complex terrain and resolve individual atmospheric eddies on length scales smaller than turbine blades. These small-domain high-resolution simulations are possible with a range of commercial and open- source software, including the Weather Research and Forecasting (WRF) model. In addition to "local" sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecating model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosoviæ (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  20. Conformational preludes to the latency transition in PAI-1 as determined by atomistic computer simulations and hydrogen/deuterium-exchange mass spectrometry

    DEFF Research Database (Denmark)

    Petersen, Michael; Madsen, Jeppe B; Jørgensen, Thomas J D

    2017-01-01

    activator inhibitor 1 (PAI-1). We report the first multi-microsecond atomistic molecular dynamics simulations of PAI-1 and compare the data with experimental hydrogen/deuterium-exchange data (HDXMS). The simulations reveal notable conformational flexibility of helices D, E and F and major fluctuations...... are observed in the W86-loop which occasionally leads to progressive detachment of β-strand 2 A from β-strand 3 A. An interesting correlation between Cα-RMSD values from simulations and experimental HDXMS data is observed. Helices D, E and F are known to be important for the overall stability of active PAI-1......Both function and dysfunction of serine protease inhibitors (serpins) involve massive conformational change in their tertiary structure but the dynamics facilitating these events remain poorly understood. We have studied the dynamic preludes to conformational change in the serpin plasminogen...

  1. Simulation of fatigue crack growth under large scale yielding conditions

    Science.gov (United States)

    Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann

    2010-07-01

    A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.

  2. Large-Eddy Simulation of Waked Turbines in a Scaled Wind Farm Facility

    Science.gov (United States)

    Wang, J.; McLean, D.; Campagnolo, F.; Yu, T.; Bottasso, C. L.

    2017-05-01

    The aim of this paper is to present the numerical simulation of waked scaled wind turbines operating in a boundary layer wind tunnel. The simulation uses a LES-lifting-line numerical model. An immersed boundary method in conjunction with an adequate wall model is used to represent the effects of both the wind turbine nacelle and tower, which are shown to have a considerable effect on the wake behavior. Multi-airfoil data calibrated at different Reynolds numbers are used to account for the lift and drag characteristics at the low and varying Reynolds conditions encountered in the experiments. The present study focuses on low turbulence inflow conditions and inflow non-uniformity due to wind tunnel characteristics, while higher turbulence conditions are considered in a separate study. The numerical model is validated by using experimental data obtained during test campaigns conducted with the scaled wind farm facility. The simulation and experimental results are compared in terms of power capture, rotor thrust, downstream velocity profiles and turbulence intensity.

  3. Key role of water in proton transfer at the Q(o)-site of the cytochrome bc(1) complex predicted by atomistic molecular dynamics simulations

    DEFF Research Database (Denmark)

    Postila, P. A.; Kaszuba, K.; Sarewicz, M.

    2013-01-01

    of the cyt bc(1) function have remained unclear especially regarding the substrate binding at the Q(o)-site. In this work we address this issue by performing extensive atomistic molecular dynamics simulations with the cyt bc(1) complex of Rhodobacter capsulatus embedded in a lipid bilayer. Based...... on the simulations we are able to show the atom-level binding modes of two substrate forms: quinol (QH(2)) and quinone (Q). The QH(2) binding at the Q(o)-site involves a coordinated water arrangement that produces an exceptionally close and stable interaction between the cyt b and iron sulfur protein subunits...

  4. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2013-06-01

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011), 10.1063/1.3643333 and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  5. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    International Nuclear Information System (INIS)

    Limmer, David T.; Chandler, David

    2013-01-01

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys.135, 134503 (2011) and preprint http://arxiv.org/abs/arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light

  6. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, David T.; Chandler, David, E-mail: chandler@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States)

    2013-06-07

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys.135, 134503 (2011) and preprint http://arxiv.org/abs/arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  7. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2013-06-07

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011) and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  8. Atomistic approach for modeling metal-semiconductor interfaces

    DEFF Research Database (Denmark)

    Stradi, Daniele; Martinez, Umberto; Blom, Anders

    2016-01-01

    realistic metal-semiconductor interfaces and allows for a direct comparison between theory and experiments via the I–V curve. In particular, it will be demonstrated how doping — and bias — modifies the Schottky barrier, and how finite size models (the slab approach) are unable to describe these interfaces......We present a general framework for simulating interfaces using an atomistic approach based on density functional theory and non-equilibrium Green's functions. The method includes all the relevant ingredients, such as doping and an accurate value of the semiconductor band gap, required to model...

  9. Large scale integration of photovoltaics in cities

    International Nuclear Information System (INIS)

    Strzalka, Aneta; Alam, Nazmul; Duminil, Eric; Coors, Volker; Eicker, Ursula

    2012-01-01

    Highlights: ► We implement the photovoltaics on a large scale. ► We use three-dimensional modelling for accurate photovoltaic simulations. ► We consider the shadowing effect in the photovoltaic simulation. ► We validate the simulated results using detailed hourly measured data. - Abstract: For a large scale implementation of photovoltaics (PV) in the urban environment, building integration is a major issue. This includes installations on roof or facade surfaces with orientations that are not ideal for maximum energy production. To evaluate the performance of PV systems in urban settings and compare it with the building user’s electricity consumption, three-dimensional geometry modelling was combined with photovoltaic system simulations. As an example, the modern residential district of Scharnhauser Park (SHP) near Stuttgart/Germany was used to calculate the potential of photovoltaic energy and to evaluate the local own consumption of the energy produced. For most buildings of the district only annual electrical consumption data was available and only selected buildings have electronic metering equipment. The available roof area for one of these multi-family case study buildings was used for a detailed hourly simulation of the PV power production, which was then compared to the hourly measured electricity consumption. The results were extrapolated to all buildings of the analyzed area by normalizing them to the annual consumption data. The PV systems can produce 35% of the quarter’s total electricity consumption and half of this generated electricity is directly used within the buildings.

  10. Study of plasticity in metals by numerical simulations

    International Nuclear Information System (INIS)

    Clouet, E.

    2013-01-01

    We present a study of the plastic behaviour in metals based on the modelling of dislocation properties. Different simulation tools have been used and developed to study plasticity in structural materials, in particular metals used in the nuclear industry. In iron or zirconium alloys, plasticity is controlled at low temperature by the glide of screw dislocations. Atomistic simulations can be used to model dislocation core properties and thus to obtain a better knowledge of the mechanisms controlling dislocation glide. Such atomistic simulations need nevertheless some special care because of the long range elastic field induced by the dislocations. We have therefore developed a modelling approach relying both on atomistic simulations, using either empirical interatomic potentials or ab initio calculations, and on elasticity theory. Such an approach has been used to obtain dislocation intrinsic core properties. These simulations allowed us to describe, in iron, the variations of these core properties with the dislocation character. In zirconium, we could identity the origin of the high lattice friction and obtain a better understanding of the competition between the different glide systems. At high temperature, dislocations do not only glide but can also cross-slip or climb. This leads to a motion of the dislocations out of their glide plane which needs to be considered when modelling the plastic flow. We performed a study of dislocation climb at different scales, leading to the implementation of a dislocation climb model in dislocation dynamics simulations. (author) [fr

  11. Atomistic computer simulations on multi-loaded PAMAM dendrimers: a comparison of amine- and hydroxyl-terminated dendrimers

    Science.gov (United States)

    Badalkhani-Khamseh, Farideh; Ebrahim-Habibi, Azadeh; Hadipour, Nasser L.

    2017-12-01

    Poly(amidoamine) (PAMAM) dendrimers have been extensively studied as delivery vectors in biomedical applications. A limited number of molecular dynamics (MD) simulation studies have investigated the effect of surface chemistry on therapeutic molecules loading, with the aim of providing insights for biocompatibility improvement and increase in drug loading capacity of PAMAM dendrimers. In this work, fully atomistic MD simulations were employed to study the association of 5-Fluorouracil (5-FU) with amine (NH2)- and hydroxyl (OH)-terminated PAMAM dendrimers of generations 3 and 4 (G3 and G4). MD results show a 1:12, 1:1, 1:27, and 1:4 stoichiometry, respectively, for G3NH2-FU, G3OH-FU, G4NH2-FU, and G4OH-FU complexes, which is in good agreement with the isothermal titration calorimetry results. The results obtained showed that NH2-terminated dendrimers assume segmented open structures with large cavities and more drug molecules can encapsulate inside the dendritic cavities of amine terminated dendrimers. However, OH-terminated have a densely packed structure and therefore, 5-FU drug molecules are more stable to locate close to the surface of the dendrimers. Intermolecular hydrogen bonding analysis showed that 5-FU drug molecules have more tendency to form hydrogen bonds with terminal monomers of OH-terminated dendrimers, while in NH2-terminated these occur both in the inner region and the surface. Furthermore, MM-PBSA analysis revealed that van der Waals and electrostatic energies are both important to stabilize the complexes. We found that drug molecules are distributed uniformly inside the amine and hydroxyl terminated dendrimers and therefore, both dendrimers are promising candidates as drug delivery systems for 5-FU drug molecules.

  12. Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion

    International Nuclear Information System (INIS)

    Dobranich, Dean; Blanchat, Thomas K.

    2008-01-01

    Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System

  13. Molecular dynamics simulations of outer-membrane protease T from E. coli based on a hybrid coarse-grained/atomistic potential

    International Nuclear Information System (INIS)

    Neri, Marilisa; Anselmi, Claudio; Carnevale, Vincenzo; Vargiu, Attilio V; Carloni, Paolo

    2006-01-01

    Outer-membrane proteases T (OmpT) are membrane enzymes used for defense by Gram-negative bacteria. Here we use hybrid molecular mechanics/coarse-grained simulations to investigate the role of large-scale motions of OmpT from Escherichia coli for its function. In this approach, the enzyme active site is treated at the all-atom level, whilst the rest of the protein is described at the coarse-grained level. Our calculations agree well with previously reported all-atom molecular dynamics simulations, suggesting that this approach is well suitable to investigate membrane proteins. In addition, our findings suggest that OmpT large-scale conformational fluctuations might play a role for its biological function, as found for another protease class, the aspartyl proteases

  14. Atomistically informed solute drag in Al–Mg

    International Nuclear Information System (INIS)

    Zhang, F; Curtin, W A

    2008-01-01

    Solute drag in solute-strengthened alloys, caused by diffusion of solute atoms around moving dislocations, controls the stress at deformation rates and temperatures useful for plastic forming processes. In the technologically important Al–Mg alloys, the solute drag stresses predicted by classical theories are much larger than experiments, which is resolved in general by eliminating the singularity of the dislocation core via Peierls–Nabarro-type models. Here, the drag stress versus dislocation velocity is computed numerically using a realistic dislocation core structure obtained from an atomistic model to investigate the role of the core and obtain quantitative stresses for comparison with experiment. The model solves a discrete diffusion equation in a reference frame moving with the dislocation, with input solute enthalpies and diffusion activation barriers in the core computed by or estimated from atomistic studies. At low dislocation velocities, the solute drag stress is controlled by bulk solute diffusion because the core diffusion occurs too quickly. In this regime, the drag stress can be obtained using a Peierls–Nabarro model with a core spreading parameter tuned to best match the atomistic models. At intermediate velocities, both bulk and core diffusion can contribute to the drag, leading to a complex stress–velocity relationship showing two peaks in stress. At high velocities, the drag stress is controlled solely by diffusion within and across the core. Like the continuum models, the drag stress is nearly linear in solute concentration. The Orowan relationship is used to connect dislocation velocity to deformation strain rate. Accounting for the dependence of mobile dislocation density on stress, the simulations are in good agreement with experiments on Al–Mg alloys over a range of concentrations and temperatures

  15. NASA's Information Power Grid: Large Scale Distributed Computing and Data Management

    Science.gov (United States)

    Johnston, William E.; Vaziri, Arsi; Hinke, Tom; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Tang, Harry (Technical Monitor)

    2001-01-01

    Large-scale science and engineering are done through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organizationally dispersed. The overall motivation for Grids is to facilitate the routine interactions of these resources in order to support large-scale science and engineering. Multi-disciplinary simulations provide a good example of a class of applications that are very likely to require aggregation of widely distributed computing, data, and intellectual resources. Such simulations - e.g. whole system aircraft simulation and whole system living cell simulation - require integrating applications and data that are developed by different teams of researchers frequently in different locations. The research team's are the only ones that have the expertise to maintain and improve the simulation code and/or the body of experimental data that drives the simulations. This results in an inherently distributed computing and data management environment.

  16. ROSA-V large scale test facility (LSTF) system description for the third and fourth simulated fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mitsuhiro; Nakamura, Hideo; Ohtsu, Iwao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    The Large Scale Test Facility (LSTF) is a full-height and 1/48 volumetrically scaled test facility of the Japan Atomic Energy Research Institute (JAERI) for system integral experiments simulating the thermal-hydraulic responses at full-pressure conditions of a 1100 MWe-class pressurized water reactor (PWR) during small break loss-of-coolant accidents (SBLOCAs) and other transients. The LSTF can also simulate well a next-generation type PWR such as the AP600 reactor. In the fifth phase of the Rig-of-Safety Assessment (ROSA-V) Program, eighty nine experiments have been conducted at the LSTF with the third simulated fuel assembly until June 2001, and five experiments have been conducted with the newly-installed fourth simulated fuel assembly until December 2002. In the ROSA-V program, various system integral experiments have been conducted to certify effectiveness of both accident management (AM) measures in beyond design basis accidents (BDBAs) and improved safety systems in the next-generation reactors. In addition, various separate-effect tests have been conducted to verify and develop computer codes and analytical models to predict non-homogeneous and multi-dimensional phenomena such as heat transfer across the steam generator U-tubes under the presence of non-condensable gases in both current and next-generation reactors. This report presents detailed information of the LSTF system with the third and fourth simulated fuel assemblies for the aid of experiment planning and analyses of experiment results. (author)

  17. In pursuit of an accurate spatial and temporal model of biomolecules at the atomistic level: a perspective on computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Alan [The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); Harlen, Oliver G. [University of Leeds, Leeds LS2 9JT (United Kingdom); Harris, Sarah A., E-mail: s.a.harris@leeds.ac.uk [University of Leeds, Leeds LS2 9JT (United Kingdom); University of Leeds, Leeds LS2 9JT (United Kingdom); Khalid, Syma; Leung, Yuk Ming [University of Southampton, Southampton SO17 1BJ (United Kingdom); Lonsdale, Richard [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Philipps-Universität Marburg, Hans-Meerwein Strasse, 35032 Marburg (Germany); Mulholland, Adrian J. [University of Bristol, Bristol BS8 1TS (United Kingdom); Pearson, Arwen R. [University of Leeds, Leeds LS2 9JT (United Kingdom); University of Hamburg, Hamburg (Germany); Read, Daniel J.; Richardson, Robin A. [University of Leeds, Leeds LS2 9JT (United Kingdom); The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom)

    2015-01-01

    The current computational techniques available for biomolecular simulation are described, and the successes and limitations of each with reference to the experimental biophysical methods that they complement are presented. Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational.

  18. How to simulate global cosmic strings with large string tension

    Energy Technology Data Exchange (ETDEWEB)

    Klaer, Vincent B.; Moore, Guy D., E-mail: vklaer@theorie.ikp.physik.tu-darmstadt.de, E-mail: guy.moore@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, Darmstadt, D-64289 Germany (Germany)

    2017-10-01

    Global string networks may be relevant in axion production in the early Universe, as well as other cosmological scenarios. Such networks contain a large hierarchy of scales between the string core scale and the Hubble scale, ln( f {sub a} / H ) ∼ 70, which influences the network dynamics by giving the strings large tensions T ≅ π f {sub a} {sup 2} ln( f {sub a} / H ). We present a new numerical approach to simulate such global string networks, capturing the tension without an exponentially large lattice.

  19. Simulated pre-industrial climate in Bergen Climate Model (version 2: model description and large-scale circulation features

    Directory of Open Access Journals (Sweden)

    O. H. Otterå

    2009-11-01

    Full Text Available The Bergen Climate Model (BCM is a fully-coupled atmosphere-ocean-sea-ice model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate. Here, a pre-industrial multi-century simulation with an updated version of BCM is described and compared to observational data. The model is run without any form of flux adjustments and is stable for several centuries. The simulated climate reproduces the general large-scale circulation in the atmosphere reasonably well, except for a positive bias in the high latitude sea level pressure distribution. Also, by introducing an updated turbulence scheme in the atmosphere model a persistent cold bias has been eliminated. For the ocean part, the model drifts in sea surface temperatures and salinities are considerably reduced compared to earlier versions of BCM. Improved conservation properties in the ocean model have contributed to this. Furthermore, by choosing a reference pressure at 2000 m and including thermobaric effects in the ocean model, a more realistic meridional overturning circulation is simulated in the Atlantic Ocean. The simulated sea-ice extent in the Northern Hemisphere is in general agreement with observational data except for summer where the extent is somewhat underestimated. In the Southern Hemisphere, large negative biases are found in the simulated sea-ice extent. This is partly related to problems with the mixed layer parametrization, causing the mixed layer in the Southern Ocean to be too deep, which in turn makes it hard to maintain a realistic sea-ice cover here. However, despite some problematic issues, the pre-industrial control simulation presented here should still be appropriate for climate change studies requiring multi-century simulations.

  20. Redox reactions with empirical potentials: atomistic battery discharge simulations.

    Science.gov (United States)

    Dapp, Wolf B; Müser, Martin H

    2013-08-14

    Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.

  1. Integrating atomistic molecular dynamics simulations, experiments and network analysis to study protein dynamics: strength in unity

    Directory of Open Access Journals (Sweden)

    Elena ePapaleo

    2015-05-01

    Full Text Available In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  2. In pursuit of an accurate spatial and temporal model of biomolecules at the atomistic level: a perspective on computer simulation.

    Science.gov (United States)

    Gray, Alan; Harlen, Oliver G; Harris, Sarah A; Khalid, Syma; Leung, Yuk Ming; Lonsdale, Richard; Mulholland, Adrian J; Pearson, Arwen R; Read, Daniel J; Richardson, Robin A

    2015-01-01

    Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational.

  3. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores

    Science.gov (United States)

    Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael

    2017-08-01

    During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and

  4. Simulating solidification in metals at high pressure: The drive to petascale computing

    International Nuclear Information System (INIS)

    Streitz, Frederick H; Glosli, James N; Patel, Mehul V; Chan, Bor; Yates, Robert K; Supinski, Bronis R de; Sexton, James; Gunnels, John A

    2006-01-01

    We investigate solidification in metal systems ranging in size from 64,000 to 524,288,000 atoms on the IBM BlueGene/L computer at LLNL. Using the newly developed ddcMD code, we achieve performance rates as high as 103 TFlops, with a performance of 101.7 TFlop sustained over a 7 hour run on 131,072 cpus. We demonstrate superb strong and weak scaling. Our calculations are significant as they represent the first atomic-scale model of metal solidification to proceed, without finite size effects, from spontaneous nucleation and growth of solid out of the liquid, through the coalescence phase, and into the onset of coarsening. Thus, our simulations represent the first step towards an atomistic model of nucleation and growth that can directly link atomistic to mesoscopic length scales

  5. Cationic Au Nanoparticle Binding with Plasma Membrane-like Lipid Bilayers: Potential Mechanism for Spontaneous Permeation to Cells Revealed by Atomistic Simulations

    DEFF Research Database (Denmark)

    Heikkila, E.; Martinez-Seara, H.; Gurtovenko, A. A.

    2014-01-01

    Despite being chemically inert as a bulk material, nanoscale gold can pose harmful side effects to living organisms. In particular, cationic Au nanoparticles (AuNP+) of 2 nm diameter or less permeate readily through plasma membranes and induce cell death. We report atomistic simulations of cationic...... to be governed by cooperative effects where AuNP+, counterions, water, and the two membrane leaflets all contribute. On the extracellular side, we find that the nanoparticle has to cross a free energy barrier of about 5 k(B)T prior forming a stable contact with the membrane. This results in a rearrangement...

  6. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: Difference between atomistic and coarse-grained simulations

    International Nuclear Information System (INIS)

    Nishizawa, Manami; Nishizawa, Kazuhisa

    2014-01-01

    Interaction of transmembrane (TM) proteins is important in many biological processes. Large-scale computational studies using coarse-grained (CG) simulations are becoming popular. However, most CG model parameters have not fully been calibrated with respect to lateral interactions of TM peptide segments. Here, we compare the potential of mean forces (PMFs) of dimerization of TM helices obtained using a MARTINI CG model and an atomistic (AT) Berger lipids-OPLS/AA model (AT OPLS ). For helical, tryptophan-flanked, leucine-rich peptides (WL15 and WALP15) embedded in a parallel configuration in an octane slab, the AT OPLS PMF profiles showed a shallow minimum (with a depth of approximately 3 kJ/mol; i.e., a weak tendency to dimerize). A similar analysis using the CHARMM36 all-atom model (AT CHARMM ) showed comparable results. In contrast, the CG analysis generally showed steep PMF curves with depths of approximately 16–22 kJ/mol, suggesting a stronger tendency to dimerize compared to the AT model. This CG > AT discrepancy in the propensity for dimerization was also seen for dilauroylphosphatidylcholine (DLPC)-embedded peptides. For a WL15 (and WALP15)/DLPC bilayer system, AT OPLS PMF showed a repulsive mean force for a wide range of interhelical distances, in contrast to the attractive forces observed in the octane system. The change from the octane slab to the DLPC bilayer also mitigated the dimerization propensity in the CG system. The dimerization energies of CG (AALALAA) 3 peptides in DLPC and dioleoylphosphatidylcholine bilayers were in good agreement with previous experimental data. The lipid headgroup, but not the length of the lipid tails, was a key causative factor contributing to the differences between octane and DLPC. Furthermore, the CG model, but not the AT model, showed high sensitivity to changes in amino acid residues located near the lipid-water interface and hydrophobic mismatch between the peptides and membrane. These findings may help interpret

  7. Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.; Kotok, E.V.; Novikov, I.D.; Polyudov, A.N.; Shandarin, S.F.; Sigov, Y.S.

    1980-01-01

    The results of a numerical experiment are given that describe the non-linear stages of the development of perturbations in gravitating matter density in the expanding Universe. This process simulates the formation of the large-scale structure of the Universe from an initially almost homogeneous medium. In the one- and two-dimensional cases of this numerical experiment the evolution of the system from 4096 point masses that interact gravitationally only was studied with periodic boundary conditions (simulation of the infinite space). The initial conditions were chosen that resulted from the theory of the evolution of small perturbations in the expanding Universe. The results of numerical experiments are systematically compared with the approximate analytic theory. The results of the calculations show that in the case of collisionless particles, as well as in the gas-dynamic case, the cellular structure appeared at the non-linear stage in the case of the adiabatic perturbations. The greater part of the matter is in thin layers that separate vast regions of low density. In a Robertson-Walker universe the cellular structure exists for a finite time and then fragments into a few compact objects. In the open Universe the cellular structure also exists if the amplitude of initial perturbations is large enough. But the following disruption of the cellular structure is more difficult because of too rapid an expansion of the Universe. The large-scale structure is frozen. (author)

  8. Molecular dynamics simulation of edge dislocation piled at cuboidal precipitate in Ni-based superalloy

    International Nuclear Information System (INIS)

    Yashiro, Kisaragi; Naito, Masato; Tomita, Yoshihiro

    2003-01-01

    In order to clarify the fundamental mechanism of dislocations in the γ/γ' microstructure of Ni-based superalloy, three molecular dynamics simulations are conducted on the behavior of edge dislocations nucleated from a free surface and proceeding in the pure Ni matrix (γ) toward cuboidal Ni 3 Al precipitates (γ') under shear force. One involves dislocations near the apices of two precipitates adjoining each other with the distance of 0.04 μm, as large as the width of the γ channel in real superalloys. Others simulate dislocations piled at the precipitates as well, however, the scale of the microstructure is smaller than that in real superalloys by one order of magnitude, and one of them have precipitates with atomistically sharp edge. Dislocations are pinned at precipitates and bowed-out in the γ channel, then they begin to penetrate into the precipitate at the edge in both the real-scale and smaller microstructures when the precipitates have blunt edges. On the other hand, an edge dislocation splits into a superpartial in the γ' precipitate and a misfit screw dislocation bridging between two adjacent precipitates at the atomistically sharp edge of γ' precipitates. It is also observed that two superpartials glide in the precipitate as a superdislocation with anti-phase boundary (APB), of which the width is evaluated to be about 4 nm. (author)

  9. Development of fine-resolution analyses and expanded large-scale forcing properties: 2. Scale awareness and application to single-column model experiments

    Science.gov (United States)

    Feng, Sha; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Vogelmann, Andrew M.; Endo, Satoshi

    2015-01-01

    three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy's Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multiscale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scales larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.

  10. Experimentally driven atomistic model of 1,2 polybutadiene

    Energy Technology Data Exchange (ETDEWEB)

    Gkourmpis, Thomas, E-mail: thomas.gkourmpis@borealisgroup.com [Polymer Science Centre, J. J. Thomson Physical Laboratory, Department of Physics, University of Reading, Reading RG6 6AF (United Kingdom); Mitchell, Geoffrey R. [Polymer Science Centre, J. J. Thomson Physical Laboratory, Department of Physics, University of Reading, Reading RG6 6AF (United Kingdom); Centre for Rapid and Sustainable Product Development, Institute Polytechnic Leiria, Marinha Grande (Portugal)

    2014-02-07

    We present an efficient method of combining wide angle neutron scattering data with detailed atomistic models, allowing us to perform a quantitative and qualitative mapping of the organisation of the chain conformation in both glass and liquid phases. The structural refinement method presented in this work is based on the exploitation of the intrachain features of the diffraction pattern and its intimate linkage with atomistic models by the use of internal coordinates for bond lengths, valence angles, and torsion rotations. Atomic connectivity is defined through these coordinates that are in turn assigned by pre-defined probability distributions, thus allowing for the models in question to be built stochastically. Incremental variation of these coordinates allows for the construction of models that minimise the differences between the observed and calculated structure factors. We present a series of neutron scattering data of 1,2 polybutadiene at the region 120–400 K. Analysis of the experimental data yields bond lengths for Cî—¸C and C î—» C of 1.54 Å and 1.35 Å, respectively. Valence angles of the backbone were found to be at 112° and the torsion distributions are characterised by five rotational states, a three-fold trans-skew± for the backbone and gauche± for the vinyl group. Rotational states of the vinyl group were found to be equally populated, indicating a largely atactic chan. The two backbone torsion angles exhibit different behaviour with respect to temperature of their trans population, with one of them adopting an almost all trans sequence. Consequently, the resulting configuration leads to a rather persistent chain, something indicated by the value of the characteristic ratio extrapolated from the model. We compare our results with theoretical predictions, computer simulations, RIS models and previously reported experimental results.

  11. Dislocation climb models from atomistic scheme to dislocation dynamics

    OpenAIRE

    Niu, Xiaohua; Luo, Tao; Lu, Jianfeng; Xiang, Yang

    2016-01-01

    We develop a mesoscopic dislocation dynamics model for vacancy-assisted dislocation climb by upscalings from a stochastic model on the atomistic scale. Our models incorporate microscopic mechanisms of (i) bulk diffusion of vacancies, (ii) vacancy exchange dynamics between bulk and dislocation core, (iii) vacancy pipe diffusion along the dislocation core, and (iv) vacancy attachment-detachment kinetics at jogs leading to the motion of jogs. Our mesoscopic model consists of the vacancy bulk dif...

  12. Multilevel parallel strategy on Monte Carlo particle transport for the large-scale full-core pin-by-pin simulations

    International Nuclear Information System (INIS)

    Zhang, B.; Li, G.; Wang, W.; Shangguan, D.; Deng, L.

    2015-01-01

    This paper introduces the Strategy of multilevel hybrid parallelism of JCOGIN Infrastructure on Monte Carlo Particle Transport for the large-scale full-core pin-by-pin simulations. The particle parallelism, domain decomposition parallelism and MPI/OpenMP parallelism are designed and implemented. By the testing, JMCT presents the parallel scalability of JCOGIN, which reaches the parallel efficiency 80% on 120,000 cores for the pin-by-pin computation of the BEAVRS benchmark. (author)

  13. Multiscale methods coupling atomistic and continuum mechanics: analysis of a simple case

    OpenAIRE

    Blanc , Xavier; Le Bris , Claude; Legoll , Frédéric

    2007-01-01

    International audience; The description and computation of fine scale localized phenomena arising in a material (during nanoindentation, for instance) is a challenging problem that has given birth to many multiscale methods. In this work, we propose an analysis of a simple one-dimensional method that couples two scales, the atomistic one and the continuum mechanics one. The method includes an adaptive criterion in order to split the computational domain into two subdomains, that are described...

  14. Fires in large scale ventilation systems

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; White, B.W.; Nichols, B.D.; Smith, P.R.; Leslie, I.H.; Fenton, D.L.; Gunaji, M.V.; Blythe, J.P.

    1991-01-01

    This paper summarizes the experience gained simulating fires in large scale ventilation systems patterned after ventilation systems found in nuclear fuel cycle facilities. The series of experiments discussed included: (1) combustion aerosol loading of 0.61x0.61 m HEPA filters with the combustion products of two organic fuels, polystyrene and polymethylemethacrylate; (2) gas dynamic and heat transport through a large scale ventilation system consisting of a 0.61x0.61 m duct 90 m in length, with dampers, HEPA filters, blowers, etc.; (3) gas dynamic and simultaneous transport of heat and solid particulate (consisting of glass beads with a mean aerodynamic diameter of 10μ) through the large scale ventilation system; and (4) the transport of heat and soot, generated by kerosene pool fires, through the large scale ventilation system. The FIRAC computer code, designed to predict fire-induced transients in nuclear fuel cycle facility ventilation systems, was used to predict the results of experiments (2) through (4). In general, the results of the predictions were satisfactory. The code predictions for the gas dynamics, heat transport, and particulate transport and deposition were within 10% of the experimentally measured values. However, the code was less successful in predicting the amount of soot generation from kerosene pool fires, probably due to the fire module of the code being a one-dimensional zone model. The experiments revealed a complicated three-dimensional combustion pattern within the fire room of the ventilation system. Further refinement of the fire module within FIRAC is needed. (orig.)

  15. Evolution of scaling emergence in large-scale spatial epidemic spreading.

    Science.gov (United States)

    Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan

    2011-01-01

    Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.

  16. A large-scale forest landscape model incorporating multi-scale processes and utilizing forest inventory data

    Science.gov (United States)

    Wen J. Wang; Hong S. He; Martin A. Spetich; Stephen R. Shifley; Frank R. Thompson III; David R. Larsen; Jacob S. Fraser; Jian. Yang

    2013-01-01

    Two challenges confronting forest landscape models (FLMs) are how to simulate fine, standscale processes while making large-scale (i.e., .107 ha) simulation possible, and how to take advantage of extensive forest inventory data such as U.S. Forest Inventory and Analysis (FIA) data to initialize and constrain model parameters. We present the LANDIS PRO model that...

  17. Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    César Augusto F de Oliveira

    2011-10-01

    Full Text Available Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery.

  18. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    Energy Technology Data Exchange (ETDEWEB)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Flörke, M.; Huang, S.; Motovilov, Y.; Buda, S.; Yang, T.; Müller, C.; Leng, G.; Tang, Q.; Portmann, F. T.; Hagemann, S.; Gerten, D.; Wada, Y.; Masaki, Y.; Alemayehu, T.; Satoh, Y.; Samaniego, L.

    2017-01-04

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.

  19. Large-eddy simulation of sand dune morphodynamics

    Science.gov (United States)

    Khosronejad, Ali; Sotiropoulos, Fotis; St. Anthony Falls Laboratory, University of Minnesota Team

    2015-11-01

    Sand dunes are natural features that form under complex interaction between turbulent flow and bed morphodynamics. We employ a fully-coupled 3D numerical model (Khosronejad and Sotiropoulos, 2014, Journal of Fluid Mechanics, 753:150-216) to perform high-resolution large-eddy simulations of turbulence and bed morphodynamics in a laboratory scale mobile-bed channel to investigate initiation, evolution and quasi-equilibrium of sand dunes (Venditti and Church, 2005, J. Geophysical Research, 110:F01009). We employ a curvilinear immersed boundary method along with convection-diffusion and bed-morphodynamics modules to simulate the suspended sediment and the bed-load transports respectively. The coupled simulation were carried out on a grid with more than 100 million grid nodes and simulated about 3 hours of physical time of dune evolution. The simulations provide the first complete description of sand dune formation and long-term evolution. The geometric characteristics of the simulated dunes are shown to be in excellent agreement with observed data obtained across a broad range of scales. This work was supported by NSF Grants EAR-0120914 (as part of the National Center for Earth-Surface Dynamics). Computational resources were provided by the University of Minnesota Supercomputing Institute.

  20. Development of a transverse mixing model for large scale impulsion phenomenon in tight lattice

    International Nuclear Information System (INIS)

    Liu, Xiaojing; Ren, Shuo; Cheng, Xu

    2017-01-01

    Highlights: • Experiment data of Krauss is used to validate the feasibility of CFD simulation method. • CFD simulation is performed to simulate the large scale impulsion phenomenon for tight-lattice bundle. • A mixing model to simulate the large scale impulsion phenomenon is proposed based on CFD result fitting. • The new developed mixing model has been added in the subchannel code. - Abstract: Tight-lattice is widely adopted in the innovative reactor fuel bundles design since it can increase the conversion ratio and improve the heat transfer between fuel bundles and coolant. It has been noticed that a large scale impulsion of cross-velocity exists in the gap region, which plays an important role on the transverse mixing flow and heat transfer. Although many experiments and numerical simulation have been carried out to study the impulsion of velocity, a model to describe the wave length, amplitude and frequency of mixing coefficient is still missing. This research work takes advantage of the CFD method to simulate the experiment of Krauss and to compare experiment data and simulation result in order to demonstrate the feasibility of simulation method and turbulence model. Then, based on this verified method and model, several simulations are performed with different Reynolds number and different Pitch-to-Diameter ratio. By fitting the CFD results achieved, a mixing model to simulate the large scale impulsion phenomenon is proposed and adopted in the current subchannel code. The new mixing model is applied to some fuel assembly analysis by subchannel calculation, it can be noticed that the new developed mixing model can reduce the hot channel factor and contribute to a uniform distribution of outlet temperature.

  1. Impact of air-sea drag coefficient for latent heat flux on large scale climate in coupled and atmosphere stand-alone simulations

    Science.gov (United States)

    Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc

    2018-05-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux

  2. A Combined Eulerian-Lagrangian Data Representation for Large-Scale Applications.

    Science.gov (United States)

    Sauer, Franz; Xie, Jinrong; Ma, Kwan-Liu

    2017-10-01

    The Eulerian and Lagrangian reference frames each provide a unique perspective when studying and visualizing results from scientific systems. As a result, many large-scale simulations produce data in both formats, and analysis tasks that simultaneously utilize information from both representations are becoming increasingly popular. However, due to their fundamentally different nature, drawing correlations between these data formats is a computationally difficult task, especially in a large-scale setting. In this work, we present a new data representation which combines both reference frames into a joint Eulerian-Lagrangian format. By reorganizing Lagrangian information according to the Eulerian simulation grid into a "unit cell" based approach, we can provide an efficient out-of-core means of sampling, querying, and operating with both representations simultaneously. We also extend this design to generate multi-resolution subsets of the full data to suit the viewer's needs and provide a fast flow-aware trajectory construction scheme. We demonstrate the effectiveness of our method using three large-scale real world scientific datasets and provide insight into the types of performance gains that can be achieved.

  3. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  4. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed

    2017-03-16

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end, cellular networks are indeed a strong first mile candidate to accommodate the data tsunami to be generated by the IoT. However, IoT devices are required in the cellular paradigm to undergo random access procedures as a precursor to resource allocation. Such procedures impose a major bottleneck that hinders cellular networks\\' ability to support large-scale IoT. In this article, we shed light on the random access dilemma and present a case study based on experimental data as well as system-level simulations. Accordingly, a case is built for the latent need to revisit random access procedures. A call for action is motivated by listing a few potential remedies and recommendations.

  5. Scalable and portable visualization of large atomistic datasets

    Science.gov (United States)

    Sharma, Ashish; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2004-10-01

    A scalable and portable code named Atomsviewer has been developed to interactively visualize a large atomistic dataset consisting of up to a billion atoms. The code uses a hierarchical view frustum-culling algorithm based on the octree data structure to efficiently remove atoms outside of the user's field-of-view. Probabilistic and depth-based occlusion-culling algorithms then select atoms, which have a high probability of being visible. Finally a multiresolution algorithm is used to render the selected subset of visible atoms at varying levels of detail. Atomsviewer is written in C++ and OpenGL, and it has been tested on a number of architectures including Windows, Macintosh, and SGI. Atomsviewer has been used to visualize tens of millions of atoms on a standard desktop computer and, in its parallel version, up to a billion atoms. Program summaryTitle of program: Atomsviewer Catalogue identifier: ADUM Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUM Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: 2.4 GHz Pentium 4/Xeon processor, professional graphics card; Apple G4 (867 MHz)/G5, professional graphics card Operating systems under which the program has been tested: Windows 2000/XP, Mac OS 10.2/10.3, SGI IRIX 6.5 Programming languages used: C++, C and OpenGL Memory required to execute with typical data: 1 gigabyte of RAM High speed storage required: 60 gigabytes No. of lines in the distributed program including test data, etc.: 550 241 No. of bytes in the distributed program including test data, etc.: 6 258 245 Number of bits in a word: Arbitrary Number of processors used: 1 Has the code been vectorized or parallelized: No Distribution format: tar gzip file Nature of physical problem: Scientific visualization of atomic systems Method of solution: Rendering of atoms using computer graphic techniques, culling algorithms for data

  6. Scalability of a Low-Cost Multi-Teraflop Linux Cluster for High-End Classical Atomistic and Quantum Mechanical Simulations

    Science.gov (United States)

    Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash

    2003-01-01

    Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.

  7. Development of a self-consistent lightning NOx simulation in large-scale 3-D models

    Science.gov (United States)

    Luo, Chao; Wang, Yuhang; Koshak, William J.

    2017-03-01

    We seek to develop a self-consistent representation of lightning NOx (LNOx) simulation in a large-scale 3-D model. Lightning flash rates are parameterized functions of meteorological variables related to convection. We examine a suite of such variables and find that convective available potential energy and cloud top height give the best estimates compared to July 2010 observations from ground-based lightning observation networks. Previous models often use lightning NOx vertical profiles derived from cloud-resolving model simulations. An implicit assumption of such an approach is that the postconvection lightning NOx vertical distribution is the same for all deep convection, regardless of geographic location, time of year, or meteorological environment. Detailed observations of the lightning channel segment altitude distribution derived from the NASA Lightning Nitrogen Oxides Model can be used to obtain the LNOx emission profile. Coupling such a profile with model convective transport leads to a more self-consistent lightning distribution compared to using prescribed postconvection profiles. We find that convective redistribution appears to be a more important factor than preconvection LNOx profile selection, providing another reason for linking the strength of convective transport to LNOx distribution.

  8. Anomalous scaling of structure functions and dynamic constraints on turbulence simulations

    International Nuclear Information System (INIS)

    Yakhot, Victor; Sreenivasan, Katepalli R.

    2006-12-01

    The connection between anomalous scaling of structure functions (intermittency) and numerical methods for turbulence simulations is discussed. It is argued that the computational work for direct numerical simulations (DNS) of fully developed turbulence increases as Re 4 , and not as Re 3 expected from Kolmogorov's theory, where Re is a large-scale Reynolds number. Various relations for the moments of acceleration and velocity derivatives are derived. An infinite set of exact constraints on dynamically consistent subgrid models for Large Eddy Simulations (LES) is derived from the Navier-Stokes equations, and some problems of principle associated with existing LES models are highlighted. (author)

  9. A study on the plasticity of soda-lime silica glass via molecular dynamics simulations

    Science.gov (United States)

    Urata, Shingo; Sato, Yosuke

    2017-11-01

    Molecular dynamics (MD) simulations were applied to construct a plasticity model, which enables one to simulate deformations of soda-lime silica glass (SLSG) by using continuum methods. To model the plasticity, stress induced by uniaxial and a variety of biaxial deformations was measured by MD simulations. We found that the surfaces of yield and maximum stresses, which are evaluated from the equivalent stress-strain curves, are reasonably represented by the Mohr-Coulomb ellipsoid. Comparing a finite element model using the constructed plasticity model to a large scale atomistic model on a nanoindentation simulation of SLSG reveals that the empirical method is accurate enough to evaluate the SLSG mechanical responses. Furthermore, the effect of ion-exchange on the SLSG plasticity was examined by using MD simulations. As a result, it was demonstrated that the effects of the initial compressive stress on the yield and maximum stresses are anisotropic contrary to our expectations.

  10. How anacetrapib inhibits the activity of the cholesteryl ester transfer protein? Perspective through atomistic simulations.

    Directory of Open Access Journals (Sweden)

    Tarja Äijänen

    2014-11-01

    Full Text Available Cholesteryl ester transfer protein (CETP mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity and thereby raise high density lipoprotein (HDL-cholesterol and decrease low density lipoprotein (LDL-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site of anacetrapib turns out to reside in the tunnel inside CETP, near the residues surrounding the N-terminal opening. Free energy calculations show that when anacetrapib resides in this area, it hinders the ability of cholesteryl ester to diffuse out from CETP. The simulations further bring out the ability of anacetrapib to regulate the structure-function relationships of phospholipids and helix X, the latter representing the structural region of CETP important to the process of neutral lipid exchange with lipoproteins. Altogether, the simulations propose CETP inhibition to be realized when anacetrapib is transferred into the lipid binding pocket. The novel insight gained in this study has potential use in the development of new molecular agents capable of preventing the progression of cardiovascular diseases.

  11. Large Scale Simulation of Hydrogen Dispersion by a Stabilized Balancing Domain Decomposition Method

    Directory of Open Access Journals (Sweden)

    Qing-He Yao

    2014-01-01

    Full Text Available The dispersion behaviour of leaking hydrogen in a partially open space is simulated by a balancing domain decomposition method in this work. An analogy of the Boussinesq approximation is employed to describe the connection between the flow field and the concentration field. The linear systems of Navier-Stokes equations and the convection diffusion equation are symmetrized by a pressure stabilized Lagrange-Galerkin method, and thus a balancing domain decomposition method is enabled to solve the interface problem of the domain decomposition system. Numerical results are validated by comparing with the experimental data and available numerical results. The dilution effect of ventilation is investigated, especially at the doors, where flow pattern is complicated and oscillations appear in the past research reported by other researchers. The transient behaviour of hydrogen and the process of accumulation in the partially open space are discussed, and more details are revealed by large scale computation.

  12. Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    The elastic modulus of cellulose Iß in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive...

  13. General-relativistic Large-eddy Simulations of Binary Neutron Star Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Radice, David, E-mail: dradice@astro.princeton.edu [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States)

    2017-03-20

    The flow inside remnants of binary neutron star (NS) mergers is expected to be turbulent, because of magnetohydrodynamics instability activated at scales too small to be resolved in simulations. To study the large-scale impact of these instabilities, we develop a new formalism, based on the large-eddy simulation technique, for the modeling of subgrid-scale turbulent transport in general relativity. We apply it, for the first time, to the simulation of the late-inspiral and merger of two NSs. We find that turbulence can significantly affect the structure and survival time of the merger remnant, as well as its gravitational-wave (GW) and neutrino emissions. The former will be relevant for GW observation of merging NSs. The latter will affect the composition of the outflow driven by the merger and might influence its nucleosynthetic yields. The accretion rate after black hole formation is also affected. Nevertheless, we find that, for the most likely values of the turbulence mixing efficiency, these effects are relatively small and the GW signal will be affected only weakly by the turbulence. Thus, our simulations provide a first validation of all existing post-merger GW models.

  14. A Report on Simulation-Driven Reliability and Failure Analysis of Large-Scale Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Lipeng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Feiyi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oral, H. Sarp [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vazhkudai, Sudharshan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cao, Qing [Univ. of Tennessee, Knoxville, TN (United States)

    2014-11-01

    High-performance computing (HPC) storage systems provide data availability and reliability using various hardware and software fault tolerance techniques. Usually, reliability and availability are calculated at the subsystem or component level using limited metrics such as, mean time to failure (MTTF) or mean time to data loss (MTTDL). This often means settling on simple and disconnected failure models (such as exponential failure rate) to achieve tractable and close-formed solutions. However, such models have been shown to be insufficient in assessing end-to-end storage system reliability and availability. We propose a generic simulation framework aimed at analyzing the reliability and availability of storage systems at scale, and investigating what-if scenarios. The framework is designed for an end-to-end storage system, accommodating the various components and subsystems, their interconnections, failure patterns and propagation, and performs dependency analysis to capture a wide-range of failure cases. We evaluate the framework against a large-scale storage system that is in production and analyze its failure projections toward and beyond the end of lifecycle. We also examine the potential operational impact by studying how different types of components affect the overall system reliability and availability, and present the preliminary results

  15. Are current atomistic force fields accurate enough to study proteins in crowded environments?

    Directory of Open Access Journals (Sweden)

    Drazen Petrov

    2014-05-01

    Full Text Available The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded and oxidatively damaged (unfolded forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP as well as indirectly shown for additional two (AMBER94, OPLS-AAL, and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields

  16. The Adaptive Multi-scale Simulation Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, William R. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2015-09-01

    The Adaptive Multi-scale Simulation Infrastructure (AMSI) is a set of libraries and tools developed to support the development, implementation, and execution of general multimodel simulations. Using a minimal set of simulation meta-data AMSI allows for minimally intrusive work to adapt existent single-scale simulations for use in multi-scale simulations. Support for dynamic runtime operations such as single- and multi-scale adaptive properties is a key focus of AMSI. Particular focus has been spent on the development on scale-sensitive load balancing operations to allow single-scale simulations incorporated into a multi-scale simulation using AMSI to use standard load-balancing operations without affecting the integrity of the overall multi-scale simulation.

  17. Large-scale solar purchasing

    International Nuclear Information System (INIS)

    1999-01-01

    The principal objective of the project was to participate in the definition of a new IEA task concerning solar procurement (''the Task'') and to assess whether involvement in the task would be in the interest of the UK active solar heating industry. The project also aimed to assess the importance of large scale solar purchasing to UK active solar heating market development and to evaluate the level of interest in large scale solar purchasing amongst potential large scale purchasers (in particular housing associations and housing developers). A further aim of the project was to consider means of stimulating large scale active solar heating purchasing activity within the UK. (author)

  18. The development of a capability for aerodynamic testing of large-scale wing sections in a simulated natural rain environment

    Science.gov (United States)

    Bezos, Gaudy M.; Cambell, Bryan A.; Melson, W. Edward

    1989-01-01

    A research technique to obtain large-scale aerodynamic data in a simulated natural rain environment has been developed. A 10-ft chord NACA 64-210 wing section wing section equipped with leading-edge and trailing-edge high-lift devices was tested as part of a program to determine the effect of highly-concentrated, short-duration rainfall on airplane performance. Preliminary dry aerodynamic data are presented for the high-lift configuration at a velocity of 100 knots and an angle of attack of 18 deg. Also, data are presented on rainfield uniformity and rainfall concentration intensity levels obtained during the calibration of the rain simulation system.

  19. Atomistic simulation of dislocation nucleation barriers from cracktips in α-Fe

    International Nuclear Information System (INIS)

    Gordon, Peter A; Neeraj, T; Luton, Michael J

    2008-01-01

    In this work, we demonstrate that activation pathways for dislocation loop nucleation from cracktips can be explored with full atomistic detail using an efficient form of the nudged elastic band method. The approach is demonstrated in detail with an example of edge emission from an Fe crack under mode II loading, wherein activation energy barriers are obtained as a function of sub-critical stress intensity and the energy barriers for loop formation are compared with 2D calculations. Activation energy barriers are also computed for an intrinsically ductile cracktip orientation under mode I loading, from which we can infer the frequency of nucleation from the cracktip

  20. Parallelization of a beam dynamics code and first large scale radio frequency quadrupole simulations

    Directory of Open Access Journals (Sweden)

    J. Xu

    2007-01-01

    Full Text Available The design and operation support of hadron (proton and heavy-ion linear accelerators require substantial use of beam dynamics simulation tools. The beam dynamics code TRACK has been originally developed at Argonne National Laboratory (ANL to fulfill the special requirements of the rare isotope accelerator (RIA accelerator systems. From the beginning, the code has been developed to make it useful in the three stages of a linear accelerator project, namely, the design, commissioning, and operation of the machine. To realize this concept, the code has unique features such as end-to-end simulations from the ion source to the final beam destination and automatic procedures for tuning of a multiple charge state heavy-ion beam. The TRACK code has become a general beam dynamics code for hadron linacs and has found wide applications worldwide. Until recently, the code has remained serial except for a simple parallelization used for the simulation of multiple seeds to study the machine errors. To speed up computation, the TRACK Poisson solver has been parallelized. This paper discusses different parallel models for solving the Poisson equation with the primary goal to extend the scalability of the code onto 1024 and more processors of the new generation of supercomputers known as BlueGene (BG/L. Domain decomposition techniques have been adapted and incorporated into the parallel version of the TRACK code. To demonstrate the new capabilities of the parallelized TRACK code, the dynamics of a 45 mA proton beam represented by 10^{8} particles has been simulated through the 325 MHz radio frequency quadrupole and initial accelerator section of the proposed FNAL proton driver. The results show the benefits and advantages of large-scale parallel computing in beam dynamics simulations.

  1. Large-scale micromagnetic simulation of Nd-Fe-B sintered magnets with Dy-rich shell structures

    Directory of Open Access Journals (Sweden)

    T. Oikawa

    2016-05-01

    Full Text Available Large-scale micromagnetic simulations have been performed using the energy minimization method on a model with structural features similar to those of Dy grain boundary diffusion (GBD-processed sintered magnets. Coercivity increases as a linear function of the anisotropy field of the Dy-rich shell, which is independent of Dy composition in the core as long as the shell thickness is greater than about 15 nm. This result shows that the Dy contained in the initial sintered magnets prior to the GBD process is not essential for enhancing coercivity. Magnetization reversal patterns indicate that coercivity is strongly influenced by domain wall pinning at the grain boundary. This observation is found to be consistent with the one-dimensional pinning theory.

  2. The role of large scale motions on passive scalar transport

    Science.gov (United States)

    Dharmarathne, Suranga; Araya, Guillermo; Tutkun, Murat; Leonardi, Stefano; Castillo, Luciano

    2014-11-01

    We study direct numerical simulation (DNS) of turbulent channel flow at Reτ = 394 to investigate effect of large scale motions on fluctuating temperature field which forms a passive scalar field. Statistical description of the large scale features of the turbulent channel flow is obtained using two-point correlations of velocity components. Two-point correlations of fluctuating temperature field is also examined in order to identify possible similarities between velocity and temperature fields. The two-point cross-correlations betwen the velocity and temperature fluctuations are further analyzed to establish connections between these two fields. In addition, we use proper orhtogonal decompotion (POD) to extract most dominant modes of the fields and discuss the coupling of large scale features of turbulence and the temperature field.

  3. Emergence of linear elasticity from the atomistic description of matter

    Energy Technology Data Exchange (ETDEWEB)

    Cakir, Abdullah, E-mail: acakir@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University (Singapore); Pica Ciamarra, Massimo [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University (Singapore); Dipartimento di Scienze Fisiche, CNR–SPIN, Università di Napoli Federico II, I-80126 Napoli (Italy)

    2016-08-07

    We investigate the emergence of the continuum elastic limit from the atomistic description of matter at zero temperature considering how locally defined elastic quantities depend on the coarse graining length scale. Results obtained numerically investigating different model systems are rationalized in a unifying picture according to which the continuum elastic limit emerges through a process determined by two system properties, the degree of disorder, and a length scale associated to the transverse low-frequency vibrational modes. The degree of disorder controls the emergence of long-range local shear stress and shear strain correlations, while the length scale influences the amplitude of the fluctuations of the local elastic constants close to the jamming transition.

  4. Emergence of linear elasticity from the atomistic description of matter

    International Nuclear Information System (INIS)

    Cakir, Abdullah; Pica Ciamarra, Massimo

    2016-01-01

    We investigate the emergence of the continuum elastic limit from the atomistic description of matter at zero temperature considering how locally defined elastic quantities depend on the coarse graining length scale. Results obtained numerically investigating different model systems are rationalized in a unifying picture according to which the continuum elastic limit emerges through a process determined by two system properties, the degree of disorder, and a length scale associated to the transverse low-frequency vibrational modes. The degree of disorder controls the emergence of long-range local shear stress and shear strain correlations, while the length scale influences the amplitude of the fluctuations of the local elastic constants close to the jamming transition.

  5. Molecular dynamics simulations in hybrid particle-continuum schemes: Pitfalls and caveats

    Science.gov (United States)

    Stalter, S.; Yelash, L.; Emamy, N.; Statt, A.; Hanke, M.; Lukáčová-Medvid'ová, M.; Virnau, P.

    2018-03-01

    Heterogeneous multiscale methods (HMM) combine molecular accuracy of particle-based simulations with the computational efficiency of continuum descriptions to model flow in soft matter liquids. In these schemes, molecular simulations typically pose a computational bottleneck, which we investigate in detail in this study. We find that it is preferable to simulate many small systems as opposed to a few large systems, and that a choice of a simple isokinetic thermostat is typically sufficient while thermostats such as Lowe-Andersen allow for simulations at elevated viscosity. We discuss suitable choices for time steps and finite-size effects which arise in the limit of very small simulation boxes. We also argue that if colloidal systems are considered as opposed to atomistic systems, the gap between microscopic and macroscopic simulations regarding time and length scales is significantly smaller. We propose a novel reduced-order technique for the coupling to the macroscopic solver, which allows us to approximate a non-linear stress-strain relation efficiently and thus further reduce computational effort of microscopic simulations.

  6. Large-scale Homogenization of Bulk Materials in Mammoth Silos

    NARCIS (Netherlands)

    Schott, D.L.

    2004-01-01

    This doctoral thesis concerns the large-scale homogenization of bulk materials in mammoth silos. The objective of this research was to determine the best stacking and reclaiming method for homogenization in mammoth silos. For this purpose a simulation program was developed to estimate the

  7. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao

    2015-12-14

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.

  8. Nuclear EMP simulation for large-scale urban environments. FDTD for electrically large problems.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, William S. [Los Alamos National Laboratory; Bull, Jeffrey S. [Los Alamos National Laboratory; Wilcox, Trevor [Los Alamos National Laboratory; Bos, Randall J. [Los Alamos National Laboratory; Shao, Xuan-Min [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory; Costigan, Keeley R. [Los Alamos National Laboratory

    2012-08-13

    In case of a terrorist nuclear attack in a metropolitan area, EMP measurement could provide: (1) a prompt confirmation of the nature of the explosion (chemical or nuclear) for emergency response; and (2) and characterization parameters of the device (reaction history, yield) for technical forensics. However, urban environment could affect the fidelity of the prompt EMP measurement (as well as all other types of prompt measurement): (1) Nuclear EMP wavefront would no longer be coherent, due to incoherent production, attenuation, and propagation of gamma and electrons; and (2) EMP propagation from source region outward would undergo complicated transmission, reflection, and diffraction processes. EMP simulation for electrically-large urban environment: (1) Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach; and (2) FDTD tends to be limited to problems that are not 'too' large compared to the wavelengths of interest because of numerical dispersion and anisotropy. We use a higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.

  9. Hybrid Reynolds-Averaged/Large Eddy Simulation of a Cavity Flameholder; Assessment of Modeling Sensitivities

    Science.gov (United States)

    Baurle, R. A.

    2015-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit

  10. Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, Karen [MIT; Marzouk, Youssef [MIT

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to

  11. Towards an integrated multiscale simulation of turbulent clouds on PetaScale computers

    International Nuclear Information System (INIS)

    Wang Lianping; Ayala, Orlando; Parishani, Hossein; Gao, Guang R; Kambhamettu, Chandra; Li Xiaoming; Rossi, Louis; Orozco, Daniel; Torres, Claudio; Grabowski, Wojciech W; Wyszogrodzki, Andrzej A; Piotrowski, Zbigniew

    2011-01-01

    The development of precipitating warm clouds is affected by several effects of small-scale air turbulence including enhancement of droplet-droplet collision rate by turbulence, entrainment and mixing at the cloud edges, and coupling of mechanical and thermal energies at various scales. Large-scale computation is a viable research tool for quantifying these multiscale processes. Specifically, top-down large-eddy simulations (LES) of shallow convective clouds typically resolve scales of turbulent energy-containing eddies while the effects of turbulent cascade toward viscous dissipation are parameterized. Bottom-up hybrid direct numerical simulations (HDNS) of cloud microphysical processes resolve fully the dissipation-range flow scales but only partially the inertial subrange scales. it is desirable to systematically decrease the grid length in LES and increase the domain size in HDNS so that they can be better integrated to address the full range of scales and their coupling. In this paper, we discuss computational issues and physical modeling questions in expanding the ranges of scales realizable in LES and HDNS, and in bridging LES and HDNS. We review our on-going efforts in transforming our simulation codes towards PetaScale computing, in improving physical representations in LES and HDNS, and in developing better methods to analyze and interpret the simulation results.

  12. Large-scale modeling of rain fields from a rain cell deterministic model

    Science.gov (United States)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  13. An Axiomatic Analysis Approach for Large-Scale Disaster-Tolerant Systems Modeling

    Directory of Open Access Journals (Sweden)

    Theodore W. Manikas

    2011-02-01

    Full Text Available Disaster tolerance in computing and communications systems refers to the ability to maintain a degree of functionality throughout the occurrence of a disaster. We accomplish the incorporation of disaster tolerance within a system by simulating various threats to the system operation and identifying areas for system redesign. Unfortunately, extremely large systems are not amenable to comprehensive simulation studies due to the large computational complexity requirements. To address this limitation, an axiomatic approach that decomposes a large-scale system into smaller subsystems is developed that allows the subsystems to be independently modeled. This approach is implemented using a data communications network system example. The results indicate that the decomposition approach produces simulation responses that are similar to the full system approach, but with greatly reduced simulation time.

  14. Large-eddy simulations for turbulent flows

    International Nuclear Information System (INIS)

    Husson, S.

    2007-07-01

    The aim of this work is to study the impact of thermal gradients on a turbulent channel flow with imposed wall temperatures and friction Reynolds numbers of 180 and 395. In this configuration, temperature variations can be strong and induce significant variations of the fluid properties. We consider the low Mach number equations and carry out large eddy simulations. We first validate our simulations thanks to comparisons of some of our LES results with DNS data. Then, we investigate the influence of the variations of the conductivity and the viscosity and show that we can assume these properties constant only for weak temperature gradients. We also study the thermal sub-grid-scale modelling and find no difference when the sub-grid-scale Prandtl number is taken constant or dynamically calculated. The analysis of the effects of strongly increasing the temperature ratio mainly shows a dissymmetry of the profiles. The physical mechanism responsible of these modifications is explained. Finally, we use semi-local scaling and the Van Driest transformation and we show that they lead to a better correspondence of the low and high temperature ratios profiles. (author)

  15. Atomistic description of large nanostructures based on III-nitride semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Sanchez, Alejandro; Garcia-Cristobal, Alberto; Cantarero, Andres [Instituto de Ciencia de Materiales de la Universidad de Valencia (Spain); Terentjevs, Aleksandrs; Cicero, Giancarlo [Physics and Materials Science and Chemical Engineering Departments, Politecnico di Torino (Italy)

    2010-07-01

    Semiconductor nanocolumns exhibiting a growth without dislocations and high crystalline quality are of great interest in nanotechnology applications. Specifically, InN-based nanocolumns are good candidates to develop multi-junction solar cells due to their small gap, 0.67 eV, and the possibility of alloying with other nitrides (as GaN and AlN) to cover the entire solar spectrum. A proper description of optical properties of the nanostructures described above can start with an atomistic treatment of the electronic structure in order to keep the essential geometry and symmetry of the objects. Unfortunately, the best description realized with ab initio electronic structure software is strongly limited by the nanocolumn diameter to a few nanometers. By using a combination of ab initio and empirical tight-binding methods, we can connect the quality of the first principles calculations (performed with the Espresso code), with the versatility of an empirical approach. Once we have an ab initio quality parameter set for the empirical tight-binding code, we can study larger nanostructures with this approach, reducing the computation time in orders of magnitude.

  16. The glass transition in cured epoxy thermosets: A comparative molecular dynamics study in coarse-grained and atomistic resolution

    International Nuclear Information System (INIS)

    Langeloth, Michael; Böhm, Michael C.; Müller-Plathe, Florian; Sugii, Taisuke

    2015-01-01

    We investigate the volumetric glass transition temperature T g in epoxy thermosets by means of molecular dynamics simulations. The epoxy thermosets consist of the resin bisphenol A diglycidyl ether and the hardener diethylenetriamine. A structure based coarse-grained (CG) force field has been derived using iterative Boltzmann inversion in order to facilitate simulations of larger length scales. We observe that T g increases clearly with the degree of cross-linking for all-atomistic (AA) and CG simulations. The transition T g in CG simulations of uncured mixtures is much lower than in AA-simulations due to the soft nature of the CG potentials, but increases all the more with the formation of rigid cross-links. Additional simulations of the CG mixtures in contact with a surface show the existence of an interphase region of about 3 nm thickness in which the network properties deviate significantly from the bulk. In accordance to experimental studies, we observe that T g is reduced in this interphase region and gradually increases to its bulk value with distance from the surface. The present study shows that the glass transition is a local phenomenon that depends on the network structure in the immediate environment

  17. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  18. Neurite, a finite difference large scale parallel program for the simulation of electrical signal propagation in neurites under mechanical loading.

    Directory of Open Access Journals (Sweden)

    Julián A García-Grajales

    Full Text Available With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon

  19. Large data management and systematization of simulation

    International Nuclear Information System (INIS)

    Ueshima, Yutaka; Saitho, Kanji; Koga, James; Isogai, Kentaro

    2004-01-01

    In the advanced photon research large-scale simulations are powerful tools. In the numerical experiments, real-time visualization and steering system are thought as hopeful methods of data analysis. This approach is valid in the stereotype analysis at one time or short-cycle simulation. In the research for an unknown problem, it is necessary that the output data can be analyzed many times because profitable analysis is difficult at the first time. Consequently, output data should be filed to refer and analyze at any time. To support the research, we need the followed automatic functions, transporting data files from data generator to data storage, analyzing data, tracking history of data handling, and so on. The Large Data Management system will be functional Problem Solving Environment distributed system. (author)

  20. Photorealistic large-scale urban city model reconstruction.

    Science.gov (United States)

    Poullis, Charalambos; You, Suya

    2009-01-01

    The rapid and efficient creation of virtual environments has become a crucial part of virtual reality applications. In particular, civil and defense applications often require and employ detailed models of operations areas for training, simulations of different scenarios, planning for natural or man-made events, monitoring, surveillance, games, and films. A realistic representation of the large-scale environments is therefore imperative for the success of such applications since it increases the immersive experience of its users and helps reduce the difference between physical and virtual reality. However, the task of creating such large-scale virtual environments still remains a time-consuming and manual work. In this work, we propose a novel method for the rapid reconstruction of photorealistic large-scale virtual environments. First, a novel, extendible, parameterized geometric primitive is presented for the automatic building identification and reconstruction of building structures. In addition, buildings with complex roofs containing complex linear and nonlinear surfaces are reconstructed interactively using a linear polygonal and a nonlinear primitive, respectively. Second, we present a rendering pipeline for the composition of photorealistic textures, which unlike existing techniques, can recover missing or occluded texture information by integrating multiple information captured from different optical sensors (ground, aerial, and satellite).

  1. A concurrent visualization system for large-scale unsteady simulations. Parallel vector performance on an NEC SX-4

    International Nuclear Information System (INIS)

    Takei, Toshifumi; Doi, Shun; Matsumoto, Hideki; Muramatsu, Kazuhiro

    2000-01-01

    We have developed a concurrent visualization system RVSLIB (Real-time Visual Simulation Library). This paper shows the effectiveness of the system when it is applied to large-scale unsteady simulations, for which the conventional post-processing approach may no longer work, on high-performance parallel vector supercomputers. The system performs almost all of the visualization tasks on a computation server and uses compressed visualized image data for efficient communication between the server and the user terminal. We have introduced several techniques, including vectorization and parallelization, into the system to minimize the computational costs of the visualization tools. The performance of RVSLIB was evaluated by using an actual CFD code on an NEC SX-4. The computational time increase due to the concurrent visualization was at most 3% for a smaller (1.6 million) grid and less than 1% for a larger (6.2 million) one. (author)

  2. Three-dimensional two-fluid Braginskii simulations of the large plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Dustin M., E-mail: dustin.m.fisher.gr@dartmouth.edu; Rogers, Barrett N., E-mail: barrett.rogers@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Rossi, Giovanni D.; Guice, Daniel S.; Carter, Troy A. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-09-15

    The Large Plasma Device (LAPD) is modeled using the 3D Global Braginskii Solver code. Comparisons to experimental measurements are made in the low-bias regime in which there is an intrinsic E × B rotation of the plasma. In the simulations, this rotation is caused primarily by sheath effects and may be a likely mechanism for the intrinsic rotation seen in LAPD. Simulations show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices in the simulations are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the simulations at previously theorized values reduces the radial particle flux by about a factor of two, from values that are somewhat larger than the experimentally measured flux to values that are somewhat lower than the measurements. This reduction is due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport.

  3. Applicability of laboratory data to large scale tests under dynamic loading conditions

    International Nuclear Information System (INIS)

    Kussmaul, K.; Klenk, A.

    1993-01-01

    The analysis of dynamic loading and subsequent fracture must be based on reliable data for loading and deformation history. This paper describes an investigation to examine the applicability of parameters which are determined by means of small-scale laboratory tests to large-scale tests. The following steps were carried out: (1) Determination of crack initiation by means of strain gauges applied in the crack tip field of compact tension specimens. (2) Determination of dynamic crack resistance curves of CT-specimens using a modified key-curve technique. The key curves are determined by dynamic finite element analyses. (3) Determination of strain-rate-dependent stress-strain relationships for the finite element simulation of small-scale and large-scale tests. (4) Analysis of the loading history for small-scale tests with the aid of experimental data and finite element calculations. (5) Testing of dynamically loaded tensile specimens taken as strips from ferritic steel pipes with a thickness of 13 mm resp. 18 mm. The strips contained slits and surface cracks. (6) Fracture mechanics analyses of the above mentioned tests and of wide plate tests. The wide plates (960x608x40 mm 3 ) had been tested in a propellant-driven 12 MN dynamic testing facility. For calculating the fracture mechanics parameters of both tests, a dynamic finite element simulation considering the dynamic material behaviour was employed. The finite element analyses showed a good agreement with the simulated tests. This prerequisite allowed to gain critical J-integral values. Generally the results of the large-scale tests were conservative. 19 refs., 20 figs., 4 tabs

  4. On the use of atomistic simulations to aid bulk metallic glasses structural elucidation with solid-state NMR.

    Science.gov (United States)

    Ferreira, Ary R; Rino, José P

    2017-08-24

    Solid-state nuclear magnetic resonance (ssNMR) experimental 27 Al metallic shifts reported in the literature for bulk metallic glasses (BMGs) were revisited in the light of state-of-the-art atomistic simulations. In a consistent way, the Gauge-Including Projector Augmented-Wave (GIPAW) method was applied in conjunction with classical molecular dynamics (CMD). A series of Zr-Cu-Al alloys with low Al concentrations were selected as case study systems, for which realistic CMD derived structural models were used for a short- and medium-range order mining. That initial procedure allowed the detection of trends describing changes on the microstructure of the material upon Al alloying, which in turn were used to guide GIPAW calculations with a set of abstract systems in the context of ssNMR. With essential precision and accuracy, the ab initio simulations also yielded valuable trends from the electronic structure point of view, which enabled an overview of the bonding nature of Al-centered clusters as well as its influence on the experimental ssNMR outcomes. The approach described in this work might promote the use of ssNMR spectroscopy in research on glassy metals. Moreover, the results presented demonstrate the possibility to expand the applications of this technique, with deeper insight into nuclear interactions and less speculative assignments.

  5. Large-scale hydrology in Europe : observed patterns and model performance

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, Lukas

    2011-06-15

    In a changing climate, terrestrial water storages are of great interest as water availability impacts key aspects of ecosystem functioning. Thus, a better understanding of the variations of wet and dry periods will contribute to fully grasp processes of the earth system such as nutrient cycling and vegetation dynamics. Currently, river runoff from small, nearly natural, catchments is one of the few variables of the terrestrial water balance that is regularly monitored with detailed spatial and temporal coverage on large scales. River runoff, therefore, provides a foundation to approach European hydrology with respect to observed patterns on large scales, with regard to the ability of models to capture these.The analysis of observed river flow from small catchments, focused on the identification and description of spatial patterns of simultaneous temporal variations of runoff. These are dominated by large-scale variations of climatic variables but also altered by catchment processes. It was shown that time series of annual low, mean and high flows follow the same atmospheric drivers. The observation that high flows are more closely coupled to large scale atmospheric drivers than low flows, indicates the increasing influence of catchment properties on runoff under dry conditions. Further, it was shown that the low-frequency variability of European runoff is dominated by two opposing centres of simultaneous variations, such that dry years in the north are accompanied by wet years in the south.Large-scale hydrological models are simplified representations of our current perception of the terrestrial water balance on large scales. Quantification of the models strengths and weaknesses is the prerequisite for a reliable interpretation of simulation results. Model evaluations may also enable to detect shortcomings with model assumptions and thus enable a refinement of the current perception of hydrological systems. The ability of a multi model ensemble of nine large-scale

  6. On the atomistic mechanisms of alkane (methane-pentane) separation by distillation: a molecular dynamics study.

    Science.gov (United States)

    Zahn, Dirk

    2007-11-01

    Insights into the liquid-vapor transformation of methane-pentane mixtures were obtained from transition path sampling molecular dynamics simulations. This case study of the boiling of non-azeotropic mixtures demonstrates an unprejudiced identification of the atomistic mechanisms of phase separation in the course of vaporization which form the basis of distillation processes. From our simulations we observe spontaneous segregation events in the liquid mixture to trigger vapor nucleation. The formation of vapor domains stabilizes and further promotes the separation process by preferential evaporation of methane molecules. While this discrimination holds for all mixtures of different composition studied, a full account of the boiling process requires a more complex picture. At low methane concentration the nucleation of the vapor domains includes both methane and pentane molecules. The pentane molecules, however, tend to form small aggregates and undergo rapid re-condensation within picoseconds to nanoseconds scales. Accordingly, two aspects of selectivity accounting for methane-pentane separation in the course of liquid-vapor transformations were made accessible to molecular dynamics simulations: spontaneous segregation in the liquid phase leading to selective vapor nucleation and growth favoring methane vaporization and selective re-condensation of pentane molecules.

  7. Development of large scale fusion plasma simulation and storage grid on JAERI Origin3800 system

    International Nuclear Information System (INIS)

    Idomura, Yasuhiro; Wang, Xin

    2003-01-01

    Under the Numerical EXperiment of Tokamak (NEXT) research project, various fluid, particle, and hybrid codes have been developed. These codes require a computational environment which consists of high performance processors, high speed storage system, and high speed parallelized visualization system. In this paper, the performance of the JAERI Origin3800 system is examined from a point of view of these requests. In the performance tests, it is shown that the representative particle and fluid codes operate with 15 - 40% of processing efficiency up to 512 processors. A storage area network (SAN) provides high speed parallel data transfer. A parallel visualization system enables order to magnitude faster visualization of a large scale simulation data compared with the previous graphic workstations. Accordingly, an extremely advanced simulation environment is realized on the JAERI Origin3800 system. Recently, development of a storage grid is underway in order to improve a computational environment of remote users. The storage grid is constructed by a combination of SAN and a wavelength division multiplexer (WDM). The preliminary tests show that compared with the existing data transfer methods, it enables dramatically high speed data transfer ∼100 Gbps over a wide area network. (author)

  8. Large scale statistics for computational verification of grain growth simulations with experiments

    International Nuclear Information System (INIS)

    Demirel, Melik C.; Kuprat, Andrew P.; George, Denise C.; Straub, G.K.; Misra, Amit; Alexander, Kathleen B.; Rollett, Anthony D.

    2002-01-01

    It is known that by controlling microstructural development, desirable properties of materials can be achieved. The main objective of our research is to understand and control interface dominated material properties, and finally, to verify experimental results with computer simulations. We have previously showed a strong similarity between small-scale grain growth experiments and anisotropic three-dimensional simulations obtained from the Electron Backscattered Diffraction (EBSD) measurements. Using the same technique, we obtained 5170-grain data from an Aluminum-film (120 (micro)m thick) with a columnar grain structure. Experimentally obtained starting microstructure and grain boundary properties are input for the three-dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550 C. Characterization of the structures and properties of grain boundary networks (GBN) to produce desirable microstructures is one of the fundamental problems in interface science. There is an ongoing research for the development of new experimental and analytical techniques in order to obtain and synthesize information related to GBN. The grain boundary energy and mobility data were characterized by Electron Backscattered Diffraction (EBSD) technique and Atomic Force Microscopy (AFM) observations (i.e., for ceramic MgO and for the metal Al). Grain boundary energies are extracted from triple junction (TJ) geometry considering the local equilibrium condition at TJ's. Relative boundary mobilities were also extracted from TJ's through a statistical/multiscale analysis. Additionally, there are recent theoretical developments of grain boundary evolution in microstructures. In this paper, a new technique for three-dimensional grain growth simulations was used to simulate interface migration

  9. Coupling of Large Eddy Simulations with Meteorological Models to simulate Methane Leaks from Natural Gas Storage Facilities

    Science.gov (United States)

    Prasad, K.

    2017-12-01

    Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and

  10. Deductive multiscale simulation using order parameters

    Science.gov (United States)

    Ortoleva, Peter J.

    2017-05-16

    Illustrative embodiments of systems and methods for the deductive multiscale simulation of macromolecules are disclosed. In one illustrative embodiment, a deductive multiscale simulation method may include (i) constructing a set of order parameters that model one or more structural characteristics of a macromolecule, (ii) simulating an ensemble of atomistic configurations for the macromolecule using instantaneous values of the set of order parameters, (iii) simulating thermal-average forces and diffusivities for the ensemble of atomistic configurations, and (iv) evolving the set of order parameters via Langevin dynamics using the thermal-average forces and diffusivities.

  11. Simulation of hydrogen release and combustion in large scale geometries: models and methods

    International Nuclear Information System (INIS)

    Beccantini, A.; Dabbene, F.; Kudriakov, S.; Magnaud, J.P.; Paillere, H.; Studer, E.

    2003-01-01

    The simulation of H2 distribution and combustion in confined geometries such as nuclear reactor containments is a challenging task from the point of view of numerical simulation, as it involves quite disparate length and time scales, which need to resolved appropriately and efficiently. Cea is involved in the development and validation of codes to model such problems, for external clients such as IRSN (TONUS code), Technicatome (NAUTILUS code) or for its own safety studies. This paper provides an overview of the physical and numerical models developed for such applications, as well as some insight into the current research topics which are being pursued. Examples of H2 mixing and combustion simulations are given. (authors)

  12. Atomistic simulations of thermal transport in Si and SiGe based materials: From bulk to nanostructures

    Science.gov (United States)

    Savic, Ivana; Mingo, Natalio; Donadio, Davide; Galli, Giulia

    2010-03-01

    It has been recently proposed that Si and SiGe based nanostructured materials may exhibit low thermal conductivity and overall promising properties for thermoelectric applications. Hence there is a considerable interest in developing accurate theoretical and computational methods which can help interpret recent measurements, identify the physical origin of the reduced thermal conductivity, as well as shed light on the interplay between disorder and nanostructuring in determining a high figure of merit. In this work, we investigate the capability of an atomistic Green's function method [1] to describe phonon transport in several types of Si and SiGe based systems: amorphous Si, SiGe alloys, planar and nanodot Si/SiGe multilayers. We compare our results with experimental data [2,3], and with the findings of molecular dynamics simulations and calculations based on the Boltzmann transport equation. [1] I. Savic, N. Mingo, and D. A. Stewart, Phys. Rev. Lett. 101, 165502 (2008). [2] S.-M. Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997). [3] G. Pernot et al., submitted.

  13. Multiscale modeling of polyisoprene on graphite

    International Nuclear Information System (INIS)

    Pandey, Yogendra Narayan; Brayton, Alexander; Doxastakis, Manolis; Burkhart, Craig; Papakonstantopoulos, George J.

    2014-01-01

    The local dynamics and the conformational properties of polyisoprene next to a smooth graphite surface constructed by graphene layers are studied by a multiscale methodology. First, fully atomistic molecular dynamics simulations of oligomers next to the surface are performed. Subsequently, Monte Carlo simulations of a systematically derived coarse-grained model generate numerous uncorrelated structures for polymer systems. A new reverse backmapping strategy is presented that reintroduces atomistic detail. Finally, multiple extensive fully atomistic simulations with large systems of long macromolecules are employed to examine local dynamics in proximity to graphite. Polyisoprene repeat units arrange close to a parallel configuration with chains exhibiting a distribution of contact lengths. Efficient Monte Carlo algorithms with the coarse-grain model are capable of sampling these distributions for any molecular weight in quantitative agreement with predictions from atomistic models. Furthermore, molecular dynamics simulations with well-equilibrated systems at all length-scales support an increased dynamic heterogeneity that is emerging from both intermolecular interactions with the flat surface and intramolecular cooperativity. This study provides a detailed comprehensive picture of polyisoprene on a flat surface and consists of an effort to characterize such systems in atomistic detail

  14. Simulating chemical systems : MPI and GPU parallelization of novel SD algorithms

    NARCIS (Netherlands)

    Goga, N.

    Molecular dynamics is used for simulating chemical systems with the goal of studying a large range of phenomena starting from cell structures to the design of new materials, drugs, etc. A very important component of molecular dynamics is the use of well-suited atomistic and molecular modelling of

  15. Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal

    International Nuclear Information System (INIS)

    Huang, Liangliang; Gubbins, Keith E.; Seredych, Mykola; Bandosz, Teresa J.; Duin, Adri C. T. van; Lu, Xiaohua

    2013-01-01

    The determination of an atomistic graphene oxide (GO) model has been challenging due to the structural dependence on different synthesis methods. In this work we combine temperature-programmed molecular dynamics simulation techniques and the ReaxFF reactive force field to generate realistic atomistic GO structures. By grafting a mixture of epoxy and hydroxyl groups to the basal graphene surface and fine-tuning their initial concentrations, we produce in a controllable manner the GO structures with different functional groups and defects. The models agree with structural experimental data and with other ab initio quantum calculations. Using the generated atomistic models, we perform reactive adsorption calculations for H 2 S and H 2 O/H 2 S mixtures on GO materials and compare the results with experiment. We find that H 2 S molecules dissociate on the carbonyl functional groups, and H 2 O, CO 2 , and CO molecules are released as reaction products from the GO surface. The calculation reveals that for the H 2 O/H 2 S mixtures, H 2 O molecules are preferentially adsorbed to the carbonyl sites and block the potential active sites for H 2 S decomposition. The calculation agrees well with the experiments. The methodology and the procedure applied in this work open a new door to the theoretical studies of GO and can be extended to the research on other amorphous materials

  16. Large scale particle image velocimetry with helium filled soap bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Bosbach, Johannes; Kuehn, Matthias; Wagner, Claus [German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Goettingen (Germany)

    2009-03-15

    The application of particle image velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of computational fluid dynamics simulations. (orig.)

  17. Large scale particle image velocimetry with helium filled soap bubbles

    Science.gov (United States)

    Bosbach, Johannes; Kühn, Matthias; Wagner, Claus

    2009-03-01

    The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.

  18. Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation. Part 3: turbulent flow and plume dispersion in building arrays

    Czech Academy of Sciences Publication Activity Database

    Nakayama, H.; Jurčáková, Klára; Nagai, H.

    2013-01-01

    Roč. 50, č. 5 (2013), s. 503-519 ISSN 0022-3131 Institutional support: RVO:61388998 Keywords : local-scale high-resolution dispersion model * nuclear emergency response system * large-eddy simulation * spatially developing turbulent boundary layer flow Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.452, year: 2013

  19. FDTD method for laser absorption in met