WorldWideScience

Sample records for large vamp structures

  1. VAMPS: a website for visualization and analysis of microbial population structures.

    Science.gov (United States)

    Huse, Susan M; Mark Welch, David B; Voorhis, Andy; Shipunova, Anna; Morrison, Hilary G; Eren, A Murat; Sogin, Mitchell L

    2014-02-05

    The advent of next-generation DNA sequencing platforms has revolutionized molecular microbial ecology by making the detailed analysis of complex communities over time and space a tractable research pursuit for small research groups. However, the ability to generate 10⁵-10⁸ reads with relative ease brings with it many downstream complications. Beyond the computational resources and skills needed to process and analyze data, it is difficult to compare datasets in an intuitive and interactive manner that leads to hypothesis generation and testing. We developed the free web service VAMPS (Visualization and Analysis of Microbial Population Structures, http://vamps.mbl.edu) to address these challenges and to facilitate research by individuals or collaborating groups working on projects with large-scale sequencing data. Users can upload marker gene sequences and associated metadata; reads are quality filtered and assigned to both taxonomic structures and to taxonomy-independent clusters. A simple point-and-click interface allows users to select for analysis any combination of their own or their collaborators' private data and data from public projects, filter these by their choice of taxonomic and/or abundance criteria, and then explore these data using a wide range of analytic methods and visualizations. Each result is extensively hyperlinked to other analysis and visualization options, promoting data exploration and leading to a greater understanding of data relationships. VAMPS allows researchers using marker gene sequence data to analyze the diversity of microbial communities and the relationships between communities, to explore these analyses in an intuitive visual context, and to download data, results, and images for publication. VAMPS obviates the need for individual research groups to make the considerable investment in computational infrastructure and bioinformatic support otherwise necessary to process, analyze, and interpret massive amounts of next

  2. Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation.

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    Full Text Available BACKGROUND: Cell plate formation during plant cytokinesis is facilitated by SNARE complex-mediated vesicle fusion at the cell-division plane. However, our knowledge regarding R-SNARE components of membrane fusion machinery for cell plate formation remains quite limited. METHODOLOGY/PRINCIPAL FINDINGS: We report the in vivo function of Arabidopsis VAMP721 and VAMP722, two closely sequence-related R-SNAREs, in cell plate formation. Double homozygous vamp721vamp722 mutant seedlings showed lethal dwarf phenotypes and were characterized by rudimentary roots, cotyledons and hypocotyls. Furthermore, cell wall stubs and incomplete cytokinesis were frequently observed in vamp721vamp722 seedlings. Confocal images revealed that green fluorescent protein-tagged VAMP721 and VAMP722 were preferentially localized to the expanding cell plates in dividing cells. Drug treatments and co-localization analyses demonstrated that punctuate organelles labeled with VAMP721 and VAMP722 represented early endosomes overlapped with VHA-a1-labeled TGN, which were distinct from Golgi stacks and prevacuolar compartments. In addition, protein traffic to the plasma membrane, but not to the vacuole, was severely disrupted in vamp721vamp722 seedlings by subcellular localization of marker proteins. CONCLUSION/SIGNIFICANCE: These observations suggest that VAMP721 and VAMP722 are involved in secretory trafficking to the plasma membrane via TGN/early endosomal compartment, which contributes substantially to cell plate formation during plant cytokinesis.

  3. Drosophila VAMP7 regulates Wingless intracellular trafficking.

    Science.gov (United States)

    Gao, Han; He, Fang; Lin, Xinhua; Wu, Yihui

    2017-01-01

    Drosophila Wingless (Wg) is a morphogen that determines cell fate during development. Previous studies have shown that endocytic pathways regulate Wg trafficking and signaling. Here, we showed that loss of vamp7, a gene required for vesicle fusion, dramatically increased Wg levels and decreased Wg signaling. Interestingly, we found that levels of Dally-like (Dlp), a glypican that can interact with Wg to suppress Wg signaling at the dorsoventral boundary of the Drosophila wing, were also increased in vamp7 mutant cells. Moreover, Wg puncta in Rab4-dependent recycling endosomes were Dlp positive. We hypothesize that VAMP7 is required for Wg intracellular trafficking and the accumulation of Wg in Rab4-dependent recycling endosomes might affect Wg signaling.

  4. Increased activity of the Vesicular Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor TI-VAMP/VAMP7 by Tyrosine Phosphorylation in the Longin Domain*

    Science.gov (United States)

    Burgo, Andrea; Casano, Alessandra M.; Kuster, Aurelia; Arold, Stefan T.; Wang, Guan; Nola, Sébastien; Verraes, Agathe; Dingli, Florent; Loew, Damarys; Galli, Thierry

    2013-01-01

    Vesicular (v)- and target (t)-SNAREs play essential roles in intracellular membrane fusion through the formation of cytoplasmic α-helical bundles. Several v-SNAREs have a Longin N-terminal extension that, by promoting a closed conformation, plays an autoinhibitory function and decreases SNARE complex formation and membrane fusion efficiency. The molecular mechanism leading to Longin v-SNARE activation is largely unknown. Here we find that exocytosis mediated by the Longin v-SNARE TI-VAMP/VAMP7 is activated by tonic treatment with insulin and insulin-like growth factor-1 but not by depolarization and intracellular calcium rise. In search of a potential downstream mechanism, we found that TI-VAMP is phosphorylated in vitro by c-Src kinase on tyrosine 45 of the Longin domain. Accordingly, a mutation of tyrosine 45 into glutamate, but not phenylalanine, activates both t-SNARE binding and exocytosis. Activation of TI-VAMP-mediated exocytosis thus relies on tyrosine phosphorylation. PMID:23471971

  5. VAMP7 modulates ciliary biogenesis in kidney cells.

    Directory of Open Access Journals (Sweden)

    Christina M Szalinski

    Full Text Available Epithelial cells elaborate specialized domains that have distinct protein and lipid compositions, including the apical and basolateral surfaces and primary cilia. Maintaining the identity of these domains is required for proper cell function, and requires the efficient and selective SNARE-mediated fusion of vesicles containing newly synthesized and recycling proteins with the proper target membrane. Multiple pathways exist to deliver newly synthesized proteins to the apical surface of kidney cells, and the post-Golgi SNAREs, or VAMPs, involved in these distinct pathways have not been identified. VAMP7 has been implicated in apical protein delivery in other cell types, and we hypothesized that this SNARE would have differential effects on the trafficking of apical proteins known to take distinct routes to the apical surface in kidney cells. VAMP7 expressed in polarized Madin Darby canine kidney cells colocalized primarily with LAMP2-positive compartments, and siRNA-mediated knockdown modulated lysosome size, consistent with the known function of VAMP7 in lysosomal delivery. Surprisingly, VAMP7 knockdown had no effect on apical delivery of numerous cargoes tested, but did decrease the length and frequency of primary cilia. Additionally, VAMP7 knockdown disrupted cystogenesis in cells grown in a three-dimensional basement membrane matrix. The effects of VAMP7 depletion on ciliogenesis and cystogenesis are not directly linked to the disruption of lysosomal function, as cilia lengths and cyst morphology were unaffected in an MDCK lysosomal storage disorder model. Together, our data suggest that VAMP7 plays an essential role in ciliogenesis and lumen formation. To our knowledge, this is the first study implicating an R-SNARE in ciliogenesis and cystogenesis.

  6. The SNARE VAMP7 Regulates Exocytic Trafficking of Interleukin-12 in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Giulia Chiaruttini

    2016-03-01

    Full Text Available Interleukin-12 (IL-12, produced by dendritic cells in response to activation, is central to pathogen eradication and tumor rejection. The trafficking pathways controlling spatial distribution and intracellular transport of IL-12 vesicles to the cell surface are still unknown. Here, we show that intracellular IL-12 localizes in late endocytic vesicles marked by the SNARE VAMP7. Dendritic cells (DCs from VAMP7-deficient mice are partially impaired in the multidirectional release of IL-12. Upon encounter with antigen-specific T cells, IL-12-containing vesicles rapidly redistribute at the immune synapse and release IL-12 in a process entirely dependent on VAMP7 expression. Consistently, acquisition of effector functions is reduced in T cells stimulated by VAMP7-null DCs. These results provide insights into IL-12 intracellular trafficking pathways and show that VAMP7-mediated release of IL-12 at the immune synapse is a mechanism to transmit innate signals to T cells.

  7. Large floating structures technological advances

    CERN Document Server

    Wang, BT

    2015-01-01

    This book surveys key projects that have seen the construction of large floating structures or have attained detailed conceptual designs. This compilation of key floating structures in a single volume captures the innovative features that mark the technological advances made in this field of engineering, and will provide a useful reference for ideas, analysis, design, and construction of these unique and emerging urban projects to offshore and marine engineers, urban planners, architects and students.

  8. Application of the RESRAD computer code to VAMP scenario S

    International Nuclear Information System (INIS)

    Gnanapragasam, E.K.; Yu, C.

    1997-03-01

    The RESRAD computer code developed at Argonne National Laboratory was among 11 models from 11 countries participating in the international Scenario S validation of radiological assessment models with Chernobyl fallout data from southern Finland. The validation test was conducted by the Multiple Pathways Assessment Working Group of the Validation of Environmental Model Predictions (VAMP) program coordinated by the International Atomic Energy Agency. RESRAD was enhanced to provide an output of contaminant concentrations in environmental media and in food products to compare with measured data from southern Finland. Probability distributions for inputs that were judged to be most uncertain were obtained from the literature and from information provided in the scenario description prepared by the Finnish Centre for Radiation and Nuclear Safety. The deterministic version of RESRAD was run repeatedly to generate probability distributions for the required predictions. These predictions were used later to verify the probabilistic RESRAD code. The RESRAD predictions of radionuclide concentrations are compared with measured concentrations in selected food products. The radiological doses predicted by RESRAD are also compared with those estimated by the Finnish Centre for Radiation and Nuclear Safety

  9. Large scale structure and baryogenesis

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    2001-08-01

    We discuss a possible connection between the large scale structure formation and the baryogenesis in the universe. An update review of the observational indications for the presence of a very large scale 120h -1 Mpc in the distribution of the visible matter of the universe is provided. The possibility to generate a periodic distribution with the characteristic scale 120h -1 Mpc through a mechanism producing quasi-periodic baryon density perturbations during inflationary stage, is discussed. The evolution of the baryon charge density distribution is explored in the framework of a low temperature boson condensate baryogenesis scenario. Both the observed very large scale of a the visible matter distribution in the universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage. Moreover, for some model's parameters a natural separation of matter superclusters from antimatter ones can be achieved. (author)

  10. Membrane fusion by VAMP3 and plasma membrane t-SNAREs

    International Nuclear Information System (INIS)

    Hu Chuan; Hardee, Deborah; Minnear, Fred

    2007-01-01

    Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of α-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins

  11. HSF1 transcriptional activity mediates alcohol induction of Vamp2 expression and GABA release

    Directory of Open Access Journals (Sweden)

    Florence P. Varodayan

    2013-12-01

    Full Text Available Many central synapses are highly sensitive to alcohol, and it is now accepted that short-term alterations in synaptic function may lead to longer term changes in circuit function. The regulation of postsynaptic receptors by alcohol has been well studied, but the mechanisms underlying the effects of alcohol on the presynaptic terminal are relatively unexplored. To identify a pathway by which alcohol regulates neurotransmitter release, we recently investigated the mechanism by which ethanol induces the Vamp2 gene, but not Vamp1, in mouse primary cortical cultures. These two genes encode isoforms of synaptobrevin, a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE protein required for synaptic vesicle fusion. We found that alcohol activates the transcription factor heat shock factor 1 (HSF1 to induce Vamp2 gene expression, while Vamp1 mRNA levels remain unaffected. As the Vamp2 gene encodes a SNARE protein, we then investigated whether ethanol exposure and HSF1 transcriptional activity alter neurotransmitter release using electrophysiology. We found that alcohol increased the frequency of γ-aminobutyric acid (GABA-mediated miniature IPSCs via HSF1, but had no effect on mEPSCs. Overall, these data indicate that alcohol induces HSF1 transcriptional activity to trigger a specific coordinated adaptation in GABAergic presynaptic terminals. This mechanism could explain some of the changes in synaptic function that occur soon after alcohol exposure, and may underlie some of the more enduring effects of chronic alcohol intake on local circuit function.

  12. Large scale nuclear structure studies

    International Nuclear Information System (INIS)

    Faessler, A.

    1985-01-01

    Results of large scale nuclear structure studies are reported. The starting point is the Hartree-Fock-Bogoliubov solution with angular momentum and proton and neutron number projection after variation. This model for number and spin projected two-quasiparticle excitations with realistic forces yields in sd-shell nuclei similar good results as the 'exact' shell-model calculations. Here the authors present results for a pf-shell nucleus 46 Ti and results for the A=130 mass region where they studied 58 different nuclei with the same single-particle energies and the same effective force derived from a meson exchange potential. They carried out a Hartree-Fock-Bogoliubov variation after mean field projection in realistic model spaces. In this way, they determine for each yrast state the optimal mean Hartree-Fock-Bogoliubov field. They apply this method to 130 Ce and 128 Ba using the same effective nucleon-nucleon interaction. (Auth.)

  13. Endosomal sorting of VAMP3 is regulated by PI4K2A

    Czech Academy of Sciences Publication Activity Database

    Jovic, M.; Kean, M. J.; Dubánková, Anna; Bouřa, Evžen; Gingras, A. C.; Brill, J. A.; Balla, T.

    2014-01-01

    Roč. 127, č. 17 (2014), s. 3745-3756 ISSN 0021-9533 Institutional support: RVO:61388963 Keywords : PI4K2A * VAMP3 * PtdIns4P * vesicle fusion * sorting * SNARE Subject RIV: CE - Biochemistry Impact factor: 5.432, year: 2014

  14. The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain.

    Science.gov (United States)

    Zornetta, Irene; Azarnia Tehran, Domenico; Arrigoni, Giorgio; Anniballi, Fabrizio; Bano, Luca; Leka, Oneda; Zanotti, Giuseppe; Binz, Thomas; Montecucco, Cesare

    2016-07-22

    The genome of Weissella oryzae SG25T was recently sequenced and a botulinum neurotoxin (BoNT) like gene was identified by bioinformatics methods. The typical three-domains organization of BoNTs with a N-terminal metalloprotease domain, a translocation and a cell binding domains could be identified. The BoNT family of neurotoxins is rapidly growing, but this was the first indication of the possible expression of a BoNT toxin outside the Clostridium genus. We performed molecular modeling and dynamics simulations showing that the 50 kDa N-terminal domain folds very similarly to the metalloprotease domain of BoNT/B, whilst the binding part is different. However, neither the recombinant metalloprotease nor the binding domains showed cross-reactivity with the standard antisera that define the seven serotypes of BoNTs. We found that the purified Weissella metalloprotease cleaves VAMP at a single site untouched by the other VAMP-specific BoNTs. This site is a unique Trp-Trp peptide bond located within the juxtamembrane segment of VAMP which is essential for neurotransmitter release. Therefore, the present study identifies the first non-Clostridial BoNT-like metalloprotease that cleaves VAMP at a novel and relevant site and we propose to label it BoNT/Wo.

  15. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line

    International Nuclear Information System (INIS)

    Marcet-Palacios, Marcelo; Odemuyiwa, Solomon O.; Coughlin, Jason J.; Garofoli, Daniella; Ewen, Catherine; Davidson, Courtney E.; Ghaffari, Mazyar; Kane, Kevin P.; Lacy, Paige; Logan, Michael R.; Befus, A. Dean; Bleackley, R. Chris; Moqbel, Redwan

    2008-01-01

    Natural killer cells recognize and induce apoptosis in foreign, transformed or virus-infected cells through the release of perforin and granzymes from secretory lysosomes. Clinically, NK-cell mediated killing is a major limitation to successful allo- and xenotransplantation. The molecular mechanisms that regulate the fusion of granzyme B-containing secretory lysosomes to the plasma membrane in activated NK cells, prior to target cell killing, are not fully understood. Using the NK cell line YT-Indy as a model, we have investigated the expression of SNAP REceptors (SNAREs), both target (t-) and vesicular (v-) SNAREs, and their function in granzyme B-mediated target cell killing. Our data showed that YT-Indy cells express VAMP-7 and SNAP-23, but not VAMP-2. VAMP-7 was associated with granzyme B-containing lysosomal granules. Using VAMP-7 small interfering RNA (siRNA), we successfully knocked down the expression of VAMP-7 protein in YT-Indy to less than 10% of untreated cells in 24 h. VAMP7-deficient YT-Indy cells activated via co-culture with Jurkat cells released <1 ng/mL of granzyme B, compared to 1.5-2.5 μg/mL from controls. Using Jurkat cells as targets, we showed a 7-fold reduction in NK cell-mediated killing by VAMP-7 deficient YT-Indy cells. Our results show that VAMP-7 is a crucial component of granzyme B release and target cell killing in the NK cell line YT-Indy. Thus, targeting VAMP-7 expression specifically with siRNA, following transplantation, may be a viable strategy for preventing NK cell-mediated transplant rejection, in vivo

  16. Structuring very large domain models

    DEFF Research Database (Denmark)

    Störrle, Harald

    2010-01-01

    View/Viewpoint approaches like IEEE 1471-2000, or Kruchten's 4+1-view model are used to structure software architectures at a high level of granularity. While research has focused on architectural languages and with consistency between multiple views, practical questions such as the structuring a...

  17. Modelling the deposition of airborne radionuclides into the urban environment. First report of the VAMP Urban Working Group. Part of the IAEA/CEC co-ordinated research programme on the validation of environmental model predictions (VAMP)

    International Nuclear Information System (INIS)

    1994-08-01

    A co-ordinated research programme was begun at the IAEA in 1988 with the short title of Validation of Environmental Model Predictions (VAMP). The VAMP Urban Working Group aims to examine, by means of expert review combined with formal validation exercises, modelling for the assessment of the radiation exposure of urban populations through the external irradiation and inhalation pathways. An aim of the studies is to evaluate the lessons learned and to document the improvements in modelling capability as a result of experience gained following the Chernobyl accident. This Technical Document, the first report of the Group, addresses the subject of the deposition of airborne radionuclides into the urban environment. It summarizes not only the present status of modelling in this field, but also the results of a limited validation exercise that was performed under the auspices of VAMP. 42 refs, figs and tabs

  18. Optimization of Large-Scale Structural Systems

    DEFF Research Database (Denmark)

    Jensen, F. M.

    solutions to small problems with one or two variables to the optimization of large structures such as bridges, ships and offshore structures. The methods used for salving these problems have evolved from being classical differential calculus and calculus of variation to very advanced numerical techniques...

  19. Alternative splicing of the human gene SYBL1 modulates protein domain architecture of longin VAMP7/TI-VAMP, showing both non-SNARE and synaptobrevin-like isoforms

    Directory of Open Access Journals (Sweden)

    De Franceschi Nicola

    2011-05-01

    Full Text Available Abstract Background The control of intracellular vesicle trafficking is an ideal target to weigh the role of alternative splicing in shaping genomes to make cells. Alternative splicing has been reported for several Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptors of the vesicle (v-SNAREs or of the target membrane (t-SNARES, which are crucial to intracellular membrane fusion and protein and lipid traffic in Eukaryotes. However, splicing has not yet been investigated in Longins, i.e. the most widespread v-SNAREs. Longins are essential in Eukaryotes and prototyped by VAMP7, Sec22b and Ykt6, sharing a conserved N-terminal Longin domain which regulates membrane fusion and subcellular targeting. Human VAMP7/TI-VAMP, encoded by gene SYBL1, is involved in multiple cell pathways, including control of neurite outgrowth. Results Alternative splicing of SYBL1 by exon skipping events results in the production of a number of VAMP7 isoforms. In-frame or frameshift coding sequence modifications modulate domain architecture of VAMP7 isoforms, which can lack whole domains or domain fragments and show variant or extra domains. Intriguingly, two main types of VAMP7 isoforms either share the inhibitory Longin domain and lack the fusion-promoting SNARE motif, or vice versa. Expression analysis in different tissues and cell lines, quantitative real time RT-PCR and confocal microscopy analysis of fluorescent protein-tagged isoforms demonstrate that VAMP7 variants have different tissue specificities and subcellular localizations. Moreover, design and use of isoform-specific antibodies provided preliminary evidence for the existence of splice variants at the protein level. Conclusions Previous evidence on VAMP7 suggests inhibitory functions for the Longin domain and fusion/growth promoting activity for the Δ-longin molecule. Thus, non-SNARE isoforms with Longin domain and non-longin SNARE isoforms might have somehow opposite regulatory functions

  20. Large coil program support structure conceptual design

    International Nuclear Information System (INIS)

    Litherland, P.S.

    1977-01-01

    The purpose of the Large Coil Program (LCP) is to perform tests on both pool boiling and force cooled superconducting toroidal field coils. The tests will attempt to approximate conditions anticipated in an ignition tokamak. The test requirements resulted in a coil support design which accommodates up to six (6) test coils and is mounted to a structure capable of resisting coil interactions. The steps leading to the present LCP coil support structure design, details on selected structural components, and the basic assembly sequence are discussed

  1. The origin of large scale cosmic structure

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Palmer, P.L.

    1985-01-01

    The paper concerns the origin of large scale cosmic structure. The evolution of density perturbations, the nonlinear regime (Zel'dovich's solution and others), the Gott and Rees clustering hierarchy, the spectrum of condensations, and biassed galaxy formation, are all discussed. (UK)

  2. Hybrid Laser Welding of Large Steel Structures

    DEFF Research Database (Denmark)

    Farrokhi, Farhang

    Manufacturing of large steel structures requires the processing of thick-section steels. Welding is one of the main processes during the manufacturing of such structures and includes a significant part of the production costs. One of the ways to reduce the production costs is to use the hybrid...... laser welding technology instead of the conventional arc welding methods. However, hybrid laser welding is a complicated process that involves several complex physical phenomena that are highly coupled. Understanding of the process is very important for obtaining quality welds in an efficient way....... This thesis investigates two different challenges related to the hybrid laser welding of thick-section steel plates. Employing empirical and analytical approaches, this thesis attempts to provide further knowledge towards obtaining quality welds in the manufacturing of large steel structures....

  3. Large-scale structure of the Universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.

    1978-01-01

    The problems, discussed at the ''Large-scale Structure of the Universe'' symposium are considered on a popular level. Described are the cell structure of galaxy distribution in the Universe, principles of mathematical galaxy distribution modelling. The images of cell structures, obtained after reprocessing with the computer are given. Discussed are three hypothesis - vortical, entropic, adiabatic, suggesting various processes of galaxy and galaxy clusters origin. A considerable advantage of the adiabatic hypothesis is recognized. The relict radiation, as a method of direct studying the processes taking place in the Universe is considered. The large-scale peculiarities and small-scale fluctuations of the relict radiation temperature enable one to estimate the turbance properties at the pre-galaxy stage. The discussion of problems, pertaining to studying the hot gas, contained in galaxy clusters, the interactions within galaxy clusters and with the inter-galaxy medium, is recognized to be a notable contribution into the development of theoretical and observational cosmology

  4. Model description and evaluation of model performance, scenario S. Multiple pathways assessment of the IAEA/CEC co-ordinated research programme on validation of environmental model predictions (VAMP)

    International Nuclear Information System (INIS)

    Suolanen, V.

    1996-12-01

    A modelling approach was used to predict doses from a large area deposition of 137 Cs over southern and central Finland. The assumed deposition profile and quantity were both similar to those resulting from the Chernobyl accident. In the study, doses via terrestrial and aquatic environments have been analyzed. Additionally, the intermediate results of the study, such as concentrations in various foodstuffs and the resulting body burdents, were presented. The contributions of ingestion, inhalation and external doses to the total dose were estimated in the study. The considered deposition scenario formed a modelling exercise in the IAEA coordinated research programme on Validation of Environmental Model Predictions, the VAMP project. (21 refs.)

  5. Challenges for Large Scale Structure Theory

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will describe some of the outstanding questions in Cosmology where answers could be provided by observations of the Large Scale Structure of the Universe at late times.I will discuss some of the theoretical challenges which will have to be overcome to extract this information from the observations. I will describe some of the theoretical tools that might be useful to achieve this goal. 

  6. Modeling, Analysis, and Optimization Issues for Large Space Structures

    Science.gov (United States)

    Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)

    1983-01-01

    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.

  7. Cooling pipeline disposing structure for large-scaled cryogenic structure

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki.

    1996-01-01

    The present invention concerns an electromagnetic force supporting structure for superconductive coils. As the size of a cryogenic structure is increased, since it takes much cooling time, temperature difference between cooling pipelines and the cryogenic structure is increased over a wide range, and difference of heat shrinkage is increased to increase thermal stresses. Then, in the cooling pipelines for a large scaled cryogenic structure, the cooling pipelines and the structure are connected by way of a thin metal plate made of a material having a heat conductivity higher than that of the material of the structure by one digit or more, and the thin metal plate is bent. The displacement between the cryogenic structure and the cooling pipelines caused by heat shrinkage is absorbed by the elongation/shrinkage of the bent structure of the thin metal plate, and the thermal stresses due to the displacement is reduced. In addition, the heat of the cryogenic structures is transferred by way of the thin metal plate. Then, the cooling pipelines can be secured to the cryogenic structure such that cooling by heat transfer is enabled by absorbing a great deviation or three dimensional displacement due to the difference of the temperature distribution between the cryogenic structure enlarged in the scale and put into the three dimensional shape, and the cooling pipelines. (N.H.)

  8. Neutrinos and large-scale structure

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.

    2015-01-01

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos

  9. Puzzles of large scale structure and gravitation

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    2006-01-01

    We consider the puzzle of cosmic voids bounded by two-dimensional structures of galactic clusters as also a puzzle pointed out by Weinberg: How can the mass of a typical elementary particle depend on a cosmic parameter like the Hubble constant? An answer to the first puzzle is proposed in terms of 'Scaled' Quantum Mechanical like behaviour which appears at large scales. The second puzzle can be answered by showing that the gravitational mass of an elementary particle has a Machian character (see Ahmed N. Cantorian small worked, Mach's principle and the universal mass network. Chaos, Solitons and Fractals 2004;21(4))

  10. Neutrinos and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Daniel J. [Daniel J. Eisenstein, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS #20, Cambridge, MA 02138 (United States)

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  11. Critical joints in large composite aircraft structure

    Science.gov (United States)

    Nelson, W. D.; Bunin, B. L.; Hart-Smith, L. J.

    1983-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art.

  12. Dipolar modulation of Large-Scale Structure

    Science.gov (United States)

    Yoon, Mijin

    For the last two decades, we have seen a drastic development of modern cosmology based on various observations such as the cosmic microwave background (CMB), type Ia supernovae, and baryonic acoustic oscillations (BAO). These observational evidences have led us to a great deal of consensus on the cosmological model so-called LambdaCDM and tight constraints on cosmological parameters consisting the model. On the other hand, the advancement in cosmology relies on the cosmological principle: the universe is isotropic and homogeneous on large scales. Testing these fundamental assumptions is crucial and will soon become possible given the planned observations ahead. Dipolar modulation is the largest angular anisotropy of the sky, which is quantified by its direction and amplitude. We measured a huge dipolar modulation in CMB, which mainly originated from our solar system's motion relative to CMB rest frame. However, we have not yet acquired consistent measurements of dipolar modulations in large-scale structure (LSS), as they require large sky coverage and a number of well-identified objects. In this thesis, we explore measurement of dipolar modulation in number counts of LSS objects as a test of statistical isotropy. This thesis is based on two papers that were published in peer-reviewed journals. In Chapter 2 [Yoon et al., 2014], we measured a dipolar modulation in number counts of WISE matched with 2MASS sources. In Chapter 3 [Yoon & Huterer, 2015], we investigated requirements for detection of kinematic dipole in future surveys.

  13. Grid sensitivity capability for large scale structures

    Science.gov (United States)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  14. The IAEA/CEC programme on validation of models for radionuclide transfer in terrestrial, aquatic and urban environments (VAMP)

    International Nuclear Information System (INIS)

    Linsley, G.S.; Templeton, W.L.; Sinnaeve, J.

    1991-01-01

    In the application of radiological assessment models there is a continuous need to provide evidence of the reliability of model predictions. Ideally models should be developed and tested using data on the transfer of the nuclides of interest in the actual environment being modelled. Very often such measurements are not available and, in some cases, they are impossible to obtain. Reliance has usually to be placed on results taken from similar but different environmental conditions or from laboratory studies. Considerable use has been made of the environmental contamination that resulted from the fallout from the nuclear weapons testing in the 1950s and 1960s for model development and testing. The very special opportunities that exist at the present time in the European parts of the USSR and in Europe generally for the acquisition of data sets appropriate for model testing and for the calibration of radiological assessment models have justified the establishment of an international programme aimed at collating the data from different countries and at co-ordinating work on model testing studies. The VAMP study began in 1988 and currently involves scientists from 23 countries. (VAMP is an acronym for Validation of Model Predictions). This report describes the aims, methods of work and progress of the four VAMP working groups (Terrestrial, Aquatic, Urban and Multiple Pathways)

  15. Mirror dark matter and large scale structure

    International Nuclear Information System (INIS)

    Ignatiev, A.Yu.; Volkas, R.R.

    2003-01-01

    Mirror matter is a dark matter candidate. In this paper, we reexamine the linear regime of density perturbation growth in a universe containing mirror dark matter. Taking adiabatic scale-invariant perturbations as the input, we confirm that the resulting processed power spectrum is richer than for the more familiar cases of cold, warm and hot dark matter. The new features include a maximum at a certain scale λ max , collisional damping below a smaller characteristic scale λ S ' , with oscillatory perturbations between the two. These scales are functions of the fundamental parameters of the theory. In particular, they decrease for decreasing x, the ratio of the mirror plasma temperature to that of the ordinary. For x∼0.2, the scale λ max becomes galactic. Mirror dark matter therefore leads to bottom-up large scale structure formation, similar to conventional cold dark matter, for x(less-or-similar sign)0.2. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime. The differences pertain to scales smaller than λ S ' in the linear regime, and generally in the nonlinear regime because mirror dark matter is chemically complex and to some extent dissipative. Lyman-α forest data and the early reionization epoch established by WMAP may hold the key to distinguishing mirror dark matter from WIMP-style cold dark matter

  16. UHPFRC in large span shell structures

    NARCIS (Netherlands)

    Ter Maten, R.N.; Grunewald, S.; Walraven, J.C.

    2013-01-01

    Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC) is an innovative concrete type with a high compressive strength and a far more durable character compared to conventional concrete. UHPFRC can be applied in structures with aesthetic appearance and high material efficiency. Shell structures

  17. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

    DEFF Research Database (Denmark)

    Kristiansen, S; Hargreaves, Mark; Richter, Erik

    1996-01-01

    contractions may induce trafficking of GLUT-4-containing vesicles via a mechanism similar to neurotransmitter release. Our results demonstrate for the first time exercise-induced translocation of GLUT-4 and VAMP-2 to the plasma membrane of human muscle and increased sarcolemmal glucose transport.......A major effect of muscle contractions is an increase in sarcolemmal glucose transport. We have used a recently developed technique to produce sarcolemmal giant vesicles from human muscle biopsy samples obtained before and after exercise. Six men exercised for 10 min at 50% maximal O2 uptake (Vo2max...

  18. Control of large flexible space structures

    Science.gov (United States)

    Vandervelde, W. E.

    1986-01-01

    Progress in robust design of generalized parity relations, design of failure sensitive observers using the geometric system theory of Wonham, computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management features, and the design and evaluation od control systems for structures having nonlinear joints are described.

  19. Inflation, large scale structure and particle physics

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences ... Hybrid inflation; Higgs scalar field; structure formation; curvation. ... We then discuss a particle physics model of supersymmetric hybrid inflation at the intermediate scale in which ... May 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board ...

  20. Testing for structural changes in large portfolios

    OpenAIRE

    Posch, Peter N.; Ullmann, Daniel; Wied, Dominik

    2015-01-01

    Model free tests for constant parameters often fail to detect structural changes in high dimensions. In practice, this corresponds to a portfolio with many assets and a reasonable long time series. We reduce the dimensionality of the problem by looking a compressed panel of time series obtained by cluster analysis and the principal components of the data. Using our methodology we are able to extend a test for a constant correlation matrix from a sub portfolio to whole indices a...

  1. Large Scale Testing of Drystone Retaining Structures

    OpenAIRE

    Mundell, Chris

    2009-01-01

    Drystone walls have been used extensively around the world as earth retaining structures wherever suitable stone is found. Commonly about 0.6m thick (irrespective of height), there are about 9000km of drystone retaining walls on the UK road network alone, mostly built in the 19th and early 20th centuries, with an estimated replacement value in excess of £1 billion[1]. Drystone wall design is traditionally empirical, based on local knowledge of what has worked in the past. Methods vary from re...

  2. Measuring structural similarity in large online networks.

    Science.gov (United States)

    Shi, Yongren; Macy, Michael

    2016-09-01

    Structural similarity based on bipartite graphs can be used to detect meaningful communities, but the networks have been tiny compared to massive online networks. Scalability is important in applications involving tens of millions of individuals with highly skewed degree distributions. Simulation analysis holding underlying similarity constant shows that two widely used measures - Jaccard index and cosine similarity - are biased by the distribution of out-degree in web-scale networks. However, an alternative measure, the Standardized Co-incident Ratio (SCR), is unbiased. We apply SCR to members of Congress, musical artists, and professional sports teams to show how massive co-following on Twitter can be used to map meaningful affiliations among cultural entities, even in the absence of direct connections to one another. Our results show how structural similarity can be used to map cultural alignments and demonstrate the potential usefulness of social media data in the study of culture, politics, and organizations across the social and behavioral sciences. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Responses in large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Barreira, Alexandre; Schmidt, Fabian, E-mail: barreira@MPA-Garching.MPG.DE, E-mail: fabians@MPA-Garching.MPG.DE [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-06-01

    We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ''bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients , which are only a function of the hard wavenumber k . Further, the responses up to n -th order completely describe the ( n +2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance Cov{sup NG}{sub ℓ=0}( k {sub 1}, k {sub 2}), in the limit where one of the modes, say k {sub 2}, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k {sub 2} ∼< 0.06 h Mpc{sup −1}, and for any k {sub 1} ∼> 2 k {sub 2}. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.

  4. Responses in large-scale structure

    Science.gov (United States)

    Barreira, Alexandre; Schmidt, Fabian

    2017-06-01

    We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ``bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients, which are only a function of the hard wavenumber k. Further, the responses up to n-th order completely describe the (n+2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance CovNGl=0(k1,k2), in the limit where one of the modes, say k2, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k2 lesssim 0.06 h Mpc-1, and for any k1 gtrsim 2k2. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.

  5. Probes of large-scale structure in the Universe

    International Nuclear Information System (INIS)

    Suto, Yasushi; Gorski, K.; Juszkiewicz, R.; Silk, J.

    1988-01-01

    Recent progress in observational techniques has made it possible to confront quantitatively various models for the large-scale structure of the Universe with detailed observational data. We develop a general formalism to show that the gravitational instability theory for the origin of large-scale structure is now capable of critically confronting observational results on cosmic microwave background radiation angular anisotropies, large-scale bulk motions and large-scale clumpiness in the galaxy counts. (author)

  6. Nonlinear wave forces on large ocean structures

    Science.gov (United States)

    Huang, Erick T.

    1993-04-01

    This study explores the significance of second-order wave excitations on a large pontoon and tests the feasibility of reducing a nonlinear free surface problem by perturbation expansions. A simulation model has been developed based on the perturbation expansion technique to estimate the wave forces. The model uses a versatile finite element procedure for the solution of the reduced linear boundary value problems. This procedure achieves a fair compromise between computation costs and physical details by using a combination of 2D and 3D elements. A simple hydraulic model test was conducted to observe the wave forces imposed on a rectangle box by Cnoidal waves in shallow water. The test measurements are consistent with the numerical predictions by the simulation model. This result shows favorable support to the perturbation approach for estimating the nonlinear wave forces on shallow draft vessels. However, more sophisticated model tests are required for a full justification. Both theoretical and experimental results show profound second-order forces that could substantially impact the design of ocean facilities.

  7. Environmental Disturbance Modeling for Large Inflatable Space Structures

    National Research Council Canada - National Science Library

    Davis, Donald

    2001-01-01

    Tightening space budgets and stagnating spacelift capabilities are driving the Air Force and other space agencies to focus on inflatable technology as a reliable, inexpensive means of deploying large structures in orbit...

  8. Large-Scale Structure and Hyperuniformity of Amorphous Ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto

    2017-09-01

    We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.

  9. Displacement and deformation measurement for large structures by camera network

    Science.gov (United States)

    Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu

    2014-03-01

    A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.

  10. Review of Large Spacecraft Deployable Membrane Antenna Structures

    Science.gov (United States)

    Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li

    2017-11-01

    The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.

  11. The photon structure function at large Q2

    International Nuclear Information System (INIS)

    Cordier, A.

    1987-01-01

    LEP II offers the unique opportunity to measure the photon structure function over a large Q 2 range up to ∼ 2000 GeV 2 . Two crucial predictions of QCD can be tested in this experiment: the linear rise in log Q 2 as a consequence of asymptotic freedom, and the large renormalization O(1) of the shape of the structure function due to gluon bremsstrahlung, unperturbed by higher-twist effects

  12. Structural design of superconducting magnets for the large coil program

    International Nuclear Information System (INIS)

    Gray, W.H.; Long, C.J.; Stoddart, W.C.T.

    1979-09-01

    The Large Coil Program (LCP) is a research, development, and demonstration effort specifically for the advancement of the technologies involved in the production of large superconducting magnets. This paper presents a review of the status of the structural designs, analysis methods, and verification tests being performed by the participating LCP design teams in the USA, Switzerland, Japan, and the Federal Republic of Germany. The significant structural mechanics concerns that are being investigated with the LCP are presented

  13. Structuring and assessing large and complex decision problems using MCDA

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn

    This paper presents an approach for the structuring and assessing of large and complex decision problems using multi-criteria decision analysis (MCDA). The MCDA problem is structured in a decision tree and assessed using the REMBRANDT technique featuring a procedure for limiting the number of pair...

  14. Some Statistics for Measuring Large-Scale Structure

    OpenAIRE

    Brandenberger, Robert H.; Kaplan, David M.; A, Stephen; Ramsey

    1993-01-01

    Good statistics for measuring large-scale structure in the Universe must be able to distinguish between different models of structure formation. In this paper, two and three dimensional ``counts in cell" statistics and a new ``discrete genus statistic" are applied to toy versions of several popular theories of structure formation: random phase cold dark matter model, cosmic string models, and global texture scenario. All three statistics appear quite promising in terms of differentiating betw...

  15. Modelling of the transfer of radiocaesium from deposition to lake ecosystems. Report of the VAMP aquatic working group. Part of the IAEA/CEC co-ordinated research programme on the validation of environmental model predictions (VAMP)

    International Nuclear Information System (INIS)

    2000-03-01

    The environmental impact of releases of radionuclides from nuclear installations can be predicted using assessment models. For such assessments information on their reliability must be provided. Ideally models should be developed and tested using actual data on the transfer of the nuclides which are site specific for the environment being modelled. In the past, generic data have often been taken from environmental contamination that resulted from the fallout from the nuclear weapons testing in the 1950s and 1960s or from laboratory experiments. However, it has always been recognized that there may be differences in the physico-chemical form of the radionuclides from these sources as compared to those that could be released from nuclear installations. Furthermore, weapons fallout was spread over time; it did not provide a single pulse which is generally used in testing models that predict time dependence. On the other hand, the Chernobyl accident resulted in a single pulse, which was detected and measured in a variety of environments throughout Europe. The acquisition of these new data sets justified the establishment of an international programme aimed at collating data from different IAEA Member States and at co-ordinating work on new model testing studies. The IAEA established a Co-ordinated Research Programme (CRP) on 'Validation of Environmental Model Predictions' (VAMP). The principal objectives of the VAMP Co-ordinated Research Programme were: (a) To facilitate the validation of assessment models for radionuclide transfer in the terrestrial, aquatic and urban environments. It is envisaged that this will be achieved by acquiring suitable sets of environmental data from the results of the national research and monitoring programmes established following the Chernobyl release. (b) To guide, if necessary, environmental research and monitoring efforts to acquire data for the validation of models used to assess the most significant radiological exposure pathways

  16. Large-scale structure observables in general relativity

    International Nuclear Information System (INIS)

    Jeong, Donghui; Schmidt, Fabian

    2015-01-01

    We review recent studies that rigorously define several key observables of the large-scale structure of the Universe in a general relativistic context. Specifically, we consider (i) redshift perturbation of cosmic clock events; (ii) distortion of cosmic rulers, including weak lensing shear and magnification; and (iii) observed number density of tracers of the large-scale structure. We provide covariant and gauge-invariant expressions of these observables. Our expressions are given for a linearly perturbed flat Friedmann–Robertson–Walker metric including scalar, vector, and tensor metric perturbations. While we restrict ourselves to linear order in perturbation theory, the approach can be straightforwardly generalized to higher order. (paper)

  17. Trends in large-scale testing of reactor structures

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    2003-01-01

    Large-scale tests of reactor structures have been conducted at Sandia National Laboratories since the late 1970s. This paper describes a number of different large-scale impact tests, pressurization tests of models of containment structures, and thermal-pressure tests of models of reactor pressure vessels. The advantages of large-scale testing are evident, but cost, in particular limits its use. As computer models have grown in size, such as number of degrees of freedom, the advent of computer graphics has made possible very realistic representation of results - results that may not accurately represent reality. A necessary condition to avoiding this pitfall is the validation of the analytical methods and underlying physical representations. Ironically, the immensely larger computer models sometimes increase the need for large-scale testing, because the modeling is applied to increasing more complex structural systems and/or more complex physical phenomena. Unfortunately, the cost of large-scale tests is a disadvantage that will likely severely limit similar testing in the future. International collaborations may provide the best mechanism for funding future programs with large-scale tests. (author)

  18. Traveling wave accelerating structures with a large phase advance

    International Nuclear Information System (INIS)

    Paramonov, V.V.

    2012-01-01

    The cells RF parameters for the well known Disk Loaded Waveguide (DLW) are considered in higher pass bands of TM01 wave, providing operating phase advance between 180 o - 1230 o per cell. With an appropriate shape optimization and some additional elements proposed traveling wave structures with such large phase advance overlap the classical first band DLW in RF efficiency. Examples of proposed structures together with RF and dispersion properties are presented.

  19. Structural materials for large superconducting magnets for tokamaks

    International Nuclear Information System (INIS)

    Long, C.J.

    1976-12-01

    The selection of structural materials for large superconducting magnets for tokamak-type fusion reactors is considered. The important criteria are working stress, radiation resistance, electromagnetic interaction, and general feasibility. The most advantageous materials appear to be face-centered-cubic alloys in the Fe-Ni-Cr system, but high-modulus composites may be necessary where severe pulsed magnetic fields are present. Special-purpose structural materials are considered briefly

  20. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  1. Origin of large-scale cell structure in the universe

    International Nuclear Information System (INIS)

    Zel'dovich, Y.B.

    1982-01-01

    A qualitative explanation is offered for the characteristic global structure of the universe, wherein ''black'' regions devoid of galaxies are surrounded on all sides by closed, comparatively thin, ''bright'' layers populated by galaxies. The interpretation rests on some very general arguments regarding the growth of large-scale perturbations in a cold gas

  2. The Large-Scale Structure of Scientific Method

    Science.gov (United States)

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  3. Fractals and the Large-Scale Structure in the Universe

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 4. Fractals and the Large-Scale Structure in the Universe - Is the Cosmological Principle Valid? A K Mittal T R Seshadri. General Article Volume 7 Issue 4 April 2002 pp 39-47 ...

  4. Amyloid-β acts as a regulator of neurotransmitter release disrupting the interaction between synaptophysin and VAMP2.

    Directory of Open Access Journals (Sweden)

    Claire L Russell

    Full Text Available It is becoming increasingly evident that deficits in the cortex and hippocampus at early stages of dementia in Alzheimer's disease (AD are associated with synaptic damage caused by oligomers of the toxic amyloid-β peptide (Aβ42. However, the underlying molecular and cellular mechanisms behind these deficits are not fully understood. Here we provide evidence of a mechanism by which Aβ42 affects synaptic transmission regulating neurotransmitter release.We first showed that application of 50 nM Aβ42 in cultured neurones is followed by its internalisation and translocation to synaptic contacts. Interestingly, our results demonstrate that with time, Aβ42 can be detected at the presynaptic terminals where it interacts with Synaptophysin. Furthermore, data from dissociated hippocampal neurons as well as biochemical data provide evidence that Aβ42 disrupts the complex formed between Synaptophysin and VAMP2 increasing the amount of primed vesicles and exocytosis. Finally, electrophysiology recordings in brain slices confirmed that Aβ42 affects baseline transmission.Our observations provide a necessary and timely insight into cellular mechanisms that underlie the initial pathological events that lead to synaptic dysfunction in Alzheimer's disease. Our results demonstrate a new mechanism by which Aβ42 affects synaptic activity.

  5. Modeling and analysis of a large deployable antenna structure

    Science.gov (United States)

    Chu, Zhengrong; Deng, Zongquan; Qi, Xiaozhi; Li, Bing

    2014-02-01

    One kind of large deployable antenna (LDA) structure is proposed by combining a number of basic deployable units in this paper. In order to avoid vibration caused by fast deployment speed of the mechanism, a braking system is used to control the spring-actuated system. Comparisons between the LDA structure and a similar structure used by the large deployable reflector (LDR) indicate that the former has potential for use in antennas with up to 30 m aperture due to its lighter weight. The LDA structure is designed to form a spherical surface found by the least square fitting method so that it can be symmetrical. In this case, the positions of the terminal points in the structure are determined by two principles. A method to calculate the cable network stretched on the LDA structure is developed, which combines the original force density method and the parabolic surface constraint. Genetic algorithm is applied to ensure that each cable reaches a desired tension, which avoids the non-convergence issue effectively. We find that the pattern for the front and rear cable net must be the same when finding the shape of the rear cable net, otherwise anticlastic surface would generate.

  6. Challenges in parameter identification of large structural dynamic systems

    International Nuclear Information System (INIS)

    Koh, C.G.

    2001-01-01

    In theory, it is possible to determine the parameters of a structural or mechanical system by subjecting it to some dynamic excitation and measuring the response. Considerable research has been carried out in this subject area known as the system identification over the past two decades. Nevertheless, the challenges associated with numerical convergence are still formidable when the system is large in terms of the number of degrees of freedom and number of unknowns. While many methods work for small systems, the convergence becomes difficult, if not impossible, for large systems. In this keynote lecture, both classical and non-classical system identification methods for dynamic testing and vibration-based inspection are discussed. For classical methods, the extended Kalman filter (EKF) approach is used. On this basis, a substructural identification method has been developed as a strategy to deal with large structural systems. This is achieved by reducing the problem size, thereby significantly improving the numerical convergence and efficiency. Two versions of this method are presented each with its own merits. A numerical example of frame structure with 20 unknown parameters is illustrated. For non-classical methods, the Genetic Algorithm (GA) is shown to be applicable with relative ease due to its 'forward analysis' nature. The computational time is, however, still enormous for large structural systems due to the combinatorial explosion problem. A model GA method has been developed to address this problem and tested with considerable success on a relatively large system of 50 degrees of freedom, accounting for input and output noise effects. An advantages of this GA-based identification method is that the objective function can be defined in response measured. Numerical studies show that the method is relatively robust, as it does in response measured. Numerical studies show that the method is relatively robust, as it dos not require good initial guess and the

  7. Similitude and scaling of large structural elements: Case study

    Directory of Open Access Journals (Sweden)

    M. Shehadeh

    2015-06-01

    Full Text Available Scaled down models are widely used for experimental investigations of large structures due to the limitation in the capacities of testing facilities along with the expenses of the experimentation. The modeling accuracy depends upon the model material properties, fabrication accuracy and loading techniques. In the present work the Buckingham π theorem is used to develop the relations (i.e. geometry, loading and properties between the model and a large structural element as that is present in the huge existing petroleum oil drilling rigs. The model is to be designed, loaded and treated according to a set of similitude requirements that relate the model to the large structural element. Three independent scale factors which represent three fundamental dimensions, namely mass, length and time need to be selected for designing the scaled down model. Numerical prediction of the stress distribution within the model and its elastic deformation under steady loading is to be made. The results are compared with those obtained from the full scale structure numerical computations. The effect of scaled down model size and material on the accuracy of the modeling technique is thoroughly examined.

  8. Geophysical mapping of complex glaciogenic large-scale structures

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie

    2013-01-01

    This thesis presents the main results of a four year PhD study concerning the use of geophysical data in geological mapping. The study is related to the Geocenter project, “KOMPLEKS”, which focuses on the mapping of complex, large-scale geological structures. The study area is approximately 100 km2...... data types and co-interpret them in order to improve our geological understanding. However, in order to perform this successfully, methodological considerations are necessary. For instance, a structure indicated by a reflection in the seismic data is not always apparent in the resistivity data...... information) can be collected. The geophysical data are used together with geological analyses from boreholes and pits to interpret the geological history of the hill-island. The geophysical data reveal that the glaciotectonic structures truncate at the surface. The directions of the structures were mapped...

  9. Large-scale structure in the universe: Theory vs observations

    International Nuclear Information System (INIS)

    Kashlinsky, A.; Jones, B.J.T.

    1990-01-01

    A variety of observations constrain models of the origin of large scale cosmic structures. We review here the elements of current theories and comment in detail on which of the current observational data provide the principal constraints. We point out that enough observational data have accumulated to constrain (and perhaps determine) the power spectrum of primordial density fluctuations over a very large range of scales. We discuss the theories in the light of observational data and focus on the potential of future observations in providing even (and ever) tighter constraints. (orig.)

  10. Short Large-Amplitude Magnetic Structures (SLAMS) at Venus

    Science.gov (United States)

    Collinson, G. A.; Wilson, L. B.; Sibeck, D. G.; Shane, N.; Zhang, T. L.; Moore, T. E.; Coates, A. J.; Barabash, S.

    2012-01-01

    We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5->11s in duration, had magnetic compression ratios between approx.3->6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock.

  11. Lagrangian space consistency relation for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-01-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space

  12. Nuclear structure at high-spin and large-deformation

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R.

    2000-01-01

    Atomic nucleus is a finite quantal system and shows various marvelous features. One of the purposes of the nuclear structure study is to understand such features from a microscopic viewpoint of nuclear many-body problem. Recently, it is becoming possible to explore nuclear states under 'extreme conditions', which are far different from the usual ground states of stable nuclei, and new aspects of such unstable nuclei attract our interests. In this lecture, I would like to discuss the nuclear structure in the limit of rapid rotation, or the extreme states with very large angular momenta, which became accessible by recent advent of large arrays of gamma-ray detecting system; these devices are extremely useful to measure coincident multiple γ-rays following heavy-ion fusion reactions. Including such experimental aspects as how to detect the nuclear rotational states, I review physics of high-spin states starting from the elementary subjects of nuclear structure study. In would like also to discuss the extreme states with very large nuclear deformation, which are easily realized in rapidly rotating nuclei. (author)

  13. Large-scale structures in turbulent Couette flow

    Science.gov (United States)

    Kim, Jung Hoon; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulation of fully developed turbulent Couette flow is performed with a large computational domain in the streamwise and spanwise directions (40 πh and 6 πh) to investigate streamwise-scale growth mechanism of the streamwise velocity fluctuating structures in the core region, where h is the channel half height. It is shown that long streamwise-scale structures (> 3 h) are highly energetic and they contribute to more than 80% of the turbulent kinetic energy and Reynolds shear stress, compared to previous studies in canonical Poiseuille flows. Instantaneous and statistical analysis show that negative-u' structures on the bottom wall in the Couette flow continuously grow in the streamwise direction due to mean shear, and they penetrate to the opposite moving wall. The geometric center of the log layer is observed in the centerline with a dominant outer peak in streamwise spectrum, and the maximum streamwise extent for structure is found in the centerline, similar to previous observation in turbulent Poiseuille flows at high Reynolds number. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure in the centerline. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  14. Complex modular structure of large-scale brain networks

    Science.gov (United States)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  15. Structural Quality of Service in Large-Scale Networks

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup

    , telephony and data. To meet the requirements of the different applications, and to handle the increased vulnerability to failures, the ability to design robust networks providing good Quality of Service is crucial. However, most planning of large-scale networks today is ad-hoc based, leading to highly...... complex networks lacking predictability and global structural properties. The thesis applies the concept of Structural Quality of Service to formulate desirable global properties, and it shows how regular graph structures can be used to obtain such properties.......Digitalization has created the base for co-existence and convergence in communications, leading to an increasing use of multi service networks. This is for example seen in the Fiber To The Home implementations, where a single fiber is used for virtually all means of communication, including TV...

  16. BigSUR: large-scale structured urban reconstruction

    KAUST Repository

    Kelly, Tom; Femiani, John; Wonka, Peter; Mitra, Niloy J.

    2017-01-01

    The creation of high-quality semantically parsed 3D models for dense metropolitan areas is a fundamental urban modeling problem. Although recent advances in acquisition techniques and processing algorithms have resulted in large-scale imagery or 3D polygonal reconstructions, such data-sources are typically noisy, and incomplete, with no semantic structure. In this paper, we present an automatic data fusion technique that produces high-quality structured models of city blocks. From coarse polygonal meshes, street-level imagery, and GIS footprints, we formulate a binary integer program that globally balances sources of error to produce semantically parsed mass models with associated facade elements. We demonstrate our system on four city regions of varying complexity; our examples typically contain densely built urban blocks spanning hundreds of buildings. In our largest example, we produce a structured model of 37 city blocks spanning a total of 1,011 buildings at a scale and quality previously impossible to achieve automatically.

  17. Cryogenic expansion joint for large superconducting magnet structures

    Science.gov (United States)

    Brown, Robert L.

    1978-01-01

    An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.

  18. BigSUR: large-scale structured urban reconstruction

    KAUST Repository

    Kelly, Tom

    2017-11-22

    The creation of high-quality semantically parsed 3D models for dense metropolitan areas is a fundamental urban modeling problem. Although recent advances in acquisition techniques and processing algorithms have resulted in large-scale imagery or 3D polygonal reconstructions, such data-sources are typically noisy, and incomplete, with no semantic structure. In this paper, we present an automatic data fusion technique that produces high-quality structured models of city blocks. From coarse polygonal meshes, street-level imagery, and GIS footprints, we formulate a binary integer program that globally balances sources of error to produce semantically parsed mass models with associated facade elements. We demonstrate our system on four city regions of varying complexity; our examples typically contain densely built urban blocks spanning hundreds of buildings. In our largest example, we produce a structured model of 37 city blocks spanning a total of 1,011 buildings at a scale and quality previously impossible to achieve automatically.

  19. Control and large deformations of marginal disordered structures

    Science.gov (United States)

    Murugan, Arvind; Pinson, Matthew; Chen, Elizabeth

    Designed deformations, such as origami patterns, provide a way to make easily controlled mechanical metamaterials with tailored responses to external forces. We focus on an often overlooked regime of origami - non-linear deformations of large disordered origami patterns with no symmetries. We find that practical questions of control in origami have counterintuitive answers, because of intimate connections to spin glasses and neural networks. For example, 1 degree of freedom origami structures are actually difficult to control about the flat state with a single actuator; the actuator is thrown off by an exponential number of `red herring' zero modes for small deformations, all but one of which disappear at larger deformations. Conversely, structures with multiple programmed motions are much easier to control than expected - in fact, they are as easy to control as a dedicated single-motion structure if the number of programmed motions is below a threshold (`memory capacity').

  20. Novel large deployable antenna backing structure concepts for foldable reflectors

    Science.gov (United States)

    Fraux, V.; Lawton, M.; Reveles, J. R.; You, Z.

    2013-12-01

    This paper describes a number of large deployable antenna (LDA) reflector structure concepts developed at EnerSys-ABSL. Furthermore, EnerSys-ABSL has confirmed the desire to build a breadboard demonstrator of a backing deployable structure for a foldable reflector in the diameter range of 4-9 m. As part of this project EnerSys-ABSL has explored five novel deployable structure concepts. This paper presents the top level definition of these concepts together with the requirements considered in the design and selection of the preferred candidate. These new concepts are described and then compared through a trade-off analysis to identify the most suitable concept that EnerSys-ABSL would like to consider for the breadboard demonstrator. Finally, the kinematics of the chosen concept is described in more detail and future steps in the development process are highlighted.

  1. Characterization of Large Structural Genetic Mosaicism in Human Autosomes

    Science.gov (United States)

    Machiela, Mitchell J.; Zhou, Weiyin; Sampson, Joshua N.; Dean, Michael C.; Jacobs, Kevin B.; Black, Amanda; Brinton, Louise A.; Chang, I-Shou; Chen, Chu; Chen, Constance; Chen, Kexin; Cook, Linda S.; Crous Bou, Marta; De Vivo, Immaculata; Doherty, Jennifer; Friedenreich, Christine M.; Gaudet, Mia M.; Haiman, Christopher A.; Hankinson, Susan E.; Hartge, Patricia; Henderson, Brian E.; Hong, Yun-Chul; Hosgood, H. Dean; Hsiung, Chao A.; Hu, Wei; Hunter, David J.; Jessop, Lea; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Robert; Kraft, Peter; Lan, Qing; Lin, Dongxin; Liu, Jianjun; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Matsuo, Keitaro; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Risch, Harvey A.; Schumacher, Fredrick; Seow, Adeline; Setiawan, Veronica Wendy; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; VanDen Berg, David; Wang, Jiu-Cun; Wentzensen, Nicolas; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Yi-Long; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Zheng, Wei; Zhou, Baosen; Abnet, Christian C.; Albanes, Demetrius; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Berndt, Sonja I.; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Carreón, Tania; Chatterjee, Nilanjan; Chung, Charles C.; Cook, Michael B.; Cullen, Michael; Davis, Faith G.; Ding, Ti; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Freedman, Neal D.; Fuchs, Charles S.; Gao, Yu-Tang; Gapstur, Susan M.; Patiño-Garcia, Ana; Garcia-Closas, Montserrat; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Greene, Mark H.; Hallmans, Goran; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hoover, Robert N.; Hu, Nan; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Landgren, Annelie; Landi, Maria Teresa; Li, Donghui; Liao, Linda M.; Malats, Nuria; McGlynn, Katherine A.; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Prokunina-Olsson, Ludmila; Purdue, Mark; Qiao, You-Lin; Rabe, Kari G.; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Rodríguez-Santiago, Benjamín; Rothman, Nathaniel; Ruder, Avima M.; Savage, Sharon A.; Schwartz, Ann G.; Schwartz, Kendra L.; Sesso, Howard D.; Severi, Gianluca; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Viswanathan, Kala; Wacholder, Sholom; Wang, Zhaoming; Weinstein, Stephanie J.; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wu, Xifeng; Wunder, Jay S.; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Ziegler, Regina G.; de Andrade, Mariza; Barnes, Kathleen C.; Beaty, Terri H.; Bierut, Laura J.; Desch, Karl C.; Doheny, Kimberly F.; Feenstra, Bjarke; Ginsburg, David; Heit, John A.; Kang, Jae H.; Laurie, Cecilia A.; Li, Jun Z.; Lowe, William L.; Marazita, Mary L.; Melbye, Mads; Mirel, Daniel B.; Murray, Jeffrey C.; Nelson, Sarah C.; Pasquale, Louis R.; Rice, Kenneth; Wiggs, Janey L.; Wise, Anastasia; Tucker, Margaret; Pérez-Jurado, Luis A.; Laurie, Cathy C.; Caporaso, Neil E.; Yeager, Meredith; Chanock, Stephen J.

    2015-01-01

    Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10−31) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population. PMID:25748358

  2. Reliability-Based Optimal Design for Very Large Floating Structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-hua(张淑华); FUJIKUBO Masahiko

    2003-01-01

    Costs and losses induced by possible future extreme environmental conditions and difficulties in repairing post-yielding damage strongly suggest the need for proper consideration in design rather than just life loss prevention. This can be addressed through the development of design methodology that balances the initial cost of the very large floating structure (VLFS) against the expected potential losses resulting from future extreme wave-induced structural damage. Here, the development of a methodology for determining optimal, cost-effective design will be presented and applied to a VLFS located in the Tokyo bay. Optimal design criteria are determined based on the total expected life-cycle cost and acceptable damage probability and curvature of the structure, and a set of sizes of the structure are obtained. The methodology and applications require expressions of the initial cost and the expected life-cycle damage cost as functions of the optimal design variables. This study includes the methodology, total life-cycle cost function, structural damage modeling, and reliability analysis.

  3. BAND STRUCTURE OF NON-STEIOCHIOMETRIC LARGE-SIZED NANOCRYSTALLITES

    Directory of Open Access Journals (Sweden)

    I.V.Kityk

    2004-01-01

    Full Text Available A band structure of large-sized (from 20 to 35nm non-steichiometric nanocrystallites (NC of the Si2-xCx (1.04 < x < 1.10 has been investigated using different band energy approaches and a modified Car-Parinello molecular dynamics structure optimization of the NC interfaces. The non-steichiometric excess of carbon favors the appearance of a thin prevailingly carbon-contained layer (with thickness of about 1 nm covering the crystallites. As a consequence, one can observe a substantial structure reconstruction of boundary SiC crystalline layers. The numerical modeling has shown that these NC can be considered as SiC reconstructed crystalline films with thickness of about 2 nm covering the SiC crystallites. The observed data are considered within the different one-electron band structure methods. It was shown that the nano-sized carbon sheet plays a key role in a modified band structure. Independent manifestation of the important role played by the reconstructed confined layers is due to the experimentally discovered excitonic-like resonances. Low-temperature absorption measurements confirm the existence of sharp-like absorption resonances originating from the reconstructed layers.

  4. The seam visual tracking method for large structures

    Science.gov (United States)

    Bi, Qilin; Jiang, Xiaomin; Liu, Xiaoguang; Cheng, Taobo; Zhu, Yulong

    2017-10-01

    In this paper, a compact and flexible weld visual tracking method is proposed. Firstly, there was the interference between the visual device and the work-piece to be welded when visual tracking height cannot change. a kind of weld vision system with compact structure and tracking height is researched. Secondly, according to analyze the relative spatial pose between the camera, the laser and the work-piece to be welded and study with the theory of relative geometric imaging, The mathematical model between image feature parameters and three-dimensional trajectory of the assembly gap to be welded is established. Thirdly, the visual imaging parameters of line structured light are optimized by experiment of the weld structure of the weld. Fourth, the interference that line structure light will be scatters at the bright area of metal and the area of surface scratches will be bright is exited in the imaging. These disturbances seriously affect the computational efficiency. The algorithm based on the human eye visual attention mechanism is used to extract the weld characteristics efficiently and stably. Finally, in the experiment, It is verified that the compact and flexible weld tracking method has the tracking accuracy of 0.5mm in the tracking of large structural parts. It is a wide range of industrial application prospects.

  5. Origin of the large scale structures of the universe

    International Nuclear Information System (INIS)

    Oaknin, David H.

    2004-01-01

    We revise the statistical properties of the primordial cosmological density anisotropies that, at the time of matter-radiation equality, seeded the gravitational development of large scale structures in the otherwise homogeneous and isotropic Friedmann-Robertson-Walker flat universe. Our analysis shows that random fluctuations of the density field at the same instant of equality and with comoving wavelength shorter than the causal horizon at that time can naturally account, when globally constrained to conserve the total mass (energy) of the system, for the observed scale invariance of the anisotropies over cosmologically large comoving volumes. Statistical systems with similar features are generically known as glasslike or latticelike. Obviously, these conclusions conflict with the widely accepted understanding of the primordial structures reported in the literature, which requires an epoch of inflationary cosmology to precede the standard expansion of the universe. The origin of the conflict must be found in the widespread, but unjustified, claim that scale invariant mass (energy) anisotropies at the instant of equality over comoving volumes of cosmological size, larger than the causal horizon at the time, must be generated by fluctuations in the density field with comparably large comoving wavelength

  6. Reliability analysis of large scaled structures by optimization technique

    International Nuclear Information System (INIS)

    Ishikawa, N.; Mihara, T.; Iizuka, M.

    1987-01-01

    This paper presents a reliability analysis based on the optimization technique using PNET (Probabilistic Network Evaluation Technique) method for the highly redundant structures having a large number of collapse modes. This approach makes the best use of the merit of the optimization technique in which the idea of PNET method is used. The analytical process involves the minimization of safety index of the representative mode, subjected to satisfaction of the mechanism condition and of the positive external work. The procedure entails the sequential performance of a series of the NLP (Nonlinear Programming) problems, where the correlation condition as the idea of PNET method pertaining to the representative mode is taken as an additional constraint to the next analysis. Upon succeeding iterations, the final analysis is achieved when a collapse probability at the subsequent mode is extremely less than the value at the 1st mode. The approximate collapse probability of the structure is defined as the sum of the collapse probabilities of the representative modes classified by the extent of correlation. Then, in order to confirm the validity of the proposed method, the conventional Monte Carlo simulation is also revised by using the collapse load analysis. Finally, two fairly large structures were analyzed to illustrate the scope and application of the approach. (orig./HP)

  7. Efficient reanalysis of structures by a direct modification method. [local stiffness modifications of large structures

    Science.gov (United States)

    Raibstein, A. I.; Kalev, I.; Pipano, A.

    1976-01-01

    A procedure for the local stiffness modifications of large structures is described. It enables structural modifications without an a priori definition of the changes in the original structure and without loss of efficiency due to multiple loading conditions. The solution procedure, implemented in NASTRAN, involved the decomposed stiffness matrix and the displacement vectors of the original structure. It solves the modified structure exactly, irrespective of the magnitude of the stiffness changes. In order to investigate the efficiency of the present procedure and to test its applicability within a design environment, several real and large structures were solved. The results of the efficiency studies indicate that the break-even point of the procedure varies between 8% and 60% stiffness modifications, depending upon the structure's characteristics and the options employed.

  8. Divergence of perturbation theory in large scale structures

    Science.gov (United States)

    Pajer, Enrico; van der Woude, Drian

    2018-05-01

    We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.

  9. Speckle photography applied to measure deformations of very large structures

    Science.gov (United States)

    Conley, Edgar; Morgan, Chris K.

    1995-04-01

    Fundamental principles of mechanics have recently been brought to bear on problems concerning very large structures. Fields of study include tectonic plate motion, nuclear waste repository vault closure mechanisms, the flow of glacier and sea ice, and highway bridge damage assessment and residual life prediction. Quantitative observations, appropriate for formulating and verifying models, are still scarce however, so the need to adapt new methods of experimental mechanics is clear. Large dynamic systems often exist in environments subject to rapid change. Therefore, a simple field technique that incorporates short time scales and short gage lengths is required. Further, the measuring methods must yield displacements reliably, and under oft-times adverse field conditions. Fortunately, the advantages conferred by an experimental mechanics technique known as speckle photography nicely fulfill this rather stringent set of performance requirements. Speckle seemed to lend itself nicely to the application since it is robust and relatively inexpensive. Experiment requirements are minimal -- a camera, high resolution film, illumination, and an optically rough surface. Perhaps most important is speckle's distinct advantage over point-by-point methods: It maps the two dimensional displacement vectors of the whole field of interest. And finally, given the method's high spatial resolution, relatively short observation times are necessary. In this paper we discuss speckle, two variations of which were used to gage the deformation of a reinforced concrete bridge structure subjected to bending loads. The measurement technique proved to be easily applied, and yielded the location of the neutral axis self consistently. The research demonstrates the feasibility of using whole field techniques to detect and quantify surface strains of large structures under load.

  10. Nonlinear evolution of large-scale structure in the universe

    International Nuclear Information System (INIS)

    Frenk, C.S.; White, S.D.M.; Davis, M.

    1983-01-01

    Using N-body simulations we study the nonlinear development of primordial density perturbation in an Einstein--de Sitter universe. We compare the evolution of an initial distribution without small-scale density fluctuations to evolution from a random Poisson distribution. These initial conditions mimic the assumptions of the adiabatic and isothermal theories of galaxy formation. The large-scale structures which form in the two cases are markedly dissimilar. In particular, the correlation function xi(r) and the visual appearance of our adiabatic (or ''pancake'') models match better the observed distribution of galaxies. This distribution is characterized by large-scale filamentary structure. Because the pancake models do not evolve in a self-similar fashion, the slope of xi(r) steepens with time; as a result there is a unique epoch at which these models fit the galaxy observations. We find the ratio of cutoff length to correlation length at this time to be lambda/sub min//r 0 = 5.1; its expected value in a neutrino dominated universe is 4(Ωh) -1 (H 0 = 100h km s -1 Mpc -1 ). At early epochs these models predict a negligible amplitude for xi(r) and could explain the lack of measurable clustering in the Lyα absorption lines of high-redshift quasars. However, large-scale structure in our models collapses after z = 2. If this collapse precedes galaxy formation as in the usual pancake theory, galaxies formed uncomfortably recently. The extent of this problem may depend on the cosmological model used; the present series of experiments should be extended in the future to include models with Ω<1

  11. Cosmological parameters from large scale structure - geometric versus shape information

    CERN Document Server

    Hamann, Jan; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y Y

    2010-01-01

    The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\

  12. Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    International Nuclear Information System (INIS)

    Alvarez, Marcello; Baldauf, T.; Bond, J. Richard; Dalal, N.; Putter, R. D.; Dore, O.; Green, Daniel; Hirata, Chris; Huang, Zhiqi; Huterer, Dragan; Jeong, Donghui; Johnson, Matthew C.; Krause, Elisabeth; Loverde, Marilena; Meyers, Joel; Meeburg, Daniel; Senatore, Leonardo; Shandera, Sarah; Silverstein, Eva; Slosar, Anze; Smith, Kendrick; Zaldarriaga, Matias; Assassi, Valentin; Braden, Jonathan; Hajian, Amir; Kobayashi, Takeshi; Stein, George; Engelen, Alexander van

    2014-01-01

    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large-scale structure is, however, from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude floc\

  13. Optimal control of large space structures via generalized inverse matrix

    Science.gov (United States)

    Nguyen, Charles C.; Fang, Xiaowen

    1987-01-01

    Independent Modal Space Control (IMSC) is a control scheme that decouples the space structure into n independent second-order subsystems according to n controlled modes and controls each mode independently. It is well-known that the IMSC eliminates control and observation spillover caused when the conventional coupled modal control scheme is employed. The independent control of each mode requires that the number of actuators be equal to the number of modelled modes, which is very high for a faithful modeling of large space structures. A control scheme is proposed that allows one to use a reduced number of actuators to control all modeled modes suboptimally. In particular, the method of generalized inverse matrices is employed to implement the actuators such that the eigenvalues of the closed-loop system are as closed as possible to those specified by the optimal IMSC. Computer simulation of the proposed control scheme on a simply supported beam is given.

  14. Extremely large magnetoresistance and electronic structure of TmSb

    Science.gov (United States)

    Wang, Yi-Yan; Zhang, Hongyun; Lu, Xiao-Qin; Sun, Lin-Lin; Xu, Sheng; Lu, Zhong-Yi; Liu, Kai; Zhou, Shuyun; Xia, Tian-Long

    2018-02-01

    We report the magnetotransport properties and the electronic structure of TmSb. TmSb exhibits extremely large transverse magnetoresistance and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Interestingly, the split of Fermi surfaces induced by the nonsymmetric spin-orbit interaction has been observed from SdH oscillation. The analysis of the angle-dependent SdH oscillation illustrates the contribution of each Fermi surface to the conductivity. The electronic structure revealed by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations demonstrates a gap at the X point and the absence of band inversion. Combined with the trivial Berry phase extracted from SdH oscillation and the nearly equal concentrations of electron and hole from Hall measurements, it is suggested that TmSb is a topologically trivial semimetal and the observed XMR originates from the electron-hole compensation and high mobility.

  15. Two-phase flow structure in large diameter pipes

    International Nuclear Information System (INIS)

    Smith, T.R.; Schlegel, J.P.; Hibiki, T.; Ishii, M.

    2012-01-01

    Highlights: ► Local profiles of various quantities measured in large diameter pipe. ► Database for interfacial area in large pipes extended to churn-turbulent flow. ► Flow regime map confirms previous models for flow regime transitions. ► Data will be useful in developing interfacial area transport models for large pipes. - Abstract: Flow in large pipes is important in a wide variety of applications. In the nuclear industry in particular, understanding of flow in large diameter pipes is essential in predicting the behavior of reactor systems. This is especially true of natural circulation Boiling Water Reactor (BWR) designs, where a large-diameter chimney above the core provides the gravity head to drive circulation of the coolant through the reactor. The behavior of such reactors during transients and during normal operation will be predicted using advanced thermal–hydraulics analysis codes utilizing the two-fluid model. Essential to accurate two-fluid model calculations is reliable and accurate computation of the interfacial transfer terms. These interfacial transfer terms can be expressed as the product of one term describing the potential driving the transfer and a second term describing the available surface area for transfer, or interfacial area concentration. Currently, the interfacial area is predicted using flow regime dependent empirical correlations; however the interfacial area concentration is best computed through the use of the one-dimensional interfacial area transport equation (IATE). To facilitate the development of IATE source and sink term models in large-diameter pipes a fundamental understanding of the structure of the two-phase flow is essential. This understanding is improved through measurement of the local void fraction, interfacial area concentration and gas velocity profiles in pipes with diameters of 0.102 m and 0.152 m under a wide variety of flow conditions. Additionally, flow regime identification has been performed to

  16. Argentine Population Genetic Structure: Large Variance in Amerindian Contribution

    Science.gov (United States)

    Seldin, Michael F.; Tian, Chao; Shigeta, Russell; Scherbarth, Hugo R.; Silva, Gabriel; Belmont, John W.; Kittles, Rick; Gamron, Susana; Allevi, Alberto; Palatnik, Simon A.; Alvarellos, Alejandro; Paira, Sergio; Caprarulo, Cesar; Guillerón, Carolina; Catoggio, Luis J.; Prigione, Cristina; Berbotto, Guillermo A.; García, Mercedes A.; Perandones, Carlos E.; Pons-Estel, Bernardo A.; Alarcon-Riquelme, Marta E.

    2011-01-01

    Argentine population genetic structure was examined using a set of 78 ancestry informative markers (AIMs) to assess the contributions of European, Amerindian, and African ancestry in 94 individuals members of this population. Using the Bayesian clustering algorithm STRUCTURE, the mean European contribution was 78%, the Amerindian contribution was 19.4%, and the African contribution was 2.5%. Similar results were found using weighted least mean square method: European, 80.2%; Amerindian, 18.1%; and African, 1.7%. Consistent with previous studies the current results showed very few individuals (four of 94) with greater than 10% African admixture. Notably, when individual admixture was examined, the Amerindian and European admixture showed a very large variance and individual Amerindian contribution ranged from 1.5 to 84.5% in the 94 individual Argentine subjects. These results indicate that admixture must be considered when clinical epidemiology or case control genetic analyses are studied in this population. Moreover, the current study provides a set of informative SNPs that can be used to ascertain or control for this potentially hidden stratification. In addition, the large variance in admixture proportions in individual Argentine subjects shown by this study suggests that this population is appropriate for future admixture mapping studies. PMID:17177183

  17. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  18. Solving large scale structure in ten easy steps with COLA

    Energy Technology Data Exchange (ETDEWEB)

    Tassev, Svetlin [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Zaldarriaga, Matias [School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540 (United States); Eisenstein, Daniel J., E-mail: stassev@cfa.harvard.edu, E-mail: matiasz@ias.edu, E-mail: deisenstein@cfa.harvard.edu [Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 10{sup 9}M{sub s}un/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10{sup 11}M{sub s}un/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.

  19. Chiral dynamics and partonic structure at large transverse distances

    Energy Technology Data Exchange (ETDEWEB)

    Strikman, M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics; Weiss, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States). Theory Center

    2009-12-30

    In this paper, we study large-distance contributions to the nucleon’s parton densities in the transverse coordinate (impact parameter) representation based on generalized parton distributions (GPDs). Chiral dynamics generates a distinct component of the partonic structure, located at momentum fractions x≲Mπ/MN and transverse distances b~1/Mπ. We calculate this component using phenomenological pion exchange with a physical lower limit in b (the transverse “core” radius estimated from the nucleon’s axial form factor, Rcore=0.55 fm) and demonstrate its universal character. This formulation preserves the basic picture of the “pion cloud” model of the nucleon’s sea quark distributions, while restricting its application to the region actually governed by chiral dynamics. It is found that (a) the large-distance component accounts for only ~1/3 of the measured antiquark flavor asymmetry d¯-u¯ at x~0.1; (b) the strange sea quarks s and s¯ are significantly more localized than the light antiquark sea; (c) the nucleon’s singlet quark size for x<0.1 is larger than its gluonic size, (b2)q+q¯>(b2)g, as suggested by the t-slopes of deeply-virtual Compton scattering and exclusive J/ψ production measured at HERA and FNAL. We show that our approach reproduces the general Nc-scaling of parton densities in QCD, thanks to the degeneracy of N and Δ intermediate states in the large-Nc limit. Finally, we also comment on the role of pionic configurations at large longitudinal distances and the limits of their applicability at small x.

  20. LARGE-SCALE FILAMENTARY STRUCTURES AROUND THE VIRGO CLUSTER REVISITED

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk; Rey, Soo-Chang; Lee, Youngdae; Lee, Woong; Chung, Jiwon [Department of Astronomy and Space Science, Chungnam National University, 99 Daehak-ro, Daejeon 305-764 (Korea, Republic of); Bureau, Martin [Sub-department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Yoon, Hyein; Chung, Aeree [Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Jerjen, Helmut [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Lisker, Thorsten [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Jeong, Hyunjin; Sung, Eon-Chang, E-mail: screy@cnu.ac.kr, E-mail: star4citizen@kasi.re.kr [Korea Astronomy and Space Science institute, 776 Daedeokdae-ro, Daejeon 305-348 (Korea, Republic of)

    2016-12-20

    We revisit the filamentary structures of galaxies around the Virgo cluster, exploiting a larger data set, based on the HyperLeda database, than previous studies. In particular, this includes a large number of low-luminosity galaxies, resulting in better sampled individual structures. We confirm seven known structures in the distance range 4  h {sup −1} Mpc < SGY < 16  h {sup −1} Mpc, now identified as filaments, where SGY is the axis of the supergalactic coordinate system roughly along the line of sight. The Hubble diagram of the filament galaxies suggests they are infalling toward the main body of the Virgo cluster. We propose that the collinear distribution of giant elliptical galaxies along the fundamental axis of the Virgo cluster is smoothly connected to two of these filaments (Leo II A and B). Behind the Virgo cluster (16  h {sup −1} Mpc < SGY < 27  h {sup −1} Mpc), we also identify a new filament elongated toward the NGC 5353/4 group (“NGC 5353/4 filament”) and confirm a sheet that includes galaxies from the W and M clouds of the Virgo cluster (“W–M sheet”). In the Hubble diagram, the NGC 5353/4 filament galaxies show infall toward the NGC 5353/4 group, whereas the W–M sheet galaxies do not show hints of gravitational influence from the Virgo cluster. The filamentary structures identified can now be used to better understand the generic role of filaments in the build-up of galaxy clusters at z  ≈ 0.

  1. Towards a 'standard model' of large scale structure formation

    International Nuclear Information System (INIS)

    Shafi, Q.

    1994-01-01

    We explore constraints on inflationary models employing data on large scale structure mainly from COBE temperature anisotropies and IRAS selected galaxy surveys. In models where the tensor contribution to the COBE signal is negligible, we find that the spectral index of density fluctuations n must exceed 0.7. Furthermore the COBE signal cannot be dominated by the tensor component, implying n > 0.85 in such models. The data favors cold plus hot dark matter models with n equal or close to unity and Ω HDM ∼ 0.2 - 0.35. Realistic grand unified theories, including supersymmetric versions, which produce inflation with these properties are presented. (author). 46 refs, 8 figs

  2. Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Marcello [Univ. of Toronto, ON (Canada); Baldauf, T. [Inst. of Advanced Studies, Princeton, NJ (United States); Bond, J. Richard [Univ. of Toronto, ON (Canada); Canadian Inst. for Advanced Research, Toronto, ON (Canada); Dalal, N. [Univ. of Illinois, Urbana-Champaign, IL (United States); Putter, R. D. [Jet Propulsion Lab., Pasadena, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Dore, O. [Jet Propulsion Lab., Pasadena, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Green, Daniel [Univ. of Toronto, ON (Canada); Canadian Inst. for Advanced Research, Toronto, ON (Canada); Hirata, Chris [The Ohio State Univ., Columbus, OH (United States); Huang, Zhiqi [Univ. of Toronto, ON (Canada); Huterer, Dragan [Univ. of Michigan, Ann Arbor, MI (United States); Jeong, Donghui [Pennsylvania State Univ., University Park, PA (United States); Johnson, Matthew C. [York Univ., Toronto, ON (Canada); Perimeter Inst., Waterloo, ON (Canada); Krause, Elisabeth [Stanford Univ., CA (United States); Loverde, Marilena [Univ. of Chicago, IL (United States); Meyers, Joel [Univ. of Toronto, ON (Canada); Meeburg, Daniel [Univ. of Toronto, ON (Canada); Senatore, Leonardo [Stanford Univ., CA (United States); Shandera, Sarah [Pennsylvania State Univ., University Park, PA (United States); Silverstein, Eva [Stanford Univ., CA (United States); Slosar, Anze [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Kendrick [Perimeter Inst., Waterloo, Toronto, ON (Canada); Zaldarriaga, Matias [Univ. of Toronto, ON (Canada); Assassi, Valentin [Cambridge Univ. (United Kingdom); Braden, Jonathan [Univ. of Toronto, ON (Canada); Hajian, Amir [Univ. of Toronto, ON (Canada); Kobayashi, Takeshi [Perimeter Inst., Waterloo, Toronto, ON (Canada); Univ. of Toronto, ON (Canada); Stein, George [Univ. of Toronto, ON (Canada); Engelen, Alexander van [Univ. of Toronto, ON (Canada)

    2014-12-15

    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large-scale structure is, however, from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude f$loc\\atop{NL}$ (f$eq\\atop{NL}$), natural target levels of sensitivity are Δf$loc, eq\\atop{NL}$ ≃ 1. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.

  3. Cosmological perturbations from quantum fluctuations to large scale structure

    International Nuclear Information System (INIS)

    Bardeen, J.M.

    1988-01-01

    Classical perturbation theory is developed from the 3 + 1 form of the Einstein equations. A somewhat unusual form of the perturbation equations in the synchronous gauge is recommended for carrying out computations, but interpretation is based on certain hypersurface-invariant combinations of the variables. The formalism is used to analyze the origin of density perturbations from quantum fluctuations during inflation, with particular emphasis on dealing with 'double inflation' and deviations from the Zel'dovich spectrum. The evolution of the density perturbation to the present gives the final density perturbation power spectrum, whose relationship to observed large scale structure is discussed in the context of simple cold-dark-matter biasing schemes. 86 refs

  4. Spin-flavor structure of large Nc baryons

    International Nuclear Information System (INIS)

    Dashen, R.F.; Jenkins, E.; Manohar, A.V.

    1995-01-01

    The spin-flavor structure of large N c baryons is described in the 1/N c expansion of QCD using quark operators. The complete set of quark operator identities is obtained, and used to derive an operator reduction rule which simplifies the 1/N c expansion. The operator reduction rule is applied to the axial vector currents, masses, magnetic moments, and hyperon nonleptonic decay amplitudes in the SU(3) limit, to first order in SU(3) breaking, and without assuming SU(3) symmetry. The connection between the Skyrme and quark operator representations is discussed. An explicit formula is given for the quark model operators in terms of the Skyrme model operators to all orders in 1/N c for the two flavor case

  5. Large-Scale Structure Behind The Milky Way with ALFAZOA

    Science.gov (United States)

    Sanchez Barrantes, Monica; Henning, Patricia A.; Momjian, Emmanuel; McIntyre, Travis; Minchin, Robert F.

    2018-06-01

    The region of the sky behind the Milky Way (the Zone of Avoidance; ZOA) is not well studied due to high obscuration from gas and dust in our galaxy as well as stellar confusion, which results in low detection rate of galaxies in this region. Because of this, little is known about the distribution of galaxies in the ZOA, and other all sky redshift surveys have incomplete maps (e.g. the 2MASS Redshift survey in NIR has a gap of 5-8 deg around the Galactic plane). There is still controversy about the dipole anisotropy calculated from the comparison between the CMB and galaxy and redshift surveys, in part due to the incomplete sky mapping and redshift depth of these surveys. Fortunately, there is no ZOA at radio wavelengths because such wavelengths can pass unimpeded through dust and are not affected by stellar confusion. Therefore, we can detect and make a map of the distribution of obscured galaxies that contain the 21cm neutral hydrogen emission line, and trace the large-scale structure across the Galactic plane. The Arecibo L-Band Feed Array Zone of Avoidance (ALFAZOA) survey is a blind HI survey for galaxies behind the Milky Way that covers more than 1000 square degrees of the sky, conducted in two phases: shallow (completed) and deep (ongoing). We show the results of the finished shallow phase of the survey, which mapped a region between the galactic longitude l=30-75 deg, and latitude b <|10 deg|, and detected 418 galaxies to about 12,000 km/s, including galaxy properties and mapped large-scale structure. We do the same for new results from the deep phase, which is ongoing and covers 30 < l < 75 deg and b < |2| deg for the inner galaxy and 175 < l < 207 deg, with -2 < b < 1 for the outer galaxy.

  6. On soft limits of large-scale structure correlation functions

    International Nuclear Information System (INIS)

    Sagunski, Laura

    2016-08-01

    Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the

  7. On soft limits of large-scale structure correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Sagunski, Laura

    2016-08-15

    Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the

  8. Systematic renormalization of the effective theory of Large Scale Structure

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Mirbabayi, Mehrdad; Pajer, Enrico

    2016-01-01

    A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k 2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.

  9. EFT of large scale structures in redshift space

    Science.gov (United States)

    Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco; Zhao, Cheng; Chuang, Chia-Hsun

    2018-03-01

    We further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ=6 . We find that the IR resummation allows us to correctly reproduce the baryon acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k —depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z =0.56 and up to ℓ=2 matches the data at the percent level approximately up to k ˜0.13 h Mpc-1 or k ˜0.18 h Mpc-1 , depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.

  10. Ab initio nuclear structure - the large sparse matrix eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Vary, James P; Maris, Pieter [Department of Physics, Iowa State University, Ames, IA, 50011 (United States); Ng, Esmond; Yang, Chao [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sosonkina, Masha, E-mail: jvary@iastate.ed [Scalable Computing Laboratory, Ames Laboratory, Iowa State University, Ames, IA, 50011 (United States)

    2009-07-01

    The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10{sup 10} and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.

  11. Ab initio nuclear structure - the large sparse matrix eigenvalue problem

    International Nuclear Information System (INIS)

    Vary, James P; Maris, Pieter; Ng, Esmond; Yang, Chao; Sosonkina, Masha

    2009-01-01

    The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10 10 and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.

  12. The structure functions of the photon at large x

    International Nuclear Information System (INIS)

    Chase, M.K.

    1981-01-01

    We derive 'improved' perturbative results in QCD for the structure functions of the photon at large Bjorken x by (a) using a correct phase-space treatment of the leading mass-singularity logarithms and (b) summing the leading logarithms of (1-x) associated with the wave function of the final state. We obtain explicit results in three kinematic regimes: (i) Q 2 low enough for logarithmic QCD corrections to the parton model to be negligible; we estimate that this is the case for all presently realistic values of Q 2 (approx. 2 ). (ii) Q 2 high enough (at fixed x) for the effects of the leading mass-singularity logarithms to be important; we discuss the modifications to Witten's result at large x due to the correct kinematical treatment of the leading logarithms. (iii) Q 2 /s → infinite, where we sum the wave-function logarithms of (1-x); we show that F 2 sup(γ) → finite constant as Q 2 /s → infinite and that there is a close inclusive-exclusive connection in this limit. (orig.)

  13. DEMNUni: massive neutrinos and the bispectrum of large scale structures

    Science.gov (United States)

    Ruggeri, Rossana; Castorina, Emanuele; Carbone, Carmelita; Sefusatti, Emiliano

    2018-03-01

    The main effect of massive neutrinos on the large-scale structure consists in a few percent suppression of matter perturbations on all scales below their free-streaming scale. Such effect is of particular importance as it allows to constraint the value of the sum of neutrino masses from measurements of the galaxy power spectrum. In this work, we present the first measurements of the next higher-order correlation function, the bispectrum, from N-body simulations that include massive neutrinos as particles. This is the simplest statistics characterising the non-Gaussian properties of the matter and dark matter halos distributions. We investigate, in the first place, the suppression due to massive neutrinos on the matter bispectrum, comparing our measurements with the simplest perturbation theory predictions, finding the approximation of neutrinos contributing at quadratic order in perturbation theory to provide a good fit to the measurements in the simulations. On the other hand, as expected, a linear approximation for neutrino perturbations would lead to Script O(fν) errors on the total matter bispectrum at large scales. We then attempt an extension of previous results on the universality of linear halo bias in neutrino cosmologies, to non-linear and non-local corrections finding consistent results with the power spectrum analysis.

  14. Large scale structures in liquid crystal/clay colloids

    Science.gov (United States)

    van Duijneveldt, Jeroen S.; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M.

    2005-04-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods.

  15. Large scale structures in liquid crystal/clay colloids

    International Nuclear Information System (INIS)

    Duijneveldt, Jeroen S van; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M

    2005-01-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods

  16. Detection for flatness of large surface based on structured light

    Science.gov (United States)

    He, Wenyan; Cao, Xuedong; Long, Kuang; Peng, Zhang

    2016-09-01

    In order to get flatness of a large plane, this paper set up a measurement system, composed by Line Structured Light, imaging system, CCD, etc. Line Structured Light transmits parallel fringes at a proper angle onto the plane which is measured; the imaging system and CCD locate above the plane to catch the fringes. When the plane is perfect, CCD will catch straight fringes; however, the real plane is not perfect; according to the theory of projection, the fringes caught by CCD will be distorted by convex and concave. Extract the center of line fringes to obtain the distortion of the fringe, according to the functional relationship between the distortion of fringes and the height which is measured, then we will get flatness of the entire surface. Data from experiment approached the analysis of theory. In the simulation, the vertical resolution is 0.0075 mm per pixel when measuring a plane of 400mm×400mm, choosing the size of CCD 4096×4096, at the angle 85°. Helped by sub-pixel, the precision will get the level of submicron. There are two obvious advantages: method of surface sampling can increase the efficiency for auto-repairing of machines; considering the center of fringe is required mainly in this system, as a consequence, there is no serious demand for back light.

  17. Multipodal Structure and Phase Transitions in Large Constrained Graphs

    Science.gov (United States)

    Kenyon, Richard; Radin, Charles; Ren, Kui; Sadun, Lorenzo

    2017-07-01

    We study the asymptotics of large, simple, labeled graphs constrained by the densities of two subgraphs. It was recently conjectured that for all feasible values of the densities most such graphs have a simple structure. Here we prove this in the special case where the densities are those of edges and of k-star subgraphs, k≥2 fixed. We prove that under such constraints graphs are "multipodal": asymptotically in the number of vertices there is a partition of the vertices into M < ∞ subsets V_1, V_2, \\ldots , V_M, and a set of well-defined probabilities g_{ij} of an edge between any v_i \\in V_i and v_j \\in V_j. For 2≤ k≤ 30 we determine the phase space: the combinations of edge and k-star densities achievable asymptotically. For these models there are special points on the boundary of the phase space with nonunique asymptotic (graphon) structure; for the 2-star model we prove that the nonuniqueness extends to entropy maximizers in the interior of the phase space.

  18. Reconstructing Information in Large-Scale Structure via Logarithmic Mapping

    Science.gov (United States)

    Szapudi, Istvan

    We propose to develop a new method to extract information from large-scale structure data combining two-point statistics and non-linear transformations; before, this information was available only with substantially more complex higher-order statistical methods. Initially, most of the cosmological information in large-scale structure lies in two-point statistics. With non- linear evolution, some of that useful information leaks into higher-order statistics. The PI and group has shown in a series of theoretical investigations how that leakage occurs, and explained the Fisher information plateau at smaller scales. This plateau means that even as more modes are added to the measurement of the power spectrum, the total cumulative information (loosely speaking the inverse errorbar) is not increasing. Recently we have shown in Neyrinck et al. (2009, 2010) that a logarithmic (and a related Gaussianization or Box-Cox) transformation on the non-linear Dark Matter or galaxy field reconstructs a surprisingly large fraction of this missing Fisher information of the initial conditions. This was predicted by the earlier wave mechanical formulation of gravitational dynamics by Szapudi & Kaiser (2003). The present proposal is focused on working out the theoretical underpinning of the method to a point that it can be used in practice to analyze data. In particular, one needs to deal with the usual real-life issues of galaxy surveys, such as complex geometry, discrete sam- pling (Poisson or sub-Poisson noise), bias (linear, or non-linear, deterministic, or stochastic), redshift distortions, pro jection effects for 2D samples, and the effects of photometric redshift errors. We will develop methods for weak lensing and Sunyaev-Zeldovich power spectra as well, the latter specifically targetting Planck. In addition, we plan to investigate the question of residual higher- order information after the non-linear mapping, and possible applications for cosmology. Our aim will be to work out

  19. Alignment between galaxies and large-scale structure

    International Nuclear Information System (INIS)

    Faltenbacher, A.; Li Cheng; White, Simon D. M.; Jing, Yi-Peng; Mao Shude; Wang Jie

    2009-01-01

    Based on the Sloan Digital Sky Survey DR6 (SDSS) and the Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(2θ)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L ∼ * ) galaxies out to projected separations of 60 h- 1 Mpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ∼ 25 deg. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for central galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference

  20. Cryogenic structural material and design of support structures for the Large Helical Device

    International Nuclear Information System (INIS)

    Nishimura, Arata; Imagawa, Shinsaku; Tamura, Hitoshi

    1997-01-01

    This paper describes a short history of material selection for the cryogenic support structures for the Large Helical Device (LHD) which has superconducting coils. Since the support structures are cooled down to 4.4 K together with the coils, SUS 316 was chosen because of its stable austenitic phase, sufficient mechanical properties at cryogenic temperature and good weldability. Also, outlines of the design and fabrication processes of the support structures are summarized. On the design of the support structures, a deformation analysis was carried out to maintain the proper magnetic field during operation. Afterwards, a stress analysis was performed. During machining and assembling, tolerance was noticed to keep coil positions accurate. Special welding grooves and fabrication processes were considered and achieved successfully. Finally, a cryogenic supporting post which sustains the cryogenic structures and superconducting coils is presented. CFRP was used in this specially developed supporting post to reduce the heat conduction from ambient 300 K structures. (author)

  1. Inflationary tensor fossils in large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Dimastrogiovanni, Emanuela [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Fasiello, Matteo [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); Jeong, Donghui [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Kamionkowski, Marc, E-mail: ema@physics.umn.edu, E-mail: mrf65@case.edu, E-mail: duj13@psu.edu, E-mail: kamion@jhu.edu [Department of Physics and Astronomy, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218 (United States)

    2014-12-01

    Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to be satisfied. We then consider several examples of inflation models, such as non-attractor and solid-inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.

  2. Characterizing unknown systematics in large scale structure surveys

    International Nuclear Information System (INIS)

    Agarwal, Nishant; Ho, Shirley; Myers, Adam D.; Seo, Hee-Jong; Ross, Ashley J.; Bahcall, Neta; Brinkmann, Jonathan; Eisenstein, Daniel J.; Muna, Demitri; Palanque-Delabrouille, Nathalie; Yèche, Christophe; Pâris, Isabelle; Petitjean, Patrick; Schneider, Donald P.; Streblyanska, Alina; Weaver, Benjamin A.

    2014-01-01

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study

  3. A Simple Instrumentation System for Large Structure Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Didik R. Santoso

    2010-12-01

    Full Text Available Traditional instrumentation systems used for monitoring vibration of large-scale infrastructure building such as bridges, railway, and others structural building, generally have a complex design. Makes it simple would be very useful both in terms of low-cost and easy maintenance. This paper describes how to develop the instrumentation system. The system is built based on distributed network, with field bus topology, using single-master multi-slave architecture. Master is a control unit, built based on a PC equipped with RS-485 interface. Slave is a sensing unit; each slave was built by integrating a 3-axis vibration sensor with a microcontroller based data acquisition system. Vibration sensor is designed using the main components of a MEMS accelerometer. While the software is developed for two functions: as a control system hardware and data processing. To verify performance of the developed instrumentation system, several laboratory tests have been performed. The result shows that the system has good performance.

  4. Inflation and large scale structure formation after COBE

    International Nuclear Information System (INIS)

    Schaefer, R.K.; Shafi, Q.

    1992-06-01

    The simplest realizations of the new inflationary scenario typically give rise to primordial density fluctuations which deviate logarithmically from the scale free Harrison-Zeldovich spectrum. We consider a number of such examples and, in each case we normalize the amplitude of the fluctuations with the recent COBE measurement of the microwave background anisotropy. The predictions for the bulk velocities as well as anisotropies on smaller (1-2 degrees) angular scales are compared with the Harrison-Zeldovich case. Deviations from the latter range from a few to about 15 percent. We also estimate the redshift beyond which the quasars would not be expected to be seen. The inflationary quasar cutoff redshifts can vary by as much as 25% from the Harrison-Zeldovich case. We find that the inflationary scenario provides a good starting point for a theory of large scale structure in the universe provided the dark matter is a combination of cold plus (10-30%) hot components. (author). 27 refs, 1 fig., 1 tab

  5. Auxiliary basis expansions for large-scale electronic structure calculations.

    Science.gov (United States)

    Jung, Yousung; Sodt, Alex; Gill, Peter M W; Head-Gordon, Martin

    2005-05-10

    One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.

  6. Characterizing unknown systematics in large scale structure surveys

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Nishant; Ho, Shirley [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Seo, Hee-Jong [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Ross, Ashley J. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Bahcall, Neta [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States); Brinkmann, Jonathan [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Muna, Demitri [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Palanque-Delabrouille, Nathalie; Yèche, Christophe [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Pâris, Isabelle [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Petitjean, Patrick [Université Paris 6 et CNRS, Institut d' Astrophysique de Paris, 98bis blvd. Arago, 75014 Paris (France); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Streblyanska, Alina [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Weaver, Benjamin A., E-mail: nishanta@andrew.cmu.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2014-04-01

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.

  7. Resin infusion of large composite structures modeling and manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Loos, A.C. [Michigan State Univ., Dept. of Mechanical Engineering, East Lansing, MI (United States)

    2006-07-01

    The resin infusion processes resin transfer molding (RTM), resin film infusion (RFI) and vacuum assisted resin transfer molding (VARTM) are cost effective techniques for the fabrication of complex shaped composite structures. The dry fibrous preform is placed in the mold, consolidated, resin impregnated and cured in a single step process. The fibrous performs are often constructed near net shape using highly automated textile processes such as knitting, weaving and braiding. In this paper, the infusion processes RTM, RFI and VARTM are discussed along with the advantages of each technique compared with traditional composite fabrication methods such as prepreg tape lay up and autoclave cure. The large number of processing variables and the complex material behavior during infiltration and cure make experimental optimization of the infusion processes costly and inefficient. Numerical models have been developed which can be used to simulate the resin infusion processes. The model formulation and solution procedures for the VARTM process are presented. A VARTM process simulation of a carbon fiber preform was presented to demonstrate the type of information that can be generated by the model and to compare the model predictions with experimental measurements. Overall, the predicted flow front positions, resin pressures and preform thicknesses agree well with the measured values. The results of the simulation show the potential cost and performance benefits that can be realized by using a simulation model as part of the development process. (au)

  8. Cost-efficient foundation structures for large offshore wind farms

    International Nuclear Information System (INIS)

    Birch, C.; Gormsen, C.; Lyngesen, S.; Rasmussen, J. L.; Juhl, H.

    1997-01-01

    This paper presents the results of the development of a cost-efficient foundation for large (1.5 MW) offshore wind farms at water depth of 5 to 11 m. Previously, medium sized wind turbines (500 kW) in Denmark have been installed offshore at water depths of approximately 5 m on concrete gravity foundations. The installation of larger turbines at greater depth does, however, hold great promise in terms of wind environment and environmental considerations. The costs of a traditional gravity foundation at these increased water depths is expected to be prohibitive, and the aim of the project has been to reduce the foundations costs in general. This paper describes the theoretical basis for the geotechnical and structural design of three alternative concepts and presents an optimised layout of each based on a research and development project. The basis has been a wind farm consisting of 100 turbines. The R and D project has been undertaken by the consulting engineers Nellemann, Nielsen and Rauschenberger A/S (Gravity foundation), LICengineering A/S (Mono pile) and Ramboell (Tripod) in co-operation with the Danish utility engineering companies Elkraft and Elsamprojekt A/S. The project was partly financed by the participants and by the Danish Energy Agency through their 1996 Energy Research Programme (EFP-96). (au) 18 refs

  9. Soft-Pion theorems for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2014-01-01

    Consistency relations — which relate an N-point function to a squeezed (N+1)-point function — are useful in large scale structure (LSS) because of their non-perturbative nature: they hold even if the N-point function is deep in the nonlinear regime, and even if they involve astrophysically messy galaxy observables. The non-perturbative nature of the consistency relations is guaranteed by the fact that they are symmetry statements, in which the velocity plays the role of the soft pion. In this paper, we address two issues: (1) how to derive the relations systematically using the residual coordinate freedom in the Newtonian gauge, and relate them to known results in ζ-gauge (often used in studies of inflation); (2) under what conditions the consistency relations are violated. In the non-relativistic limit, our derivation reproduces the Newtonian consistency relation discovered by Kehagias and Riotto and Peloso and Pietroni. More generally, there is an infinite set of consistency relations, as is known in ζ-gauge. There is a one-to-one correspondence between symmetries in the two gauges; in particular, the Newtonian consistency relation follows from the dilation and special conformal symmetries in ζ-gauge. We probe the robustness of the consistency relations by studying models of galaxy dynamics and biasing. We give a systematic list of conditions under which the consistency relations are violated; violations occur if the galaxy bias is non-local in an infrared divergent way. We emphasize the relevance of the adiabatic mode condition, as distinct from symmetry considerations. As a by-product of our investigation, we discuss a simple fluid Lagrangian for LSS

  10. Review of the research on “structural bionic” method of large sculpture

    Science.gov (United States)

    Yin, Jiang; Yang, Wenchang

    2017-09-01

    This paper presented the basic concept of bionic sculpture and summarized the application status of “structural bionic”theory in large bionic sculpture field. Introduced the development trend and challenges of large bionic sculpture and pointed out that the sculpture's “structural bionic” can bring higher mechanical performance of the new structure and system, The evaluation method and structure design for large bionic sculpture are urgently needed.Finally prospected the market of the large bionic sculpture.

  11. Structural Flexibility of Large Direct Drive Generators for Wind Turbines

    NARCIS (Netherlands)

    Shrestha, G.

    2013-01-01

    The trend in wind energy is towards large offshore wind farms. This trend has led to the demand for high reliability and large single unit wind turbines. Different energy conversion topologies such as multiple stage geared generators, single stage geared generators and gearless (direct drive)

  12. RNA secondary structure diagrams for very large molecules: RNAfdl

    DEFF Research Database (Denmark)

    Hecker, Nikolai; Wiegels, Tim; Torda, Andrew E.

    2013-01-01

    There are many programs that can read the secondary structure of an RNA molecule and draw a diagram, but hardly any that can cope with 10 3 bases. RNAfdl is slow but capable of producing intersection-free diagrams for ribosome-sized structures, has a graphical user interface for adjustments...

  13. Chaperonin Structure - The Large Multi-Subunit Protein Complex

    Directory of Open Access Journals (Sweden)

    Irena Roterman

    2009-03-01

    Full Text Available The multi sub-unit protein structure representing the chaperonins group is analyzed with respect to its hydrophobicity distribution. The proteins of this group assist protein folding supported by ATP. The specific axial symmetry GroEL structure (two rings of seven units stacked back to back - 524 aa each and the GroES (single ring of seven units - 97 aa each polypeptide chains are analyzed using the hydrophobicity distribution expressed as excess/deficiency all over the molecule to search for structure-to-function relationships. The empirically observed distribution of hydrophobic residues is confronted with the theoretical one representing the idealized hydrophobic core with hydrophilic residues exposure on the surface. The observed discrepancy between these two distributions seems to be aim-oriented, determining the structure-to-function relation. The hydrophobic force field structure generated by the chaperonin capsule is presented. Its possible influence on substrate folding is suggested.

  14. Ultra-Lightweight Large Aperture Support Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-lightweight membranes may prove to be very attractive for large aperture systems, but their value will be fully realized only if they are mated with equally...

  15. Unmanned aerial vehicle (UAV) application to the structural health assessment of large civil engineering structures

    Science.gov (United States)

    Castiglioni, Carlo A.; Rabuffetti, Angelo S.; Chiarelli, Gian P.; Brambilla, Giovanni; Georgi, Julia

    2017-09-01

    This paper summarizes the experience gained in the structural assessment of an existing Thermal Power Plant (TPP) located near Pristina, focusing on the cooling tower and the flue gas stack, which are the main structures of the TPP. Scope of the work was the evaluation of the actual conditions of the structures and to identify the eventual repair measures in order to guarantee a safe and reliable operation of the TPP in view of the extension of its operational lifetime for the next 30 years. With this aim, a sequence of different activities was performed, like: a topographic survey to compare the actual geometrical configuration with the design one, an investigation of the material properties, an in depth visual inspection in order to detect any visible existing damage. Due to the very high elevations of the constructions and to the lack of appropriate structures aimed to their inspections and maintenance, this activity could not be performed without using Unmanned Aerial Vehicle (UAV). This resulted the safest, most economical and less time-consuming solution identified to map the surface damage in the reinforced concrete elements of these large structures including zones that could not be inspected because out of reach by other means.

  16. Acoustic Emission of Large PRSEUS Structures (Pultruded Rod Stitched Efficient Unitized Structure)

    Science.gov (United States)

    Horne, Michael R.; Juarez, Peter D.

    2016-01-01

    In the role of structural health monitoring (SHM), Acoustic Emission (AE) analysis is being investigated as an effective method for tracking damage development in large composite structures under load. Structures made using Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) for damage tolerant, light, and economical airframe construction are being pursued by The Boeing Company and NASA under the Environmentally Responsible Aircraft initiative (ERA). The failure tests of two PRSEUS substructures based on the Boeing Hybrid Wing Body fuselage concept were conducted during third quarter 2011 and second quarter 2015. One fundamental concern of these tests was determining the effectiveness of the stitched integral stiffeners to inhibit damage progression. By design, severe degradation of load carrying capability should not occur prior to Design Ultimate Load (DUL). While minor damage prior to DUL was anticipated, the integral stitching should not fail since this would allow a stiffener-skin delamination to progress rapidly and alter the transfer of load into the stiffeners. In addition, the stiffeners should not fracture because they are fundamental to structural integrity. Getting the best information from each AE sensor is a primary consideration because a sparse network of sensors is implemented. Sensitivity to stiffener-contiguous degradation is supported by sensors near the stiffeners, which increases the coverage per sensor via AE waveguide actions. Some sensors are located near potentially critical areas or "critical zones" as identified by numerical analyses. The approach is compared with the damage progression monitored by other techniques (e.g. ultrasonic C-scan).

  17. Measuring Cosmic Expansion and Large Scale Structure with Destiny

    Science.gov (United States)

    Benford, Dominic J.; Lauer, Tod R.

    2007-01-01

    Destiny is a simple, direct, low cost mission to determine the properties of dark energy by obtaining a cosmologically deep supernova (SN) type Ia Hubble diagram and by measuring the large-scale mass power spectrum over time. Its science instrument is a 1.65m space telescope, featuring a near-infrared survey camera/spectrometer with a large field of view. During its first two years, Destiny will detect, observe, and characterize 23000 SN Ia events over the redshift interval 0.4Destiny will be used in its third year as a high resolution, wide-field imager to conduct a weak lensing survey covering >lo00 square degrees to measure the large-scale mass power spectrum. The combination of surveys is much more powerful than either technique on its own, and will have over an order of magnitude greater sensitivity than will be provided by ongoing ground-based projects.

  18. Mid-frequency Band Dynamics of Large Space Structures

    Science.gov (United States)

    Coppolino, Robert N.; Adams, Douglas S.

    2004-01-01

    High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.

  19. Algorithms for Electromagnetic Scattering Analysis of Electrically Large Structures

    DEFF Research Database (Denmark)

    Borries, Oscar Peter

    Accurate analysis of electrically large antennas is often done using either Physical Optics (PO) or Method of Moments (MoM), where the former typically requires fewer computational resources but has a limited application regime. This study has focused on fast variants of these two methods, with t...

  20. Structure-Based Partitioning of Large Concept Hierarchies

    NARCIS (Netherlands)

    Stuckenschmidt, Heiner; Klein, Michel

    2004-01-01

    The increasing awareness of the benefits of ontologies for information processing has lead to the creation of a number of large ontologies about real-world domains. The size of these ontologies and their monolithic character cause serious problems in handling them. In other areas, e.g. software

  1. Structural analysis of the large coil segment test

    International Nuclear Information System (INIS)

    Cain, W.D.; Gray, W.H.; Hendrich, W.R.; Nelson, B.E.; Stoddart, W.C.T.

    1977-01-01

    In the analysis of the LCS, it has been demonstrated that it is possible to design complex structures utilizing existing hardware in a highly reliable and efficient manner. It has also been shown that GIFTS is very useful for aiding in the design and analysis of these complex structures. GIFTS' element generation and graphics display capabilities allow for on-line structural analysis to be performed and permit the incorporation and analysis of major design changes in short periods of time. This flexibility means that more design iterations can be analyzed, and thus a better design can often be achieved instead of just an adequate design. The on-line nature of GIFTS allows for continuity of thought and its visual displays highlight trouble areas which can usually be redesigned in an efficient manner. For the LCS, GIFTS was used to generate a working design of the complete system in a logical and efficient manner in a relatively short period of time

  2. An Evaluation Framework for Large-Scale Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Knudsen, Thomas Phillip; Madsen, Ole Brun

    2004-01-01

    structure is a matter of trade-offs between different desired properties, and given a specific case with specific known or expected demands and constraints, the parameters presented will be weighted differently. The decision of such a weighting is supported by a discussion of each parameter. The paper...

  3. High resolution soil moisture radiometer. [large space structures

    Science.gov (United States)

    Wilheit, T. T.

    1978-01-01

    An electrically scanned pushbroom phased antenna array is described for a microwave radiometer which can provide agriculturally meaningful measurements of soil moisture. The antenna size of 100 meters at 1400 MHz or 230 meters at 611 MHz requires several shuttle launches and orbital assembly. Problems inherent to the size of the structure and specific instrument problems are discussed as well as the preliminary design.

  4. Structure and properties of copper after large strain deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, Kinga; Molak, Rafal M.; Pakiela, Zbigniew

    2010-05-15

    Structure and properties of Cu in dependence on strain (from {epsilon}{proportional_to} 0.9 to {epsilon}{proportional_to} 15) during multi-axial compression processing at room temperature was investigated. The evolution of dislocation structure, misorientation distribution and crystallite size were observed by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipment with electron back scattered diffraction (EBSD) facility. The mechanical properties of yield strength (YS), ultimate tensile strength (UTS) and uniform elongation was performed on MTS QTest/10 machine equipped with digital image correlation method (DIC). The structure-flow stress relationship of multi-axial compression processing material at strains {epsilon}{proportional_to} 3.5 and {epsilon}{proportional_to} 5.5 is discussed. It is found that processing does not produce any drastic changes in deformation structure and the microstructural refinement is slow. These results indicate that dynamic recrystallization plays an important role during multi-axial compression process in this range of deformation (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Seismic soil-structure interaction of foundations with large piles

    International Nuclear Information System (INIS)

    Zeevaert, L.

    1996-01-01

    In seismic regions with soft soil deposits subjected to ground surface subsidence, there is the necessity to support the weight of constructions on large diameter piles or piers hearing on deep firm strata. To justify the action of these elements working under flexo compression and shear, it is necessary to perform calculations of soil pile interaction from a practical engineering point of view and estimate the order of magnitude of the forces and displacements to which these elements will be subjected during the seismic action assigned to the foundation. In this paper we defined a pier as a large diameter pile constructed on site. Furthermore, in the seismic analysis it is necessary to evaluate the seismic pore water pressure to learn on the effective seismic soil stresses close to the ground surface. (author)

  6. Large-scale density structures in the outer heliosphere

    Science.gov (United States)

    Belcher, J. W.; Lazarus, A. J.; Mcnutt, R. L., Jr.; Gordon, G. S., Jr.

    1993-01-01

    The Plasma Science experiment on the Voyager 2 spacecraft has measured the solar wind density from 1 to 38 AU. Over this distance, the solar wind density decreases as the inverse square of the heliocentric distance. However, there are large variations in this density at a given radius. Such changes in density are the dominant cause of changes in the solar wind ram pressure in the outer heliosphere and can cause large perturbations in the location of the termination shock of the solar wind. Following a simple model suggested by Suess, we study the non-equilibrium, dynamic location of the termination shock as it responds to these pressure changes. The results of this study suggest that the termination shock is rarely if ever at its equilibrium distance and may depart from that distance by as much as 50 AU at times.

  7. Large Eddy Simulation of stratified flows over structures

    OpenAIRE

    Brechler J.; Fuka V.

    2013-01-01

    We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model) to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.

  8. Large Eddy Simulation of stratified flows over structures

    Directory of Open Access Journals (Sweden)

    Brechler J.

    2013-04-01

    Full Text Available We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.

  9. Large Eddy Simulation of stratified flows over structures

    Science.gov (United States)

    Fuka, V.; Brechler, J.

    2013-04-01

    We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model) to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.

  10. Approximating spectral impact of structural perturbations in large networks

    CERN Document Server

    Milanese, A; Nishikawa, Takashi; Sun, Jie

    2010-01-01

    Determining the effect of structural perturbations on the eigenvalue spectra of networks is an important problem because the spectra characterize not only their topological structures, but also their dynamical behavior, such as synchronization and cascading processes on networks. Here we develop a theory for estimating the change of the largest eigenvalue of the adjacency matrix or the extreme eigenvalues of the graph Laplacian when small but arbitrary set of links are added or removed from the network. We demonstrate the effectiveness of our approximation schemes using both real and artificial networks, showing in particular that we can accurately obtain the spectral ranking of small subgraphs. We also propose a local iterative scheme which computes the relative ranking of a subgraph using only the connectivity information of its neighbors within a few links. Our results may not only contribute to our theoretical understanding of dynamical processes on networks, but also lead to practical applications in ran...

  11. Risk Management of Large RC Structures within Spatial Information System

    DEFF Research Database (Denmark)

    Qin, Jianjun; Faber, Michael Havbro

    2012-01-01

    Abstract: The present article addresses the development of a spatial information system (SIS), which aims to facilitate risk management of large‐scale concrete structures. The formulation of the SIS is based on ideas developed in the context of indicator‐based risk modeling for concrete structures...... subject to corrosion and geographical information system based risk modeling concerning large‐scale risk management. The term “risk management” here refers in particular to the process of condition assessment and optimization of the inspection and repair activities. The SIS facilitates the storage...... and handling of all relevant information to the risk management. The probabilistic modeling utilized in the condition assessment takes basis in a Bayesian hierarchical modeling philosophy. It facilitates the updating of risks as well as optimizing inspection plans whenever new information about the condition...

  12. Electronic Structure of Large-Scale Graphene Nanoflakes

    OpenAIRE

    Hu, Wei; Lin, Lin; Yang, Chao; Yang, Jinlong

    2014-01-01

    With the help of the recently developed SIESTA-PEXSI method [J. Phys.: Condens. Matter \\textbf{26}, 305503 (2014)], we perform Kohn-Sham density functional theory (DFT) calculations to study the stability and electronic structure of hexagonal graphene nanoflakes (GNFs) with up to 11,700 atoms. We find the electronic properties of GNFs, including their cohesive energy, HOMO-LUMO energy gap, edge states and aromaticity, depend sensitively on the type of edges (ACGNFs and ZZGNFs), size and the n...

  13. On Soft Limits of Large-Scale Structure Correlation Functions

    OpenAIRE

    Ben-Dayan, Ido; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura

    2014-01-01

    We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we re-derive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literat...

  14. Fabrication of large area woodpile structure in polymer

    Science.gov (United States)

    Gupta, Jaya Prakash; Dutta, Neilanjan; Yao, Peng; Sharkawy, Ahmed S.; Prather, Dennis W.

    2009-02-01

    A fabrication process of three-dimensional Woodpile photonic crystals based on multilayer photolithography from commercially available photo resist SU8 have been demonstrated. A 6-layer, 2 mm × 2mm woodpile has been fabricated. Different factors that influence the spin thickness on multiple resist application have been studied. The fabrication method used removes, the problem of intermixing, and is more repeatable and robust than the multilayer fabrication techniques for three dimensional photonic crystal structures that have been previously reported. Each layer is developed before next layer photo resist spin, instead of developing the whole structure in the final step as used in multilayer process. The desired thickness for each layer is achieved by the calibration of spin speed and use of different photo resist compositions. Deep UV exposure confinement has been the defining parameter in this process. Layer uniformity for every layer is independent of the previous developed layers and depends on the photo resist planarizing capability, spin parameters and baking conditions. The intermixing problem, which results from the previous layers left uncrossed linked photo resist, is completely removed in this process as the previous layers are fully developed, avoiding any intermixing between the newly spun and previous layers. Also this process gives the freedom to redo every spin any number of times without affecting the previously made structure, which is not possible in other multilayer process where intermediate developing is not performed.

  15. New integrable structures in large-N QCD

    International Nuclear Information System (INIS)

    Ferretti, Gabriele; Heise, Rainer; Zarembo, Konstantin

    2004-01-01

    We study the anomalous dimensions of single trace operators composed of field strengths F μν in large-N QCD. The matrix of anomalous dimensions is the Hamiltonian of a compact spin chain with two spin one representations at each vertex corresponding to the self-dual and anti-self-dual components of F μν . Because of the special form of the interaction it is possible to study separately renormalization of purely self-dual components. In this sector the Hamiltonian is integrable and can be exactly solved by Bethe ansatz. Its continuum limit is described by the level two SU(2) Wess-Zumino-Witten model

  16. Structural design of the Large Deployable Reflector (LDR)

    Science.gov (United States)

    Satter, Celeste M.; Lou, Michael C.

    1991-01-01

    An integrated Large Deployable Reflector (LDR) analysis model was developed to enable studies of system responses to the mechanical and thermal disturbances anticipated during on-orbit operations. Functional requirements of the major subsystems of the LDR are investigated, design trades are conducted, and design options are proposed. System mass and inertia properties are computed in order to estimate environmental disturbances, and in the sizing of control system hardware. Scaled system characteristics are derived for use in evaluating launch capabilities and achievable orbits. It is concluded that a completely passive 20-m primary appears feasible for the LDR from the standpoint of both mechanical vibration and thermal distortions.

  17. Structural design of the Large Deployable Reflector (LDR)

    Science.gov (United States)

    Satter, Celeste M.; Lou, Michael C.

    1991-09-01

    An integrated Large Deployable Reflector (LDR) analysis model was developed to enable studies of system responses to the mechanical and thermal disturbances anticipated during on-orbit operations. Functional requirements of the major subsystems of the LDR are investigated, design trades are conducted, and design options are proposed. System mass and inertia properties are computed in order to estimate environmental disturbances, and in the sizing of control system hardware. Scaled system characteristics are derived for use in evaluating launch capabilities and achievable orbits. It is concluded that a completely passive 20-m primary appears feasible for the LDR from the standpoint of both mechanical vibration and thermal distortions.

  18. Large-Scale Unsupervised Hashing with Shared Structure Learning.

    Science.gov (United States)

    Liu, Xianglong; Mu, Yadong; Zhang, Danchen; Lang, Bo; Li, Xuelong

    2015-09-01

    Hashing methods are effective in generating compact binary signatures for images and videos. This paper addresses an important open issue in the literature, i.e., how to learn compact hash codes by enhancing the complementarity among different hash functions. Most of prior studies solve this problem either by adopting time-consuming sequential learning algorithms or by generating the hash functions which are subject to some deliberately-designed constraints (e.g., enforcing hash functions orthogonal to one another). We analyze the drawbacks of past works and propose a new solution to this problem. Our idea is to decompose the feature space into a subspace shared by all hash functions and its complementary subspace. On one hand, the shared subspace, corresponding to the common structure across different hash functions, conveys most relevant information for the hashing task. Similar to data de-noising, irrelevant information is explicitly suppressed during hash function generation. On the other hand, in case that the complementary subspace also contains useful information for specific hash functions, the final form of our proposed hashing scheme is a compromise between these two kinds of subspaces. To make hash functions not only preserve the local neighborhood structure but also capture the global cluster distribution of the whole data, an objective function incorporating spectral embedding loss, binary quantization loss, and shared subspace contribution is introduced to guide the hash function learning. We propose an efficient alternating optimization method to simultaneously learn both the shared structure and the hash functions. Experimental results on three well-known benchmarks CIFAR-10, NUS-WIDE, and a-TRECVID demonstrate that our approach significantly outperforms state-of-the-art hashing methods.

  19. On the origin of large-scale cosmological structure

    International Nuclear Information System (INIS)

    Fry, J.N.

    1987-01-01

    It should be emphasized that the authors do not know at this point with any certainty what is the ultimate origin of cosmological structure. There is a collection of assumptions that make up a more or less standard model, wherein a broad spectrum of quantum fluctuations from an early epoch, modulated by physical effects that depend on the nature of the dominant component of the mass of the universe, provide the seeds that are amplified by gravitational attraction into the structures that they see today. This at least allows some statement on what this origin is not. Although all of the individual choices involved are relatively plausible, there are many steps along the way, and the resulting construct should by no means be taken to be the only possible version of the truth. The author summarizes the more commonly held beliefs and outlines what has come to be the standard model. This paper outlines main points, with most details left to the references (which also contains some visual representations of the results of numerical simulations

  20. Shell structures and chaos in nuclei and large metallic clusters

    International Nuclear Information System (INIS)

    Heiss, W.D.; University of the Witwatersrand, Johannesburg; Nazmitdinov, R.G.; Radu, S.; University of the Witwatersrand, Johannesburg

    1995-01-01

    A reflection-asymmetric deformed oscillator potential is analyzed from the classical and quantum mechanical point of view. The connection between occurrence of shell structures and classical periodic orbits is studied using the ''removal of resonances method'' in a classical analysis. In this approximation, the effective single particle potential becomes separable and the frequencies of the classical trajectories are easily determined. It turns out that the winding numbers calculated in this way are in good agreement with the ones found from the corresponding quantum mechanical spectrum using the particle number dependence of the fluctuating part of the total energy. When the octupole term is switched on it is found that prolate shapes are stable against chaos and can exhibit shells where spherical and oblate cases become chaotic. An attempt is made to explain this difference in the quantum mechanical context by looking at the distribution of exceptional points which results from the matrix structure of the respective Hamiltonians. In a similar way we analyze the modified Nilsson model and discuss its consequences for metallic clusters. (orig.)

  1. Large p sub( t) phenomena and the structure of jets

    International Nuclear Information System (INIS)

    Sosnowski, R.

    1979-01-01

    The modern history of high transverse momentum phenomena started in 1972 when it was found that the spectrum of the transverse momentum p sub(T) of secondaries produced in hadronic collisions did not drop as fast as expected from its behavior at low transverse momentum. Now it is possible to study the production of secondaries at transverse momenta as high as 16 GeV/c. The aim of this review is to systematize the existing experimental knowledge in this field. It is believed that the production of objects with high transverse momenta in the collision of two hadrons is due to the hard scattering of their constituents. According to this hard scattering picture, in the collision causing hard scattering, two scattered constituents with high transverse momenta should show up as two jets of hadrons, trigger jet and away jet. Two incoming hadrons, one constituent is removed by hard scattering from each, are expected to create two spectator jets. The present review is made through the four-jet world. The experimental studies of high p sub(T) phenomena in hadronic collision showed this four-jet structure. The observed structure is consistent with the assumption that high p sub(T) objects originate from scattered hadronic constituents. Many aspects of the collision indicate that the scattering constituents are quarks. (Kako, I.)

  2. Large Molecule Structures by Broadband Fourier Transform Molecular Rotational Spectroscopy

    Science.gov (United States)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Fourier transform molecular rotational resonance spectroscopy (FT-MRR) using pulsed jet molecular beam sources is a high-resolution spectroscopy technique that can be used for chiral analysis of molecules with multiple chiral centers. The sensitivity of the molecular rotational spectrum pattern to small changes in the three dimensional structure makes it possible to identify diastereomers without prior chemical separation. For larger molecules, there is the additional challenge that different conformations of each diastereomer may be present and these need to be differentiated from the diastereomers in the spectral analysis. Broadband rotational spectra of several larger molecules have been measured using a chirped-pulse FT-MRR spectrometer. Measurements of nootkatone (C15H22O), cedrol (C15H26O), ambroxide (C16H28O) and sclareolide (C16H26O2) are presented. These spectra are measured with high sensitivity (signal-to-noise ratio near 1,000:1) and permit structure determination of the most populated isomers using isotopic analysis of the 13C and 18O isotopologues in natural abundance. The accuracy of quantum chemistry calculations to identify diastereomers and conformers and to predict the dipole moment properties needed for three wave mixing measurements is examined.

  3. Quantum cosmological origin of large scale structures of the universe

    International Nuclear Information System (INIS)

    Anini, Y.

    1989-07-01

    In this paper, the initial quantum state of matter perturbations about de Sitter minisuperspace model is found. For a large class of boundary conditions (bcs), including those of Hartle-Hawking and Vilenkin, the resulting quantum state is the de Sitter invariant vacuum. This result is found to depend only on the regularity requirement at the euclidean origin of spacetime which is common to all reasonable (bcs). The initial value of the density perturbations implied by these quantum fluctuations are found and evaluated at the initial horizon crossing. The perturbations are found to have an almost scale independent spectrum, and an amplitude which depends on the scale at which inflation took place. The amplitude would have the right value if the scale of inflation is H ≤ 10 15 Gev. (author). 9 refs

  4. Cosmological Parameter Estimation with Large Scale Structure Observations

    CERN Document Server

    Di Dio, Enea; Durrer, Ruth; Lesgourgues, Julien

    2014-01-01

    We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, $C_\\ell(z_1,z_2)$, calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard $P(k)$ analysis with the new $C_\\ell(z_1,z_2)$ method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the $P(k)$ analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, $C_0(z_1,z_2)$.

  5. Isolating relativistic effects in large-scale structure

    Science.gov (United States)

    Bonvin, Camille

    2014-12-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  6. Assessing the radiological impact of past nuclear activities and events. Part of the IAEA/CEC co-ordinated research programme on the validation of environmental model predictions (VAMP)

    International Nuclear Information System (INIS)

    1994-07-01

    The report is a compilation of papers presented during the July 1993 Special Plenary Session of the VAMP (Validation of Environmental Model Predictions). The papers are grouped in 4 chapters: Assessment in the vicinity of nuclear weapons test sites (4 papers), Assessment in the vicinity of nuclear weapons production facilities (2 papers), Post-Chernobyl dose assessment studies (4 papers) and Assessment in the vicinity of dumped radioactive waste (1 paper). A separate abstract was prepared for each paper. Refs, figs and tabs

  7. Structural fatigue test results for large wind turbine blade sections

    Science.gov (United States)

    Faddoul, J. R.; Sullivan, T. L.

    1982-01-01

    In order to provide quantitative information on the operating life capabilities of wind turbine rotor blade concepts for root-end load transfer, a series of cantilever beam fatigue tests was conducted. Fatigue tests were conducted on a laminated wood blade with bonded steel studs, a low cost steel spar (utility pole) with a welded flange, a utility pole with additional root-end thickness provided by a swaged collar, fiberglass spars with both bonded and nonbonded fittings, and, finally, an aluminum blade with a bolted steel fitting (Lockheed Mod-0 blade). Photographs, data, and conclusions for each of these tests are presented. In addition, the aluminum blade test results are compared to field failure information; these results provide evidence that the cantilever beam type of fatigue test is a satisfactory method for obtaining qualitative data on blade life expectancy and for identifying structurally underdesigned areas (hot spots).

  8. Hierarchical Cantor set in the large scale structure with torus geometry

    Energy Technology Data Exchange (ETDEWEB)

    Murdzek, R. [Physics Department, ' Al. I. Cuza' University, Blvd. Carol I, Nr. 11, Iassy 700506 (Romania)], E-mail: rmurdzek@yahoo.com

    2008-12-15

    The formation of large scale structures is considered within a model with string on toroidal space-time. Firstly, the space-time geometry is presented. In this geometry, the Universe is represented by a string describing a torus surface. Thereafter, the large scale structure of the Universe is derived from the string oscillations. The results are in agreement with the cellular structure of the large scale distribution and with the theory of a Cantorian space-time.

  9. Stochastic structure of annual discharges of large European rivers

    Directory of Open Access Journals (Sweden)

    Stojković Milan

    2015-03-01

    Full Text Available Water resource has become a guarantee for sustainable development on both local and global scales. Exploiting water resources involves development of hydrological models for water management planning. In this paper we present a new stochastic model for generation of mean annul flows. The model is based on historical characteristics of time series of annual flows and consists of the trend component, long-term periodic component and stochastic component. The rest of specified components are model errors which are represented as a random time series. The random time series is generated by the single bootstrap model (SBM. Stochastic ensemble of error terms at the single hydrological station is formed using the SBM method. The ultimate stochastic model gives solutions of annual flows and presents a useful tool for integrated river basin planning and water management studies. The model is applied for ten large European rivers with long observed period. Validation of model results suggests that the stochastic flows simulated by the model can be used for hydrological simulations in river basins.

  10. The t-SNAREs syntaxin4 and SNAP23 but not v-SNARE VAMP2 are indispensable to tether GLUT4 vesicles at the plasma membrane in adipocyte

    International Nuclear Information System (INIS)

    Kawaguchi, Takayuki; Tamori, Yoshikazu; Kanda, Hajime; Yoshikawa, Mari; Tateya, Sanshiro; Nishino, Naonobu; Kasuga, Masato

    2010-01-01

    SNARE proteins (VAMP2, syntaxin4, and SNAP23) have been thought to play a key role in GLUT4 trafficking by mediating the tethering, docking and subsequent fusion of GLUT4-containing vesicles with the plasma membrane. The precise functions of these proteins have remained elusive, however. We have now shown that depletion of the vesicle SNARE (v-SNARE) VAMP2 by RNA interference in 3T3-L1 adipocytes inhibited the fusion of GLUT4 vesicles with the plasma membrane but did not affect tethering of the vesicles to the membrane. In contrast, depletion of the target SNAREs (t-SNAREs) syntaxin4 or SNAP23 resulted in impairment of GLUT4 vesicle tethering to the plasma membrane. Our results indicate that the t-SNAREs syntaxin4 and SNAP23 are indispensable for the tethering of GLUT4 vesicles to the plasma membrane, whereas the v-SNARE VAMP2 is not required for this step but is essential for the subsequent fusion event.

  11. Large-Scale Structure of the Carina Nebula.

    Science.gov (United States)

    Smith; Egan; Carey; Price; Morse; Price

    2000-04-01

    Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of approximately 100 pc, the thermal infrared emission from the giant H ii region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H ii region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.

  12. The large-scale structure of the universe

    International Nuclear Information System (INIS)

    Silk, J.

    1999-01-01

    The Big Bang is a highly predictive theory, and one that has been systematically refined as the observational data base grows. We assume that the laws an constants of physics are unchanged throughout cosmic time. Einstein's theory of gravitation and the Planck-inspired quantum theory tell us all that we need to know to describe space and time. The local universe is observed to be highly inhomogeneous. Yet if one filters the observed structure, homogeneity appears once the filter bandpass exceeds a few tens of Mpc. The universe is approximately homogeneous. It is also isotropic, there being no apparent preferred direction. Of course, these observations are made from out vantage point. The cosmological principle generalizes the appearance of homogeneity and isotropy to a set of observers distributed through the universe. One motivation behind the cosmological principle is the need to dethrone US as being privileged observers from the vantage point of the earth. The universe is assumed to be statistically isotropic at all times for sets of fundamental observers. One consequence is that the universe must be statistically homogeneous. Observations of the cosmic microwave background have vindicated the cosmological principle, originally applied by Einstein in high first derivation of a static universe, originally applied by Einstein in his first derivation of a static universe. The cosmic microwave background is isotropic to approximately 1 part in 10 5 . It originates from the early universe, and demonstrates that the matter distribution satisfied a similar level of homogeneity during the first million years of cosmic history. (author)

  13. On soft limits of large-scale structure correlation functions

    International Nuclear Information System (INIS)

    Ben-Dayan, Ido; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura

    2014-11-01

    We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we rederive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: The time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) 'equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and 'equal-time consistency conditions' are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the 'equal-time consistency conditions' quantitatively approximates the perturbative results for the density contrast. Thus, we generalize the background method to properly incorporate the effect of curvature in the density and velocity fluctuations on short scales, and discuss the reasons behind this discrepancy. We conclude with a few comments on practical implementations and future directions.

  14. Validation of models using Chernobyl fallout data from the Central Bohemia region of the Czech Republic. Scenario CB. First report of the VAMP Multiple Pathways Assessment Working Group. Part of the IAEA/CEC Co-ordinated Research Programme on the Validation of Environmental Model Predictions (VAMP)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The VAMP Multiple Pathways Assessment Working Group is an international forum for the testing and comparison of model predictions. The emphasis is on evaluating transfer from the environment to human via all pathways which are relevant in the environment being considered. This document is the first report of the Group and contains the results of the first test exercise on the validation of multiple pathways assessment models using Chernobyl fallout data obtained from the Central Bohemia (CB) region of the Czech Republic (Scenario CB). The report includes the following three appendixes: Documentation and evaluation of model validation data used in scenario CB (3 papers), Description of models used in scenario CB (1 paper), Individual evaluations of model predictions for scenario CB (13 papers). A separate abstract was prepared for each paper. Refs, figs and tabs.

  15. Validation of models using Chernobyl fallout data from the Central Bohemia region of the Czech Republic. Scenario CB. First report of the VAMP Multiple Pathways Assessment Working Group. Part of the IAEA/CEC Co-ordinated Research Programme on the Validation of Environmental Model Predictions (VAMP)

    International Nuclear Information System (INIS)

    1995-04-01

    The VAMP Multiple Pathways Assessment Working Group is an international forum for the testing and comparison of model predictions. The emphasis is on evaluating transfer from the environment to human via all pathways which are relevant in the environment being considered. This document is the first report of the Group and contains the results of the first test exercise on the validation of multiple pathways assessment models using Chernobyl fallout data obtained from the Central Bohemia (CB) region of the Czech Republic (Scenario CB). The report includes the following three appendixes: Documentation and evaluation of model validation data used in scenario CB (3 papers), Description of models used in scenario CB (1 paper), Individual evaluations of model predictions for scenario CB (13 papers). A separate abstract was prepared for each paper. Refs, figs and tabs

  16. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    Science.gov (United States)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  17. Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms

    Science.gov (United States)

    VerHulst, Claire; Meneveau, Charles

    2014-02-01

    In this study, we address the question of how kinetic energy is entrained into large wind turbine arrays and, in particular, how large-scale flow structures contribute to such entrainment. Previous research has shown this entrainment to be an important limiting factor in the performance of very large arrays where the flow becomes fully developed and there is a balance between the forcing of the atmospheric boundary layer and the resistance of the wind turbines. Given the high Reynolds numbers and domain sizes on the order of kilometers, we rely on wall-modeled large eddy simulation (LES) to simulate turbulent flow within the wind farm. Three-dimensional proper orthogonal decomposition (POD) analysis is then used to identify the most energetic flow structures present in the LES data. We quantify the contribution of each POD mode to the kinetic energy entrainment and its dependence on the layout of the wind turbine array. The primary large-scale structures are found to be streamwise, counter-rotating vortices located above the height of the wind turbines. While the flow is periodic, the geometry is not invariant to all horizontal translations due to the presence of the wind turbines and thus POD modes need not be Fourier modes. Differences of the obtained modes with Fourier modes are documented. Some of the modes are responsible for a large fraction of the kinetic energy flux to the wind turbine region. Surprisingly, more flow structures (POD modes) are needed to capture at least 40% of the turbulent kinetic energy, for which the POD analysis is optimal, than are needed to capture at least 40% of the kinetic energy flux to the turbines. For comparison, we consider the cases of aligned and staggered wind turbine arrays in a neutral atmospheric boundary layer as well as a reference case without wind turbines. While the general characteristics of the flow structures are robust, the net kinetic energy entrainment to the turbines depends on the presence and relative

  18. Hypersingular integral equations, waveguiding effects in Cantorian Universe and genesis of large scale structures

    International Nuclear Information System (INIS)

    Iovane, G.; Giordano, P.

    2005-01-01

    In this work we introduce the hypersingular integral equations and analyze a realistic model of gravitational waveguides on a cantorian space-time. A waveguiding effect is considered with respect to the large scale structure of the Universe, where the structure formation appears as if it were a classically self-similar random process at all astrophysical scales. The result is that it seems we live in an El Naschie's o (∞) Cantorian space-time, where gravitational lensing and waveguiding effects can explain the appearing Universe. In particular, we consider filamentary and planar large scale structures as possible refraction channels for electromagnetic radiation coming from cosmological structures. From this vision the Universe appears like a large self-similar adaptive mirrors set, thanks to three numerical simulations. Consequently, an infinite Universe is just an optical illusion that is produced by mirroring effects connected with the large scale structure of a finite and not a large Universe

  19. Structural concepts for very large (400-meter-diameter) solar concentrators

    Science.gov (United States)

    Mikulas, Martin M., Jr.; Hedgepeth, John M.

    1989-01-01

    A general discussion of various types of large space structures is presented. A brief overview of the history of space structures is presented to provide insight into the current state-of-the art. Finally, the results of a structural study to assess the viability of very large solar concentrators are presented. These results include weight, stiffness, part count, and in-space construction time.

  20. Non-superconducting magnet structures for near-term, large fusion experimental devices

    International Nuclear Information System (INIS)

    File, J.; Knutson, D.S.; Marino, R.E.; Rappe, G.H.

    1980-10-01

    This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design

  1. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  2. Double inflation: A possible resolution of the large-scale structure problem

    International Nuclear Information System (INIS)

    Turner, M.S.; Villumsen, J.V.; Vittorio, N.; Silk, J.; Juszkiewicz, R.

    1986-11-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Ω = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of ∼100 Mpc, while the small-scale structure over ≤ 10 Mpc resembles that in a low density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations. 38 refs., 6 figs

  3. Decoupling local mechanics from large-scale structure in modular metamaterials

    Science.gov (United States)

    Yang, Nan; Silverberg, Jesse L.

    2017-04-01

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  4. Initial condition effects on large scale structure in numerical simulations of plane mixing layers

    Science.gov (United States)

    McMullan, W. A.; Garrett, S. J.

    2016-01-01

    In this paper, Large Eddy Simulations are performed on the spatially developing plane turbulent mixing layer. The simulated mixing layers originate from initially laminar conditions. The focus of this research is on the effect of the nature of the imposed fluctuations on the large-scale spanwise and streamwise structures in the flow. Two simulations are performed; one with low-level three-dimensional inflow fluctuations obtained from pseudo-random numbers, the other with physically correlated fluctuations of the same magnitude obtained from an inflow generation technique. Where white-noise fluctuations provide the inflow disturbances, no spatially stationary streamwise vortex structure is observed, and the large-scale spanwise turbulent vortical structures grow continuously and linearly. These structures are observed to have a three-dimensional internal geometry with branches and dislocations. Where physically correlated provide the inflow disturbances a "streaky" streamwise structure that is spatially stationary is observed, with the large-scale turbulent vortical structures growing with the square-root of time. These large-scale structures are quasi-two-dimensional, on top of which the secondary structure rides. The simulation results are discussed in the context of the varying interpretations of mixing layer growth that have been postulated. Recommendations are made concerning the data required from experiments in order to produce accurate numerical simulation recreations of real flows.

  5. Towards Interactive Steering of a Very Large Floating Structure Code by Using HPC Parallelisation Strategies

    KAUST Repository

    Frisch, Jerome; Gao, Ruiping; Mundani, Ralf-Peter; Wang, Chien Ming; Rank, Ernst

    2012-01-01

    Very large floating structures (VLFSs) have been used for broad applications such as floating storage facilities, floating piers, floating bridges, floating airports, entertainment facilities, even habitation, and other purposes. Owing to its small

  6. Co-Cure-Ply Resins for High Performance, Large-Scale Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — Large-scale composite structures are commonly joined by secondary bonding of molded-and-cured thermoset components. This approach may result in unpredictable joint...

  7. The Space Station as a Construction Base for Large Space Structures

    Science.gov (United States)

    Gates, R. M.

    1985-01-01

    The feasibility of using the Space Station as a construction site for large space structures is examined. An overview is presented of the results of a program entitled Definition of Technology Development Missions (TDM's) for Early Space Stations - Large Space Structures. The definition of LSS technology development missions must be responsive to the needs of future space missions which require large space structures. Long range plans for space were assembled by reviewing Space System Technology Models (SSTM) and other published sources. Those missions which will use large space structures were reviewed to determine the objectives which must be demonstrated by technology development missions. The three TDM's defined during this study are: (1) a construction storage/hangar facility; (2) a passive microwave radiometer; and (3) a precision optical system.

  8. On the universal character of the large scale structure of the universe

    International Nuclear Information System (INIS)

    Demianski, M.; International Center for Relativistic Astrophysics; Rome Univ.; Doroshkevich, A.G.

    1991-01-01

    We review different theories of formation of the large scale structure of the Universe. Special emphasis is put on the theory of inertial instability. We show that for a large class of initial spectra the resulting two point correlation functions are similar. We discuss also the adhesion theory which uses the Burgers equation, Navier-Stokes equation or coagulation process. We review the Zeldovich theory of gravitational instability and discuss the internal structure of pancakes. Finally we discuss the role of the velocity potential in determining the global characteristics of large scale structures (distribution of caustics, scale of voids, etc.). In the last chapter we list the main unsolved problems and main successes of the theory of formation of large scale structure. (orig.)

  9. Hydro-structural issues in the design of ultra large container ships

    Directory of Open Access Journals (Sweden)

    Sime Malenica

    2014-12-01

    Full Text Available The structural design of the ships includes two main issues which should be checked carefully, namely the extreme structural response (yielding & buckling and the fatigue structural response. Even if the corresponding failure modes are fundamentally different, the overall methodologies for their evaluation have many common points. Both issues require application of two main steps: deterministic calculations of hydro-structure interactions for given operating conditions on one side and the statistical post-processing in order to take into account the lifetime operational profile, on the other side. In the case of ultra large ships such as the container ships and in addition to the classical quasi-static type of structural responses the hydroelastic structural response becomes important. This is due to several reasons among which the following are the most important: the increase of the flexibility due to their large dimensions (Lpp close to 400 m which leads to the lower structural natural frequencies, very large operational speed (20 knots and large bow flare (increased slamming loads. The correct modeling of the hydroelastic ship structural response, and its inclusion into the overall design procedure, is significantly more complex than the evaluation of the quasi static structural response. The present paper gives an overview of the different tools and methods which are used in nowadays practice.

  10. Quantum probability, choice in large worlds, and the statistical structure of reality.

    Science.gov (United States)

    Ross, Don; Ladyman, James

    2013-06-01

    Classical probability models of incentive response are inadequate in "large worlds," where the dimensions of relative risk and the dimensions of similarity in outcome comparisons typically differ. Quantum probability models for choice in large worlds may be motivated pragmatically - there is no third theory - or metaphysically: statistical processing in the brain adapts to the true scale-relative structure of the universe.

  11. Thermodynamic Stability of Structure H Hydrates Based on the Molecular Properties of Large Guest Molecules

    OpenAIRE

    Tezuka, Kyoichi; Taguchi, Tatsuhiko; Alavi, Saman; Sum, Amadeu K.; Ohmura, Ryo

    2012-01-01

    This paper report analyses of thermodynamic stability of structure-H clathrate hydrates formed with methane and large guest molecules in terms of their gas phase molecular sizes and molar masses for the selection of a large guest molecule providing better hydrate stability. We investigated the correlation among the gas phase molecular sizes, the molar masses of large molecule guest substances, and the equilibrium pressures. The results suggest that there exists a molecular-size value for the ...

  12. Non-linear finite element analyses applicable for the design of large reinforced concrete structures

    NARCIS (Netherlands)

    Engen, M; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik

    2017-01-01

    In order to make non-linear finite element analyses applicable during assessments of the ultimate load capacity or the structural reliability of large reinforced concrete structures, there is need for an efficient solution strategy with a low modelling uncertainty. A solution strategy comprises

  13. Large scale electronic structure calculations in the study of the condensed phase

    NARCIS (Netherlands)

    van Dam, H.J.J.; Guest, M.F.; Sherwood, P.; Thomas, J.M.H.; van Lenthe, J.H.; van Lingen, J.N.J.; Bailey, C.L.; Bush, I.J.

    2006-01-01

    We consider the role that large-scale electronic structure computations can now play in the modelling of the condensed phase. To structure our analysis, we consider four distict ways in which today's scientific targets can be re-scoped to take advantage of advances in computing resources: 1. time to

  14. Significance of Operating Environment in Condition Monitoring of Large Civil Structures

    OpenAIRE

    Alampalli, Sreenivas

    1999-01-01

    Success of remote long-term condition monitoring of large civil structures and developing calibrated analytical models for damage detection, depend significantly on establishing accurate baseline signatures and their sensitivity. Most studies reported in the literature concentrated on the effect of structural damage on modal parameters without emphasis on reliability of modal parameters. Thus, a field bridge structure was studied for the significance of operating conditions in relation to bas...

  15. Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft

    Science.gov (United States)

    Smith, P. J.; Thomson, L. W.; Wilson, R. D.

    1986-01-01

    NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.

  16. Structure Transformation and Coherent Interface in Large Lattice-Mismatched Nanoscale Multilayers

    Directory of Open Access Journals (Sweden)

    J. Y. Xie

    2013-01-01

    Full Text Available Nanoscale Al/W multilayers were fabricated by DC magnetron sputtering and characterized by transmission electron microscopy and high-resolution electron microscopy. Despite the large lattice mismatch and significantly different lattice structures between Al and W, a structural transition from face-centered cubic to body-centered cubic in Al layers was observed when the individual layer thickness was reduced from 5 nm to 1 nm, forming coherent Al/W interfaces. For potential mechanisms underlying the observed structure transition and forming of coherent interfaces, it was suggested that the reduction of interfacial energy and high stresses induced by large lattice-mismatch play a crucial role.

  17. A wireless sensor network design and evaluation for large structural strain field monitoring

    International Nuclear Information System (INIS)

    Qiu, Zixue; Wu, Jian; Yuan, Shenfang

    2011-01-01

    Structural strain changes under external environmental or mechanical loads are the main monitoring parameters in structural health monitoring or mechanical property tests. This paper presents a wireless sensor network designed for monitoring large structural strain field variation. First of all, a precision strain sensor node is designed for multi-channel strain gauge signal conditioning and wireless monitoring. In order to establish a synchronous strain data acquisition network, the cluster-star network synchronization method is designed in detail. To verify the functionality of the designed wireless network for strain field monitoring capability, a multi-point network evaluation system is developed for an experimental aluminum plate structure for load variation monitoring. Based on the precision wireless strain nodes, the wireless data acquisition network is deployed to synchronously gather, process and transmit strain gauge signals and monitor results under concentrated loads. This paper shows the efficiency of the wireless sensor network for large structural strain field monitoring

  18. Significance of Operating Environment in Condition Monitoring of Large Civil Structures

    Directory of Open Access Journals (Sweden)

    Sreenivas Alampalli

    1999-01-01

    Full Text Available Success of remote long-term condition monitoring of large civil structures and developing calibrated analytical models for damage detection, depend significantly on establishing accurate baseline signatures and their sensitivity. Most studies reported in the literature concentrated on the effect of structural damage on modal parameters without emphasis on reliability of modal parameters. Thus, a field bridge structure was studied for the significance of operating conditions in relation to baseline signatures. Results indicate that in practice, civil structures should be monitored for at least one full cycle of in-service environmental changes before establishing baselines for condition monitoring or calibrating finite-element models. Boundary conditions deserve special attention.

  19. Paradigms and nursing management, analysis of the current organizational structure in a large hospital.

    Science.gov (United States)

    Wilson, D

    1992-01-01

    Hospitals developed over the period of time when positivism become a predominant world view. Positivism was founded by four Western trends: preponderance of hierarchy and autocracy, popularization of bureaucracy, extensive application of a machine orientation to work and predominance of "scientific" inquiry. Organizational theory developed largely from quantitative research findings arising from a positivistic world view. A case study, analyzing a current nursing organizational structure at one large hospital, is presented. Nursing management was found to be based upon the positivistic paradigm. The predominance of a machine orientation, and an autocratic and bureaucratic structure are evidence of this. A change to shared governance had been attempted, indicating a shift to a more modern organizational structure based on a different paradigm. The article concludes by emphasizing that managers are largely responsible for facilitating change; change that will meet internal human resource needs and the cost-effectiveness crises of hospitals today through more effective use of human resources.

  20. Electromagnetic and structural coupled analysis with the effect of large deflection

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Niho, Tomoya

    1997-01-01

    In the designs of future fusion reactors and magnetic levitated vehicles, thin shell conducting structures are located in a high electromagnetic field. The transient magnetic field induces the eddy current on the conductive structure. While the Lorentz force by the eddy current and the magnetic field is loaded to the thin shell structure, the electromotive force by the deflection velocity and magnetic field reduces the eddy current. Therefore, the electromagnetic and structural coupled analysis is required for the design of these components. This paper describes a coupled finite element analysis for the eddy current and the structure. A formulation is presented considering the effect of the large deflection of shell structures by the total Lagrangian formulation. Both matrix equations for the eddy current and the structure are solved simultaneously using coupling sub-matrices. A coupled problem of a cantilever bending plate is analyzed. Based on the analysis results, the influence of the large deflection on the coupling effect is discussed. The condition that the large deflection analysis is required is examined through some parametric analyses

  1. An algebraic sub-structuring method for large-scale eigenvalue calculation

    International Nuclear Information System (INIS)

    Yang, C.; Gao, W.; Bai, Z.; Li, X.; Lee, L.; Husbands, P.; Ng, E.

    2004-01-01

    We examine sub-structuring methods for solving large-scale generalized eigenvalue problems from a purely algebraic point of view. We use the term 'algebraic sub-structuring' to refer to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to provide approximate solutions to the original problem. We are interested in the question of which spectral components one should extract from each sub-structure in order to produce an approximate solution to the original problem with a desired level of accuracy. Error estimate for the approximation to the smallest eigenpair is developed. The estimate leads to a simple heuristic for choosing spectral components (modes) from each sub-structure. The effectiveness of such a heuristic is demonstrated with numerical examples. We show that algebraic sub-structuring can be effectively used to solve a generalized eigenvalue problem arising from the simulation of an accelerator structure. One interesting characteristic of this application is that the stiffness matrix produced by a hierarchical vector finite elements scheme contains a null space of large dimension. We present an efficient scheme to deflate this null space in the algebraic sub-structuring process

  2. Accelerating large-scale protein structure alignments with graphics processing units

    Directory of Open Access Journals (Sweden)

    Pang Bin

    2012-02-01

    Full Text Available Abstract Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs. As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU.

  3. Large-scale seismic test for soil-structure interaction research in Hualien, Taiwan

    International Nuclear Information System (INIS)

    Ueshima, T.; Kokusho, T.; Okamoto, T.

    1995-01-01

    It is important to evaluate dynamic soil-structure interaction more accurately in the aseismic design of important facilities such as nuclear power plants. A large-scale model structure with about 1/4th of commercial nuclear power plants was constructed on the gravelly layers in seismically active Hualien, Taiwan. This international joint project is called 'the Hualien LSST Project', where 'LSST' is short for Large-Scale Seismic Test. In this paper, research tasks and responsibilities, the process of the construction work and research tasks along the time-line, main results obtained up to now, and so on in this Project are described. (J.P.N.)

  4. Interactive computer graphics and its role in control system design of large space structures

    Science.gov (United States)

    Reddy, A. S. S. R.

    1985-01-01

    This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.

  5. Primordial Non-Gaussianity in the Large-Scale Structure of the Universe

    Directory of Open Access Journals (Sweden)

    Vincent Desjacques

    2010-01-01

    generated the cosmological fluctuations observed today. Any detection of significant non-Gaussianity would thus have profound implications for our understanding of cosmic structure formation. The large-scale mass distribution in the Universe is a sensitive probe of the nature of initial conditions. Recent theoretical progress together with rapid developments in observational techniques will enable us to critically confront predictions of inflationary scenarios and set constraints as competitive as those from the Cosmic Microwave Background. In this paper, we review past and current efforts in the search for primordial non-Gaussianity in the large-scale structure of the Universe.

  6. Development of the simulation package 'ELSES' for extra-large-scale electronic structure calculation

    International Nuclear Information System (INIS)

    Hoshi, T; Fujiwara, T

    2009-01-01

    An early-stage version of the simulation package 'ELSES' (extra-large-scale electronic structure calculation) is developed for simulating the electronic structure and dynamics of large systems, particularly nanometer-scale and ten-nanometer-scale systems (see www.elses.jp). Input and output files are written in the extensible markup language (XML) style for general users. Related pre-/post-simulation tools are also available. A practical workflow and an example are described. A test calculation for the GaAs bulk system is shown, to demonstrate that the present code can handle systems with more than one atom species. Several future aspects are also discussed.

  7. Design of a Generic and Flexible Data Structure for Efficient Formulation of Large Scale Network Problems

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Sarup, Bent; Sin, Gürkan

    2013-01-01

    structure for efficient formulation of enterprise-wide optimization problems is presented. Through the integration of the described data structure in our synthesis and design framework, the problem formulation workflow is automated in a software tool, reducing time and resources needed to formulate large......The formulation of Enterprise-Wide Optimization (EWO) problems as mixed integer nonlinear programming requires collecting, consolidating and systematizing large amount of data, coming from different sources and specific to different disciplines. In this manuscript, a generic and flexible data...... problems, while ensuring at the same time data consistency and quality at the application stage....

  8. Replication fidelity assessment of large area sub-μm structured polymer surfaces using scatterometry

    International Nuclear Information System (INIS)

    Calaon, M; Hansen, H N; Tosello, G; Madsen, M H; Weirich, J; Hansen, P E; Garnaes, J; Tang, P T

    2015-01-01

    The present study addresses one of the key challenges in the product quality control of transparent structured polymer substrates, the replication fidelity of sub-μm structures over a large area. Additionally the work contributes to the development of new techniques focused on in-line characterization of large nanostructured surfaces using scatterometry. In particular an approach to quantify the replication fidelity of high volume manufacturing processes such as polymer injection moulding is presented. Both periodic channels and semi-spherical structures were fabricated on nickel shims used for later injection moulding of Cyclic-olefin-copolymer (COC) substrate were the sub-μm features where ultimately transferred. The scatterometry system was validated using calibrated atomic force microscopy measurements and a model based on scalar diffraction theory employed to calculate the expected angular distribution of the reflected and the transmitted intensity for the nickel surfaces and structured COC and, respectively. (paper)

  9. A finite element based substructuring procedure for design analysis of large smart structural systems

    International Nuclear Information System (INIS)

    Ashwin, U; Raja, S; Dwarakanathan, D

    2009-01-01

    A substructuring based design analysis procedure is presented for large smart structural system using the Craig–Bampton method. The smart structural system is distinctively characterized as an active substructure, modelled as a design problem, and a passive substructure, idealized as an analysis problem. Furthermore, a novel thought has been applied by introducing the electro–elastic coupling into the reduction scheme to solve the global structural control problem in a local domain. As an illustration, a smart composite box beam with surface bonded actuators/sensors is considered, and results of the local to global control analysis are presented to show the potential use of the developed procedure. The present numerical scheme is useful for optimally designing the active substructures to study their locations, coupled structure–actuator interaction and provide a solution to the global design of large smart structural systems

  10. Structure of exotic nuclei by large-scale shell model calculations

    International Nuclear Information System (INIS)

    Utsuno, Yutaka; Otsuka, Takaharu; Mizusaki, Takahiro; Honma, Michio

    2006-01-01

    An extensive large-scale shell-model study is conducted for unstable nuclei around N = 20 and N = 28, aiming to investigate how the shell structure evolves from stable to unstable nuclei and affects the nuclear structure. The structure around N = 20 including the disappearance of the magic number is reproduced systematically, exemplified in the systematics of the electromagnetic moments in the Na isotope chain. As a key ingredient dominating the structure/shell evolution in the exotic nuclei from a general viewpoint, we pay attention to the tensor force. Including a proper strength of the tensor force in the effective interaction, we successfully reproduce the proton shell evolution ranging from N = 20 to 28 without any arbitrary modifications in the interaction and predict the ground state of 42Si to contain a large deformed component

  11. Evaluation of linear DC motor actuators for control of large space structures

    OpenAIRE

    Ide, Eric Nelson

    1988-01-01

    This thesis examines the use of a linear DC motor as a proof mass actuator for the control of large space structures. A model for the actuator, including the current and force compensation used, is derived. Because of the force compensation, the actuator is unstable when placed on a structure. Relative position feedback is used for actuator stabilization. This method of compensation couples the actuator to the mast in a feedback configuration. Three compensator designs are prop...

  12. Seismic analysis of a large LMFBR with fluid-structure interactions

    International Nuclear Information System (INIS)

    Ma, D.C.

    1985-01-01

    The seismic analysis of a large LMFBR with many internal components and structures is presented. Both vertical and horizontal seismic excitations are considered. The important hydrodynamic phenomena such as fluid-structure interaction, sloshing, fluid coupling and fluid inertia effects are included in the analysis. The results of this study are discussed in detail. Information which is useful to the design of future reactions under seismic conditions is also given. 4 refs., 12 figs

  13. Infrared structure and large Psub(T) behavior of quantum chromodynamics

    International Nuclear Information System (INIS)

    Rafael, Eduardo de.

    1977-09-01

    The study of the infrared structure of QCD in perturbation theory is an interesting problem per se regardless of its relationship to the confinement problem. The ultimate motivation for the study of the large transverse momentum behavior of QCD is to provide a field theoretic framework to the large Psub(T)-phenomena in hadronic interactions. As a first step towards that aim it is of interest to explore the possibility that the QCD Green's functions in 'some' regions of exceptional momenta, like the large-Psub(T) regime, may still obey some kind of renormalization group type equations

  14. Structure design of the Westinghouse superconducting magnet for the Large Coil Program

    International Nuclear Information System (INIS)

    Domeisen, F.N.; Hackworth, D.T.; Stuebinger, L.R.

    1978-01-01

    In the on-going development of superconducting toroidal field coils for tokamak reactors, the Large Coil Program (LCP) managed by Union Carbide Corporation will include the design, fabrication, and testing of large superconducting coils to determine their feasibility for use in the magnetic fusion energy effort. Structural analysis of the large coil is essential to ensure adequate safety in the test coil design and confidence in the scalability of the design. This paper will discuss the action of tensile and shear loads on the various materials used in the coil. These loads are of magnetic and thermal origin

  15. New Insights about Enzyme Evolution from Large Scale Studies of Sequence and Structure Relationships*

    Science.gov (United States)

    Brown, Shoshana D.; Babbitt, Patricia C.

    2014-01-01

    Understanding how enzymes have evolved offers clues about their structure-function relationships and mechanisms. Here, we describe evolution of functionally diverse enzyme superfamilies, each representing a large set of sequences that evolved from a common ancestor and that retain conserved features of their structures and active sites. Using several examples, we describe the different structural strategies nature has used to evolve new reaction and substrate specificities in each unique superfamily. The results provide insight about enzyme evolution that is not easily obtained from studies of one or only a few enzymes. PMID:25210038

  16. New insights about enzyme evolution from large scale studies of sequence and structure relationships.

    Science.gov (United States)

    Brown, Shoshana D; Babbitt, Patricia C

    2014-10-31

    Understanding how enzymes have evolved offers clues about their structure-function relationships and mechanisms. Here, we describe evolution of functionally diverse enzyme superfamilies, each representing a large set of sequences that evolved from a common ancestor and that retain conserved features of their structures and active sites. Using several examples, we describe the different structural strategies nature has used to evolve new reaction and substrate specificities in each unique superfamily. The results provide insight about enzyme evolution that is not easily obtained from studies of one or only a few enzymes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. The Impact of Ownership Structure on Firm Performance : Evidence From a Large Emerging Market

    NARCIS (Netherlands)

    Douma, S.W.; George, R.; Kabir, M.R.

    2002-01-01

    We examine how ownership structure affects the performance of firms using firm level data from a large emerging market, India.We specifically focus on a previously unexplored phenomenon, namely the differential role played by foreign institutional and foreign corporate shareholders.An examination of

  18. Material model for non-linear finite element analyses of large concrete structures

    NARCIS (Netherlands)

    Engen, Morten; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik; Beushausen, H.

    2016-01-01

    A fully triaxial material model for concrete was implemented in a commercial finite element code. The only required input parameter was the cylinder compressive strength. The material model was suitable for non-linear finite element analyses of large concrete structures. The importance of including

  19. Large-scale structural alteration of brain in epileptic children with SCN1A mutation

    Directory of Open Access Journals (Sweden)

    Yun-Jeong Lee

    2017-01-01

    Significance: This study showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients. Further longitudinal MRI studies with larger cohorts are required to confirm the effect of SCN1A gene mutation on structural brain development.

  20. An Improved Conceptually-Based Method for Analysis of Communication Network Structure of Large Complex Organizations.

    Science.gov (United States)

    Richards, William D., Jr.

    Previous methods for determining the communication structure of organizations work well for small or simple organizations, but are either inadequate or unwieldy for use with large complex organizations. An improved method uses a number of different measures and a series of successive approximations to order the communication matrix such that…

  1. Direct evaluation of free energy for large system through structure integration approach.

    Science.gov (United States)

    Takeuchi, Kazuhito; Tanaka, Ryohei; Yuge, Koretaka

    2015-09-30

    We propose a new approach, 'structure integration', enabling direct evaluation of configurational free energy for large systems. The present approach is based on the statistical information of lattice. Through first-principles-based simulation, we find that the present method evaluates configurational free energy accurately in disorder states above critical temperature.

  2. A Qualitative Program Evaluation of a Structured Leadership Mentoring Program at a Large Aerospace Corporation

    Science.gov (United States)

    Teller, Romney P.

    2011-01-01

    The researcher utilized a qualitative approach to conduct a program evaluation of the organization where he is employed. The study intended to serve as a program evaluation for the structured in-house mentoring program at a large aerospace corporation (A-Corp). This program evaluation clarified areas in which the current mentoring program is…

  3. Electromagnetic modelling of large complex 3-D structures with LEGO and the eigencurrent expansion method

    NARCIS (Netherlands)

    Lancellotti, V.; Hon, de B.P.; Tijhuis, A.G.

    2009-01-01

    Linear embedding via Green's operators (LEGO) is a computational method in which the multiple scattering between adjacent objects - forming a large composite structure - is determined through the interaction of simple-shaped building domains, whose electromagnetic (EM) behavior is accounted for by

  4. Hierarchical formation of large scale structures of the Universe: observations and models

    International Nuclear Information System (INIS)

    Maurogordato, Sophie

    2003-01-01

    In this report for an Accreditation to Supervise Research (HDR), the author proposes an overview of her research works in cosmology. These works notably addressed the large scale distribution of the Universe (with constraints on the scenario of formation, and on the bias relationship, and the structuring of clusters), the analysis of galaxy clusters during coalescence, mass distribution within relaxed clusters [fr

  5. Reference Management Methodologies for Large Structural Models at Kennedy Space Center

    Science.gov (United States)

    Jones, Corey; Bingham, Ryan; Schmidt, Rick

    2011-01-01

    There have been many challenges associated with modeling some of NASA KSC's largest structures. Given the size of the welded structures here at KSC, it was critically important to properly organize model struc.ture and carefully manage references. Additionally, because of the amount of hardware to be installed on these structures, it was very important to have a means to coordinate between different design teams and organizations, check for interferences, produce consistent drawings, and allow for simple release processes. Facing these challenges, the modeling team developed a unique reference management methodology and model fidelity methodology. This presentation will describe the techniques and methodologies that were developed for these projects. The attendees will learn about KSC's reference management and model fidelity methodologies for large structures. The attendees will understand the goals of these methodologies. The attendees will appreciate the advantages of developing a reference management methodology.

  6. Fabrication of Large Area Fishnet Optical Metamaterial Structures Operational at Near-IR Wavelengths

    Directory of Open Access Journals (Sweden)

    Dennis W. Prather

    2010-12-01

    Full Text Available In this paper, we demonstrate a fabrication process for large area (2 mm × 2 mm fishnet metamaterial structures for near IR wavelengths. This process involves: (a defining a sacrificial Si template structure onto a quartz wafer using deep-UV lithography and a dry etching process (b deposition of a stack of Au-SiO2-Au layers and (c a ‘lift-off’ process which removes the sacrificial template structure to yield the fishnet structure. The fabrication steps in this process are compatible with today’s CMOS technology making it eminently well suited for batch fabrication. Also, depending on area of the exposure mask available for patterning the template structure, this fabrication process can potentially lead to optical metamaterials spanning across wafer-size areas.

  7. Mobile work station concept for assembly of large space structures (zero gravity simulation tests)

    Science.gov (United States)

    Heard, W. L., Jr.; Bush, H. G.; Wallsom, R. E.; Jensen, J. K.

    1982-03-01

    The concept presented is intended to enhance astronaut assembly of truss structure that is either too large or complex to fold for efficient Shuttle delivery to orbit. The potential of augmented astronaut assembly is illustrated by applying the result of the tests to a barebones assembly of a truss structure. If this structure were assembled from the same nestable struts that were used in the Mobile Work Station assembly tests, the spacecraft would be 55 meters in diameter and consist of about 500 struts. The struts could be packaged in less than 1/2% of the Shuttle cargo bay volume and would take up approximately 3% of the mass lift capability. They could be assembled in approximately four hours. This assembly concept for erectable structures is not only feasible, but could be used to significant economic advantage by permitting the superior packaging feature of erectable structures to be exploited and thereby reduce expensive Shuttle delivery flights.

  8. Simplified DFT methods for consistent structures and energies of large systems

    Science.gov (United States)

    Caldeweyher, Eike; Gerit Brandenburg, Jan

    2018-05-01

    Kohn–Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree–Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.

  9. TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY

    International Nuclear Information System (INIS)

    Wang Xin; Chen Xuelei; Park, Changbom

    2012-01-01

    The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.

  10. Developing eThread Pipeline Using SAGA-Pilot Abstraction for Large-Scale Structural Bioinformatics

    Directory of Open Access Journals (Sweden)

    Anjani Ragothaman

    2014-01-01

    Full Text Available While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread—a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure.

  11. The prospect of modern thermomechanics in structural integrity calculations of large-scale pressure vessels

    Science.gov (United States)

    Fekete, Tamás

    2018-05-01

    Structural integrity calculations play a crucial role in designing large-scale pressure vessels. Used in the electric power generation industry, these kinds of vessels undergo extensive safety analyses and certification procedures before deemed feasible for future long-term operation. The calculations are nowadays directed and supported by international standards and guides based on state-of-the-art results of applied research and technical development. However, their ability to predict a vessel's behavior under accidental circumstances after long-term operation is largely limited by the strong dependence of the analysis methodology on empirical models that are correlated to the behavior of structural materials and their changes during material aging. Recently a new scientific engineering paradigm, structural integrity has been developing that is essentially a synergistic collaboration between a number of scientific and engineering disciplines, modeling, experiments and numerics. Although the application of the structural integrity paradigm highly contributed to improving the accuracy of safety evaluations of large-scale pressure vessels, the predictive power of the analysis methodology has not yet improved significantly. This is due to the fact that already existing structural integrity calculation methodologies are based on the widespread and commonly accepted 'traditional' engineering thermal stress approach, which is essentially based on the weakly coupled model of thermomechanics and fracture mechanics. Recently, a research has been initiated in MTA EK with the aim to review and evaluate current methodologies and models applied in structural integrity calculations, including their scope of validity. The research intends to come to a better understanding of the physical problems that are inherently present in the pool of structural integrity problems of reactor pressure vessels, and to ultimately find a theoretical framework that could serve as a well

  12. Novel material and structural design for large-scale marine protective devices

    International Nuclear Information System (INIS)

    Qiu, Ang; Lin, Wei; Ma, Yong; Zhao, Chengbi; Tang, Youhong

    2015-01-01

    Highlights: • Large-scale protective devices with different structural designs have been optimized. • Large-scale protective devices with novel material designs have been optimized. • Protective devices constructed of sandwich panels have the best anti-collision performance. • Protective devices with novel material design can reduce weight and construction cost. - Abstract: Large-scale protective devices must endure the impact of severe forces, large structural deformation, the increased stress and strain rate effects, and multiple coupling effects. In evaluation of the safety of conceptual design through simulation, several key parameters considered in this research are maximum impact force, energy dissipated by the impactor (e.g. a ship) and energy absorbed by the device and the impactor stroke. During impact, the main function of the ring beam structure is to resist and buffer the impact force between ship and bridge pile caps, which could guarantee that the magnitude of impact force meets the corresponding requirements. The means of improving anti-collision performance can be to increase the strength of the beam section or to exchange the steel material with novel fiber reinforced polymer laminates. The main function of the buoyancy tank is to absorb and transfer the ship’s kinetic energy through large plastic deformation, damage, or friction occurring within itself. The energy absorption effect can be improved by structure optimization or by the use of new sandwich panels. Structural and material optimization schemes are proposed on the basis of conceptual design in this research, and protective devices constructed of sandwich panels prove to have the best anti-collision performance

  13. Robust stability analysis of large power systems using the structured singular value theory

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, R.; Sarmiento, H. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Messina, A.R. [Cinvestav, Graduate Program in Electrical Engineering, Guadalajara, Jalisco (Mexico)

    2005-07-01

    This paper examines the application of structured singular value (SSV) theory to analyse robust stability of complex power systems with respect to a set of structured uncertainties. Based on SSV theory and the frequency sweep method, techniques for robust analysis of large-scale power systems are developed. The main interest is focused on determining robust stability for varying operating conditions and uncertainties in the structure of the power system. The applicability of the proposed techniques is verified through simulation studies on a large-scale power system. In particular, results for the system are considered for a wide range of uncertainties of operating conditions. Specifically, the developed technique is used to estimate the effect of variations in the parameters of a major system inter-tie on the nominal stability of a critical inter-area mode. (Author)

  14. Collinear factorization for deep inelastic scattering structure functions at large Bjorken xB

    International Nuclear Information System (INIS)

    Accardi, Alberto; Qiu, Jian-Wei

    2008-01-01

    http://dx.doi.org/10.1088/1126-6708/2008/07/090 We examine the uncertainty of perturbative QCD factorization for hadron structure functions in deep inelastic scattering at a large value of the Bjorken variable xB. We analyze the target mass correction to the structure functions by using the collinear factorization approach in the momentum space. We express the long distance physics of structure functions and the leading target mass corrections in terms of parton distribution functions with the standard operator definition. We compare our result with existing work on the target mass correction. We also discuss the impact of a final-state jet function on the extraction of parton distributions at large fractional momentum x.

  15. A European collaboration research programme to study and test large scale base isolated structures

    International Nuclear Information System (INIS)

    Renda, V.; Verzeletti, G.; Papa, L.

    1995-01-01

    The improvement of the technology of innovative anti-seismic mechanisms, as those for base isolation and energy dissipation, needs of testing capability for large scale models of structures integrated with these mechanisms. These kind experimental tests are of primary importance for the validation of design rules and the setting up of an advanced earthquake engineering for civil constructions of relevant interest. The Joint Research Centre of the European Commission offers the European Laboratory for Structural Assessment located at Ispra - Italy, as a focal point for an international european collaboration research programme to test large scale models of structure making use of innovative anti-seismic mechanisms. A collaboration contract, opened to other future contributions, has been signed with the national italian working group on seismic isolation (Gruppo di Lavoro sull's Isolamento Sismico GLIS) which includes the national research centre ENEA, the national electricity board ENEL, the industrial research centre ISMES and producer of isolators ALGA. (author). 3 figs

  16. Performance of Arch-Style Road Crossing Structures from Relative Movement Rates of Large Mammals

    Directory of Open Access Journals (Sweden)

    A. Z. Andis

    2017-10-01

    Full Text Available In recent decades, an increasing number of highway construction and reconstruction projects have included mitigation measures aimed at reducing wildlife-vehicle collisions and maintaining habitat connectivity for wildlife. The most effective and robust measures include wildlife fences combined with wildlife underpasses and overpasses. The 39 wildlife crossing structures included along a 90 km stretch of US Highway 93 on the Flathead Indian Reservation in western Montana represent one of the most extensive of such projects. We measured movements of large mammal species at 15 elliptical arch-style wildlife underpasses and adjacent habitat between April and November 2015. We investigated if the movements of large mammals through the underpasses were similar to large mammal movements in the adjacent habitat. Across all structures, large mammals (all species combined were more likely to move through the structures than pass at a random location in the surrounding habitat. At the species level, white-tailed deer (Odocoileus virginianus and mule deer (O. hemionus used the underpasses significantly more than could be expected based on their movement through the surrounding habitat. However, carnivorous species such as, black bear (Ursus americanus and coyote (Canis latrans moved through the underpasses in similar numbers compared to the surrounding habitat.

  17. Structural Analysis of the Support System for a Large Compressor Driven by a Synchronous Electric Motor

    Science.gov (United States)

    Winter, J. R.

    1984-01-01

    For economic reasons, the steam drive for a large compressor was replaced by a large synchronous electric motor. Due to the resulting large increase in mass and because the unit was mounted on a steel frame approximately 18 feet above ground level, it was deemed necessary to determine if a steady state or transient vibration problem existed. There was a definite possibility that a resonant or near resonant condition could be encountered. The ensuing analysis, which led to some structural changes as the analysis proceeded, did not reveal any major steady state vibration problems. However, the analysis did indicate that the system would go through several natural frequencies of the support structure during start-up and shutdown. This led to the development of special start-up and shutdown procedures to minimize the possibility of exciting any of the major structural modes. A coast-down could result in significant support structure and/or equipment damage, especially under certain circumstances. In any event, dynamic field tests verified the major analytical results. The unit has now been operating for over three years without any major vibration problems.

  18. Novel Threadlike Structures May Be Present on the Large Animal Organ Surface: Evidence in Swine Model

    Directory of Open Access Journals (Sweden)

    Kyoung-Hee Bae

    2013-01-01

    Full Text Available Background. The types of embryonic development probably provoke different paths of novel threadlike structure (NTS development. The authors hypothesized that NTS may be easily observed on the surface of swine intestines by using trypan blue staining method and visualization under an optical microscope. Methods. General anesthesia was administered to 2 Yorkshire pigs. The abdominal walls of the pigs were carefully dissected along the medial alba. NTSs were identified on organ surfaces under a stereoscopic microscope after trypan blue staining. Isolated NTS specimens obtained from the large intestine were subjected to 4′,6-diamidino-2-phenylindole (DAPI staining and observed using the polarized light microscopy to confirm whether the obtained structure fits the definition of NTS. Results. We found elastic, semitransparent threadlike structures (forming a network structure that had a milky-white color in situ and in vivo in swine large intestines. The samples showed distinct extinction of polarized light at every 90 degrees, and nucleus was shown to be rod shaped by DAPI staining, indicating that they meet the criteria of NTS. Conclusion. We used a swine model to demonstrate that NTS may be present on large animal organ surfaces. Our results may permit similar studies by using human specimens.

  19. 2MASS Constraints on the Local Large-Scale Structure: A Challenge to LCDM?

    OpenAIRE

    Frith, W. J.; Shanks, T.; Outram, P. J.

    2004-01-01

    We investigate the large-scale structure of the local galaxy distribution using the recently completed 2 Micron All Sky Survey (2MASS). First, we determine the K-band number counts over the 4000 sq.deg. APM survey area where evidence for a large-scale `local hole' has previously been detected and compare them to a homogeneous prediction. Considering a LCDM form for the 2-point angular correlation function, the observed deficiency represents a 5 sigma fluctuation in the galaxy distribution. We...

  20. Towards Interactive Steering of a Very Large Floating Structure Code by Using HPC Parallelisation Strategies

    KAUST Repository

    Frisch, Jerome

    2012-09-01

    Very large floating structures (VLFSs) have been used for broad applications such as floating storage facilities, floating piers, floating bridges, floating airports, entertainment facilities, even habitation, and other purposes. Owing to its small bending rigidity, VLFS deforms elastically when subjected to wave action. This elastic deformation due to wave is called hydro elastic response and it can be obtained by solving the interaction between the surface wave and the floating structure in the frequency domain. In solving the fluid-structure interaction, the floating structure can be modelled by applying the finite element method, whereas the fluid part may be analyzed by using the Green\\'s function method. When using the Green\\'s function which satisfies the boundary condition on the free-surface, the sea bottom and that at infinite distance from the floating structure, the unknown parameters to be determined for the fluid part can be minimized to be only those associated with the wetted surface of the floating structure. However, in the evaluation of the Green\\'s function, extensive computation time O(N2) is needed (N is the number of unknowns). Therefore, acceleration techniques are necessary to tackle the computational complexity. Nowadays, standard multi-core office PCs are already quite powerful if all the cores can be used efficiently. This paper will show different parallelisation strategies for speeding up the Green\\'s function computation. A shared memory based implementation as well as a distributed memory concept will be analysed regarding speed-up and efficiency. For large computations, batch jobs can be used to compute detailed results in high resolution on a large computational cluster or supercomputer. Different speed-up computations on clusters will be included for showing strong speed-up results. © 2012 IEEE.

  1. Compton imaging tomography for nondestructive evaluation of large multilayer aircraft components and structures

    Science.gov (United States)

    Romanov, Volodymyr; Grubsky, Victor; Zahiri, Feraidoon

    2017-02-01

    We present a novel NDT/NDE tool for non-contact, single-sided 3D inspection of aerospace components, based on Compton Imaging Tomography (CIT) technique, which is applicable to large, non-uniform, and/or multilayer structures made of composites or lightweight metals. CIT is based on the registration of Compton-scattered X-rays, and permits the reconstruction of the full 3D (tomographic) image of the inspected objects. Unlike conventional computerized tomography (CT), CIT requires only single-sided access to objects, and therefore can be applied to large structures without their disassembly. The developed tool provides accurate detection, identification, and precise 3D localizations and measurements of any possible internal and surface defects (corrosions, cracks, voids, delaminations, porosity, and inclusions), and also disbonds, core and skin defects, and intrusion of foreign fluids (e.g., fresh and salt water, oil) inside of honeycomb sandwich structures. The NDE capabilities of the system were successfully demonstrated on various aerospace structure samples provided by several major aerospace companies. Such a CIT-based tool can detect and localize individual internal defects with dimensions about 1-2 mm3, and honeycomb disbond defects less than 6 mm by 6 mm area with the variations in the thickness of the adhesive by 100 m. Current maximum scanning speed of aircraft/spacecraft structures is about 5-8 min/ft2 (50-80 min/m2).

  2. Auxetic hexachiral structures with wavy ligaments for large elasto-plastic deformation

    Science.gov (United States)

    Zhu, Yilin; Wang, Zhen-Pei; Hien Poh, Leong

    2018-05-01

    The hexachiral structure is in-plane isotropic in small deformation. When subjected to large elasto-plastic deformation, however, the hexachiral structure tends to lose its auxeticity and/or isotropy—properties which are desirable in many potential applications. The objective of this study is to improve these two mechanical properties, without significantly compromising the effective yield stress, in the regime with significant material and geometrical nonlinearity effects. It is found that the deformation mechanisms underlying the auxeticity and isotropy properties of a hexachiral structure are largely influenced by the extent of rotation of the central ring in a unit cell. To facilitate the development of this deformation mechanism, an improved design with wavy ligaments is proposed. The improved performance of the proposed hexachiral structure is demonstrated. An initial study on possible applications as a protective material is next carried out, where the improved hexachiral design is shown to exhibit higher specific energy absorption capacity compared to the original design, as well as standard honeycomb structures.

  3. The spectra of type IIB flux compactifications at large complex structure

    International Nuclear Information System (INIS)

    Brodie, Callum; Marsh, M.C. David

    2016-01-01

    We compute the spectra of the Hessian matrix, H, and the matrix M that governs the critical point equation of the low-energy effective supergravity, as a function of the complex structure and axio-dilaton moduli space in type IIB flux compactifications at large complex structure. We find both spectra analytically in an h − 1,2 +3 real-dimensional subspace of the moduli space, and show that they exhibit a universal structure with highly degenerate eigenvalues, independently of the choice of flux, the details of the compactification geometry, and the number of complex structure moduli. In this subspace, the spectrum of the Hessian matrix contains no tachyons, but there are also no critical points. We show numerically that the spectra of H and M remain highly peaked over a large fraction of the sampled moduli space of explicit Calabi-Yau compactifications with 2 to 5 complex structure moduli. In these models, the scale of the supersymmetric contribution to the scalar masses is strongly linearly correlated with the value of the superpotential over almost the entire moduli space, with particularly strong correlations arising for g s <1. We contrast these results with the expectations from the much-used continuous flux approximation, and comment on the applicability of Random Matrix Theory to the statistical modelling of the string theory landscape.

  4. Large eddy simulation of a buoyancy-aided flow in a non-uniform channel – Buoyancy effects on large flow structures

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); He, S., E-mail: s.he@sheffield.ac.uk [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2017-02-15

    Highlights: • Buoyancy may greatly redistribute the flow in a non-uniform channel. • Flow structures in the narrow gap are greatly changed when buoyancy is strong. • Large flow structures exist in wider gap, which is enhanced when heat is strong. • Buoyancy reduces mixing factor caused by large flow structures in narrow gap. - Abstract: It has been a long time since the ‘abnormal’ turbulent intensity distribution and high inter-sub-channel mixing rates were observed in the vicinity of the narrow gaps formed by the fuel rods in nuclear reactors. The extraordinary flow behaviour was first described as periodic flow structures by Hooper and Rehme (1984). Since then, the existences of large flow structures were demonstrated by many researchers in various non-uniform flow channels. It has been proved by many authors that the Strouhal number of the flow structure in the isothermal flow is dependent on the size of the narrow gap, not the Reynolds number once it is sufficiently large. This paper reports a numerical investigation on the effect of buoyancy on the large flow structures. A buoyancy-aided flow in a tightly-packed rod-bundle-like channel is modelled using large eddy simulation (LES) together with the Boussinesq approximation. The behaviour of the large flow structures in the gaps of the flow passage are studied using instantaneous flow fields, spectrum analysis and correlation analysis. It is found that the non-uniform buoyancy force in the cross section of the flow channel may greatly redistribute the velocity field once the overall buoyancy force is sufficiently strong, and consequently modify the large flow structures. The temporal and axial spatial scales of the large flow structures are influenced by buoyancy in a way similar to that turbulence is influenced. These scales reduce when the flow is laminarised, but start increasing in the turbulence regeneration region. The spanwise scale of the flow structures in the narrow gap remains more or

  5. Quality Improvement Process in a Large Intensive Care Unit: Structure and Outcomes.

    Science.gov (United States)

    Reddy, Anita J; Guzman, Jorge A

    2016-11-01

    Quality improvement in the health care setting is a complex process, and even more so in the critical care environment. The development of intensive care unit process measures and quality improvement strategies are associated with improved outcomes, but should be individualized to each medical center as structure and culture can differ from institution to institution. The purpose of this report is to describe the structure of quality improvement processes within a large medical intensive care unit while using examples of the study institution's successes and challenges in the areas of stat antibiotic administration, reduction in blood product waste, central line-associated bloodstream infections, and medication errors. © The Author(s) 2015.

  6. Definition of technology development missions for early space stations: Large space structures

    Science.gov (United States)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  7. An optimum organizational structure for a large earth-orbiting multidisciplinary Space Base

    Science.gov (United States)

    Ragusa, J. M.

    1973-01-01

    The purpose of this exploratory study was to identify an optimum hypothetical organizational structure for a large earth-orbiting multidisciplinary research and applications (R&A) Space Base manned by a mixed crew of technologists. Since such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than the empirical testing of it. The essential finding of this research was that a four-level project type 'total matrix' model will optimize the efficiency and effectiveness of Space Base technologists.

  8. Comparing direct and iterative equation solvers in a large structural analysis software system

    Science.gov (United States)

    Poole, E. L.

    1991-01-01

    Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.

  9. Features of the Calculation Deployment Large Transformable Structures of Different Configurations

    Directory of Open Access Journals (Sweden)

    V. N. Zimin

    2014-01-01

    Full Text Available Despite the significant progress achieved in the design of space transformable structures to ensure a smooth and reliable deployment remains an important task. This type of construction can consist of dozens, hundreds or even thousands of interconnected elements. Deployment transformable space structures in orbit to test their performance in orbital conditions are associated with high material costs. Full deploy: experimental development process transformable structures involve a number of fundamental difficulties: It is impossible to eliminate the influence of gravity and resistance forces conditions. Thus, to calculate deploy of large transformable structures of various configurations is an important stage of their creation. Simulation provides an opportunity to analyze various schemes of deploy, to reveal their advantages and possible disadvantages. For numerical analysis of deploy of such structures is necessary to use modern software modeling of the dynamics of multi-component of mechanical systems such as EULER and Adams. Simulation of deployment space transformable structures was performed taking as example folding flat antenna contours diameter of 5 m and 20 m, foldable spatial calibration reflector diameter of 3 m, deployable antenna reflector truss-type aperture 3×6 m.The results of the calculations represent following characteristics: the time of adoption of the working position structures; form intermediate positions structures during deployment; dependence of opening angles and angular velocities of the design links on the time. The parameters of these calculations can be used as input in the development of structural elements providing deployment. They can also be used to prepare stands for experimental testing of disclosure designs in ground conditions. It should be noted that the theoretical models are the only way to analyze the deployment of such structures for possible emergency situations.

  10. Thermal interaction in crusted melt jets with large-scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Ken-ichiro; Sotome, Fuminori; Ishikawa, Michio [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering

    1998-01-01

    The objective of the present study is to experimentally observe thermal interaction which would be capable of triggering due to entrainment, or entrapment in crusted melt jets with `large-scale structure`. The present experiment was carried out by dropping molten zinc and molten tin of 100 grams, of which mass was sufficient to generate large-scale structures of melt jets. The experimental results show that the thermal interaction of entrapment type occurs in molten-zinc jets with rare probability, and the thermal interaction of entrainment type occurs in molten tin jets with high probability. The difference of thermal interaction between molten zinc and molten tin may attribute to differences of kinematic viscosity and melting point between them. (author)

  11. Fuel containment, lightning protection and damage tolerance in large composite primary aircraft structures

    Science.gov (United States)

    Griffin, Charles F.; James, Arthur M.

    1985-01-01

    The damage-tolerance characteristics of high strain-to-failure graphite fibers and toughened resins were evaluated. Test results show that conventional fuel tank sealing techniques are applicable to composite structures. Techniques were developed to prevent fuel leaks due to low-energy impact damage. For wing panels subjected to swept stroke lightning strikes, a surface protection of graphite/aluminum wire fabric and a fastener treatment proved effective in eliminating internal sparking and reducing structural damage. The technology features developed were incorporated and demonstrated in a test panel designed to meet the strength, stiffness, and damage tolerance requirements of a large commercial transport aircraft. The panel test results exceeded design requirements for all test conditions. Wing surfaces constructed with composites offer large weight savings if design allowable strains for compression can be increased from current levels.

  12. On the Soft Limit of the Large Scale Structure Power Spectrum: UV Dependence

    CERN Document Server

    Garny, Mathias; Porto, Rafael A; Sagunski, Laura

    2015-01-01

    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agr...

  13. Surface and Internal Waves due to a Moving Load on a Very Large Floating Structure

    Directory of Open Access Journals (Sweden)

    Taro Kakinuma

    2012-01-01

    Full Text Available Interaction of surface/internal water waves with a floating platform is discussed with nonlinearity of fluid motion and flexibility of oscillating structure. The set of governing equations based on a variational principle is applied to a one- or two-layer fluid interacting with a horizontally very large and elastic thin plate floating on the water surface. Calculation results of surface displacements are compared with the existing experimental data, where a tsunami, in terms of a solitary wave, propagates across one-layer water with a floating thin plate. We also simulate surface and internal waves due to a point load, such as an airplane, moving on a very large floating structure in shallow water. The wave height of the surface or internal mode is amplified when the velocity of moving point load is equal to the surface- or internal-mode celerity, respectively.

  14. Testing the Big Bang: Light elements, neutrinos, dark matter and large-scale structure

    Science.gov (United States)

    Schramm, David N.

    1991-01-01

    Several experimental and observational tests of the standard cosmological model are examined. In particular, a detailed discussion is presented regarding: (1) nucleosynthesis, the light element abundances, and neutrino counting; (2) the dark matter problems; and (3) the formation of galaxies and large-scale structure. Comments are made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing and the cosmological and astrophysical constraints on it.

  15. Evidence for non-Abelian dark matter from large scale structure?

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    If dark matter multiplicity arises from a weakly coupled non-Abelian dark gauge group the corresponding "dark gluons" can have interesting signatures in cosmology which I will review: 1. the "dark gluons" contribute to the radiation content of the universe and 2. gluon interactions with the dark matter may explain the >3 sigma discrepancy between precision fits to the CMB from Planck and direct measurements of large scale structure in the universe.

  16. ShakeNet: a portable wireless sensor network for instrumenting large civil structures

    Science.gov (United States)

    Kohler, Monica D.; Hao, Shuai; Mishra, Nilesh; Govindan, Ramesh; Nigbor, Robert

    2015-08-03

    We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software. 

  17. Measuring the topology of large-scale structure in the universe

    Science.gov (United States)

    Gott, J. Richard, III

    1988-11-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.

  18. Measuring the topology of large-scale structure in the universe

    International Nuclear Information System (INIS)

    Gott, J.R. III

    1988-01-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data. 45 references

  19. Thermal test of the insulation structure for LH 2 tank by using the large experimental apparatus

    Science.gov (United States)

    Kamiya, S.; Onishi, K.; Konshima, N.; Nishigaki, K.

    Conceptual designs of large mass LH 2 (liquid hydrogen) storage systems, whose capacity is 50,000 m3, have been studied in the Japanese hydrogen project, World Energy Network (WE-NET) [K. Fukuda, in: WE-NET Hydrogen Energy Symposium, 1999, P1-P41]. This study has concluded that their thermal insulation structures for the huge LH 2 tanks should be developed. Their actual insulation structures comprise not only the insulation material but also reinforced members and joints. To evaluate their thermal performance correctly, a large test specimen including reinforced members and joints will be necessary. After verifying the thermal performance of a developed large experimental apparatus [S. Kamiya, Cryogenics 40 (1) (2000) 35] for measuring the thermal conductance of various insulation structures, we tested two specimens, a vacuum multilayer insulation (MLI) with a glass fiber reinforced plastic (GFRP) support and a vacuum solid insulation (microtherm ®) with joints. The thermal background test for verifying the thermal design of the experimental apparatus showed that the background heat leak is 0.1 W, small enough to satisfy apparatus performance requirement. The thermal conductance measurements of specimens also showed that thermal heat fluxes of MLI with a GFRP support and microtherm ® are 8 and 5.4 W/m2, respectively.

  20. Electromagnetic scattering of large structures in layered earths using integral equations

    Science.gov (United States)

    Xiong, Zonghou; Tripp, Alan C.

    1995-07-01

    An electromagnetic scattering algorithm for large conductivity structures in stratified media has been developed and is based on the method of system iteration and spatial symmetry reduction using volume electric integral equations. The method of system iteration divides a structure into many substructures and solves the resulting matrix equation using a block iterative method. The block submatrices usually need to be stored on disk in order to save computer core memory. However, this requires a large disk for large structures. If the body is discretized into equal-size cells it is possible to use the spatial symmetry relations of the Green's functions to regenerate the scattering impedance matrix in each iteration, thus avoiding expensive disk storage. Numerical tests show that the system iteration converges much faster than the conventional point-wise Gauss-Seidel iterative method. The numbers of cells do not significantly affect the rate of convergency. Thus the algorithm effectively reduces the solution of the scattering problem to an order of O(N2), instead of O(N3) as with direct solvers.

  1. Visual Grading and Structural Properties Assessment of Large Cross-Section Pinus radiata D. Don Timber

    Directory of Open Access Journals (Sweden)

    Eva Hermoso Prieto

    2016-04-01

    Full Text Available The use of large cross-section timber for structural purposes has increased in Spain, and knowledge of its properties is strategically necessary. The Spanish visual strength-grading standard UNE 56544 (2011 efficiency applied to large cross-section structural timber was analyzed using a sample of 363 specimens of radiata pine (Pinus radiata D. Don. from the Basque Country and Catalonia, Spain. Different sizes were tested (80 × 120 × 2400 mm3, 150 × 250 × 5600 mm3, 150 × 250 × 4300 mm3, and 200 × 250 × 5000 mm3. Bending strength, modulus of elasticity, and density were obtained, and characteristic values were determined in order to assign strength class according to European standard EN 338 (2010. Knots and twists were the most relevant singularities for visual strength grading. It was concluded that large cross-section Spanish radiata pine timber was suitable for structures, and it was assigned to the C20 strength class.

  2. Effects of a large wildfire on vegetation structure in a variable fire mosaic.

    Science.gov (United States)

    Foster, C N; Barton, P S; Robinson, N M; MacGregor, C I; Lindenmayer, D B

    2017-12-01

    Management guidelines for many fire-prone ecosystems highlight the importance of maintaining a variable mosaic of fire histories for biodiversity conservation. Managers are encouraged to aim for fire mosaics that are temporally and spatially dynamic, include all successional states of vegetation, and also include variation in the underlying "invisible mosaic" of past fire frequencies, severities, and fire return intervals. However, establishing and maintaining variable mosaics in contemporary landscapes is subject to many challenges, one of which is deciding how the fire mosaic should be managed following the occurrence of large, unplanned wildfires. A key consideration for this decision is the extent to which the effects of previous fire history on vegetation and habitats persist after major wildfires, but this topic has rarely been investigated empirically. In this study, we tested to what extent a large wildfire interacted with previous fire history to affect the structure of forest, woodland, and heath vegetation in Booderee National Park in southeastern Australia. In 2003, a summer wildfire burned 49.5% of the park, increasing the extent of recently burned vegetation (post-fire) to more than 72% of the park area. We tracked the recovery of vegetation structure for nine years following the wildfire and found that the strength and persistence of fire effects differed substantially between vegetation types. Vegetation structure was modified by wildfire in forest, woodland, and heath vegetation, but among-site variability in vegetation structure was reduced only by severe fire in woodland vegetation. There also were persistent legacy effects of the previous fire regime on some attributes of vegetation structure including forest ground and understorey cover, and woodland midstorey and overstorey cover. For example, woodland midstorey cover was greater on sites with higher fire frequency, irrespective of the severity of the 2003 wildfire. Our results show that even

  3. Universal properties of type IIB and F-theory flux compactifications at large complex structure

    International Nuclear Information System (INIS)

    Marsh, M.C. David; Sousa, Kepa

    2016-01-01

    We consider flux compactifications of type IIB string theory and F-theory in which the respective superpotentials at large complex structure are dominated by cubic or quartic terms in the complex structure moduli. In this limit, the low-energy effective theory exhibits universal properties that are insensitive to the details of the compactification manifold or the flux configuration. Focussing on the complex structure and axio-dilaton sector, we show that there are no vacua in this region and the spectrum of the Hessian matrix is highly peaked and consists only of three distinct eigenvalues (0, 2m 3/2 2 and 8m 3/2 2 ), independently of the number of moduli. We briefly comment on how the inclusion of Kähler moduli affect these findings. Our results generalise those of Brodie & Marsh http://dx.doi.org/10.1007/JHEP01(2016)037, in which these universal properties were found in a subspace of the large complex structure limit of type IIB compactifications.

  4. Prediction of welding residual distortions of large structures using a local/global approach

    International Nuclear Information System (INIS)

    Duan, Y. G.; Bergheau, J. M.; Vincent, Y.; Boitour, F.; Leblond, J. B.

    2007-01-01

    Prediction of welding residual distortions is more difficult than that of the microstructure and residual stresses. On the one hand, a fine mesh (often 3D) has to be used in the heat affected zone for the sake of the sharp variations of thermal, metallurgical and mechanical fields in this region. On the other hand, the whole structure is required to be meshed for the calculation of residual distortions. But for large structures, a 3D mesh is inconceivable caused by the costs of the calculation. Numerous methods have been developed to reduce the size of models. A local/global approach has been proposed to determine the welding residual distortions of large structures. The plastic strains and the microstructure due to welding are supposed can be determined from a local 3D model which concerns only the weld and its vicinity. They are projected as initial strains into a global 3D model which consists of the whole structure and obviously much less fine in the welded zone than the local model. The residual distortions are then calculated using a simple elastic analysis, which makes this method particularly effective in an industrial context. The aim of this article is to present the principle of the local/global approach then show the capacity of this method in an industrial context and finally study the definition of the local model

  5. A new type of intelligent wireless sensing network for health monitoring of large-size structures

    Science.gov (United States)

    Lei, Ying; Liu, Ch.; Wu, D. T.; Tang, Y. L.; Wang, J. X.; Wu, L. J.; Jiang, X. D.

    2009-07-01

    In recent years, some innovative wireless sensing systems have been proposed. However, more exploration and research on wireless sensing systems are required before wireless systems can substitute for the traditional wire-based systems. In this paper, a new type of intelligent wireless sensing network is proposed for the heath monitoring of large-size structures. Hardware design of the new wireless sensing units is first studied. The wireless sensing unit mainly consists of functional modules of: sensing interface, signal conditioning, signal digitization, computational core, wireless communication and battery management. Then, software architecture of the unit is introduced. The sensing network has a two-level cluster-tree architecture with Zigbee communication protocol. Important issues such as power saving and fault tolerance are considered in the designs of the new wireless sensing units and sensing network. Each cluster head in the network is characterized by its computational capabilities that can be used to implement the computational methodologies of structural health monitoring; making the wireless sensing units and sensing network have "intelligent" characteristics. Primary tests on the measurement data collected by the wireless system are performed. The distributed computational capacity of the intelligent sensing network is also demonstrated. It is shown that the new type of intelligent wireless sensing network provides an efficient tool for structural health monitoring of large-size structures.

  6. Growth of equilibrium structures built from a large number of distinct component types.

    Science.gov (United States)

    Hedges, Lester O; Mannige, Ranjan V; Whitelam, Stephen

    2014-09-14

    We use simple analytic arguments and lattice-based computer simulations to study the growth of structures made from a large number of distinct component types. Components possess 'designed' interactions, chosen to stabilize an equilibrium target structure in which each component type has a defined spatial position, as well as 'undesigned' interactions that allow components to bind in a compositionally-disordered way. We find that high-fidelity growth of the equilibrium target structure can happen in the presence of substantial attractive undesigned interactions, as long as the energy scale of the set of designed interactions is chosen appropriately. This observation may help explain why equilibrium DNA 'brick' structures self-assemble even if undesigned interactions are not suppressed [Ke et al. Science, 338, 1177, (2012)]. We also find that high-fidelity growth of the target structure is most probable when designed interactions are drawn from a distribution that is as narrow as possible. We use this result to suggest how to choose complementary DNA sequences in order to maximize the fidelity of multicomponent self-assembly mediated by DNA. We also comment on the prospect of growing macroscopic structures in this manner.

  7. Earthquake response characteristics of large structure 'JOYO' deeply embedded in quaternary ground, (3)

    International Nuclear Information System (INIS)

    Yajima, Hiroshi; Sawada, Yoshihiro; Hanada, Kazutake; Sawada, Makoto.

    1987-01-01

    In order to examine aseismicity of embedded structure and to clarify embedment effect, earthquake observations of the large structure 'JOYO' are carried out which is deeply embedded in quaternary ground, and the results are summarized as follows. (1) Amplification factors of horizontal component in ground surface is about 3 to 4 times against the bedrock. Contrastively on the structure, any amplification is not observed at the underground portion, however, little amplification exists at the ground portion of structure. (2) Transfer function of structure has several predominant peaks at frequencies of 4.3 Hz and 8.0 Hz which are well coincided with values obtained from force excitation tests. It is shown that transfer function between basement and ground surface is similar to that between ground of same level to basement and ground surface, suggesting the behavior of basement to be able to estimate by these under ground earthquake motion. (3) According to earthquake motion analysis using S-R models, without regard to consider or not the side ground stiffness, the calculated response values do not so much differ in each model and mostly correspond with observation data, provided that the underground earthquake motion at same level to basement is used as a input wave. Consequently, the behavior of these deeply embedded structure is subject to setting method of input wave rather than modeling method, and it is very useful in design that the most simple model without side ground stiffness can roughly represent the embedment effect. (author)

  8. Coupled Finite Volume and Finite Element Method Analysis of a Complex Large-Span Roof Structure

    Science.gov (United States)

    Szafran, J.; Juszczyk, K.; Kamiński, M.

    2017-12-01

    The main goal of this paper is to present coupled Computational Fluid Dynamics and structural analysis for the precise determination of wind impact on internal forces and deformations of structural elements of a longspan roof structure. The Finite Volume Method (FVM) serves for a solution of the fluid flow problem to model the air flow around the structure, whose results are applied in turn as the boundary tractions in the Finite Element Method problem structural solution for the linear elastostatics with small deformations. The first part is carried out with the use of ANSYS 15.0 computer system, whereas the FEM system Robot supports stress analysis in particular roof members. A comparison of the wind pressure distribution throughout the roof surface shows some differences with respect to that available in the engineering designing codes like Eurocode, which deserves separate further numerical studies. Coupling of these two separate numerical techniques appears to be promising in view of future computational models of stochastic nature in large scale structural systems due to the stochastic perturbation method.

  9. Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks.

    Science.gov (United States)

    Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Trautwein, Fynn-Mathis; Kanske, Philipp; Singer, Tania

    2017-02-01

    Functional neuroimaging studies have suggested the existence of 2 largely distinct social cognition networks, one for theory of mind (taking others' cognitive perspective) and another for empathy (sharing others' affective states). To address whether these networks can also be dissociated at the level of brain structure, we combined behavioral phenotyping across multiple socio-cognitive tasks with 3-Tesla MRI cortical thickness and structural covariance analysis in 270 healthy adults, recruited across 2 sites. Regional thickness mapping only provided partial support for divergent substrates, highlighting that individual differences in empathy relate to left insular-opercular thickness while no correlation between thickness and mentalizing scores was found. Conversely, structural covariance analysis showed clearly divergent network modulations by socio-cognitive and -affective phenotypes. Specifically, individual differences in theory of mind related to structural integration between temporo-parietal and dorsomedial prefrontal regions while empathy modulated the strength of dorsal anterior insula networks. Findings were robust across both recruitment sites, suggesting generalizability. At the level of structural network embedding, our study provides a double dissociation between empathy and mentalizing. Moreover, our findings suggest that structural substrates of higher-order social cognition are reflected rather in interregional networks than in the the local anatomical markup of specific regions per se. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Finite Element Analysis and Lightweight Optimization Design on Main Frame Structure of Large Electrostatic Precipitator

    Directory of Open Access Journals (Sweden)

    Xuewen Wang

    2018-01-01

    Full Text Available The geometric modeling and finite element modeling of the whole structure of an electrostatic precipitator and its main components consisting of top beam, column, bottom beam, and bracket were finished. The strength calculation was completed. As a result, the design of the whole structure of the electrostatic precipitator and the main components were reasonable, the structure was in a balance state, its working condition was safe and reliable, its stress variation was even, and the stress distribution was regular. The maximum von Mises stress of the whole structure is 20.14 MPa. The safety factor was large, resulting in a waste of material. An optimization mathematical model is established. Using the ANSYS first-order method, the dimension parameters of the main frame structure of the electrostatic precipitator were optimized. After optimization, more reasonable structural design parameters were obtained. The model weight is 72,344.11 kg, the optimal weight is 49,239.35 kg, and the revised weight is 53,645.68 kg. Compared with the model weight, the optimal weight decreased by 23,104.76 kg and the objective function decreased by 31.94%, while the revised weight decreased by 18,698.43 kg and the objective function decreased by 25.84%.

  11. Critical joints in large composite primary aircraft structures. Volume 2: Technology demonstration test report

    Science.gov (United States)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.

  12. Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations

    Directory of Open Access Journals (Sweden)

    José Gaite

    2013-05-01

    Full Text Available Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.

  13. Experimental results of active control on a large structure to suppress vibration

    Science.gov (United States)

    Dunn, H. J.

    1991-01-01

    Three design methods, Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR), H-infinity, and mu-synthesis, are used to obtain compensators for suppressing the vibrations of a 10-bay vertical truss structure, a component typical of what may be used to build a large space structure. For the design process the plant dynamic characteristics of the structure were determined experimentally using an identification method. The resulting compensators were implemented on a digital computer and tested for their ability to suppress the first bending mode response of the 10-bay vertical truss. Time histories of the measured motion are presented, and modal damping obtained during the experiments are compared with analytical predictions. The advantages and disadvantages of using the various design methods are discussed.

  14. Statistics and Dynamics in the Large-scale Structure of the Universe

    International Nuclear Information System (INIS)

    Matsubara, Takahiko

    2006-01-01

    In cosmology, observations and theories are related to each other by statistics in most cases. Especially, statistical methods play central roles in analyzing fluctuations in the universe, which are seeds of the present structure of the universe. The confrontation of the statistics and dynamics is one of the key methods to unveil the structure and evolution of the universe. I will review some of the major statistical methods in cosmology, in connection with linear and nonlinear dynamics of the large-scale structure of the universe. The present status of analyses of the observational data such as the Sloan Digital Sky Survey, and the future prospects to constrain the nature of exotic components of the universe such as the dark energy will be presented

  15. Preliminary results on the dynamics of large and flexible space structures in Halo orbits

    Science.gov (United States)

    Colagrossi, Andrea; Lavagna, Michèle

    2017-05-01

    The global exploration roadmap suggests, among other ambitious future space programmes, a possible manned outpost in lunar vicinity, to support surface operations and further astronaut training for longer and deeper space missions and transfers. In particular, a Lagrangian point orbit location - in the Earth- Moon system - is suggested for a manned cis-lunar infrastructure; proposal which opens an interesting field of study from the astrodynamics perspective. Literature offers a wide set of scientific research done on orbital dynamics under the Three-Body Problem modelling approach, while less of it includes the attitude dynamics modelling as well. However, whenever a large space structure (ISS-like) is considered, not only the coupled orbit-attitude dynamics should be modelled to run more accurate analyses, but the structural flexibility should be included too. The paper, starting from the well-known Circular Restricted Three-Body Problem formulation, presents some preliminary results obtained by adding a coupled orbit-attitude dynamical model and the effects due to the large structure flexibility. In addition, the most relevant perturbing phenomena, such as the Solar Radiation Pressure (SRP) and the fourth-body (Sun) gravity, are included in the model as well. A multi-body approach has been preferred to represent possible configurations of the large cis-lunar infrastructure: interconnected simple structural elements - such as beams, rods or lumped masses linked by springs - build up the space segment. To better investigate the relevance of the flexibility effects, the lumped parameters approach is compared with a distributed parameters semi-analytical technique. A sensitivity analysis of system dynamics, with respect to different configurations and mechanical properties of the extended structure, is also presented, in order to highlight drivers for the lunar outpost design. Furthermore, a case study for a large and flexible space structure in Halo orbits around

  16. Angular momentum-large-scale structure alignments in ΛCDM models and the SDSS

    Science.gov (United States)

    Paz, Dante J.; Stasyszyn, Federico; Padilla, Nelson D.

    2008-09-01

    We study the alignments between the angular momentum of individual objects and the large-scale structure in cosmological numerical simulations and real data from the Sloan Digital Sky Survey, Data Release 6 (SDSS-DR6). To this end, we measure anisotropies in the two point cross-correlation function around simulated haloes and observed galaxies, studying separately the one- and two-halo regimes. The alignment of the angular momentum of dark-matter haloes in Λ cold dark matter (ΛCDM) simulations is found to be dependent on scale and halo mass. At large distances (two-halo regime), the spins of high-mass haloes are preferentially oriented in the direction perpendicular to the distribution of matter; lower mass systems show a weaker trend that may even reverse to show an angular momentum in the plane of the matter distribution. In the one-halo term regime, the angular momentum is aligned in the direction perpendicular to the matter distribution; the effect is stronger than for the one-halo term and increases for higher mass systems. On the observational side, we focus our study on galaxies in the SDSS-DR6 with elongated apparent shapes, and study alignments with respect to the major semi-axis. We study five samples of edge-on galaxies; the full SDSS-DR6 edge-on sample, bright galaxies, faint galaxies, red galaxies and blue galaxies (the latter two consisting mainly of ellipticals and spirals, respectively). Using the two-halo term of the projected correlation function, we find an excess of structure in the direction of the major semi-axis for all samples; the red sample shows the highest alignment (2.7 +/- 0.8per cent) and indicates that the angular momentum of flattened spheroidals tends to be perpendicular to the large-scale structure. These results are in qualitative agreement with the numerical simulation results indicating that the angular momentum of galaxies could be built up as in the Tidal Torque scenario. The one-halo term only shows a significant alignment

  17. Planetary Structures And Simulations Of Large-scale Impacts On Mars

    Science.gov (United States)

    Swift, Damian; El-Dasher, B.

    2009-09-01

    The impact of large meteroids is a possible cause for isolated orogeny on bodies devoid of tectonic activity. On Mars, there is a significant, but not perfect, correlation between large, isolated volcanoes and antipodal impact craters. On Mercury and the Moon, brecciated terrain and other unusual surface features can be found at the antipodes of large impact sites. On Earth, there is a moderate correlation between long-lived mantle hotspots at opposite sides of the planet, with meteoroid impact suggested as a possible cause. If induced by impacts, the mechanisms of orogeny and volcanism thus appear to vary between these bodies, presumably because of differences in internal structure. Continuum mechanics (hydrocode) simulations have been used to investigate the response of planetary bodies to impacts, requiring assumptions about the structure of the body: its composition and temperature profile, and the constitutive properties (equation of state, strength, viscosity) of the components. We are able to predict theoretically and test experimentally the constitutive properties of matter under planetary conditions, with reasonable accuracy. To provide a reference series of simulations, we have constructed self-consistent planetary structures using simplified compositions (Fe core and basalt-like mantle), which turn out to agree surprisingly well with the moments of inertia. We have performed simulations of large-scale impacts, studying the transmission of energy to the antipodes. For Mars, significant antipodal heating to depths of a few tens of kilometers was predicted from compression waves transmitted through the mantle. Such heating is a mechanism for volcanism on Mars, possibly in conjunction with crustal cracking induced by surface waves. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Fabrication of large Ti–6Al–4V structures by direct laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Chunlei; Ravi, G.A. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Dance, Chris; Ranson, Andrew; Dilworth, Steve [Integrated Operations, Manufacturing & Materials Engineering Department, BAE Systems Ltd (United Kingdom); Attallah, Moataz M., E-mail: m.m.attallah@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-04-25

    Highlights: • High laser power and a reasonably low powder feed rate are key to low porosity. • Scaling-up of samples requires smaller Z steps to achieve geometrical integrity. • HIPing effectively closed pores, changed microstructure and improved ductility. • Optimised processing conditions plus HIPing led to good quality Ti-64 structures. • HIPing helps recover shape of unclamped large structures from distortion. - Abstract: Ti–6Al–4V samples have been prepared by direct laser deposition (DLD) using varied processing conditions. Some of the as-fabricated samples were stress-relieved or hot isostatically pressed (HIPed). The microstructures of all the samples were characterised using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and the tensile properties assessed. It was found that a high laser power together with a reasonably low powder feed rate was essential for achieving minimum porosity. The build height and geometrical integrity of samples were sensitive to the specified laser nozzle moving step along the build height direction (or Z step) with a too big Z step usually leading to a build height smaller than specified height (or under build) and a too small Z step to excessive building (or excess build). Particularly, scaling-up of samples requires a smaller Z step to obtain specified build height and geometry. The as-fabricated microstructure was characterised by columnar grains together with martensitic needle structure and a small fraction of β phase. This led generally to high tensile strengths but low elongations. The vertically machined samples showed even lower elongation than horizontally machined ones due to the presence of large lack-of-fusion pores at interlayer interfaces. HIPing effectively closed pores and fully transformed the martensites into lamellar α + β phases, which considerably improved ductility but caused slight reduction in strength. With optimisation of processing conditions

  19. Large herbivores affect forest ecosystem functions by altering the structure of dung beetle communities

    Science.gov (United States)

    Iida, Taichi; Soga, Masashi; Koike, Shinsuke

    2018-04-01

    Dramatic increases in populations of large mammalian herbivores have become a major ecological issue, particularly in the northern hemisphere, due to their substantial impacts on both animal and plant communities through processes such as grazing, browsing, and trampling. However, little is known about the consequences of these population explosions on ecosystem functions. Here, we experimentally investigated how the population density of sika deer (Cervus nippon) in temperate deciduous forest areas in Japan affected the decomposition of mammal dung by dung beetles, which is a key process in forest ecosystems. We measured a range of environmental variables (e.g., vegetation cover, soil hardness) and the dung decomposition rate, measured as the amount of deer dung decomposed during one week, and sampled dung beetles at 16 study sites with three different deer densities (high/intermediate/low). We then used structural equation modeling to investigate the relationships between deer density, environmental variables, the biomass of dung beetles (classified into small or large species), and the dung decomposition rate. We found that the biomass of small species increased with increasing deer density, whereas that of large species was not related to deer density. Furthermore, the dung decomposition rate was positively related to the biomass of small species but unrelated to that of large species. Overall, our results showed that an increase in deer density affects the decomposition rate of mammal dung by changing the structure of dung beetle communities (i.e., increasing the number of small dung beetles). Such an understanding of how increases in large herbivore populations affect ecosystem functions is important for accurately evaluating the ecological consequences of their overabundance and ultimately managing their populations appropriately.

  20. Seismic Response Analysis of Concrete Lining Structure in Large Underground Powerhouse

    Directory of Open Access Journals (Sweden)

    Xiaowei Wang

    2017-01-01

    Full Text Available Based on the dynamic damage constitutive model of concrete material and seismic rock-lining structure interaction analysis method, the seismic response of lining structure in large underground powerhouse is studied in this paper. In order to describe strain rate dependence and fatigue damage of concrete material under cyclic loading, a dynamic constitutive model for concrete lining considering tension and shear anisotropic damage is presented, and the evolution equations of damage variables are derived. The proposed model is of simple form and can be programmed into finite element procedure easily. In order to describe seismic interaction characteristics of the surrounding rock and lining, an explicit dynamic contact analysis method considering bond and damage characteristics of contact face between the surrounding rock and lining is proposed, and this method can integrate directly without iteration. The proposed method is applied to seismic stability calculation of Yingxiuwan Underground Powerhouse, results reveal that the amplitude and duration of input seismic wave determine the damage degree of lining structure, the damage zone of lining structure is mainly distributed in its arch, and the contact face damage has great influence on the stability of the lining structure.

  1. Effect of Large Negative Phase of Blast Loading on Structural Response of RC Elements

    Directory of Open Access Journals (Sweden)

    Syed Zubair Iman

    2016-01-01

    Full Text Available Structural response of reinforced concrete (RC elements for analysis and design are often obtained using the positive phase of the blast pressure curve disregarding the negative phase assuming insignificant contribution from the negative phase of the loading. Although, some insight on the effect of negative phase of blast pressure based on elastic single-degree-of-freedom (SDOF analysis was presented before, the influence of negative phase on different types of resistance functions of SDOF models and on realistic finite element analysis has not been explored. In this study, the effects of inclusion of pulse negative phase on structural response of RC elements from SDOF analysis and from more detailed finite element analysis have been investigated. Investigation of SDOF part has been conducted using MATLAB code that utilizes non-linear resistance functions of SDOF model. Detailed numerical investigation using finite element code DIANA was conducted on the significance of the negative phase on structural response. In the FE model, different support stiffness was used to explore the effect of support stiffness on the structural response due to blast negative phase. Results from SDOF and FE analyses present specific situations where the effect of large negative phase was found to be significant on the structural response of RC elements.

  2. Large-scale Comparative Study of Hi-C-based Chromatin 3D Structure Modeling Methods

    KAUST Repository

    Wang, Cheng

    2018-05-17

    Chromatin is a complex polymer molecule in eukaryotic cells, primarily consisting of DNA and histones. Many works have shown that the 3D folding of chromatin structure plays an important role in DNA expression. The recently proposed Chro- mosome Conformation Capture technologies, especially the Hi-C assays, provide us an opportunity to study how the 3D structures of the chromatin are organized. Based on the data from Hi-C experiments, many chromatin 3D structure modeling methods have been proposed. However, there is limited ground truth to validate these methods and no robust chromatin structure alignment algorithms to evaluate the performance of these methods. In our work, we first made a thorough literature review of 25 publicly available population Hi-C-based chromatin 3D structure modeling methods. Furthermore, to evaluate and to compare the performance of these methods, we proposed a novel data simulation method, which combined the population Hi-C data and single-cell Hi-C data without ad hoc parameters. Also, we designed a global and a local alignment algorithms to measure the similarity between the templates and the chromatin struc- tures predicted by different modeling methods. Finally, the results from large-scale comparative tests indicated that our alignment algorithms significantly outperform the algorithms in literature.

  3. Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas

    Science.gov (United States)

    Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun

    2017-10-01

    As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.

  4. LARGE-SCALE STRUCTURE OF THE UNIVERSE AS A COSMIC STANDARD RULER

    International Nuclear Information System (INIS)

    Park, Changbom; Kim, Young-Rae

    2010-01-01

    We propose to use the large-scale structure (LSS) of the universe as a cosmic standard ruler. This is possible because the pattern of large-scale distribution of matter is scale-dependent and does not change in comoving space during the linear-regime evolution of structure. By examining the pattern of LSS in several redshift intervals it is possible to reconstruct the expansion history of the universe, and thus to measure the cosmological parameters governing the expansion of the universe. The features of the large-scale matter distribution that can be used as standard rulers include the topology of LSS and the overall shapes of the power spectrum and correlation function. The genus, being an intrinsic topology measure, is insensitive to systematic effects such as the nonlinear gravitational evolution, galaxy biasing, and redshift-space distortion, and thus is an ideal cosmic ruler when galaxies in redshift space are used to trace the initial matter distribution. The genus remains unchanged as far as the rank order of density is conserved, which is true for linear and weakly nonlinear gravitational evolution, monotonic galaxy biasing, and mild redshift-space distortions. The expansion history of the universe can be constrained by comparing the theoretically predicted genus corresponding to an adopted set of cosmological parameters with the observed genus measured by using the redshift-comoving distance relation of the same cosmological model.

  5. Analyses of the Sequence and Structural Properties Corresponding to Pentapeptide and Large Palindromes in Proteins.

    Directory of Open Access Journals (Sweden)

    Settu Sridhar

    Full Text Available The analyses of 3967 representative proteins selected from the Protein Data Bank revealed the presence of 2803 pentapeptide and large palindrome sequences with known secondary structure conformation. These represent 2014 unique palindrome sequences. 60% palindromes are not associated with any regular secondary structure and 28% are in helix conformation, 11% in strand conformation and 1% in the coil conformation. The average solvent accessibility values are in the range between 0-155.28 Å2 suggesting that the palindromes in proteins can be either buried, exposed to the solvent or share an intermittent property. The number of residue neighborhood contacts defined by interactions ≤ 3.2 Ǻ is in the range between 0-29 residues. Palindromes of the same length in helix, strand and coil conformation are associated with different amino acid residue preferences at the individual positions. Nearly, 20% palindromes interact with catalytic/active site residues, ligand or metal ions in proteins and may therefore be important for function in the corresponding protein. The average hydrophobicity values for the pentapeptide and large palindromes range between -4.3 to +4.32 and the number of palindromes is almost equally distributed between the negative and positive hydrophobicity values. The palindromes represent 107 different protein families and the hydrolases, transferases, oxidoreductases and lyases contain relatively large number of palindromes.

  6. Structure of large spin expansion of anomalous dimensions at strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, M. [Physics Department, Salento University and INFN, 73100 Lecce (Italy)], E-mail: matteo.beccaria@le.infn.it; Forini, V. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, D-12489 Berlin (Germany)], E-mail: forini@aei.mpg.de; Tirziu, A. [Department of Physics, Purdue University, W. Lafayette, IN 47907-2036 (United States)], E-mail: atirziu@purdue.edu; Tseytlin, A.A. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)], E-mail: tseytlin@imperial.ac.uk

    2009-05-01

    The anomalous dimensions of planar N=4 SYM theory operators like tr({phi}D{sub +}{sup S}{phi}) expanded in large spin S have the asymptotics {gamma}=flnS+f{sub c}+1/S (f{sub 11}lnS+f{sub 10})+..., where f (the universal scaling function or cusp anomaly), f{sub c} and f{sub mn} are given by power series in the 't Hooft coupling {lambda}. The subleading coefficients appear to be related by the so-called functional relation and parity (reciprocity) property of the function expressing {gamma} in terms of the conformal spin of the collinear group. Here we study the structure of such large spin expansion at strong coupling via AdS/CFT, i.e. by using the dual description in terms of folded spinning string in AdS{sub 5}. The large spin expansion of the classical string energy happens to have exactly the same structure as that of {gamma} in the perturbative gauge theory. Moreover, the functional relation and the reciprocity constraints on the coefficients are also satisfied. We compute the leading string 1-loop corrections to the coefficients f{sub c}, f{sub 11}, f{sub 10} and verify the functional/reciprocity relations at subleading 1/({radical}({lambda})) order. This provides a strong indication that these relations hold not only in weak coupling (gauge-theory) but also in strong coupling (string-theory) perturbative expansions.

  7. Structure of large spin expansion of anomalous dimensions at strong coupling

    International Nuclear Information System (INIS)

    Beccaria, M.; Forini, V.; Tirziu, A.; Tseytlin, A.A.

    2009-01-01

    The anomalous dimensions of planar N=4 SYM theory operators like tr(ΦD + S Φ) expanded in large spin S have the asymptotics γ=flnS+f c +1/S (f 11 lnS+f 10 )+..., where f (the universal scaling function or cusp anomaly), f c and f mn are given by power series in the 't Hooft coupling λ. The subleading coefficients appear to be related by the so-called functional relation and parity (reciprocity) property of the function expressing γ in terms of the conformal spin of the collinear group. Here we study the structure of such large spin expansion at strong coupling via AdS/CFT, i.e. by using the dual description in terms of folded spinning string in AdS 5 . The large spin expansion of the classical string energy happens to have exactly the same structure as that of γ in the perturbative gauge theory. Moreover, the functional relation and the reciprocity constraints on the coefficients are also satisfied. We compute the leading string 1-loop corrections to the coefficients f c , f 11 , f 10 and verify the functional/reciprocity relations at subleading 1/(√(λ)) order. This provides a strong indication that these relations hold not only in weak coupling (gauge-theory) but also in strong coupling (string-theory) perturbative expansions

  8. The build up of the correlation between halo spin and the large-scale structure

    Science.gov (United States)

    Wang, Peng; Kang, Xi

    2018-01-01

    Both simulations and observations have confirmed that the spin of haloes/galaxies is correlated with the large-scale structure (LSS) with a mass dependence such that the spin of low-mass haloes/galaxies tend to be parallel with the LSS, while that of massive haloes/galaxies tend to be perpendicular with the LSS. It is still unclear how this mass dependence is built up over time. We use N-body simulations to trace the evolution of the halo spin-LSS correlation and find that at early times the spin of all halo progenitors is parallel with the LSS. As time goes on, mass collapsing around massive halo is more isotropic, especially the recent mass accretion along the slowest collapsing direction is significant and it brings the halo spin to be perpendicular with the LSS. Adopting the fractional anisotropy (FA) parameter to describe the degree of anisotropy of the large-scale environment, we find that the spin-LSS correlation is a strong function of the environment such that a higher FA (more anisotropic environment) leads to an aligned signal, and a lower anisotropy leads to a misaligned signal. In general, our results show that the spin-LSS correlation is a combined consequence of mass flow and halo growth within the cosmic web. Our predicted environmental dependence between spin and large-scale structure can be further tested using galaxy surveys.

  9. The Impact of the Demand for Integration in the Large Multi-Business Unit Firm on the IT Organization Structure

    Science.gov (United States)

    Larson, Eric Christopher

    2012-01-01

    Large, multi-business unit firms are decentralizing their overall corporate structures. At the same time, the structures of their IT organizations are becoming more centralized. This is contrary to current wisdom that the IT organization structure will mimic the structure of the corporation, all else being equal. Because the general business…

  10. Measures of large-scale structure in the CfA redshift survey slices

    International Nuclear Information System (INIS)

    De Lapparent, V.; Geller, M.J.; Huchra, J.P.

    1991-01-01

    Variations of the counts-in-cells with cell size are used here to define two statistical measures of large-scale clustering in three 6 deg slices of the CfA redshift survey. A percolation criterion is used to estimate the filling factor which measures the fraction of the total volume in the survey occupied by the large-scale structures. For the full 18 deg slice of the CfA redshift survey, f is about 0.25 + or - 0.05. After removing groups with more than five members from two of the slices, variations of the counts in occupied cells with cell size have a power-law behavior with a slope beta about 2.2 on scales from 1-10/h Mpc. Application of both this statistic and the percolation analysis to simulations suggests that a network of two-dimensional structures is a better description of the geometry of the clustering in the CfA slices than a network of one-dimensional structures. Counts-in-cells are also used to estimate at 0.3 galaxy h-squared/Mpc the average galaxy surface density in sheets like the Great Wall. 46 refs

  11. Limits to the development of feed-forward structures in large recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Susanne Kunkel

    2011-02-01

    Full Text Available Spike-timing dependent plasticity (STDP has traditionally been of great interest to theoreticians, as it seems to provide an answer to the question of how the brain can develop functional structure in response to repeated stimuli. However, despite this high level of interest, convincing demonstrations of this capacity in large, initially random networks have not been forthcoming. Such demonstrations as there are typically rely on constraining the problem artificially. Techniques include employing additional pruning mechanisms or STDP rules that enhance symmetry breaking, simulating networks with low connectivity that magnify competition between synapses, or combinations of the above. In this paper we first review modeling choices that carry particularly high risks of producing non-generalizable results in the context of STDP in recurrent networks. We then develop a theory for the development of feed-forward structure in random networks and conclude that an unstable fixed point in the dynamics prevents the stable propagation of structure in recurrent networks with weight-dependent STDP. We demonstrate that the key predictions of the theory hold in large-scale simulations. The theory provides insight into the reasons why such development does not take place in unconstrained systems and enables us to identify candidate biologically motivated adaptations to the balanced random network model that might enable it.

  12. A correlation between the cosmic microwave background and large-scale structure in the Universe.

    Science.gov (United States)

    Boughn, Stephen; Crittenden, Robert

    2004-01-01

    Observations of distant supernovae and the fluctuations in the cosmic microwave background (CMB) indicate that the expansion of the Universe may be accelerating under the action of a 'cosmological constant' or some other form of 'dark energy'. This dark energy now appears to dominate the Universe and not only alters its expansion rate, but also affects the evolution of fluctuations in the density of matter, slowing down the gravitational collapse of material (into, for example, clusters of galaxies) in recent times. Additional fluctuations in the temperature of CMB photons are induced as they pass through large-scale structures and these fluctuations are necessarily correlated with the distribution of relatively nearby matter. Here we report the detection of correlations between recent CMB data and two probes of large-scale structure: the X-ray background and the distribution of radio galaxies. These correlations are consistent with those predicted by dark energy, indicating that we are seeing the imprint of dark energy on the growth of structure in the Universe.

  13. A new hybrid meta-heuristic algorithm for optimal design of large-scale dome structures

    Science.gov (United States)

    Kaveh, A.; Ilchi Ghazaan, M.

    2018-02-01

    In this article a hybrid algorithm based on a vibrating particles system (VPS) algorithm, multi-design variable configuration (Multi-DVC) cascade optimization, and an upper bound strategy (UBS) is presented for global optimization of large-scale dome truss structures. The new algorithm is called MDVC-UVPS in which the VPS algorithm acts as the main engine of the algorithm. The VPS algorithm is one of the most recent multi-agent meta-heuristic algorithms mimicking the mechanisms of damped free vibration of single degree of freedom systems. In order to handle a large number of variables, cascade sizing optimization utilizing a series of DVCs is used. Moreover, the UBS is utilized to reduce the computational time. Various dome truss examples are studied to demonstrate the effectiveness and robustness of the proposed method, as compared to some existing structural optimization techniques. The results indicate that the MDVC-UVPS technique is a powerful search and optimization method for optimizing structural engineering problems.

  14. Modelling of flexibles for structural analysis of short straight section of Large Hadron Collider

    International Nuclear Information System (INIS)

    Abhay Kumar; Dutta, Subhajit; Dwivedi, Jishnu; Soni, H.C.

    2003-01-01

    Short Straight Section (SSS) of Large hadron Collider (LRCM) is a 8-meter long structure with a diameter of 1 meter and it houses a twin quadrupole. The cryogens are fed to the Sass through a jumper connection between Cryogenic Distribution Line (QRL) and SSS. The bus bars travel through interconnection bellows to adjoining magnets. CAT is studying the structural behavior of cold mass and the cryostat when subjected to various forces imposed on the SSS under various operating conditions of LHC machine including realignment required to compensate local sinking of the floor of the tunnel during the LHC machine's lifetime. CAT did calculation of reaction forces and moments on the Short Straight Section due to presence of jumper connection last year after the experimental verification of finite element model at CERN. Subsequently, a unified Fe model consisting of cold mass, cold feet, vacuum vessel, main vacuum vessel bellows (large sleeves), magnet interconnects, jumper connection, service module and precision motion jacks is being developed for studying the structural behaviour. (author)

  15. Effect of soil-structure interaction on the seismic behaviour of pedestal-structure system in large dish antennas

    Directory of Open Access Journals (Sweden)

    Bahador Pourhatami

    2017-12-01

    Full Text Available Regarding the progressive improvement in the territory of Space Technology in all developed countries and consequently developing countries including Islamic Republic of Iran, the optimization of design and utilization of the communication equipment has been paid more attention today. For instance, considering recent highly innovative methods, specifically in communication field, developed for design, manufacturing and exploiting dish antenna for specific cases, cooperation of other science and technology experts, like civil engineers, is also necessary. In this way, more delicate design procedure in order to satisfy communication requirement, is achieved. So far, no specific investigation about aforementioned subject, especially the effect of soil-structure interaction (SSI in analysing the seismic behaviour of communication large dish antennas has been conducted in Iran. In this paper, with the aim of investigating the effect of SSI on seismic behavior of pedestal, first an acceptable range for antenna displacement – as the most important parameter in pedestal structure for antenna – in both operational and survival states, has been calculated numerically based on generic formula. Secondly, the modelling of the whole pedestal-structure system has been modelled subjected to the associated loads and other primary conditions. This procedure has been performed once without considering the SSI and once more with it. Comparison of the obtained results shows that considering the SSI would impress the output results with a difference rate more than 50% and 600% respectively at survival and operational condition.

  16. The three-point function as a probe of models for large-scale structure

    International Nuclear Information System (INIS)

    Frieman, J.A.; Gaztanaga, E.

    1993-01-01

    The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard Ω = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R p ∼20 h -1 Mpc, e.g., low-matter-density (non-zero cosmological constant) models, open-quote tilted close-quote primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q J at large scales, r approx-gt R p . Current observational constraints on the three-point amplitudes Q 3 and S 3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales

  17. The topology of large-scale structure. VI - Slices of the universe

    Science.gov (United States)

    Park, Changbom; Gott, J. R., III; Melott, Adrian L.; Karachentsev, I. D.

    1992-01-01

    Results of an investigation of the topology of large-scale structure in two observed slices of the universe are presented. Both slices pass through the Coma cluster and their depths are 100 and 230/h Mpc. The present topology study shows that the largest void in the CfA slice is divided into two smaller voids by a statistically significant line of galaxies. The topology of toy models like the white noise and bubble models is shown to be inconsistent with that of the observed slices. A large N-body simulation was made of the biased cloud dark matter model and the slices are simulated by matching them in selection functions and boundary conditions. The genus curves for these simulated slices are spongelike and have a small shift in the direction of a meatball topology like those of observed slices.

  18. Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos

    Science.gov (United States)

    Zurek, Wojciech H.; Quinn, Peter J.; Salmon, John K.; Warren, Michael S.

    1994-01-01

    Large N-body simulations on parallel supercomputers allow one to simultaneously investigate large-scale structure and the formation of galactic halos with unprecedented resolution. Our study shows that the masses as well as the spatial distribution of halos on scales of tens of megaparsecs in a cold dark matter (CDM) universe with the spectrum normalized to the anisotropies detected by Cosmic Background Explorer (COBE) is compatible with the observations. We also show that the average value of the relative pairwise velocity dispersion sigma(sub v) - used as a principal argument against COBE-normalized CDM models-is significantly lower for halos than for individual particles. When the observational methods of extracting sigma(sub v) are applied to the redshift catalogs obtained from the numerical experiments, estimates differ significantly between different observation-sized samples and overlap observational estimates obtained following the same procedure.

  19. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    International Nuclear Information System (INIS)

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f NL in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology

  20. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    Science.gov (United States)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  1. The topology of large-scale structure. VI - Slices of the universe

    Science.gov (United States)

    Park, Changbom; Gott, J. R., III; Melott, Adrian L.; Karachentsev, I. D.

    1992-03-01

    Results of an investigation of the topology of large-scale structure in two observed slices of the universe are presented. Both slices pass through the Coma cluster and their depths are 100 and 230/h Mpc. The present topology study shows that the largest void in the CfA slice is divided into two smaller voids by a statistically significant line of galaxies. The topology of toy models like the white noise and bubble models is shown to be inconsistent with that of the observed slices. A large N-body simulation was made of the biased cloud dark matter model and the slices are simulated by matching them in selection functions and boundary conditions. The genus curves for these simulated slices are spongelike and have a small shift in the direction of a meatball topology like those of observed slices.

  2. A New Approach for Structural Monitoring of Large Dams with a Three-Dimensional Laser Scanner

    Directory of Open Access Journals (Sweden)

    José Sánchez

    2008-09-01

    Full Text Available Driven by progress in sensor technology, computer methods and data processing capabilities, 3D laser scanning has found a wide range of new application fields in recent years. Particularly, monitoring the static and dynamic behaviour of large dams has always been a topic of great importance, due to the impact these structures have on the whole landscape where they are built. The main goal of this paper is to show the relevance and novelty of the laserscanning methodology developed, which incorporates different statistical and modelling approaches not considered until now. As a result, the methods proposed in this paper have provided the measurement and monitoring of the large “Las Cogotas” dam (Avila, Spain.

  3. Numerical Analysis of a Large Floating Wave Energy Converter with Adjustable Structural Geometry

    DEFF Research Database (Denmark)

    Ferri, Francesco; Pecher, Arthur Francois Serge; Kofoed, Jens Peter

    2015-01-01

    by the structural loads in extreme conditions. TheWeptos is a large floating WEC, with multiple absorbers, which has proven to be a serious candidate for the renewable energy market, due to both relevant power performance and reduced cost if compared with other WECs. The scope of this article is to compare two......The current cost of energy (CoE) from wave energy converters (WECs) is still significantly higher than other renewable energy resources, thus the sector has not yet reached a competitive level. WECs have a relative small turnover compared to the high capital cost, which to a large extent is driven...... different configurations of the Weptos machine, using the cost of energy (CoE) as a base of comparison. The numerical results are obtained via a multi-body analysis carried out in frequency domain....

  4. Observing the temperature of the big bang through large scale structure

    Science.gov (United States)

    Ferreira, Pedro G.; Magueijo, João

    2008-09-01

    It is an interesting possibility that the Universe underwent a period of thermal equilibrium at very early times. One expects a residue of this primordial state to be imprinted on the large scale structure of space time. In this paper, we study the morphology of this thermal residue in a universe whose early dynamics is governed by a scalar field. We calculate the amplitude of fluctuations on large scales and compare it with the imprint of vacuum fluctuations. We then use the observed power spectrum of fluctuations on the cosmic microwave background to place a constraint on the temperature of the Universe before and during inflation. We also present an alternative scenario, where the fluctuations are predominantly thermal and near scale-invariant.

  5. Isocurvature modes and Baryon Acoustic Oscillations II: gains from combining CMB and Large Scale Structure

    International Nuclear Information System (INIS)

    Carbone, Carmelita; Mangilli, Anna; Verde, Licia

    2011-01-01

    We consider cosmological parameters estimation in the presence of a non-zero isocurvature contribution in the primordial perturbations. A previous analysis showed that even a tiny amount of isocurvature perturbation, if not accounted for, could affect standard rulers calibration from Cosmic Microwave Background observations such as those provided by the Planck mission, affect Baryon Acoustic Oscillations interpretation, and introduce biases in the recovered dark energy properties that are larger than forecasted statistical errors from future surveys. Extending on this work, here we adopt a general fiducial cosmology which includes a varying dark energy equation of state parameter and curvature. Beside Baryon Acoustic Oscillations measurements, we include the information from the shape of the galaxy power spectrum and consider a joint analysis of a Planck-like Cosmic Microwave Background probe and a future, space-based, Large Scale Structure probe not too dissimilar from recently proposed surveys. We find that this allows one to break the degeneracies that affect the Cosmic Microwave Background and Baryon Acoustic Oscillations combination. As a result, most of the cosmological parameter systematic biases arising from an incorrect assumption on the isocurvature fraction parameter f iso , become negligible with respect to the statistical errors. We find that the Cosmic Microwave Background and Large Scale Structure combination gives a statistical error σ(f iso ) ∼ 0.008, even when curvature and a varying dark energy equation of state are included, which is smaller that the error obtained from Cosmic Microwave Background alone when flatness and cosmological constant are assumed. These results confirm the synergy and complementarity between Cosmic Microwave Background and Large Scale Structure, and the great potential of future and planned galaxy surveys

  6. Large scale identification and categorization of protein sequences using structured logistic regression.

    Directory of Open Access Journals (Sweden)

    Bjørn P Pedersen

    Full Text Available BACKGROUND: Structured Logistic Regression (SLR is a newly developed machine learning tool first proposed in the context of text categorization. Current availability of extensive protein sequence databases calls for an automated method to reliably classify sequences and SLR seems well-suited for this task. The classification of P-type ATPases, a large family of ATP-driven membrane pumps transporting essential cations, was selected as a test-case that would generate important biological information as well as provide a proof-of-concept for the application of SLR to a large scale bioinformatics problem. RESULTS: Using SLR, we have built classifiers to identify and automatically categorize P-type ATPases into one of 11 pre-defined classes. The SLR-classifiers are compared to a Hidden Markov Model approach and shown to be highly accurate and scalable. Representing the bulk of currently known sequences, we analysed 9.3 million sequences in the UniProtKB and attempted to classify a large number of P-type ATPases. To examine the distribution of pumps on organisms, we also applied SLR to 1,123 complete genomes from the Entrez genome database. Finally, we analysed the predicted membrane topology of the identified P-type ATPases. CONCLUSIONS: Using the SLR-based classification tool we are able to run a large scale study of P-type ATPases. This study provides proof-of-concept for the application of SLR to a bioinformatics problem and the analysis of P-type ATPases pinpoints new and interesting targets for further biochemical characterization and structural analysis.

  7. Testing the big bang: Light elements, neutrinos, dark matter and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (United States) Fermi National Accelerator Lab., Batavia, IL (United States))

    1991-06-01

    In this series of lectures, several experimental and observational tests of the standard cosmological model are examined. In particular, detailed discussion is presented regarding nucleosynthesis, the light element abundances and neutrino counting; the dark matter problems; and the formation of galaxies and large-scale structure. Comments will also be made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing'' and the cosmological and astrophysical constraints on it. 126 refs., 8 figs., 2 tabs.

  8. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    1997-01-01

    This book deals with special relativity theory and its application to cosmology. It presents Einstein's theory of space and time in detail, and describes the large scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The book will be of interest to cosmologists, astrophysicists, theoretical

  9. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    2002-01-01

    This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g

  10. Large distance modification of Newtonian potential and structure formation in universe

    Science.gov (United States)

    Hameeda, Mir; Upadhyay, Sudhaker; Faizal, Mir; Ali, Ahmed F.; Pourhassan, Behnam

    2018-03-01

    In this paper, we study the effects of super-light brane world perturbative modes on structure formation in our universe. As these modes modify the large distance behavior of Newtonian potential, they effect the clustering of a system of galaxies. So, we explicitly calculate the clustering of galaxies interacting through such a modified Newtonian potential. We use a suitable approximation for analyzing this system of galaxies, and discuss the validity of such approximations. We observe that such corrections also modify the virial theorem for such a system of galaxies.

  11. Improved Structure and Fabrication of Large, High-Power KHPS Rotors - Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Corren, Dean [Verdant Power, Inc.; Colby, Jonathan [Verdant Power, Inc.; Adonizio, Mary Ann [Verdant Power, Inc.

    2013-01-29

    Verdant Power, Inc, working in partnership with the National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), and the University of Minnesota St. Anthony Falls Laboratory (SAFL), among other partners, used evolving Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) models and techniques to improve the structure and fabrication of large, high-power composite Kinetic Hydropower System (KHPS) rotor blades. The objectives of the project were to: design; analyze; develop for manufacture and fabricate; and thoroughly test, in the lab and at full scale in the water, the improved KHPS rotor blade.

  12. Analysis of Higher Order Modes in Large Superconducting Radio Frequency Accelerating Structures

    CERN Document Server

    Galek, Tomasz; Brackebusch, Korinna; Van Rienen, Ursula

    2015-01-01

    Superconducting radio frequency cavities used for accelerating charged particle beams are commonly used in accelerator facilities around the world. The design and optimization of modern superconducting RF cavities requires intensive numerical simulations. Vast number of operational parameters must be calculated to ensure appropriate functioning of the accelerating structures. In this study, we primarily focus on estimation and behavior of higher order modes in superconducting RF cavities connected in chains. To calculate large RF models the state-space concatenation scheme, an efficient hybrid method, is employed.

  13. The application of post yield fracture methodology to the evaluation of large structures

    International Nuclear Information System (INIS)

    Landes, J.D.

    1979-01-01

    The objective of this work is to determine how to use small specimens test results to measure fracture toughness values for application to the evaluation of large structural components. Linear elastic fracture mechanics concepts based on the crack tip stress intensity factor, K, have been extended into the post yield regime by the use of elastic-plastic characterizing parameters such as J integral and COD. One of the primary applications of this technology is the determination of fracture toughness values from small specimens tests taken primarily in the post yield regime which can be used to evaluate structures operating in an essentially linear elastic regime. The fracture toughness values may be either conservative or unconservative depending on the fracture mode; extreme care must be taken in interpretting these results. (orig.)

  14. The existence of very large-scale structures in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Goicoechea, L J; Martin-Mirones, J M [Universidad de Cantabria Santander, (ES)

    1989-09-01

    Assuming that the dipole moment observed in the cosmic background radiation (microwaves and X-rays) can be interpreted as a consequence of the motion of the observer toward a non-local and very large-scale structure in our universe, we study the perturbation of the m-z relation by this inhomogeneity, the dynamical contribution of sources to the dipole anisotropy in the X-ray background and the imprint that several structures with such characteristics would have had on the microwave background at the decoupling. We conclude that in this model the observed anisotropy in the microwave background on intermediate angular scales ({approx}10{sup 0}) may be in conflict with the existence of superstructures.

  15. On a digital wireless impact-monitoring network for large-scale composite structures

    International Nuclear Information System (INIS)

    Yuan, Shenfang; Mei, Hanfei; Qiu, Lei; Ren, Yuanqiang

    2014-01-01

    Impact, which may occur during manufacture, service or maintenance, is one of the major concerns to be monitored throughout the lifetime of aircraft composite structures. Aiming at monitoring impacts online while minimizing the weight added to the aircraft to meet the strict limitations of aerospace engineering, this paper puts forward a new digital wireless network based on miniaturized wireless digital impact-monitoring nodes developed for large-scale composite structures. In addition to investigations on the design methods of the network architecture, time synchronization and implementation method, a conflict resolution method based on the feature parameters of digital sequences is first presented to address impact localization conflicts when several nodes are arranged close together. To verify the feasibility and stability of the wireless network, experiments are performed on a complex aircraft composite wing box and an unmanned aerial vehicle (UAV) composite wing. Experimental results show the successful design of the presented network. (paper)

  16. Critical joints in large composite primary aircraft structures. Volume 1: Technical summary

    Science.gov (United States)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. In fulfilling this objective, analytical procedures for joint design and analysis were developed during Phase 1 of the program. Tests were conducted at the element level to supply the empirical data required for methods development. Large composite multirow joints were tested to verify the selected design concepts and for correlation with analysis predictions. The Phase 2 program included additional tests to provide joint design and analysis data, and culminated with several technology demonstration tests of a major joint area representative of a commercial transport wing. The technology demonstration program of Phase 2 is discussed. The analysis methodology development, structural test program, and correlation between test results and analytical strength predictions are reviewed.

  17. The anti corrosive design of structural metallic elements in buildings with large exploitation period

    International Nuclear Information System (INIS)

    Avila Ayon, V.; Rodriguez Quesada, A. L.

    2009-01-01

    The corrosion deterioration in metallic structural elements, with the consistent loss of his physical and mechanical properties, is cause by errors in the design or fabrication, that allows the accumulation of humidity and contaminants in the surfaces, or acceleration zones of the corrosion processes, as the bimetalics pairs. The aggressiveness of the environment and the productive processes that develop in industrial installations, causes the apparition of premature failures that engage the edification use. The identification of design errors is the first step in the conservation of these structures. the elimination and made a project adapted to the proper installations conditions, is essential procedures to prolong the edification useful life with an optimum and rational use of the resources that destined for this end. The investigation is about the results obtained in the diagnostic and the conservation of industrial installment, with large exploitation periods, in which existed evidences of failures by corrosion, specifically to the elimination of errors of design. (Author) 12 refs

  18. Planck 2013 results. XVII. Gravitational lensing by large-scale structure

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Basak, S.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Dechelette, T.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lavabre, A.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Pullen, A.R.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    On the arcminute angular scales probed by Planck, the CMB anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217GHz frequency bands with an overall significance of greater than 25sigma. We use the temperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting LCDM model for the Planck temperature power spectrum, showing that this measurement at z=1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing ...

  19. The cosmic large-scale structure, dark matter and the origin of galaxies

    CERN Document Server

    Frenk, Carlos S

    1998-01-01

    In this series of lectures, I will review the main events and processes which are thought to have led to the build of structure in the Universe. First, I will provide an overview of some basic ideas such as inflation, Big Bang nucleosynthesis, the microwave background radiation and gravitanional instability. I will then dicuss the evidence for dark matter in the universe and current ideas on the nature and amount of this dark matter, including their consequences for the values of the fundamental cosmological parameters. Next, I will review the processes that give rise to the cosmic large-scale structure, starting with a discussion of the main fluctuation damping mechanisms at early times and finishing with a description of the non-linear phases of evolution. I will discuss how these calculations compare with observations and present the current status of competing cosmological models. Finally I will summarize the most recent and very exciting developments in observational and theoretical studies of gala...

  20. Large-scale trends in the evolution of gene structures within 11 animal genomes.

    Directory of Open Access Journals (Sweden)

    Mark Yandell

    2006-03-01

    Full Text Available We have used the annotations of six animal genomes (Homo sapiens, Mus musculus, Ciona intestinalis, Drosophila melanogaster, Anopheles gambiae, and Caenorhabditis elegans together with the sequences of five unannotated Drosophila genomes to survey changes in protein sequence and gene structure over a variety of timescales--from the less than 5 million years since the divergence of D. simulans and D. melanogaster to the more than 500 million years that have elapsed since the Cambrian explosion. To do so, we have developed a new open-source software library called CGL (for "Comparative Genomics Library". Our results demonstrate that change in intron-exon structure is gradual, clock-like, and largely independent of coding-sequence evolution. This means that genome annotations can be used in new ways to inform, corroborate, and test conclusions drawn from comparative genomics analyses that are based upon protein and nucleotide sequence similarities.

  1. A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures

    Science.gov (United States)

    Peng, Heng; Liu, Yinghua; Chen, Haofeng

    2018-05-01

    In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.

  2. Magnetic structure driven ferroelectricity and large magnetoelectric coupling in antiferromagnet Co4Nb2O9

    Science.gov (United States)

    Srivastava, P.; Chaudhary, S.; Maurya, V.; Saha, J.; Kaushik, S. D.; Siruguri, V.; Patnaik, S.

    2018-05-01

    Synthesis and extensive structural, pyroelectric, magnetic, dielectric and magneto-electric characterizations are reported for polycrystalline Co4Nb2O9 towards unraveling the multiferroic ground state. Magnetic measurements confirm that Co4Nb2O9 becomes an anti-ferromagnet at around 28 K. Associated with the magnetic phase transition, a sharp peak in pyroelectric current indicates the appearance of strong magneto-electric coupling below Neel temperature (TN) along with large coupling constant upto 17.8 μC/m2T. Using temperature oscillation technique, we establish Co4Nb2O9 to be a genuine multiferroic with spontaneous electric polarization in the anti-ferromagnetic state in the absence of magnetic field poling. This is in agreement with our low temperature neutron diffraction studies that show the magnetic structure of Co4Nb2O9 to be that of a non-collinear anti-ferromagnet with ferroelectric ground state.

  3. Model abstraction addressing long-term simulations of chemical degradation of large-scale concrete structures

    International Nuclear Information System (INIS)

    Jacques, D.; Perko, J.; Seetharam, S.; Mallants, D.

    2012-01-01

    This paper presents a methodology to assess the spatial-temporal evolution of chemical degradation fronts in real-size concrete structures typical of a near-surface radioactive waste disposal facility. The methodology consists of the abstraction of a so-called full (complicated) model accounting for the multicomponent - multi-scale nature of concrete to an abstracted (simplified) model which simulates chemical concrete degradation based on a single component in the aqueous and solid phase. The abstracted model is verified against chemical degradation fronts simulated with the full model under both diffusive and advective transport conditions. Implementation in the multi-physics simulation tool COMSOL allows simulation of the spatial-temporal evolution of chemical degradation fronts in large-scale concrete structures. (authors)

  4. A Measurement of Nuclear Structure Functions in the Large $X$ Large $Q^{2}$ Kinematic Region in Neutrino Deep Inelastic Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vakili, Masoud [Cincinnati U.

    1997-01-01

    Data from the CCFR E770 Neutrino Deep Inelastic Scatter- ing (DIS) experiment at Fermilab contain large Bjorken x, high $Q^2$ events. A comparison of the data with a model, based on no nuclear effects at large $x$, shows an excess of events in the data. Addition of Fermi gas motion of the nucleons in the nucleus to the model does not explain the model's deficit. Adding higher momentum tail due to the formation of "quasi-deuterons" makes the agreement better. Certain models based on "multi- quark clusters" and "few-nucleon correlations" predict an exponentially falling behavior for $F_2$ as $F_2 \\sim e^{s(x -x_0)}$ at large $x$. We measure a $s$ = 8.3 $\\pm$ 0.8 for the best fit to our data. This corresponds to a value of $F_2$($x = 1, Q^2 > 50) \\approx 2$ x $10^{-3}$ in neutrino DIS. These values agree with results from theoretical models and the $SLAC$ $E133$ experiment but seem to be different from the result of the BCDMS experiment

  5. Large woody debris input and its influence on channel structure in agricultural lands of Southeast Brazil.

    Science.gov (United States)

    de Paula, Felipe Rossetti; Ferraz, Silvio Frosini de Barros; Gerhard, Pedro; Vettorazzi, Carlos Alberto; Ferreira, Anderson

    2011-10-01

    Riparian forests are important for the structure and functioning of stream ecosystems, providing structural components such as large woody debris (LWD). Changes in these forests will cause modifications in the LWD input to streams, affecting their structure. In order to assess the influence of riparian forests changes in LWD supply, 15 catchments (third and fourth order) with riparian forests at different conservation levels were selected for sampling. In each catchment we quantified the abundance, volume and diameter of LWD in stream channels; the number, area and volume of pools formed by LWD and basal area and tree diameter of riparian forest. We found that riparian forests were at a secondary successional stage with predominantly young trees (diameter at breast height LWD abundance, volume, frequency of LWD pools with subunits and area and volume of LWD pools. LWD diameter, LWD that form pools diameter and frequency of LWD pools without subunits did not differ between stream groups. Regression analyses showed that LWD abundance and volume, and frequency of LWD pools (with and without subunits) were positively related with the proportion of riparian forest. LWD diameter was not correlated to riparian tree diameter. The frequency of LWD pools was correlated to the abundance and volume of LWD, but characteristics of these pools (area and volume) were not correlated to the diameter of LWD that formed the pools. These results show that alterations in riparian forest cause modifications in the LWD abundance and volume in the stream channel, affecting mainly the structural complexity of these ecosystems (reduction in the number and structural characteristics of LWD pools). Our results also demonstrate that riparian forest conservation actions must consider not only its extension, but also successional stage to guarantee the quantity and quality of LWD necessary to enable the structuring of stream channels.

  6. Evaluating neighborhood structures for modeling intercity diffusion of large-scale dengue epidemics.

    Science.gov (United States)

    Wen, Tzai-Hung; Hsu, Ching-Shun; Hu, Ming-Che

    2018-05-03

    Dengue fever is a vector-borne infectious disease that is transmitted by contact between vector mosquitoes and susceptible hosts. The literature has addressed the issue on quantifying the effect of individual mobility on dengue transmission. However, there are methodological concerns in the spatial regression model configuration for examining the effect of intercity-scale human mobility on dengue diffusion. The purposes of the study are to investigate the influence of neighborhood structures on intercity epidemic progression from pre-epidemic to epidemic periods and to compare definitions of different neighborhood structures for interpreting the spread of dengue epidemics. We proposed a framework for assessing the effect of model configurations on dengue incidence in 2014 and 2015, which were the most severe outbreaks in 70 years in Taiwan. Compared with the conventional model configuration in spatial regression analysis, our proposed model used a radiation model, which reflects population flow between townships, as a spatial weight to capture the structure of human mobility. The results of our model demonstrate better model fitting performance, indicating that the structure of human mobility has better explanatory power in dengue diffusion than the geometric structure of administration boundaries and geographic distance between centroids of cities. We also identified spatial-temporal hierarchy of dengue diffusion: dengue incidence would be influenced by its immediate neighboring townships during pre-epidemic and epidemic periods, and also with more distant neighbors (based on mobility) in pre-epidemic periods. Our findings suggest that the structure of population mobility could more reasonably capture urban-to-urban interactions, which implies that the hub cities could be a "bridge" for large-scale transmission and make townships that immediately connect to hub cities more vulnerable to dengue epidemics.

  7. Fluid-structure interaction in non-rigid pipeline systems - large scale validation experiments

    International Nuclear Information System (INIS)

    Heinsbroek, A.G.T.J.; Kruisbrink, A.C.H.

    1993-01-01

    The fluid-structure interaction computer code FLUSTRIN, developed by DELFT HYDRAULICS, enables the user to determine dynamic fluid pressures, structural stresses and displacements in a liquid-filled pipeline system under transient conditions. As such, the code is a useful tool to process and mechanical engineers in the safe design and operation of pipeline systems in nuclear power plants. To validate FLUSTRIN, experiments have been performed in a large scale 3D test facility. The test facility consists of a flexible pipeline system which is suspended by wires, bearings and anchors. Pressure surges, which excite the system, are generated by a fast acting shut-off valve. Dynamic pressures, structural displacements and strains (in total 70 signals) have been measured under well determined initial and boundary conditions. The experiments have been simulated with FLUSTRIN, which solves the acoustic equations using the method of characteristics (fluid) and the finite element method (structure). The agreement between experiments and simulations is shown to be good: frequencies, amplitudes and wave phenomena are well predicted by the numerical simulations. It is demonstrated that an uncoupled water hammer computation would render unreliable and useless results. (author)

  8. A large-scale soil-structure interaction experiment: Design and construction

    International Nuclear Information System (INIS)

    Tang, H.T.; Tang, Y.K.; Stepp, J.C.; Wall, I.B.; Lin, E.; Cheng, S.C.; Lee, S.K.

    1989-01-01

    This paper describes the design and construction phase of the Large-Scale Soil-Structure Interaction Experiment project jointly sponsored by EPRI and Taipower. The project has two objectives: 1. to obtain an earthquake database which can be used to substantiate soil-structure interaction (SSI) models and analysis methods; and 2. to quantify nuclear power plant reactor containment and internal components seismic margin based on earthquake experience data. These objectives were accomplished by recording and analyzing data from two instrumented, scaled down, reinforced concrete containment structures during seismic events. The two model structures are sited in a high seismic region in Taiwan (SMART-1). A strong-motion seismic array network is located at the site. The containment models (1/4- and 1/12-scale) were constructed and instrumented specially for this experiment. Construction was completed and data recording began in September 1985. By November 1986, 18 strong motion earthquakes ranging from Richter magnitude 4.5 to 7.0 were recorded. (orig./HP)

  9. A large-scale soil-structure interaction experiment: Part I design and construction

    International Nuclear Information System (INIS)

    Tang, H.T.; Tang, Y.K.; Wall, I.B.; Lin, E.

    1987-01-01

    In the simulated earthquake experiments (SIMQUAKE) sponsored by EPRI, the detonation of vertical arrays of explosives propagated wave motions through the ground to the model structures. Although such a simulation can provide information about dynamic soil-structure interaction (SSI) characteristics in a strong motion environment, it lacks seismic wave scattering characteristics for studying seismic input to the soil-structure system and the effect of different kinds of wave composition to the soil-structure response. To supplement the inadequacy of the simulated earthquake SSI experiment, the Electric Power Research Institute (EPRI) and the Taiwan Power Company (Taipower) jointly sponsored a large scale SSI experiment in the field. The objectives of the experiment are: (1) to obtain actual strong motion earthquakes induced database in a soft-soil environment which will substantiate predictive and design SSI models;and (2) to assess nuclear power plant reactor containment internal components dynamic response and margins relating to actual earthquake-induced excitation. These objectives are accomplished by recording and analyzing data from two instrumented, scaled down, (1/4- and 1/12-scale) reinforced concrete containments sited in a high seismic region in Taiwan where a strong-motion seismic array network is located

  10. Survey of large protein complexes D. vulgaris reveals great structural diversity

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.-G.; Dong, M.; Liu, H.; Camp, L.; Geller, J.; Singer, M.; Hazen, T. C.; Choi, M.; Witkowska, H. E.; Ball, D. A.; Typke, D.; Downing, K. H.; Shatsky, M.; Brenner, S. E.; Chandonia, J.-M.; Biggin, M. D.; Glaeser, R. M.

    2009-08-15

    An unbiased survey has been made of the stable, most abundant multi-protein complexes in Desulfovibrio vulgaris Hildenborough (DvH) that are larger than Mr {approx} 400 k. The quaternary structures for 8 of the 16 complexes purified during this work were determined by single-particle reconstruction of negatively stained specimens, a success rate {approx}10 times greater than that of previous 'proteomic' screens. In addition, the subunit compositions and stoichiometries of the remaining complexes were determined by biochemical methods. Our data show that the structures of only two of these large complexes, out of the 13 in this set that have recognizable functions, can be modeled with confidence based on the structures of known homologs. These results indicate that there is significantly greater variability in the way that homologous prokaryotic macromolecular complexes are assembled than has generally been appreciated. As a consequence, we suggest that relying solely on previously determined quaternary structures for homologous proteins may not be sufficient to properly understand their role in another cell of interest.

  11. Kinematic morphology of large-scale structure: evolution from potential to rotational flow

    International Nuclear Information System (INIS)

    Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L.

    2014-01-01

    As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.

  12. Kinematic morphology of large-scale structure: evolution from potential to rotational flow

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2014-09-20

    As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.

  13. Artificial intelligence approach to planning the robotic assembly of large tetrahedral truss structures

    Science.gov (United States)

    Homemdemello, Luiz S.

    1992-01-01

    An assembly planner for tetrahedral truss structures is presented. To overcome the difficulties due to the large number of parts, the planner exploits the simplicity and uniformity of the shapes of the parts and the regularity of their interconnection. The planning automation is based on the computational formalism known as production system. The global data base consists of a hexagonal grid representation of the truss structure. This representation captures the regularity of tetrahedral truss structures and their multiple hierarchies. It maps into quadratic grids and can be implemented in a computer by using a two-dimensional array data structure. By maintaining the multiple hierarchies explicitly in the model, the choice of a particular hierarchy is only made when needed, thus allowing a more informed decision. Furthermore, testing the preconditions of the production rules is simple because the patterned way in which the struts are interconnected is incorporated into the topology of the hexagonal grid. A directed graph representation of assembly sequences allows the use of both graph search and backtracking control strategies.

  14. OPTICON: Pro-Matlab software for large order controlled structure design

    Science.gov (United States)

    Peterson, Lee D.

    1989-01-01

    A software package for large order controlled structure design is described and demonstrated. The primary program, called OPTICAN, uses both Pro-Matlab M-file routines and selected compiled FORTRAN routines linked into the Pro-Matlab structure. The program accepts structural model information in the form of state-space matrices and performs three basic design functions on the model: (1) open loop analyses; (2) closed loop reduced order controller synthesis; and (3) closed loop stability and performance assessment. The current controller synthesis methods which were implemented in this software are based on the Generalized Linear Quadratic Gaussian theory of Bernstein. In particular, a reduced order Optimal Projection synthesis algorithm based on a homotopy solution method was successfully applied to an experimental truss structure using a 58-state dynamic model. These results are presented and discussed. Current plans to expand the practical size of the design model to several hundred states and the intention to interface Pro-Matlab to a supercomputing environment are discussed.

  15. Health Assessment of Large Two Dimensional Structures Using Limited Information: Recent Advances

    Directory of Open Access Journals (Sweden)

    Ajoy Kumar Das

    2012-01-01

    Full Text Available Some recent advances of a recently developed structural health assessment procedure proposed by the research team at the University of Arizona, commonly known as generalized iterative least-squares extended Kalman filter with unknown input (GILS-EKF-UI are presented. The procedure is a finite elements-based time-domain system-identification technique. It can assess structural health at the element level using only limited number of noise-contaminated responses. With the help of examples, it is demonstrated that the structure can be excited by multiple loadings simultaneously. The method can identify defects in various stages of degradation in single or multiple members and also relatively less severe defect. The defective element(s need not be in the substructure, but the defect detection capability increases if the defect spot is close to the substructure. Two alternatives are suggested to locate defect spot more accurately within a defective element. The paper advances several areas of GILS-EKF-UI to assess health of large structural systems.

  16. Technique for large-scale structural mapping at uranium deposits i in non-metamorphosed sedimentary cover rocks

    International Nuclear Information System (INIS)

    Kochkin, B.T.

    1985-01-01

    The technique for large-scale construction (1:1000 - 1:10000), reflecting small amplitude fracture plicate structures, is given for uranium deposits in non-metamorphozed sedimentary cover rocks. Structure drill log sections, as well as a set of maps with the results of area analysis of hidden disturbances, structural analysis of iso-pachous lines and facies of platform mantle horizons serve as sour ce materials for structural mapplotting. The steps of structural map construction are considered: 1) structural carcass construction; 2) reconstruction of structure contour; 3) time determination of structure initiation; 4) plotting of an additional geologic load

  17. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Lombriser, Lucas, E-mail: llo@roe.ac.uk; Lima, Nelson A.

    2017-02-10

    With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.

  18. The complete structure of the large subunit of the mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Boehringer, Daniel; Leibundgut, Marc; Bieri, Philipp; Leitner, Alexander; Schmitz, Nikolaus; Aebersold, Ruedi; Ban, Nenad

    2014-11-13

    Mitochondrial ribosomes (mitoribosomes) are extensively modified ribosomes of bacterial descent specialized for the synthesis and insertion of membrane proteins that are critical for energy conversion and ATP production inside mitochondria. Mammalian mitoribosomes, which comprise 39S and 28S subunits, have diverged markedly from the bacterial ribosomes from which they are derived, rendering them unique compared to bacterial, eukaryotic cytosolic and fungal mitochondrial ribosomes. We have previously determined at 4.9 Å resolution the architecture of the porcine (Sus scrofa) 39S subunit, which is highly homologous to the human mitoribosomal large subunit. Here we present the complete atomic structure of the porcine 39S large mitoribosomal subunit determined in the context of a stalled translating mitoribosome at 3.4 Å resolution by cryo-electron microscopy and chemical crosslinking/mass spectrometry. The structure reveals the locations and the detailed folds of 50 mitoribosomal proteins, shows the highly conserved mitoribosomal peptidyl transferase active site in complex with its substrate transfer RNAs, and defines the path of the nascent chain in mammalian mitoribosomes along their idiosyncratic exit tunnel. Furthermore, we present evidence that a mitochondrial tRNA has become an integral component of the central protuberance of the 39S subunit where it architecturally substitutes for the absence of the 5S ribosomal RNA, a ubiquitous component of all cytoplasmic ribosomes.

  19. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    Science.gov (United States)

    Lombriser, Lucas; Lima, Nelson A.

    2017-02-01

    With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar-tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar-tensor modification of gravity.

  20. A large scale analysis of information-theoretic network complexity measures using chemical structures.

    Directory of Open Access Journals (Sweden)

    Matthias Dehmer

    Full Text Available This paper aims to investigate information-theoretic network complexity measures which have already been intensely used in mathematical- and medicinal chemistry including drug design. Numerous such measures have been developed so far but many of them lack a meaningful interpretation, e.g., we want to examine which kind of structural information they detect. Therefore, our main contribution is to shed light on the relatedness between some selected information measures for graphs by performing a large scale analysis using chemical networks. Starting from several sets containing real and synthetic chemical structures represented by graphs, we study the relatedness between a classical (partition-based complexity measure called the topological information content of a graph and some others inferred by a different paradigm leading to partition-independent measures. Moreover, we evaluate the uniqueness of network complexity measures numerically. Generally, a high uniqueness is an important and desirable property when designing novel topological descriptors having the potential to be applied to large chemical databases.

  1. Time-sliced perturbation theory for large scale structure I: general formalism

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego; Garny, Mathias; Sibiryakov, Sergey [Theory Division, CERN, CH-1211 Genève 23 (Switzerland); Ivanov, Mikhail M., E-mail: diego.blas@cern.ch, E-mail: mathias.garny@cern.ch, E-mail: mikhail.ivanov@cern.ch, E-mail: sergey.sibiryakov@cern.ch [FSB/ITP/LPPC, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland)

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.

  2. On the soft limit of the large scale structure power spectrum. UV dependence

    International Nuclear Information System (INIS)

    Garny, Mathias

    2015-08-01

    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an 'anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a ∝ 10% effect, and plausibly smaller.

  3. Biased Tracers in Redshift Space in the EFT of Large-Scale Structure

    Energy Technology Data Exchange (ETDEWEB)

    Perko, Ashley [Stanford U., Phys. Dept.; Senatore, Leonardo [KIPAC, Menlo Park; Jennings, Elise [Chicago U., KICP; Wechsler, Risa H. [Stanford U., Phys. Dept.

    2016-10-28

    The Effective Field Theory of Large-Scale Structure (EFTofLSS) provides a novel formalism that is able to accurately predict the clustering of large-scale structure (LSS) in the mildly non-linear regime. Here we provide the first computation of the power spectrum of biased tracers in redshift space at one loop order, and we make the associated code publicly available. We compare the multipoles $\\ell=0,2$ of the redshift-space halo power spectrum, together with the real-space matter and halo power spectra, with data from numerical simulations at $z=0.67$. For the samples we compare to, which have a number density of $\\bar n=3.8 \\cdot 10^{-2}(h \\ {\\rm Mpc}^{-1})^3$ and $\\bar n=3.9 \\cdot 10^{-4}(h \\ {\\rm Mpc}^{-1})^3$, we find that the calculation at one-loop order matches numerical measurements to within a few percent up to $k\\simeq 0.43 \\ h \\ {\\rm Mpc}^{-1}$, a significant improvement with respect to former techniques. By performing the so-called IR-resummation, we find that the Baryon Acoustic Oscillation peak is accurately reproduced. Based on the results presented here, long-wavelength statistics that are routinely observed in LSS surveys can be finally computed in the EFTofLSS. This formalism thus is ready to start to be compared directly to observational data.

  4. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    Directory of Open Access Journals (Sweden)

    Lucas Lombriser

    2017-02-01

    Full Text Available With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.

  5. Towards a Gravity Dual for the Large Scale Structure of the Universe

    CERN Document Server

    Kehagias, A.

    2016-01-01

    The dynamics of the large-scale structure of the universe enjoys at all scales, even in the highly non-linear regime, a Lifshitz symmetry during the matter-dominated period. In this paper we propose a general class of six-dimensional spacetimes which could be a gravity dual to the four-dimensional large-scale structure of the universe. In this set-up, the Lifshitz symmetry manifests itself as an isometry in the bulk and our universe is a four-dimensional brane moving in such six-dimensional bulk. After finding the correspondence between the bulk and the brane dynamical Lifshitz exponents, we find the intriguing result that the preferred value of the dynamical Lifshitz exponent of our observed universe, at both linear and non-linear scales, corresponds to a fixed point of the RGE flow of the dynamical Lifshitz exponent in the dual system where the symmetry is enhanced to the Schrodinger group containing a non-relativistic conformal symmetry. We also investigate the RGE flow between fixed points of the Lifshitz...

  6. Substitution Structures of Large Molecules and Medium Range Correlations in Quantum Chemistry Calculations

    Science.gov (United States)

    Evangelisti, Luca; Pate, Brooks

    2017-06-01

    A study of the minimally exciting topic of agreement between experimental and measured rotational constants of molecules was performed on a set of large molecules with 16-18 heavy atoms (carbon and oxygen). The molecules are: nootkatone (C_{15}H_{22}O), cedrol (C_{15}H_{26}O), ambroxide (C_{16}H_{28}O), sclareolide (C_{16}H_{22}O_{2}), and dihydroartemisinic acid (C_{15}H_{24}O_{2}). For this set of molecules we obtained 13C-subsitution structures for six molecules (this includes two conformers of nootkatone). A comparison of theoretical structures and experimental substitution structures was performed in the spirit of the recent work of Grimme and Steinmetz.[1] Our analysis focused the center-of-mass distance of the carbon atoms in the molecules. Four different computational methods were studied: standard DFT (B3LYP), dispersion corrected DFT (B3LYP-D3BJ), hybrid DFT with dispersion correction (B2PLYP-D3), and MP2. A significant difference in these theories is how they handle medium range correlation of electrons that produce dispersion forces. For larger molecules, these dispersion forces produce an overall contraction of the molecule around the center-of-mass. DFT poorly treats this effect and produces structures that are too expanded. MP2 calculations overestimate the correction and produce structures that are too compact. Both dispersion corrected DFT methods produce structures in excellent agreement with experiment. The analysis shows that the difference in computational methods can be described by a linear error in the center-of-mass distance. This makes it possible to correct poorer performing calculations with a single scale factor. We also reexamine the issue of the "Costain error" in substitution structures and show that it is significantly larger in these systems than in the smaller molecules used by Costain to establish the error limits. [1] Stefan Grimme and Marc Steinmetz, "Effects of London dispersion correction in density functional theory on

  7. Design considerations for an astronaut monorail system for large space structures and the structural characterization of its positioning arm

    Science.gov (United States)

    Watson, Judith J.

    1992-08-01

    An astronaut monorail system (AMS) is presented as a vehicle to transport and position EVA astronauts along large space truss structures. The AMS is proposed specifically as an alternative to the crew and equipment transfer aid for Space Station Freedom. Design considerations for the AMS were discussed and a reference configuration was selected for the study. Equations were developed to characterize the stiffness and frequency behavior of the AMS positioning arm. Experimental data showed that these equations gave a fairly accurate representation of the stiffness and frequency behavior of the arm. A study was presented to show trends for the arm behavior based on varying parameters of the stiffness and frequency equations. An ergonomics study was conducted to provide boundary conditions for tolerable frequency and deflection to be used in developing a design concept for the positioning arm. The feasibility of the AMS positioning arm was examined using equations and working curves developed in this study. It was found that a positioning arm of a length to reach all interior points of the space station truss structure could not be designed to satisfy frequency and deflection constraints. By relaxing the design requirements and the ergonomic boundaries, an arm could be designed which would provide a stable work platform for the EVA astronaut and give him access to over 75 percent of the truss interior.

  8. Directed self-assembly of large scaffold-free multi-cellular honeycomb structures

    International Nuclear Information System (INIS)

    Tejavibulya, Nalin; Youssef, Jacquelyn; Bao, Brian; Ferruccio, Toni-Marie; Morgan, Jeffrey R

    2011-01-01

    A significant challenge to the field of biofabrication is the rapid construction of large three-dimensional (3D) living tissues and organs. Multi-cellular spheroids have been used as building blocks. In this paper, we create large multi-cellular honeycomb building blocks using directed self-assembly, whereby cell-to-cell adhesion, in the context of the shape and obstacles of a micro-mold, drives the formation of a 3D structure. Computer-aided design, rapid prototyping and replica molding were used to fabricate honeycomb-shaped micro-molds. Nonadhesive hydrogels cast from these micro-molds were equilibrated in the cell culture medium and seeded with two types of mammalian cells. The cells settled into the honeycomb recess were unable to attach to the nonadhesive hydrogel and so cell-to-cell adhesion drove the self-assembly of a large multi-cellular honeycomb within 24 h. Distinct morphological changes occurred to the honeycomb and its cells indicating the presence of significant cell-mediated tension. Unlike the spheroid, whose size is constrained by a critical diffusion distance needed to maintain cell viability, the overall size of the honeycomb is not limited. The rapid production of the honeycomb building unit, with its multiple rings of high-density cells and open lumen spaces, offers interesting new possibilities for biofabrication strategies.

  9. Teaching the Thrill of Discovery: Student Exploration of the Large-Scale Structures of the Universe

    Science.gov (United States)

    Juneau, Stephanie; Dey, Arjun; Walker, Constance E.; NOAO Data Lab

    2018-01-01

    In collaboration with the Teen Astronomy Cafes program, the NOAO Data Lab is developing online Jupyter Notebooks as a free and publicly accessible tool for students and teachers. Each interactive activity teaches students simultaneously about coding and astronomy with a focus on large datasets. Therefore, students learn state-of-the-art techniques at the cross-section between astronomy and data science. During the activity entitled “Our Vast Universe”, students use real spectroscopic data to measure the distance to galaxies before moving on to a catalog with distances to over 100,000 galaxies. Exploring this dataset gives students an appreciation of the large number of galaxies in the universe (2 trillion!), and leads them to discover how galaxies are located in large and impressive filamentary structures. During the Teen Astronomy Cafes program, the notebook is supplemented with visual material conducive to discussion, and hands-on activities involving cubes representing model universes. These steps contribute to build the students’ physical intuition and give them a better grasp of the concepts before using software and coding. At the end of the activity, students have made their own measurements, and have experienced scientific research directly. More information is available online for the Teen Astronomy Cafes (teensciencecafe.org/cafes) and the NOAO Data Lab (datalab.noao.edu).

  10. On the renormalization of the effective field theory of large scale structures

    International Nuclear Information System (INIS)

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P in ∼ k n . After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections

  11. On the renormalization of the effective field theory of large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Pajer, Enrico [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Zaldarriaga, Matias, E-mail: enrico.pajer@gmail.com, E-mail: matiasz@ias.edu [Institute for Advanced Study, Princeton, NJ 08544 (United States)

    2013-08-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P{sub in} ∼ k{sup n}. After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections.

  12. Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

    Science.gov (United States)

    Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; hide

    2013-01-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  13. Structural habitat predicts functional dispersal habitat of a large carnivore: how leopards change spots.

    Science.gov (United States)

    Fattebert, Julien; Robinson, Hugh S; Balme, Guy; Slotow, Rob; Hunter, Luke

    2015-10-01

    Natal dispersal promotes inter-population linkage, and is key to spatial distribution of populations. Degradation of suitable landscape structures beyond the specific threshold of an individual's ability to disperse can therefore lead to disruption of functional landscape connectivity and impact metapopulation function. Because it ignores behavioral responses of individuals, structural connectivity is easier to assess than functional connectivity and is often used as a surrogate for landscape connectivity modeling. However using structural resource selection models as surrogate for modeling functional connectivity through dispersal could be erroneous. We tested how well a second-order resource selection function (RSF) models (structural connectivity), based on GPS telemetry data from resident adult leopard (Panthera pardus L.), could predict subadult habitat use during dispersal (functional connectivity). We created eight non-exclusive subsets of the subadult data based on differing definitions of dispersal to assess the predictive ability of our adult-based RSF model extrapolated over a broader landscape. Dispersing leopards used habitats in accordance with adult selection patterns, regardless of the definition of dispersal considered. We demonstrate that, for a wide-ranging apex carnivore, functional connectivity through natal dispersal corresponds to structural connectivity as modeled by a second-order RSF. Mapping of the adult-based habitat classes provides direct visualization of the potential linkages between populations, without the need to model paths between a priori starting and destination points. The use of such landscape scale RSFs may provide insight into predicting suitable dispersal habitat peninsulas in human-dominated landscapes where mitigation of human-wildlife conflict should be focused. We recommend the use of second-order RSFs for landscape conservation planning and propose a similar approach to the conservation of other wide-ranging large

  14. Analysis of ground response data at Lotung large-scale soil- structure interaction experiment site

    International Nuclear Information System (INIS)

    Chang, C.Y.; Mok, C.M.; Power, M.S.

    1991-12-01

    The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4-scale and 1/2-scale) of a nuclear plant containment structure at a site in Lotung (Tang, 1987), a seismically active region in northeast Taiwan. The models were constructed to gather data for the evaluation and validation of soil-structure interaction (SSI) analysis methodologies. Extensive instrumentation was deployed to record both structural and ground responses at the site during earthquakes. The experiment is generally referred to as the Lotung Large-Scale Seismic Test (LSST). As part of the LSST, two downhole arrays were installed at the site to record ground motions at depths as well as at the ground surface. Structural response and ground response have been recorded for a number of earthquakes (i.e. a total of 18 earthquakes in the period of October 1985 through November 1986) at the LSST site since the completion of the installation of the downhole instruments in October 1985. These data include those from earthquakes having magnitudes ranging from M L 4.5 to M L 7.0 and epicentral distances range from 4.7 km to 77.7 km. Peak ground surface accelerations range from 0.03 g to 0.21 g for the horizontal component and from 0.01 g to 0.20 g for the vertical component. The objectives of the study were: (1) to obtain empirical data on variations of earthquake ground motion with depth; (2) to examine field evidence of nonlinear soil response due to earthquake shaking and to determine the degree of soil nonlinearity; (3) to assess the ability of ground response analysis techniques including techniques to approximate nonlinear soil response to estimate ground motions due to earthquake shaking; and (4) to analyze earth pressures recorded beneath the basemat and on the side wall of the 1/4 scale model structure during selected earthquakes

  15. Automatic Generation of Connectivity for Large-Scale Neuronal Network Models through Structural Plasticity.

    Science.gov (United States)

    Diaz-Pier, Sandra; Naveau, Mikaël; Butz-Ostendorf, Markus; Morrison, Abigail

    2016-01-01

    With the emergence of new high performance computation technology in the last decade, the simulation of large scale neural networks which are able to reproduce the behavior and structure of the brain has finally become an achievable target of neuroscience. Due to the number of synaptic connections between neurons and the complexity of biological networks, most contemporary models have manually defined or static connectivity. However, it is expected that modeling the dynamic generation and deletion of the links among neurons, locally and between different regions of the brain, is crucial to unravel important mechanisms associated with learning, memory and healing. Moreover, for many neural circuits that could potentially be modeled, activity data is more readily and reliably available than connectivity data. Thus, a framework that enables networks to wire themselves on the basis of specified activity targets can be of great value in specifying network models where connectivity data is incomplete or has large error margins. To address these issues, in the present work we present an implementation of a model of structural plasticity in the neural network simulator NEST. In this model, synapses consist of two parts, a pre- and a post-synaptic element. Synapses are created and deleted during the execution of the simulation following local homeostatic rules until a mean level of electrical activity is reached in the network. We assess the scalability of the implementation in order to evaluate its potential usage in the self generation of connectivity of large scale networks. We show and discuss the results of simulations on simple two population networks and more complex models of the cortical microcircuit involving 8 populations and 4 layers using the new framework.

  16. Building large collections of Chinese and English medical terms from semi-structured and encyclopedia websites.

    Science.gov (United States)

    Xu, Yan; Wang, Yining; Sun, Jian-Tao; Zhang, Jianwen; Tsujii, Junichi; Chang, Eric

    2013-01-01

    To build large collections of medical terms from semi-structured information sources (e.g. tables, lists, etc.) and encyclopedia sites on the web. The terms are classified into the three semantic categories, Medical Problems, Medications, and Medical Tests, which were used in i2b2 challenge tasks. We developed two systems, one for Chinese and another for English terms. The two systems share the same methodology and use the same software with minimum language dependent parts. We produced large collections of terms by exploiting billions of semi-structured information sources and encyclopedia sites on the Web. The standard performance metric of recall (R) is extended to three different types of Recall to take the surface variability of terms into consideration. They are Surface Recall (R(S)), Object Recall (R(O)), and Surface Head recall (R(H)). We use two test sets for Chinese. For English, we use a collection of terms in the 2010 i2b2 text. Two collections of terms, one for English and the other for Chinese, have been created. The terms in these collections are classified as either of Medical Problems, Medications, or Medical Tests in the i2b2 challenge tasks. The English collection contains 49,249 (Problems), 89,591 (Medications) and 25,107 (Tests) terms, while the Chinese one contains 66,780 (Problems), 101,025 (Medications), and 15,032 (Tests) terms. The proposed method of constructing a large collection of medical terms is both efficient and effective, and, most of all, independent of language. The collections will be made publicly available.

  17. Structural consequences of diffuse traumatic brain injury: A large deformation tensor-based morphometry study

    Science.gov (United States)

    Kim, Junghoon; Avants, Brian; Patel, Sunil; Whyte, John; Coslett, H. Branch; Pluta, John; Detre, John A.; Gee, James C.

    2008-01-01

    Traumatic brain injury (TBI) is one of the most common causes of long-term disability. Despite the importance of identifying neuropathology in individuals with chronic TBI, methodological challenges posed at the stage of inter-subject image registration have hampered previous voxel-based MRI studies from providing a clear pattern of structural atrophy after TBI. We used a novel symmetric diffeomorphic image normalization method to conduct a tensor-based morphometry (TBM) study of TBI. The key advantage of this method is that it simultaneously estimates an optimal template brain and topology preserving deformations between this template and individual subject brains. Detailed patterns of atrophies are then revealed by statistically contrasting control and subject deformations to the template space. Participants were 29 survivors of TBI and 20 control subjects who were matched in terms of age, gender, education, and ethnicity. Localized volume losses were found most prominently in white matter regions and the subcortical nuclei including the thalamus, the midbrain, the corpus callosum, the mid- and posterior cingulate cortices, and the caudate. Significant voxel-wise volume loss clusters were also detected in the cerebellum and the frontal/temporal neocortices. Volume enlargements were identified largely in ventricular regions. A similar pattern of results was observed in a subgroup analysis where we restricted our analysis to the 17 TBI participants who had no macroscopic focal lesions (total lesion volume> 1.5 cm 3). The current study confirms, extends, and partly challenges previous structural MRI studies in chronic TBI. By demonstrating that a large deformation image registration technique can be successfully combined with TBM to identify TBI-induced diffuse structural changes with greater precision, our approach is expected to increase the sensitivity of future studies examining brain-behavior relationships in the TBI population. PMID:17999940

  18. Hierarchical, decentralized control system for large-scale smart-structures

    International Nuclear Information System (INIS)

    Algermissen, Stephan; Fröhlich, Tim; Monner, Hans Peter

    2014-01-01

    Active control of sound and vibration has gained much attention in all kinds of industries in the past decade. Future prospects for maximizing airline passenger comfort are especially promising. The objectives of recent research projects in this area are the reduction of noise transmission through thin walled structures such as fuselages, linings or interior elements. Besides different external noise sources, such as the turbulent boundary layer, rotor or jet noise, the actuator and sensor placement as well as different control concepts are addressed. Mostly, the work is focused on a single panel or section of the fuselage, neglecting the fact that for effective noise reduction the entire fuselage has to be taken into account. Nevertheless, extending the scope of an active system from a single panel to the entire fuselage increases the effort for control hardware dramatically. This paper presents a control concept for large structures using distributed control nodes. Each node has the capability to execute a vibration or noise controller for a specific part or section of the fuselage. For maintenance, controller tuning or performance measurement, all nodes are connected to a host computer via Universal Serial Bus (USB). This topology allows a partitioning and distributing of tasks. The nodes execute the low-level control functions. High-level tasks like maintenance, system identification and control synthesis are operated by the host using streamed data from the nodes. By choosing low-price nodes, a very cost effective way of implementing an active system for large structures is realized. Besides the system identification and controller synthesis on the host computer, a detailed view on the hardware and software concept for the nodes is given. Finally, the results of an experimental test of a system running a robust vibration controller at an active panel demonstrator are shown. (paper)

  19. The impact of large scale ionospheric structure on radio occultation retrievals

    Directory of Open Access Journals (Sweden)

    A. J. Mannucci

    2011-12-01

    Full Text Available We study the impact of large-scale ionospheric structure on the accuracy of radio occultation (RO retrievals. We use a climatological model of the ionosphere as well as an ionospheric data assimilation model to compare quiet and geomagnetically disturbed conditions. The presence of ionospheric electron density gradients during disturbed conditions increases the physical separation of the two GPS frequencies as the GPS signal traverses the ionosphere and atmosphere. We analyze this effect in detail using ray-tracing and a full geophysical retrieval system. During quiet conditions, our results are similar to previously published studies. The impact of a major ionospheric storm is analyzed using data from the 30 October 2003 "Halloween" superstorm period. At 40 km altitude, the refractivity bias under disturbed conditions is approximately three times larger than quiet time. These results suggest the need for ionospheric monitoring as part of an RO-based climate observation strategy. We find that even during quiet conditions, the magnitude of retrieval bias depends critically on assumed ionospheric electron density structure, which may explain variations in previously published bias estimates that use a variety of assumptions regarding large scale ionospheric structure. We quantify the impact of spacecraft orbit altitude on the magnitude of bending angle and retrieval error. Satellites in higher altitude orbits (700+ km tend to have lower residual biases due to the tendency of the residual bending to cancel between the top and bottomside ionosphere. Another factor affecting accuracy is the commonly-used assumption that refractive index is unity at the receiver. We conclude with remarks on the implications of this study for long-term climate monitoring using RO.

  20. Development of large diamond-tipped saws and their application to cutting large radioactive reinforced concrete structures

    International Nuclear Information System (INIS)

    Rawlings, G.W.

    1985-01-01

    The object of this research was to develop a large circular saw, capable of cutting away, by remote control, the inner radio-activated layer of reinforced concrete biological shields or pre-stressed concrete pressure vessel of gas-cooled reactors. Initial investigations and enquiries put to the existing saw industry established although there were blades in use approaching the size and type required, the development of large machines was restricted to the fixed-bed type because there was little demand for deep sawing in the construction or demolition industry. Preliminary work was carried out in 1981 to demonstrate the largest available wall saw at that time which showed that by changing the blade three times, a kerf 810 mm deep could be achieved. From this demonstration, the design and development of a 'free frame saw' and construction of a 660 mm blade as well as a 2500 mm blade, were performed. Initially, the 660 mm blade was used to cut the concrete and reinforcement, followed by the 2500 mm blade to produce a 1 m kerf. Subsequent development and testing demonstrated that the 2500 mm blade could be controlled to ''plunge cut'', that is to cut straight down in the reinforced concrete to a depth of 1 m in 7 minutes and would then advance at 160 mm/min; this is a work rate of 10 m 2 /hr. The final demonstration was to mount the saw on an extendible boom and remove a 1 m 3 block of reinforced concrete from the vertical face of a test wall

  1. Innovative Ultrasonic Techniques for Inspection and Monitoring of Large Concrete Structures

    Directory of Open Access Journals (Sweden)

    Niederleithinger E.

    2013-07-01

    Full Text Available Ultrasonic echo and transmission techniques are used in civil engineering on a regular basis. New sensors and data processing techniques have lead to many new applications in the structural investigation as well as quality control. But concrete structures in the nuclear sector have special features and parameters, which pose problems for the methods and instrumentation currently available, e.g. extreme thickness, dense reinforcement, steel liners or special materials. Several innovative ultrasonic techniques have been developed to deal with these issues at least partly in lab experiments and pilot studies. Modern imaging techniques as multi-offset SAFT have been used e. g. to map delaminations. Thick concrete walls have successfully been inspected, partly through a steel liner. Embedded ultrasonic sensors have been designed which will be used in monitoring networks of large concrete structures above and below ground. In addition, sensitive mathematical methods as coda wave interferometry have been successfully evaluated to detect subtle changes in material properties. Examples of measurements and data evaluation are presented.

  2. Protein Data Bank Japan (PDBj): updated user interfaces, resource description framework, analysis tools for large structures.

    Science.gov (United States)

    Kinjo, Akira R; Bekker, Gert-Jan; Suzuki, Hirofumi; Tsuchiya, Yuko; Kawabata, Takeshi; Ikegawa, Yasuyo; Nakamura, Haruki

    2017-01-04

    The Protein Data Bank Japan (PDBj, http://pdbj.org), a member of the worldwide Protein Data Bank (wwPDB), accepts and processes the deposited data of experimentally determined macromolecular structures. While maintaining the archive in collaboration with other wwPDB partners, PDBj also provides a wide range of services and tools for analyzing structures and functions of proteins. We herein outline the updated web user interfaces together with RESTful web services and the backend relational database that support the former. To enhance the interoperability of the PDB data, we have previously developed PDB/RDF, PDB data in the Resource Description Framework (RDF) format, which is now a wwPDB standard called wwPDB/RDF. We have enhanced the connectivity of the wwPDB/RDF data by incorporating various external data resources. Services for searching, comparing and analyzing the ever-increasing large structures determined by hybrid methods are also described. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Structural Feasibility Analysis of a Robotically Assembled Very Large Aperture Optical Space Telescope

    Science.gov (United States)

    Wilkie, William Keats; Williams, R. Brett; Agnes, Gregory S.; Wilcox, Brian H.

    2007-01-01

    This paper presents a feasibility study of robotically constructing a very large aperture optical space telescope on-orbit. Since the largest engineering challenges are likely to reside in the design and assembly of the 150-m diameter primary reflector, this preliminary study focuses on this component. The same technology developed for construction of the primary would then be readily used for the smaller optical structures (secondary, tertiary, etc.). A reasonable set of ground and on-orbit loading scenarios are compiled from the literature and used to define the structural performance requirements and size the primary reflector. A surface precision analysis shows that active adjustment of the primary structure is required in order to meet stringent optical surface requirements. Two potential actuation strategies are discussed along with potential actuation devices at the current state of the art. The finding of this research effort indicate that successful technology development combined with further analysis will likely enable such a telescope to be built in the future.

  4. Semi-Automated Air-Coupled Impact-Echo Method for Large-Scale Parkade Structure

    Directory of Open Access Journals (Sweden)

    Tyler Epp

    2018-03-01

    Full Text Available Structural Health Monitoring (SHM has moved to data-dense systems, utilizing numerous sensor types to monitor infrastructure, such as bridges and dams, more regularly. One of the issues faced in this endeavour is the scale of the inspected structures and the time it takes to carry out testing. Installing automated systems that can provide measurements in a timely manner is one way of overcoming these obstacles. This study proposes an Artificial Neural Network (ANN application that determines intact and damaged locations from a small training sample of impact-echo data, using air-coupled microphones from a reinforced concrete beam in lab conditions and data collected from a field experiment in a parking garage. The impact-echo testing in the field is carried out in a semi-autonomous manner to expedite the front end of the in situ damage detection testing. The use of an ANN removes the need for a user-defined cutoff value for the classification of intact and damaged locations when a least-square distance approach is used. It is postulated that this may contribute significantly to testing time reduction when monitoring large-scale civil Reinforced Concrete (RC structures.

  5. Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity.

    Science.gov (United States)

    Lee, Karen J I; Calder, Grant M; Hindle, Christopher R; Newman, Jacob L; Robinson, Simon N; Avondo, Jerome J H Y; Coen, Enrico S

    2017-01-01

    Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Hierarchical fiber-optic-based sensing system: impact damage monitoring of large-scale CFRP structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Banshoya, Hidehiko; Takeda, Nobuo; Tsukamoto, Haruka

    2011-01-01

    This study proposes a novel fiber-optic-based hierarchical sensing concept for monitoring randomly induced damage in large-scale composite structures. In a hierarchical system, several kinds of specialized devices are hierarchically combined to form a sensing network. Specifically, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with an optical fiber network through transducing mechanisms. The distributed devices detect damage, and the fiber-optic network gathers the damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of a hierarchical sensing system through comparison with existing fiber-optic-based systems, and an impact damage detection system was then proposed to validate the new concept. The sensor devices were developed based on comparative vacuum monitoring (CVM), and Brillouin-based distributed strain measurement was utilized to identify damaged areas. Verification tests were conducted step-by-step, beginning with a basic test using a single sensor unit, and, finally, the proposed monitoring system was successfully verified using a carbon fiber reinforced plastic (CFRP) fuselage demonstrator. It was clearly confirmed that the hierarchical system has better repairability, higher robustness, and a wider monitorable area compared to existing systems

  7. Galaxies distribution in the universe: large-scale statistics and structures

    International Nuclear Information System (INIS)

    Maurogordato, Sophie

    1988-01-01

    This research thesis addresses the distribution of galaxies in the Universe, and more particularly large scale statistics and structures. Based on an assessment of the main used statistical techniques, the author outlines the need to develop additional tools to correlation functions in order to characterise the distribution. She introduces a new indicator: the probability of a volume randomly tested in the distribution to be void. This allows a characterisation of void properties at the work scales (until 10h"-"1 Mpc) in the Harvard Smithsonian Center for Astrophysics Redshift Survey, or CfA catalog. A systematic analysis of statistical properties of different sub-samples has then been performed with respect to the size and location, luminosity class, and morphological type. This analysis is then extended to different scenarios of structure formation. A program of radial speed measurements based on observations allows the determination of possible relationships between apparent structures. The author also presents results of the search for south extensions of Perseus supernova [fr

  8. Uniaxial and biaxial tensioning effects on thin membrane materials. [large space structures

    Science.gov (United States)

    Hinson, W. F.; Goslee, J. W.

    1980-01-01

    Thin laminated membranes are being considered for various surface applications on future large space structural systems. Some of the thin membranes would be stretched across or between structural members with the requirement that the membrane be maintained within specified limits of smoothness which would be dictated by the particular applications such as antenna reflector requirements. The multiaxial tensile force required to maintain the smoothness in the membrane needs to be determined for use in the structure design. Therefore, several types of thicknesses of thin membrane materials have been subjected to varied levels of uniaxial and biaxial tensile loads. During the biaxial tests, deviations of the material surface smoothness were measured by a noncontacting capacitance probe. Basic materials consisted of composites of vacuum deposited aluminum on Mylar and Kapton ranging in thickness from 0.00025 in (0.000635 cm) to 0.002 in (0.00508 cm). Some of the material was reinforced with Kevlar and Nomex scrim. The uniaxial tests determined the material elongation and tensile forces up to ultimate conditions. Biaxial tests indicated that a relatively smooth material surface could be achieved with tensile force of approximately 1 to 15 Newtons per centimeter, depending upon the material thickness and/or reinforcement.

  9. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS

    International Nuclear Information System (INIS)

    Reid, Beth A.; Spergel, David N.; Bode, Paul

    2009-01-01

    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a ∼10% correction in the underlying power spectrum at k = 0.1 h Mpc -1 and ∼40% correction at k = 0.2 h Mpc -1 in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the ≤1% level for k ≤ 0.1 h Mpc -1 and ≤4% at k = 0.2 h Mpc -1 . The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter β induced by the FOG smearing of the linear redshift space distortions.

  10. Large fog collectors: New strategies for collection efficiency and structural response to wind pressure

    Science.gov (United States)

    Holmes, Robert; Rivera, Juan de Dios; de la Jara, Emilio

    2015-01-01

    Most studies of large fog collectors (LFC) have focused on the collection efficiency, the amount of water collected, or economic and social aspects, but have not addressed the effects of strong winds on the system. Wind pressure is directly related to fog water collection efficiency but on the other hand may cause serious damage on the structure of LFCs. This study focuses in the effects of wind pressure on the components of the LFC as an integral system, and the ways to face strong winds with no significant damage. For this purpose we analysed cases of mechanical failure of LFCs both in our experimental station at Peña Blanca in Chile and elsewhere. The effects of wind pressure can be described as a sequence of physical processes, starting with the mesh deformation as a way of adapting to the induced stresses. For a big enough pressure, local stress concentrations generate a progressive rupture of the mesh. In cases where the mesh is sufficiently strong the wind force causes the partial or total collapse of the structure. Usually the weakest part is the mesh, especially close to where it is attached to the structure. The way the mesh is attached to the frame or cable of the structure is particularly important since it can induce significant stress concentrations. Mesh failure before the structure failure may be considered as a mechanical fuse, since it is cheaper to repair. However, more practical mechanical fuses can be conceived. In relation to structural performance and water collection efficiency, we propose a new design strategy that considers a three-dimensional spatial display of the collection screen, oblique incidence angle of wind on mesh and small mesh area between the supporting frame. The proposed design strategies consider both the wind pressure on mesh and structure and the collection efficiency as an integral solution for the LFC. These new design strategies are the final output of this research. Applying these strategies a multi-funnel LFC is

  11. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm.

    Science.gov (United States)

    Lee, Hea-Young; Ro, Na-Young; Jeong, Hee-Jin; Kwon, Jin-Kyung; Jo, Jinkwan; Ha, Yeaseong; Jung, Ayoung; Han, Ji-Woong; Venkatesh, Jelli; Kang, Byoung-Cheorl

    2016-11-14

    Conservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum. To explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (H E  = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (H E  = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection 'CC240' with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher

  12. Characterization and manufacture of braided composites for large commercial aircraft structures

    Science.gov (United States)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.

  13. Conceptual Design Gamma-Ray Large Area Space Telescope (GLAST) Tower Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Chad

    2002-07-18

    The main objective of this work was to develop a conceptual design and engineering prototype for the Gamma-ray Large Area Space Telescope (GLAST) tower structure. This thesis describes the conceptual design of a GLAST tower and the fabrication and testing of a prototype tower tray. The requirements were that the structure had to support GLAST's delicate silicon strip detector array through ground handling, launch and in orbit operations as well as provide for thermal and electrical pathways. From the desired function and the given launch vehicle for the spacecraft that carries the GLAST detector, an efficient structure was designed which met the requirements. This thesis developed in three stages: design, fabrication, and testing. During the first stage, a general set of specifications was used to develop the initial design, which was then analyzed and shown to meet or exceed the requirements. The second stage called for the fabrication of prototypes to prove manufacturability and gauge cost and time estimates for the total project. The last step called for testing the prototypes to show that they performed as the analysis had shown and prove that the design met the requirements. As a spacecraft engineering exercise, this project required formulating a solution based on engineering judgment, analyzing the solution using advanced engineering techniques, then proving the validity of the design and analysis by the manufacturing and testing of prototypes. The design described here met all the requirements set out by the needs of the experiment and operating concerns. This strawman design is not intended to be the complete or final design for the GLAST instrument structure, but instead examines some of the main challenges involved and demonstrates that there are solutions to them. The purpose of these tests was to prove that there are solutions to the basic mechanical, electrical and thermal problems presented with the GLAST project.

  14. Segmentation and fragmentation of melt jets due to generation of large-scale structures. Observation in low subcooling conditions

    International Nuclear Information System (INIS)

    Sugiyama, Ken-ichiro; Yamada, Tsuyoshi

    1999-01-01

    In order to clarify a mechanism of melt-jet breakup and fragmentation entirely different from the mechanism of stripping, a series of experiments were carried out by using molten tin jets of 100 grams with initial temperatures from 250degC to 900degC. Molten tin jets with a small kinematic viscosity and a large thermal diffusivity were used to observe breakup and fragmentation of melt jets enhanced thermally and hydrodynamically. We observed jet columns with second-stage large-scale structures generated by the coalescence of large-scale structures recognized in the field of fluid mechanics. At a greater depth, the segmentation of jet columns between second-stage large-scale structures and the fragmentation of the segmented jet columns were observed. It is reasonable to consider that the segmentation and the fragmentation of jet columns are caused by the boiling of water hydrodynamically entrained within second-stage large-scale structures. (author)

  15. Searching for filaments and large-scale structure around DAFT/FADA clusters

    Science.gov (United States)

    Durret, F.; Márquez, I.; Acebrón, A.; Adami, C.; Cabrera-Lavers, A.; Capelato, H.; Martinet, N.; Sarron, F.; Ulmer, M. P.

    2016-04-01

    Context. Clusters of galaxies are located at the intersection of cosmic filaments and are still accreting galaxies and groups along these preferential directions. However, because of their relatively low contrast on the sky, filaments are difficult to detect (unless a large amount of spectroscopic data are available), and unambiguous detections have been limited until now to relatively low redshifts (zDAFT/FADA survey for which we had deep wide field photometric data. For each cluster, based on a colour-magnitude diagram, we selected galaxies that were likely to belong to the red sequence, and hence to be at the cluster redshift, and built density maps. By computing the background for each of these maps and drawing 3σ contours, we estimated the elongations of the structures detected in this way. Whenever possible, we identified the other structures detected on the density maps with clusters listed in NED. Results: We find clear elongations in twelve clusters out of thirty, with sizes that can reach up to 7.6 Mpc. Eleven other clusters have neighbouring structures, but the zones linking them are not detected in the density maps at a 3σ level. Three clusters show no extended structure and no neighbours, and four clusters are of too low contrast to be clearly visible on our density maps. Conclusions: The simple method we have applied appears to work well to show the existence of filaments and/or extensions around a number of clusters in the redshift range 0.4 large cluster samples such as the clusters detected in the CFHTLS and SDSS-Stripe 82 surveys in the near future. Based on our own data (see Guennou et al. 2014) and archive data obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and

  16. Efficient structure from motion on large scenes using UAV with position and pose information

    Science.gov (United States)

    Teng, Xichao; Yu, Qifeng; Shang, Yang; Luo, Jing; Wang, Gang

    2018-04-01

    In this paper, we exploit prior information from global positioning systems and inertial measurement units to speed up the process of large scene reconstruction from images acquired by Unmanned Aerial Vehicles. We utilize weak pose information and intrinsic parameter to obtain the projection matrix for each view. As compared to unmanned aerial vehicles' flight altitude, topographic relief can usually be ignored, we assume that the scene is flat and use weak perspective camera to get projective transformations between two views. Furthermore, we propose an overlap criterion and select potentially matching view pairs between projective transformed views. A robust global structure from motion method is used for image based reconstruction. Our real world experiments show that the approach is accurate, scalable and computationally efficient. Moreover, projective transformations between views can also be used to eliminate false matching.

  17. Integration of community structure data reveals observable effects below sediment guideline thresholds in a large estuary

    KAUST Repository

    Tremblay, Louis A.

    2017-04-07

    The sustainable management of estuarine and coastal ecosystems requires robust frameworks due to the presence of multiple physical and chemical stressors. In this study, we assessed whether ecological health decline, based on community structure composition changes along a pollution gradient, occurred at levels below guideline threshold values for copper, zinc and lead. Canonical analysis of principal coordinates (CAP) was used to characterise benthic communities along a metal contamination gradient. The analysis revealed changes in benthic community distribution at levels below the individual guideline values for the three metals. These results suggest that field-based measures of ecological health analysed with multivariate tools can provide additional information to single metal guideline threshold values to monitor large systems exposed to multiple stressors.

  18. Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism

    CERN Document Server

    Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey

    2016-01-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This pave...

  19. Structural safety of HDR reactor building during large scale vibration tests

    International Nuclear Information System (INIS)

    Stangenberg, F.; Zinn, R.

    1985-01-01

    In the second phase of the HDR investigations, a high shaker excitation of the building is planned using a large shaker which will be located on the operating floor and will be brought up to speed in a balanced condition and then unbalanced and decoupled from the drive system. With decreasing speed the shaker comes in resonance with the building frequencies and its energy is transferred to the building. In this paper the structural safety of the reactor building during the projected shaker tests is analysed. Dynamic response calculations with coupling between building and shaker by simultaneously integrating the equilibrium equations of both building and shaker are presented. The resulting building stresses, soil pressures etc. are compared with allowable values. (orig.)

  20. Single-field consistency relations of large scale structure part III: test of the equivalence principle

    Energy Technology Data Exchange (ETDEWEB)

    Creminelli, Paolo [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste, 34151 (Italy); Gleyzes, Jérôme; Vernizzi, Filippo [CEA, Institut de Physique Théorique, Gif-sur-Yvette cédex, F-91191 France (France); Hui, Lam [Physics Department and Institute for Strings, Cosmology and Astroparticle Physics, Columbia University, New York, NY, 10027 (United States); Simonović, Marko, E-mail: creminel@ictp.it, E-mail: jerome.gleyzes@cea.fr, E-mail: lhui@astro.columbia.edu, E-mail: msimonov@sissa.it, E-mail: filippo.vernizzi@cea.fr [SISSA, via Bonomea 265, Trieste, 34136 (Italy)

    2014-06-01

    The recently derived consistency relations for Large Scale Structure do not hold if the Equivalence Principle (EP) is violated. We show it explicitly in a toy model with two fluids, one of which is coupled to a fifth force. We explore the constraints that galaxy surveys can set on EP violation looking at the squeezed limit of the 3-point function involving two populations of objects. We find that one can explore EP violations of order 10{sup −3}÷10{sup −4} on cosmological scales. Chameleon models are already very constrained by the requirement of screening within the Solar System and only a very tiny region of the parameter space can be explored with this method. We show that no violation of the consistency relations is expected in Galileon models.

  1. Stochastic inflation lattice simulations: Ultra-large scale structure of the universe

    International Nuclear Information System (INIS)

    Salopek, D.S.

    1990-11-01

    Non-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear interaction of long wavelength gravitational and scalar fields. Long wavelength fields have spatial gradients α -1 triangledown small compared to the Hubble radius, and they are described in terms of classical random fields that are fed by short wavelength quantum noise. Lattice Langevin calculations are given for a ''toy model'' with a scalar field interacting with an exponential potential where one can obtain exact analytic solutions of the Fokker-Planck equation. For single scalar field models that are consistent with current microwave background fluctuations, the fluctuations are Gaussian. However, for scales much larger than our observable Universe, one expects large metric fluctuations that are non-Guassian. This example illuminates non-Gaussian models involving multiple scalar fields which are consistent with current microwave background limits. 21 refs., 3 figs

  2. Linear velocity fields in non-Gaussian models for large-scale structure

    Science.gov (United States)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  3. Renormalization-group flow of the effective action of cosmological large-scale structures

    CERN Document Server

    Floerchinger, Stefan

    2017-01-01

    Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically, the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input ...

  4. A Vision-Based Dynamic Rotational Angle Measurement System for Large Civil Structures

    Science.gov (United States)

    Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han

    2012-01-01

    In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system. PMID:22969348

  5. Cosmological large-scale structures beyond linear theory in modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bernardeau, Francis; Brax, Philippe, E-mail: francis.bernardeau@cea.fr, E-mail: philippe.brax@cea.fr [CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette Cédex (France)

    2011-06-01

    We consider the effect of modified gravity on the growth of large-scale structures at second order in perturbation theory. We show that modified gravity models changing the linear growth rate of fluctuations are also bound to change, although mildly, the mode coupling amplitude in the density and reduced velocity fields. We present explicit formulae which describe this effect. We then focus on models of modified gravity involving a scalar field coupled to matter, in particular chameleons and dilatons, where it is shown that there exists a transition scale around which the existence of an extra scalar degree of freedom induces significant changes in the coupling properties of the cosmic fields. We obtain the amplitude of this effect for realistic dilaton models at the tree-order level for the bispectrum, finding them to be comparable in amplitude to those obtained in the DGP and f(R) models.

  6. A more accurate modeling of the effects of actuators in large space structures

    Science.gov (United States)

    Hablani, H. B.

    1981-01-01

    The paper deals with finite actuators. A nonspinning three-axis stabilized space vehicle having a two-dimensional large structure and a rigid body at the center is chosen for analysis. The torquers acting on the vehicle are modeled as antisymmetric forces distributed in a small but finite area. In the limit they represent point torquers which also are treated as a special case of surface distribution of dipoles. Ordinary and partial differential equations governing the forced vibrations of the vehicle are derived by using Hamilton's principle. Associated modal inputs are obtained for both the distributed moments and the distributed forces. It is shown that the finite torquers excite the higher modes less than the point torquers. Modal cost analysis proves to be a suitable methodology to this end.

  7. Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure.

    Directory of Open Access Journals (Sweden)

    Ana-Maria Florescu

    2016-06-01

    Full Text Available Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes.

  8. Bounds on isocurvature perturbations from cosmic microwave background and large scale structure data.

    Science.gov (United States)

    Crotty, Patrick; García-Bellido, Juan; Lesgourgues, Julien; Riazuelo, Alain

    2003-10-24

    We obtain very stringent bounds on the possible cold dark matter, baryon, and neutrino isocurvature contributions to the primordial fluctuations in the Universe, using recent cosmic microwave background and large scale structure data. Neglecting the possible effects of spatial curvature, tensor perturbations, and reionization, we perform a Bayesian likelihood analysis with nine free parameters, and find that the amplitude of the isocurvature component cannot be larger than about 31% for the cold dark matter mode, 91% for the baryon mode, 76% for the neutrino density mode, and 60% for the neutrino velocity mode, at 2sigma, for uncorrelated models. For correlated adiabatic and isocurvature components, the fraction could be slightly larger. However, the cross-correlation coefficient is strongly constrained, and maximally correlated/anticorrelated models are disfavored. This puts strong bounds on the curvaton model.

  9. Experimental and numerical modelling of ductile crack propagation in large-scale shell structures

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Törnquist, R.

    2004-01-01

    plastic and controlled conditions. The test specimen can be deformed either in combined in-plane bending and extension or in pure extension. Experimental results are described for 5 and 10 mm thick aluminium and steel plates. By performing an inverse finite-element analysis of the experimental results......This paper presents a combined experimental-numerical procedure for development and calibration of macroscopic crack propagation criteria in large-scale shell structures. A novel experimental set-up is described in which a mode-I crack can be driven 400 mm through a 20(+) mm thick plate under fully...... for steel and aluminium plates, mainly as curves showing the critical element deformation versus the shell element size. These derived crack propagation criteria are then validated against a separate set of experiments considering centre crack specimens (CCS) which have a different crack-tip constraint...

  10. Computational Cosmology: from the Early Universe to the Large Scale Structure

    Directory of Open Access Journals (Sweden)

    Peter Anninos

    1998-09-01

    Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on thosecalculations designed to test different models of cosmology against the observed Universe.

  11. Computational Cosmology: from the Early Universe to the Large Scale Structure

    Directory of Open Access Journals (Sweden)

    Anninos Peter

    2001-01-01

    Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  12. Computational Cosmology: From the Early Universe to the Large Scale Structure.

    Science.gov (United States)

    Anninos, Peter

    2001-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  13. Composition and structure of a large online social network in The Netherlands.

    Directory of Open Access Journals (Sweden)

    Rense Corten

    Full Text Available Limitations in data collection have long been an obstacle in research on friendship networks. Most earlier studies use either a sample of ego-networks, or complete network data on a relatively small group (e.g., a single organization. The rise of online social networking services such as Friendster and Facebook, however, provides researchers with opportunities to study friendship networks on a much larger scale. This study uses complete network data from Hyves, a popular online social networking service in The Netherlands, comprising over eight million members and over 400 million online friendship relations. In the first study of its kind for The Netherlands, I examine the structure of this network in terms of the degree distribution, characteristic path length, clustering, and degree assortativity. Results indicate that this network shares features of other large complex networks, but also deviates in other respects. In addition, a comparison with other online social networks shows that these networks show remarkable similarities.

  14. Composition and structure of a large online social network in The Netherlands.

    Science.gov (United States)

    Corten, Rense

    2012-01-01

    Limitations in data collection have long been an obstacle in research on friendship networks. Most earlier studies use either a sample of ego-networks, or complete network data on a relatively small group (e.g., a single organization). The rise of online social networking services such as Friendster and Facebook, however, provides researchers with opportunities to study friendship networks on a much larger scale. This study uses complete network data from Hyves, a popular online social networking service in The Netherlands, comprising over eight million members and over 400 million online friendship relations. In the first study of its kind for The Netherlands, I examine the structure of this network in terms of the degree distribution, characteristic path length, clustering, and degree assortativity. Results indicate that this network shares features of other large complex networks, but also deviates in other respects. In addition, a comparison with other online social networks shows that these networks show remarkable similarities.

  15. Large scale structure from the Higgs fields of the supersymmetric standard model

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Di Clemente, V.; King, S.F.

    2003-01-01

    We propose an alternative implementation of the curvaton mechanism for generating the curvature perturbations which does not rely on a late decaying scalar decoupled from inflation dynamics. In our mechanism the supersymmetric Higgs scalars are coupled to the inflaton in a hybrid inflation model, and this allows the conversion of the isocurvature perturbations of the Higgs fields to the observed curvature perturbations responsible for large scale structure to take place during reheating. We discuss an explicit model which realizes this mechanism in which the μ term in the Higgs superpotential is generated after inflation by the vacuum expectation value of a singlet field. The main prediction of the model is that the spectral index should deviate significantly from unity, vertical bar n-1 vertical bar ∼0.1. We also expect relic isocurvature perturbations in neutralinos and baryons, but no significant departures from Gaussianity and no observable effects of gravity waves in the CMB spectrum

  16. Field and structural analysis of 56 mm aperture dipole model magnets for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Song, Naihao; Yamamoto, Akira; Shintomi, Takakazu; Hirabayashi, Hiromi; Yamaoka, Hiroshi; Terashima, A.

    1996-01-01

    A new dipole model magnet design has been made with an aperture of 56 mm according to re-optimization of the accelerator design for the Large Hadron Collider (LHC) to be built at CERN. A feature of symmetric/separate collar configuration in the new design proposed by KEK has been evaluated in terms of field quality and mechanical stability according to the process of the magnet fabrication, cool-down and excitations. The analysis has been carried out by using the finite element analysis code ANSYS, in linkage of field analysis with structural analysis. Effect of the deformation, due to electromagnetic force, on the field quality has been also investigated. Results of the analysis will be presented

  17. Imprints of the large-scale structure on AGN formation and evolution

    Science.gov (United States)

    Porqueres, Natàlia; Jasche, Jens; Enßlin, Torsten A.; Lavaux, Guilhem

    2018-04-01

    Black hole masses are found to correlate with several global properties of their host galaxies, suggesting that black holes and galaxies have an intertwined evolution and that active galactic nuclei (AGN) have a significant impact on galaxy evolution. Since the large-scale environment can also affect AGN, this work studies how their formation and properties depend on the environment. We have used a reconstructed three-dimensional high-resolution density field obtained from a Bayesian large-scale structure reconstruction method applied to the 2M++ galaxy sample. A web-type classification relying on the shear tensor is used to identify different structures on the cosmic web, defining voids, sheets, filaments, and clusters. We confirm that the environmental density affects the AGN formation and their properties. We found that the AGN abundance is equivalent to the galaxy abundance, indicating that active and inactive galaxies reside in similar dark matter halos. However, occurrence rates are different for each spectral type and accretion rate. These differences are consistent with the AGN evolutionary sequence suggested by previous authors, Seyferts and Transition objects transforming into low-ionization nuclear emission line regions (LINERs), the weaker counterpart of Seyferts. We conclude that AGN properties depend on the environmental density more than on the web-type. More powerful starbursts and younger stellar populations are found in high densities, where interactions and mergers are more likely. AGN hosts show smaller masses in clusters for Seyferts and Transition objects, which might be due to gas stripping. In voids, the AGN population is dominated by the most massive galaxy hosts.

  18. The Hualien Large-Scale Seismic Test for soil-structure interaction research

    International Nuclear Information System (INIS)

    Tang, H.T.; Stepp, J.C.; Cheng, Y.H.

    1991-01-01

    A Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, has been initiated with the primary objective of obtaining earthquake-induced SSI data at a stiff soil site having similar prototypical nuclear power plant soil conditions. Preliminary soil boring, geophysical testing and ambient and earthquake-induced ground motion monitoring have been conducted to understand the experiment site conditions. More refined field and laboratory tests will be conducted such as the state-of-the-art freezing sampling technique and the large penetration test (LPT) method to characterize the soil constitutive behavior. The test model to be constructed will be similar to the Lotung model. The instrumentation layout will be designed to provide data for studies of SSI, spatial incoherence, soil stability, foundation uplifting, ground motion wave field and structural response. A consortium consisting of EPRI, Taipower, CRIEPI, TEPCO, CEA, EdF and Framatome has been established to carry out the project. It is envisaged that the Hualien SSI array will be ready to record earthquakes by the middle of 1992. The duration of the recording scheduled for five years. (author)

  19. Projection Effects of Large-scale Structures on Weak-lensing Peak Abundances

    Science.gov (United States)

    Yuan, Shuo; Liu, Xiangkun; Pan, Chuzhong; Wang, Qiao; Fan, Zuhui

    2018-04-01

    High peaks in weak lensing (WL) maps originate dominantly from the lensing effects of single massive halos. Their abundance is therefore closely related to the halo mass function and thus a powerful cosmological probe. However, besides individual massive halos, large-scale structures (LSS) along lines of sight also contribute to the peak signals. In this paper, with ray-tracing simulations, we investigate the LSS projection effects. We show that for current surveys with a large shape noise, the stochastic LSS effects are subdominant. For future WL surveys with source galaxies having a median redshift z med ∼ 1 or higher, however, they are significant. For the cosmological constraints derived from observed WL high-peak counts, severe biases can occur if the LSS effects are not taken into account properly. We extend the model of Fan et al. by incorporating the LSS projection effects into the theoretical considerations. By comparing with simulation results, we demonstrate the good performance of the improved model and its applicability in cosmological studies.

  20. Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations

    Science.gov (United States)

    Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.

    1996-07-01

    The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.

  1. Effects of baryons on the statistical properties of large scale structure of the Universe

    International Nuclear Information System (INIS)

    Guillet, T.

    2010-01-01

    Observations of weak gravitational lensing will provide strong constraints on the cosmic expansion history and the growth rate of large scale structure, yielding clues to the properties and nature of dark energy. Their interpretation is impacted by baryonic physics, which are expected to modify the total matter distribution at small scales. My work has focused on determining and modeling the impact of baryons on the statistics of the large scale matter distribution in the Universe. Using numerical simulations, I have extracted the effect of baryons on the power spectrum, variance and skewness of the total density field as predicted by these simulations. I have shown that a model based on the halo model construction, featuring a concentrated central component to account for cool condensed baryons, is able to reproduce accurately, and down to very small scales, the measured amplifications of both the variance and skewness of the density field. Because of well-known issues with baryons in current cosmological simulations, I have extended the central component model to rely on as many observation-based ingredients as possible. As an application, I have studied the effect of baryons on the predictions of the upcoming Euclid weak lensing survey. During the course of this work, I have also worked at developing and extending the RAMSES code, in particular by developing a parallel self-gravity solver, which offers significant performance gains, in particular for the simulation of some astrophysical setups such as isolated galaxy or cluster simulations. (author) [fr

  2. The community structure of over-wintering larval and small juvenile fish in a large estuary

    Science.gov (United States)

    Munk, Peter; Cardinale, Massimiliano; Casini, Michele; Rudolphi, Ann-Christin

    2014-02-01

    The Skagerrak and Kattegat are estuarine straits of high hydrographical and ecological diversity, situated between the saline waters of the North Sea and the brackish waters of the Baltic Sea. These sustain important nursery grounds of many fish species, of which several overwinter during the larval and early juvenile stages. In order to give more insight into the communities of the overwintering ichthyoplankton in estuarine areas, we examine an annual series of observations from a standard survey carried out 1992-2010. Species differences and annual variability in distributions and abundances are described, and linkages between ichthyoplankton abundances and corresponding hydrographical information are analysed by GAM methods. Communities were dominated by herring, gobies, butterfish, sprat, pipefishes, lemon sole and European eel (i.e. glass eel), and all the sampled species showed large annual fluctuations in abundances. The species showed quite specific patterns of distribution although species assemblages with common distributional characteristics were identified. Within these assemblages, the ichthyoplankton abundances showed linkage to environmental characteristics described by bottom-depth and surface temperature and salinity. Hence the study points to a significant structuring of overwintering ichthyoplankton communities in large estuaries, based on the species habitat choice and its response to physical gradients.

  3. Partially acoustic dark matter, interacting dark radiation, and large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Chacko, Zackaria [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States); Cui, Yanou [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States); Department of Physics and Astronomy, University of California-Riverside,University Ave, Riverside, CA 92521 (United States); Perimeter Institute, 31 Caroline Street, North Waterloo, Ontario N2L 2Y5 (Canada); Hong, Sungwoo [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States); Okui, Takemichi [Department of Physics, Florida State University,College Avenue, Tallahassee, FL 32306 (United States); Tsai, Yuhsinz [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States)

    2016-12-21

    The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H{sub 0} and the matter density perturbation σ{sub 8} inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ{sub 8} problem, while the presence of tightly coupled dark radiation ameliorates the H{sub 0} problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.

  4. Partially acoustic dark matter, interacting dark radiation, and large scale structure

    International Nuclear Information System (INIS)

    Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; Okui, Takemichi; Tsai, Yuhsinz

    2016-01-01

    The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.

  5. Large Deformation of an Elastic Rod with Structural Anisotropy Subjected to Fluid Flow

    Science.gov (United States)

    Hassani, Masoud; Mureithi, Njuki; Gosselin, Frederick

    2015-11-01

    In the present work, we seek to understand the fundamental mechanisms of three-dimensional reconfiguration of plants by studying the large deformation of a flexible rod in fluid flow. Flexible rods made of Polyurethane foam and reinforced with Nylon fibers are tested in a wind tunnel. The rods have bending-torsion coupling which induces a torsional deformation during asymmetric bending. A mathematical model is also developed by coupling the Kirchhoff rod theory with a semi-empirical drag formulation. Different alignments of the material frame with respect to the flow direction and a range of structural properties are considered to study their effect on the deformation of the flexible rod and its drag scaling. Results show that twisting causes the flexible rods to reorient and bend with the minimum bending rigidity. It is also found that the drag scaling of the rod in the large deformation regime is not affected by torsion. Finally, using a proper set of dimensionless numbers, the state of a bending and twisting rod is characterized as a beam undergoing a pure bending deformation.

  6. Non-gut baryogenesis and large scale structure of the universe

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    1995-07-01

    We discuss a mechanism for generating baryon density perturbations and study the evolution of the baryon charge density distribution in the framework of the low temperature baryogenesis scenario. This mechanism may be important for the large scale structure formation of the Universe and particularly, may be essential for understanding the existence of a characteristic scale of 130h -1 Mpc in the distribution of the visible matter. The detailed analysis showed that both the observed very large scale of the visible matter distribution in the Universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage. Moreover, according to our model, at present the visible part of the Universe may consist of baryonic and antibaryonic shells, sufficiently separated, so that annihilation radiation is not observed. This is an interesting possibility as far as the observational data of antiparticles in cosmic rays do not rule out the possibility of antimatter superclusters in the Universe. (author). 16 refs, 3 figs

  7. Ward identities and consistency relations for the large scale structure with multiple species

    International Nuclear Information System (INIS)

    Peloso, Marco; Pietroni, Massimo

    2014-01-01

    We present fully nonlinear consistency relations for the squeezed bispectrum of Large Scale Structure. These relations hold when the matter component of the Universe is composed of one or more species, and generalize those obtained in [1,2] in the single species case. The multi-species relations apply to the standard dark matter + baryons scenario, as well as to the case in which some of the fields are auxiliary quantities describing a particular population, such as dark matter halos or a specific galaxy class. If a large scale velocity bias exists between the different populations new terms appear in the consistency relations with respect to the single species case. As an illustration, we discuss two physical cases in which such a velocity bias can exist: (1) a new long range scalar force in the dark matter sector (resulting in a violation of the equivalence principle in the dark matter-baryon system), and (2) the distribution of dark matter halos relative to that of the underlying dark matter field

  8. Ulysses: accurate detection of low-frequency structural variations in large insert-size sequencing libraries.

    Science.gov (United States)

    Gillet-Markowska, Alexandre; Richard, Hugues; Fischer, Gilles; Lafontaine, Ingrid

    2015-03-15

    The detection of structural variations (SVs) in short-range Paired-End (PE) libraries remains challenging because SV breakpoints can involve large dispersed repeated sequences, or carry inherent complexity, hardly resolvable with classical PE sequencing data. In contrast, large insert-size sequencing libraries (Mate-Pair libraries) provide higher physical coverage of the genome and give access to repeat-containing regions. They can thus theoretically overcome previous limitations as they are becoming routinely accessible. Nevertheless, broad insert size distributions and high rates of chimerical sequences are usually associated to this type of libraries, which makes the accurate annotation of SV challenging. Here, we present Ulysses, a tool that achieves drastically higher detection accuracy than existing tools, both on simulated and real mate-pair sequencing datasets from the 1000 Human Genome project. Ulysses achieves high specificity over the complete spectrum of variants by assessing, in a principled manner, the statistical significance of each possible variant (duplications, deletions, translocations, insertions and inversions) against an explicit model for the generation of experimental noise. This statistical model proves particularly useful for the detection of low frequency variants. SV detection performed on a large insert Mate-Pair library from a breast cancer sample revealed a high level of somatic duplications in the tumor and, to a lesser extent, in the blood sample as well. Altogether, these results show that Ulysses is a valuable tool for the characterization of somatic mosaicism in human tissues and in cancer genomes. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Large structures and temporal change in the Azores Front during the SEMAPHORE experiment

    Science.gov (United States)

    Tychensky, A.; Le Traon, P.-Y.; Hernandez, F.; Jourdan, D.

    1998-10-01

    The Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) mesoscale experiment took place from July to November 1993 in the northern Canary Basin, where the circulation is dominated by the eastward flowing Azores Current (AC). A large data set was acquired from three hydrographic arrays (phases 1, 2, 3), current meter moorings, surface drifters drogued at 150 m, and 2000 m deep RAFOS floats. The analysis confirmed the large-scale observations previously made in this region but also provided new insights into fine-scale dynamics of the AC. The front was observed over the 6-month period. It was narrow (100 km) and mostly surface intensified (velocities reaching 40-50 cm s-1). Whereas at the beginning of the experiment (phase 1) the AC was mainly zonal with weak oscillations, large meridional meanders were observed from phase 2 until the end of the experiment. They seem to be related to the arrival of two Mediterranean eddies (Meddies), which interacted with the AC [Käse and Zenk, 1996; Tychensky and Carton, this issue]. The front had a deep dynamical signature (down to 2000 m), with a 16-18 sverdrup (Sv) volume transport (0-2000 m depth integrated). The southward recirculation branch of the AC near 22°-23°W [Klein and Siedler, 1989] corresponds to meridional transport of 5-6 Sv. Then, 4.5 Sv of these waters are recirculating westward (along 31°-32°N). Some interesting new oceanographic results were obtained by examining the RAFOS float trajectories over the abyssal plain. The circulation is similar to that observed at the surface, with mean velocities of about 1-3 cm s-1 and eddy kinetic energy <4 cm2 s-2. In agreement with the analysis of current meter data this reveals a significant barotropic component in the Azores-Madeira flow field of roughly 3-3.5 cm s-1.

  10. The future of primordial features with large-scale structure surveys

    International Nuclear Information System (INIS)

    Chen, Xingang; Namjoo, Mohammad Hossein; Dvorkin, Cora; Huang, Zhiqi; Verde, Licia

    2016-01-01

    Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.

  11. Large-Scale, Exhaustive Lattice-Based Structural Auditing of SNOMED CT

    Science.gov (United States)

    Zhang, Guo-Qiang

    One criterion for the well-formedness of ontologies is that their hierarchical structure form a lattice. Formal Concept Analysis (FCA) has been used as a technique for assessing the quality of ontologies, but is not scalable to large ontologies such as SNOMED CT. We developed a methodology called Lattice-based Structural Auditing (LaSA), for auditing biomedical ontologies, implemented through automated SPARQL queries, in order to exhaustively identify all non-lattice pairs in SNOMED CT. The percentage of non-lattice pairs ranges from 0 to 1.66 among the 19 SNOMED CT hierarchies. Preliminary manual inspection of a limited portion of the 518K non-lattice pairs, among over 34 million candidate pairs, revealed inconsistent use of precoordination in SNOMED CT, but also a number of false positives. Our results are consistent with those based on FCA, with the advantage that the LaSA computational pipeline is scalable and applicable to ontological systems consisting mostly of taxonomic links. This work is based on collaboration with Olivier Bodenreider from the National Library of Medicine, Bethesda, USA.

  12. Measuring α in the early universe: CMB temperature, large-scale structure, and Fisher matrix analysis

    International Nuclear Information System (INIS)

    Martins, C. J. A. P.; Melchiorri, A.; Trotta, R.; Bean, R.; Rocha, G.; Avelino, P. P.; Viana, P. T. P.

    2002-01-01

    We extend our recent work on the effects of a time-varying fine-structure constant α in the cosmic microwave background by providing a thorough analysis of the degeneracies between α and the other cosmological parameters, and discussing ways to break these with both existing and/or forthcoming data. In particular, we present the state-of-the-art cosmic microwave background constraints on α through a combined analysis of the BOOMERanG, MAXIMA and DASI data sets. We also present a novel discussion of the constraints on α coming from large-scale structure observations, focusing in particular on the power spectrum from the 2dF survey. Our results are consistent with no variation in α from the epoch of recombination to the present day, and restrict any such variation to be less than about 4%. We show that the forthcoming Microwave Anisotropy Probe and Planck experiments will be able to break most of the currently existing degeneracies between α and other parameters, and measure α to better than percent accuracy

  13. The topology of large-scale structure. III. Analysis of observations

    International Nuclear Information System (INIS)

    Gott, J.R. III; Weinberg, D.H.; Miller, J.; Thuan, T.X.; Schneider, S.E.

    1989-01-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a meatball topology. 66 refs

  14. The topology of large-scale structure. III - Analysis of observations

    Science.gov (United States)

    Gott, J. Richard, III; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.; Weinberg, David H.; Gammie, Charles; Polk, Kevin; Vogeley, Michael; Jeffrey, Scott; Bhavsar, Suketu P.; Melott, Adrian L.; Giovanelli, Riccardo; Hayes, Martha P.; Tully, R. Brent; Hamilton, Andrew J. S.

    1989-05-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.

  15. The topology of large-scale structure. III - Analysis of observations. [in universe

    Science.gov (United States)

    Gott, J. Richard, III; Weinberg, David H.; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.

    1989-01-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.

  16. Large-scale structuring of a rotating plasma due to plasma macroinstabilities

    International Nuclear Information System (INIS)

    Kikuchi, Toshinori; Ikehata, Takashi; Sato, Naoyuki; Watahiki, Takeshi; Tanabe, Toshio; Mase, Hiroshi

    1995-01-01

    The formation of coherent structures during plasma macroinstabilities have been of interest in view of the nonlinear plasma physics. In the present paper, we have investigated in detail, the mechanism and specific features of large-scale structuring of a rotating plasma. In the case of weak magnetic field, the plasma ejected from a plasma gun has a high beta value (β > 1) so that it expands rapidly across the magnetic field excluding a magnetic flux from its interior. Then, the boundary between the expanding plasma and the magnetic field becomes unstable against Rayleigh-Taylor instability. This instability has the higher growth rate at the shorter wavelength and the mode appears as flute. These features of the instability are confirmed by the observation of radial plasma jets with the azimuthal mode number m=20-40 in the early time of the plasma expansion. In the case of strong magnetic field, on the other hand, the plasma little expands and rotates at two times the ion sound speed. Especially, we observe spiral jets of m=2 instead of short-wavelength radial jets. This mode appears only when a glass target is installed or a dense neutral gas is introduced around the plasma to give the plasma a frictional force. From these results and with reference to the theory of plasma instabilities, the centrifugal instability caused by a combination of the velocity shear and centrifugal force is concluded to be responsible for the formation of spiral jets. (author)

  17. Study on wake structure characteristics of a slotted micro-ramp with large-eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiangrui; Chen, Yaohui; Dong, Gang; Liu, Yixin, E-mail: cyh873@163.com [National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2017-06-15

    In this paper, a novel slotted ramp-type micro vortex generator (slotted micro-ramp) for flow separation control is simulated in the supersonic flow of Ma = 1.5, based on large eddy simulation combined with the finite volume method. The wake structure characteristics and control mechanisms of both slotted and standard micro-ramps are presented and discussed. The results show that the wake of standard micro-ramp includes a primary counter-rotating streamwise vortex pair, a train of vortex rings, and secondary vortices. The slotted micro-ramp has more complicated wake structures, which contain a confluent counter-rotating streamwise vortex pair and additional streamwise vortices, with the same rotation generated by slot and the vortex rings enveloping the vortex pair. The additional vortices generated by the slot of the micro-ramp can mix with the primary counter-rotating vortex pair, extend the life time, and strengthen the vortex intensity of primary vortex pair. Moreover, the slot can effectively alleviate, or even eliminate the backflow and decrease the profile drag induced by the standard micro-ramp, therefore improving the efficiency of separation control. (paper)

  18. The future of primordial features with large-scale structure surveys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xingang; Namjoo, Mohammad Hossein [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dvorkin, Cora [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Huang, Zhiqi [School of Physics and Astronomy, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, 510275 (China); Verde, Licia, E-mail: xingang.chen@cfa.harvard.edu, E-mail: dvorkin@physics.harvard.edu, E-mail: huangzhq25@sysu.edu.cn, E-mail: mohammad.namjoo@cfa.harvard.edu, E-mail: liciaverde@icc.ub.edu [ICREA and ICC-UB, University of Barcelona (IEEC-UB), Marti i Franques, 1, Barcelona 08028 (Spain)

    2016-11-01

    Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.

  19. Large scale structures in a turbulent boundary layer and their imprint on wall shear stress

    Science.gov (United States)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2015-11-01

    Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  20. Magnetically tuned mass dampers for optimal vibration damping of large structures

    International Nuclear Information System (INIS)

    Bourquin, Frederic; Siegert, Dominique; Caruso, Giovanni; Peigney, Michael

    2014-01-01

    This paper deals with the theoretical and experimental analysis of magnetically tuned mass dampers, applied to the vibration damping of large structures of civil engineering interest. Two devices are analysed, for which both the frequency tuning ratio and the damping coefficient can be easily and finely calibrated. They are applied for the damping of the vibrations along two natural modes of a mock-up of a bridge under construction. An original analysis, based on the Maxwell receding image method, is developed for estimating the drag force arising inside the damping devices. It also takes into account self-inductance effects, yielding a complex nonlinear dependence of the drag force on the velocity. The analysis highlights the range of velocities for which the drag force can be assumed of viscous type, and shows its dependence on the involved geometrical parameters of the dampers. The model outcomes are then compared to the corresponding experimental calibration curves. A dynamic model of the controlled structure equipped with the two damping devices is presented, and used for the development of original optimization expressions and for determining the corresponding maximum achievable damping. Finally, several experimental results are presented, concerning both the free and harmonically forced vibration damping of the bridge mock-up, and compared to the corresponding theoretical predictions. The experimental results reveal that the maximum theoretical damping performance can be achieved, when both the tuning frequencies and damping coefficients of each device are finely calibrated according to the optimization expressions. (paper)

  1. BACHSCORE. A tool for evaluating efficiently and reliably the quality of large sets of protein structures

    Science.gov (United States)

    Sarti, E.; Zamuner, S.; Cossio, P.; Laio, A.; Seno, F.; Trovato, A.

    2013-12-01

    In protein structure prediction it is of crucial importance, especially at the refinement stage, to score efficiently large sets of models by selecting the ones that are closest to the native state. We here present a new computational tool, BACHSCORE, that allows its users to rank different structural models of the same protein according to their quality, evaluated by using the BACH++ (Bayesian Analysis Conformation Hunt) scoring function. The original BACH statistical potential was already shown to discriminate with very good reliability the protein native state in large sets of misfolded models of the same protein. BACH++ features a novel upgrade in the solvation potential of the scoring function, now computed by adapting the LCPO (Linear Combination of Pairwise Orbitals) algorithm. This change further enhances the already good performance of the scoring function. BACHSCORE can be accessed directly through the web server: bachserver.pd.infn.it. Catalogue identifier: AEQD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEQD_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 130159 No. of bytes in distributed program, including test data, etc.: 24 687 455 Distribution format: tar.gz Programming language: C++. Computer: Any computer capable of running an executable produced by a g++ compiler (4.6.3 version). Operating system: Linux, Unix OS-es. RAM: 1 073 741 824 bytes Classification: 3. Nature of problem: Evaluate the quality of a protein structural model, taking into account the possible “a priori” knowledge of a reference primary sequence that may be different from the amino-acid sequence of the model; the native protein structure should be recognized as the best model. Solution method: The contact potential scores the occurrence of any given type of residue pair in 5 possible

  2. Evaluation of the load carrying capacity of large cross section coniferous timber in standing structures

    Directory of Open Access Journals (Sweden)

    Arriaga, F.

    2005-12-01

    Full Text Available A total of 85 large section timber pieces (Pinus sylvestris L. and Pinus pinaster Alt. found in a number of old buildings were visually analyzed and graded pursuant to Spanish standard UNE 56544 and German standard 4074. The object was to formulate a non-destructive method to reliably and effectively determine the mechanical properties of existing timber structures with large cross sections. A new system is proposed based on the chief visual grading parameters and consisting in a single grade; the percentage of rejections with this system is low. In this regard, a specific strength class is established for large cross section members in existing coniferous wood structures, namely F14/E9/D380 (MOR of 14 N/mm2, MOE of 9 kN/mm2 and characteristic density of 380 kg/m3. The use of ultrasonic velocity is proposed to define the next higher strength class - F16/E10/D380, to which timber with velocities of 4,900 m/s or over would be assigned.

    Se han clasificado visualmente 85 piezas de madera de gruesa sección (Pino silvestre y Pino pinaster procedentes de varios edificios antiguos de acuerdo con las normas UNE 56544 y DIN 4074. El objetivo es establecer una metodología no destructiva para asignar propiedades mecánicas a las piezas de estructuras existentes de madera con gruesas escuadrías con un nivel de seguridad y de rendimiento aceptables. Se propone un único grado de calidad con un porcentaje bajo de rechazos, aplicando los principales parámetros de la clasificación visual. De esta forma, se establece una clase resistente específica para las piezas de gruesa escuadría de estructuras de madera de conifera existentes definida como FI4/E9/D380 (resistencia característica a flexión igual a 14 N/mm2, módulo de elasticidad de 9 kN/mn2 y densidad característica de 380 kg/m3. Para alcanzar una clase resistente superior se propone utilizar el parámetro añadido de la

  3. Identification of Large-Scale Structure Fluctuations in IC Engines using POD-Based Conditional Averaging

    Directory of Open Access Journals (Sweden)

    Buhl Stefan

    2016-01-01

    Full Text Available Cycle-to-Cycle Variations (CCV in IC engines is a well-known phenomenon and the definition and quantification is well-established for global quantities such as the mean pressure. On the other hand, the definition of CCV for local quantities, e.g. the velocity or the mixture distribution, is less straightforward. This paper proposes a new method to identify and calculate cyclic variations of the flow field in IC engines emphasizing the different contributions from large-scale energetic (coherent structures, identified by a combination of Proper Orthogonal Decomposition (POD and conditional averaging, and small-scale fluctuations. Suitable subsets required for the conditional averaging are derived from combinations of the the POD coefficients of the second and third mode. Within each subset, the velocity is averaged and these averages are compared to the ensemble-averaged velocity field, which is based on all cycles. The resulting difference of the subset-average and the global-average is identified as a cyclic fluctuation of the coherent structures. Then, within each subset, remaining fluctuations are obtained from the difference between the instantaneous fields and the corresponding subset average. The proposed methodology is tested for two data sets obtained from scale resolving engine simulations. For the first test case, the numerical database consists of 208 independent samples of a simplified engine geometry. For the second case, 120 cycles for the well-established Transparent Combustion Chamber (TCC benchmark engine are considered. For both applications, the suitability of the method to identify the two contributions to CCV is discussed and the results are directly linked to the observed flow field structures.

  4. Resolution 8.069/12. It approve the regulations for the large size structures installation, destined for wind power generation

    International Nuclear Information System (INIS)

    2012-01-01

    This resolution approve the regulations for the large size structures installation, destined to wind power generation. The objective of this rule is to regulate the urban conditions of the facilities and the environmental guarantees, safety and inhabitants wholesomeness

  5. Geo-structural modelling for potential large rock slide in Machu Picchu

    Science.gov (United States)

    Spizzichino, D.; Delmonaco, G.; Margottini, C.; Mazzoli, S.

    2009-04-01

    blocks with dimensions variable from 10-1 to 102m3 that form the toe accumulation on steeper slopes. The area of the citadel has also been interpreted as affected by a deep mass movement (>100m) that, if confirmed by the present day monitoring systems, could be referred to a deep-seated gravitational slope deformation (DSGSD), probably of the type of the compound bi-planar sagging (CB) described by Hutchinson (1988). The analysis of active strain processes (e.g. tension cracks) along with the damage pattern surveyed on archaeological structures (e.g. sinking, swelling, tilting) suggest that the potential failure of a large rock slide may be located at a depth of ca. 30m. The various data sets have been integrated in order to obtain a general geo-structural and geotechnical model (strength and deformation parameters, seismic input) of the citadel at the slope scale. This represents a first step in implementing a slope stability analysis capable of reconstructing present and potential landslide evolution under static and dynamic conditions. This multi-discipline study, based on geological and structural analysis integrated with geotechnical and geomechanical interpretation, will aid defining actual landslide hazard and risk levels, indispensable for the design of low impact mitigation measures to be applied at Machu Picchu Citadel.

  6. Examining gray matter structure associated with academic performance in a large sample of Chinese high school students

    OpenAIRE

    Song Wang; Ming Zhou; Taolin Chen; Xun Yang; Guangxiang Chen; Meiyun Wang; Qiyong Gong

    2017-01-01

    Achievement in school is crucial for students to be able to pursue successful careers and lead happy lives in the future. Although many psychological attributes have been found to be associated with academic performance, the neural substrates of academic performance remain largely unknown. Here, we investigated the relationship between brain structure and academic performance in a large sample of high school students via structural magnetic resonance imaging (S-MRI) using voxel-based morphome...

  7. Physics-Based Hazard Assessment for Critical Structures Near Large Earthquake Sources

    Science.gov (United States)

    Hutchings, L.; Mert, A.; Fahjan, Y.; Novikova, T.; Golara, A.; Miah, M.; Fergany, E.; Foxall, W.

    2017-09-01

    We argue that for critical structures near large earthquake sources: (1) the ergodic assumption, recent history, and simplified descriptions of the hazard are not appropriate to rely on for earthquake ground motion prediction and can lead to a mis-estimation of the hazard and risk to structures; (2) a physics-based approach can address these issues; (3) a physics-based source model must be provided to generate realistic phasing effects from finite rupture and model near-source ground motion correctly; (4) wave propagations and site response should be site specific; (5) a much wider search of possible sources of ground motion can be achieved computationally with a physics-based approach; (6) unless one utilizes a physics-based approach, the hazard and risk to structures has unknown uncertainties; (7) uncertainties can be reduced with a physics-based approach, but not with an ergodic approach; (8) computational power and computer codes have advanced to the point that risk to structures can be calculated directly from source and site-specific ground motions. Spanning the variability of potential ground motion in a predictive situation is especially difficult for near-source areas, but that is the distance at which the hazard is the greatest. The basis of a "physical-based" approach is ground-motion syntheses derived from physics and an understanding of the earthquake process. This is an overview paper and results from previous studies are used to make the case for these conclusions. Our premise is that 50 years of strong motion records is insufficient to capture all possible ranges of site and propagation path conditions, rupture processes, and spatial geometric relationships between source and site. Predicting future earthquake scenarios is necessary; models that have little or no physical basis but have been tested and adjusted to fit available observations can only "predict" what happened in the past, which should be considered description as opposed to prediction

  8. Study on the structure and level of electricity prices for Northwest-European large-scale consumers

    International Nuclear Information System (INIS)

    2006-06-01

    The aim of the study on the title subject is to make an overview of the structure and developments of electricity prices for large-scale consumers in Northwest-Europe (Netherlands, Germany, Belgium and France) and of current regulations for large-scale consumers in Europe [nl

  9. A BAYESIAN ESTIMATE OF THE CMB–LARGE-SCALE STRUCTURE CROSS-CORRELATION

    Energy Technology Data Exchange (ETDEWEB)

    Moura-Santos, E. [Instituto de Física, Universidade de São Paulo, Rua do Matão trav. R 187, 05508-090, São Paulo—SP (Brazil); Carvalho, F. C. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-210, Mossoró-RN (Brazil); Penna-Lima, M. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Novaes, C. P.; Wuensche, C. A., E-mail: emoura@if.usp.br, E-mail: fabiocabral@uern.br, E-mail: pennal@apc.in2p3.fr, E-mail: cawuenschel@das.inpe.br, E-mail: camilanovaes@on.br [Observatório Nacional, Rua General José Cristino 77, São Cristóvão, 20921-400, Rio de Janeiro, RJ (Brazil)

    2016-08-01

    Evidences for late-time acceleration of the universe are provided by multiple probes, such as Type Ia supernovae, the cosmic microwave background (CMB), and large-scale structure (LSS). In this work, we focus on the integrated Sachs–Wolfe (ISW) effect, i.e., secondary CMB fluctuations generated by evolving gravitational potentials due to the transition between, e.g., the matter and dark energy (DE) dominated phases. Therefore, assuming a flat universe, DE properties can be inferred from ISW detections. We present a Bayesian approach to compute the CMB–LSS cross-correlation signal. The method is based on the estimate of the likelihood for measuring a combined set consisting of a CMB temperature and galaxy contrast maps, provided that we have some information on the statistical properties of the fluctuations affecting these maps. The likelihood is estimated by a sampling algorithm, therefore avoiding the computationally demanding techniques of direct evaluation in either pixel or harmonic space. As local tracers of the matter distribution at large scales, we used the Two Micron All Sky Survey galaxy catalog and, for the CMB temperature fluctuations, the ninth-year data release of the Wilkinson Microwave Anisotropy Probe ( WMAP 9). The results show a dominance of cosmic variance over the weak recovered signal, due mainly to the shallowness of the catalog used, with systematics associated with the sampling algorithm playing a secondary role as sources of uncertainty. When combined with other complementary probes, the method presented in this paper is expected to be a useful tool to late-time acceleration studies in cosmology.

  10. Structurally controlled 'teleconnection' of large-scale mass wasting (Eastern Alps)

    Science.gov (United States)

    Ostermann, Marc; Sanders, Diethard

    2015-04-01

    In the Brenner Pass area (Eastern Alps) , closely ahead of the most northward outlier ('nose') of the Southern-Alpine continental indenter, abundant deep-seated gravitational slope deformations and a cluster of five post-glacial rockslides are present. The indenter of roughly triangular shape formed during Neogene collision of the Southern-Alpine basement with the Eastern-Alpine nappe stack. Compression by the indenter activated a N-S striking, roughly W-E extensional fault northward of the nose of the indenter (Brenner-normal fault; BNF), and lengthened the Eastern-Alpine edifice along a set of major strike-slip faults. These fault zones display high seismicity, and are the preferred locus of catastrophic rapid slope failures (rockslides, rock avalanches) and deep-seated gravitational slope deformations. The seismotectonic stress field, earthquake activity, and structural data all indicate that the South-Alpine indenter still - or again - exerts compression; in consequence, the northward adjacent Eastern Alps are subject mainly to extension and strike-slip. For the rockslides in the Brenner Pass area, and for the deep-seated gravitational slope deformations, the fault zones combined with high seismic activity predispose massive slope failures. Structural data and earthquakes mainly record ~W-E extension within an Eastern Alpine basement block (Oetztal-Stubai basement complex) in the hangingwall of the BNF. In the Northern Calcareous Alps NW of the Oetztal-Stubai basement complex, dextral faults provide defacement scars for large rockfalls and rockslides. Towards the West, these dextral faults merge into a NNW-SSE striking sinistral fault zone that, in turn, displays high seismic activity and is the locus of another rockslide cluster (Fern Pass cluster; Prager et al., 2008). By its kinematics dictated by the South-Alpine indenter, the relatively rigid Oetztal-Stubai basement block relays faulting and associated mass-wasting over a N-S distance of more than 60

  11. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes

    International Nuclear Information System (INIS)

    Hu, Wei; Yang, Chao; Lin, Lin; Yang, Jinlong

    2014-01-01

    With the help of the recently developed SIESTA-pole (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - PEXSI (pole expansion and selected inversion) method [L. Lin, A. García, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)], we perform Kohn-Sham density functional theory calculations to study the stability and electronic structure of hydrogen passivated hexagonal graphene nanoflakes (GNFs) with up to 11 700 atoms. We find the electronic properties of GNFs, including their cohesive energy, edge formation energy, highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap, edge states, and aromaticity, depend sensitively on the type of edges (armchair graphene nanoflakes (ACGNFs) and zigzag graphene nanoflakes (ZZGNFs)), size and the number of electrons. We observe that, due to the edge-induced strain effect in ACGNFs, large-scale ACGNFs’ edge formation energy decreases as their size increases. This trend does not hold for ZZGNFs due to the presence of many edge states in ZZGNFs. We find that the energy gaps E g of GNFs all decay with respect to 1/L, where L is the size of the GNF, in a linear fashion. But as their size increases, ZZGNFs exhibit more localized edge states. We believe the presence of these states makes their gap decrease more rapidly. In particular, when L is larger than 6.40 nm, we find that ZZGNFs exhibit metallic characteristics. Furthermore, we find that the aromatic structures of GNFs appear to depend only on whether the system has 4N or 4N + 2 electrons, where N is an integer

  12. Mechanical and thermal behavior of a prototype support structure for a large silicon vertex detector (BCD)

    International Nuclear Information System (INIS)

    Mulderink, H.; Michels, N.; Joestlein, H.

    1989-01-01

    The Bottom Collider Detector (BCD) has been proposed as a device to study large numbers of events containing B mesons. To identify secondary vertices in hadronic events it will employ the most ambitious silicon strip tracking detector proposed to-date. This report will discuss results from measurements on a first mechanical/thermal model of the vertex detector support structure. The model that was built and used for the studies described here is made of brass. Brass was used because it is readily available and easily assembled by soft soldering, and, for appropriate thicknesses, it will behave similarly to the beryllium that will be used in the actual detector. The trough was built to full scale with the reinforcement webbing and the cooling channels in place. There were no detector modules in place. We plan, however, to install modules in the trough in the future. The purpose of the model was to address two concerns that have arisen about the proposed structure of the detector. The first is whether or not the trough will be stable enough. The trough must be very light in weight yet have a high degree of rigidity. Because of the 3m length of the detector there is question as to the stiffness of the proposed trough. The main concern is that there will sagging or movement of the trough in the middle region. The second problem is the heat load. There will be a great deal of heat generated by the electronics attached to the detector modules. So the question arises as to whether or not the silicon detectors can be kept cool enough so that when the actual experiment is run the readings will be valid. The heat may also induce motion by differential expansion of support components. 26 figs

  13. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei, E-mail: whu@lbl.gov, E-mail: linlin@lbl.gov, E-mail: cyang@lbl.gov, E-mail: jlyang@ustc.edu.cn; Yang, Chao, E-mail: whu@lbl.gov, E-mail: linlin@lbl.gov, E-mail: cyang@lbl.gov, E-mail: jlyang@ustc.edu.cn [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lin, Lin, E-mail: whu@lbl.gov, E-mail: linlin@lbl.gov, E-mail: cyang@lbl.gov, E-mail: jlyang@ustc.edu.cn [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Mathematics, University of California, Berkeley, California 94720 (United States); Yang, Jinlong, E-mail: whu@lbl.gov, E-mail: linlin@lbl.gov, E-mail: cyang@lbl.gov, E-mail: jlyang@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-12-07

    With the help of the recently developed SIESTA-pole (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - PEXSI (pole expansion and selected inversion) method [L. Lin, A. García, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)], we perform Kohn-Sham density functional theory calculations to study the stability and electronic structure of hydrogen passivated hexagonal graphene nanoflakes (GNFs) with up to 11 700 atoms. We find the electronic properties of GNFs, including their cohesive energy, edge formation energy, highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap, edge states, and aromaticity, depend sensitively on the type of edges (armchair graphene nanoflakes (ACGNFs) and zigzag graphene nanoflakes (ZZGNFs)), size and the number of electrons. We observe that, due to the edge-induced strain effect in ACGNFs, large-scale ACGNFs’ edge formation energy decreases as their size increases. This trend does not hold for ZZGNFs due to the presence of many edge states in ZZGNFs. We find that the energy gaps E{sub g} of GNFs all decay with respect to 1/L, where L is the size of the GNF, in a linear fashion. But as their size increases, ZZGNFs exhibit more localized edge states. We believe the presence of these states makes their gap decrease more rapidly. In particular, when L is larger than 6.40 nm, we find that ZZGNFs exhibit metallic characteristics. Furthermore, we find that the aromatic structures of GNFs appear to depend only on whether the system has 4N or 4N + 2 electrons, where N is an integer.

  14. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes.

    Science.gov (United States)

    Hu, Wei; Lin, Lin; Yang, Chao; Yang, Jinlong

    2014-12-07

    With the help of the recently developed SIESTA-pole (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - PEXSI (pole expansion and selected inversion) method [L. Lin, A. García, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)], we perform Kohn-Sham density functional theory calculations to study the stability and electronic structure of hydrogen passivated hexagonal graphene nanoflakes (GNFs) with up to 11,700 atoms. We find the electronic properties of GNFs, including their cohesive energy, edge formation energy, highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap, edge states, and aromaticity, depend sensitively on the type of edges (armchair graphene nanoflakes (ACGNFs) and zigzag graphene nanoflakes (ZZGNFs)), size and the number of electrons. We observe that, due to the edge-induced strain effect in ACGNFs, large-scale ACGNFs' edge formation energy decreases as their size increases. This trend does not hold for ZZGNFs due to the presence of many edge states in ZZGNFs. We find that the energy gaps E(g) of GNFs all decay with respect to 1/L, where L is the size of the GNF, in a linear fashion. But as their size increases, ZZGNFs exhibit more localized edge states. We believe the presence of these states makes their gap decrease more rapidly. In particular, when L is larger than 6.40 nm, we find that ZZGNFs exhibit metallic characteristics. Furthermore, we find that the aromatic structures of GNFs appear to depend only on whether the system has 4N or 4N + 2 electrons, where N is an integer.

  15. CARMA LARGE AREA STAR FORMATION SURVEY: STRUCTURE AND KINEMATICS OF DENSE GAS IN SERPENS MAIN

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katherine I.; Storm, Shaye; Mundy, Lee G.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique [Department of Astronomy, University of Illinois, Urbana-Champaign, IL 61801 (United States); Rosolowsky, Erik [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC V1V 1V7 (Canada); Arce, Héctor G.; Plunkett, Adele L. [Department of Astronomy, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States); Ostriker, Eve C. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Shirley, Yancy L. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kwon, Woojin [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); Kauffmann, Jens [Max Planck Institut für Radioastronomie, Auf dem Hügel 69 D-53121, Bonn Germany (Germany); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Volgenau, N. H. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Tassis, Konstantinos, E-mail: ijlee9@astro.umd.edu [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, PO Box 2208, GR-710 03, Heraklion, Crete (Greece); and others

    2014-12-20

    We present observations of N{sub 2}H{sup +} (J = 1 → 0), HCO{sup +} (J = 1 → 0), and HCN (J = 1 → 0) toward the Serpens Main molecular cloud from the CARMA Large Area Star Formation Survey (CLASSy). We mapped 150 arcmin{sup 2} of Serpens Main with an angular resolution of ∼7''. The gas emission is concentrated in two subclusters (the NW and SE subclusters). The SE subcluster has more prominent filamentary structures and more complicated kinematics compared to the NW subcluster. The majority of gas in the two subclusters has subsonic to sonic velocity dispersions. We applied a dendrogram technique with N{sub 2}H{sup +}(1-0) to study the gas structures; the SE subcluster has a higher degree of hierarchy than the NW subcluster. Combining the dendrogram and line fitting analyses reveals two distinct relations: a flat relation between nonthermal velocity dispersion and size, and a positive correlation between variation in velocity centroids and size. The two relations imply a characteristic depth of 0.15 pc for the cloud. Furthermore, we have identified six filaments in the SE subcluster. These filaments have lengths of ∼0.2 pc and widths of ∼0.03 pc, which is smaller than a characteristic width of 0.1 pc suggested by Herschel observations. The filaments can be classified into two types based on their properties. The first type, located in the northeast of the SE subcluster, has larger velocity gradients, smaller masses, and nearly critical mass-per-unit-length ratios. The other type, located in the southwest of the SE subcluster, has the opposite properties. Several YSOs are formed along two filaments which have supercritical mass per unit length ratios, while filaments with nearly critical mass-per-unit-length ratios are not associated with YSOs, suggesting that stars are formed on gravitationally unstable filaments.

  16. Understanding Large-scale Structure in the SSA22 Protocluster Region Using Cosmological Simulations

    Science.gov (United States)

    Topping, Michael W.; Shapley, Alice E.; Steidel, Charles C.; Naoz, Smadar; Primack, Joel R.

    2018-01-01

    We investigate the nature and evolution of large-scale structure within the SSA22 protocluster region at z = 3.09 using cosmological simulations. A redshift histogram constructed from current spectroscopic observations of the SSA22 protocluster reveals two separate peaks at z = 3.065 (blue) and z = 3.095 (red). Based on these data, we report updated overdensity and mass calculations for the SSA22 protocluster. We find {δ }b,{gal}=4.8+/- 1.8 and {δ }r,{gal}=9.5+/- 2.0 for the blue and red peaks, respectively, and {δ }t,{gal}=7.6+/- 1.4 for the entire region. These overdensities correspond to masses of {M}b=(0.76+/- 0.17)× {10}15{h}-1 {M}ȯ , {M}r=(2.15+/- 0.32)× {10}15{h}-1 {M}ȯ , and {M}t=(3.19+/- 0.40)× {10}15{h}-1 {M}ȯ for the red, blue, and total peaks, respectively. We use the Small MultiDark Planck (SMDPL) simulation to identify comparably massive z∼ 3 protoclusters, and uncover the underlying structure and ultimate fate of the SSA22 protocluster. For this analysis, we construct mock redshift histograms for each simulated z∼ 3 protocluster, quantitatively comparing them with the observed SSA22 data. We find that the observed double-peaked structure in the SSA22 redshift histogram corresponds not to a single coalescing cluster, but rather the proximity of a ∼ {10}15{h}-1 {M}ȯ protocluster and at least one > {10}14{h}-1 {M}ȯ cluster progenitor. Such associations in the SMDPL simulation are easily understood within the framework of hierarchical clustering of dark matter halos. We finally find that the opportunity to observe such a phenomenon is incredibly rare, with an occurrence rate of 7.4{h}3 {{{Gpc}}}-3. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W.M. Keck Foundation.

  17. Constraining lowermost mantle structure with PcP/P amplitude ratios from large aperture arrays

    Science.gov (United States)

    Ventosa, S.; Romanowicz, B. A.

    2015-12-01

    Observations of weak short-period teleseismic body waves help to resolve lowermost mantle structure at short wavelengths, which is essential for understanding mantle dynamics and the interactions between the mantle and core. Their limited amount and uneven distribution are however major obstacles to solve for volumetric structure of the D" region, topography of the core-mantle boundary (CMB) and D" discontinuity, and the trade-offs among them. While PcP-P differential travel times provide important information, there are trade-offs between velocity structure and core-mantle boundary topography, which PcP/P amplitude ratios can help resolve, as long as lateral variations in attenuation and biases due to focusing are small or can be corrected for. Dense broadband seismic networks help to improve signal-to-noise ratio (SNR) of the target phases and signal-to-interference ratio (SIR) of other mantle phases when the slowness difference is large enough. To improve SIR and SNR of teleseismic PcP data, we have introduced the slant-stacklet transform to define coherent-guided filters able to separate and enhance signals according to their slowness, time of arrival and frequency content. We thus obtain optimal PcP/P amplitude ratios in the least-square sense using two short sliding windows to match the P signal with a candidate PcP signal. This method allows us to dramatically increase the amount of high-quality observations of short-period PcP/P amplitude ratios by allowing for smaller events and wider epicentral distance and depth ranges.We present the results of measurement of PcP/P amplitude ratios, sampling regions around the Pacific using dense arrays in North America and Japan. We observe that short-period P waves traveling through slabs are strongly affected by focusing, in agreement with the bias we have observed and corrected for due to mantle heterogeneities on PcP-P travel time differences. In Central America, this bias is by far the stronger anomaly we observe

  18. The structure and large-scale organization of extreme cold waves over the conterminous United States

    Science.gov (United States)

    Xie, Zuowei; Black, Robert X.; Deng, Yi

    2017-12-01

    Extreme cold waves (ECWs) occurring over the conterminous United States (US) are studied through a systematic identification and documentation of their local synoptic structures, associated large-scale meteorological patterns (LMPs), and forcing mechanisms external to the US. Focusing on the boreal cool season (November-March) for 1950‒2005, a hierarchical cluster analysis identifies three ECW patterns, respectively characterized by cold surface air temperature anomalies over the upper midwest (UM), northwestern (NW), and southeastern (SE) US. Locally, ECWs are synoptically organized by anomalous high pressure and northerly flow. At larger scales, the UM LMP features a zonal dipole in the mid-tropospheric height field over North America, while the NW and SE LMPs each include a zonal wave train extending from the North Pacific across North America into the North Atlantic. The Community Climate System Model version 4 (CCSM4) in general simulates the three ECW patterns quite well and successfully reproduces the observed enhancements in the frequency of their associated LMPs. La Niña and the cool phase of the Pacific Decadal Oscillation (PDO) favor the occurrence of NW ECWs, while the warm PDO phase, low Arctic sea ice extent and high Eurasian snow cover extent (SCE) are associated with elevated SE-ECW frequency. Additionally, high Eurasian SCE is linked to increases in the occurrence likelihood of UM ECWs.

  19. The measurement and analysis of wavefront structure from large aperture ICF optics

    International Nuclear Information System (INIS)

    Wolfe, C.R.; Lawson, J.K.

    1995-01-01

    This paper discusses the techniques, developed over the past year, for high spatial resolution measurement and analysis of the transmitted and/or reflected wavefront of large aperture ICF optical components. Parts up to 400 mm x 750 mm have been measured and include: laser slabs, windows, KDP crystals and lenses. The measurements were performed using state-of-the-art commercial phase shifting interferometers at a wavelength of 633 μm. Both 1 and 2-D Fourier analysis have been used to characterize the wavefront; specifically the Power Spectral Density, (PSD), function was calculated. The PSDs of several precision optical components will be shown. The PSD(V) is proportional to the (amplitude) 2 of components of the Fourier frequency spectrum. The PSD describes the scattered intensity and direction as a function of scattering angle in the wavefront. The capability of commercial software is limited to 1-D Fourier analysis only. We are developing our own 2-D analysis capability in support of work to revise specifications for NIF optics. 2-D analysis uses the entire wavefront phase map to construct 2D PSD functions. We have been able to increase the signal-to-noise relative to 1-D and can observe very subtle wavefront structure

  20. Three-point phase correlations: A new measure of non-linear large-scale structure

    CERN Document Server

    Wolstenhulme, Richard; Obreschkow, Danail

    2015-01-01

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...

  1. How CMB and large-scale structure constrain chameleon interacting dark energy

    International Nuclear Information System (INIS)

    Boriero, Daniel; Das, Subinoy; Wong, Yvonne Y.Y.

    2015-01-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H 0 tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H 0 value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys

  2. Time domain calculation of connector loads of a very large floating structure

    Science.gov (United States)

    Gu, Jiayang; Wu, Jie; Qi, Enrong; Guan, Yifeng; Yuan, Yubo

    2015-06-01

    Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0°. This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS

  3. The linearly scaling 3D fragment method for large scale electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Zhengji [National Energy Research Scientific Computing Center (NERSC) (United States); Meza, Juan; Shan Hongzhang; Strohmaier, Erich; Bailey, David; Wang Linwang [Computational Research Division, Lawrence Berkeley National Laboratory (United States); Lee, Byounghak, E-mail: ZZhao@lbl.go [Physics Department, Texas State University (United States)

    2009-07-01

    The linearly scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  4. Electrooptic converter to control linear displacements of the large structures of the buildings and facilities

    Science.gov (United States)

    Vasilev, Aleksandr S.; Konyakhin, Igor A.; Timofeev, Alexander N.; Lashmanov, Oleg U.; Molev, Fedor V.

    2015-05-01

    The paper analyzes the construction matters and metrological parameters of the electrooptic converter to control linear displacements of the large structures of the buildings and facilities. The converter includes the base module, the processing module and a set of the reference marks. The base module is the main unit of the system, it includes the receiving optical system and the CMOS photodetector array that realizes the instrument coordinate system that controls the mark coordinates in the space. The methods of the frame-to-frame difference, adaptive threshold filtration, binarization and objects search by the tied areas to detect the marks against accidental contrast background is the basis of the algorithm. The entire algorithm is performed during one image reading stage and is based on the FPGA. The developed and manufactured converter experimental model was tested in laboratory conditions at the metrological bench at the distance between the base module and the mark 50±0.2 m. The static characteristic was read during the experiment of the reference mark displacement at the pitch of 5 mm in the horizontal and vertical directions for the displacement range 400 mm. The converter experimental model error not exceeding ±0.5 mm was obtained in the result of the experiment.

  5. Hierarchical system for autonomous sensing-healing of delamination in large-scale composite structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Sun, Denghao; Takeda, Nobuo

    2014-01-01

    This study combines our hierarchical fiber-optic-based delamination detection system with a microvascular self-healing material to develop the first autonomous sensing-healing system applicable to large-scale composite structures. In this combined system, embedded vascular modules are connected through check valves to a surface-mounted supply tube of a pressurized healing agent while fiber-optic-based sensors monitor the internal pressure of these vascular modules. When delamination occurs, the healing agent flows into the vascular modules breached by the delamination and infiltrates the damage for healing. At the same time, the pressure sensors identify the damaged modules by detecting internal pressure changes. This paper begins by describing the basic concept of the combined system and by discussing the advantages that arise from its hierarchical nature. The feasibility of the system is then confirmed through delamination infiltration tests. Finally, the hierarchical system is validated in a plate specimen by focusing on the detection and infiltration of the damage. Its self-diagnostic function is also demonstrated. (paper)

  6. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies.

    Science.gov (United States)

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H; Michel, Jennifer Carlisle; Claxton, Derek P; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K Christopher; Gouaux, Eric

    2014-11-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in overexpression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol, we show how to use small-scale transient transfection and fluorescence-detection size-exclusion chromatography (FSEC) experiments using a GFP-His8-tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI(-) (N-acetylglucosaminyltransferase I-negative) cells in suspension culture and overexpress the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl) for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4-6 weeks.

  7. Primordial Magnetic Field Effects on the CMB and Large-Scale Structure

    Directory of Open Access Journals (Sweden)

    Dai G. Yamazaki

    2010-01-01

    Full Text Available Magnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF would be expected to manifest itself in the cosmic microwave background (CMB temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude Bλ and the power spectral index nB which have been deduced from the available CMB observational data by using our computational framework.

  8. Multiple Skills Underlie Arithmetic Performance: A Large-Scale Structural Equation Modeling Analysis

    Directory of Open Access Journals (Sweden)

    Sarit Ashkenazi

    2017-12-01

    Full Text Available Current theoretical approaches point to the importance of several cognitive skills not specific to mathematics for the etiology of mathematics disorders (MD. In the current study, we examined the role of many of these skills, specifically: rapid automatized naming, attention, reading, and visual perception, on mathematics performance among a large group of college students (N = 1,322 with a wide range of arithmetic proficiency. Using factor analysis, we discovered that our data clustered to four latent variables 1 mathematics, 2 perception speed, 3 attention and 4 reading. In subsequent structural equation modeling, we found that the latent variable perception speed had a strong and meaningful effect on mathematics performance. Moreover, sustained attention, independent from the effect of the latent variable perception speed, had a meaningful, direct effect on arithmetic fact retrieval and procedural knowledge. The latent variable reading had a modest effect on mathematics performance. Specifically, reading comprehension, independent from the effect of the latent variable reading, had a meaningful direct effect on mathematics, and particularly on number line knowledge. Attention, tested by the attention network test, had no effect on mathematics, reading or perception speed. These results indicate that multiple factors can affect mathematics performance supporting a heterogeneous approach to mathematics. These results have meaningful implications for the diagnosis and intervention of pure and comorbid learning disorders.

  9. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Muniz, Jaime [Department de Fisica de PartIculas, University de Santiago de Compostela, 15782 Santiago, SPAIN (Spain); Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States)

    2006-10-15

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 10{sup 18} to 10{sup 19}eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  10. Large scale structures in the kinetic gravity braiding model that can be unbraided

    International Nuclear Information System (INIS)

    Kimura, Rampei; Yamamoto, Kazuhiro

    2011-01-01

    We study cosmological consequences of a kinetic gravity braiding model, which is proposed as an alternative to the dark energy model. The kinetic braiding model we study is characterized by a parameter n, which corresponds to the original galileon cosmological model for n = 1. We find that the background expansion of the universe of the kinetic braiding model is the same as the Dvali-Turner's model, which reduces to that of the standard cold dark matter model with a cosmological constant (ΛCDM model) for n equal to infinity. We also find that the evolution of the linear cosmological perturbation in the kinetic braiding model reduces to that of the ΛCDM model for n = ∞. Then, we focus our study on the growth history of the linear density perturbation as well as the spherical collapse in the nonlinear regime of the density perturbations, which might be important in order to distinguish between the kinetic braiding model and the ΛCDM model when n is finite. The theoretical prediction for the large scale structure is confronted with the multipole power spectrum of the luminous red galaxy sample of the Sloan Digital Sky survey. We also discuss future prospects of constraining the kinetic braiding model using a future redshift survey like the WFMOS/SuMIRe PFS survey as well as the cluster redshift distribution in the South Pole Telescope survey

  11. THREE-POINT PHASE CORRELATIONS: A NEW MEASURE OF NONLINEAR LARGE-SCALE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Wolstenhulme, Richard; Bonvin, Camille [Kavli Institute for Cosmology Cambridge and Institute of Astronomy, Madingley Road, Cambridge CB3 OHA (United Kingdom); Obreschkow, Danail [International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia)

    2015-05-10

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the nonlinear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F{sub 2}, which governs the nonlinear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1σ agreement for separations r ≳ 30 h{sup −1} Mpc. Fitting formulae for the power spectrum and the nonlinear coupling kernel at small scales allow us to extend our prediction into the strongly nonlinear regime, where we find a 1σ agreement with the simulations for r ≳ 2 h{sup −1} Mpc. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the nonlinear regime of gravity, with less contamination from the power spectrum variance.

  12. Principal shapes and squeezed limits in the effective field theory of large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Solon, Mikhail P., E-mail: dbertolini@lbl.gov, E-mail: mpsolon@lbl.gov [Berkeley Center for Theoretical Physics, University of California, South Hall Road, Berkeley, CA, 94720 (United States)

    2016-11-01

    We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes—referred to as the principal shape—that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of the principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with Ο (10%) precision. These methods of shape orthogonalization and measurement of coefficients from response functions are valuable tools for developing the EFT of LSS framework, and can be applied to more general observables.

  13. Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure

    Science.gov (United States)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.

  14. Structure of the Large Magellanic Cloud from near infrared magnitudes of red clump stars

    Science.gov (United States)

    Subramanian, S.; Subramaniam, A.

    2013-04-01

    Context. The structural parameters of the disk of the Large Magellanic Cloud (LMC) are estimated. Aims: We used the JH photometric data of red clump (RC) stars from the Magellanic Cloud Point Source Catalog (MCPSC) obtained from the InfraRed Survey Facility (IRSF) to estimate the structural parameters of the LMC disk, such as the inclination, i, and the position angle of the line of nodes (PAlon), φ. Methods: The observed LMC region is divided into several sub-regions, and stars in each region are cross-identified with the optically identified RC stars to obtain the near infrared magnitudes. The peak values of H magnitude and (J - H) colour of the observed RC distribution are obtained by fitting a profile to the distributions and by taking the average value of magnitude and colour of the RC stars in the bin with largest number. Then the dereddened peak H0 magnitude of the RC stars in each sub-region is obtained from the peak values of H magnitude and (J - H) colour of the observed RC distribution. The right ascension (RA), declination (Dec), and relative distance from the centre of each sub-region are converted into x,y, and z Cartesian coordinates. A weighted least square plane fitting method is applied to this x,y,z data to estimate the structural parameters of the LMC disk. Results: An intrinsic (J - H)0 colour of 0.40 ± 0.03 mag in the Simultaneous three-colour InfraRed Imager for Unbiased Survey (SIRIUS) IRSF filter system is estimated for the RC stars in the LMC and a reddening map based on (J - H) colour of the RC stars is presented. When the peaks of the RC distribution were identified by averaging, an inclination of 25°.7 ± 1°.6 and a PAlon = 141°.5 ± 4°.5 were obtained. We estimate a distance modulus, μ = 18.47 ± 0.1 mag to the LMC. Extra-planar features which are both in front and behind the fitted plane are identified. They match with the optically identified extra-planar features. The bar of the LMC is found to be part of the disk within 500

  15. Structural analyses of very large semi-submersibles in waves; Choogata hansensuishiki futai no harochu kozo oto kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, K.; Yoshida, K.; Suzuki, H. [The University of Tokyo, Tokyo (Japan)

    1997-08-01

    An analysis method in which the technique of a vehicle obtained when a three-dimensional singular point distribution method and Kagemoto`s mutual interaction theory are combined was expanded for the fluid area was proposed as the structural analysis of very large semi-submersibles in waves. A partial structure method is used for the structure. In a fluid area, the number of unknown quantities appearing in a final expression could be largely reduced by introducing the new concept of a group body. In this process, both hydro-elasticity and hydrodynamic mutual interaction are considered. As a result, floating bodies that could not be previously calculated can be modeled as a three-dimensional frame structure and the response analysis in waves can be carried out without damaging the accuracy. The calculation result is used as the input data required for analyzing the structural fatigue locally during structural design of very large semi-submersibles in the 3,000 (m) class. This study can present a series of procedures between the response analysis of very large floating bodies in waves and the structural design. 11 refs., 14 figs., 1 tab.

  16. Ensuring production-worthy OPC recipes using large test structure arrays

    Science.gov (United States)

    Cork, Christopher; Zimmermann, Rainer; Mei, Xin; Shahin, Alexander

    2007-03-01

    . An OPC correction recipe which gives acceptable verification results, based solely on one customer GDS is clearly not sufficient to guarantee that all future tape-outs from multiple customers will be similarly clean. Ad hoc changes made in reaction to problems seen at verification are risky, while they may solve one particular layout issue on one product there is no guarantee that the problem may simply shift to another configuration on a yet to be manufactured part. The need to re-qualify a recipe over multiple products at each recipe change can easily results in excessive computational requirements. A single layer at an advanced node typically needs overnight runs on a large processor farm. Much of this layout, however, is extremely repetitive, made from a few standard cells placed tens of thousands of times. An alternative and more efficient approach, suggested by this paper as a screening methodology, is to encapsulate the problematic structures into a programmable test structure array. The dimensions of these test structures are parameterized in software such that they can be generated with these dimensions varied over the space of the design rules and conceivable design styles. By verifying the new recipe over these test structures one could more quickly gain confidence that this recipe would be robust over multiple tape-outs. This paper gives some examples of the implementation of this methodology.

  17. DEMNUni: the clustering of large-scale structures in the presence of massive neutrinos

    International Nuclear Information System (INIS)

    Castorina, Emanuele; Carbone, Carmelita; Bel, Julien; Sefusatti, Emiliano; Dolag, Klaus

    2015-01-01

    We analyse the clustering features of Large Scale Structures (LSS) in the presence of massive neutrinos, employing a set of large-volume, high-resolution cosmological N-body simulations, where neutrinos are treated as separate collisionless particles. The volume of 8 h -3 Gpc 3 , combined with a resolution of about 8×10 10 h -1 M ⊚ for the cold dark matter (CDM) component, represents a significant improvement over previous N-body simulations in massive neutrino cosmologies. In this work we focus, in the first place, on the analysis of nonlinear effects in CDM and neutrinos perturbations contributing to the total matter power spectrum. We show that most of the nonlinear evolution is generated exclusively by the CDM component. We therefore compare mildly nonlinear predictions from Eulerian Perturbation Theory (PT), and fully nonlinear prescriptions (HALOFIT) with the measurements obtained from the simulations. We find that accounting only for the nonlinear evolution of the CDM power spectrum allows to recover the total matter power spectrum with the same accuracy as the massless case. Indeed, we show that, the most recent version of the (HALOFIT) formula calibrated on ΛCDM simulations can be applied directly to the linear CDM power spectrum without requiring additional fitting parameters in the massive case. As a second step, we study the abundance and clustering properties of CDM halos, confirming that, in massive neutrino cosmologies, the proper definition of the halo bias should be made with respect to the cold rather than the total matter distribution, as recently shown in the literature. Here we extend these results to the redshift space, finding that, when accounting for massive neutrinos, an improper definition of the linear bias can lead to a systematic error of about 1-2 % in the determination of the linear growth rate from anisotropic clustering. This result is quite important if we consider that future spectroscopic galaxy surveys, as e.g. Euclid, are

  18. Determinants of Functional and Structural Properties of Large Arteries in Healthy Individuals

    Energy Technology Data Exchange (ETDEWEB)

    Tolezani, Elaine Cristina; Costa-Hong, Valéria, E-mail: hong.valeria@gmail.com; Correia, Gustavo; Mansur, Alfredo José; Drager, Luciano Ferreira; Bortolotto, Luiz Aparecido [Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-11-15

    Changes in the properties of large arteries correlate with higher cardiovascular risk. Recent guidelines have included the assessment of those properties to detect subclinical disease. Establishing reference values for the assessment methods as well as determinants of the arterial parameters and their correlations in healthy individuals is important to stratify patients. To assess, in healthy adults, the distribution of the values of pulse wave velocity, diameter, intima-media thickness and relative distensibility of the carotid artery, in addition to assessing the demographic and clinical determinants of those parameters and their correlations. This study evaluated 210 individuals (54% women; mean age, 44 ± 13 years) with no evidence of cardiovascular disease. The carotid-femoral pulse wave velocity was measured with a Complior{sup ®} device. The functional and structural properties of the carotid artery were assessed by using radiofrequency ultrasound. The means of the following parameters were: pulse wave velocity, 8.7 ± 1.5 m/s; diameter, 6,707.9 ± 861.6 μm; intima-media thickness, 601 ± 131 μm; relative distensibility, 5.3 ± 2.1%. No significant difference related to sex or ethnicity was observed. On multiple linear logistic regression, the factors independently related to the vascular parameters were: pulse wave velocity, to age (p < 0.01) and triglycerides (p = 0.02); intima-media thickness, to age (p < 0.01); diameter, to creatinine (p = 0.03) and age (p = 0.02); relative distensibility, to age (p < 0.01) and systolic and diastolic blood pressures (p = 0.02 and p = 0.01, respectively). Pulse wave velocity showed a positive correlation with intima media thickness (p < 0.01) and with relative distensibility (p < 0.01), while diameter showed a positive correlation with distensibility (p = 0.03). In healthy individuals, age was the major factor related to aortic stiffness, while age and diastolic blood pressure related to the carotid functional measure

  19. Determinants of Functional and Structural Properties of Large Arteries in Healthy Individuals

    International Nuclear Information System (INIS)

    Tolezani, Elaine Cristina; Costa-Hong, Valéria; Correia, Gustavo; Mansur, Alfredo José; Drager, Luciano Ferreira; Bortolotto, Luiz Aparecido

    2014-01-01

    Changes in the properties of large arteries correlate with higher cardiovascular risk. Recent guidelines have included the assessment of those properties to detect subclinical disease. Establishing reference values for the assessment methods as well as determinants of the arterial parameters and their correlations in healthy individuals is important to stratify patients. To assess, in healthy adults, the distribution of the values of pulse wave velocity, diameter, intima-media thickness and relative distensibility of the carotid artery, in addition to assessing the demographic and clinical determinants of those parameters and their correlations. This study evaluated 210 individuals (54% women; mean age, 44 ± 13 years) with no evidence of cardiovascular disease. The carotid-femoral pulse wave velocity was measured with a Complior ® device. The functional and structural properties of the carotid artery were assessed by using radiofrequency ultrasound. The means of the following parameters were: pulse wave velocity, 8.7 ± 1.5 m/s; diameter, 6,707.9 ± 861.6 μm; intima-media thickness, 601 ± 131 μm; relative distensibility, 5.3 ± 2.1%. No significant difference related to sex or ethnicity was observed. On multiple linear logistic regression, the factors independently related to the vascular parameters were: pulse wave velocity, to age (p < 0.01) and triglycerides (p = 0.02); intima-media thickness, to age (p < 0.01); diameter, to creatinine (p = 0.03) and age (p = 0.02); relative distensibility, to age (p < 0.01) and systolic and diastolic blood pressures (p = 0.02 and p = 0.01, respectively). Pulse wave velocity showed a positive correlation with intima media thickness (p < 0.01) and with relative distensibility (p < 0.01), while diameter showed a positive correlation with distensibility (p = 0.03). In healthy individuals, age was the major factor related to aortic stiffness, while age and diastolic blood pressure related to the carotid functional measure. The

  20. Determinants of Functional and Structural Properties of Large Arteries in Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Elaine Cristina Tolezani

    2014-11-01

    Full Text Available Background: Changes in the properties of large arteries correlate with higher cardiovascular risk. Recent guidelines have included the assessment of those properties to detect subclinical disease. Establishing reference values for the assessment methods as well as determinants of the arterial parameters and their correlations in healthy individuals is important to stratify patients. Objective: To assess, in healthy adults, the distribution of the values of pulse wave velocity, diameter, intima-media thickness and relative distensibility of the carotid artery, in addition to assessing the demographic and clinical determinants of those parameters and their correlations. Methods: This study evaluated 210 individuals (54% women; mean age, 44 ± 13 years with no evidence of cardiovascular disease. The carotid-femoral pulse wave velocity was measured with a Complior® device. The functional and structural properties of the carotid artery were assessed by using radiofrequency ultrasound. Results: The means of the following parameters were: pulse wave velocity, 8.7 ± 1.5 m/s; diameter, 6,707.9 ± 861.6 μm; intima-media thickness, 601 ± 131 μm; relative distensibility, 5.3 ± 2.1%. No significant difference related to sex or ethnicity was observed. On multiple linear logistic regression, the factors independently related to the vascular parameters were: pulse wave velocity, to age (p < 0.01 and triglycerides (p = 0.02; intima-media thickness, to age (p < 0.01; diameter, to creatinine (p = 0.03 and age (p = 0.02; relative distensibility, to age (p < 0.01 and systolic and diastolic blood pressures (p = 0.02 and p = 0.01, respectively. Pulse wave velocity showed a positive correlation with intima media thickness (p < 0.01 and with relative distensibility (p < 0.01, while diameter showed a positive correlation with distensibility (p = 0.03. Conclusion: In healthy individuals, age was the major factor related to aortic stiffness, while age and diastolic

  1. Probing cosmology with the homogeneity scale of the Universe through large scale structure surveys

    International Nuclear Information System (INIS)

    Ntelis, Pierros

    2017-01-01

    . It is thus possible to reconstruct the distribution of matter in 3 dimensions in gigantic volumes. We can then extract various statistical observables to measure the BAO scale and the scale of homogeneity of the universe. Using Data Release 12 CMASS galaxy catalogs, we obtained precision on the homogeneity scale reduced by 5 times compared to Wiggle Z measurement. At large scales, the universe is remarkably well described in linear order by the ΛCDM-model, the standard model of cosmology. In general, it is not necessary to take into account the nonlinear effects which complicate the model at small scales. On the other hand, at large scales, the measurement of our observables becomes very sensitive to the systematic effects. This is particularly true for the analysis of cosmic homogeneity, which requires an observational method so as not to bias the measurement. In order to study the homogeneity principle in a model independent way, we explore a new way to infer distances using cosmic clocks and type Ia Supernovae. This establishes the Cosmological Principle using only a small number of a priori assumption, i.e. the theory of General Relativity and astrophysical assumptions that are independent from Friedmann Universes and in extend the homogeneity assumption. This manuscript is as follows. After a short presentation of the knowledge in cosmology necessary for the understanding of this manuscript, presented in Chapter 1, Chapter 2 will deal with the challenges of the Cosmological Principle as well as how to overcome those. In Chapter 3, we will discuss the technical characteristics of the large scale structure surveys, in particular focusing on BOSS and eBOSS galaxy surveys. Chapter 4 presents the detailed analysis of the measurement of cosmic homogeneity and the various systematic effects likely to impact our observables. Chapter 5 will discuss how to use the cosmic homogeneity as a standard ruler to constrain dark energy models from current and future surveys. In

  2. Analyzing the effect of large rotations on the seismic response of structures subjected to foundation local uplift

    Directory of Open Access Journals (Sweden)

    El Abbas N.

    2016-01-01

    Full Text Available This work deals with seismic analysis of structures by taking into account soil-structure interaction where the structure is modeled by an equivalent flexible beam mounted on a rigid foundation that is supported by a Winkler like soil. The foundation is assumed to undergo local uplift and the rotations are considered to be large. The coupling of the system is represented by a series of springs and damping elements that are distributed over the entire width of the foundation. The non-linear equations of motion of the system were derived by taking into account the equilibrium of the coupled foundation-structure system where the structure was idealized as a single-degree-of-freedom. The seismic response of the structure was calculated under the occurrence of foundation uplift for both large and small rotations. The non-linear differential system of equations was integrated by using the Matlab command ode15s. The maximum response has been determined as function of the intensity of the earthquake, the slenderness of the structure and the damping ratio. It was found that considering local uplift with small rotations of foundation under seismic loading leads to unfavorable structural response in comparison with the case of large rotations.

  3. The structure of Karman vortex streets in the atmospheric boundary layer derived from large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Rieke; Raasch, Siegfried; Etling, Dieter [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    2012-06-15

    Karman vortex streets generated in the wake of an idealized island are studied using large eddy simulation (LES). Simulations were carried out under conditions of a dry convective boundary layer, capped by an inversion below the island top. These conditions are more realistic compared to previous studies in which mesoscale models with a uniform stable stratification were used. Several properties of the vortex streets like the shedding period of the vortices and the distances between cyclonic and anti-cyclonic vortices were determined for various values of Froude number and surface heat flux. The main focus of the study was to identify the azimuthally averaged structure of fully developed single vortices, which is presented here for the first time. For this purpose a tracking mechanism was developed which allows to detect and to follow vortices automatically. Because the capping inversion is located below the obstacle top, the vortices extend throughout the whole depth of the mixed layer and their features are almost constant with height. They have a nearly upright vertical axis with a warm core, which is feeded by a convergent near-surface inflow of warm air. The vortex core is dominated by a continuous updraft in the order of 10 cm s{sup -1}, which is associated with a divergent outflow of air at the vortex' top. This flow divergence creates an additional increase in temperature due to a locally sinking inversion, which is probably responsible for the cloud-free eye of many observed vortices. An increase in the surface heat flux is causing a faster decay of the vortices due to stronger boundary layer turbulence. Other vortex features derived from the simulations are very similar to those from previous studies. (orig.)

  4. Large-Scale Structure and Dynamics of the Sub-Auroral Polarization Stream (SAPS)

    Science.gov (United States)

    Baker, J. B. H.; Nishitani, N.; Kunduri, B.; Ruohoniemi, J. M.; Sazykin, S. Y.

    2017-12-01

    The Sub-Auroral Polarization Stream (SAPS) is a narrow channel of high-speed westward ionospheric convection which appears equatorward of the duskside auroral oval during geomagnetically active periods. SAPS is generally thought to occur when the partial ring current intensifies and enhanced region-2 field-aligned currents (FACs) are forced to close across the low conductance region of the mid-latitude ionospheric trough. However, recent studies have suggested SAPS can also occur during non-storm periods, perhaps associated with substorm activity. In this study, we used measurements from mid-latitude SuperDARN radars to examine the large-scale structure and dynamics of SAPS during several geomagnetically active days. Linear correlation analysis applied across all events suggests intensifications of the partial ring current (ASYM-H index) and auroral activity (AL index) are both important driving influences for controlling the SAPS speed. Specifically, SAPS flows increase, on average, by 20-40 m/s per 10 nT of ASYM-H and 10-30 m/s per 100 nT of AL. These dependencies tend to be stronger during the storm recovery phase. There is also a strong local time dependence such that the strength of SAPS flows decrease by 70-80 m/s for each hour of local time moving from dusk to midnight. By contrast, the evidence for direct solar wind control of SAPS speed is much less consistent, with some storms showing strong correlations with the interplanetary electric field components and/or solar wind dynamic pressure, while others do not. These results are discussed in the context of recent simulation results from the Rice Convection Model (RCM).

  5. Large-scale structural alteration of brain in epileptic children with SCN1A mutation.

    Science.gov (United States)

    Lee, Yun-Jeong; Yum, Mi-Sun; Kim, Min-Jee; Shim, Woo-Hyun; Yoon, Hee Mang; Yoo, Il Han; Lee, Jiwon; Lim, Byung Chan; Kim, Ki Joong; Ko, Tae-Sung

    2017-01-01

    Mutations in SCN1A gene encoding the alpha 1 subunit of the voltage gated sodium channel are associated with several epilepsy syndromes including genetic epilepsy with febrile seizures plus (GEFS +) and severe myoclonic epilepsy of infancy (SMEI). However, in most patients with SCN1A mutation, brain imaging has reported normal or non-specific findings including cerebral or cerebellar atrophy. The aim of this study was to investigate differences in brain morphometry in epileptic children with SCN1A mutation compared to healthy control subjects. We obtained cortical morphology (thickness, and surface area) and brain volume (global, subcortical, and regional) measurements using FreeSurfer (version 5.3.0, https://surfer.nmr.mgh.harvard.edu) and compared measurements of children with epilepsy and SCN1A gene mutation ( n  = 21) with those of age and gender matched healthy controls ( n  = 42). Compared to the healthy control group, children with epilepsy and SCN1A gene mutation exhibited smaller total brain, total gray matter and white matter, cerebellar white matter, and subcortical volumes, as well as mean surface area and mean cortical thickness. A regional analysis revealed significantly reduced gray matter volume in the patient group in the bilateral inferior parietal, left lateral orbitofrontal, left precentral, right postcentral, right isthmus cingulate, right middle temporal area with smaller surface area and white matter volume in some of these areas. However, the regional cortical thickness was not significantly different in two groups. This study showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients. Further longitudinal MRI studies with larger cohorts are required to confirm the effect of SCN1A gene mutation on structural brain development.

  6. A new method to determine large scale structure from the luminosity distance

    International Nuclear Information System (INIS)

    Romano, Antonio Enea; Chiang, Hsu-Wen; Chen, Pisin

    2014-01-01

    The luminosity distance can be used to determine the properties of large scale structure around the observer. To this purpose we develop a new inversion method to map luminosity distance to a Lemaitre–Tolman–Bondi (LTB) metric based on the use of the exact analytical solution for Einstein equations. The main advantages of this approach are an improved numerical accuracy and stability, an exact analytical setting of the initial conditions for the differential equations which need to be solved and the validity for any sign of the functions determining the LTB geometry. Given the fully analytical form of the differential equations, this method also simplifies the calculation of the red-shift expansion around the apparent horizon point where the numerical solution becomes unstable. We test the method by inverting the supernovae Ia luminosity distance function corresponding to the best fit ΛCDM model. We find that only a limited range of initial conditions is compatible with observations, or a transition from red to blue-shift can occur at relatively low red-shift. Despite LTB solutions without a cosmological constant have been shown not to be compatible with all different set of available observational data, those studies normally fit data assuming a special functional ansatz for the inhomogeneity profile, which often depend only on few parameters. Inversion methods on the contrary are able to fully explore the freedom in fixing the functions which determine a LTB solution. Another important possible application is not about LTB solutions as cosmological models, but rather as tools to study the effects on the observations made by a generic observer located in an inhomogeneous region of the Universe where a fully non perturbative treatment involving exact solutions of Einstein equations is required. (paper)

  7. On the Contribution of Large-Scale Structure to Strong Gravitational Lensing

    Science.gov (United States)

    Faure, C.; Kneib, J.-P.; Hilbert, S.; Massey, R.; Covone, G.; Finoguenov, A.; Leauthaud, A.; Taylor, J. E.; Pires, S.; Scoville, N.; Koekemoer, Anton M.

    2009-04-01

    We study the correlation between the locations of galaxy-galaxy strong-lensing candidates and tracers of large-scale structure from both weak lensing (WL) or X-ray emission. The Cosmological Evolution Survey (COSMOS) is a unique data set, combining deep, high resolution and contiguous imaging in which strong lenses have been discovered, plus unparalleled multiwavelength coverage. To help interpret the COSMOS data, we have also produced mock COSMOS strong- and WL observations, based on ray-tracing through the Millennium Simulation. In agreement with the simulations, we find that strongly lensed images with the largest angular separations are found in the densest regions of the COSMOS field. This is explained by a prevalence among the lens population in dense environments of elliptical galaxies with high total-to-stellar mass ratios, which can deflect light through larger angles. However, we also find that the overall fraction of elliptical galaxies with strong gravitational lensing is independent of the local mass density; this observation is not true of the simulations, which predict an increasing fraction of strong lenses in dense environments. The discrepancy may be a real effect, but could also be explained by various limitations of our analysis. For example, our visual search of strong lens systems could be incomplete and suffer from selection bias; the luminosity function of elliptical galaxies may differ between our real and simulated data; or the simplifying assumptions and approximations used in our lensing simulations may be inadequate. Work is therefore ongoing. Automated searches for strong lens systems will be particularly important in better constraining the selection function.

  8. How CMB and large-scale structure constrain chameleon interacting dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Boriero, Daniel [Fakultät für Physik, Universität Bielefeld, Universitätstr. 25, Bielefeld (Germany); Das, Subinoy [Indian Institute of Astrophisics, Bangalore, 560034 (India); Wong, Yvonne Y.Y., E-mail: boriero@physik.uni-bielefeld.de, E-mail: subinoy@iiap.res.in, E-mail: yvonne.y.wong@unsw.edu.au [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)

    2015-07-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.

  9. New approach to the design of core support structures for large LMFBR plants

    International Nuclear Information System (INIS)

    Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.

    1984-01-01

    The paper describes an innovative design concept for a LMFBR Core Support Structure. A hanging Core Support Structure is described and analyzed. The design offers inherent safety features, constructibility advantages, and potential cost reductions

  10. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study

    Science.gov (United States)

    Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing

    2018-04-01

    Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.

  11. Method of making large area conformable shape structures for detector/sensor applications using glass drawing technique and postprocessing

    Science.gov (United States)

    Ivanov, Ilia N [Knoxville, TN; Simpson, John T [Clinton, IN

    2012-01-24

    A method of making a large area conformable shape structure comprises drawing a plurality of tubes to form a plurality of drawn tubes, and cutting the plurality of drawn tubes into cut drawn tubes of a predetermined shape. The cut drawn tubes have a first end and a second end along the longitudinal direction of the cut drawn tubes. The method further comprises conforming the first end of the cut drawn tubes into a predetermined curve to form the large area conformable shape structure, wherein the cut drawn tubes contain a material.

  12. Large νμ-ντ mixing and the structure of right-handed Majorana mass matrix

    International Nuclear Information System (INIS)

    Matsuda, Masahisa

    1993-01-01

    Recent solar neutrino and atmospheric neutrino experiment suggest the existence of the large lepton mixing among 2nd and 3rd generation neutrino. This fact gives the important information on the structure of right-handed Majorana neutrino. It is shown that, if we assume that the neutrino Dirac mass matrix is similar to the mass matrix of the up-quark sector, the large lepton mixing among the 2nd and the 3rd generation requires the hierarchical structure of the Majorana mass matrix. This model-independent analyses serve the model-building of the mass matrices based on the quark-lepton unified theory. (author)

  13. Development of the simulation package 'ELSES' for extra-large-scale electronic structure calculation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, T [Department of Applied Mathematics and Physics, Tottori University, Tottori 680-8550 (Japan); Fujiwara, T [Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (CREST-JST) (Japan)

    2009-02-11

    An early-stage version of the simulation package 'ELSES' (extra-large-scale electronic structure calculation) is developed for simulating the electronic structure and dynamics of large systems, particularly nanometer-scale and ten-nanometer-scale systems (see www.elses.jp). Input and output files are written in the extensible markup language (XML) style for general users. Related pre-/post-simulation tools are also available. A practical workflow and an example are described. A test calculation for the GaAs bulk system is shown, to demonstrate that the present code can handle systems with more than one atom species. Several future aspects are also discussed.

  14. A constraint logic programming approach to associate 1D and 3D structural components for large protein complexes.

    Science.gov (United States)

    Dal Palù, Alessandro; Pontelli, Enrico; He, Jing; Lu, Yonggang

    2007-01-01

    The paper describes a novel framework, constructed using Constraint Logic Programming (CLP) and parallelism, to determine the association between parts of the primary sequence of a protein and alpha-helices extracted from 3D low-resolution descriptions of large protein complexes. The association is determined by extracting constraints from the 3D information, regarding length, relative position and connectivity of helices, and solving these constraints with the guidance of a secondary structure prediction algorithm. Parallelism is employed to enhance performance on large proteins. The framework provides a fast, inexpensive alternative to determine the exact tertiary structure of unknown proteins.

  15. Reconstruction of a large-scale reconnection exhaust structure in the solar wind

    Directory of Open Access Journals (Sweden)

    W.-L. Teh

    2009-02-01

    Full Text Available We recover two-dimensional (2-D magnetic field and flow field configurations from three spacecraft encounters with a single large-scale reconnection exhaust structure in the solar wind, using a new reconstruction method (Sonnerup and Teh, 2008 based on the ideal single-fluid MHD equations in a steady-state, 2-D geometry. The reconstruction is performed in the rest frame of the X-line, where the flow into, and the plasma jetting within, the exhaust region are clearly visible. The event was first identified by Phan et al. (2006 in the ACE, Cluster, and Wind data sets; they argued that quasi-steady reconnection persisted for over 2 h at a long (390 RE X-line. The reconnection exhaust is sandwiched between two discontinuities, both of which contain elements of intermediate- and slow-mode behavior; these elements are co-located rather than being spatially separated. These composite discontinuities do not satisfy the coplanarity condition or the standard MHD jump conditions. For all three spacecraft, the Walén regression line slope was positive (negative for the leading (trailing discontinuity. Our MHD reconstruction shows that: (1 the X-line orientation was close to the bisector of the overall magnetic shear angle and exhibited a slow rotating motion toward the Sun-Earth line; (2 the X-line moved earthward, dawnward, and southward; (3 the reconnection electric field was small (~0.02 mV/m on average and gradually decreased from the first crossing (ACE to the last (Wind. The magnetic field and flow field configurations recovered from ACE and Cluster are similar while those recovered from Wind also include a magnetic island and an associated vortex. Reconnection persisted for at least 2.4 h involving inflow into the exhaust region from its two sides. Time-dependence in the reconnection electric fields seen by ACE and Wind indicates local temporal variations in the field configuration. In addition to the reconstruction results, we

  16. Reconstruction of a large-scale reconnection exhaust structure in the solar wind

    International Nuclear Information System (INIS)

    Teh, W.L.; Sonnerup, B.U.Oe.; Hu, Q.; Farrugia, C.J.

    2009-01-01

    We recover two-dimensional (2-D) magnetic field and flow field configurations from three spacecraft encounters with a single large-scale reconnection exhaust structure in the solar wind, using a new reconstruction method (Sonnerup and Teh, 2008) based on the ideal single-fluid MHD equations in a steady-state, 2-D geometry. The reconstruction is performed in the rest frame of the X-line, where the flow into, and the plasma jetting within, the exhaust region are clearly visible. The event was first identified by Phan et al. (2006) in the ACE, Cluster, and Wind data sets; they argued that quasi-steady reconnection persisted for over 2 h at a long (390 R E ) X-line. The reconnection exhaust is sandwiched between two discontinuities, both of which contain elements of intermediate- and slow-mode behavior; these elements are co-located rather than being spatially separated. These composite discontinuities do not satisfy the coplanarity condition or the standard MHD jump conditions. For all three spacecraft, the Walen regression line slope was positive (negative) for the leading (trailing) discontinuity. Our MHD reconstruction shows that: (1) the X-line orientation was close to the bisector of the overall magnetic shear angle and exhibited a slow rotating motion toward the Sun-Earth line; (2) the X-line moved earthward, dawnward, and southward; (3) the reconnection electric field was small (∝0.02 mV/m on average) and gradually decreased from the first crossing (ACE) to the last (Wind). The magnetic field and flow field configurations recovered from ACE and Cluster are similar while those recovered from Wind also include a magnetic island and an associated vortex. Reconnection persisted for at least 2.4 h involving inflow into the exhaust region from its two sides. Time-dependence in the reconnection electric fields seen by ACE and Wind indicates local temporal variations in the field configuration. In addition to the reconstruction results, we provide a description and

  17. Reconstruction of a large-scale reconnection exhaust structure in the solar wind

    Directory of Open Access Journals (Sweden)

    W.-L. Teh

    2009-02-01

    Full Text Available We recover two-dimensional (2-D magnetic field and flow field configurations from three spacecraft encounters with a single large-scale reconnection exhaust structure in the solar wind, using a new reconstruction method (Sonnerup and Teh, 2008 based on the ideal single-fluid MHD equations in a steady-state, 2-D geometry. The reconstruction is performed in the rest frame of the X-line, where the flow into, and the plasma jetting within, the exhaust region are clearly visible. The event was first identified by Phan et al. (2006 in the ACE, Cluster, and Wind data sets; they argued that quasi-steady reconnection persisted for over 2 h at a long (390 RE X-line. The reconnection exhaust is sandwiched between two discontinuities, both of which contain elements of intermediate- and slow-mode behavior; these elements are co-located rather than being spatially separated. These composite discontinuities do not satisfy the coplanarity condition or the standard MHD jump conditions. For all three spacecraft, the Walén regression line slope was positive (negative for the leading (trailing discontinuity. Our MHD reconstruction shows that: (1 the X-line orientation was close to the bisector of the overall magnetic shear angle and exhibited a slow rotating motion toward the Sun-Earth line; (2 the X-line moved earthward, dawnward, and southward; (3 the reconnection electric field was small (~0.02 mV/m on average and gradually decreased from the first crossing (ACE to the last (Wind. The magnetic field and flow field configurations recovered from ACE and Cluster are similar while those recovered from Wind also include a magnetic island and an associated vortex. Reconnection persisted for at least 2.4 h involving inflow into the exhaust region from its two sides. Time-dependence in the reconnection electric fields seen by ACE and Wind indicates local temporal variations in the field configuration. In addition to the reconstruction results, we provide a description

  18. Tracking of large-scale structures in turbulent channel with direct numerical simulation of low Prandtl number passive scalar

    Science.gov (United States)

    Tiselj, Iztok

    2014-12-01

    Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and

  19. Determination of crystal structures with large known fragments directly from measured X-ray powder diffraction intensities

    International Nuclear Information System (INIS)

    Rius, J.; Miravitlles, C.

    1988-01-01

    A strategy for the determination of crystal structures with large known fragments directly from measured X-ray powder diffraction intensities is presented. It is based on the automated full-symmetry Patterson search method described by Rius and Miravitlles where the Fourier coefficients of the observed Patterson function are modified to allow the use of powder diffraction intensity data. Its application to two structures, one with simulated and one with experimental data, is shown. (orig.)

  20. An approach to large scale identification of non-obvious structural similarities between proteins

    Science.gov (United States)

    Cherkasov, Artem; Jones, Steven JM

    2004-01-01

    Background A new sequence independent bioinformatics approach allowing genome-wide search for proteins with similar three dimensional structures has been developed. By utilizing the numerical output of the sequence threading it establishes putative non-obvious structural similarities between proteins. When applied to the testing set of proteins with known three dimensional structures the developed approach was able to recognize structurally similar proteins with high accuracy. Results The method has been developed to identify pathogenic proteins with low sequence identity and high structural similarity to host analogues. Such protein structure relationships would be hypothesized to arise through convergent evolution or through ancient horizontal gene transfer events, now undetectable using current sequence alignment techniques. The pathogen proteins, which could mimic or interfere with host activities, would represent candidate virulence factors. The developed approach utilizes the numerical outputs from the sequence-structure threading. It identifies the potential structural similarity between a pair of proteins by correlating the threading scores of the corresponding two primary sequences against the library of the standard folds. This approach allowed up to 64% sensitivity and 99.9% specificity in distinguishing protein pairs with high structural similarity. Conclusion Preliminary results obtained by comparison of the genomes of Homo sapiens and several strains of Chlamydia trachomatis have demonstrated the potential usefulness of the method in the identification of bacterial proteins with known or potential roles in virulence. PMID:15147578

  1. On Hierarchical Extensions of Large-Scale 4-regular Grid Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Patel, A.; Knudsen, Thomas Phillip

    2004-01-01

    dependencies between the number of nodes and the distances in the structures. The perfect square mesh is introduced for hierarchies, and it is shown that applying ordered hierarchies in this way results in logarithmic dependencies between the number of nodes and the distances, resulting in better scaling...... structures. For example, in a mesh of 391876 nodes the average distance is reduced from 417.33 to 17.32 by adding hierarchical lines. This is gained by increasing the number of lines by 4.20% compared to the non-hierarchical structure. A similar hierarchical extension of the torus structure also results...

  2. Fast large-scale clustering of protein structures using Gauss integrals

    DEFF Research Database (Denmark)

    Harder, Tim; Borg, Mikael; Boomsma, Wouter

    2011-01-01

    trajectories. Results: We present Pleiades, a novel approach to clustering protein structures with a rigorous mathematical underpinning. The method approximates clustering based on the root mean square deviation by rst mapping structures to Gauss integral vectors – which were introduced by Røgen and co......-workers – and subsequently performing K-means clustering. Conclusions: Compared to current methods, Pleiades dramatically improves on the time needed to perform clustering, and can cluster a signicantly larger number of structures, while providing state-ofthe- art results. The number of low energy structures generated...

  3. An approach to large scale identification of non-obvious structural similarities between proteins

    Directory of Open Access Journals (Sweden)

    Cherkasov Artem

    2004-05-01

    Full Text Available Abstract Background A new sequence independent bioinformatics approach allowing genome-wide search for proteins with similar three dimensional structures has been developed. By utilizing the numerical output of the sequence threading it establishes putative non-obvious structural similarities between proteins. When applied to the testing set of proteins with known three dimensional structures the developed approach was able to recognize structurally similar proteins with high accuracy. Results The method has been developed to identify pathogenic proteins with low sequence identity and high structural similarity to host analogues. Such protein structure relationships would be hypothesized to arise through convergent evolution or through ancient horizontal gene transfer events, now undetectable using current sequence alignment techniques. The pathogen proteins, which could mimic or interfere with host activities, would represent candidate virulence factors. The developed approach utilizes the numerical outputs from the sequence-structure threading. It identifies the potential structural similarity between a pair of proteins by correlating the threading scores of the corresponding two primary sequences against the library of the standard folds. This approach allowed up to 64% sensitivity and 99.9% specificity in distinguishing protein pairs with high structural similarity. Conclusion Preliminary results obtained by comparison of the genomes of Homo sapiens and several strains of Chlamydia trachomatis have demonstrated the potential usefulness of the method in the identification of bacterial proteins with known or potential roles in virulence.

  4. Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.; Kotok, E.V.; Novikov, I.D.; Polyudov, A.N.; Shandarin, S.F.; Sigov, Y.S.

    1980-01-01

    The results of a numerical experiment are given that describe the non-linear stages of the development of perturbations in gravitating matter density in the expanding Universe. This process simulates the formation of the large-scale structure of the Universe from an initially almost homogeneous medium. In the one- and two-dimensional cases of this numerical experiment the evolution of the system from 4096 point masses that interact gravitationally only was studied with periodic boundary conditions (simulation of the infinite space). The initial conditions were chosen that resulted from the theory of the evolution of small perturbations in the expanding Universe. The results of numerical experiments are systematically compared with the approximate analytic theory. The results of the calculations show that in the case of collisionless particles, as well as in the gas-dynamic case, the cellular structure appeared at the non-linear stage in the case of the adiabatic perturbations. The greater part of the matter is in thin layers that separate vast regions of low density. In a Robertson-Walker universe the cellular structure exists for a finite time and then fragments into a few compact objects. In the open Universe the cellular structure also exists if the amplitude of initial perturbations is large enough. But the following disruption of the cellular structure is more difficult because of too rapid an expansion of the Universe. The large-scale structure is frozen. (author)

  5. On Hierarchical Extensions of Large-Scale 4-regular Grid Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Patel, A.; Knudsen, Thomas Phillip

    It is studied how the introduction of ordered hierarchies in 4-regular grid network structures decreses distances remarkably, while at the same time allowing for simple topological routing schemes. Both meshes and tori are considered; in both cases non-hierarchical structures have power law depen...

  6. Atomic structure of large angle grain boundaries determined by quantitative X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Fitzsimmons, M.R.; Sass, S.L.

    1988-01-01

    Quantitative X-ray diffraction techniques have been used to determine the atomic structure of the Σ = 5 and 13 [001] twist boundaries in Au with a resolution of 0.09 Angstrom or better. The reciprocal lattices of these boundaries were mapped out using synchrotron radiation. The atomic structures were obtained by testing model structures against the intensity observations with a chi square analysis. The boundary structure were modeled using polyhedra, including octahedra, special configurations of tetrahedra and Archimedian anti-prisms, interwoven together by the boundary symmetry. The results of this work point to the possibility of obtaining general rules for grain boundary structure based on X-ray diffraction observations that give the atomic positions with high resolution

  7. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    Science.gov (United States)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  8. Event structures in large psub(T) hadron-hadron collisions

    International Nuclear Information System (INIS)

    Boeggild, H.

    1977-01-01

    Recent large psub(T) experimental results are reviewed with a special emphasis on high energy pp experiments at FNAL and ISR. Some theoretical approaches with a considerable success are discussed. (Auth.)

  9. Advanced Materials and Production Technology for Very Large Solar Sail Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar sails are an attractive means for propulsion of future spacecraft. One potential device for deploying and supporting very large solar sails is the CoilAble...

  10. Large Area Active Brazing of Multi-tile Ceramic-Metal Structures

    Science.gov (United States)

    2012-05-01

    metallurgical bonds. The major disadvantage of using active brazing for metals and ceramics is the high processing temperature required that results in...steels) and form strong, metallurgical bonds. However, the high processing temperatures result in large strain (stress) build-up from the inherent...metals such as titanium alloys and stainless steels) and form strong, metallurgical bonds. However, the high processing temperatures result in large

  11. Hierarchical and Matrix Structures in a Large Organizational Email Network: Visualization and Modeling Approaches

    OpenAIRE

    Sims, Benjamin H.; Sinitsyn, Nikolai; Eidenbenz, Stephan J.

    2014-01-01

    This paper presents findings from a study of the email network of a large scientific research organization, focusing on methods for visualizing and modeling organizational hierarchies within large, complex network datasets. In the first part of the paper, we find that visualization and interpretation of complex organizational network data is facilitated by integration of network data with information on formal organizational divisions and levels. By aggregating and visualizing email traffic b...

  12. Electroproduction cross section of large-E bot hadrons at NLO and virtual photon structure function

    International Nuclear Information System (INIS)

    Fontannaz, M.

    2004-01-01

    We calculate higher order corrections to the resolved component of the electroproduction cross section of large- E bot hadrons. The parton distributions in the virtual photon are studied in detail and a NLO parametrization of the latter is proposed. The contribution of the resolved component to the forward production of large- E bot hadrons is calculated and its connection with the BFKL cross section is discussed. (orig.)

  13. Further evidence for jet structure in large transverse momentum reactions from rapidity correlations and associated multiplicities

    International Nuclear Information System (INIS)

    Ranft, J.; Ranft, G.

    1976-10-01

    Using the hard collision model and a simple parametrisation for jet fragmentation expressions for same side and opposite side two-particle correlations and multiplicities associated with large transverse momentum trigger particles are derived. Recent data on rapidity correlations and associated multiplicities can be well understood in such a model. This result is interpreted as further evidence for the presence of jets in large transverse momentum reactions. (author)

  14. On the Renormalization of the Effective Field Theory of Large Scale Structures

    OpenAIRE

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory o...

  15. A large 3D physical model: a tool to investigate the consequences of ground movements on the surface structures

    Directory of Open Access Journals (Sweden)

    Hor B.

    2010-06-01

    Full Text Available Soil subsidence of various extend and amplitude can result from the failure of underground cavities, whether natural (for example caused by the dissolution of rocks by underground water flow or man-made (such as mines. The impact of the ground movements on existing structures (houses, buildings, bridges, etc… is generally dramatic. A large small-scale physical model is developed in order to improve our understanding of the behaviour of the building subjected to ground subsidence or the collapse of cavities. We focus on the soil-structure interaction and on the mitigation techniques allowing reducing the vulnerability of the buildings (structures.

  16. Fault structure analysis by means of large deformation simulator; Daihenkei simulator ni yoru danso kozo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Y.; Shi, B. [Geological Survey of Japan, Tsukuba (Japan); Matsushima, J. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1997-05-27

    Large deformation of the crust is generated by relatively large displacement of the mediums on both sides along a fault. In the conventional finite element method, faults are dealt with by special elements which are called joint elements, but joint elements, elements microscopic in width, generate numerical instability if large shear displacement is given. Therefore, by introducing the master slave (MO) method used for contact analysis in the metal processing field, developed was a large deformation simulator for analyzing diastrophism including large displacement along the fault. Analysis examples were shown in case the upper basement and lower basement were relatively dislocated with the fault as a boundary. The bottom surface and right end boundary of the lower basement are fixed boundaries. The left end boundary of the lower basement is fixed, and to the left end boundary of the upper basement, the horizontal speed, 3{times}10{sup -7}m/s, was given. In accordance with the horizontal movement of the upper basement, the boundary surface largely deformed. Stress is almost at right angles at the boundary surface. As to the analysis of faults by the MO method, it has been used for a single simple fault, but should be spread to lots of faults in the future. 13 refs., 2 figs.

  17. Observations of large-amplitude MHD waves in Jupiter's foreshock in connection with a quasi-perpendicular shock structure

    Science.gov (United States)

    Bavassano-Cattaneo, M. B.; Moreno, G.; Scotto, M. T.; Acuna, M.

    1987-01-01

    Plasma and magnetic field observations performed onboard the Voyager 2 spacecraft have been used to investigate Jupiter's foreshock. Large-amplitude waves have been detected in association with the quasi-perpendicular structure of the Jovian bow shock, thus proving that the upstream turbulence is not a characteristic signature of the quasi-parallel shock.

  18. Very large cryoturbation structures of Last Permafrost Maximum age at the foot of the Qilian Mountains (NE Tibet Plateau, China)

    NARCIS (Netherlands)

    Vandenberghe, J.F.; Wang, X.; Vandenberghe, D.

    2016-01-01

    Unusually large cryoturbation structures (4-4.5 m amplitude), developed in channel gravels and overbank fine-grained deposits of a river terrace on the NE Tibet Plateau, China, were formed by loadcasting as late Pleistocene-age permafrost degraded. It is suggested that the oversaturation and

  19. Proceedings of the Workshop on Applications of Distributed System Theory to the Control of Large Space Structures

    Science.gov (United States)

    Rodriguez, G. (Editor)

    1983-01-01

    Two general themes in the control of large space structures are addressed: control theory for distributed parameter systems and distributed control for systems requiring spatially-distributed multipoint sensing and actuation. Topics include modeling and control, stabilization, and estimation and identification.

  20. Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures.

    Science.gov (United States)

    Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana

    2016-01-01

    With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.