WorldWideScience

Sample records for large timescale variation

  1. Climate variations of Central Asia on orbital to millennial timescales.

    Science.gov (United States)

    Cheng, Hai; Spötl, Christoph; Breitenbach, Sebastian F M; Sinha, Ashish; Wassenburg, Jasper A; Jochum, Klaus Peter; Scholz, Denis; Li, Xianglei; Yi, Liang; Peng, Youbing; Lv, Yanbin; Zhang, Pingzhong; Votintseva, Antonina; Loginov, Vadim; Ning, Youfeng; Kathayat, Gayatri; Edwards, R Lawrence

    2016-11-11

    The extent to which climate variability in Central Asia is causally linked to large-scale changes in the Asian monsoon on varying timescales remains a longstanding question. Here we present precisely dated high-resolution speleothem oxygen-carbon isotope and trace element records of Central Asia's hydroclimate variability from Tonnel'naya cave, Uzbekistan, and Kesang cave, western China. On orbital timescales, the supra-regional climate variance, inferred from our oxygen isotope records, exhibits a precessional rhythm, punctuated by millennial-scale abrupt climate events, suggesting a close coupling with the Asian monsoon. However, the local hydroclimatic variability at both cave sites, inferred from carbon isotope and trace element records, shows climate variations that are distinctly different from their supra-regional modes. Particularly, hydroclimatic changes in both Tonnel'naya and Kesang areas during the Holocene lag behind the supra-regional climate variability by several thousand years. These observations may reconcile the apparent out-of-phase hydroclimatic variability, inferred from the Holocene lake proxy records, between Westerly Central Asia and Monsoon Asia.

  2. SIMULATING THE TIMESCALE-DEPENDENT COLOR VARIATION IN QUASARS WITH A REVISED INHOMOGENEOUS DISK MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhen-Yi; Wang, Jun-Xian; Sun, Yu-Han; Wu, Mao-Chun; Huang, Xing-Xing; Chen, Xiao-Yang [CAS Key Laboratory for Researches in Galaxies and Cosmology, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Gu, Wei-Min, E-mail: zcai@ustc.edu.cn, E-mail: jxw@ustc.edu.cn [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)

    2016-07-20

    The UV–optical variability of active galactic nuclei and quasars is useful for understanding the physics of the accretion disk and is gradually being attributed to stochastic fluctuations over the accretion disk. Quasars generally appear bluer when they brighten in the UV–optical bands; the nature of this phenomenon remains controversial. Recently, Sun et al. discovered that the color variation of quasars is timescale-dependent, in the way that faster variations are even bluer than longer term ones. While this discovery can directly rule out models that simply attribute the color variation to contamination from the host galaxies, or to changes in the global accretion rates, it favors the stochastic disk fluctuation model as fluctuations in the inner-most hotter disk could dominate the short-term variations. In this work, we show that a revised inhomogeneous disk model, where the characteristic timescales of thermal fluctuations in the disk are radius-dependent (i.e., τ ∼ r ; based on that originally proposed by Dexter and Agol), can reproduce well a timescale-dependent color variation pattern, similar to the observed one and unaffected by the uneven sampling and photometric error. This demonstrates that one may statistically use variation emission at different timescales to spatially resolve the accretion disk in quasars, thus opening a new window with which to probe and test the accretion disk physics in the era of time domain astronomy. Caveats of the current model, which ought to be addressed in future simulations, are discussed.

  3. The Southern Ocean as a driver of centennial to millenial timescale radiocarbon variations

    Science.gov (United States)

    Rodgers, K. B.; Bianchi, D.; Galbraith, E.; Gnanadesikan, A.; Iudicone, D.; Mikaloff Fletcher, S.; Sarmiento, J. L.; Slater, R. D.

    2009-04-01

    Paleo-proxy records reveal large delta-c14 variations for both the atmosphere and the ocean on centennial to millenial timescales. One of the most pronounced examples is the onset phase of the Younger Dryas, when atmospheric delta-c14 rose by 70 per mil in only 200 years. Another is the most recent deglaciation (and the associated "Mystery Interval"). Many of the significant centennial to millenial transients in atmospheric delta-c14 are reflected in ocean interior delta-c14 at intermediate depths in the Pacific over the last 50kyrs. An ocean model has been used to test the idea that only modest perturbations to Southern Ocean winds provides a means to link the oceanic and atmospheric delta-c14 variations. Perturbations to the winds over the Southern Ocean are able to drive sizable decoupling of the fluxes of 14CO2 and 12CO2 over the Southern Ocean, thus modifying atmospheric delta-c14. These same perturbations are able to perturb rapidly the depth of intermediate water horizons in the North Pacific through the passage of baroclinic planetary (Rossby) waves. This sensitivity is significantly stronger than what previous studies have found for perturbations to the Meridional Overturning Circulation (MOC) in the North Atlantic. It is suggested that delta-c14 may provide a powerful tracer for understanding past variations in the climate system.

  4. Tracking niche variation over millennial timescales in sympatric killer whale lineages.

    Science.gov (United States)

    Foote, Andrew D; Newton, Jason; Ávila-Arcos, María C; Kampmann, Marie-Louise; Samaniego, Jose A; Post, Klaas; Rosing-Asvid, Aqqalu; Sinding, Mikkel-Holger S; Gilbert, M Thomas P

    2013-10-07

    Niche variation owing to individual differences in ecology has been hypothesized to be an early stage of sympatric speciation. Yet to date, no study has tracked niche width over more than a few generations. In this study, we show the presence of isotopic niche variation over millennial timescales and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of speciation, lineage sorting of mitogenomes and genotypic clustering, were both weak to intermediate indicating that speciation has made little progress. Thus, our study confirms that even with the necessary ecological conditions, i.e. among-individual variation in ecology, it is difficult for sympatric speciation to progress in the face of gene flow. In contrast to some theoretical models, our empirical results suggest that sympatric speciation driven by among-individual differences in ecological niche is a slow process and may not reach completion. We argue that sympatric speciation is constrained in this system owing to the plastic nature of the behavioural traits under selection when hunting either mammals or fish.

  5. BROAD ABSORPTION LINE DISAPPEARANCE ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Hall, P. B. [Department of Physics and Astronomy, York University, 4700 Keele St., Toronto, Ontario M3J 1P3 (Canada); Anderson, S. F.; Gibson, R. R. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Lundgren, B. F. [Department of Physics, Yale University, New Haven, CT 06511 (United States); Myers, A. D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Petitjean, P. [Institut d' Astrophysique de Paris, Universite Paris 6, F-75014, Paris (France); Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 92420 (United States); Shen Yue [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); York, D. G. [Department of Astronomy and Astrophysics, and Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Bizyaev, D.; Brinkmann, J.; Malanushenko, E.; Oravetz, D. J.; Pan, K.; Simmons, A. E. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Weaver, B. A., E-mail: nfilizak@astro.psu.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2012-10-01

    We present 21 examples of C IV broad absorption line (BAL) trough disappearance in 19 quasars selected from systematic multi-epoch observations of 582 bright BAL quasars (1.9 < z < 4.5) by the Sloan Digital Sky Survey-I/II (SDSS-I/II) and SDSS-III. The observations span 1.1-3.9 yr rest-frame timescales, longer than have been sampled in many previous BAL variability studies. On these timescales, Almost-Equal-To 2.3% of C IV BAL troughs disappear and Almost-Equal-To 3.3% of BAL quasars show a disappearing trough. These observed frequencies suggest that many C IV BAL absorbers spend on average at most a century along our line of sight to their quasar. Ten of the 19 BAL quasars showing C IV BAL disappearance have apparently transformed from BAL to non-BAL quasars; these are the first reported examples of such transformations. The BAL troughs that disappear tend to be those with small-to-moderate equivalent widths, relatively shallow depths, and high outflow velocities. Other non-disappearing C IV BALs in those nine objects having multiple troughs tend to weaken when one of them disappears, indicating a connection between the disappearing and non-disappearing troughs, even for velocity separations as large as 10,000-15,000 km s{sup -1}. We discuss possible origins of this connection including disk-wind rotation and changes in shielding gas.

  6. BROAD ABSORPTION LINE VARIABILITY ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Hall, P. B. [Department of Physics and Astronomy, York University, 4700 Keele St., Toronto, Ontario, M3J 1P3 (Canada); Anderson, S. F. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Hamann, F. [Department of Astronomy, University of Florida, Gainesville, FL 32611-2055 (United States); Lundgren, B. F. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Pâris, I. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Petitjean, P. [Universite Paris 6, Institut d' Astrophysique de Paris, 75014, Paris (France); Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 92420 (United States); Shen, Yue [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-51, Cambridge, MA 02138 (United States); York, Don, E-mail: nfilizak@astro.psu.edu [The University of Chicago, Department of Astronomy and Astrophysics, Chicago, IL 60637 (United States)

    2013-11-10

    We present a detailed investigation of the variability of 428 C IV and 235 Si IV broad absorption line (BAL) troughs identified in multi-epoch observations of 291 quasars by the Sloan Digital Sky Survey-I/II/III. These observations primarily sample rest-frame timescales of 1-3.7 yr over which significant rearrangement of the BAL wind is expected. We derive a number of observational results on, e.g., the frequency of BAL variability, the velocity range over which BAL variability occurs, the primary observed form of BAL-trough variability, the dependence of BAL variability upon timescale, the frequency of BAL strengthening versus weakening, correlations between BAL variability and BAL-trough profiles, relations between C IV and Si IV BAL variability, coordinated multi-trough variability, and BAL variations as a function of quasar properties. We assess implications of these observational results for quasar winds. Our results support models where most BAL absorption is formed within an order-of-magnitude of the wind-launching radius, although a significant minority of BAL troughs may arise on larger scales. We estimate an average lifetime for a BAL trough along our line-of-sight of a few thousand years. BAL disappearance and emergence events appear to be extremes of general BAL variability, rather than being qualitatively distinct phenomena. We derive the parameters of a random-walk model for BAL EW variability, finding that this model can acceptably describe some key aspects of EW variability. The coordinated trough variability of BAL quasars with multiple troughs suggests that changes in 'shielding gas' may play a significant role in driving general BAL variability.

  7. Variations in the small-scale galactic magnetic field and short time-scale intensity variations of extragalactic radio sources

    International Nuclear Information System (INIS)

    Simonetti, J.H.

    1985-01-01

    Structure functions of the Faraday rotation measures (RMs) of extragalactic radio sources are used to investigate variations in the interstellar magnetic field on length scales of approx.0.01 to 100 pc. Model structure functions derived assuming a power-law power spectrum of irregularities in n/sub e/B, are compared with those observed. The results indicate an outer angular scale for RM variations of approximately less than or equal to 5 0 and evidence for RM variations on scales as small as 1'. Differences in the variance of n/sub e/B fluctuations for various lines of sight through the Galaxy are found. Comparison of pulsar scintillations in right- and left-circular polarizations yield an upper limit to the variations in n/sub e/ on a length scale of approx.10 11 cm. RMs were determined through high-velocity molecular flows in galactic star-formation regions, with the goal of constraining magnetic fields in and near the flows. RMs of 7 extragalactic sources with a approx.20 arcmin wide area seen through Cep A, fall in two groups separated by approx.150 rad m -2 - large given our knowledge of RM variations on small angular scales and possibly a result of the anisotropy of the high-velocity material

  8. M DWARF FLARE CONTINUUM VARIATIONS ON ONE-SECOND TIMESCALES: CALIBRATING AND MODELING OF ULTRACAM FLARE COLOR INDICES

    International Nuclear Information System (INIS)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Hilton, Eric J.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Brown, Benjamin P.

    2016-01-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10 4 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100

  9. M DWARF FLARE CONTINUUM VARIATIONS ON ONE-SECOND TIMESCALES: CALIBRATING AND MODELING OF ULTRACAM FLARE COLOR INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Adam F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Mathioudakis, Mihalis [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Hawley, Suzanne L.; Hilton, Eric J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Wisniewski, John P. [HL Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks Street, Norman, OK 73019 (United States); Dhillon, Vik S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Marsh, Tom R. [Department of Physics, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL (United Kingdom); Brown, Benjamin P., E-mail: adam.f.kowalski@nasa.gov [Laboratory for Atmospheric and Space Physics and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10{sup 4} K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100.

  10. Time-scale effects in the interaction between a large and a small herbivore

    NARCIS (Netherlands)

    Kuijper, D. P. J.; Beek, P.; van Wieren, S.E.; Bakker, J. P.

    2008-01-01

    In the short term, grazing will mainly affect plant biomass and forage quality. However, grazing can affect plant species composition by accelerating or retarding succession at longer time-scales. Few studies concerning interactions among herbivores have taken the change in plant species composition

  11. Predictive power of the DASA-IV: Variations in rating method and timescales.

    Science.gov (United States)

    Nqwaku, Mphindisi; Draycott, Simon; Aldridge-Waddon, Luke; Bush, Emma-Louise; Tsirimokou, Alexandra; Jones, Dominic; Puzzo, Ignazio

    2018-05-10

    This project evaluated the predictive validity of the Dynamic Appraisal of Situational Aggression - Inpatient Version (DASA-IV) in a high-secure psychiatric hospital in the UK over 24 hours and over a single nursing shift. DASA-IV scores from three sequential nursing shifts over a 24-hour period were compared with the mean (average of three scores across the 24-hour period) and peak (highest of the three scores across the 24-hour period) scores across these shifts. In addition, scores from a single nursing shift were used to predict aggressive incidents over each of the following three shifts. The DASA-IV was completed by nursing staff during handover meetings, rating 43 male psychiatric inpatients over a period of 6 months. Data were compared to incident reports recorded over the same period. Receiver operating characteristic (ROC) curves and generalized estimating equations assessed the predictive ability of various DASA-IV scores over 24-hour and single-shift timescales. Scores from the DASA-IV based on a single shift had moderate predictive ability for aggressive incidents occurring the next calendar day, whereas scores based on all three shifts had excellent predictive ability. DASA-IV scores from a single shift showed moderate predictive ability for each of the following three shifts. The DASA-IV has excellent predictive ability for aggressive incidents within a secure setting when data are summarized over a 24-hour period, as opposed to when a single rating is taken. In addition, it has moderate value for predicting incidents over even shorter timescales. © 2018 Australian College of Mental Health Nurses Inc.

  12. M Dwarf Flare Continuum Variations on One-second Timescales: Calibrating and Modeling of ULTRACAM Flare Color Indices

    Science.gov (United States)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Hilton, Eric J.; Brown, Benjamin P.

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes

  13. Investigations into the Regional and Local Timescale Variations of Subglacial Drainage Networks

    Science.gov (United States)

    Hiester, Justin

    Subglacial water plays an important role in the regulation of an ice sheet's mass balance. It may be the dominant control on the velocities of ice streams and outlet glaciers on scales of months to millennia. Recent satellite observations of ice surface elevation changes have given researchers new insights into how subglacial water is stored and transported. Localized uplift and settling of the ice surface implies that lakes exist beneath the ice sheet that are being filled and drained on relatively short time scales. At the base of an ice sheet water can be transported through a variety of drainage networks or stored in subglacial lakes. Here, a numerical investigation of the mechanisms of transport and storage of subglacial water and the associated time scales is presented. Experiments are carried out using a finite element model of coupled ice and water flow. The first experiment seeks to understand the relationship between the depth of a basal depression and the area over which the feature affects basal water flow. It is found that as the perturbation to a topographic depression's depth is increased, water is rerouted in response to the perturbation. Additionally it is found that the relationship between perturbation depth and the extent upstream to which its effects reach is nonlinear. The second experiment examines how the aspect ratio of bed features (prolate, oblate, or equidimensional) influences basal water flow. It is found that the systems that develop and their interactions are mediated by both the topography and the feedbacks taken into account by the coupling of the systems in the model. Features oriented parallel to ice and water flow are associated with distributed fan systems that develop branches which migrate laterally across the domain and interact with one another on monthly and yearly timescales. Laterally oriented features develop laterally extensive ponds. As the ratio of longitudinal to lateral dimension of the topography is increased, a

  14. Historical Variations in Inner Core Rotation and Polar Motion at Decade Timescales

    Science.gov (United States)

    Dumberry, M.

    2005-12-01

    Exchanges of angular momentum between the mantle, the fluid core and the solid inner core result in changes in the Earth's rotation. Torques in the axial direction produce changes in amplitude, or changes in length of day, while torques in the equatorial direction lead to changes in orientation of the rotation vector with respect to the mantle, or polar motion. In this work, we explore the possibility that a combination of electromagnetic and gravitational torques on the inner core can reproduce the observed decadal variations in polar motion known as the Markowitz wobble. Torsional oscillations, which involve azimuthal motions in the fluid core with typical periods of decades, entrain the inner core by electromagnetic traction. When the inner core is axially rotated, its surfaces of constant density are no longer aligned with the gravitational potential from mantle density heterogeneities, and this results in a gravitational torque between the two. The axial component of this torque has been previously described and is believed to be partly responsible for decadal changes in length of day. In this work, we show that it has also an equatorial component, which produces a tilt of the inner core and results in polar motion. The polar motion produced by this mechanism depends on the density structure in the mantle, the rheology of the inner core, and the time-history of the angle of axial misalignment between the inner core and the mantle. We reconstruct the latter using a model of torsional oscillations derived from geomagnetic secular variation. From this time-history, and by using published models of mantle density structure, we show that we can reproduce the salient characteristics of the Markowitz wobble: an eccentric decadal polar motion of 30-50 milliarcsecs oriented along a specific longitude. We discuss the implications of this result, noting that a match in both amplitude and phase of the observed Markowitz wobble allows the recovery of the historical

  15. Time-scale and extent at which large-scale circulation modes determine the wind and solar potential in the Iberian Peninsula

    International Nuclear Information System (INIS)

    Jerez, Sonia; Trigo, Ricardo M

    2013-01-01

    The North Atlantic Oscillation (NAO), the East Atlantic (EA) and the Scandinavian (SCAND) modes are the three main large-scale circulation patterns driving the climate variability of the Iberian Peninsula. This study assesses their influence in terms of solar (photovoltaic) and wind power generation potential (SP and WP) and evaluates their skill as predictors. For that we use a hindcast regional climate simulation to retrieve the primary meteorological variables involved, surface solar radiation and wind speed. First we identify that the maximum influence of the various modes occurs on the interannual variations of the monthly mean SP and WP series, being generally more relevant in winter. Second we find that in this time-scale and season, SP (WP) varies up to 30% (40%) with respect to the mean climatology between years with opposite phases of the modes, although the strength and the spatial distribution of the signals differ from one month to another. Last, the skill of a multi-linear regression model (MLRM), built using the NAO, EA and SCAND indices, to reconstruct the original wintertime monthly series of SP and WP was investigated. The reconstructed series (when the MLRM is calibrated for each month individually) correlate with the original ones up to 0.8 at the interannual time-scale. Besides, when the modeled series for each individual month are merged to construct an October-to-March monthly series, and after removing the annual cycle in order to account for monthly anomalies, these correlate 0.65 (0.55) with the original SP (WP) series in average. These values remain fairly stable when the calibration and reconstruction periods differ, thus supporting up to a point the predictive potential of the method at the time-scale assessed here. (letter)

  16. Time-scale invariant changes in atmospheric radon concentration and crustal strain prior to a large earthquake

    Directory of Open Access Journals (Sweden)

    Y. Kawada

    2007-01-01

    Full Text Available Prior to large earthquakes (e.g. 1995 Kobe earthquake, Japan, an increase in the atmospheric radon concentration is observed, and this increase in the rate follows a power-law of the time-to-earthquake (time-to-failure. This phenomenon corresponds to the increase in the radon migration in crust and the exhalation into atmosphere. An irreversible thermodynamic model including time-scale invariance clarifies that the increases in the pressure of the advecting radon and permeability (hydraulic conductivity in the crustal rocks are caused by the temporal changes in the power-law of the crustal strain (or cumulative Benioff strain, which is associated with damage evolution such as microcracking or changing porosity. As the result, the radon flux and the atmospheric radon concentration can show a temporal power-law increase. The concentration of atmospheric radon can be used as a proxy for the seismic precursory processes associated with crustal dynamics.

  17. Solar Variability Magnitudes and Timescales

    Science.gov (United States)

    Kopp, Greg

    2015-08-01

    The Sun’s net radiative output varies on timescales of minutes to many millennia. The former are directly observed as part of the on-going 37-year long total solar irradiance climate data record, while the latter are inferred from solar proxy and stellar evolution models. Since the Sun provides nearly all the energy driving the Earth’s climate system, changes in the sunlight reaching our planet can have - and have had - significant impacts on life and civilizations.Total solar irradiance has been measured from space since 1978 by a series of overlapping instruments. These have shown changes in the spatially- and spectrally-integrated radiant energy at the top of the Earth’s atmosphere from timescales as short as minutes to as long as a solar cycle. The Sun’s ~0.01% variations over a few minutes are caused by the superposition of convection and oscillations, and even occasionally by a large flare. Over days to weeks, changing surface activity affects solar brightness at the ~0.1% level. The 11-year solar cycle has comparable irradiance variations with peaks near solar maxima.Secular variations are harder to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Proxy models of the Sun based on cosmogenic isotope records and inferred from Earth climate signatures indicate solar brightness changes over decades to millennia, although the magnitude of these variations depends on many assumptions. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities.In this talk I will summarize the Sun’s variability magnitudes over different temporal ranges, showing examples relevant for climate studies as well as detections of exo-solar planets transiting Sun-like stars.

  18. Constraints on timescales and mechanics of magmatic underplating from InSAR observations of large active magma sills in the Earth's crust.

    Science.gov (United States)

    Fialko, Y.

    2002-12-01

    Theoretical models of the granitoid magma generation due to magmatic underplating predict that anatectic melts are produced on quite short timescales of the order of the crystallization time of typical mafic underplates (e.g., 102-10^3 years for sill intrusions that are a few tens to a few hundred meters thick). If so, the intrusion of mafic underplates, the volume changes associated with in situ melting, and the subsequent evacuation of the resulting granitoid magmas can each generate geodetically observable deformation. Geodetic measurements in areas of contemporaneous large active magma bodies may therefore provide critical constraints on the timescales and dynamics of crustal anatexis. We use Interferometric Synthetic Aperture Radar (InSAR) observations in regions of the ongoing crustal magmatism to constrain typical rates of the large-scale melt generation and/or migration, and to test the proposed models of the granitic melt production. Our primary targets include large mid-crustal magma bodies imaged by seismic studies, in particular, the Socorro (New Mexico, USA), the Altiplano-Puna (south America), and the south Tibet (Asia) magma bodies. All these magma bodies are located at depth of 19-20 km, suggesting a strong rheological or buoyancy control on the transition from a vertical to a horizontal magma flow. Stacked interferometric data from the Socorro magma body indicate a quasi-steady uplift with a maximum rate of 3-4 mm/yr over the last 10 years covered by the InSAR observations. The uplift morphology can be well described by an elastic inflation of the Socorro sill. We show that deformation models that allow for the viscous-like rheology of the mid-to-lower crust cannot be easily reconciled with the geodetic data. However, thermodynamic modeling, in conjunction with inferences of the nearly constant uplift rates, suggest that the deformations associated with the intrusion emplacement must involve a significant inelastic component. Such inelastic

  19. Temporal Variation of Large Scale Flows in the Solar Interior ...

    Indian Academy of Sciences (India)

    tribpo

    Temporal Variation of Large Scale Flows in the Solar Interior. 355. Figure 2. Zonal and meridional components of the time-dependent residual velocity at a few selected depths as marked above each panel, are plotted as contours of constant velocity in the longitude-latitude plane. The left panels show the zonal component, ...

  20. Evaluating cloud processes in large-scale models: Of idealized case studies, parameterization testbeds and single-column modelling on climate time-scales

    Science.gov (United States)

    Neggers, Roel

    2016-04-01

    Boundary-layer schemes have always formed an integral part of General Circulation Models (GCMs) used for numerical weather and climate prediction. The spatial and temporal scales associated with boundary-layer processes and clouds are typically much smaller than those at which GCMs are discretized, which makes their representation through parameterization a necessity. The need for generally applicable boundary-layer parameterizations has motivated many scientific studies, which in effect has created its own active research field in the atmospheric sciences. Of particular interest has been the evaluation of boundary-layer schemes at "process-level". This means that parameterized physics are studied in isolated mode from the larger-scale circulation, using prescribed forcings and excluding any upscale interaction. Although feedbacks are thus prevented, the benefit is an enhanced model transparency, which might aid an investigator in identifying model errors and understanding model behavior. The popularity and success of the process-level approach is demonstrated by the many past and ongoing model inter-comparison studies that have been organized by initiatives such as GCSS/GASS. A red line in the results of these studies is that although most schemes somehow manage to capture first-order aspects of boundary layer cloud fields, there certainly remains room for improvement in many areas. Only too often are boundary layer parameterizations still found to be at the heart of problems in large-scale models, negatively affecting forecast skills of NWP models or causing uncertainty in numerical predictions of future climate. How to break this parameterization "deadlock" remains an open problem. This presentation attempts to give an overview of the various existing methods for the process-level evaluation of boundary-layer physics in large-scale models. This includes i) idealized case studies, ii) longer-term evaluation at permanent meteorological sites (the testbed approach

  1. Seasonal variation of dystocia in a large Danish cohort.

    Science.gov (United States)

    Rohr Thomsen, Christine; Uldbjerg, Niels; Hvidman, Lone; Atladóttir, Hjördís Ósk; Henriksen, Tine Brink; Milidou, Ioanna

    2014-01-01

    Dystocia is one of the most frequent causes of cesarean delivery in nulliparous women. Despite this, its causes are largely unknown. Vitamin D receptor (VDR) has been found in the myometrium. Thus, it is possible that vitamin D affects the contractility of the myometrium and may be involved in the pathogenesis of dystocia. Seasonal variation of dystocia in areas with distinct seasonal variation in sunlight exposure, like Denmark, could imply that vitamin D may play a role. This study examined whether there was seasonal variation in the incidence of dystocia in a Danish population. We used information from a cohort of 34,261 nulliparous women with singleton pregnancies, spontaneous onset of labor between 37 and 42 completed gestational weeks, and vertex fetal presentation. All women gave birth between 1992 and 2010 at the Department of Obstetrics and Gynecology, Aarhus University Hospital, Skejby. Logistic regression combined with cubic spline was used to estimate the seasonal variation for each outcome after adjusting for calendar time. No evidence for seasonal variation was found for any of the outcomes: acute cesarean delivery due to dystocia (p = 0.44); instrumental vaginal delivery due to dystocia (p = 0.69); oxytocin augmentation due to dystocia (p = 0.46); and overall dystocia (p = 0.91). No seasonal variation in the incidence of dystocia was observed in a large cohort of Danish women. This may reflect no association between vitamin D and dystocia, or alternatively that other factors with seasonal variation and influence on the occurrence of dystocia attenuate such an association.

  2. The timescales of plume generation caused by continental aggregation

    Science.gov (United States)

    Honda, Satoru; Yoshida, Masaki; Ootorii, Sakie; Iwase, Yasuyuki

    2000-02-01

    To understand the thermal evolution of the mantle following the aggregation of non-subductable thick continental lithosphere, we study a numerical model in which a supercontinent, simulated by high viscosity raft, HVR, covers a part of the top surface of a convection layer. We model infinite Prandtl number convection either in a three-dimensional (3D) spherical shell, 3D rectangular box (aspect ratios: 8 and 4) or two-dimensional (2D) rectangular box (aspect ratio: 8) and except for the HVR, we specify a constant viscosity. The HVR, which has a viscosity higher than that of its surrounding, is instantaneously placed on the top surface of a well-developed convection layer and its position is fixed. Our results from 3D spherical shell cases with and without phase transitions show the emergence of a large plume characterized by a long wavelength thermal anomaly (a degree one pattern) for a Pangea-like geometry. We analyze the volume averaged temperature under the HVR (=) the remaining (oceanic) area (=) and total area (=) to determine the timescale of plume generation. The difference between and (=Δ TCO) and show the existence of two characteristic timescales.Δ TCO exhibits an initial rapid increase and may become constant or continue to gradually increase. Meanwhile, shows a similar behavior but with a longer timescale. We find that these timescales associated with the increase of Δ TCO and can be attributed to the formation of large scale flow (i.e. plume) and response of the whole system to the emplacement of the HVR, respectively. For 3D spherical cases, we find that the timescale of plume generation is 1-2 Gyr, if the Rayleigh number is 10 6. To determine the effects of the viscosity of the HVR, 2D versus 3D modeling and the effects of the internal heating, we have also studied 2D and 3D rectangular box cases. A factor of about two variation exists in the timescale of plume generation. It appears that the timescale becomes greater for a smaller amount of

  3. Large observer variation of clinical assessment of dyspnoeic wheezing children.

    Science.gov (United States)

    Bekhof, Jolita; Reimink, Roelien; Bartels, Ine-Marije; Eggink, Hendriekje; Brand, Paul L P

    2015-07-01

    In children with acute dyspnoea, the assessment of severity of dyspnoea and response to treatment is often performed by different professionals, implying that knowledge of the interobserver variation of this clinical assessment is important. To determine intraobserver and interobserver variation in clinical assessment of children with dyspnoea. From September 2009 to September 2010, we recorded a convenience sample of 27 acutely wheezing children (aged 3 months-7 years) in the emergency department of a general teaching hospital in the Netherlands, on video before and after treatment with inhaled bronchodilators. These video recordings were independently assessed by nine observers scoring wheeze, prolonged expiratory phase, retractions, nasal flaring and a general assessment of dyspnoea on a Likert scale (0-10). Assessment was repeated after 2 weeks to evaluate intraobserver variation. We analysed 972 observations. Intraobserver reliability was the highest for supraclavicular retractions (κ 0.84) and moderate-to-substantial for other items (κ 0.49-0.65). Interobserver reliability was considerably worse, with κ3 points) was larger than the minimal important change (meaning that in 69% of observations a clinically important change after treatment cannot be distinguished from measurement error. Intraobserver variation is modest, and interobserver variation is large for most clinical findings in children with dyspnoea. The measurement error induced by this variation is too large to distinguish potentially clinically relevant changes in dyspnoea after treatment in two-thirds of observations. The poor interobserver reliability of clinical dyspnoea assessment in children limits its usefulness in clinical practice and research, and highlights the need to use more objective measurements in these patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. The radiocarbon timescale

    International Nuclear Information System (INIS)

    Mook, W.G.

    1977-01-01

    The relation between the conventional 14 C timescale and the astronomical timescale is of increasing importance and interest. A concise review is given of the calibrations which have been carried out thus far on dendrochronologically dated tree rings. The causes of the discrepancies between both scales are briefly indicated. The reliability of the existing calibration curves, the problems which are encountered in using them and the necessity of further calibration measurements are discussed. (author)

  5. Action Planning and the Timescale of Evidence Accumulation.

    Directory of Open Access Journals (Sweden)

    Konstantinos Tsetsos

    Full Text Available Perceptual decisions are based on the temporal integration of sensory evidence for different states of the outside world. The timescale of this integration process varies widely across behavioral contexts and individuals, and it is diagnostic for the underlying neural mechanisms. In many situations, the decision-maker knows the required mapping between perceptual evidence and motor response (henceforth termed "sensory-motor contingency" before decision formation. Here, the integrated evidence can be directly translated into a motor plan and, indeed, neural signatures of the integration process are evident as build-up activity in premotor brain regions. In other situations, however, the sensory-motor contingencies are unknown at the time of decision formation. We used behavioral psychophysics and computational modeling to test if knowledge about sensory-motor contingencies affects the timescale of perceptual evidence integration. We asked human observers to perform the same motion discrimination task, with or without trial-to-trial variations of the mapping between perceptual choice and motor response. When the mapping varied, it was either instructed before or after the stimulus presentation. We quantified the timescale of evidence integration under these different sensory-motor mapping conditions by means of two approaches. First, we analyzed subjects' discrimination threshold as a function of stimulus duration. Second, we fitted a dynamical decision-making model to subjects' choice behavior. The results from both approaches indicated that observers (i integrated motion information for several hundred ms, (ii used a shorter than optimal integration timescale, and (iii used the same integration timescale under all sensory-motor mappings. We conclude that the mechanisms limiting the timescale of perceptual decisions are largely independent from long-term learning (under fixed mapping or rapid acquisition (under variable mapping of sensory

  6. Azimuthal angle correlations at large rapidities. Revisiting density variation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E. [Tel Aviv University, Department of Particle Physics, Raymond and Beverly Sackler Faculty of Exact Science, School of Physics and Astronomy, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, Raymond and Beverly Sackler Faculty of Exact Science, School of Physics and Astronomy, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria, Departemento de Fisica, Valparaiso (Chile); Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile)

    2017-11-15

    We discuss the angular correlation present in hadron-hadron collisions at large rapidity difference (anti α{sub S}y{sub 12} >> 1). We find that in the CGC/saturation approach the largest contribution stems from the density variation mechanism. Our principal results are that the odd Fourier harmonics (v{sub 2n+1}) decrease substantially as a function of y{sub 12}, while the even harmonics (v{sub 2n}) increase considerably with the growth of y{sub 12}. (orig.)

  7. Time-scale invariances in preseismic electromagnetic radiation, magnetization and damage evolution of rocks

    Directory of Open Access Journals (Sweden)

    Y. Kawada

    2007-10-01

    Full Text Available We investigate the time-scale invariant changes in electromagnetic and mechanical energy releases prior to a rock failure or a large earthquake. The energy release processes are caused by damage evolutions such as crack propagation, motion of charged dislocation, area-enlargement of sheared asperities and repetitive creep-rate changes. Damage mechanics can be used to represent the time-scale invariant evolutions of both brittle and plastic damages. Irreversible thermodynamics applied to the damage mechanics reveals that the damage evolution produces the variations in charge, dipole and electromagnetic signals in addition to mechanical energy release, and yields the time-scale invariant patterns of Benioff electromagnetic radiation and cumulative Benioff strain-release. The irreversible thermodynamic framework of damage mechanics is also applicable to the seismo-magnetic effect, and the time-scale invariance is recognized in the remanent magnetization change associated with damage evolution prior to a rock failure.

  8. Perspectives for short timescale variability studies with Gaia

    Science.gov (United States)

    Roelens, M.; Eyer, L.; Mowlavi, N.; Lecoeur-Taïbi, I.; Rimoldini, L.; Blanco-Cuaresma, S.; Palaversa, L.; Süveges, M.; Charnas, J.; Wevers, T.

    2017-12-01

    We assess the potential of Gaia for detecting and characterizing short timescale variables, i.e. at timescale from a few seconds to a dozen hours, through extensive light-curve simulations for various short timescale variable types, including both periodic and non-periodic variability. We evidence that the variogram analysis applied to Gaia photometry should enable to detect such fast variability phenomena, down to amplitudes of a few millimagnitudes, with limited contamination from longer timescale variables or constant sources. This approach also gives valuable information on the typical timescale(s) of the considered variation, which could complement results of classical period search methods, and help prepare ground-based follow-up of the Gaia short timescale candidates.

  9. The discovery of timescale-dependent color variability of quasars

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu-Han; Wang, Jun-Xian; Chen, Xiao-Yang [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Zhen-Ya, E-mail: sunyh92@mail.ustc.edu.cn, E-mail: jxw@ustc.edu.cn [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2014-09-01

    Quasars are variable on timescales from days to years in UV/optical and generally appear bluer while they brighten. The physics behind the variations in fluxes and colors remains unclear. Using Sloan Digital Sky Survey g- and r-band photometric monitoring data for quasars in Stripe 82, we find that although the flux variation amplitude increases with timescale, the color variability exhibits the opposite behavior. The color variability of quasars is prominent at timescales as short as ∼10 days, but gradually reduces toward timescales up to years. In other words, the variable emission at shorter timescales is bluer than that at longer timescales. This timescale dependence is clearly and consistently detected at all redshifts from z = 0 to 3.5; thus, it cannot be due to contamination to broadband photometry from emission lines that do not respond to fast continuum variations. The discovery directly rules out the possibility that simply attributes the color variability to contamination from a non-variable redder component such as the host galaxy. It cannot be interpreted as changes in global accretion rate either. The thermal accretion disk fluctuation model is favored in the sense that fluctuations in the inner, hotter region of the disk are responsible for short-term variations, while longer-term and stronger variations are expected from the larger and cooler disk region. An interesting implication is that one can use quasar variations at different timescales to probe disk emission at different radii.

  10. Large earthquake rupture process variations on the Middle America megathrust

    Science.gov (United States)

    Ye, Lingling; Lay, Thorne; Kanamori, Hiroo

    2013-11-01

    The megathrust fault between the underthrusting Cocos plate and overriding Caribbean plate recently experienced three large ruptures: the August 27, 2012 (Mw 7.3) El Salvador; September 5, 2012 (Mw 7.6) Costa Rica; and November 7, 2012 (Mw 7.4) Guatemala earthquakes. All three events involve shallow-dipping thrust faulting on the plate boundary, but they had variable rupture processes. The El Salvador earthquake ruptured from about 4 to 20 km depth, with a relatively large centroid time of ˜19 s, low seismic moment-scaled energy release, and a depleted teleseismic short-period source spectrum similar to that of the September 2, 1992 (Mw 7.6) Nicaragua tsunami earthquake that ruptured the adjacent shallow portion of the plate boundary. The Costa Rica and Guatemala earthquakes had large slip in the depth range 15 to 30 km, and more typical teleseismic source spectra. Regional seismic recordings have higher short-period energy levels for the Costa Rica event relative to the El Salvador event, consistent with the teleseismic observations. A broadband regional waveform template correlation analysis is applied to categorize the focal mechanisms for larger aftershocks of the three events. Modeling of regional wave spectral ratios for clustered events with similar mechanisms indicates that interplate thrust events have corner frequencies, normalized by a reference model, that increase down-dip from anomalously low values near the Middle America trench. Relatively high corner frequencies are found for thrust events near Costa Rica; thus, variations along strike of the trench may also be important. Geodetic observations indicate trench-parallel motion of a forearc sliver extending from Costa Rica to Guatemala, and low seismic coupling on the megathrust has been inferred from a lack of boundary-perpendicular strain accumulation. The slip distributions and seismic radiation from the large regional thrust events indicate relatively strong seismic coupling near Nicoya, Costa

  11. A variational analysis for large deflection of skew plates under ...

    African Journals Online (AJOL)

    In the present paper, the static behaviour of thin isotropic skew plates under uniformly distributed load is analyzed with the geometric nonlinearity of the model properly handled. A variational method based on total potential energy has been implemented through assumed displacement field. The computational work has ...

  12. Phenomenology dependent timescales

    International Nuclear Information System (INIS)

    Ouzounian, G.

    2002-01-01

    As required by the French act, Dec. 1991, construction projects for disposing of radioactive wastes have to be submitted to the Parliament by 2006. One of the most important points to allow for a decision at this time will be to gain confidence. The major difficulty in such a technical and societal project is to be able to carry out a demonstration of the safety ver timescales which are out of the scope of any experiment. Among the arguments involved for the safety case are a series of simulations which objective is to assess the level of safety which can be reached, and its robustness to various internal defects (construction of the drifts, welding of canisters...) or external events (intrusion with deep boreholes, climate change, faulting...). Confidence in the simulations can be achieved if they are transparent, based on well understood processes. However, the complexity of the disposal system is such that temptation was great by the past to simplify the models, with a poor level of reporting on justifications, thus leading to what has been described as black-box models. In the frame of the demonstration to be brought out for 2006, ANDRA has developed an approach consisting first to describe and analyse all the processes occurring over time and space in the repository. Once this type of information has been gathered in a structured way, then further analyses leading to abstractions, simplifications can be performed in order to facilitate simulations as required for the safety demonstration. The first stage of the approach has been called the phenomenological analysis of the repository situations PARS). This work gives rise to a reference book in which our knowledge has been reported before being used for the safety demonstration. If also represent a reference for all technical and scientific knowledge based applications, such as digital modeling which is the basis for simulations, the repository design, the reversibility study, including the definition of a

  13. Large Torque Variations in Two Soft Gamma Repeaters

    NARCIS (Netherlands)

    Woods, P.M.; Kouveliotou, C.; Göğüş, E.; Finger, M.H.; Swank, J.; Markwardt, C.B.; Hurley, K.; van der Klis, M.

    2002-01-01

    We have monitored the pulse frequencies of the two soft gamma repeaters SGR 1806-20 and SGR 1900+14 through the beginning of year 2001 using primarily Rossi X-Ray Timing Explorer Proportional Counter Array observations. In both sources, we observe large changes in the spin-down torque up to a factor

  14. North-South precipitation patterns in western North America on interannual-to-decadal timescales

    Science.gov (United States)

    Dettinger, M.D.; Cayan, D.R.; Diaz, Henry F.; Meko, D.M.

    1998-01-01

    The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25??to 55??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both timescales, two leading EOFs describe 1) a north-south seesaw of precipitation pivoting near 40??N and 2) variations in precipitation near 40??N, respectively. The amount of overall precipitation variability is only about 10% of the mean and is largely determined by precipitation variations around 40??-45??N and most consistently influenced by nearby circulation patterns; in this sense, domain-average precipitation is closely related to the second EOF. The central latitude and latitudinal spread of precipitation distributions are strongly influenced by precipitation

  15. Global variations of large megathrust earthquake rupture characteristics

    Science.gov (United States)

    Kanamori, Hiroo

    2018-01-01

    Despite the surge of great earthquakes along subduction zones over the last decade and advances in observations and analysis techniques, it remains unclear whether earthquake complexity is primarily controlled by persistent fault properties or by dynamics of the failure process. We introduce the radiated energy enhancement factor (REEF), given by the ratio of an event’s directly measured radiated energy to the calculated minimum radiated energy for a source with the same seismic moment and duration, to quantify the rupture complexity. The REEF measurements for 119 large [moment magnitude (Mw) 7.0 to 9.2] megathrust earthquakes distributed globally show marked systematic regional patterns, suggesting that the rupture complexity is strongly influenced by persistent geological factors. We characterize this as the existence of smooth and rough rupture patches with varying interpatch separation, along with failure dynamics producing triggering interactions that augment the regional influences on large events. We present an improved asperity scenario incorporating both effects and categorize global subduction zones and great earthquakes based on their REEF values and slip patterns. Giant earthquakes rupturing over several hundred kilometers can occur in regions with low-REEF patches and small interpatch spacing, such as for the 1960 Chile, 1964 Alaska, and 2011 Tohoku earthquakes, or in regions with high-REEF patches and large interpatch spacing as in the case for the 2004 Sumatra and 1906 Ecuador-Colombia earthquakes. Thus, combining seismic magnitude Mw and REEF, we provide a quantitative framework to better represent the span of rupture characteristics of great earthquakes and to understand global seismicity. PMID:29750186

  16. Variations in pollen counts largely explained by climate and weather

    Science.gov (United States)

    Jung, Stephan; Damialis, Athanasios; Estrella, Nicole; Jochner, Susanne; Menzel, Annette

    2017-04-01

    The interaction between climate and vegetation is well studied within phenology. Climatic / weather conditions affect e.g. flowering date, length of vegetation period, start and end of the season and the plant growth. Besides phenological stages also pollen counts can be used to investigate the interaction between climate and vegetation. Pollen emission and distribution is directly influenced by temperature, wind speed, wind direction and humidity/precipitation. The objective of this project is to study daily/sub daily variations in pollen counts of woody and herbaceous plant species along an altitudinal gradient with different climatic conditions during the vegetation period. Measurements of pollen were carried out with three volumetric pollen traps installed at the altitudes 450 m a.s.l (Freising), 700 m a.s.l (Garmisch-Partenkirchen), and 2700 m a.s.l (Schneefernerhaus near Zugspitze) representing gradient from north of Munich towards the highest mountain of Germany. Airborne pollen concentrations were recorded during the years 2014-2015. The altitudinal range of these three stations accompanied by different microclimates ("space for time approach") can be used as proxy for climate change and to assess its impact on pollen counts and thus allergenic risk for human health. For example the pollen season is shortened and pollen amount is reduced at higher sites. For detailed investigations pollen of the species Plantago, Quercus, Poaceae, Cupressaceae, Cyperacea, Betula and Platanus were chosen, because those are found in appropriate quantities. In general, pollen captured in the pollen traps to a certain extent has its origin from the immediate surrounding. Thus, it mirrors local species distribution. But furthermore the distance of pollen transport is also based on (micro-) climatic conditions, land cover and topography. The pollen trap shortly below the summit of Zugspitze (Schneefernerhaus) has an alpine environment without vegetation nearby. Therefore, this

  17. Variation in thickness of the large cryosections cut for whole-body autoradiography

    International Nuclear Information System (INIS)

    Ito, Tsunao; Brill, A.B.

    1991-01-01

    A method to assess variation in thickness of the large cryosections for whole-body autoradiography (WBARG) was described, and the degree of intraslice and interslice variations were determined for our cryomicrotome system (LKB PMV-2250). Intraslice variation in thickness of the 180 x 80 mm cryosection was 0.72-0.92 μm within the range of section thickness for WBARG (15-50 μm), and interslice variation was 0.89-1.21 μm. These potential variations in section thickness should be kept in mind whenever working with quantitative WBARG. (author)

  18. The timescales of global surface-ocean connectivity.

    Science.gov (United States)

    Jönsson, Bror F; Watson, James R

    2016-04-19

    Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches--each randomly located anywhere in the surface ocean--is, on average, less than a decade. These results suggest that marine planktonic communities may keep pace with climate change--increasing temperatures, ocean acidification and changes in stratification over decadal timescales--through the advection of resilient types.

  19. Comparison of tropical cyclogenesis indices on seasonal to interannual timescales

    Energy Technology Data Exchange (ETDEWEB)

    Menkes, Christophe E. [IRD/UPMC/CNRS/MNHN, IRD, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques (LOCEAN), Paris (France); IRD, Noumea Cedex (New Caledonia); Institut de Recherche Pour le Developpement, LOCEAN, IRD/UPMC/MNHN/CNRS, Noumea Cedex (New Caledonia); Lengaigne, Matthieu [IRD/UPMC/CNRS/MNHN, IRD, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques (LOCEAN), Paris (France); National Institute of Oceanography, IRD, Goa (India); Marchesiello, Patrick [Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale (LEGOS), IRD, Toulouse (France); Jourdain, Nicolas C. [IRD, Noumea Cedex (New Caledonia); Vincent, Emmanuel M. [IRD/UPMC/CNRS/MNHN, IRD, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques (LOCEAN), Paris (France); Lefevre, Jerome [IRD, Noumea Cedex (New Caledonia); Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale (LEGOS), IRD, Toulouse (France); Chauvin, Fabrice; Royer, Jean-Francois [Meteo-France, CNRM/GAME (Meteo-France/CNRS), Toulouse Cedex 01 (France)

    2012-01-15

    This paper evaluates the performances of four cyclogenesis indices against observed tropical cyclone genesis on a global scale over the period 1979-2001. These indices are: the Genesis Potential Index; the Yearly Genesis Parameter; the Modified Yearly Convective Genesis Potential Index; and the Tippett et al. Index (J Clim, 2011), hereafter referred to as TCS. Choosing ERA40, NCEP2, NCEP or JRA25 reanalysis to calculate these indices can yield regional differences but overall does not change the main conclusions arising from this study. By contrast, differences between indices are large and vary depending on the regions and on the timescales considered. All indices except the TCS show an equatorward bias in mean cyclogenesis, especially in the northern hemisphere where this bias can reach 5 . Mean simulated genesis numbers for all indices exhibit large regional discrepancies, which can commonly reach up to {+-}50%. For the seasonal timescales on which the indices are historically fitted, performances also vary widely in terms of amplitude although in general they all reproduce the cyclogenesis seasonality adequately. At the seasonal scale, the TCS seems to be the best fitted index overall. The most striking feature at interannual scales is the inability of all indices to reproduce the observed cyclogenesis amplitude. The indices also lack the ability to reproduce the general interannual phase variability, but they do, however, acceptably reproduce the phase variability linked to El Nino/Southern Oscillation (ENSO) - a major driver of tropical cyclones interannual variations. In terms of cyclogenesis mechanisms that can be inferred from the analysis of the index terms, there are wide variations from one index to another at seasonal and interannual timescales and caution is advised when using these terms from one index only. They do, however, show a very good coherence at ENSO scale thus inspiring confidence in the mechanism interpretations that can be obtained by

  20. Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow

    NARCIS (Netherlands)

    Holmen, J.; Hughes, T.J.R.; Oberai, A.A.; Wells, G.N.

    2004-01-01

    The variational multiscale method has been shown to perform well for large-eddy simulation (LES) of turbulent flows. The method relies upon a partition of the resolved velocity field into large- and small-scale components. The subgrid model then acts only on the small scales of motion, unlike

  1. Characterization and potential functional significance of human-chimpanzee large INDEL variation

    Directory of Open Access Journals (Sweden)

    Polavarapu Nalini

    2011-10-01

    Full Text Available Abstract Background Although humans and chimpanzees have accumulated significant differences in a number of phenotypic traits since diverging from a common ancestor about six million years ago, their genomes are more than 98.5% identical at protein-coding loci. This modest degree of nucleotide divergence is not sufficient to explain the extensive phenotypic differences between the two species. It has been hypothesized that the genetic basis of the phenotypic differences lies at the level of gene regulation and is associated with the extensive insertion and deletion (INDEL variation between the two species. To test the hypothesis that large INDELs (80 to 12,000 bp may have contributed significantly to differences in gene regulation between the two species, we categorized human-chimpanzee INDEL variation mapping in or around genes and determined whether this variation is significantly correlated with previously determined differences in gene expression. Results Extensive, large INDEL variation exists between the human and chimpanzee genomes. This variation is primarily attributable to retrotransposon insertions within the human lineage. There is a significant correlation between differences in gene expression and large human-chimpanzee INDEL variation mapping in genes or in proximity to them. Conclusions The results presented herein are consistent with the hypothesis that large INDELs, particularly those associated with retrotransposons, have played a significant role in human-chimpanzee regulatory evolution.

  2. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics

    DEFF Research Database (Denmark)

    Slik, J.W.Ferry; Paoli, Gary; McGuire, Krista

    2013-01-01

    .3 ± 109.3 Mg ha−1). Pan-tropical variation in density of large trees and AGB was associated with soil coarseness (negative), soil fertility (positive), community wood density (positive) and dominance of wind dispersed species (positive), temperature in the coldest month (negative), temperature...

  3. A BARYONIC EFFECT ON THE MERGER TIMESCALE OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Zhang, Congyao; Yu, Qingjuan; Lu, Youjun

    2016-01-01

    Accurate estimation of the merger timescales of galaxy clusters is important for understanding the cluster merger process and further understanding the formation and evolution of the large-scale structure of the universe. In this paper, we explore a baryonic effect on the merger timescale of galaxy clusters by using hydrodynamical simulations. We find that the baryons play an important role in accelerating the merger process. The merger timescale decreases upon increasing the gas fraction of galaxy clusters. For example, the merger timescale is shortened by a factor of up to 3 for merging clusters with gas fractions of 0.15, compared with the timescale obtained with 0 gas fractions. The baryonic effect is significant for a wide range of merger parameters and is particularly more significant for nearly head-on mergers and high merging velocities. The baryonic effect on the merger timescale of galaxy clusters is expected to have an impact on the structure formation in the universe, such as the cluster mass function and massive substructures in galaxy clusters, and a bias of “no-gas” may exist in the results obtained from the dark matter-only cosmological simulations

  4. Decoding intention at sensorimotor timescales.

    Directory of Open Access Journals (Sweden)

    Mathew Salvaris

    Full Text Available The ability to decode an individual's intentions in real time has long been a 'holy grail' of research on human volition. For example, a reliable method could be used to improve scientific study of voluntary action by allowing external probe stimuli to be delivered at different moments during development of intention and action. Several Brain Computer Interface applications have used motor imagery of repetitive actions to achieve this goal. These systems are relatively successful, but only if the intention is sustained over a period of several seconds; much longer than the timescales identified in psychophysiological studies for normal preparation for voluntary action. We have used a combination of sensorimotor rhythms and motor imagery training to decode intentions in a single-trial cued-response paradigm similar to those used in human and non-human primate motor control research. Decoding accuracy of over 0.83 was achieved with twelve participants. With this approach, we could decode intentions to move the left or right hand at sub-second timescales, both for instructed choices instructed by an external stimulus and for free choices generated intentionally by the participant. The implications for volition are considered.

  5. Stability of Grid-Connected PV Inverters with Large Grid Impedance Variation

    DEFF Research Database (Denmark)

    Liserre, Marco; Teodorescu, Remus; Blaabjerg, Frede

    2004-01-01

    Photovoltaic (PV) inverters used in dispersed power generation of houses in the range of 1-5 kW are currently available from several manufactures. However, large grid impedance variation is challenging the control and the grid filter design in terms of stability. In fact the PV systems are well...... suited for loads connected in a great distance to the transformer (long wires) and the situation becomes even more difficult in low-developed remote areas characterized by low power transformers and long distribution wires with high grid impedance. Hence a theoretical analysis is needed because the grid...... impedance variation leads to dynamic and stability problems both in the low frequency range (around the current controller bandwidth frequency) as well as in the high frequency range (around the LCL-filter resonance frequency). In the low frequency range the possible variation of the impedance challenges...

  6. Multigrid solution of the Navier-Stokes equations at low speeds with large temperature variations

    International Nuclear Information System (INIS)

    Sockol, Peter M.

    2003-01-01

    Multigrid methods for the Navier-Stokes equations at low speeds and large temperature variations are investigated. The compressible equations with time-derivative preconditioning and preconditioned flux-difference splitting of the inviscid terms are used. Three implicit smoothers have been incorporated into a common multigrid procedure. Both full coarsening and semi-coarsening with directional fine-grid defect correction have been studied. The resulting methods have been tested on four 2D laminar problems over a range of Reynolds numbers on both uniform and highly stretched grids. Two of the three methods show efficient and robust performance over the entire range of conditions. In addition, none of the methods has any difficulty with the large temperature variations

  7. Bayesian Image Restoration Using a Large-Scale Total Patch Variation Prior

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2011-01-01

    Full Text Available Edge-preserving Bayesian restorations using nonquadratic priors are often inefficient in restoring continuous variations and tend to produce block artifacts around edges in ill-posed inverse image restorations. To overcome this, we have proposed a spatial adaptive (SA prior with improved performance. However, this SA prior restoration suffers from high computational cost and the unguaranteed convergence problem. Concerning these issues, this paper proposes a Large-scale Total Patch Variation (LS-TPV Prior model for Bayesian image restoration. In this model, the prior for each pixel is defined as a singleton conditional probability, which is in a mixture prior form of one patch similarity prior and one weight entropy prior. A joint MAP estimation is thus built to ensure the iteration monotonicity. The intensive calculation of patch distances is greatly alleviated by the parallelization of Compute Unified Device Architecture(CUDA. Experiments with both simulated and real data validate the good performance of the proposed restoration.

  8. Humans and Deep Networks Largely Agree on Which Kinds of Variation Make Object Recognition Harder.

    Science.gov (United States)

    Kheradpisheh, Saeed R; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée

    2016-01-01

    View-invariant object recognition is a challenging problem that has attracted much attention among the psychology, neuroscience, and computer vision communities. Humans are notoriously good at it, even if some variations are presumably more difficult to handle than others (e.g., 3D rotations). Humans are thought to solve the problem through hierarchical processing along the ventral stream, which progressively extracts more and more invariant visual features. This feed-forward architecture has inspired a new generation of bio-inspired computer vision systems called deep convolutional neural networks (DCNN), which are currently the best models for object recognition in natural images. Here, for the first time, we systematically compared human feed-forward vision and DCNNs at view-invariant object recognition task using the same set of images and controlling the kinds of transformation (position, scale, rotation in plane, and rotation in depth) as well as their magnitude, which we call "variation level." We used four object categories: car, ship, motorcycle, and animal. In total, 89 human subjects participated in 10 experiments in which they had to discriminate between two or four categories after rapid presentation with backward masking. We also tested two recent DCNNs (proposed respectively by Hinton's group and Zisserman's group) on the same tasks. We found that humans and DCNNs largely agreed on the relative difficulties of each kind of variation: rotation in depth is by far the hardest transformation to handle, followed by scale, then rotation in plane, and finally position (much easier). This suggests that DCNNs would be reasonable models of human feed-forward vision. In addition, our results show that the variation levels in rotation in depth and scale strongly modulate both humans' and DCNNs' recognition performances. We thus argue that these variations should be controlled in the image datasets used in vision research.

  9. Humans and deep networks largely agree on which kinds of variation make object recognition harder

    Directory of Open Access Journals (Sweden)

    Saeed Reza Kheradpisheh

    2016-08-01

    Full Text Available View-invariant object recognition is a challenging problem that has attracted much attention among the psychology, neuroscience, and computer vision communities. Humans are notoriously good at it, even if some variations are presumably more difficult to handle than others (e.g. 3D rotations. Humans are thought to solve the problem through hierarchical processing along the ventral stream, which progressively extracts more and more invariant visual features. This feed-forward architecture has inspired a new generation of bio-inspired computer vision systems called deep convolutional neural networks (DCNN, which are currently the best models for object recognition in natural images. Here, for the first time, we systematically compared human feed-forward vision and DCNNs at view-invariant object recognition task using the same set of images and controlling the kinds of transformation (position, scale, rotation in plane, and rotation in depth as well as their magnitude, which we call variation level. We used four object categories: car, ship, motorcycle, and animal. In total, 89 human subjects participated in 10 experiments in which they had to discriminate between two or four categories after rapid presentation with backward masking. We also tested two recent DCNNs (proposed respectively by Hinton's group and Zisserman's group on the same tasks. We found that humans and DCNNs largely agreed on the relative difficulties of each kind of variation: rotation in depth is by far the hardest transformation to handle, followed by scale, then rotation in plane, and finally position (much easier. This suggests that DCNNs would be reasonable models of human feed-forward vision. In addition, our results show that the variation levels in rotation in depth and scale strongly modulate both humans' and DCNNs' recognition performances. We thus argue that these variations should be controlled in the image datasets used in vision research.

  10. Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes

    Science.gov (United States)

    Meyer, Victoria; Saatchi, Sassan; Clark, David B.; Keller, Michael; Vincent, Grégoire; Ferraz, António; Espírito-Santo, Fernando; d'Oliveira, Marcus V. N.; Kaki, Dahlia; Chave, Jérôme

    2018-06-01

    Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (˜ 25-30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha-1, bias = -0.63 Mg ha-1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA-AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.

  11. Explaining health care expenditure variation: large-sample evidence using linked survey and health administrative data.

    Science.gov (United States)

    Ellis, Randall P; Fiebig, Denzil G; Johar, Meliyanni; Jones, Glenn; Savage, Elizabeth

    2013-09-01

    Explaining individual, regional, and provider variation in health care spending is of enormous value to policymakers but is often hampered by the lack of individual level detail in universal public health systems because budgeted spending is often not attributable to specific individuals. Even rarer is self-reported survey information that helps explain this variation in large samples. In this paper, we link a cross-sectional survey of 267 188 Australians age 45 and over to a panel dataset of annual healthcare costs calculated from several years of hospital, medical and pharmaceutical records. We use this data to distinguish between cost variations due to health shocks and those that are intrinsic (fixed) to an individual over three years. We find that high fixed expenditures are positively associated with age, especially older males, poor health, obesity, smoking, cancer, stroke and heart conditions. Being foreign born, speaking a foreign language at home and low income are more strongly associated with higher time-varying expenditures, suggesting greater exposure to adverse health shocks. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Seasonal variation in the mating system of a selfing annual with large floral displays.

    Science.gov (United States)

    Yin, Ge; Barrett, Spencer C H; Luo, Yi-Bo; Bai, Wei-Ning

    2016-03-01

    Flowering plants display considerable variation in mating system, specifically the relative frequency of cross- and self-fertilization. The majority of estimates of outcrossing rate do not account for temporal variation, particularly during the flowering season. Here, we investigated seasonal variation in mating and fertility in Incarvillea sinensis (Bignoniaceae), an annual with showy, insect-pollinated, 'one-day' flowers capable of delayed selfing. We examined the influence of several biotic and abiotic environmental factors on day-to-day variation in fruit set, seed set and patterns of mating. We recorded daily flower number and pollinator abundance in nine 3 × 3-m patches in a population at Mu Us Sand land, Inner Mongolia, China. From marked flowers we collected data on daily fruit and seed set and estimated outcrossing rate and biparental inbreeding using six microsatellite loci and 172 open-pollinated families throughout the flowering period. Flower density increased significantly over most of the 50-d flowering season, but was associated with a decline in levels of pollinator service by bees, particularly on windy days. Fruit and seed set declined over time, especially during the latter third of the flowering period. Multilocus estimates of outcrossing rate were obtained using two methods (the programs MLTR and BORICE) and both indicated high selfing rates of ∼80 %. There was evidence for a significant increase in levels of selfing as the flowering season progressed and pollinator visitation declined. Biparental inbreeding also declined significantly as the flowering season progressed. Temporal variation in outcrossing rates may be a common feature of the mating biology of annual, insect-pollinated plants of harsh environments but our study is the first to examine seasonal mating-system dynamics in this context. Despite having large flowers and showy floral displays, I. sinensis attracted relatively few pollinators. Delayed selfing by corolla dragging

  13. PGen: large-scale genomic variations analysis workflow and browser in SoyKB.

    Science.gov (United States)

    Liu, Yang; Khan, Saad M; Wang, Juexin; Rynge, Mats; Zhang, Yuanxun; Zeng, Shuai; Chen, Shiyuan; Maldonado Dos Santos, Joao V; Valliyodan, Babu; Calyam, Prasad P; Merchant, Nirav; Nguyen, Henry T; Xu, Dong; Joshi, Trupti

    2016-10-06

    With the advances in next-generation sequencing (NGS) technology and significant reductions in sequencing costs, it is now possible to sequence large collections of germplasm in crops for detecting genome-scale genetic variations and to apply the knowledge towards improvements in traits. To efficiently facilitate large-scale NGS resequencing data analysis of genomic variations, we have developed "PGen", an integrated and optimized workflow using the Extreme Science and Engineering Discovery Environment (XSEDE) high-performance computing (HPC) virtual system, iPlant cloud data storage resources and Pegasus workflow management system (Pegasus-WMS). The workflow allows users to identify single nucleotide polymorphisms (SNPs) and insertion-deletions (indels), perform SNP annotations and conduct copy number variation analyses on multiple resequencing datasets in a user-friendly and seamless way. We have developed both a Linux version in GitHub ( https://github.com/pegasus-isi/PGen-GenomicVariations-Workflow ) and a web-based implementation of the PGen workflow integrated within the Soybean Knowledge Base (SoyKB), ( http://soykb.org/Pegasus/index.php ). Using PGen, we identified 10,218,140 single-nucleotide polymorphisms (SNPs) and 1,398,982 indels from analysis of 106 soybean lines sequenced at 15X coverage. 297,245 non-synonymous SNPs and 3330 copy number variation (CNV) regions were identified from this analysis. SNPs identified using PGen from additional soybean resequencing projects adding to 500+ soybean germplasm lines in total have been integrated. These SNPs are being utilized for trait improvement using genotype to phenotype prediction approaches developed in-house. In order to browse and access NGS data easily, we have also developed an NGS resequencing data browser ( http://soykb.org/NGS_Resequence/NGS_index.php ) within SoyKB to provide easy access to SNP and downstream analysis results for soybean researchers. PGen workflow has been optimized for the most

  14. Variation in the macrofaunal community over large temporal and spatial scales in the southern Yellow Sea

    Science.gov (United States)

    Xu, Yong; Sui, Jixing; Yang, Mei; Sun, Yue; Li, Xinzheng; Wang, Hongfa; Zhang, Baolin

    2017-09-01

    To detect large, temporal- and spatial-scale variations in the macrofaunal community in the southern Yellow Sea, data collected along the western, middle and eastern regions of the southern Yellow Sea from 1958 to 2014 were organized and analyzed. Statistical methods such as cluster analysis, non-metric multidimensional scaling ordination (nMDS), permutational multivariate analysis of variance (PERMANOVA), redundancy analysis (RDA) and canonical correspondence analysis (CCA) were applied. The abundance of polychaetes increased in the western region but decreased in the eastern region from 1958 to 2014, whereas the abundance of echinoderms showed an opposite trend. For the entire macrofaunal community, Margalef's richness (d), the Shannon-Wiener index (H‧) and Pielou's evenness (J‧) were significantly lower in the eastern region when compared with the other two regions. No significant temporal differences were found for d and H‧, but there were significantly lower values of J‧ in 2014. Considerable variation in the macrofaunal community structure over the past several decades and among the geographical regions at the species, genus and family levels were observed. The species, genera and families that contributed to the temporal variation in each region were also identified. The most conspicuous pattern was the increase in the species Ophiura sarsii vadicola in the eastern region. In the western region, five polychaetes (Ninoe palmata, Notomastus latericeus, Paralacydonia paradoxa, Paraprionospio pinnata and Sternaspis scutata) increased consistently from 1958 to 2014. The dominance curves showed that both the species diversity and the dominance patterns were relatively stable in the western and middle regions. Environmental parameters such as depth, temperature and salinity could only partially explain the observed biological variation in the southern Yellow Sea. Anthropogenic activities such as demersal fishing and other unmeasured environmental variables

  15. Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft

    Science.gov (United States)

    Desbazeille, M.; Randall, R. B.; Guillet, F.; El Badaoui, M.; Hoisnard, C.

    2010-07-01

    This work aims at monitoring large diesel engines by analyzing the crankshaft angular speed variations. It focuses on a powerful 20-cylinder diesel engine with crankshaft natural frequencies within the operating speed range. First, the angular speed variations are modeled at the crankshaft free end. This includes modeling both the crankshaft dynamical behavior and the excitation torques. As the engine is very large, the first crankshaft torsional modes are in the low frequency range. A model with the assumption of a flexible crankshaft is required. The excitation torques depend on the in-cylinder pressure curve. The latter is modeled with a phenomenological model. Mechanical and combustion parameters of the model are optimized with the help of actual data. Then, an automated diagnosis based on an artificially intelligent system is proposed. Neural networks are used for pattern recognition of the angular speed waveforms in normal and faulty conditions. Reference patterns required in the training phase are computed with the model, calibrated using a small number of actual measurements. Promising results are obtained. An experimental fuel leakage fault is successfully diagnosed, including detection and localization of the faulty cylinder, as well as the approximation of the fault severity.

  16. Implications for risk assessment of host factors causing large pharmacokinetic variations

    Energy Technology Data Exchange (ETDEWEB)

    Vesell, E.S.

    1985-12-01

    Normal human subjects vary widely in their capacity to eliminate many drugs and environmental chemicals. These variations range in magnitude from fourfold to fortyfold depending on the drug and the population studied. Pharmacogenetics deals with only one of many host factors responsible for these large pharmacokinetic differences. Age, sex, diet and exposure to other drugs and chemicals, including oral contraceptives, ethanol and cigarette smoking, can alter the genetically determined rate at which a particular subject eliminates drugs and environmental chemicals. These elimination rates, therefore, are dynamic and change even in the same subject with time and condition. Regulatory legislation has only recently begun to recognize this very broad spectrum of human susceptibility and the existence of multiple special subgroups of particularly sensitive subjects. In setting standards for environmental chemicals, EPA and NIOSH have attempted to protect the most sensitive humans and should be encouraged to continue this policy. For some drugs and environmental chemicals, the commonly used safety factor of 100 may be too low; for these chemicals large, interindividual pharmacokinetic variations produced by pharmacogenetic and other host factors may make a safety factor of 400 or 500 more adequate.

  17. Timescales of Massive Human Entrainment

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Perlman, Marcus; Mislove, Alan

    2014-01-01

    of distinct scales, in an exquisitely time locked fashion. Using a large scale database of human communication data, we analyze and describe three different time scales of human entrainment in electronic media. We sought a distinct shared experience that provided a test bed for quantifying large scale human...

  18. Utilising identifier error variation in linkage of large administrative data sources

    Directory of Open Access Journals (Sweden)

    Katie Harron

    2017-02-01

    Full Text Available Abstract Background Linkage of administrative data sources often relies on probabilistic methods using a set of common identifiers (e.g. sex, date of birth, postcode. Variation in data quality on an individual or organisational level (e.g. by hospital can result in clustering of identifier errors, violating the assumption of independence between identifiers required for traditional probabilistic match weight estimation. This potentially introduces selection bias to the resulting linked dataset. We aimed to measure variation in identifier error rates in a large English administrative data source (Hospital Episode Statistics; HES and to incorporate this information into match weight calculation. Methods We used 30,000 randomly selected HES hospital admissions records of patients aged 0–1, 5–6 and 18–19 years, for 2011/2012, linked via NHS number with data from the Personal Demographic Service (PDS; our gold-standard. We calculated identifier error rates for sex, date of birth and postcode and used multi-level logistic regression to investigate associations with individual-level attributes (age, ethnicity, and gender and organisational variation. We then derived: i weights incorporating dependence between identifiers; ii attribute-specific weights (varying by age, ethnicity and gender; and iii organisation-specific weights (by hospital. Results were compared with traditional match weights using a simulation study. Results Identifier errors (where values disagreed in linked HES-PDS records or missing values were found in 0.11% of records for sex and date of birth and in 53% of records for postcode. Identifier error rates differed significantly by age, ethnicity and sex (p < 0.0005. Errors were less frequent in males, in 5–6 year olds and 18–19 year olds compared with infants, and were lowest for the Asian ethic group. A simulation study demonstrated that substantial bias was introduced into estimated readmission rates in the presence

  19. Quasi-periodic variations of cometary ion fluxes at large distances from comet Halley

    Energy Technology Data Exchange (ETDEWEB)

    Richter, A.K.; Daly, P.W.; Verigin, M.I.; Gringauz, K.I.; Erdos, G.; Kecskemety, K.; Somogyi, A.J.; Szego, K.; Varga, A.; McKenna-Lawlor, S.

    1989-04-01

    Large variations, with a period of about 4 h, in the energetic ion fluxes have been observed far upstream (between 2 and 10 million kilometers) of comet Halley on both the Vega-1 and Giotto spacecraft. We have fitted the cometocentric distances of the occurrences to a simple model of expanding shells of neutral particles, the production of which is modulated by the spin of the comet nucleus, and have achieved excellent agreement between the two spacecraft. We derive an expansion speed for the neutrals of 6.18 +- 0.14 km s/sup -1/. Possible candidates for the neutrals are hydrogen atoms, created by the photo-dissociation of OH with a speed of 8 km s/sup -1/, or oxygen atoms, produced from the photo-dissociation of CO/sub 2/ with a speed of 6.5 km s/sup -1/.

  20. Variation in Surficial Hydrated Minerals on Large Low-Albedo Asteroids

    Science.gov (United States)

    Rivkin, Andrew S.; Emery, Joshua P.; Howell, Ellen S.

    2017-10-01

    Observations of asteroids in the 3-µm spectral region, where absorptions diagnostic for hydrated minerals are found, show low-albedo asteroid spectra can be classified into at least 3 groups (Takir et al. 2013, Rivkin et al. 2015). While definitions of these groups vary between authors, they hold in common a group with spectra like what we see for CM/CI meteorites, one group with spectra like that of Ceres, and a group with spectra that have been interpreted as ice frost. The relationship between these groups is not yet clear. One possibility is that the spectrum reflects (no pun intended) the formation location for the asteroids and that a given object is undifferentiated and homogeneous in the composition of its hydrated minerals. However, models of the thermal and chemical evolution of large, low-albedo asteroids suggests that differentiation may be more common than we had thought, and impacts could exhume once-deep layers or expose complicated mixes of salts and silicates (for instance, Castillo-Rogez et al. LPSC 2017 model of Ceres). In this case, we might expect variation in the 3-µm spectral region to be seen on the surfaces of some objects as they rotate. We will present evidence for such variation in the spectrum of two large asteroids, 704 Interamnia (306 km diameter) and 324 Bamberga (220 km diameter). In the first case, Interamnia’s spectrum seems to have a combination of Ceres- and CM/CI-like features and has aspects where one or another component is dominant, while Bamberga’s spectrum is not easily placed in previously-defined groups.

  1. Developing natural convection in a fluid layer with localized heating and large viscosity variation

    Energy Technology Data Exchange (ETDEWEB)

    Hickox, C.E.; Chu, Tze Yao.

    1991-01-01

    Numerical simulations and laboratory experiments are used to elucidate aspects of transient natural convection in a magma chamber. The magma chamber is modeled as a horizontal fluid layer confined within an enclosure of square planform and heated from below by a strip heater centered on the lower boundary of the enclosure. The width of the strip heater and the depth of the fluid layer are one-fourth of the layer width. Corn syrup is used as the working fluid in order to approximate the large viscosity variation with temperature and the large Prandtl number typical of magma. The quiescent, uniform, fluid layer is subjected to instantaneous heating from the strip heater producing a transient flow which is dominated by two counter-rotating convective cells. Experimentally determined characteristics of the developing flow are compared with numerical simulations carried out with a finite element computer program. The results of numerical simulations are in essential agreement with experimental data. Differences between the numerical simulations and experimental measurements are conjectured to result from non-ideal effects present in the experiment which are difficult to represent accurately in a numerical simulation.

  2. Genome size variation affects song attractiveness in grasshoppers: evidence for sexual selection against large genomes.

    Science.gov (United States)

    Schielzeth, Holger; Streitner, Corinna; Lampe, Ulrike; Franzke, Alexandra; Reinhold, Klaus

    2014-12-01

    Genome size is largely uncorrelated to organismal complexity and adaptive scenarios. Genetic drift as well as intragenomic conflict have been put forward to explain this observation. We here study the impact of genome size on sexual attractiveness in the bow-winged grasshopper Chorthippus biguttulus. Grasshoppers show particularly large variation in genome size due to the high prevalence of supernumerary chromosomes that are considered (mildly) selfish, as evidenced by non-Mendelian inheritance and fitness costs if present in high numbers. We ranked male grasshoppers by song characteristics that are known to affect female preferences in this species and scored genome sizes of attractive and unattractive individuals from the extremes of this distribution. We find that attractive singers have significantly smaller genomes, demonstrating that genome size is reflected in male courtship songs and that females prefer songs of males with small genomes. Such a genome size dependent mate preference effectively selects against selfish genetic elements that tend to increase genome size. The data therefore provide a novel example of how sexual selection can reinforce natural selection and can act as an agent in an intragenomic arms race. Furthermore, our findings indicate an underappreciated route of how choosy females could gain indirect benefits. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  3. Ulysses: accurate detection of low-frequency structural variations in large insert-size sequencing libraries.

    Science.gov (United States)

    Gillet-Markowska, Alexandre; Richard, Hugues; Fischer, Gilles; Lafontaine, Ingrid

    2015-03-15

    The detection of structural variations (SVs) in short-range Paired-End (PE) libraries remains challenging because SV breakpoints can involve large dispersed repeated sequences, or carry inherent complexity, hardly resolvable with classical PE sequencing data. In contrast, large insert-size sequencing libraries (Mate-Pair libraries) provide higher physical coverage of the genome and give access to repeat-containing regions. They can thus theoretically overcome previous limitations as they are becoming routinely accessible. Nevertheless, broad insert size distributions and high rates of chimerical sequences are usually associated to this type of libraries, which makes the accurate annotation of SV challenging. Here, we present Ulysses, a tool that achieves drastically higher detection accuracy than existing tools, both on simulated and real mate-pair sequencing datasets from the 1000 Human Genome project. Ulysses achieves high specificity over the complete spectrum of variants by assessing, in a principled manner, the statistical significance of each possible variant (duplications, deletions, translocations, insertions and inversions) against an explicit model for the generation of experimental noise. This statistical model proves particularly useful for the detection of low frequency variants. SV detection performed on a large insert Mate-Pair library from a breast cancer sample revealed a high level of somatic duplications in the tumor and, to a lesser extent, in the blood sample as well. Altogether, these results show that Ulysses is a valuable tool for the characterization of somatic mosaicism in human tissues and in cancer genomes. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests.

    Directory of Open Access Journals (Sweden)

    Ezequiel M Marzinelli

    Full Text Available Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV facility of Australia's Integrated Marine Observing System (IMOS to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km and depths (15-60 m across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.

  5. An integration of minimum local feature representation methods to recognize large variation of foods

    Science.gov (United States)

    Razali, Mohd Norhisham bin; Manshor, Noridayu; Halin, Alfian Abdul; Mustapha, Norwati; Yaakob, Razali

    2017-10-01

    Local invariant features have shown to be successful in describing object appearances for image classification tasks. Such features are robust towards occlusion and clutter and are also invariant against scale and orientation changes. This makes them suitable for classification tasks with little inter-class similarity and large intra-class difference. In this paper, we propose an integrated representation of the Speeded-Up Robust Feature (SURF) and Scale Invariant Feature Transform (SIFT) descriptors, using late fusion strategy. The proposed representation is used for food recognition from a dataset of food images with complex appearance variations. The Bag of Features (BOF) approach is employed to enhance the discriminative ability of the local features. Firstly, the individual local features are extracted to construct two kinds of visual vocabularies, representing SURF and SIFT. The visual vocabularies are then concatenated and fed into a Linear Support Vector Machine (SVM) to classify the respective food categories. Experimental results demonstrate impressive overall recognition at 82.38% classification accuracy based on the challenging UEC-Food100 dataset.

  6. Unscheduled load flow effect due to large variation in the distributed generation in a subtransmission network

    Science.gov (United States)

    Islam, Mujahidul

    A sustainable energy delivery infrastructure implies the safe and reliable accommodation of large scale penetration of renewable sources in the power grid. In this dissertation it is assumed there will be no significant change in the power transmission and distribution structure currently in place; except in the operating strategy and regulatory policy. That is to say, with the same old structure, the path towards unveiling a high penetration of switching power converters in the power system will be challenging. Some of the dimensions of this challenge are power quality degradation, frequent false trips due to power system imbalance, and losses due to a large neutral current. The ultimate result is the reduced life of many power distribution components - transformers, switches and sophisticated loads. Numerous ancillary services are being developed and offered by the utility operators to mitigate these problems. These services will likely raise the system's operational cost, not only from the utility operators' end, but also reflected on the Independent System Operators and by the Regional Transmission Operators (RTO) due to an unforeseen backlash of frequent variation in the load-side generation or distributed generation. The North American transmission grid is an interconnected system similar to a large electrical circuit. This circuit was not planned but designed over 100 years. The natural laws of physics govern the power flow among loads and generators except where control mechanisms are installed. The control mechanism has not matured enough to withstand the high penetration of variable generators at uncontrolled distribution ends. Unlike a radial distribution system, mesh or loop networks can alleviate complex channels for real and reactive power flow. Significant variation in real power injection and absorption on the distribution side can emerge as a bias signal on the routing reactive power in some physical links or channels that are not distinguishable

  7. Distinct timescales of population coding across cortex.

    Science.gov (United States)

    Runyan, Caroline A; Piasini, Eugenio; Panzeri, Stefano; Harvey, Christopher D

    2017-08-03

    The cortex represents information across widely varying timescales. For instance, sensory cortex encodes stimuli that fluctuate over few tens of milliseconds, whereas in association cortex behavioural choices can require the maintenance of information over seconds. However, it remains poorly understood whether diverse timescales result mostly from features intrinsic to individual neurons or from neuronal population activity. This question remains unanswered, because the timescales of coding in populations of neurons have not been studied extensively, and population codes have not been compared systematically across cortical regions. Here we show that population codes can be essential to achieve long coding timescales. Furthermore, we find that the properties of population codes differ between sensory and association cortices. We compared coding for sensory stimuli and behavioural choices in auditory cortex and posterior parietal cortex as mice performed a sound localization task. Auditory stimulus information was stronger in auditory cortex than in posterior parietal cortex, and both regions contained choice information. Although auditory cortex and posterior parietal cortex coded information by tiling in time neurons that were transiently informative for approximately 200 milliseconds, the areas had major differences in functional coupling between neurons, measured as activity correlations that could not be explained by task events. Coupling among posterior parietal cortex neurons was strong and extended over long time lags, whereas coupling among auditory cortex neurons was weak and short-lived. Stronger coupling in posterior parietal cortex led to a population code with long timescales and a representation of choice that remained consistent for approximately 1 second. In contrast, auditory cortex had a code with rapid fluctuations in stimulus and choice information over hundreds of milliseconds. Our results reveal that population codes differ across cortex

  8. Ordovician timescale in Estonia: recent developments

    Directory of Open Access Journals (Sweden)

    Hints, Olle

    2006-06-01

    Full Text Available Over 150 years of progress in the Ordovician geology and stratigraphy of Estonia has resulted in one of the most precise Ordovician timescales in the world. In this paper, an up-to-date version of the Ordovician timescale of Estonia is provided. Recent developments in graptolite, chitinozoan, and conodont biostratigraphy, and the correlation with the global standard are briefly commented upon. Application of the regional subseries rank is discussed and two new names are proposed: “Vinni” for the upper subseries of the Viru Series, and “Atla” for the upper subseries of the Harju Series.

  9. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales.

    Science.gov (United States)

    Wu, Jin; Guan, Kaiyu; Hayek, Matthew; Restrepo-Coupe, Natalia; Wiedemann, Kenia T; Xu, Xiangtao; Wehr, Richard; Christoffersen, Bradley O; Miao, Guofang; da Silva, Rodrigo; de Araujo, Alessandro C; Oliviera, Raimundo C; Camargo, Plinio B; Monson, Russell K; Huete, Alfredo R; Saleska, Scott R

    2017-03-01

    Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model was able to explain most of the variability in GEP at hourly (R 2  = 0.77) to interannual (R 2  = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). This work

  10. Large Variations in HIV-1 Viral Load Explained by Shifting-Mosaic Metapopulation Dynamics

    Science.gov (United States)

    Lythgoe, Katrina A.; Blanquart, François

    2016-01-01

    The viral population of HIV-1, like many pathogens that cause systemic infection, is structured and differentiated within the body. The dynamics of cellular immune trafficking through the blood and within compartments of the body has also received wide attention. Despite these advances, mathematical models, which are widely used to interpret and predict viral and immune dynamics in infection, typically treat the infected host as a well-mixed homogeneous environment. Here, we present mathematical, analytical, and computational results that demonstrate that consideration of the spatial structure of the viral population within the host radically alters predictions of previous models. We study the dynamics of virus replication and cytotoxic T lymphocytes (CTLs) within a metapopulation of spatially segregated patches, representing T cell areas connected by circulating blood and lymph. The dynamics of the system depend critically on the interaction between CTLs and infected cells at the within-patch level. We show that for a wide range of parameters, the system admits an unexpected outcome called the shifting-mosaic steady state. In this state, the whole body’s viral population is stable over time, but the equilibrium results from an underlying, highly dynamic process of local infection and clearance within T-cell centers. Notably, and in contrast to previous models, this new model can explain the large differences in set-point viral load (SPVL) observed between patients and their distribution, as well as the relatively low proportion of cells infected at any one time, and alters the predicted determinants of viral load variation. PMID:27706164

  11. Fish habitat selection in a large hydropeaking river: Strong individual and temporal variations revealed by telemetry.

    Science.gov (United States)

    Capra, Hervé; Plichard, Laura; Bergé, Julien; Pella, Hervé; Ovidio, Michaël; McNeil, Eric; Lamouroux, Nicolas

    2017-02-01

    Modeling individual fish habitat selection in highly variable environments such as hydropeaking rivers is required for guiding efficient management decisions. We analyzed fish microhabitat selection in the heterogeneous hydraulic and thermal conditions (modeled in two-dimensions) of a reach of the large hydropeaking Rhône River locally warmed by the cooling system of a nuclear power plant. We used modern fixed acoustic telemetry techniques to survey 18 fish individuals (five barbels, six catfishes, seven chubs) signaling their position every 3s over a three-month period. Fish habitat selection depended on combinations of current microhabitat hydraulics (e.g. velocity, depth), past microhabitat hydraulics (e.g. dewatering risk or maximum velocities during the past 15days) and to a lesser extent substrate and temperature. Mixed-effects habitat selection models indicated that individual effects were often stronger than specific effects. In the Rhône, fish individuals appear to memorize spatial and temporal environmental changes and to adopt a "least constraining" habitat selection. Avoiding fast-flowing midstream habitats, fish generally live along the banks in areas where the dewatering risk is high. When discharge decreases, however, they select higher velocities but avoid both dewatering areas and very fast-flowing midstream habitats. Although consistent with the available knowledge on static fish habitat selection, our quantitative results demonstrate temporal variations in habitat selection, depending on individual behavior and environmental history. Their generality could be further tested using comparative experiments in different environmental configurations. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Unexpectedly high genetic variation in large unisexual clumps of the subdioecious plant Honckenya peploides

    DEFF Research Database (Denmark)

    Sánchez-Vilas, Julia; Philipp, Marianne; Retuerto, Rubén

    2010-01-01

    Honckenya peploides is a subdioecious dune plant that reproduces both sexually and by clonal growth. In northwest Spain this species was found to exhibit an extreme spatial segregation of the sexes, and our objective was to investigate genetic variation in unisexual clumps. Genetic variation was ...

  13. Measurement and Socio-Demographic Variation of Social Capital in a Large Population-Based Survey

    Science.gov (United States)

    Nieminen, Tarja; Martelin, Tuija; Koskinen, Seppo; Simpura, Jussi; Alanen, Erkki; Harkanen, Tommi; Aromaa, Arpo

    2008-01-01

    Objectives: The main objective of this study was to describe the variation of individual social capital according to socio-demographic factors, and to develop a suitable way to measure social capital for this purpose. The similarity of socio-demographic variation between the genders was also assessed. Data and methods: The study applied…

  14. Signal-independent timescale analysis (SITA) and its application for neural coding during reaching and walking.

    Science.gov (United States)

    Zacksenhouse, Miriam; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2014-01-01

    What are the relevant timescales of neural encoding in the brain? This question is commonly investigated with respect to well-defined stimuli or actions. However, neurons often encode multiple signals, including hidden or internal, which are not experimentally controlled, and thus excluded from such analysis. Here we consider all rate modulations as the signal, and define the rate-modulations signal-to-noise ratio (RM-SNR) as the ratio between the variance of the rate and the variance of the neuronal noise. As the bin-width increases, RM-SNR increases while the update rate decreases. This tradeoff is captured by the ratio of RM-SNR to bin-width, and its variations with the bin-width reveal the timescales of neural activity. Theoretical analysis and simulations elucidate how the interactions between the recovery properties of the unit and the spectral content of the encoded signals shape this ratio and determine the timescales of neural coding. The resulting signal-independent timescale analysis (SITA) is applied to investigate timescales of neural activity recorded from the motor cortex of monkeys during: (i) reaching experiments with Brain-Machine Interface (BMI), and (ii) locomotion experiments at different speeds. Interestingly, the timescales during BMI experiments did not change significantly with the control mode or training. During locomotion, the analysis identified units whose timescale varied consistently with the experimentally controlled speed of walking, though the specific timescale reflected also the recovery properties of the unit. Thus, the proposed method, SITA, characterizes the timescales of neural encoding and how they are affected by the motor task, while accounting for all rate modulations.

  15. Signal-Independent Timescale Analysis (SITA and its Application for Neural Coding during Reaching and Walking

    Directory of Open Access Journals (Sweden)

    Miriam eZacksenhouse

    2014-08-01

    Full Text Available What are the relevant timescales of neural encoding in the brain? This question is commonly investigated with respect to well-defined stimuli or actions. However, neurons often encode multiple signals, including hidden or internal, which are not experimentally controlled, and thus excluded from such analysis. Here we consider all rate modulations as the signal, and define the rate-modulations signal-to-noise ratio (RM-SNR as the ratio between the variance of the rate and the variance of the neuronal noise. As the bin-width increases, RM-SNR increases while the update rate decreases. This tradeoff is captured by the ratio of RM-SNR to bin-width, and its variations with the bin-width reveal the timescales of neural activity. Theoretical analysis and simulations elucidate how the interactions between the recovery properties of the unit and the spectral content of the encoded signals shape this ratio and determine the timescales of neural coding. The resulting signal-independent timescale analysis (SITA is applied to investigate timescales of neural activity recorded from the motor cortex of monkeys during: (i reaching experiments with Brain-Machine Interface (BMI, and (ii locomotion experiments at different speeds. Interestingly, the timescales during BMI experiments did not change significantly with the control mode or training. During locomotion, the analysis identified units whose timescale varied consistently with the experimentally controlled speed of walking, though the specific timescale reflected also the recovery properties of the unit. Thus, the proposed method, SITA, characterizes the timescales of neural encoding and how they are affected by the motor task, while accounting for all rate modulations.

  16. Short timescale photometric and polarimetric behavior of two BL Lacertae type objects

    International Nuclear Information System (INIS)

    Covino, S.; Baglio, M. C.; Foschini, L.; Sandrinelli, A.; Tavecchio, F.; Treves, A.; Zhang, H.; Barres de Almeida, U.; Bonnoli, G.; Boettcher, M.; Cecconi, M.; D'Ammando, F.; Fabrizio, L. di; Giarrusso, M.; Leone, F.; Lindfors, E.; Lorenzi, V.; Molinari, E.; Paiano, S.; Prandini, E.; Raiteri, C. M.; Stamerra, A.; Tagliaferri, G.

    2015-01-01

    Context. Blazars are astrophysical sources whose emission is dominated by non-thermal processes, typically interpreted as synchrotron and inverse Compton emission. Although the general picture is rather robust and consistent with observations, many aspects are still unexplored. Aims. Polarimetric monitoring can offer a wealth of information about the physical processes in blazars. Models with largely different physical ingredients can often provide almost indistinguishable predictions for the total flux, but usually are characterized by markedly different polarization properties. We explore, with a pilot study, the possibility to derive structural information about the emitting regions of blazars by means of a joint analysis of rapid variability of the total and polarized flux at optical wavelengths. Methods. Short timescale (from tens of seconds to a couple of minutes) optical linear polarimetry and photometry for two blazars, BL Lacertae and PKS 1424+240, was carried out with the PAOLO polarimeter at the 3.6 m Telescopio Nazionale Galileo. Several hours of almost continuous observations were obtained for both sources. Results. Our intense monitoring allowed us to draw strongly different scenarios for BL Lacertae and PKS 1424+240, with the former characterized by intense variability on time-scales from hours to a few minutes and the latter practically constant in total flux. Essentially the same behavior is observed for the polarized flux and the position angle. The variability time-scales turned out to be as short as a few minutes, although involving only a few percent variation of the flux. The polarization variability time-scale is generally consistent with the total flux variability. Total and polarized flux appear to be essentially uncorrelated. However, even during our relatively short monitoring, different regimes can be singled out. Conclusions. No simple scenario is able to satisfactorily model the very rich phenomenology exhibited in our data. As a

  17. Explaining growth variation over large spatial scales: Effects of temperature and food on walleye growth

    DEFF Research Database (Denmark)

    Mosgaard, Thomas; Venturelli, Paul; Lester, Nigel P.

    2012-01-01

    freshwater fish species in North America. We then use length at age data from yellow perch (Perca flavescens) to identify the mechanisms behind the remaining variation in the length at age – temperature relationship for walleye. A positive perch – walleye relationship indicates that the mechanism behind......Most fishes exhibit strong spatial variation in growth. Because fish growth and production are tightly linked, quantifying and explaining variation in growth can mean the difference between successful management and unforeseen collapse. However, disentangling the factors that are responsible...

  18. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics

    NARCIS (Netherlands)

    Slik, J.W.F.; Paoli, G.; McGuire, K.; Amaral, I.; Barroso, J.; Bongers, F.; Poorter, L.

    2013-01-01

    Aim - Large trees (d.b.h.¿=¿70¿cm) store large amounts of biomass. Several studies suggest that large trees may be vulnerable to changing climate, potentially leading to declining forest biomass storage. Here we determine the importance of large trees for tropical forest biomass storage and explore

  19. Variation in Patients' Travel Times among Imaging Examination Types at a Large Academic Health System.

    Science.gov (United States)

    Rosenkrantz, Andrew B; Liang, Yu; Duszak, Richard; Recht, Michael P

    2017-08-01

    Patients' willingness to travel farther distances for certain imaging services may reflect their perceptions of the degree of differentiation of such services. We compare patients' travel times for a range of imaging examinations performed across a large academic health system. We searched the NYU Langone Medical Center Enterprise Data Warehouse to identify 442,990 adult outpatient imaging examinations performed over a recent 3.5-year period. Geocoding software was used to estimate typical driving times from patients' residences to imaging facilities. Variation in travel times was assessed among examination types. The mean expected travel time was 29.2 ± 20.6 minutes, but this varied significantly (p travel times were shortest for ultrasound (26.8 ± 18.9) and longest for positron emission tomography-computed tomography (31.9 ± 21.5). For magnetic resonance imaging, travel times were shortest for musculoskeletal extremity (26.4 ± 19.2) and spine (28.6 ± 21.0) examinations and longest for prostate (35.9 ± 25.6) and breast (32.4 ± 22.3) examinations. For computed tomography, travel times were shortest for a range of screening examinations [colonography (25.5 ± 20.8), coronary artery calcium scoring (26.1 ± 19.2), and lung cancer screening (26.4 ± 14.9)] and longest for angiography (32.0 ± 22.6). For ultrasound, travel times were shortest for aortic aneurysm screening (22.3 ± 18.4) and longest for breast (30.1 ± 19.2) examinations. Overall, men (29.9 ± 21.6) had longer (p travel times than women (27.8 ± 20.3); this difference persisted for each modality individually (p ≤ 0.006). Patients' willingness to travel longer times for certain imaging examination types (particularly breast and prostate imaging) supports the role of specialized services in combating potential commoditization of imaging services. Disparities in travel times by gender warrant further investigation. Copyright

  20. Large-scale geographical variation in eggshell heavy metal and calcium content in a passerine bird (Ficedula hypoleuca)

    NARCIS (Netherlands)

    Ruuskanen, S.; Morales, J.; Laaksonen, T.; Moreno, J.; Mateo, R.; Belskii, E.; Bushuev, A.; Jarvinen, A.; Kerimov, A.; Krams, I.; Morosinotto, C.; Mand, R.; Orell, M.; Qvarnstrom, A.; Slater, F.M.; Siitari, H.; Tilgar, V.; Visser, M.E.; Winkel, W.; Zang, H.; Eeva, T.

    2014-01-01

    Birds have been used as bioindicators of pollution, such as toxic metals. Levels of pollutants in eggs are especially interesting, as developing birds are more sensitive to detrimental effects of pollutants than adults. Only very few studies have monitored intraspecific, large-scale variation in

  1. Timescales of isotropic and anisotropic cluster collapse

    Science.gov (United States)

    Bartelmann, M.; Ehlers, J.; Schneider, P.

    1993-12-01

    From a simple estimate for the formation time of galaxy clusters, Richstone et al. have recently concluded that the evidence for non-virialized structures in a large fraction of observed clusters points towards a high value for the cosmological density parameter Omega0. This conclusion was based on a study of the spherical collapse of density perturbations, assumed to follow a Gaussian probability distribution. In this paper, we extend their treatment in several respects: first, we argue that the collapse does not start from a comoving motion of the perturbation, but that the continuity equation requires an initial velocity perturbation directly related to the density perturbation. This requirement modifies the initial condition for the evolution equation and has the effect that the collapse proceeds faster than in the case where the initial velocity perturbation is set to zero; the timescale is reduced by a factor of up to approximately equal 0.5. Our results thus strengthens the conclusion of Richstone et al. for a high Omega0. In addition, we study the collapse of density fluctuations in the frame of the Zel'dovich approximation, using as starting condition the analytically known probability distribution of the eigenvalues of the deformation tensor, which depends only on the (Gaussian) width of the perturbation spectrum. Finally, we consider the anisotropic collapse of density perturbations dynamically, again with initial conditions drawn from the probability distribution of the deformation tensor. We find that in both cases of anisotropic collapse, in the Zel'dovich approximation and in the dynamical calculations, the resulting distribution of collapse times agrees remarkably well with the results from spherical collapse. We discuss this agreement and conclude that it is mainly due to the properties of the probability distribution for the eigenvalues of the Zel'dovich deformation tensor. Hence, the conclusions of Richstone et al. on the value of Omega0 can be

  2. Large variations in ocular dimensions in a multiethnic population with similar genetic background.

    Science.gov (United States)

    Niu, Zhiqiang; Li, Jun; Zhong, Hua; Yuan, Zhonghua; Zhou, Hua; Zhang, Yang; Yuan, Yuansheng; Chen, Qin; Pan, Chen-Wei

    2016-03-07

    We aimed to describe the ethnic variations in ocular dimensions among three ethnic groups with similar genetic ancestry from mainland of China. We included 2119 ethnic Bai, 2202 ethnic Yi and 2183 ethnic Han adults aged 50 years or older in the study. Ocular dimensions including axial length (AL), anterior chamber depth (ACD), vitreous chamber depth (VCD) and lens thickness (LT) were measured using A-scan ultrasonography. Bai Chinese had longer ALs (P variations in LTs. Diabetes was associated with shallower ACDs and this association was stronger in Bai Chinese compared with Yi or Han Chinese (P for interaction = 0.02). Thicker lenses were associated with younger age (P = 0.04), male gender (P variations in cultures and lifestyles.

  3. Multiple time-scale methods in particle simulations of plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1985-01-01

    This paper surveys recent advances in the application of multiple time-scale methods to particle simulation of collective phenomena in plasmas. These methods dramatically improve the efficiency of simulating low-frequency kinetic behavior by allowing the use of a large timestep, while retaining accuracy. The numerical schemes surveyed provide selective damping of unwanted high-frequency waves and preserve numerical stability in a variety of physics models: electrostatic, magneto-inductive, Darwin and fully electromagnetic. The paper reviews hybrid simulation models, the implicitmoment-equation method, the direct implicit method, orbit averaging, and subcycling

  4. Oceanic control of Northeast Pacific hurricane activity at interannual timescales

    International Nuclear Information System (INIS)

    Balaguru, Karthik; Ruby Leung, L; Yoon, Jin-ho

    2013-01-01

    Sea surface temperature (SST) is not the only oceanic parameter that can play a key role in the interannual variability of Northeast Pacific hurricane activity. Using several observational data sets and the statistical technique of multiple linear regression analysis, we show that, along with SST, the thermocline depth (TD) plays an important role in hurricane activity at interannual timescales in this basin. Based on the parameter that dominates, the ocean basin can be divided into two sub-regions. In the Southern sub-region, which includes the hurricane main development area, interannual variability of the upper-ocean heat content (OHC) is primarily controlled by TD variations. Consequently, the interannual variability in the hurricane power dissipation index (PDI), which is a measure of the intensity of hurricane activity, is driven by that of the TD. On the other hand, in the Northern sub-region, SST exerts the major control over the OHC variability and, in turn, the PDI. Our study suggests that both SST and TD have a significant influence on the Northeast Pacific hurricane activity at interannual timescales and that their respective roles are more clearly delineated when sub-regions along an approximate north–south demarcation are considered rather than the basin as a whole. (letter)

  5. Large variations in ocular dimensions in a multiethnic population with similar genetic background

    OpenAIRE

    Niu, Zhiqiang; Li, Jun; Zhong, Hua; Yuan, Zhonghua; Zhou, Hua; Zhang, Yang; Yuan, Yuansheng; Chen, Qin; Pan, Chen-Wei

    2016-01-01

    We aimed to describe the ethnic variations in ocular dimensions among three ethnic groups with similar genetic ancestry from mainland of China. We included 2119 ethnic Bai, 2202 ethnic Yi and 2183 ethnic Han adults aged 50 years or older in the study. Ocular dimensions including axial length (AL), anterior chamber depth (ACD), vitreous chamber depth (VCD) and lens thickness (LT) were measured using A-scan ultrasonography. Bai Chinese had longer ALs (P?

  6. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms

    Science.gov (United States)

    Young, Jodi N.; Heureux, Ana M.C.; Sharwood, Robert E.; Rickaby, Rosalind E.M.; Morel, François M.M.; Whitney, Spencer M.

    2016-01-01

    While marine phytoplankton rival plants in their contribution to global primary productivity, our understanding of their photosynthesis remains rudimentary. In particular, the kinetic diversity of the CO2-fixing enzyme, Rubisco, in phytoplankton remains unknown. Here we quantify the maximum rates of carboxylation (k cat c), oxygenation (k cat o), Michaelis constants (K m) for CO2 (K C) and O2 (K O), and specificity for CO2 over O2 (SC/O) for Form I Rubisco from 11 diatom species. Diatom Rubisco shows greater variation in K C (23–68 µM), SC/O (57–116mol mol−1), and K O (413–2032 µM) relative to plant and algal Rubisco. The broad range of K C values mostly exceed those of C4 plant Rubisco, suggesting that the strength of the carbon-concentrating mechanism (CCM) in diatoms is more diverse, and more effective than previously predicted. The measured k cat c for each diatom Rubisco showed less variation (2.1–3.7s−1), thus averting the canonical trade-off typically observed between K C and k cat c for plant Form I Rubisco. Uniquely, a negative relationship between K C and cellular Rubisco content was found, suggesting variation among diatom species in how they allocate their limited cellular resources between Rubisco synthesis and their CCM. The activation status of Rubisco in each diatom was low, indicating a requirement for Rubisco activase. This work highlights the need to better understand the correlative natural diversity between the Rubisco kinetics and CCM of diatoms and the underpinning mechanistic differences in catalytic chemistry among the Form I Rubisco superfamily. PMID:27129950

  7. A large-scale survey of genetic copy number variations among Han Chinese residing in Taiwan

    Directory of Open Access Journals (Sweden)

    Wu Jer-Yuarn

    2008-12-01

    Full Text Available Abstract Background Copy number variations (CNVs have recently been recognized as important structural variations in the human genome. CNVs can affect gene expression and thus may contribute to phenotypic differences. The copy number inferring tool (CNIT is an effective hidden Markov model-based algorithm for estimating allele-specific copy number and predicting chromosomal alterations from single nucleotide polymorphism microarrays. The CNIT algorithm, which was constructed using data from 270 HapMap multi-ethnic individuals, was applied to identify CNVs from 300 unrelated Han Chinese individuals in Taiwan. Results Using stringent selection criteria, 230 regions with variable copy numbers were identified in the Han Chinese population; 133 (57.83% had been reported previously, 64 displayed greater than 1% CNV allele frequency. The average size of the CNV regions was 322 kb (ranging from 1.48 kb to 5.68 Mb and covered a total of 2.47% of the human genome. A total of 196 of the CNV regions were simple deletions and 27 were simple amplifications. There were 449 genes and 5 microRNAs within these CNV regions; some of these genes are known to be associated with diseases. Conclusion The identified CNVs are characteristic of the Han Chinese population and should be considered when genetic studies are conducted. The CNV distribution in the human genome is still poorly characterized, and there is much diversity among different ethnic populations.

  8. Metabolite variation in hybrid corn grain from a large-scale multisite study

    Directory of Open Access Journals (Sweden)

    Mingjie Chen

    2016-06-01

    Full Text Available Metabolite composition is strongly affected by genotype, environment, and interactions between genotype and environment, although the extent of variation caused by these factors may depend upon the type of metabolite. To characterize the complexity of genotype, environment, and their interaction in hybrid seeds, 50 genetically diverse non-genetically modified (GM maize hybrids were grown in six geographically diverse locations in North America. Polar metabolites from 553 harvested corn grain samples were isolated and analyzed by gas chromatography–mass spectrometry and 45 metabolites detected in all samples were used to generate a data matrix for statistical analysis. There was moderate variation among biological replicates and across genotypes and test sites. The genotype effects were detected by univariate and Hierarchical clustering analyses (HCA when environmental effects were excluded. Overall, environment exerted larger effects than genotype, and polar metabolite accumulation showed a geographic effect. We conclude that it is possible to increase seed polar metabolite content in hybrid corn by selection of appropriate inbred lines and growing regions.

  9. Aging of black carbon particles under polluted urban environments: timescale, hygroscopicity and enhanced absorption and direct radiative forcing

    Science.gov (United States)

    Peng, J.; Hu, M.; Guo, S.; Du, Z.; Zheng, J.; Shang, D.; Levy Zamora, M.; Shao, M.; Wu, Y.; Zheng, J.; Wang, Y.; Zeng, L.; Collins, D. R.; Molina, M.; Zhang, R.

    2017-12-01

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the hygroscopic and optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using an outdoor environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. The κ (kappa) values of coating materials are calculated as 0.04 at both subsaturation and supersaturation conditions, respectively, indicating that the initial photochemical aging of BC particles does not appreciably alter the BC hygroscopicity. Our findings suggest that BC aging under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  10. Global Climate Forcing from Albedo Change Caused by Large-scale Deforestation and Reforestation: Quantification and Attribution of Geographic Variation

    Science.gov (United States)

    Jiao, Tong; Williams, Christopher A.; Ghimire, Bardan; Masek, Jeffrey; Gao, Feng; Schaaf, Crystal

    2017-01-01

    Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies widely across the globe due to a range of factors including forest type, snow cover, and insolation, but resulting geographic variation remain spoorly described and has been largely based on model assessments. This study provides an observation-based approach to quantify local and global radiative forcings from large-scale deforestation and reforestation and further examines mechanisms that result in the spatial heterogeneity of radiative forcing. We incorporate a new spatially and temporally explicit land cover-specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product). Spatial variation in radiative forcing was attributed to four mechanisms, including the change in snow-covered albedo, change in snow-free albedo, snow cover fraction, and incoming solar radiation. We find an albedo-only radiative forcing (RF) of -0.819 W m(exp -2) if year 2000 forests were completely deforested and converted to croplands. Albedo RF from global reforestation of present-day croplands to recover year 1700 forests is estimated to be 0.161 W m)exp -2). Snow-cover fraction is identified as the primary factor in determining the spatial variation of radiative forcing in winter, while the magnitude of the change in snow-free albedo is the primary factor determining variations in summertime RF. Findings reinforce the notion that, for conifers at the snowier high latitudes, albedo RF diminishes the warming from forest loss and the cooling from forest gain more so than for other forest types, latitudes, and climate settings.

  11. Background Noises Versus Intraseasonal Variation Signals: Small vs. Large Convective Cloud Objects From CERES Aqua Observations

    Science.gov (United States)

    Xu, Kuan-Man

    2015-01-01

    During inactive phases of Madden-Julian Oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES (Clouds and the Earth's Radiant Energy System) observations between July 2006 and June 2010 for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index, which assigns the tropics to one of the eight MJO phases each day. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The criteria for defining these cloud types are overcast footprints and cloud top pressures less than 400 hPa, but DC has higher cloud optical depths (=10) than those of CS (background noises resulting from various types of the tropical waves with different wavenumbers and propagation speeds/directions.

  12. Process variations in surface nano geometries manufacture on large area substrates

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido

    2014-01-01

    The need of transporting, treating and measuring increasingly smaller biomedical samples has pushed the integration of a far reaching number of nanofeatures over large substrates size in respect to the conventional processes working area windows. Dimensional stability of nano fabrication processe...

  13. Large-scale spatial variation in mercury concentrations in cattle in NW Spain

    International Nuclear Information System (INIS)

    Lopez Alonso, M.; Benedito, J.L.; Miranda, M.; Fernandez, J.A.; Castillo, C.; Hernandez, J.; Shore, R.F.

    2003-01-01

    This study quantifies the spatial scale over which major point and diffuse sources of anthropogenic mercury emission affect mercury accumulation by cattle in northwest Spain. - Mercury (Hg) is a highly toxic environmental contaminant and man-made emissions account for between a quarter and a third of total atmospheric levels. Point discharges, particularly coal-burning power stations, are major sources of atmospheric Hg and can result in marked spatial variation in mercury deposition and subsequent uptake by biota. The aims of this study were to quantify the extent to which major point and diffuse sources of atmospheric Hg emissions affected accumulation of Hg by biota throughout Galicia and Asturias, two of the major regions in northwest Spain. We did this by relating renal Hg concentrations in locally reared cattle (n=284) to the proximity of animals to point and diffuse sources of Hg emissions. Mercury residues in calf kidneys ranged between non-detected and 89.4 μg/kg wet weight. Point discharges from coal-fired power plants in Galicia had the most dominant impact on Hg accumulation by calves in Galicia, affecting animals throughout the region and explaining some two-thirds of the variation in renal residues between animals located directly downwind from the plants. The effects of more diffuse emission sources on Hg accumulation in calves were not distinguishable in Galicia but were detected in cattle from neighbouring Asturias. The impact of both point and diffuse sources in elevating environmental levels of bioavailable Hg and subsequent accumulation by cattle extended to approximately 140-200 km downwind from source

  14. Intra and Interspecific Variations of Gene Expression Levels in Yeast Are Largely Neutral: (Nei Lecture, SMBE 2016, Gold Coast).

    Science.gov (United States)

    Yang, Jian-Rong; Maclean, Calum J; Park, Chungoo; Zhao, Huabin; Zhang, Jianzhi

    2017-09-01

    It is commonly, although not universally, accepted that most intra and interspecific genome sequence variations are more or less neutral, whereas a large fraction of organism-level phenotypic variations are adaptive. Gene expression levels are molecular phenotypes that bridge the gap between genotypes and corresponding organism-level phenotypes. Yet, it is unknown whether natural variations in gene expression levels are mostly neutral or adaptive. Here we address this fundamental question by genome-wide profiling and comparison of gene expression levels in nine yeast strains belonging to three closely related Saccharomyces species and originating from five different ecological environments. We find that the transcriptome-based clustering of the nine strains approximates the genome sequence-based phylogeny irrespective of their ecological environments. Remarkably, only ∼0.5% of genes exhibit similar expression levels among strains from a common ecological environment, no greater than that among strains with comparable phylogenetic relationships but different environments. These and other observations strongly suggest that most intra and interspecific variations in yeast gene expression levels result from the accumulation of random mutations rather than environmental adaptations. This finding has profound implications for understanding the driving force of gene expression evolution, genetic basis of phenotypic adaptation, and general role of stochasticity in evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Large-scale geographical variation in eggshell metal and calcium content in a passerine bird (Ficedula hypoleuca).

    Science.gov (United States)

    Ruuskanen, Suvi; Laaksonen, Toni; Morales, Judith; Moreno, Juan; Mateo, Rafael; Belskii, Eugen; Bushuev, Andrey; Järvinen, Antero; Kerimov, Anvar; Krams, Indrikis; Morosinotto, Chiara; Mänd, Raivo; Orell, Markku; Qvarnström, Anna; Slate, Fred; Tilgar, Vallo; Visser, Marcel E; Winkel, Wolfgang; Zang, Herwig; Eeva, Tapio

    2014-03-01

    Birds have been used as bioindicators of pollution, such as toxic metals. Levels of pollutants in eggs are especially interesting, as developing birds are more sensitive to detrimental effects of pollutants than adults. Only very few studies have monitored intraspecific, large-scale variation in metal pollution across a species' breeding range. We studied large-scale geographic variation in metal levels in the eggs of a small passerine, the pied flycatcher (Ficedula hypoleuca), sampled from 15 populations across Europe. We measured 10 eggshell elements (As, Cd, Cr, Cu, Ni, Pb, Zn, Se, Sr, and Ca) and several shell characteristics (mass, thickness, porosity, and color). We found significant variation among populations in eggshell metal levels for all metals except copper. Eggshell lead, zinc, and chromium levels decreased from central Europe to the north, in line with the gradient in pollution levels over Europe, thus suggesting that eggshell can be used as an indicator of pollution levels. Eggshell lead levels were also correlated with soil lead levels and pH. Most of the metals were not correlated with eggshell characteristics, with the exception of shell mass, or with breeding success, which may suggest that birds can cope well with the current background exposure levels across Europe.

  16. Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake

    Science.gov (United States)

    Li, Yunkai; Zhang, Yuying; Xu, Jun; Zhang, Shuo

    2018-03-01

    Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in different trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic differences between basins with different environmental characteristics. Such differences likely result from isotopic baseline differences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.

  17. Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake

    Science.gov (United States)

    Li, Yunkai; Zhang, Yuying; Xu, Jun; Zhang, Shuo

    2017-05-01

    Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in different trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic differences between basins with different environmental characteristics. Such differences likely result from isotopic baseline differences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.

  18. Variation of flow separation over large bedforms during a tidal cycle

    DEFF Research Database (Denmark)

    Lefebvre, A.; Ferret, Y.; Paarlberg, A.J.

    2013-01-01

    This study characterizes the shape of the flow separation zone over natural compound bedforms during a tidal cycle and investigates how the flow separation zone depends on changing flow conditions, water levels and bathymetry. Field data collected during a full tidal cycle over large ebb-oriented......This study characterizes the shape of the flow separation zone over natural compound bedforms during a tidal cycle and investigates how the flow separation zone depends on changing flow conditions, water levels and bathymetry. Field data collected during a full tidal cycle over large ebb......, no flow separation developed over the gentle slope of the flood lee side (3 to 5° on average). However, a small flow separation zone is often recognized near the crest, where the slope is locally up to 15°. The shape of the FSZ is not influenced by changes in current velocities or water levels...

  19. Investigation of GICs Associated with Large dB/dt Variations in Space

    Science.gov (United States)

    Dimitrakoudis, S.; Mann, I. R.; Murphy, K. R.; Rae, J.; Denton, M.; Milling, D. K.

    2016-12-01

    Geomagnetically induced currents (GICs) can be driven in terrestrial electrical power grids as a result of the induced electric fields arising from magnetic field changes driven in the coupled magnetosphere-ionosphere-ground system. Substorms are often hypothesised to be associated with the largest GIC effects on the ground, especially at higher latitudes. However, recent studies have suggested that other dayside phenomena such as sudden impulses and even ULF wave trains might also drive significant GICs. Using data from the CARISMA ground-based magnetometer network we examine the GIC response driven from a variety of magnetospheric processes. In particular we focus on events where large dB/dt is observed in-situ on GOES East and West satellites. Auroras, resulting from magnetospheric substorms, give us a dynamical view of sudden destabilizations in the nightside magnetosphere, of large spatial and temporal extent, that can drive large and potentially damaging geomagnetically induced currents (GICs) in terrestrial power grids. Since ground dB/dt can be used as a GIC proxy, we have surveyed GOES data since 2011 for the largest dB/dT events, and found some to be of the order of hundreds of nT in the span of a few seconds. These are observed in both the nightside and dayside, and, as such, we seek to establish connections to drivers affecting both sides of the terminator; tail activations and substorms on the nightside, large amplitude ULF waves, solar wind sudden impulses, and rapid changes in MIC current systems on the dayside. The short duration of these events, coupled with the use of conjugate satellite measurements and ground magnetometer arrays when possible, allows us to investigate their localization and the latitudinal extent of their effects and to further examine the potential role of non-substorm phenomena in generating GICs which may have adverse impacts in electrical power grids.

  20. Stochastic simulation of enzyme-catalyzed reactions with disparate timescales.

    Science.gov (United States)

    Barik, Debashis; Paul, Mark R; Baumann, William T; Cao, Yang; Tyson, John J

    2008-10-01

    Many physiological characteristics of living cells are regulated by protein interaction networks. Because the total numbers of these protein species can be small, molecular noise can have significant effects on the dynamical properties of a regulatory network. Computing these stochastic effects is made difficult by the large timescale separations typical of protein interactions (e.g., complex formation may occur in fractions of a second, whereas catalytic conversions may take minutes). Exact stochastic simulation may be very inefficient under these circumstances, and methods for speeding up the simulation without sacrificing accuracy have been widely studied. We show that the "total quasi-steady-state approximation" for enzyme-catalyzed reactions provides a useful framework for efficient and accurate stochastic simulations. The method is applied to three examples: a simple enzyme-catalyzed reaction where enzyme and substrate have comparable abundances, a Goldbeter-Koshland switch, where a kinase and phosphatase regulate the phosphorylation state of a common substrate, and coupled Goldbeter-Koshland switches that exhibit bistability. Simulations based on the total quasi-steady-state approximation accurately capture the steady-state probability distributions of all components of these reaction networks. In many respects, the approximation also faithfully reproduces time-dependent aspects of the fluctuations. The method is accurate even under conditions of poor timescale separation.

  1. Monte Carlo estimation of total variation distance of Markov chains on large spaces, with application to phylogenetics.

    Science.gov (United States)

    Herbei, Radu; Kubatko, Laura

    2013-03-26

    Markov chains are widely used for modeling in many areas of molecular biology and genetics. As the complexity of such models advances, it becomes increasingly important to assess the rate at which a Markov chain converges to its stationary distribution in order to carry out accurate inference. A common measure of convergence to the stationary distribution is the total variation distance, but this measure can be difficult to compute when the state space of the chain is large. We propose a Monte Carlo method to estimate the total variation distance that can be applied in this situation, and we demonstrate how the method can be efficiently implemented by taking advantage of GPU computing techniques. We apply the method to two Markov chains on the space of phylogenetic trees, and discuss the implications of our findings for the development of algorithms for phylogenetic inference.

  2. A variational Bayesian multiple particle filtering scheme for large-dimensional systems

    KAUST Repository

    Ait-El-Fquih, Boujemaa

    2016-06-14

    This paper considers the Bayesian filtering problem in high-dimensional nonlinear state-space systems. In such systems, classical particle filters (PFs) are impractical due to the prohibitive number of required particles to obtain reasonable performances. One approach that has been introduced to overcome this problem is the concept of multiple PFs (MPFs), where the state-space is split into low-dimensional subspaces and then a separate PF is applied to each subspace. Remarkable performances of MPF-like filters motivated our investigation here into a new strategy that combines the variational Bayesian approach to split the state-space with random sampling techniques, to derive a new computationally efficient MPF. The propagation of each particle in the prediction step of the resulting filter requires generating only a single particle in contrast with standard MPFs, for which a set of (children) particles is required. We present simulation results to evaluate the behavior of the proposed filter and compare its performances against standard PF and a MPF.

  3. A variational Bayesian multiple particle filtering scheme for large-dimensional systems

    KAUST Repository

    Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim

    2016-01-01

    This paper considers the Bayesian filtering problem in high-dimensional nonlinear state-space systems. In such systems, classical particle filters (PFs) are impractical due to the prohibitive number of required particles to obtain reasonable performances. One approach that has been introduced to overcome this problem is the concept of multiple PFs (MPFs), where the state-space is split into low-dimensional subspaces and then a separate PF is applied to each subspace. Remarkable performances of MPF-like filters motivated our investigation here into a new strategy that combines the variational Bayesian approach to split the state-space with random sampling techniques, to derive a new computationally efficient MPF. The propagation of each particle in the prediction step of the resulting filter requires generating only a single particle in contrast with standard MPFs, for which a set of (children) particles is required. We present simulation results to evaluate the behavior of the proposed filter and compare its performances against standard PF and a MPF.

  4. Temporal variations of Escherichia coli concentrations in a large Midwestern river

    Science.gov (United States)

    Schilling, K.E.; Zhang, Y.-K.; Hill, D.R.; Jones, C.S.; Wolter, C.F.

    2009-01-01

    The Raccoon River used by the Des Moines Water Works to serve more than 400,000 people in central Iowa is threatened by contamination from Escherichia coli bacteria from point and nonpoint sources. The 9389 km2 watershed is highly agricultural, with 73% of the land in row crop production and widespread animal production. Results from 2155 grab samples from 1997 to 2005 for E. coli analysis were examined for temporal variations. E. coli concentrations were found to vary across years, seasons, and flow conditions, with a 9-year mean value of 1156 most probable number (MPN)/100 ml. Monthly concentrations exhibited clear seasonality with highest values in May through July. Although E. coli concentrations were higher during periods of greater discharge, the relation of log E. coli to log discharge was not particularly strong (r2 = 0.35). The variogram of E. coli concentrations showed temporal correlation within a span of 4 days suggesting that concentrations measured on 1 day may be related in time to concentrations measured up to 3 days later and beyond 4 days the concentrations vary randomly. The spectral analysis of the time series of E. coli was also carried out and was fitted well with the spectrum of an exponential covariance function. Deciphering temporal patterns and correlation of E. coli bacteria in streams may be useful for developing future monitoring strategies to track concentration patterns and loads. ?? 2008 Elsevier B.V. All rights reserved.

  5. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hua-Gen, E-mail: hgy@bnl.gov [Division of Chemistry, Department of Energy and Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-08-28

    We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH{sub 4} and H{sub 2}CO are given, together with a comparison with previous results.

  6. Large-scale variation in lithospheric structure along and across the Kenya rift

    Science.gov (United States)

    Prodehl, C.; Mechie, J.; Kaminski, W.; Fuchs, K.; Grosse, C.; Hoffmann, H.; Stangl, R.; Stellrecht, R.; Khan, M.A.; Maguire, Peter K.H.; Kirk, W.; Keller, Gordon R.; Githui, A.; Baker, M.; Mooney, W.; Criley, E.; Luetgert, J.; Jacob, B.; Thybo, H.; Demartin, M.; Scarascia, S.; Hirn, A.; Bowman, J.R.; Nyambok, I.; Gaciri, S.; Patel, J.; Dindi, E.; Griffiths, D.H.; King, R.F.; Mussett, A.E.; Braile, L.W.; Thompson, G.; Olsen, K.; Harder, S.; Vees, R.; Gajewski, D.; Schulte, A.; Obel, J.; Mwango, F.; Mukinya, J.; Riaroh, D.

    1991-01-01

    The Kenya rift is one of the classic examples of a continental rift zone: models for its evolution range from extension of the lithosphere by pure shear1, through extension by simple shear2, to diapiric upwelling of an asthenolith3. Following a pilot study in 19854, the present work involved the shooting of three seismic refraction and wide-angle reflection profiles along the axis, across the margins, and on the northeastern flank of the rift (Fig. 1). These lines were intended to reconcile the different crustal thickness estimates for the northern and southern parts of the rift4-6 and to reveal the structure across the rift, including that beneath the flanks. The data, presented here, reveal significant lateral variations in structure both along and across the rift. The crust thins along the rift axis from 35 km in the south to 20 km in the north; there are abrupt changes in Mono depth and uppermost-mantle seismic velocity across the rift margins, and crustal thickening across the boundary between the Archaean craton and PanAfrican orogenic belt immediately west of the rift. These results suggest that thickened crust may have controlled the rift's location, that there is a decrease in extension from north to south, and that the upper mantle immediately beneath the rift may contain reservoirs of magma generated at greater depth.

  7. Patterns of variations in large pelagic fish: A comparative approach between the Indian and the Atlantic Oceans

    Science.gov (United States)

    Corbineau, A.; Rouyer, T.; Fromentin, J.-M.; Cazelles, B.; Fonteneau, A.; Ménard, F.

    2010-07-01

    Catch data of large pelagic fish such as tuna, swordfish and billfish are highly variable ranging from short to long term. Based on fisheries data, these time series are noisy and reflect mixed information on exploitation (targeting, strategy, fishing power), population dynamics (recruitment, growth, mortality, migration, etc.), and environmental forcing (local conditions or dominant climate patterns). In this work, we investigated patterns of variation of large pelagic fish (i.e. yellowfin tuna, bigeye tuna, swordfish and blue marlin) in Japanese longliners catch data from 1960 to 2004. We performed wavelet analyses on the yearly time series of each fish species in each biogeographic province of the tropical Indian and Atlantic Oceans. In addition, we carried out cross-wavelet analyses between these biological time series and a large-scale climatic index, i.e. the Southern Oscillation Index (SOI). Results showed that the biogeographic province was the most important factor structuring the patterns of variability of Japanese catch time series. Relationships between the SOI and the fish catches in the Indian and Atlantic Oceans also pointed out the role of climatic variability for structuring patterns of variation of catch time series. This work finally confirmed that Japanese longline CPUE data poorly reflect the underlying population dynamics of tunas.

  8. Large inter annual variation in air quality during the annual festival 'Diwali' in an Indian megacity.

    Science.gov (United States)

    Parkhi, Neha; Chate, Dilip; Ghude, Sachin D; Peshin, Sunil; Mahajan, Anoop; Srinivas, Reka; Surendran, Divya; Ali, Kaushar; Singh, Siddhartha; Trimbake, Hanumant; Beig, Gufran

    2016-05-01

    A network of air quality and weather monitoring stations was established under the System of Air Quality Forecasting and Research (SAFAR) project in Delhi. We report observations of ozone (O3), nitrogen oxides (NOx), carbon monoxide (CO) and particulate matter (PM2.5 and PM10) before, during and after the Diwali in two consecutive years, i.e., November 2010 and October 2011. The Diwali days are characterised by large firework displays throughout India. The observations show that the background concentrations of particulate matter are between 5 and 10 times the permissible limits in Europe and the United States. During the Diwali-2010, the highest observed PM10 and PM2.5 mass concentration is as high as 2070µg/m3 and 1620μg/m(3), respectively (24hr mean), which was about 20 and 27 times to National Ambient Air Quality Standards (NAAQS). For Diwali-2011, the increase in PM10 and PM2.5 mass concentrations was much less with their peaks of 600 and of 390μg/m(3) respectively, as compared to the background concentrations. Contrary to previous reports, firework display was not found to strongly influence the NOx, and O3 mixing ratios, with the increase within the observed variability in the background. CO mixing ratios showed an increase. We show that the large difference in 2010 and 2011 pollutant concentrations is controlled by weather parameters. Copyright © 2015. Published by Elsevier B.V.

  9. Composition variations of low energy heavy ions during large solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Ho, George C., E-mail: George.Ho@jhuapl.edu; Mason, Glenn M., E-mail: Glenn.Mason@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2016-03-25

    The time-intensity profile of large solar energetic particle (SEP) event is well organized by solar longitude as observed at Earth orbit. This is mostly due to different magnetic connection to the shock that is associated with large SEP event propagates from the Sun to the heliosphere. Earlier studies have shown event averaged heavy ion abundance ratios can also vary as a function of solar longitude. It was found that the Fe/O ratio for high energy particle (>10 MeV/nucleon) is higher for those western magnetically well connected events compare to the eastern events as observed at L1 by the Advanced Composition Explorer (ACE) spacecraft. In this paper, we examined the low energy (∼1 MeV/nucleon) heavy ions in 110 isolated SEP events from 2009 to the end of 2014. In addition, the optical and radio signatures for all of our events are identified and when data are available we also located the associated coronal mass ejection (CME) data. Our survey shows a higher Fe/O ratio at events in the well-connected region, while there are no corrections between the event averaged elemental composition with the associated coronal mass ejection speed. This is inconsistent with the higher energy results, but inline with other recent low-energy measurements.

  10. Characterizing the spatial variations and correlations of large rainstorms for landslide study

    Directory of Open Access Journals (Sweden)

    L. Gao

    2017-09-01

    Full Text Available Rainfall is the primary trigger of landslides in Hong Kong; hence, rainstorm spatial distribution is an important piece of information in landslide hazard analysis. The primary objective of this paper is to quantify spatial correlation characteristics of three landslide-triggering large storms in Hong Kong. The spatial maximum rolling rainfall is represented by a rotated ellipsoid trend surface and a random field of residuals. The maximum rolling 4, 12, 24, and 36 h rainfall amounts of these storms are assessed via surface trend fitting, and the spatial correlation of the detrended residuals is determined through studying the scales of fluctuation along eight directions. The principal directions of the surface trend are between 19 and 43°, and the major and minor axis lengths are 83–386 and 55–79 km, respectively. The scales of fluctuation of the residuals are found between 5 and 30 km. The spatial distribution parameters for the three large rainstorms are found to be similar to those for four ordinary rainfall events. The proposed rainfall spatial distribution model and parameters help define the impact area, rainfall intensity and local topographic effects for landslide hazard evaluation in the future.

  11. Hindcasting of decadal‐timescale estuarine bathymetric change with a tidal‐timescale model

    Science.gov (United States)

    Ganju, Neil K.; Schoellhamer, David H.; Jaffe, Bruce E.

    2009-01-01

    Hindcasting decadal-timescale bathymetric change in estuaries is prone to error due to limited data for initial conditions, boundary forcing, and calibration; computational limitations further hinder efforts. We developed and calibrated a tidal-timescale model to bathymetric change in Suisun Bay, California, over the 1867–1887 period. A general, multiple-timescale calibration ensured robustness over all timescales; two input reduction methods, the morphological hydrograph and the morphological acceleration factor, were applied at the decadal timescale. The model was calibrated to net bathymetric change in the entire basin; average error for bathymetric change over individual depth ranges was 37%. On a model cell-by-cell basis, performance for spatial amplitude correlation was poor over the majority of the domain, though spatial phase correlation was better, with 61% of the domain correctly indicated as erosional or depositional. Poor agreement was likely caused by the specification of initial bed composition, which was unknown during the 1867–1887 period. Cross-sectional bathymetric change between channels and flats, driven primarily by wind wave resuspension, was modeled with higher skill than longitudinal change, which is driven in part by gravitational circulation. The accelerated response of depth may have prevented gravitational circulation from being represented properly. As performance criteria became more stringent in a spatial sense, the error of the model increased. While these methods are useful for estimating basin-scale sedimentation changes, they may not be suitable for predicting specific locations of erosion or deposition. They do, however, provide a foundation for realistic estuarine geomorphic modeling applications.

  12. Variations of the Hβ-emission line during a large flare on UV Ceti

    International Nuclear Information System (INIS)

    Moffett, T.J.; Evans, D.S.; Ferland, G.

    1977-01-01

    Simultaneous high-speed photometry and photoelectric scanner observations of the Hβ-line were obtained for five flare events, one a major flare, on UV Ceti on 1975 January 6. The relative increase in the intensity of the Hβ-line during the large flare was much greater than the relative continuum rise as measured both by the scanner and by broad-band photometric observations. In Hβ the flare lasted nearly 30 times as long as in the continuum. Peak intensity in the Hβ-line occurred later than the continuum maximum. The possibility of using emission line observations to detect flare activity on early spectral-type stars (dK - dG) is discussed. Some speculations on the mechanism of flare production are indulged. (author)

  13. Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    Energy Technology Data Exchange (ETDEWEB)

    Gualda, Guilherme A.R.; Pamukcu, Ayla S.; Ghiorso, Mark S.; Anderson, Jr. , Alfred T.; Sutton, Stephen R.; Rivers, Mark L. (OFM Res.); (Vanderbilt); (UC)

    2013-04-08

    Supereruptions violently transfer huge amounts (100 s-1000 s km{sup 3}) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted {approx}760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

  14. Capturing variations in inundation with satellite remote sensing in a morphologically complex, large lake

    Science.gov (United States)

    Wu, Guiping; Liu, Yuanbo

    2015-04-01

    Poyang Lake is the largest freshwater lake in China, with high morphological complexity from south to north. In recent years, the lake has experienced expansion and shrinkage processes over both short- and long-term scales, resulting in significant hydrological, ecological and economic problems. Exactly how and how rapidly the processes of spatial change have occurred in the lake during the expansion and shrinkage periods is unknown. Such knowledge is of great importance for policymakers as it may help with flood/drought prevention, land use planning and lake ecological conservation. In this study, we investigated the spatial-temporal distribution and changing processes of inundation in Poyang Lake based on Moderate Resolution Imaging Spectroradiometer (MODIS) Level-1B data from 2000 to 2011. A defined water variation rate (WVR) and inundation frequency (IF) indicator revealed the water surface submersion and exposure processes of lake expansion and shrinkage in different zones which were divided according to the lake's hydrological and topographic features. Regional differences and significant seasonality variability were found in the annual and monthly mean IF. The monthly mean IF increased slowly from north to south during January-August but decreased quickly from south to north during September-December. During the lake expansion period, the lake-type water body zone (Zone II) had the fastest expansion rate, with a mean monthly WVR value of 34.47% in February-March, and was followed by the channel-type water body zone (Zone I) in March-May (22.47%). However, during the lake shrinkage period, rapid shrinkage first appeared around the alluvial delta zones in August-October. The sequence of lake surface shrinkage from August to December is exactly opposite to that of lake expansion from February to July. These complex inundation characteristics and changing process were driven by the high temporal variability of the river flows, the morphological diversity of the

  15. Time-Scale Invariant Audio Data Embedding

    Directory of Open Access Journals (Sweden)

    Mansour Mohamed F

    2003-01-01

    Full Text Available We propose a novel algorithm for high-quality data embedding in audio. The algorithm is based on changing the relative length of the middle segment between two successive maximum and minimum peaks to embed data. Spline interpolation is used to change the lengths. To ensure smooth monotonic behavior between peaks, a hybrid orthogonal and nonorthogonal wavelet decomposition is used prior to data embedding. The possible data embedding rates are between 20 and 30 bps. However, for practical purposes, we use repetition codes, and the effective embedding data rate is around 5 bps. The algorithm is invariant after time-scale modification, time shift, and time cropping. It gives high-quality output and is robust to mp3 compression.

  16. Genetic variation of loin and ham quality in Finnish Landrace and Large White pigs

    Directory of Open Access Journals (Sweden)

    M-L. SEVÓN-AIMONEN

    2008-12-01

    Full Text Available Selection potential for meat quality of economically important loin (longissimus and ham muscles (adductor, semimembranosus, biceps femoris has been assessed. Ultimate pH (pHu, meat colour (lightness, redness and yellowness, drip loss and two visually scored colour traits were recorded from 483 Finnish Landrace and 494 Finnish Large White station test pigs in a half-sib design. A univariate restricted maximum likelihood procedure was used to estimate variance components. The statistical model contained age at beginning of test, sex and time lapse from slaughter to dissection as fixed effects and slaughter batch, common environment of littermates and additive genetic effect of the animal as random effects. The average pHu values in adductor and semispinalis were between 5.6 and 6.1. The pHu were on average 5.4 and 5.5 in longissimus and semimembranosus respectively, with the latter two being lower than optimum values of 5.6 to 5.9. Lightness for semimembranosus turned to be clearly lighter (62 than for other muscles. Lightness for longissimus (56 was slightly lighter than optimum (from 48 to 54. The heritability varied from zero to 0.45 for pHu, from 0.02 to 0.34 for lightness, from 0.17 to 0.56 for redness, from zero to 0.28 for yellowness and from 0.05 to 0.16 for drip loss. Heritability for redness values was considerably higher than heritability for other meat quality traits. The heritability of quality traits spoke for possibilities for genetic improvement of meat quality. Genetic correlations between quality traits (pHu and lightness and average daily gain varied strongly among breeds and muscles. Genetic correlations between meat-% and pHu were in most cases high and unfavourable (rg from –0.36 to –0.68 except in longissimus, where it was 0.11. Genetic correlations between meat-% and lightness were unfavourable in Finnish Large White (from 0.47 to 0.92 but in Finnish Landrace estimates varied among muscles (from –0.40 to 0.47. Due to

  17. Large daily stock variation is associated with cardiovascular mortality in two cities of Guangdong, China.

    Science.gov (United States)

    Lin, Hualiang; Zhang, Yonghui; Xu, Yanjun; Liu, Tao; Xiao, Jianpeng; Luo, Yuan; Xu, Xiaojun; He, Yanhui; Ma, Wenjun

    2013-01-01

    The current study aimed to examine the effects of daily change of the Shenzhen Stock Exchange Index on cardiovascular mortality in Guangzhou and Taishan, China. Daily mortality and stock performance data during 2006-2010 were collected to construct the time series for the two cities. A distributed lag non-linear model was utilized to examine the effect of daily stock index changes on cardiovascular mortality after controlling for potential confounding factors. We observed a delayed non-linear effect of the stock index change on cardiovascular mortality: both rising and declining of the stock index were associated with increased cardiovascular deaths. In Guangzhou, the 15-25 lag days cumulative relative risk of an 800 index drop was 2.08 (95% CI: 1.38-3.14), and 2.38 (95% CI: 1.31-4.31) for an 800 stock index increase on the cardiovascular mortality, respectively. In Taishan, the cumulative relative risk over 15-25 days lag was 1.65 (95% CI: 1.13-2.42) for an 800 index drop and 2.08 (95% CI: 1.26-3.42) for an 800 index rising, respectively. Large ups and downs in daily stock index might be important predictor of cardiovascular mortality.

  18. Assessment of the methods for determining net radiation at different time-scales of meteorological variables

    Directory of Open Access Journals (Sweden)

    Ni An

    2017-04-01

    Full Text Available When modeling the soil/atmosphere interaction, it is of paramount importance to determine the net radiation flux. There are two common calculation methods for this purpose. Method 1 relies on use of air temperature, while Method 2 relies on use of both air and soil temperatures. Nowadays, there has been no consensus on the application of these two methods. In this study, the half-hourly data of solar radiation recorded at an experimental embankment are used to calculate the net radiation and long-wave radiation at different time-scales (half-hourly, hourly, and daily using the two methods. The results show that, compared with Method 2 which has been widely adopted in agronomical, geotechnical and geo-environmental applications, Method 1 is more feasible for its simplicity and accuracy at shorter time-scale. Moreover, in case of longer time-scale, daily for instance, less variations of net radiation and long-wave radiation are obtained, suggesting that no detailed soil temperature variations can be obtained. In other words, shorter time-scales are preferred in determining net radiation flux.

  19. M*/L gradients driven by IMF variation: large impact on dynamical stellar mass estimates

    Science.gov (United States)

    Bernardi, M.; Sheth, R. K.; Dominguez-Sanchez, H.; Fischer, J.-L.; Chae, K.-H.; Huertas-Company, M.; Shankar, F.

    2018-06-01

    Within a galaxy the stellar mass-to-light ratio ϒ* is not constant. Recent studies of spatially resolved kinematics of nearby early-type galaxies suggest that allowing for a variable initial mass function (IMF) returns significantly larger ϒ* gradients than if the IMF is held fixed. We show that ignoring such IMF-driven ϒ* gradients can have dramatic effect on dynamical (M_*^dyn), though stellar population (M_*^SP) based estimates of early-type galaxy stellar masses are also affected. This is because M_*^dyn is usually calibrated using the velocity dispersion measured in the central regions (e.g. Re/8) where stars are expected to dominate the mass (i.e. the dark matter fraction is small). On the other hand, M_*^SP is often computed from larger apertures (e.g. using a mean ϒ* estimated from colours). If ϒ* is greater in the central regions, then ignoring the gradient can overestimate M_*^dyn by as much as a factor of two for the most massive galaxies. Large ϒ*-gradients have four main consequences: First, M_*^dyn cannot be estimated independently of stellar population synthesis models. Secondly, if there is a lower limit to ϒ* and gradients are unknown, then requiring M_*^dyn=M_*^SP constrains them. Thirdly, if gradients are stronger in more massive galaxies, then accounting for this reduces the slope of the correlation between M_*^dyn/M_*^SP of a galaxy with its velocity dispersion. In particular, IMF-driven gradients bring M_*^dyn and M_*^SP into agreement, not by shifting M_*^SP upwards by invoking constant bottom-heavy IMFs, as advocated by a number of recent studies, but by revising M_*^dyn estimates in the literature downwards. Fourthly, accounting for ϒ* gradients changes the high-mass slope of the stellar mass function φ (M_*^dyn), and reduces the associated stellar mass density. These conclusions potentially impact estimates of the need for feedback and adiabatic contraction, so our results highlight the importance of measuring ϒ* gradients in

  20. Variations in pollinator density and impacts on large cardamom (Amomum subulatum Roxb. crop yield in Sikkim Himalaya, India

    Directory of Open Access Journals (Sweden)

    Kailash S. Gaira

    2016-03-01

    Full Text Available Large cardamom (Amomum subulatum Roxb., a perennial cash crop, cultivated under an agroforestry system in the eastern Himalaya of India, is well recognized as a pollination-dependent crop. Observations on pollinator abundance in Mamlay watershed of Sikkim Himalaya were collected during the blooming season to evaluate the pollinator abundance across sites and time frames, and impact of pollinator abundance on crop yield from 2010 to 2012. The results revealed that the bumblebees and honeybees are most frequent visitors of large cardamom flowers. The abundance of honeybees, however, varied between sites for the years 2010–2012, while that of bumblebees varied for the years 2011 and 2012. The abundance of honeybees resulted in a variation within time frames for 2010 and 2011, while that of bumblebees varied for 2010 and 2012 (p<0.01. The density of pollinators correlated positively with the number of flowers of the target crop. The impact of pollinator abundance revealed that the increasing bumblebee visitation resulted in a higher yield of the crop (i.e. 17–41 g/plant and the increasing abundance of all bees (21–41 g/plant was significant (p<0.03. Therefore, the study concluded that the large cardamom yield is sensitive to pollinator abundance and there is a need for adopting the best pollinator conservation and management practices toward sustaining the yield of large cardamom.

  1. A hierarchy of intrinsic timescales across primate cortex.

    Science.gov (United States)

    Murray, John D; Bernacchia, Alberto; Freedman, David J; Romo, Ranulfo; Wallis, Jonathan D; Cai, Xinying; Padoa-Schioppa, Camillo; Pasternak, Tatiana; Seo, Hyojung; Lee, Daeyeol; Wang, Xiao-Jing

    2014-12-01

    Specialization and hierarchy are organizing principles for primate cortex, yet there is little direct evidence for how cortical areas are specialized in the temporal domain. We measured timescales of intrinsic fluctuations in spiking activity across areas and found a hierarchical ordering, with sensory and prefrontal areas exhibiting shorter and longer timescales, respectively. On the basis of our findings, we suggest that intrinsic timescales reflect areal specialization for task-relevant computations over multiple temporal ranges.

  2. Timescales of quartz crystallization and the longevity of the Bishop giant magma body.

    Science.gov (United States)

    Gualda, Guilherme A R; Pamukcu, Ayla S; Ghiorso, Mark S; Anderson, Alfred T; Sutton, Stephen R; Rivers, Mark L

    2012-01-01

    Supereruptions violently transfer huge amounts (100 s-1000 s km(3)) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ~760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

  3. Bayesian inference of radiation belt loss timescales.

    Science.gov (United States)

    Camporeale, E.; Chandorkar, M.

    2017-12-01

    Electron fluxes in the Earth's radiation belts are routinely studied using the classical quasi-linear radial diffusion model. Although this simplified linear equation has proven to be an indispensable tool in understanding the dynamics of the radiation belt, it requires specification of quantities such as the diffusion coefficient and electron loss timescales that are never directly measured. Researchers have so far assumed a-priori parameterisations for radiation belt quantities and derived the best fit using satellite data. The state of the art in this domain lacks a coherent formulation of this problem in a probabilistic framework. We present some recent progress that we have made in performing Bayesian inference of radial diffusion parameters. We achieve this by making extensive use of the theory connecting Gaussian Processes and linear partial differential equations, and performing Markov Chain Monte Carlo sampling of radial diffusion parameters. These results are important for understanding the role and the propagation of uncertainties in radiation belt simulations and, eventually, for providing a probabilistic forecast of energetic electron fluxes in a Space Weather context.

  4. Sulfide Precipitation in Wastewater at Short Timescales

    DEFF Research Database (Denmark)

    Kiilerich, Bruno; van de Ven, Wilbert; Nielsen, Asbjørn Haaning

    2017-01-01

    Abatement of sulfides in sewer systems using iron salts is a widely used strategy. When dosing at the end of a pumping main, the reaction kinetics of sulfide precipitation becomes important. Traditionally the reaction has been assumed to be rapid or even instantaneous. This work shows that this i......Abatement of sulfides in sewer systems using iron salts is a widely used strategy. When dosing at the end of a pumping main, the reaction kinetics of sulfide precipitation becomes important. Traditionally the reaction has been assumed to be rapid or even instantaneous. This work shows...... that this is not the case for sulfide precipitation by ferric iron. Instead, the reaction time was found to be on a timescale where it must be considered when performing end-of-pipe treatment. For real wastewaters at pH 7, a stoichiometric ratio around 14 mol Fe(II) (mol S(−II))−1 was obtained after 1.5 s, while the ratio...

  5. Curbing variations in packaging process through Six Sigma way in a large-scale food-processing industry

    Science.gov (United States)

    Desai, Darshak A.; Kotadiya, Parth; Makwana, Nikheel; Patel, Sonalinkumar

    2015-03-01

    Indian industries need overall operational excellence for sustainable profitability and growth in the present age of global competitiveness. Among different quality and productivity improvement techniques, Six Sigma has emerged as one of the most effective breakthrough improvement strategies. Though Indian industries are exploring this improvement methodology to their advantage and reaping the benefits, not much has been presented and published regarding experience of Six Sigma in the food-processing industries. This paper is an effort to exemplify the application of Six Sigma quality improvement drive to one of the large-scale food-processing sectors in India. The paper discusses the phase wiz implementation of define, measure, analyze, improve, and control (DMAIC) on one of the chronic problems, variations in the weight of milk powder pouch. The paper wraps up with the improvements achieved and projected bottom-line gain to the unit by application of Six Sigma methodology.

  6. Variations in the Quality of Care at Large Public Hospitals in Beijing, China: A Condition-Based Outcome Approach.

    Science.gov (United States)

    Xu, Ye; Liu, Yuanli; Shu, Ting; Yang, Wei; Liang, Minghui

    2015-01-01

    Public hospitals deliver over ninety percent of all outpatient and inpatient services in China. Their quality is graded into three levels (A, B, and C) largely based on structural resources, but empirical evidence on the quality of process and outcome of care is extremely scarce. As expectations for quality care rise with higher living standards and cost of care, such evidence is urgently needed and vital to improve care and to inform future health reforms. We compiled and analyzed a multicenter database of over 4 million inpatient discharge summary records to provide a comprehensive assessment of the level and variations in clinical outcomes of hospitalization at 39 tertiary hospitals in Beijing. We assessed six outcome measures of clinical quality: in-hospital mortality rates (RSMR) for AMI, stroke, pneumonia and CABG, post-procedural complication rate (RS-CR), and failure-to-rescue rate (RS-FTR). The measures were adjusted for pre-admission patient case-mix using indirect standardization method with hierarchical linear mixed models. We found good overall quality with large variations by hospital and condition (mean/range, in %): RSMR-AMI: 6.23 (2.37-14.48), RSMR-stroke: 4.18 (3.58-4.44), RSMR-pneumonia: 7.78 (7.20-8.59), RSMR-CABG: 1.93 (1.55-2.23), RS-CR: 11.38 (9.9-12.88), and RS-FTR: 6.41 (5.17-7.58). Hospital grade was not significantly associated with any risk-adjusted outcome measures. Going to a higher grade public hospital does not always lead to better patient outcome because hospital grade only contains information about hospital structural resources. A hospital report card with some outcome measures of quality would provide valuable information to patients in choosing providers, and for regulators to identify gaps in health care quality. Reducing the variations in clinical practice and patient outcome should be a focus for policy makers in the next round of health sector reforms in China.

  7. Efficient inference of population size histories and locus-specific mutation rates from large-sample genomic variation data.

    Science.gov (United States)

    Bhaskar, Anand; Wang, Y X Rachel; Song, Yun S

    2015-02-01

    With the recent increase in study sample sizes in human genetics, there has been growing interest in inferring historical population demography from genomic variation data. Here, we present an efficient inference method that can scale up to very large samples, with tens or hundreds of thousands of individuals. Specifically, by utilizing analytic results on the expected frequency spectrum under the coalescent and by leveraging the technique of automatic differentiation, which allows us to compute gradients exactly, we develop a very efficient algorithm to infer piecewise-exponential models of the historical effective population size from the distribution of sample allele frequencies. Our method is orders of magnitude faster than previous demographic inference methods based on the frequency spectrum. In addition to inferring demography, our method can also accurately estimate locus-specific mutation rates. We perform extensive validation of our method on simulated data and show that it can accurately infer multiple recent epochs of rapid exponential growth, a signal that is difficult to pick up with small sample sizes. Lastly, we use our method to analyze data from recent sequencing studies, including a large-sample exome-sequencing data set of tens of thousands of individuals assayed at a few hundred genic regions. © 2015 Bhaskar et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Large variation in lipid content, ΣPCB and δ13C within individual Atlantic salmon (Salmo salar)

    International Nuclear Information System (INIS)

    Persson, Maria E.; Larsson, Per; Holmqvist, Niklas; Stenroth, Patrik

    2007-01-01

    Many studies that investigate pollutant levels, or use stable isotope ratios to define trophic level or animal origin, use different standard ways of sampling (dorsal, whole filet or whole body samples). This study shows that lipid content, ΣPCB and δ 13 C display large differences within muscle samples taken from a single Atlantic salmon. Lipid- and PCB-content was lowest in tail muscles, intermediate in anterior-dorsal muscles and highest in the stomach (abdominal) muscle area. Stable isotopes of carbon (δ 13 C) showed a lipid accumulation in the stomach muscle area and a depletion in tail muscles. We conclude that it is important to choose an appropriate sample location within an animal based on what processes are to be studied. Care should be taken when attributing persistent pollutant levels or stable isotope data to specific environmental processes before controlling for within-animal variation in these variables. - Lipid content, ΣPCB and δ 13 C vary to a large extent within Atlantic salmon, therefore, the sample technique for individual fish is of outmost importance for proper interpretation of data

  9. Building a Bridge to Deep Time: Sedimentary Systems Across Timescales

    Science.gov (United States)

    Romans, B.; Castelltort, S.; Covault, J. A.; Walsh, J. P.

    2013-12-01

    It is increasingly important to understand the complex and interdependent processes associated with sediment production, transport, and deposition at timescales relevant to civilization (annual to millennial). However, predicting the response of sedimentary systems to global environmental change across a range of timescales remains a significant challenge. For example, a significant increase in global average temperature at the Paleocene-Eocene boundary (55.8 Ma) is interpreted to have occurred over millennial timescales; however, the specific response of sedimentary systems (e.g., timing and magnitude of sediment flux variability in river systems) to that forcing is debated. Thus, using such environmental perturbations recorded in sedimentary archives as analogs for ongoing/future global change requires improved approaches to bridging across time. Additionally, the ability to bridge timescales is critical for addressing other questions about sedimentary system behavior, including signal propagation and signal versus ';noise' in the record. The geologic record provides information that can be used to develop a comprehensive understanding of process-response behavior at multiple timescales. The geomorphic ';snapshot' of present-day erosional and depositional landscapes can be examined to reconstruct the history of processes that created the observable configurations. Direct measurement and monitoring of active processes are used to constrain conceptual and numerical models and develop sedimentary system theory. But real-time observations of active Earth-surface processes are limited to the very recent, and how such processes integrate over longer timescales to transform into strata remains unknown. At longer timescales (>106 yr), the stratigraphic record is the only vestige of ancient sedimentary systems. Stratigraphic successions contain a complex record of sediment deposition and preservation, as well as the detrital material that originated in long since denuded

  10. Isotopic exchange of carbon-bound hydrogen over geologic timescales

    Science.gov (United States)

    Sessions, Alex L.; Sylva, Sean P.; Summons, Roger E.; Hayes, John M.

    2004-04-01

    The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100°C) exchange likely occurs on timescales of 104 to 108 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity. Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ∼75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D2O indicate that the number of D atoms incorporated during

  11. Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall

    KAUST Repository

    Chang, Kyungsik

    2012-09-01

    We report on the isogeometric residual-based variational multiscale (VMS) large eddy simulation of a fully developed turbulent flow over a wavy wall. To assess the predictive capability of the VMS modeling framework, we compare its predictions against the results from direct numerical simulation (DNS) and large eddy simulation (LES) and, when available, against experimental measurements. We use C 1 quadratic B-spline basis functions to represent the smooth geometry of the sinusoidal lower wall and the solution variables. The Reynolds numbers of the flows considered are 6760 and 30,000 based on the bulk velocity and average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the streamwise, wall-normal and spanwise directions, respectively. For the Re=6760 case, mean averaged quantities, including velocity and pressure profiles, and the separation/reattachment points in the recirculation region, are compared with DNS and experimental data. The turbulent kinetic energy and Reynolds stress are in good agreement with benchmark data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-criterion and show similar features to those previously reported in the literature. Comparable accuracy to DNS solutions is obtained with at least one order of magnitude fewer degrees of freedom. For the Re=30,000 case, good agreement was obtained for mean wall shear stress and velocity profiles compared with available LES results reported in the literature. © 2012 Elsevier Ltd.

  12. Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall

    KAUST Repository

    Chang, Kyungsik; Hughes, Thomas Jr R; Calo, Victor M.

    2012-01-01

    We report on the isogeometric residual-based variational multiscale (VMS) large eddy simulation of a fully developed turbulent flow over a wavy wall. To assess the predictive capability of the VMS modeling framework, we compare its predictions against the results from direct numerical simulation (DNS) and large eddy simulation (LES) and, when available, against experimental measurements. We use C 1 quadratic B-spline basis functions to represent the smooth geometry of the sinusoidal lower wall and the solution variables. The Reynolds numbers of the flows considered are 6760 and 30,000 based on the bulk velocity and average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the streamwise, wall-normal and spanwise directions, respectively. For the Re=6760 case, mean averaged quantities, including velocity and pressure profiles, and the separation/reattachment points in the recirculation region, are compared with DNS and experimental data. The turbulent kinetic energy and Reynolds stress are in good agreement with benchmark data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-criterion and show similar features to those previously reported in the literature. Comparable accuracy to DNS solutions is obtained with at least one order of magnitude fewer degrees of freedom. For the Re=30,000 case, good agreement was obtained for mean wall shear stress and velocity profiles compared with available LES results reported in the literature. © 2012 Elsevier Ltd.

  13. On the use of a physically-based baseflow timescale in land surface models.

    Science.gov (United States)

    Jost, A.; Schneider, A. C.; Oudin, L.; Ducharne, A.

    2017-12-01

    Groundwater discharge is an important component of streamflow and estimating its spatio-temporal variation in response to changes in recharge is of great value to water resource planning, and essential for modelling accurate large scale water balance in land surface models (LSMs). First-order representation of groundwater as a single linear storage element is frequently used in LSMs for the sake of simplicity, but requires a suitable parametrization of the aquifer hydraulic behaviour in the form of the baseflow characteristic timescale (τ). Such a modelling approach can be hampered by the lack of available calibration data at global scale. Hydraulic groundwater theory provides an analytical framework to relate the baseflow characteristics to catchment descriptors. In this study, we use the long-time solution of the linearized Boussinesq equation to estimate τ at global scale, as a function of groundwater flow length and aquifer hydraulic diffusivity. Our goal is to evaluate the use of this spatially variable and physically-based τ in the ORCHIDEE surface model in terms of simulated river discharges across large catchments. Aquifer transmissivity and drainable porosity stem from GLHYMPS high-resolution datasets whereas flow length is derived from an estimation of drainage density, using the GRIN global river network. ORCHIDEE is run in offline mode and its results are compared to a reference simulation using an almost spatially constant topographic-dependent τ. We discuss the limits of our approach in terms of both the relevance and accuracy of global estimates of aquifer hydraulic properties and the extent to which the underlying assumptions in the analytical method are valid.

  14. Identification of the characteristics of motorcycle and scooter tyres in the presence of large variations in inflation pressure

    Science.gov (United States)

    Cossalter, V.; Doria, A.; Giolo, E.; Taraborrelli, L.; Massaro, M.

    2014-10-01

    Stability and safety of road vehicles are largely affected by tyre properties. Single-track vehicles are characterised by weakly damped modes of vibration (weave and wobble) and therefore this phenomenon is even more important. This article focuses on the study of both steady-state and transient properties of motorcycle and scooter tyres in the presence of very low and very high inflation pressures. The steady-state properties are defined as lateral forces (side-slip and camber forces) and yaw torques (self-aligning and twisting). The transient properties are described in terms of relaxation length, which represents the distance needed to reach a certain percentage of the steady-state value of the tyre force. Experimental tests are carried out on a specific rotating disk machine. Three sets of tyres are analysed. Steady-state properties are measured by increasing step by step the values of camber and side-slip angles. Transient properties are studied carrying out tests with harmonic side-slip excitation and measuring the phase lag between the excitation (input) and the tyre force (output). Experimental results show important variations in tyre properties with inflation pressure with general trends of all the tested tyres and particular features related to the tyre's geometry. After the analysis and discussion of experimental results, the measured data are fitted by means of a specific version of the Magic Formula. The dependence of the Magic Formula's coefficients on inflation pressure is analysed and interpolation curves are given.

  15. Application of the Regional Water Mass Variations from GRACE Satellite Gravimetry to Large-Scale Water Management in Africa

    Directory of Open Access Journals (Sweden)

    Guillaume Ramillien

    2014-08-01

    Full Text Available Time series of regional 2° × 2° Gravity Recovery and Climate Experiment (GRACE solutions of surface water mass change have been computed over Africa from 2003 to 2012 with a 10-day resolution by using a new regional approach. These regional maps are used to describe and quantify water mass change. The contribution of African hydrology to actual sea level rise is negative and small in magnitude (i.e., −0.1 mm/y of equivalent sea level (ESL mainly explained by the water retained in the Zambezi River basin. Analysis of the regional water mass maps is used to distinguish different zones of important water mass variations, with the exception of the dominant seasonal cycle of the African monsoon in the Sahel and Central Africa. The analysis of the regional solutions reveals the accumulation in the Okavango swamp and South Niger. It confirms the continuous depletion of water in the North Sahara aquifer at the rate of −2.3 km3/y, with a decrease in early 2008. Synergistic use of altimetry-based lake water volume with total water storage (TWS from GRACE permits a continuous monitoring of sub-surface water storage for large lake drainage areas. These different applications demonstrate the potential of the GRACE mission for the management of water resources at the regional scale.

  16. Exploring natural variation of photosynthetic, primary metabolism and growth parameters in a large panel of Capsicum chinense accessions.

    Science.gov (United States)

    Rosado-Souza, Laise; Scossa, Federico; Chaves, Izabel S; Kleessen, Sabrina; Salvador, Luiz F D; Milagre, Jocimar C; Finger, Fernando; Bhering, Leonardo L; Sulpice, Ronan; Araújo, Wagner L; Nikoloski, Zoran; Fernie, Alisdair R; Nunes-Nesi, Adriano

    2015-09-01

    Collectively, the results presented improve upon the utility of an important genetic resource and attest to a complex genetic basis for differences in both leaf metabolism and fruit morphology between natural populations. Diversity of accessions within the same species provides an alternative method to identify physiological and metabolic traits that have large effects on growth regulation, biomass and fruit production. Here, we investigated physiological and metabolic traits as well as parameters related to plant growth and fruit production of 49 phenotypically diverse pepper accessions of Capsicum chinense grown ex situ under controlled conditions. Although single-trait analysis identified up to seven distinct groups of accessions, working with the whole data set by multivariate analyses allowed the separation of the 49 accessions in three clusters. Using all 23 measured parameters and data from the geographic origin for these accessions, positive correlations between the combined phenotypes and geographic origin were observed, supporting a robust pattern of isolation-by-distance. In addition, we found that fruit set was positively correlated with photosynthesis-related parameters, which, however, do not explain alone the differences in accession susceptibility to fruit abortion. Our results demonstrated that, although the accessions belong to the same species, they exhibit considerable natural intraspecific variation with respect to physiological and metabolic parameters, presenting diverse adaptation mechanisms and being a highly interesting source of information for plant breeders. This study also represents the first study combining photosynthetic, primary metabolism and growth parameters for Capsicum to date.

  17. Multi-timescale sediment responses across a human impacted river-estuary system

    Science.gov (United States)

    Chen, Yining; Chen, Nengwang; Li, Yan; Hong, Huasheng

    2018-05-01

    Hydrological processes regulating sediment transport from land to sea have been widely studied. However, anthropogenic factors controlling the river flow-sediment regime and subsequent response of the estuary are still poorly understood. Here we conducted a multi-timescale analysis on flow and sediment discharges during the period 1967-2014 for the two tributaries of the Jiulong River in Southeast China. The long-term flow-sediment relationship remained linear in the North River throughout the period, while the linearity showed a remarkable change after 1995 in the West River, largely due to construction of dams and reservoirs in the upland watershed. Over short timescales, rainstorm events caused the changes of suspended sediment concentration (SSC) in the rivers. Regression analysis using synchronous SSC data in a wet season (2009) revealed a delayed response (average 5 days) of the estuary to river input, and a box-model analysis established a quantitative relationship to further describe the response of the estuary to the river sediment input over multiple timescales. The short-term response is determined by both the vertical SSC-salinity changes and the sediment trapping rate in the estuary. However, over the long term, the reduction of riverine sediment yield increased marine sediments trapped into the estuary. The results of this study indicate that human activities (e.g., dams) have substantially altered sediment delivery patterns and river-estuary interactions at multiple timescales.

  18. Continuous Timescale Long-Short Term Memory Neural Network for Human Intent Understanding

    Directory of Open Access Journals (Sweden)

    Zhibin Yu

    2017-08-01

    Full Text Available Understanding of human intention by observing a series of human actions has been a challenging task. In order to do so, we need to analyze longer sequences of human actions related with intentions and extract the context from the dynamic features. The multiple timescales recurrent neural network (MTRNN model, which is believed to be a kind of solution, is a useful tool for recording and regenerating a continuous signal for dynamic tasks. However, the conventional MTRNN suffers from the vanishing gradient problem which renders it impossible to be used for longer sequence understanding. To address this problem, we propose a new model named Continuous Timescale Long-Short Term Memory (CTLSTM in which we inherit the multiple timescales concept into the Long-Short Term Memory (LSTM recurrent neural network (RNN that addresses the vanishing gradient problem. We design an additional recurrent connection in the LSTM cell outputs to produce a time-delay in order to capture the slow context. Our experiments show that the proposed model exhibits better context modeling ability and captures the dynamic features on multiple large dataset classification tasks. The results illustrate that the multiple timescales concept enhances the ability of our model to handle longer sequences related with human intentions and hence proving to be more suitable for complex tasks, such as intention recognition.

  19. Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory

    Science.gov (United States)

    Yang, Xue-Min; Li, Jin-Yan; Zhang, Meng; Chai, Guo-Min; Zhang, Jian

    2014-12-01

    A thermodynamic model for predicting sulfide capacity of CaO-FeO-Fe2O3-Al2O3-P2O5 slags in a large variation range of oxygen potential corresponding to mass percentage of FetO from 1.88 to 55.50 pct, i.e., IMCT- model, has been developed by coupling with the deduced desulfurization mechanism of the slags based on the ion and molecule coexistence theory (IMCT). The developed IMCT- model has been verified through comparing the determined sulfide capacity after Ban-ya et al.[20] with the calculated by the developed IMCT- model and the calculated by the reported sulfide capacity models such as the KTH model. Mass percentage of FetO as 6.75 pct corresponding to the mass action concentration of FetO as 0.0637 or oxygen partial as 2.27 × 10-6 Pa is the criterion for distinguishing reducing and oxidizing zones for the slags. Sulfide capacity of the slags in reducing zone is controlled by reaction ability of CaO regardless of slag oxidization ability. However, sulfide capacity of the slags in oxidizing zone shows an obvious increase tendency with the increasing of slag oxidization ability. Sulfide capacity of the slags in reducing zone keeps almost constant with variation of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)), or optical basicity, or the mass action concentration ratios of N FeO/ N CaO, , , and . Sulfide capacity of the slags in oxidizing zone shows an obvious increase with the increasing of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)) or optical basicity, or the aforementioned mass action concentration ratios. Thus, the aforementioned mass action concentration ratios and the corresponding mass percentage ratios of various iron oxides to basic oxide CaO are recommended to represent the comprehensive effect of various iron oxides and basic oxide CaO on sulfide capacity of the slags.

  20. Multiple dynamical time-scales in networks with hierarchically

    Indian Academy of Sciences (India)

    Modular networks; hierarchical organization; synchronization. ... we show that such a topological structure gives rise to characteristic time-scale separation ... This suggests a possible functional role of such mesoscopic organization principle in ...

  1. Amplification of local changes along the timescale processing hierarchy.

    Science.gov (United States)

    Yeshurun, Yaara; Nguyen, Mai; Hasson, Uri

    2017-08-29

    Small changes in word choice can lead to dramatically different interpretations of narratives. How does the brain accumulate and integrate such local changes to construct unique neural representations for different stories? In this study, we created two distinct narratives by changing only a few words in each sentence (e.g., "he" to "she" or "sobbing" to "laughing") while preserving the grammatical structure across stories. We then measured changes in neural responses between the two stories. We found that differences in neural responses between the two stories gradually increased along the hierarchy of processing timescales. For areas with short integration windows, such as early auditory cortex, the differences in neural responses between the two stories were relatively small. In contrast, in areas with the longest integration windows at the top of the hierarchy, such as the precuneus, temporal parietal junction, and medial frontal cortices, there were large differences in neural responses between stories. Furthermore, this gradual increase in neural differences between the stories was highly correlated with an area's ability to integrate information over time. Amplification of neural differences did not occur when changes in words did not alter the interpretation of the story (e.g., sobbing to "crying"). Our results demonstrate how subtle differences in words are gradually accumulated and amplified along the cortical hierarchy as the brain constructs a narrative over time.

  2. Serotonergic neurons signal reward and punishment on multiple timescales

    Science.gov (United States)

    Cohen, Jeremiah Y; Amoroso, Mackenzie W; Uchida, Naoshige

    2015-01-01

    Serotonin's function in the brain is unclear. One challenge in testing the numerous hypotheses about serotonin's function has been observing the activity of identified serotonergic neurons in animals engaged in behavioral tasks. We recorded the activity of dorsal raphe neurons while mice experienced a task in which rewards and punishments varied across blocks of trials. We ‘tagged’ serotonergic neurons with the light-sensitive protein channelrhodopsin-2 and identified them based on their responses to light. We found three main features of serotonergic neuron activity: (1) a large fraction of serotonergic neurons modulated their tonic firing rates over the course of minutes during reward vs punishment blocks; (2) most were phasically excited by punishments; and (3) a subset was phasically excited by reward-predicting cues. By contrast, dopaminergic neurons did not show firing rate changes across blocks of trials. These results suggest that serotonergic neurons signal information about reward and punishment on multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.06346.001 PMID:25714923

  3. Air plasma treatment of liquid covered tissue: long timescale chemistry

    International Nuclear Information System (INIS)

    Lietz, Amanda M; Kushner, Mark J

    2016-01-01

    Atmospheric pressure plasmas have shown great promise for the treatment of wounds and cancerous tumors. In these applications, the sample is usually covered by a thin layer of a biological liquid. The reactive oxygen and nitrogen species (RONS) generated by the plasma activate and are processed by the liquid before the plasma produced activation reaches the tissue. The synergy between the plasma and the liquid, including evaporation and the solvation of ions and neutrals, is critical to understanding the outcome of plasma treatment. The atmospheric pressure plasma sources used in these procedures are typically repetitively pulsed. The processes activated by the plasma sources have multiple timescales—from a few ns during the discharge pulse to many minutes for reactions in the liquid. In this paper we discuss results from a computational investigation of plasma–liquid interactions and liquid phase chemistry using a global model with the goal of addressing this large dynamic range in timescales. In modeling air plasmas produced by a dielectric barrier discharge over liquid covered tissue, 5000 voltage pulses were simulated, followed by 5 min of afterglow. Due to the accumulation of long-lived species such as ozone and N x O y , the gas phase dynamics of the 5000th discharge pulse are different from those of the first pulse, particularly with regards to the negative ions. The consequences of applied voltage, gas flow, pulse repetition frequency, and the presence of organic molecules in the liquid on the gas and liquid reactive species are discussed. (paper)

  4. Air plasma treatment of liquid covered tissue: long timescale chemistry

    Science.gov (United States)

    Lietz, Amanda M.; Kushner, Mark J.

    2016-10-01

    Atmospheric pressure plasmas have shown great promise for the treatment of wounds and cancerous tumors. In these applications, the sample is usually covered by a thin layer of a biological liquid. The reactive oxygen and nitrogen species (RONS) generated by the plasma activate and are processed by the liquid before the plasma produced activation reaches the tissue. The synergy between the plasma and the liquid, including evaporation and the solvation of ions and neutrals, is critical to understanding the outcome of plasma treatment. The atmospheric pressure plasma sources used in these procedures are typically repetitively pulsed. The processes activated by the plasma sources have multiple timescales—from a few ns during the discharge pulse to many minutes for reactions in the liquid. In this paper we discuss results from a computational investigation of plasma-liquid interactions and liquid phase chemistry using a global model with the goal of addressing this large dynamic range in timescales. In modeling air plasmas produced by a dielectric barrier discharge over liquid covered tissue, 5000 voltage pulses were simulated, followed by 5 min of afterglow. Due to the accumulation of long-lived species such as ozone and N x O y , the gas phase dynamics of the 5000th discharge pulse are different from those of the first pulse, particularly with regards to the negative ions. The consequences of applied voltage, gas flow, pulse repetition frequency, and the presence of organic molecules in the liquid on the gas and liquid reactive species are discussed.

  5. Predicting Instability Timescales in Closely-Packed Planetary Systems

    Science.gov (United States)

    Tamayo, Daniel; Hadden, Samuel; Hussain, Naireen; Silburt, Ari; Gilbertson, Christian; Rein, Hanno; Menou, Kristen

    2018-04-01

    Many of the multi-planet systems discovered around other stars are maximally packed. This implies that simulations with masses or orbital parameters too far from the actual values will destabilize on short timescales; thus, long-term dynamics allows one to constrain the orbital architectures of many closely packed multi-planet systems. A central challenge in such efforts is the large computational cost of N-body simulations, which preclude a full survey of the high-dimensional parameter space of orbital architectures allowed by observations. I will present our recent successes in training machine learning models capable of reliably predicting orbital stability a million times faster than N-body simulations. By engineering dynamically relevant features that we feed to a gradient-boosted decision tree algorithm (XGBoost), we are able to achieve a precision and recall of 90% on a holdout test set of N-body simulations. This opens a wide discovery space for characterizing new exoplanet discoveries and for elucidating how orbital architectures evolve through time as the next generation of spaceborne exoplanet surveys prepare for launch this year.

  6. Extended timescale atomistic modeling of crack tip behavior in aluminum

    International Nuclear Information System (INIS)

    Baker, K L; Warner, D H

    2012-01-01

    Traditional molecular dynamics (MD) simulations are limited not only by their spatial domain, but also by the time domain that they can examine. Considering that many of the events associated with plasticity are thermally activated, and thus rare at atomic timescales, the limited time domain of traditional MD simulations can present a significant challenge when trying to realistically model the mechanical behavior of materials. A wide variety of approaches have been developed to address the timescale challenge, each having their own strengths and weaknesses dependent upon the specific application. Here, we have simultaneously applied three distinct approaches to model crack tip behavior in aluminum at timescales well beyond those accessible to traditional MD simulation. Specifically, we combine concurrent multiscale modeling (to reduce the degrees of freedom in the system), parallel replica dynamics (to parallelize the simulations in time) and hyperdynamics (to accelerate the exploration of phase space). Overall, the simulations (1) provide new insight into atomic-scale crack tip behavior at more typical timescales and (2) illuminate the potential of common extended timescale techniques to enable atomic-scale modeling of fracture processes at typical experimental timescales. (paper)

  7. Adaptive Equilibrium Regulation: A Balancing Act in Two Timescales

    Science.gov (United States)

    Boker, Steven M.

    2015-01-01

    An equilibrium involves a balancing of forces. Just as one maintains upright posture in standing or walking, many self-regulatory and interpersonal behaviors can be framed as a balancing act between an ever changing environment and within-person processes. The emerging balance between person and environment, the equilibria, are dynamic and adaptive in response to development and learning. A distinction is made between equilibrium achieved solely due to a short timescale balancing of forces and a longer timescale preferred equilibrium which we define as a state towards which the system slowly adapts. Together, these are developed into a framework that this article calls Adaptive Equilibrium Regulation (ÆR), which separates a regulatory process into two timescales: a faster regulation that automatically balances forces and a slower timescale adaptation process that reconfigures the fast regulation so as to move the system towards its preferred equilibrium when an environmental force persists over the longer timescale. This way of thinking leads to novel models for the interplay between multiple timescales of behavior, learning, and development. PMID:27066197

  8. OPTICAL AND INFRARED PHOTOMETRY OF THE BLAZAR PKS 0537-441: LONG AND SHORT TIMESCALE VARIABILITY

    International Nuclear Information System (INIS)

    Impiombato, D.; Treves, A.; Covino, S.; Foschini, L.; Fugazza, D.; Pian, E.; Tosti, G.; Ciprini, S.; Nicastro, L.

    2011-01-01

    We present a large collection of photometric data on the blazar PKS 0537-441 in the VRIJHK bands taken in 2004-2009. At least three flare-like episodes with months duration and >3 mag amplitude are apparent. The spectral energy distribution is consistent with a power law, and no indication of a thermal component is found. We searched for short timescale variability, and an interesting event was identified in the J band, with a duration of ∼25 minutes.

  9. A comparison of solar energetic particle event timescales with properties of associated coronal mass ejections

    International Nuclear Information System (INIS)

    Kahler, S. W.

    2013-01-01

    The dependence of solar energetic proton (SEP) event peak intensities Ip on properties of associated coronal mass ejections (CMEs) has been extensively examined, but the dependence of SEP event timescales is not well known. We define three timescales of 20 MeV SEP events and ask how they are related to speeds v CME or widths W of their associated CMEs observed by LASCO/SOHO. The timescales of the EPACT/Wind 20 MeV events are TO, the onset time from CME launch to SEP onset; TR, the rise time from onset to half the peak intensity (0.5Ip); and TD, the duration of the SEP intensity above 0.5Ip. This is a statistical study based on 217 SEP-CME events observed during 1996-2008. The large number of SEP events allows us to examine the SEP-CME relationship in five solar-source longitude ranges. In general, we statistically find that TO declines slightly with v CME , and TR and TD increase with both v CME and W. TO is inversely correlated with log Ip, as expected from a particle background effect. We discuss the implications of this result and find that a background-independent parameter TO+TR also increases with v CME and W. The correlations generally fall below the 98% significance level, but there is a significant correlation between v CME and W which renders interpretation of the timescale results uncertain. We suggest that faster (and wider) CMEs drive shocks and accelerate SEPs over longer times to produce the longer TR and TD SEP timescales.

  10. Relationship between sea level and climate forcing by CO2 on geological timescales.

    Science.gov (United States)

    Foster, Gavin L; Rohling, Eelco J

    2013-01-22

    On 10(3)- to 10(6)-year timescales, global sea level is determined largely by the volume of ice stored on land, which in turn largely reflects the thermal state of the Earth system. Here we use observations from five well-studied time slices covering the last 40 My to identify a well-defined and clearly sigmoidal relationship between atmospheric CO(2) and sea level on geological (near-equilibrium) timescales. This strongly supports the dominant role of CO(2) in determining Earth's climate on these timescales and suggests that other variables that influence long-term global climate (e.g., topography, ocean circulation) play a secondary role. The relationship between CO(2) and sea level we describe portrays the "likely" (68% probability) long-term sea-level response after Earth system adjustment over many centuries. Because it appears largely independent of other boundary condition changes, it also may provide useful long-range predictions of future sea level. For instance, with CO(2) stabilized at 400-450 ppm (as required for the frequently quoted "acceptable warming" of 2 °C), or even at AD 2011 levels of 392 ppm, we infer a likely (68% confidence) long-term sea-level rise of more than 9 m above the present. Therefore, our results imply that to avoid significantly elevated sea level in the long term, atmospheric CO(2) should be reduced to levels similar to those of preindustrial times.

  11. Himalayan Strain Accumulation 100 ka Timescales

    Science.gov (United States)

    Cannon, J. M.; Murphy, M. A.; Liu, Y.

    2015-12-01

    Crustal scale fault systems and tectonostratigraphic units in the Himalaya can be traced for 2500 km along strike. However regional studies have shown that there is variability in the location and rate of strain accumulation which appears to be driven by Main Himalayan Thrust (MHT) geometry and convergence obliquity. GPS illuminates the modern interseismic strain rate and the historical record of great earthquakes elucidates variations in strain accumulation over 103 years. To connect these patterns with the 106 year structural and thermochronometric geologic record we examine normalized river channel steepness (ksn), a proxy for rock uplift rate, which develops over 104 - 105 years. Here we present a ksn map of the Himalaya and compare it with bedrock geology, precipitation, the historic earthquake record, GPS, seismicity, and seismotectonic models. Our map shows significant along strike changes in the magnitude of channel steepness, the areal extent of swaths of high ksn channels, and their location with respect to the range front. Differences include the juxtaposition of two narrow (30 - 40 km) range parallel belts of high ksn in west Nepal and Bhutan coincident with MHT duplexes and belts of microseismcity, with a single broad (70 km) swath of high ksn and microseismicity in central and eastern Nepal. Separating west and central Nepal a band of low ksn crosses the range coincident with the West Nepal Fault (WNF) and the lowest rate of microseismicity in Nepal. To the west the orogen is obliquely convergent and has less high ksn channels, while the orthogonally convergent region to the east contains the highest concentration of oversteepened channels in the Himalaya supporting the idea that the WNF is a strain partitioning boundary. The syntaxes are characterized by locally high channel steepness surrounded by low to moderate ksn channels consistent with the hypothesis that rapid exhumation within the syntaxes is sustained by an influx of lower crust.

  12. Brief report: large individual variation in outcomes of autistic children receiving low-intensity behavioral interventions in community settings.

    Science.gov (United States)

    Kamio, Yoko; Haraguchi, Hideyuki; Miyake, Atsuko; Hiraiwa, Mikio

    2015-01-01

    Despite widespread awareness of the necessity of early intervention for children with autism spectrum disorders (ASDs), evidence is still limited, in part, due to the complex nature of ASDs. This exploratory study aimed to examine the change across time in young children with autism and their mothers, who received less intensive early interventions with and without applied behavior analysis (ABA) methods in community settings in Japan. Eighteen children with autism (mean age: 45.7 months; range: 28-64 months) received ABA-based treatment (a median of 3.5 hours per week; an interquartile range of 2-5.6 hours per week) and/or eclectic treatment-as-usual (TAU) (a median of 3.1 hours per week; an interquartile range of 2-5.6 hours per week). Children's outcomes were the severity of autistic symptoms, cognitive functioning, internalizing and externalizing behavior after 6 months (a median of 192 days; an interquartile range of 178-206 days). In addition, maternal parenting stress at 6-month follow-up, and maternal depression at 1.5-year follow-up (a median of 512 days; an interquartile range of 358-545 days) were also examined. Large individual variations were observed for a broad range of children's and mothers' outcomes. Neither ABA nor TAU hours per week were significantly associated with an improvement in core autistic symptoms. A significant improvement was observed only for internalizing problems, irrespective of the type, intensity or monthly cost of treatment received. Higher ABA cost per month (a median of 1,188 USD; an interquartile range of 538-1,888 USD) was associated with less improvement in language-social DQ (a median of 9; an interquartile range of -6.75-23.75). To determine an optimal program for each child with ASD in areas with poor ASD resources, further controlled studies are needed that assess a broad range of predictive and outcome variables focusing on both individual characteristics and treatment components.

  13. The Lifecycles of Drought: Informing Responses Across Timescales

    Science.gov (United States)

    Pulwarty, R. S.; Schubert, S. D.

    2014-12-01

    Drought is a slow-onset hazard that is a normal part of climate. Drought onset and demise are difficult to determine. Impacts are mostly nonstructural, spread over large geographical areas, and can persist long after precipitation deficits end. These factors hinder development of accurate, timely estimates of drought severity and resultant responses. Drivers of drought range from SST anomalies and global scale atmospheric response, through regional forcing and local land-surface feedbacks. Key climatological questions related to drought risk assessment, perception and management include, "Does a drought end by a return to normal precipitation; how much moisture is required and over what period; can the end of a drought be defined by the diminishing impacts e.g. soil moisture, reservoir volumes; will precipitation patterns on which management systems rely, change in the future?" Effective early warning systems inform strategic responses that anticipate crises and crisis evolution across climate timescales. While such "early information" is critical for defining event onset, it is even more critical for identifying the potential for increases in severity. Many social and economic systems have buffers in place to respond to onset (storage, transfers and purchase of grain) but lack response capabilities as drought intensifies, as buffers are depleted. Throughout the drought lifecycle (and between events), monitoring, research and risk assessments are required to: Map decision-making processes and resource capabilities including degradation of water and ecosystems Place multiple climate and land surface indicators within a consistent triggering framework (e.g. climate and vegetation mapping) before critical thresholds are reached Identify policies and practices that impede or enable the flow of information, through policy gaming and other exercises The presentation will outline the capabilities and framework needed to ensure improved scientific inputs to preparedness

  14. Geographic variation in fee-for-service medicare beneficiaries' medical costs is largely explained by disease burden.

    Science.gov (United States)

    Reschovsky, James D; Hadley, Jack; Romano, Patrick S

    2013-10-01

    Control for area differences in population health (casemix adjustment) is necessary to measure geographic variations in medical spending. Studies use various casemix adjustment methods, resulting in very different geographic variation estimates. We study casemix adjustment methodological issues and evaluate alternative approaches using claims from 1.6 million Medicare beneficiaries in 60 representative communities. Two key casemix adjustment methods-controlling for patient conditions obtained from diagnoses on claims and expenditures of those at the end of life-were evaluated. We failed to find evidence of bias in the former approach attributable to area differences in physician diagnostic patterns, as others have found, and found that the assumption underpinning the latter approach-that persons close to death are equally sick across areas-cannot be supported. Diagnosis-based approaches are more appropriate when current rather than prior year diagnoses are used. Population health likely explains more than 75% to 85% of cost variations across fixed sets of areas.

  15. The intertidal community in West Greenland: Large-scale patterns and small-scale variation on ecosystem dynamics along a climate gradient

    DEFF Research Database (Denmark)

    Thyrring, Jakob; Blicher, Martin; Sejr, Mikael Kristian

    are largely unknown. The West Greenland coast is north - south orientated. This provides an ideal setting to study the impact of climate change on marine species population dynamics and distribution. We investigated the latitudinal changes in the rocky intertidal community along 18° latitudes (59-77°N......) in West Greenland. Using cleared quadrats we quantified patterns in abundance, biomass and species richness in the intertidal zone. We use this data to disentangle patterns in Arctic intertidal communities at different scales. We describe the effects of different environmental drivers and species...... interactions on distribution and dynamics of intertidal species. Our results indicate that changes in distribution and abundance of foundation species can have large effects on the ecosystem. We also show that the importance of small-scale variation may be of same magnitude as large- scale variation. Only...

  16. The U.S. Radiologist Workforce: An Analysis of Temporal and Geographic Variation by Using Large National Datasets.

    Science.gov (United States)

    Rosenkrantz, Andrew B; Hughes, Danny R; Duszak, Richard

    2016-04-01

    To determine recent trends related to temporal as well as national and statewide geographic variation in the U.S. radiologist and radiology resident workforce. This retrospective HIPAA-compliant study was exempted from the internal review board. Federal Area Health Resources Files and Medicare 5% research identifiable files were used to compute parameters related to the radiologist workforce. Geographic variation and annual temporal trends were analyzed. Pearson and Spearman correlations were assessed. Nationally, the number of radiology trainees increased 84.2% from a nadir in 1997 (3080 trainees) to 2011 (5674 trainees) and showed high state-to-state variation (range, 0-678 trainees in 2011). However, total radiologists nationally increased 39.2% from 1995 (27 906 radiologists) to 2011 (38 875 radiologists), and radiologists per 100 000 population nationally increased by 7.5% from 1995 (10.62%) to 2011 (11.42%), while showing high state-to-state variation (highest-to-lowest state ratio of 4.3). Radiologists' share of the overall physician workforce declined nationally by 8.8% from 1995 (4.0%) to 2011 (3.7%), with moderate state-to-state variation (highest-to-lowest state ratio of 1.7). Radiology trainee numbers exhibited weak-to-moderate positive state-by-state correlation with radiologists per 100 000 population (r = 0.292-0.532), but moderate-to-strong inverse correlation with the percentage of radiologists in rural practice (r = -0.464 to -0.635). Although the number of radiology trainees dramatically increased, radiologists per 100 000 population increased only slightly, and radiologists' share of the overall physician workforce declined. State-to-state variations in radiologist and radiology resident workforces are high, which suggests a potential role for geographic redistribution rather than changes in the overall workforce size.

  17. Machine Learning Algorithms For Predicting the Instability Timescales of Compact Planetary Systems

    Science.gov (United States)

    Tamayo, Daniel; Ali-Dib, Mohamad; Cloutier, Ryan; Huang, Chelsea; Van Laerhoven, Christa L.; Leblanc, Rejean; Menou, Kristen; Murray, Norman; Obertas, Alysa; Paradise, Adiv; Petrovich, Cristobal; Rachkov, Aleksandar; Rein, Hanno; Silburt, Ari; Tacik, Nick; Valencia, Diana

    2016-10-01

    The Kepler mission has uncovered hundreds of compact multi-planet systems. The dynamical pathways to instability in these compact systems and their associated timescales are not well understood theoretically. However, long-term stability is often used as a constraint to narrow down the space of orbital solutions from the transit data. This requires a large suite of N-body integrations that can each take several weeks to complete. This computational bottleneck is therefore an important limitation in our ability to characterize compact multi-planet systems.From suites of numerical simulations, previous studies have fit simple scaling relations between the instability timescale and various system parameters. However, the numerically simulated systems can deviate strongly from these empirical fits.We present a new approach to the problem using machine learning algorithms that have enjoyed success across a broad range of high-dimensional industry applications. In particular, we have generated large training sets of direct N-body integrations of synthetic compact planetary systems to train several regression models (support vector machine, gradient boost) that predict the instability timescale. We find that ensembling these models predicts the instability timescale of planetary systems better than previous approaches using the simple scaling relations mentioned above.Finally, we will discuss how these models provide a powerful tool for not only understanding the current Kepler multi-planet sample, but also for characterizing and shaping the radial-velocity follow-up strategies of multi-planet systems from the upcoming Transiting Exoplanet Survey Satellite (TESS) mission, given its shorter observation baselines.

  18. Towards a robust and consistent middle Eocene astronomical timescale

    Science.gov (United States)

    Boulila, Slah; Vahlenkamp, Maximilian; De Vleeschouwer, David; Laskar, Jacques; Yamamoto, Yuhji; Pälike, Heiko; Kirtland Turner, Sandra; Sexton, Philip F.; Westerhold, Thomas; Röhl, Ursula

    2018-03-01

    Until now, the middle Eocene has remained a poorly constrained interval of efforts to produce an astrochronological timescale for the entire Cenozoic. This has given rise to a so-called "Eocene astronomical timescale gap" (Vandenberghe et al., 2012). A high-resolution astrochronological calibration for this interval has proven to be difficult to realize, mainly because carbonate-rich deep-marine sequences of this age are scarce. In this paper, we present records from middle Eocene carbonate-rich sequences from the North Atlantic Southeast Newfoundland Ridge (IODP Exp. 342, Sites U1408 and U1410), of which the cyclical sedimentary patterns allow for an orbital calibration of the geologic timescale between ∼38 and ∼48 Ma. These carbonate-rich cyclic sediments at Sites U1408 and U1410 were deposited as drift deposits and exhibit prominent lithological alternations (couplets) between greenish nannofossil-rich clay and white nannofossil ooze. The principal lithological couplet is driven by the obliquity of Earth's axial tilt, and the intensity of their expression is modulated by a cyclicity of about 173 kyr. This cyclicity corresponds to the interference of secular frequencies s3 and s6 (related to the precession of nodes of the Earth and Saturn, respectively). This 173-kyr obliquity amplitude modulation cycle is exceptionally well recorded in the XRF (X-ray fluorescence)-derived Ca/Fe ratio. In this work, we first demonstrate the stability of the (s3-s6) cycles using the latest astronomical solutions. Results show that this orbital component is stable back to at least 50 Ma, and can thus serve as a powerful geochronometer in the mid-Eocene portion of the Cenozoic timescale. We then exploit this potential by calibrating the geochronology of the recovered middle Eocene timescale between magnetic polarity Chrons C18n.1n and C21n. Comparison with previous timescales shows similarities, but also notable differences in durations of certain magnetic polarity chrons. We

  19. Identification of variations of angle of attack and lift coefficient for a large horizontal-axis wind turbine

    DEFF Research Database (Denmark)

    Rezaeiha, Abdolrahim; Arjomandi, Maziar; Kotsonis, Marios

    2015-01-01

    and the aggregate effect of elements on variations of mean value and standard deviation of the angle of attack and lift coefficient in order to distinguish the major contributing factors. The results of the current study is of paramount importance in the design of active load control systems for wind turbine....

  20. Timescales and conditions of crystallization in the Pokai and Chimpanzee Ignimbrites, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Connor, M.; Gualda, G. A.; Gravley, D. M.

    2013-12-01

    Silicic magmas give rise to explosive eruptions that are both of scientific and societal interest. The central Taupo Volcanic Zone in New Zealand has been volcanically active for 2 Ma and represents the most active volcanic area in the world today. Particularly intense volcanic activity took place as part of a flare-up event that occurred from ~340 to ~240 ka, when 7 large ignimbrite eruptions took place, as well as many smaller eruptions, which erupted a total of at least 3000 km3 of magma. This project seeks to identify the conditions and timescales over which magma bodies that gave rise to these ignimbrite eruptions evolved. We aim to understand how much of the tens of thousands of years between successive eruptions were characterized by the presence of large bodies of silicic magma within the crust, as well the magma distribution within the crust during those times. We focus on the Chimpanzee and Pokai ignimbrites, which together erupted ~150 km3 of magma. The Pokai ignimbrite erupted at ~275 ka, while the Chimpanzee ignimbrite (undated) erupted between ~320 and 275 ka. Pumice clasts from the Chimpanzee and Pokai ignimbrite were collected in the field. Pumice bulk densities were measured using a submersion technique. Quartz and plagioclase crystals were extracted through a crushing, sieving, and winnowing procedure. Whole crystals were hand-picked under a conventional microscope, mounted on epoxy, and polished to expose grain interiors. Grain mounts were analyzed under an SEM using back-scattered electron, cathodoluminescence (CL), and energy-dispersive x-ray (EDX) imaging. Bulk-densities vary from 0.42 to 0.81 g/cm3 for Pokai and between 0.52 and 0.64 g/cm3 for Chimpanzee pumice clasts. Plagioclase is the dominant crystal phase in both units. Several plagioclase crystals have inclusions of orthopyroxene, ilmenite, magnetite, and zircon, which in some cases form clusters. Quartz is rare but is present in pumice from both deposits. Both plagioclase and quartz

  1. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Nübel, Ulrich; Dordel, Janina; Kurt, Kevin

    2010-01-01

    Due to the lack of fossil evidence, the timescales of bacterial evolution are largely unknown. The speed with which genetic change accumulates in populations of pathogenic bacteria, however, is a key parameter that is crucial for understanding the emergence of traits such as increased virulence...

  2. On the intrinsic timescales of temporal variability in measurements of the surface solar radiation

    Science.gov (United States)

    Bengulescu, Marc; Blanc, Philippe; Wald, Lucien

    2018-01-01

    This study is concerned with the intrinsic temporal scales of the variability in the surface solar irradiance (SSI). The data consist of decennial time series of daily means of the SSI obtained from high-quality measurements of the broadband solar radiation impinging on a horizontal plane at ground level, issued from different Baseline Surface Radiation Network (BSRN) ground stations around the world. First, embedded oscillations sorted in terms of increasing timescales of the data are extracted by empirical mode decomposition (EMD). Next, Hilbert spectral analysis is applied to obtain an amplitude-modulation-frequency-modulation (AM-FM) representation of the data. The time-varying nature of the characteristic timescales of variability, along with the variations in the signal intensity, are thus revealed. A novel, adaptive null hypothesis based on the general statistical characteristics of noise is employed in order to discriminate between the different features of the data, those that have a deterministic origin and those being realizations of various stochastic processes. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency variability components, irrespective of the geographical location or of the local climate. Moreover, the amplitude of this latter feature is shown to be modulated by variations in the yearly cycle, which is indicative of nonlinear multiplicative cross-scale couplings. The study has possible implications on the modeling and the forecast of the surface solar radiation, by clearly discriminating the deterministic from the quasi-stochastic character of the data, at different local timescales.

  3. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano.

    Science.gov (United States)

    Druitt, T H; Costa, F; Deloule, E; Dungan, M; Scaillet, B

    2012-02-01

    Caldera-forming volcanic eruptions are low-frequency, high-impact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-forming eruption of Santorini volcano, Greece, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption. Despite the large volume of erupted magma (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicic magma batches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems.

  4. Distinct Neural Mechanisms Mediate Olfactory Memory Formation at Different Timescales

    Science.gov (United States)

    McNamara, Ann Marie; Magidson, Phillip D.; Linster, Christiane; Wilson, Donald A.; Cleland, Thomas A.

    2008-01-01

    Habituation is one of the oldest forms of learning, broadly expressed across sensory systems and taxa. Here, we demonstrate that olfactory habituation induced at different timescales (comprising different odor exposure and intertrial interval durations) is mediated by different neural mechanisms. First, the persistence of habituation memory is…

  5. Global mapping of nonseismic sea level oscillations at tsunami timescales.

    Science.gov (United States)

    Vilibić, Ivica; Šepić, Jadranka

    2017-01-18

    Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates.

  6. Shifting Timescales in Peer Group Interactions: A Multilingual Classroom Perspective

    Science.gov (United States)

    Erduyan, Isil

    2017-01-01

    In his model of classroom social identification and learning, Wortham (2006. "Learning Identity". New York: Cambridge University Press) conceptualizes identity processes as enveloped within multiple timescales unfolding simultaneously in varying paces. For Wortham (2008. "Shifting Identities in the Classroom." In "Identity…

  7. Short timescale variability in the faint sky variability survey

    NARCIS (Netherlands)

    Morales-Rueda, L.; Groot, P.J.; Augusteijn, T.; Nelemans, G.A.; Vreeswijk, P.M.; Besselaar, E.J.M. van den

    2006-01-01

    We present the V-band variability analysis of the Faint Sky Variability Survey (FSVS). The FSVS combines colour and time variability information, from timescales of 24 minutes to tens of days, down to V = 24. We find that �1% of all point sources are variable along the main sequence reaching �3.5%

  8. Sources of measurement variation in blood pressure in large-scale epidemiological surveys with follow-up

    DEFF Research Database (Denmark)

    Andersen, Ulla Overgaard; Henriksen, Jens H; Jensen, Gorm

    2002-01-01

    The Copenhagen City Heart Study (CCHS) is a longitudinal epidemiological study of 19698 subjects followed up since 1976. Variation in blood pressure (BP) measurement in the first three CCHS surveys is evaluated by assessing two components, systematic variation and random variation [daytime...... min rest, with the cuff around the non-dominating arm, in accordance with recommended guidelines. The participation rate fell from 74% in survey 1 to 63% in survey 3. Significant non-response bias with respect to BP values was not found. No daytime variability was noted either in systolic (SBP...... and plasma cholesterol. SBP was 5-10 mmHg higher in diabetics (p = 0.000-0.04) than in age- and sex-matched non-diabetics. DBP did not differ between the two groups. Smokers from the age of 50 years had a 2-4 mmHg lower SBP (p = 0.000-0.01) and 1-3 mmHg lower DBP (p = 0.000-0.005) than had non...

  9. Timescales and Mechanisms of Sigh-Like Bursting and Spiking in Models of Rhythmic Respiratory Neurons.

    Science.gov (United States)

    Wang, Yangyang; Rubin, Jonathan E

    2017-12-01

    Neural networks generate a variety of rhythmic activity patterns, often involving different timescales. One example arises in the respiratory network in the pre-Bötzinger complex of the mammalian brainstem, which can generate the eupneic rhythm associated with normal respiration as well as recurrent low-frequency, large-amplitude bursts associated with sighing. Two competing hypotheses have been proposed to explain sigh generation: the recruitment of a neuronal population distinct from the eupneic rhythm-generating subpopulation or the reconfiguration of activity within a single population. Here, we consider two recent computational models, one of which represents each of the hypotheses. We use methods of dynamical systems theory, such as fast-slow decomposition, averaging, and bifurcation analysis, to understand the multiple-timescale mechanisms underlying sigh generation in each model. In the course of our analysis, we discover that a third timescale is required to generate sighs in both models. Furthermore, we identify the similarities of the underlying mechanisms in the two models and the aspects in which they differ.

  10. A tale of two timescales: Mixing, mass generation, and phase transitions in the early universe

    Science.gov (United States)

    Dienes, Keith R.; Kost, Jeff; Thomas, Brooks

    2016-02-01

    Light scalar fields such as axions and string moduli can play an important role in early-universe cosmology. However, many factors can significantly impact their late-time cosmological abundances. For example, in cases where the potentials for these fields are generated dynamically—such as during cosmological mass-generating phase transitions—the duration of the time interval required for these potentials to fully develop can have significant repercussions. Likewise, in scenarios with multiple scalars, mixing amongst the fields can also give rise to an effective timescale that modifies the resulting late-time abundances. Previous studies have focused on the effects of either the first or the second timescale in isolation. In this paper, by contrast, we examine the new features that arise from the interplay between these two timescales when both mixing and time-dependent phase transitions are introduced together. First, we find that the effects of these timescales can conspire to alter not only the total late-time abundance of the system—often by many orders of magnitude—but also its distribution across the different fields. Second, we find that these effects can produce large parametric resonances which render the energy densities of the fields highly sensitive to the degree of mixing as well as the duration of the time interval over which the phase transition unfolds. Finally, we find that these effects can even give rise to a "reoverdamping" phenomenon which causes the total energy density of the system to behave in novel ways that differ from those exhibited by pure dark matter or vacuum energy. All of these features therefore give rise to new possibilities for early-universe phenomenology and cosmological evolution. They also highlight the importance of taking into account the time dependence associated with phase transitions in cosmological settings.

  11. TIMESCALES ON WHICH STAR FORMATION AFFECTS THE NEUTRAL INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Stilp, Adrienne M.; Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Warren, Steven R. [Department of Astronomy, University of Maryland, CSS Building, Room 1024, Stadium Drive, College Park, MD 20742-2421 (United States); Skillman, Evan [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Ott, Juergen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States)

    2013-08-01

    Turbulent neutral hydrogen (H I) line widths are often thought to be driven primarily by star formation (SF), but the timescale for converting SF energy to H I kinetic energy is unclear. As a complication, studies on the connection between H I line widths and SF in external galaxies often use broadband tracers for the SF rate, which must implicitly assume that SF histories (SFHs) have been constant over the timescale of the tracer. In this paper, we compare measures of H I energy to time-resolved SFHs in a number of nearby dwarf galaxies. We find that H I energy surface density is strongly correlated only with SF that occurred 30-40 Myr ago. This timescale corresponds to the approximate lifetime of the lowest mass supernova progenitors ({approx}8 M{sub Sun }). This analysis suggests that the coupling between SF and the neutral interstellar medium is strongest on this timescale, due either to an intrinsic delay between the release of the peak energy from SF or to the coherent effects of many supernova explosions during this interval. At {Sigma}{sub SFR} > 10{sup -3} M{sub Sun} yr{sup -1} kpc{sup -2}, we find a mean coupling efficiency between SF energy and H I energy of {epsilon} = 0.11 {+-} 0.04 using the 30-40 Myr timescale. However, unphysical efficiencies are required in lower {Sigma}{sub SFR} systems, implying that SF is not the primary driver of H I kinematics at {Sigma}{sub SFR} < 10{sup -3} M{sub Sun} yr{sup -1} kpc{sup -2}.

  12. Large-scale genomic analysis shows association between homoplastic genetic variation in Mycobacterium tuberculosis genes and meningeal or pulmonary tuberculosis.

    NARCIS (Netherlands)

    Ruesen, Carolien; Chaidir, Lidya; van Laarhoven, Arjan; Dian, Sofiati; Ganiem, Ahmad Rizal; Nebenzahl-Guimaraes, Hanna; Huynen, Martijn A; Alisjahbana, Bachti; Dutilh, Bas E; van Crevel, Reinout

    2018-01-01

    Meningitis is the most severe manifestation of tuberculosis. It is largely unknown why some people develop pulmonary TB (PTB) and others TB meningitis (TBM); we examined if the genetic background of infecting M. tuberculosis strains may be relevant.

  13. Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe

    DEFF Research Database (Denmark)

    Rietschel, M; Mattheisen, M; Degenhardt, F

    2012-01-01

    the recruitment of very large samples of patients and controls (that is tens of thousands), or large, potentially more homogeneous samples that have been recruited from confined geographical areas using identical diagnostic criteria. Applying the latter strategy, we performed a genome-wide association study (GWAS...... between emotion regulation and cognition that is structurally and functionally abnormal in SCZ and bipolar disorder.Molecular Psychiatry advance online publication, 12 July 2011; doi:10.1038/mp.2011.80....

  14. An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow

    Science.gov (United States)

    Rasthofer, U.; Wall, W. A.; Gravemeier, V.

    2018-04-01

    A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.

  15. Hungarian Marfan family with large FBN1 deletion calls attention to copy number variation detection in the current NGS era

    Science.gov (United States)

    Ágg, Bence; Meienberg, Janine; Kopps, Anna M.; Fattorini, Nathalie; Stengl, Roland; Daradics, Noémi; Pólos, Miklós; Bors, András; Radovits, Tamás; Merkely, Béla; De Backer, Julie; Szabolcs, Zoltán; Mátyás, Gábor

    2018-01-01

    Copy number variations (CNVs) comprise about 10% of reported disease-causing mutations in Mendelian disorders. Nevertheless, pathogenic CNVs may have been under-detected due to the lack or insufficient use of appropriate detection methods. In this report, on the example of the diagnostic odyssey of a patient with Marfan syndrome (MFS) harboring a hitherto unreported 32-kb FBN1 deletion, we highlight the need for and the feasibility of testing for CNVs (>1 kb) in Mendelian disorders in the current next-generation sequencing (NGS) era. PMID:29850152

  16. Switching Operation Simulations in a Large Offshore Wind Farm with Use of Parametric Variation and Frequency Domain Severity Factor

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Holbøll, Joachim; Arana, Ivan

    2012-01-01

    Transient voltages resulting from switching operations depend on an interaction between the breaker, the transformer, cables and a neighbourhood grid and imply a risk for the transformer and other components. In this paper the Frequency Domain Severity Factor (FDSF) is used to assess the severity...... of electrical stress imposed on wind turbine transformers by voltage waveforms produced during switching operations. The method is implemented in Matlab together with automatic and systematic variation of parameters. Simulations of a radial energization are performed on a 90MVA offshore wind farm model...

  17. The sensitivity of the atmospheric branch of the global water cycle to temperature fluctuations at synoptic to decadal time-scales in different satellite- and model-based products

    Science.gov (United States)

    Nogueira, Miguel

    2018-02-01

    Spectral analysis of global-mean precipitation, P, evaporation, E, precipitable water, W, and surface temperature, Ts, revealed significant variability from sub-daily to multi-decadal time-scales, superposed on high-amplitude diurnal and yearly peaks. Two distinct regimes emerged from a transition in the spectral exponents, β. The weather regime covering time-scales 1-2 years, while at time-scales global-ocean and full-globe averages, ρDCCA showed large spread of the C-C importance for P and E variability amongst different datasets at multi-year time-scales, ranging from negligible (governing mechanisms.

  18. OWL representation of the geologic timescale implementing stratigraphic best practice

    Science.gov (United States)

    Cox, S. J.

    2011-12-01

    The geologic timescale is a cornerstone of the earth sciences. Versions are available from many sources, with the following being of particular interest: (i) The official International Stratigraphic Chart (ISC) is maintained by the International Commission for Stratigraphy (ICS), following principles developed over the last 40 years. ICS provides the data underlying the chart as part of a specialized software package, and the chart itself as a PDF using the standard colours; (ii) ITC Enschede has developed a representation of the timescale as a thesaurus in SKOS, used in a Web Map Service delivery system; (iii) JPL's SWEET ontology includes a geologic timescale. This takes full advantage of the capabilities of OWL. However, each of these has limitations - The ISC falls down because of incompatibility with web technologies; - While SKOS supports multilingual labelling, SKOS does not adequately support timescale semantics, in particular since it does not include ordering relationships; - The SWEET version (as of version 2) is not fully aligned to the model used by ICS, in particular not recognizing the role of the Global Boundary Stratotype Sections and Point (GSSP). Furthermore, it is distributed as static documents, rather than through a dynamic API using SPARQL. The representation presented in this paper overcomes all of these limitations as follows: - the timescale model is formulated as an OWL ontology - the ontology is directly derived from the UML representation of the ICS best practice proposed by Cox & Richard [2005], and subsequently included as the Geologic Timescale package in GeoSciML (http://www.geosciml.org); this includes links to GSSPs as per the ICS process - key properties in the ontology are also asserted to be subProperties of SKOS properties (topConcept and broader/narrower relations) in order to support SKOS-based queries; SKOS labelling is used to support multi-lingual naming and synonyms - the International Stratigraphic Chart is implemented

  19. Large-Scale Evaluation of Common Variation in Regulatory T Cell-Related Genes and Ovarian Cancer Outcome

    OpenAIRE

    Charbonneau, Bridget; Moysich, Kirsten B.; Kalli, Kimberly R.; Oberg, Ann L.; Vierkant, Robert A.; Fogarty, Zachary C.; Block, Matthew S.; Maurer, Matthew J.; Goergen, Krista M.; Fridley, Brooke L.; Cunningham, Julie M.; Rider, David N.; Preston, Claudia; Hartmann, Lynn C.; Lawrenson, Kate

    2014-01-01

    The presence of regulatory T cells (Tregs) in solid tumors is known to play a role in patient survival in ovarian cancer and other malignancies. We assessed inherited genetic variations via 749 tag SNPs in 25 Treg-associated genes (CD28, CTLA4, FOXP3, IDO1, IL10, IL10RA, IL15, 1L17RA, IL23A, IL23R, IL2RA, IL6, IL6R, IL8, LGALS1, LGALS9, MAP3K8, STAT5A, STAT5B, TGFB1, TGFB2, TGFB3, TGFBR1, TGRBR2, and TGFBR3) in relation to ovarian cancer survival. We analyzed genotype and overall survival in ...

  20. A statistical forecast model using the time-scale decomposition technique to predict rainfall during flood period over the middle and lower reaches of the Yangtze River Valley

    Science.gov (United States)

    Hu, Yijia; Zhong, Zhong; Zhu, Yimin; Ha, Yao

    2018-04-01

    In this paper, a statistical forecast model using the time-scale decomposition method is established to do the seasonal prediction of the rainfall during flood period (FPR) over the middle and lower reaches of the Yangtze River Valley (MLYRV). This method decomposites the rainfall over the MLYRV into three time-scale components, namely, the interannual component with the period less than 8 years, the interdecadal component with the period from 8 to 30 years, and the interdecadal component with the period larger than 30 years. Then, the predictors are selected for the three time-scale components of FPR through the correlation analysis. At last, a statistical forecast model is established using the multiple linear regression technique to predict the three time-scale components of the FPR, respectively. The results show that this forecast model can capture the interannual and interdecadal variation of FPR. The hindcast of FPR during 14 years from 2001 to 2014 shows that the FPR can be predicted successfully in 11 out of the 14 years. This forecast model performs better than the model using traditional scheme without time-scale decomposition. Therefore, the statistical forecast model using the time-scale decomposition technique has good skills and application value in the operational prediction of FPR over the MLYRV.

  1. Full-Scale Modeling Explaining Large Spatial Variations of Nitrous Oxide Fluxes in a Step-Feed Plug-Flow Wastewater Treatment Reactor.

    Science.gov (United States)

    Ni, Bing-Jie; Pan, Yuting; van den Akker, Ben; Ye, Liu; Yuan, Zhiguo

    2015-08-04

    Nitrous oxide (N2O) emission data collected from wastewater treatment plants (WWTPs) show huge variations between plants and within one plant (both spatially and temporarily). Such variations and the relative contributions of various N2O production pathways are not fully understood. This study applied a previously established N2O model incorporating two currently known N2O production pathways by ammonia-oxidizing bacteria (AOB) (namely the AOB denitrification and the hydroxylamine pathways) and the N2O production pathway by heterotrophic denitrifiers to describe and provide insights into the large spatial variations of N2O fluxes in a step-feed full-scale activated sludge plant. The model was calibrated and validated by comparing simulation results with 40 days of N2O emission monitoring data as well as other water quality parameters from the plant. The model demonstrated that the relatively high biomass specific nitrogen loading rate in the Second Step of the reactor was responsible for the much higher N2O fluxes from this section. The results further revealed the AOB denitrification pathway decreased and the NH2OH oxidation pathway increased along the path of both Steps due to the increasing dissolved oxygen concentration. The overall N2O emission from this step-feed WWTP would be largely mitigated if 30% of the returned sludge were returned to the Second Step to reduce its biomass nitrogen loading rate.

  2. Insect olfactory coding and memory at multiple timescales.

    Science.gov (United States)

    Gupta, Nitin; Stopfer, Mark

    2011-10-01

    Insects can learn, allowing them great flexibility for locating seasonal food sources and avoiding wily predators. Because insects are relatively simple and accessible to manipulation, they provide good experimental preparations for exploring mechanisms underlying sensory coding and memory. Here we review how the intertwining of memory with computation enables the coding, decoding, and storage of sensory experience at various stages of the insect olfactory system. Individual parts of this system are capable of multiplexing memories at different timescales, and conversely, memory on a given timescale can be distributed across different parts of the circuit. Our sampling of the olfactory system emphasizes the diversity of memories, and the importance of understanding these memories in the context of computations performed by different parts of a sensory system. Published by Elsevier Ltd.

  3. Cooling Timescale of Dust Tori in Dying Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Kohei [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Tazaki, Ryo, E-mail: k.ichikawa@astro.columbia.edu [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578 (Japan)

    2017-07-20

    We estimate the dust torus cooling timescale once the active galactic nucleus (AGN) is quenched. In a clumpy torus system, once the incoming photons are suppressed, the cooling timescale of one clump from T {sub dust} = 1000 K to several 10 K is less than 10 years, indicating that the dust torus cooling time is mainly governed by the light crossing time of the torus from the central engine. After considering the light crossing time of the torus, the AGN torus emission at 12 μ m becomes over two orders of magnitude fainter within 100 years after the quenching. We also propose that those “dying” AGNs could be found using the AGN indicators with a different physical scale R such as 12 μ m band luminosity tracing AGN torus ( R ∼ 10 pc) and the optical [O iii] λ 5007 emission line tracing narrow line regions ( R = 10{sup 2–4} pc).

  4. QUASI-PERIODICITIES AT YEAR-LIKE TIMESCALES IN BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    Sandrinelli, A.; Treves, A. [Università degli Studi dell’Insubria, Dipartimento di Scienza ed Alta Tecnologia, Via Valleggio 11, I-22100 Como (Italy); Covino, S. [INAF—Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (Italy); Dotti, M. [Università degli Studi di Milano Bicocca, Dipartimento di Fisica G. Occhialini, Piazza della Scienza 3, I-20126 Milano (Italy)

    2016-03-15

    We searched for quasi-periodicities on year-like timescales in the light curves of six blazars in the optical—near-infrared bands and we made a comparison with the high energy emission. We obtained optical/NIR light curves from Rapid Eye Mounting photometry plus archival Small and Moderate Aperture Research Telescope System data and we accessed the Fermi light curves for the γ-ray data. The periodograms often show strong peaks in the optical and γ-ray bands, which in some cases may be inter-related. The significance of the revealed peaks is then discussed, taking into account that the noise is frequency dependent. Quasi-periodicities on a year-like timescale appear to occur often in blazars. No straightforward model describing these possible periodicities is yet available, but some plausible interpretations for the physical mechanisms causing periodic variabilities of these sources are examined.

  5. Solar ramping distributions over multiple timescales and weather patterns

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Bri-Mathias; Hummon, Marissa; Orwig, Kirsten [National Renewable Energy Laboratory, Golden, CO (United States)

    2011-07-01

    As greater amounts of solar power are included in the power system it is becoming increasingly important to have a better characterization of the variability of solar power over the timescales that are relevant to power system operations. In this paper, we examine the distribution of ramp events that occur in global horizontal irradiance measurements from a number of sites in the western United States. The distributions are found to be significantly non-normal over multiple timescales from 1 minute to 1 hour. A hyberbolic distribution is suggested for more accurately representing the observed ramp distributions. Additionally, the ramp distributions that occur during different classifications of weather patterns are characterized and significant differences are observed between patterns. (orig.)

  6. Reliable Approximation of Long Relaxation Timescales in Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-07-01

    Full Text Available Many interesting rare events in molecular systems, like ligand association, protein folding or conformational changes, occur on timescales that often are not accessible by direct numerical simulation. Therefore, rare event approximation approaches like interface sampling, Markov state model building, or advanced reaction coordinate-based free energy estimation have attracted huge attention recently. In this article we analyze the reliability of such approaches. How precise is an estimate of long relaxation timescales of molecular systems resulting from various forms of rare event approximation methods? Our results give a theoretical answer to this question by relating it with the transfer operator approach to molecular dynamics. By doing so we also allow for understanding deep connections between the different approaches.

  7. Dancing to CHANGA: a self-consistent prediction for close SMBH pair formation time-scales following galaxy mergers

    Science.gov (United States)

    Tremmel, M.; Governato, F.; Volonteri, M.; Quinn, T. R.; Pontzen, A.

    2018-04-01

    We present the first self-consistent prediction for the distribution of formation time-scales for close supermassive black hole (SMBH) pairs following galaxy mergers. Using ROMULUS25, the first large-scale cosmological simulation to accurately track the orbital evolution of SMBHs within their host galaxies down to sub-kpc scales, we predict an average formation rate density of close SMBH pairs of 0.013 cMpc-3 Gyr-1. We find that it is relatively rare for galaxy mergers to result in the formation of close SMBH pairs with sub-kpc separation and those that do form are often the result of Gyr of orbital evolution following the galaxy merger. The likelihood and time-scale to form a close SMBH pair depends strongly on the mass ratio of the merging galaxies, as well as the presence of dense stellar cores. Low stellar mass ratio mergers with galaxies that lack a dense stellar core are more likely to become tidally disrupted and deposit their SMBH at large radii without any stellar core to aid in their orbital decay, resulting in a population of long-lived `wandering' SMBHs. Conversely, SMBHs in galaxies that remain embedded within a stellar core form close pairs in much shorter time-scales on average. This time-scale is a crucial, though often ignored or very simplified, ingredient to models predicting SMBH mergers rates and the connection between SMBH and star formation activity.

  8. Analysis and design of lattice materials for large cord and curvature variations in skin panels of morphing wings

    International Nuclear Information System (INIS)

    Vigliotti, Andrea; Pasini, Damiano

    2015-01-01

    In the past few decades, several concepts for morphing wings have been proposed with the aim of improving the structural and aerodynamic performance of conventional aircraft wings. One of the most interesting challenges in the design of a morphing wing is represented by the skin, which needs to meet specific deformation requirements. In particular when morphing involves changes of cord or curvature, the skin is required to undergo large recoverable deformation in the actuation direction, while maintaining the desired shape and strength in the others. One promising material concept that can meet these specifications is represented by lattice materials. This paper examines the use of alternative planar lattices in the embodiment of a skin panel for cord and camber morphing of an aircraft wing. We use a structural homogenization scheme capable of capturing large geometric nonlinearity, to examine the structural performance of lattice skin concepts, as well as to tune their mechanical properties in desired directions. (technical note)

  9. Coulomb interaction rules timescales in potassium ion channel tunneling

    Science.gov (United States)

    De March, N.; Prado, S. D.; Brunnet, L. G.

    2018-06-01

    Assuming the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010 New J. Phys. 12 085001) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, the addition of moderate noise helps coherent ion transport.

  10. Microsecond time-scale kinetics of transient biochemical reactions

    NARCIS (Netherlands)

    Mitic, S.; Strampraad, M.J.F.; Hagen, W.R.; de Vries, S.

    2017-01-01

    To afford mechanistic studies in enzyme kinetics and protein folding in the microsecond time domain we have developed a continuous-flow microsecond time-scale mixing instrument with an unprecedented dead-time of 3.8 ± 0.3 μs. The instrument employs a micro-mixer with a mixing time of 2.7 μs

  11. Resistivity variations related to the large March 9, 1998 eruption at La Fournaise volcano inferred by continuous MT monitoring

    Science.gov (United States)

    Wawrzyniak, Pierre; Zlotnicki, Jacques; Sailhac, Pascal; Marquis, Guy

    2017-11-01

    The 2645 m-high La Fournaise volcano, located in the Southwest of Réunion Island (Indian Ocean), is a shield basaltic volcano where effusive eruptions generally occur along long fissures starting from the summit, alongside major fractures that characterize the eruptions' dynamism and effusivity. Between 1992 and 1998, the volcano underwent a quiet period during which few earthquakes were recorded. Minor seismic activity returned after 1997 and picked up in March 1998 during the 35 h preceding the March 9 eruption. From 1996, two autonomous stations (CSV and BAV) were installed on the volcano. CSV was located inside the Enclos Fouqué caldera while BAV was positioned 8.2 km NW of the volcano summit. Horizontal components of the electric and magnetic fields were sampled every 20 s. Continuous time-series were available from 1996 to 1999 at CSV, and from 1997 to March 1998 at BAV. Data have been processed using both single-station and remote-reference processing. Both results show apparent resistivity variations synchronous to the eruption. Time-lapse impedance estimates are computed on overlapping time windows of about two days at both stations. The only major decrease of the observed impedance coincides with the March 1998 eruption. At CSV, the resistivity started to drop about five days before the eruption, reached several local minima until April, and then slowly increased as the volcanic crisis reduced in activity. After the end of the crisis in September 1998, the apparent resistivity recovered its pre-crisis value. The time-lapse results also show variability in directionality: sharp and elongated phase tensor ellipse residuals appear during the eruption with a N105° orientation, suggesting the emergence of an almost NS-striking dyke. A 1D background model built from MT soundings performed during the quiet period (1996 to February 1998) on which a 3D NS-striking dyke was added shows a good agreement with phase tensor residuals and spatial distribution of the

  12. Markov dynamic models for long-timescale protein motion.

    KAUST Repository

    Chiang, Tsung-Han

    2010-06-01

    Molecular dynamics (MD) simulation is a well-established method for studying protein motion at the atomic scale. However, it is computationally intensive and generates massive amounts of data. One way of addressing the dual challenges of computation efficiency and data analysis is to construct simplified models of long-timescale protein motion from MD simulation data. In this direction, we propose to use Markov models with hidden states, in which the Markovian states represent potentially overlapping probabilistic distributions over protein conformations. We also propose a principled criterion for evaluating the quality of a model by its ability to predict long-timescale protein motions. Our method was tested on 2D synthetic energy landscapes and two extensively studied peptides, alanine dipeptide and the villin headpiece subdomain (HP-35 NleNle). One interesting finding is that although a widely accepted model of alanine dipeptide contains six states, a simpler model with only three states is equally good for predicting long-timescale motions. We also used the constructed Markov models to estimate important kinetic and dynamic quantities for protein folding, in particular, mean first-passage time. The results are consistent with available experimental measurements.

  13. The Exoplant Migration Timescale from K2 Young Clusters

    Science.gov (United States)

    Rizzuto, Aaron C.; Mann, Andrew; Kraus, Adam L.; Ireland, Michael

    2017-01-01

    Planetary Migration models for close-in exoplanets(a operate on timescales of ~100’s of Myr to ~1Gyr, a lengthier process than disk migration. It is unclear which of these is the dominating mechanism.The K2 mission has measured planet formation timescales and migration pathways by sampling groups of stars at key pre-main-sequence ages: Over the past 10 campaigns, multiple groups of young stars have been observed by K2, ranging from the 10 Myr Upper Scorpius OB association, through the ˜120 Myr Pleiades, the ˜600-800 Myr Hyades and Praesepe moving groups, to the original Kepler Field. The frequency, orbital and compositional properties of the exoplanet population in these samples of different age, with careful treatment of detection completeness, will be sufficient to address the question of exoplanet migration as their host stars are settling onto the main sequence.We will present the initial results of a program to directly address the question of planet migration with a uniform injection-recovery tests on a new K2 detrending pipeline that is optimized for the particular case of young, rotationally variable stars in K2 to robustly measure the detectability of planets of differing size and orbit. Initial results point towards a migration timescale of 200-700 Myr, which is consistent with the slower planet-planet scattering or Kozai migration models.

  14. SIMULATED PERFORMANCE OF TIMESCALE METRICS FOR APERIODIC LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Findeisen, Krzysztof; Hillenbrand, Lynne [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Cody, Ann Marie, E-mail: krzys@astro.caltech.edu [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States)

    2015-01-10

    Aperiodic variability is a characteristic feature of young stars, massive stars, and active galactic nuclei. With the recent proliferation of time-domain surveys, it is increasingly essential to develop methods to quantify and analyze aperiodic variability. We develop three timescale metrics that have been little used in astronomy—Δm-Δt plots, peak-finding, and Gaussian process regression—and present simulations comparing their effectiveness across a range of aperiodic light curve shapes, characteristic timescales, observing cadences, and signal to noise ratios. We find that Gaussian process regression is easily confused by noise and by irregular sampling, even when the model being fit reflects the process underlying the light curve, but that Δm-Δt plots and peak-finding can coarsely characterize timescales across a broad region of parameter space. We make public the software we used for our simulations, both in the spirit of open research and to allow others to carry out analogous simulations for their own observing programs.

  15. Markov dynamic models for long-timescale protein motion.

    KAUST Repository

    Chiang, Tsung-Han; Hsu, David; Latombe, Jean-Claude

    2010-01-01

    Molecular dynamics (MD) simulation is a well-established method for studying protein motion at the atomic scale. However, it is computationally intensive and generates massive amounts of data. One way of addressing the dual challenges of computation efficiency and data analysis is to construct simplified models of long-timescale protein motion from MD simulation data. In this direction, we propose to use Markov models with hidden states, in which the Markovian states represent potentially overlapping probabilistic distributions over protein conformations. We also propose a principled criterion for evaluating the quality of a model by its ability to predict long-timescale protein motions. Our method was tested on 2D synthetic energy landscapes and two extensively studied peptides, alanine dipeptide and the villin headpiece subdomain (HP-35 NleNle). One interesting finding is that although a widely accepted model of alanine dipeptide contains six states, a simpler model with only three states is equally good for predicting long-timescale motions. We also used the constructed Markov models to estimate important kinetic and dynamic quantities for protein folding, in particular, mean first-passage time. The results are consistent with available experimental measurements.

  16. A model for AGN variability on multiple time-scales

    Science.gov (United States)

    Sartori, Lia F.; Schawinski, Kevin; Trakhtenbrot, Benny; Caplar, Neven; Treister, Ezequiel; Koss, Michael J.; Urry, C. Megan; Zhang, C. E.

    2018-05-01

    We present a framework to link and describe active galactic nuclei (AGN) variability on a wide range of time-scales, from days to billions of years. In particular, we concentrate on the AGN variability features related to changes in black hole fuelling and accretion rate. In our framework, the variability features observed in different AGN at different time-scales may be explained as realisations of the same underlying statistical properties. In this context, we propose a model to simulate the evolution of AGN light curves with time based on the probability density function (PDF) and power spectral density (PSD) of the Eddington ratio (L/LEdd) distribution. Motivated by general galaxy population properties, we propose that the PDF may be inspired by the L/LEdd distribution function (ERDF), and that a single (or limited number of) ERDF+PSD set may explain all observed variability features. After outlining the framework and the model, we compile a set of variability measurements in terms of structure function (SF) and magnitude difference. We then combine the variability measurements on a SF plot ranging from days to Gyr. The proposed framework enables constraints on the underlying PSD and the ability to link AGN variability on different time-scales, therefore providing new insights into AGN variability and black hole growth phenomena.

  17. SIMULATED PERFORMANCE OF TIMESCALE METRICS FOR APERIODIC LIGHT CURVES

    International Nuclear Information System (INIS)

    Findeisen, Krzysztof; Hillenbrand, Lynne; Cody, Ann Marie

    2015-01-01

    Aperiodic variability is a characteristic feature of young stars, massive stars, and active galactic nuclei. With the recent proliferation of time-domain surveys, it is increasingly essential to develop methods to quantify and analyze aperiodic variability. We develop three timescale metrics that have been little used in astronomy—Δm-Δt plots, peak-finding, and Gaussian process regression—and present simulations comparing their effectiveness across a range of aperiodic light curve shapes, characteristic timescales, observing cadences, and signal to noise ratios. We find that Gaussian process regression is easily confused by noise and by irregular sampling, even when the model being fit reflects the process underlying the light curve, but that Δm-Δt plots and peak-finding can coarsely characterize timescales across a broad region of parameter space. We make public the software we used for our simulations, both in the spirit of open research and to allow others to carry out analogous simulations for their own observing programs

  18. Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity.

    Science.gov (United States)

    Mercado, Lina M; Medlyn, Belinda E; Huntingford, Chris; Oliver, Rebecca J; Clark, Douglas B; Sitch, Stephen; Zelazowski, Przemyslaw; Kattge, Jens; Harper, Anna B; Cox, Peter M

    2018-06-01

    Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long-term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used to predict future vegetation and climate-carbon interactions do not include this process. We quantify the global and regional impacts of biogeographical variability and thermal acclimation of temperature response of photosynthetic capacity on the terrestrial carbon (C) cycle between 1860 and 2100 within a coupled climate-carbon cycle model, that emulates 22 global climate models. Results indicate that inclusion of biogeographical variation in photosynthetic temperature response is most important for present-day and future C uptake, with increasing importance of thermal acclimation under future warming. Accounting for both effects narrows the range of predictions of the simulated global land C storage in 2100 across climate projections (29% and 43% globally and in the tropics, respectively). Contrary to earlier studies, our results suggest that thermal acclimation of photosynthetic capacity makes tropical and temperate C less vulnerable to warming, but reduces the warming-induced C uptake in the boreal region under elevated CO 2 . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  19. Increased risk for diabetes development in subjects with large variation in total cholesterol levels in 2,827,950 Koreans: A nationwide population-based study.

    Directory of Open Access Journals (Sweden)

    Eun-Jung Rhee

    Full Text Available Recent studies suggest a role for hyperlipidemia in the development of diabetes. The aim of this study is to analyze the relationship between variations of total cholesterol (TC levels and the risk for type 2 diabetes development from a Korean nationwide population-based database.We examined the General Health Check-up sub-dataset of the Korean National Health Insurance Service (NHIS of 2,827,950 participants who had at least three health check-ups between 2002 and 2007, and were not reported to have diabetes during that time. The variations of TC levels between the examinations were calculated as follows: [Formula: see text]. The examinees were divided into 10 groups according to TC variation, and the hazard ratio for diabetes development from 2007 to 2013, were analyzed.During the follow-up period, 3.4% of the participants had developed diabetes. The hazard ratio (HR for diabetes development relative to the overall risk in the whole study population started to be higher than 1.0 from eighth decile of TC variation. The highest decile group showed an increased HR for diabetes development after adjustment for confounding variables (1.139; 95% confidence interval 1.116~1.163. These results were similar regardless of the use of anti-hyperlipidemic medication and baseline TC levels.The participants with a large variation in TC levels showed an increased risk for diabetes development, independent of the use of anti-hyperlipidemic medications. These results suggest a relationship between fluctuations in lipid levels and the development of type 2 diabetes.

  20. Astronomical timescale calibration for the Permian-Triassic boundary transition interval from global correlation of cyclic marine sequences

    Science.gov (United States)

    Huang, C.; Hinnov, L. A.; Tong, J.; Chen, Z.

    2011-12-01

    The mass extinctions near the Permian-Triassic boundary (PTB) resulted in the greatest dying of life on Earth. The cause of this catastrophe remains enigmatic. High-resolution chronology is crucial to understanding the recorded pattern of biotic evolution and possible causes for the extinctions. Magnetic susceptibility (MS) data from Shangsi, South China shows evidence for astronomical forcing through the PTB interval, with strong 405-kyr cycling. This allows development of an astrochronology for the PTB interval based on the 405-kyr orbital eccentricity metronome that has been proposed for the Mesozoic timescale. Radioisotope dating combined with the 405-kyr tuned MS series from Shangsi shows that the 405-kyr-cycle predominates throughout the PTB interval. In the Permian segment, ~100-kyr cyclicity dominates, and the 100-kyr-scale MS maxima correlate with high-amplitude precession-scale MS variations. Minima in the ~1.5-Myr, 405-kyr and ~100-kyr cycles converge at 252.6 Ma, approximately 200 kyr before the onset of the main mass extinction near the PTB. In the Triassic aftermath, the recorded astronomical signal is different, with predominant 405-kyr cycles and loss of 100 kyr cyclicity, and appearance of ~33 kyr (obliquity scale) cyclicity; 100-kyr cyclicity strengthens again 2 Myr later. This pattern indicates a change in the response of the depositional environment (or magnetic susceptibility) to astronomical forcing before and after the mass extinction interval. The astrochronology interpolates the timescale between the radioisotopically determined absolute dates; this facilitates estimation of ages for specific events in the PTB crisis, including magnetic reversals, biozone boundaries, and the mass extinctions. An estimated ~700 kyr duration for the Mass Extinction Interval (MEI) at Shangsi based on the 405-kyr tuning is supported by eccentricity-tuned estimates of three other sections in China (Meishan, Huangzhishan, and Heping), and two Alpine sections

  1. Individual variation in ontogenetic niche shifts in habitat use and movement patterns of a large estuarine predator (Carcharhinus leucas).

    Science.gov (United States)

    Matich, Philip; Heithaus, Michael R

    2015-06-01

    Ontogenetic niche shifts are common among animals, yet most studies only investigate niche shifts at the population level, which may overlook considerable differences among individuals in the timing and dynamics of these shifts. Such divergent behaviors within size-/age-classes have important implications for the roles a population-and specific age-classes-play in their respective ecosystem(s). Using acoustic telemetry, we tracked the movements of juvenile bull sharks in the Shark River Estuary of Everglades National Park, Florida, and found that sharks increased their use of marine microhabitats with age to take advantage of more abundant resources, but continued to use freshwater and estuarine microhabitats as refuges from marine predators. Within this population-level ontogenetic niche shift, however, movement patterns varied among individual sharks, with 47 % of sharks exhibiting condition-dependent habitat use and 53 % appearing risk-averse regardless of body condition. Among sharks older than age 0, fifty percent made regular movements between adjacent regions of the estuary, while the other half made less predictable movements that often featured long-term residence in specific regions. Individual differences were apparently shaped by both intrinsic and extrinsic factors, including individual responses to food-risk trade-offs and body condition. These differences appear to develop early in the lives of bull sharks, and persist throughout their residencies in nursery habitats. The widespread occurrence of intraspecific variation in behavior among mobile taxa suggests it is important in shaping population dynamics of at least some species, and elucidating the contexts and timing in which it develops and persists is important for understanding its role within communities.

  2. Large variation in measures used to assess outcomes of opioid dependence treatment: A systematic review of longitudinal observational studies.

    Science.gov (United States)

    Wiessing, Lucas; Ferri, Marica; Darke, Shane; Simon, Roland; Griffiths, Paul

    2017-10-02

    Treatment outcomes for drug users are critical for informing policy and therapeutic practice. The coherence of outcomes, changes and drug use measures from observational studies on opioid use treatment were reviewed. Systematic review of the literature for longitudinal observational studies, from 1980 through November 2015, in all languages, with data on treated opioid users, using Pubmed, the Cochrane Library and additional strategies (e.g. Pubmed function 'related citations' and checking reference lists of eligible studies). Twenty-seven studies were included (11 countries, 85 publications, recruitment 1962-2009). Baseline n was >65 686 and median follow-up 34.5 months (21 studies) or 51.4 person-months (10 studies). Eight outcome domains were identified: 'drug use' (21/27 studies), 'crime' (13), 'health' (13), 'treatment-related' outcomes (16), 'social functioning' (13), 'harms' (8), 'mortality' (13) and 'economic estimates' (2 studies). All studies using drug use outcomes included a binary (abstinence) category in at least one measure. Studies typically reported outcomes on less than half (on average 3.7 or 46%) of the eight outcome domains, while the average was 5.1 (64%) in seven studies initiated since 2000. Wide variation exists in outcome measures found in longitudinal observational studies of treatment of opioid users. This reduces replicability of studies and suggests a lack of common expectations on treatment success. Future studies should consider using all or most of eight outcome domains identified (excluding economic analyses if unfeasible), non-binary measures and amount/value of drugs used and consensus meetings with joint ownership of scientific, treatment and patient communities. © 2017 Australasian Professional Society on Alcohol and other Drugs.

  3. Large-Scale Variations in Lumber Value Recovery of Yellow Birch and Sugar Maple in Quebec, Canada.

    Directory of Open Access Journals (Sweden)

    Mariana Hassegawa

    Full Text Available Silvicultural restoration measures have been implemented in the northern hardwoods forests of southern Quebec, Canada, but their financial applicability is often hampered by the depleted state of the resource. To help identify sites most suited for the production of high quality timber, where the potential return on silvicultural investments should be the highest, this study assessed the impact of stand and site characteristics on timber quality in sugar maple (Acer saccharum Marsh. and yellow birch (Betula alleghaniensis Britt.. For this purpose, lumber value recovery (LVR, an estimate of the summed value of boards contained in a unit volume of round wood, was used as an indicator of timber quality. Predictions of LVR were made for yellow birch and sugar maple trees contained in a network of more than 22000 temporary sample plots across the Province. Next, stand-level variables were selected and models to predict LVR were built using the boosted regression trees method. Finally, the occurrence of spatial clusters was verified by a hotspot analysis. Results showed that in both species LVR was positively correlated with the stand age and structural diversity index, and negatively correlated with the number of merchantable stems. Yellow birch had higher LVR in areas with shallower soils, whereas sugar maple had higher LVR in regions with deeper soils. The hotspot analysis indicated that clusters of high and low LVR exist across the province for both species. Although it remains uncertain to what extent the variability of LVR may result from variations in past management practices or in inherent site quality, we argue that efforts to produce high quality timber should be prioritized in sites where LVR is predicted to be the highest.

  4. Large-Scale Variations in Lumber Value Recovery of Yellow Birch and Sugar Maple in Quebec, Canada.

    Science.gov (United States)

    Hassegawa, Mariana; Havreljuk, Filip; Ouimet, Rock; Auty, David; Pothier, David; Achim, Alexis

    2015-01-01

    Silvicultural restoration measures have been implemented in the northern hardwoods forests of southern Quebec, Canada, but their financial applicability is often hampered by the depleted state of the resource. To help identify sites most suited for the production of high quality timber, where the potential return on silvicultural investments should be the highest, this study assessed the impact of stand and site characteristics on timber quality in sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.). For this purpose, lumber value recovery (LVR), an estimate of the summed value of boards contained in a unit volume of round wood, was used as an indicator of timber quality. Predictions of LVR were made for yellow birch and sugar maple trees contained in a network of more than 22000 temporary sample plots across the Province. Next, stand-level variables were selected and models to predict LVR were built using the boosted regression trees method. Finally, the occurrence of spatial clusters was verified by a hotspot analysis. Results showed that in both species LVR was positively correlated with the stand age and structural diversity index, and negatively correlated with the number of merchantable stems. Yellow birch had higher LVR in areas with shallower soils, whereas sugar maple had higher LVR in regions with deeper soils. The hotspot analysis indicated that clusters of high and low LVR exist across the province for both species. Although it remains uncertain to what extent the variability of LVR may result from variations in past management practices or in inherent site quality, we argue that efforts to produce high quality timber should be prioritized in sites where LVR is predicted to be the highest.

  5. Large Interstellar Polarisation Survey. II. UV/optical study of cloud-to-cloud variations of dust in the diffuse ISM

    Science.gov (United States)

    Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.; Cami, J.; Peest, C.

    2018-03-01

    It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.

  6. Cone-Beam Computed Tomography–Guided Positioning of Laryngeal Cancer Patients with Large Interfraction Time Trends in Setup and Nonrigid Anatomy Variations

    International Nuclear Information System (INIS)

    Gangsaas, Anne; Astreinidou, Eleftheria; Quint, Sandra; Levendag, Peter C.; Heijmen, Ben

    2013-01-01

    Purpose: To investigate interfraction setup variations of the primary tumor, elective nodes, and vertebrae in laryngeal cancer patients and to validate protocols for cone beam computed tomography (CBCT)-guided correction. Methods and Materials: For 30 patients, CBCT-measured displacements in fractionated treatments were used to investigate population setup errors and to simulate residual setup errors for the no action level (NAL) offline protocol, the extended NAL (eNAL) protocol, and daily CBCT acquisition with online analysis and repositioning. Results: Without corrections, 12 of 26 patients treated with radical radiation therapy would have experienced a gradual change (time trend) in primary tumor setup ≥4 mm in the craniocaudal (CC) direction during the fractionated treatment (11/12 in caudal direction, maximum 11 mm). Due to these trends, correction of primary tumor displacements with NAL resulted in large residual CC errors (required margin 6.7 mm). With the weekly correction vector adjustments in eNAL, the trends could be largely compensated (CC margin 3.5 mm). Correlation between movements of the primary and nodal clinical target volumes (CTVs) in the CC direction was poor (r 2 =0.15). Therefore, even with online setup corrections of the primary CTV, the required CC margin for the nodal CTV was as large as 6.8 mm. Also for the vertebrae, large time trends were observed for some patients. Because of poor CC correlation (r 2 =0.19) between displacements of the primary CTV and the vertebrae, even with daily online repositioning of the vertebrae, the required CC margin around the primary CTV was 6.9 mm. Conclusions: Laryngeal cancer patients showed substantial interfraction setup variations, including large time trends, and poor CC correlation between primary tumor displacements and motion of the nodes and vertebrae (internal tumor motion). These trends and nonrigid anatomy variations have to be considered in the choice of setup verification protocol and

  7. Variation in sensitivity of large benthic Foraminifera to the combined effects of ocean warming and local impacts.

    Science.gov (United States)

    Prazeres, Martina; Roberts, T Edward; Pandolfi, John M

    2017-03-23

    Large benthic foraminifera (LBF) are crucial marine calcifiers in coral reefs, and sensitive to environmental changes. Yet, many species successfully colonise a wide range of habitats including highly fluctuating environments. We tested the combined effects of ocean warming, local impacts and different light levels on populations of the common LBF Amphistegina lobifera collected along a cross-shelf gradient of temperature and nutrients fluctuations. We analysed survivorship, bleaching frequency, chlorophyll a content and fecundity. Elevated temperature and nitrate significantly reduced survivorship and fecundity of A. lobifera across populations studied. This pattern was exacerbated when combined with below optimum light levels. Inshore populations showed a consistent resistance to increased temperature and nitrate levels, but all populations studied were significantly affected by light reduction. These findings demonstrated the capacity of some populations of LBF to acclimate to local conditions; nonetheless improvements in local water quality can ultimately ameliorate effects of climate change in local LBF populations.

  8. Theta-frequency resonance at the cerebellum input stage improves spike-timing on the millisecond time-scale

    Directory of Open Access Journals (Sweden)

    Daniela eGandolfi

    2013-04-01

    Full Text Available The neuronal circuits of the brain are thought to use resonance and oscillations to improve communication over specific frequency bands (Llinas, 1988; Buzsaki, 2006. However, the properties and mechanism of these phenomena in brain circuits remain largely unknown. Here we show that, at the cerebellum input stage, the granular layer generates its maximum response at 5-7 Hz both in vivo following tactile sensory stimulation of the whisker pad and in acute slices following mossy fiber-bundle stimulation. The spatial analysis of granular layer activity performed using voltage-sensitive dye (VSD imaging revealed 5-7 Hz resonance covering large granular layer areas. In single granule cells, resonance appeared as a reorganization of output spike bursts on the millisecond time-scale, such that the first spike occurred earlier and with higher temporal precision and the probability of spike generation increased. Resonance was independent from circuit inhibition, as it persisted with little variation in the presence of the GABAA receptor blocker, gabazine. However, circuit inhibition reduced the resonance area more markedly at 7 Hz. Simulations with detailed computational models suggested that resonance depended on intrinsic granule cells ionic mechanisms: specifically, Kslow (M-like and KA currents acted as resonators and the persistent Na current and NMDA current acted as amplifiers. This form of resonance may play an important role for enhancing coherent spike emission from the granular layer when theta-frequency bursts are transmitted by the cerebral cortex and peripheral sensory structures during sensory-motor processing, cognition and learning.

  9. The Influence of Large-scale Bank Roughness and Floodplain Composition on Spatial and Temporal Variations in Bank Erosion

    Science.gov (United States)

    Hackney, C. R.; Darby, S. E.; Leyland, J.; Aalto, R. E.; Best, J.; Parsons, D. R.; Nicholas, A. P.

    2016-12-01

    Knowledge of bank erosion processes and rates along the world's largest rivers remains incomplete, primarily due to the difficulties of obtaining data pertaining to the key driving processes (i.e., during the floods that drive most bank retreat). Recently, larger scale bank roughness elements (slump blocks and embayments) have been shown to impact upon rates and locations of bank erosion. However, a complete understanding of the way such features affect rates of bank erosion is currently hindered by the lack of detailed concurrent observations of slump block geometry, embayment geometry and flow at formative discharges in natural environments. Here, we report on high spatial resolution topographic (Terrestrial Laser Scanner and Multibeam Echo Souder) and flow (Acoustic Doppler Current Profiler) surveys undertaken on the Mekong River, Cambodia, from which we extract the geometric properties of roughness elements across a range of scales. We combine this data with sub-bottom profile data, revealing the composition of the surrounding floodplain, to link, for the first time, scales of bank roughness to bank material composition. Through the categorisation of a series of cut river banks by roughness geometry, we show how rates and locations of bank erosion are dependent on that roughness and associated bank material changes. We test how observed patterns of bank erosion conform to previously detailed models of embayment development, and provide new insight into processes affecting the retreat of large river banks.

  10. Seasonal Changes and Spatial Variation in Water Quality of a Large Young Tropical Reservoir and Its Downstream River

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling

    2017-01-01

    Full Text Available This study examined the water quality of the large young tropical Bakun hydroelectric reservoir in Sarawak, Malaysia, and the influence of the outflow on the downstream river during wet and dry seasons. Water quality was determined at five stations in the reservoir at three different depths and one downstream station. The results show that seasons impacted the water quality of the Bakun Reservoir, particularly in the deeper water column. Significantly lower turbidity, SRP, and TP were found during the wet season. At 3–6 m, the oxygen content fell below 5 mg/L and hypoxia was also recorded. Low NO2--N, NO3--N, and SRP and high BOD5, OKN, and TP were observed in the reservoir indicating organic pollution. Active logging activities and the dam construction upstream resulted in water quality deterioration. The outflow decreased the temperature, DO, and pH and increased the turbidity and TSS downstream. Elevated organic matter and nutrients downstream are attributable to domestic discharge along the river. This study shows that the downstream river was affected by the discharge through the turbines, the spillway operations, and domestic waste. Therefore, all these factors should be taken into consideration in the downstream river management for the health of the aquatic organisms.

  11. Patterns of variation at Ustilago maydis virulence clusters 2A and 19A largely reflect the demographic history of its populations.

    Directory of Open Access Journals (Sweden)

    Ronny Kellner

    Full Text Available The maintenance of an intimate interaction between plant-biotrophic fungi and their hosts over evolutionary times involves strong selection and adaptative evolution of virulence-related genes. The highly specialised maize pathogen Ustilago maydis is assigned with a high evolutionary capability to overcome host resistances due to its high rates of sexual recombination, large population sizes and long distance dispersal. Unlike most studied fungus-plant interactions, the U. maydis - Zea mays pathosystem lacks a typical gene-for-gene interaction. It exerts a large set of secreted fungal virulence factors that are mostly organised in gene clusters. Their contribution to virulence has been experimentally demonstrated but their genetic diversity within U. maydis remains poorly understood. Here, we report on the intraspecific diversity of 34 potential virulence factor genes of U. maydis. We analysed their sequence polymorphisms in 17 isolates of U. maydis from Europe, North and Latin America. We focused on gene cluster 2A, associated with virulence attenuation, cluster 19A that is crucial for virulence, and the cluster-independent effector gene pep1. Although higher compared to four house-keeping genes, the overall levels of intraspecific genetic variation of virulence clusters 2A and 19A, and pep1 are remarkably low and commensurate to the levels of 14 studied non-virulence genes. In addition, each gene is present in all studied isolates and synteny in cluster 2A is conserved. Furthermore, 7 out of 34 virulence genes contain either no polymorphisms or only synonymous substitutions among all isolates. However, genetic variation of clusters 2A and 19A each resolve the large scale population structure of U. maydis indicating subpopulations with decreased gene flow. Hence, the genetic diversity of these virulence-related genes largely reflect the demographic history of U. maydis populations.

  12. Long-term resource variation and group size: A large-sample field test of the Resource Dispersion Hypothesis

    Directory of Open Access Journals (Sweden)

    Morecroft Michael D

    2001-07-01

    Full Text Available Abstract Background The Resource Dispersion Hypothesis (RDH proposes a mechanism for the passive formation of social groups where resources are dispersed, even in the absence of any benefits of group living per se. Despite supportive modelling, it lacks empirical testing. The RDH predicts that, rather than Territory Size (TS increasing monotonically with Group Size (GS to account for increasing metabolic needs, TS is constrained by the dispersion of resource patches, whereas GS is independently limited by their richness. We conducted multiple-year tests of these predictions using data from the long-term study of badgers Meles meles in Wytham Woods, England. The study has long failed to identify direct benefits from group living and, consequently, alternative explanations for their large group sizes have been sought. Results TS was not consistently related to resource dispersion, nor was GS consistently related to resource richness. Results differed according to data groupings and whether territories were mapped using minimum convex polygons or traditional methods. Habitats differed significantly in resource availability, but there was also evidence that food resources may be spatially aggregated within habitat types as well as between them. Conclusions This is, we believe, the largest ever test of the RDH and builds on the long-term project that initiated part of the thinking behind the hypothesis. Support for predictions were mixed and depended on year and the method used to map territory borders. We suggest that within-habitat patchiness, as well as model assumptions, should be further investigated for improved tests of the RDH in the future.

  13. Structured approaches to large-scale systems: Variational integrators for interconnected Lagrange-Dirac systems and structured model reduction on Lie groups

    Science.gov (United States)

    Parks, Helen Frances

    This dissertation presents two projects related to the structured integration of large-scale mechanical systems. Structured integration uses the considerable differential geometric structure inherent in mechanical motion to inform the design of numerical integration schemes. This process improves the qualitative properties of simulations and becomes especially valuable as a measure of accuracy over long time simulations in which traditional Gronwall accuracy estimates lose their meaning. Often, structured integration schemes replicate continuous symmetries and their associated conservation laws at the discrete level. Such is the case for variational integrators, which discretely replicate the process of deriving equations of motion from variational principles. This results in the conservation of momenta associated to symmetries in the discrete system and conservation of a symplectic form when applicable. In the case of Lagrange-Dirac systems, variational integrators preserve a discrete analogue of the Dirac structure preserved in the continuous flow. In the first project of this thesis, we extend Dirac variational integrators to accommodate interconnected systems. We hope this work will find use in the fields of control, where a controlled system can be thought of as a "plant" system joined to its controller, and in the approach of very large systems, where modular modeling may prove easier than monolithically modeling the entire system. The second project of the thesis considers a different approach to large systems. Given a detailed model of the full system, can we reduce it to a more computationally efficient model without losing essential geometric structures in the system? Asked without the reference to structure, this is the essential question of the field of model reduction. The answer there has been a resounding yes, with Principal Orthogonal Decomposition (POD) with snapshots rising as one of the most successful methods. Our project builds on previous work

  14. Time-Scale and Time-Frequency Analyses of Irregularly Sampled Astronomical Time Series

    Directory of Open Access Journals (Sweden)

    S. Roques

    2005-09-01

    Full Text Available We evaluate the quality of spectral restoration in the case of irregular sampled signals in astronomy. We study in details a time-scale method leading to a global wavelet spectrum comparable to the Fourier period, and a time-frequency matching pursuit allowing us to identify the frequencies and to control the error propagation. In both cases, the signals are first resampled with a linear interpolation. Both results are compared with those obtained using Lomb's periodogram and using the weighted waveletZ-transform developed in astronomy for unevenly sampled variable stars observations. These approaches are applied to simulations and to light variations of four variable stars. This leads to the conclusion that the matching pursuit is more efficient for recovering the spectral contents of a pulsating star, even with a preliminary resampling. In particular, the results are almost independent of the quality of the initial irregular sampling.

  15. An integrated, indicator framework for assessing large-scale variations and change in seasonal timing and phenology (Invited)

    Science.gov (United States)

    Betancourt, J. L.; Weltzin, J. F.

    2013-12-01

    As part of an effort to develop an Indicator System for the National Climate Assessment (NCA), the Seasonality and Phenology Indicators Technical Team (SPITT) proposed an integrated, continental-scale framework for understanding and tracking seasonal timing in physical and biological systems. The framework shares several metrics with the EPA's National Climate Change Indicators. The SPITT framework includes a comprehensive suite of national indicators to track conditions, anticipate vulnerabilities, and facilitate intervention or adaptation to the extent possible. Observed, modeled, and forecasted seasonal timing metrics can inform a wide spectrum of decisions on federal, state, and private lands in the U.S., and will be pivotal for international efforts to mitigation and adaptation. Humans use calendars both to understand the natural world and to plan their lives. Although the seasons are familiar concepts, we lack a comprehensive understanding of how variability arises in the timing of seasonal transitions in the atmosphere, and how variability and change translate and propagate through hydrological, ecological and human systems. For example, the contributions of greenhouse warming and natural variability to secular trends in seasonal timing are difficult to disentangle, including earlier spring transitions from winter (strong westerlies) to summer (weak easterlies) patterns of atmospheric circulation; shifts in annual phasing of daily temperature means and extremes; advanced timing of snow and ice melt and soil thaw at higher latitudes and elevations; and earlier start and longer duration of the growing and fire seasons. The SPITT framework aims to relate spatiotemporal variability in surface climate to (1) large-scale modes of natural climate variability and greenhouse gas-driven climatic change, and (2) spatiotemporal variability in hydrological, ecological and human responses and impacts. The hierarchical framework relies on ground and satellite observations

  16. On the time-scales of magmatism at island-arc volcanoes.

    Science.gov (United States)

    Turner, S P

    2002-12-15

    Precise information on time-scales and rates of change is fundamental to an understanding of natural processes and the development of quantitative physical models in the Earth sciences. U-series isotope studies are revolutionizing this field by providing time information in the range 10(2)-10(4) years, which is similar to that of many modern Earth processes. I review how the application of U-series isotopes has been used to constrain the time-scales of magma formation, ascent and storage beneath island-arc volcanoes. Different elements are distilled-off the subducting plate at different times and in different places. Contributions from subducted sediments to island-arc lava sources appear to occur some 350 kyr to 4 Myr prior to eruption. Fluid release from the subducting oceanic crust into the mantle wedge may be a multi-stage process and occurs over a period ranging from a few hundred kyr to less than one kyr prior to eruption. This implies that dehydration commences prior to the initiation of partial melting within the mantle wedge, which is consistent with recent evidence that the onset of melting is controlled by an isotherm and thus the thermal structure within the wedge. U-Pa disequilibria appear to require a component of decompression melting, possibly due to the development of gravitational instabilities. The preservation of large (226)Ra disequilibria permits only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. The evolution from basalt to basaltic andesite probably occurs rapidly during ascent or in magma reservoirs inferred from some geophysical data to lie within the lithospheric mantle. The flux across the Moho is broadly andesitic, and some magmas subsequently stall in more shallow crustal-level magma chambers, where they evolve to more differentiated compositions on time-scales of a few thousand years or less.

  17. Brown dwarf accretion: Nonconventional star formation over very long timescales

    Directory of Open Access Journals (Sweden)

    Ćirković Milan M.

    2005-01-01

    Full Text Available We investigate the process of accretion of interstellar gas by the Galactic population of brown dwarfs over very long timescales typical for physical eschatology. In particular, we use the classical Hoyle-Lyttleton-Bondi accretion model to investigate the rate at which brown dwarfs collect enough additional mass to become red dwarfs, accretion-induced changes in the mass function of the low- mass objects, and the corresponding accretion heating of brown dwarfs. In addition, we show how we can make the definition of the final mass function for stellar objects more precise.

  18. An Estimation of the Logarithmic Timescale in Ergodic Dynamics

    Science.gov (United States)

    Gomez, Ignacio S.

    An estimation of the logarithmic timescale in quantum systems having an ergodic dynamics in the semiclassical limit, is presented. The estimation is based on an extension of the Krieger’s finite generator theorem for discretized σ-algebras and using the time rescaling property of the Kolmogorov-Sinai entropy. The results are in agreement with those obtained in the literature but with a simpler mathematics and within the context of the ergodic theory. Moreover, some consequences of the Poincaré’s recurrence theorem are also explored.

  19. The different timescales versus the regulatory framework and public acceptance

    International Nuclear Information System (INIS)

    Vigfusson, J.O.; Gay, D.

    2002-01-01

    Both introductory presentations and the ensuing discussions suggested that one key issue ultimately underlies any consideration about timescales and regulation: the issue of how to balance information relative to short- and distant-time risks and hence how to address the question of compliance judgement in different time frames. 'Can we judge in the same way an impact occurring now and in 50 000 or 1 million years?' was thus a central question for discussion in this group. This issue was tackled from three different points of view: ethics, science and public acceptance. (authors)

  20. Climate scenarios for Olkiluoto on a time-scale of 120,000 years

    International Nuclear Information System (INIS)

    Pimenoff, N.; Venaelaeinen, A.; Jaervinen, H.

    2011-12-01

    Posiva Oy is planning to dispose of spent nuclear fuel in a repository, to be constructed at a depth of 400 m in the crystalline bedrock at Olkiluoto, Finland. Planning the storage requires careful consideration of many aspects, including an assessment of long-term repository safety. For estimating possible climate states at Olkiluoto on a time-scale of 120,000 years, we analyze climate simulations of an Earth System Model of Intermediate Complexity (CLIMBER-2) coupled with an ice sheet model (SICOPOLIS). The simulations into the future clearly show that the onset of the next glaciation is strongly dependent on the Earth's orbital variations and the atmospheric CO 2 concentration. It is evident that due to global warming, the climate of the next centuries will be warmer and wetter than at present. Most likely, due to global warming and low variations in the Earth's orbit around the sun, the present interglacial will last for at least the next 30,000 years. Further, the future simulations showed that the insolation minima on the Northern Hemisphere 50,000-60,000 and 90,000-100,000 years after the present hold a potential for the onset of the next glaciation. Hence, on a time-scale of 120,000 years, one must take into account climate periods lasting several thousand years having the following features: an interglacial climate, a periglacial climate, a climate with an ice sheet margin near Olkiluoto, a glacial climate with an ice sheet covering Olkiluoto, and a climate with Olkiluoto being depressed below sea level after glaciation due to isostatic depression. Due to the uncertainties related to the evolution of the future climate, it is recommended the simulations into the far future to be used only qualitatively. Quantitative information about glacial climate is achieved from the reconstructions and simulations of the past climate. (orig.)

  1. Climate scenarios for Olkiluoto on a time-scale of 100,000 years

    International Nuclear Information System (INIS)

    Pimenoff, N.; Venaelaeinen, A.; Jaervinen, H.

    2011-01-01

    Posiva Oy is planning to dispose of spent nuclear fuel in a repository, to be constructed at a depth of 400 m in the crystalline bedrock at Olkiluoto, Finland. Planning the storage requires careful consideration of many aspects, including an assessment of long-term repository safety. For estimating possible climate states at Olkiluoto on a time-scale of 100,000 years, we analyze climate simulations of an Earth System Model of Intermediate Complexity (CLIMBER-2) coupled with an ice sheet model (SICOPOLIS). The simulations into the future clearly show that the onset of the next glaciation is strongly dependent on the Earth's orbital variations and the atmospheric CO 2 concentration. It is evident that due to global warming, the climate of the next centuries will be warmer and wetter than at present. Most likely, due to global warming and low variations in the Earth's orbit around the sun, the present interglacial will last for at least the next 30,000 years. Further, the future simulations showed that the insolation minima on the Northern Hemisphere 50,000-60,000 and 90,000-100,000 years after the present hold a potential for the onset of the next glaciation. Hence, on a time-scale of 100,000 years, one must take into account climate periods lasting several thousand years having the following features: an interglacial climate, a periglacial climate, a climate with an ice sheet margin near Olkiluoto, a glacial climate with an ice sheet covering Olkiluoto, and a climate with Olkiluoto being depressed below sea level after glaciation due to isostatic depression. Due to the uncertainties related to the evolution of the future climate, it is recommended the simulations into the far future to be used only qualitatively. Quantitative information about glacial climate is achieved from the reconstructions and simulations of the past climate. (orig.)

  2. Climate scenarios for Olkiluoto on a time-scale of 120,000 years

    Energy Technology Data Exchange (ETDEWEB)

    Pimenoff, N.; Venaelaeinen, A.; Jaervinen, H. [Finnish Meteorological Institute, Helsinki (Finland)

    2011-12-15

    Posiva Oy is planning to dispose of spent nuclear fuel in a repository, to be constructed at a depth of 400 m in the crystalline bedrock at Olkiluoto, Finland. Planning the storage requires careful consideration of many aspects, including an assessment of long-term repository safety. For estimating possible climate states at Olkiluoto on a time-scale of 120,000 years, we analyze climate simulations of an Earth System Model of Intermediate Complexity (CLIMBER-2) coupled with an ice sheet model (SICOPOLIS). The simulations into the future clearly show that the onset of the next glaciation is strongly dependent on the Earth's orbital variations and the atmospheric CO{sub 2} concentration. It is evident that due to global warming, the climate of the next centuries will be warmer and wetter than at present. Most likely, due to global warming and low variations in the Earth's orbit around the sun, the present interglacial will last for at least the next 30,000 years. Further, the future simulations showed that the insolation minima on the Northern Hemisphere 50,000-60,000 and 90,000-100,000 years after the present hold a potential for the onset of the next glaciation. Hence, on a time-scale of 120,000 years, one must take into account climate periods lasting several thousand years having the following features: an interglacial climate, a periglacial climate, a climate with an ice sheet margin near Olkiluoto, a glacial climate with an ice sheet covering Olkiluoto, and a climate with Olkiluoto being depressed below sea level after glaciation due to isostatic depression. Due to the uncertainties related to the evolution of the future climate, it is recommended the simulations into the far future to be used only qualitatively. Quantitative information about glacial climate is achieved from the reconstructions and simulations of the past climate. (orig.)

  3. An Ensemble Three-Dimensional Constrained Variational Analysis Method to Derive Large-Scale Forcing Data for Single-Column Models

    Science.gov (United States)

    Tang, Shuaiqi

    Atmospheric vertical velocities and advective tendencies are essential as large-scale forcing data to drive single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulations (LES). They cannot be directly measured or easily calculated with great accuracy from field measurements. In the Atmospheric Radiation Measurement (ARM) program, a constrained variational algorithm (1DCVA) has been used to derive large-scale forcing data over a sounding network domain with the aid of flux measurements at the surface and top of the atmosphere (TOA). We extend the 1DCVA algorithm into three dimensions (3DCVA) along with other improvements to calculate gridded large-scale forcing data. We also introduce an ensemble framework using different background data, error covariance matrices and constraint variables to quantify the uncertainties of the large-scale forcing data. The results of sensitivity study show that the derived forcing data and SCM simulated clouds are more sensitive to the background data than to the error covariance matrices and constraint variables, while horizontal moisture advection has relatively large sensitivities to the precipitation, the dominate constraint variable. Using a mid-latitude cyclone case study in March 3rd, 2000 at the ARM Southern Great Plains (SGP) site, we investigate the spatial distribution of diabatic heating sources (Q1) and moisture sinks (Q2), and show that they are consistent with the satellite clouds and intuitive structure of the mid-latitude cyclone. We also evaluate the Q1 and Q2 in analysis/reanalysis, finding that the regional analysis/reanalysis all tend to underestimate the sub-grid scale upward transport of moist static energy in the lower troposphere. With the uncertainties from large-scale forcing data and observation specified, we compare SCM results and observations and find that models have large biases on cloud properties which could not be fully explained by the uncertainty from the large-scale forcing

  4. Universal timescales in the rheology of spheroid cell aggregates

    Science.gov (United States)

    Yu, Miao; Mahtabfar, Aria; Beleen, Paul; Foty, Ramsey; Zahn, Jeffrey; Shreiber, David; Liu, Liping; Lin, Hao

    2017-11-01

    The rheological properties of tissue play important roles in key biological processes including embryogenesis, cancer metastasis, and wound healing. Spheroid cell aggregate is a particularly interesting model system for the study of these phenomena. In the long time, they behave like drops with a surface tension. In the short, viscoelasticity also needs to be considered. In this work, we discover two coupled and universal timescales for spheroid aggregates. A total of 12 aggregate types (total aggregate number n =290) derived from L and GBM (glioblastoma multiforme) cells are studied with microtensiometer to obtain their surface tension. They are also allowed to relax upon release of the compression forces. The two timescales are observed during the relaxation process; their values do not depend on compression time nor the degree of deformation, and are consistent among all 12 types. Following prior work (Yu et al., Phys. Rev. Lett., 115:128303; Liu et al., J. Mech. Phys. Solids, 98:309-329) we use a rigorous mathematical theory to interpret the results, which reveals intriguing properties of the aggregates on both tissue and cellular levels. The mechanics of multicellular organization reflects both complexity and regularity due to strong active regulation.

  5. Indian monsoon variability on millennial-orbital timescales.

    Science.gov (United States)

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F M

    2016-04-13

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ(18)O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ(18)O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales.

  6. Sea level oscillations over minute timescales: a global perspective

    Science.gov (United States)

    Vilibic, Ivica; Sepic, Jadranka

    2016-04-01

    Sea level oscillations occurring over minutes to a few hours are an important contributor to sea level extremes, and a knowledge on their behaviour is essential for proper quantification of coastal marine hazards. Tsunamis, meteotsunamis, infra-gravity waves and harbour oscillations may even dominate sea level extremes in certain areas and thus pose a great danger for humans and coastal infrastructure. Aside for tsunamis, which are, due to their enormous impact to the coastlines, a well-researched phenomena, the importance of other high-frequency oscillations to the sea level extremes is still underrated, as no systematic long-term measurements have been carried out at a minute timescales. Recently, Intergovernmental Oceanographic Commission (IOC) established Sea Level Monitoring Facility portal (http://www.ioc-sealevelmonitoring.org), making 1-min sea level data publicly available for several hundred tide gauge sites in the World Ocean. Thereafter, a global assessment of oscillations over tsunami timescales become possible; however, the portal contains raw sea level data only, being unchecked for spikes, shifts, drifts and other malfunctions of instruments. We present a quality assessment of these data, estimates of sea level variances and contributions of high-frequency processes to the extremes throughout the World Ocean. This is accompanied with assessment of atmospheric conditions and processes which generate intense high-frequency oscillations.

  7. A hierarchy of time-scales and the brain.

    Science.gov (United States)

    Kiebel, Stefan J; Daunizeau, Jean; Friston, Karl J

    2008-11-01

    In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure-function relationships, which can be tested by manipulating the time-scales of sensory input.

  8. A hierarchy of time-scales and the brain.

    Directory of Open Access Journals (Sweden)

    Stefan J Kiebel

    2008-11-01

    Full Text Available In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure-function relationships, which can be tested by manipulating the time-scales of sensory input.

  9. Relevant findings from the timescales initiative of the IGSC (2006)

    International Nuclear Information System (INIS)

    Preter, P. de; Umeki, H.; Forinash, E.

    2008-01-01

    P. de Preter explained that regulations specify what needs to be shown, and in some cases over what time frames. He presented the conclusion that the limits to the predictability of the repository and the environment need to be acknowledged in safety cases, and that calculated doses are only 'potential doses' since actual dose and risk to future generations cannot be forecast with certainty. He recognised that stylized assumptions are used regarding the biosphere and human lifestyle or actions, and that conservative assumptions are made in order not to underestimate future impacts. The Timescales Group reached a consensus on the fact that the safety case (not necessarily calculations) should cover at least ∼ 10 6 years, when meaningful prognosis is possible for well chosen. site/design. An important issue is the argumentation for safety in the very long term because of the limited meaningfulness of some indicators and assessments in the very far future. Complementary fines of evidence or other more qualitative considerations are therefore often given more weight at longer times. These include comparisons with natural situations, arguments for continuing isolation and more qualitative concepts (optimisation and BAT). P. de Preter questioned our ability and responsibility to protect the environment in the very remote future. Peter de Preter concluded that the range of timescales to be addressed in safety cases presents considerable challenges and that consideration of ethical principles is required. He acknowledged also that competing ethical principles need to he balanced. (authors)

  10. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    Science.gov (United States)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  11. Bridging the Timescales of Single-Cell and Population Dynamics

    Science.gov (United States)

    Jafarpour, Farshid; Wright, Charles S.; Gudjonson, Herman; Riebling, Jedidiah; Dawson, Emma; Lo, Klevin; Fiebig, Aretha; Crosson, Sean; Dinner, Aaron R.; Iyer-Biswas, Srividya

    2018-04-01

    How are granular details of stochastic growth and division of individual cells reflected in smooth deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial growth dynamics by formulating a data-validated theoretical framework that accounts for observables at both single-cell and population scales. We derive exact analytical complete time-dependent solutions to cell-age distributions and population growth rates as functionals of the underlying interdivision time distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric division, we deduce the time to transition from the reproductively quiescent (swarmer) to the replication-competent (stalked) stage of the Caulobacter crescentus life cycle. Remarkably, population numbers can spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For C. crescentus cells, we show that a simple measurement of the population growth rate, for a given growth condition, is sufficient to characterize the condition-specific cellular unit of time and, thus, yields the mean (single-cell) growth and division timescales, fluctuations in cell division times, the cell-age distribution, and the quiescence timescale.

  12. The propagation of varied timescale perturbations in landscapes

    Science.gov (United States)

    Bingham, N.; Johnson, K. N.; Bookhagen, B.; Chadwick, O.

    2016-12-01

    The classic assumption of steady-state landscapes greatly simplifies models of earth-surface processes. Theoretically, steady-state denotes time independence, but in real landscapes steady-state requires a timescale over which to assume (or document) no change. In the past, poor spatiotemporal resolution of eroding landscapes necessitated that shorter timescale perturbations be ignored in favor of regional formulations of rock uplift = erosion, 105, 6 years. Now, novel techniques and technologies provide an opportunity to define local landscape response to various timescales of perturbations; thus, allowing us to consider multiple steady-states on adjacent watersheds or even along a single watershed. This study seeks to identify the physical propagation of varied timescale perturbations in landscapes in order to provide an updated geomorphic context for interpreting critical zone processes. At our study site - Santa Cruz Island (SCI), CA - perturbations include sea level and climate fluctuations over 105 years coupled with pulses of overgrazing and extreme storm events during the last 200 years. Comprehensive knickpoint location maps and dated marine and fill terraces tighten the spatiotemporal constraints on erosion for SCI. In addition, the island hosts a wide range of lithologies, allowing us to compare lithologic effects on landscape response to perturbations. Our study uses lidar point clouds and high resolution (0.25 and 1 m) digital elevation model analysis to segment landscapes by the degree of their response to perturbations. Landscape response is measured by increases in topographic roughness. We ascertain roughness by analyzing the changes in different terrain attributes on multiple spatial scales: catchment, sub-catchments and individual hillslopes. Terrain attributes utilized include slope, curvature, local relief, flowpath length and contributing catchment area. Statistical analysis of these properties indicates narrower ranges in values for regions

  13. A Bayesian method for construction of Markov models to describe dynamics on various time-scales.

    Science.gov (United States)

    Rains, Emily K; Andersen, Hans C

    2010-10-14

    The dynamics of many biological processes of interest, such as the folding of a protein, are slow and complicated enough that a single molecular dynamics simulation trajectory of the entire process is difficult to obtain in any reasonable amount of time. Moreover, one such simulation may not be sufficient to develop an understanding of the mechanism of the process, and multiple simulations may be necessary. One approach to circumvent this computational barrier is the use of Markov state models. These models are useful because they can be constructed using data from a large number of shorter simulations instead of a single long simulation. This paper presents a new Bayesian method for the construction of Markov models from simulation data. A Markov model is specified by (τ,P,T), where τ is the mesoscopic time step, P is a partition of configuration space into mesostates, and T is an N(P)×N(P) transition rate matrix for transitions between the mesostates in one mesoscopic time step, where N(P) is the number of mesostates in P. The method presented here is different from previous Bayesian methods in several ways. (1) The method uses Bayesian analysis to determine the partition as well as the transition probabilities. (2) The method allows the construction of a Markov model for any chosen mesoscopic time-scale τ. (3) It constructs Markov models for which the diagonal elements of T are all equal to or greater than 0.5. Such a model will be called a "consistent mesoscopic Markov model" (CMMM). Such models have important advantages for providing an understanding of the dynamics on a mesoscopic time-scale. The Bayesian method uses simulation data to find a posterior probability distribution for (P,T) for any chosen τ. This distribution can be regarded as the Bayesian probability that the kinetics observed in the atomistic simulation data on the mesoscopic time-scale τ was generated by the CMMM specified by (P,T). An optimization algorithm is used to find the most

  14. Mechanism of transient force augmentation varying with two distinct timescales for interacting vortex rings

    Science.gov (United States)

    Fu, Zhidong; Qin, Suyang; Liu, Hong

    2014-01-01

    The dynamics of dual vortex ring flows is studied experimentally and numerically in a model system that consists of a piston-cylinder apparatus. The flows are generated by double identical strokes which have the velocity profile characterized by the sinusoidal function of half the period. By calculating the total wake impulse in two strokes in the experiments, it is found that the average propulsive force increases by 50% in the second stroke for the sufficiently small stroke length, compared with the first stroke. In the numerical simulations, two types of transient force augmentation are revealed, there being the transient force augmentation for the small stroke lengths and the absolute transient force augmentation for the large stroke lengths. The relative transient force augmentation increases to 78% for L/D = 1, while the absolute transient force augmentation for L/D = 4 is twice as much as that for L/D = 1. Further investigation demonstrates that the force augmentation is attributed to the interaction between vortex rings, which induces transport of vortex impulse and more evident fluid entrainment. The critical situation of vortex ring separation is defined and indicated, with vortex spacing falling in a narrow gap when the stroke lengths vary. A new model is proposed concerning the limiting process of impulse, further suggesting that apart from vortex formation timescale, vortex spacing should be interpreted as an independent timescale to reflect the dynamics of vortex interaction.

  15. Information management and technology strategy in healthcare: local timescales and national requirements

    Directory of Open Access Journals (Sweden)

    Les Smith

    2000-01-01

    Full Text Available The UK National Health Service’s strategic switch-back is well documented and each centrally originated change results in various attempts to record the repercussions and predict the outcomes. The most recent shift is embodied in the Department of Health’s information strategy, Information for health published in September 1998. This document provides the context for an examination of the issue of developing an Information Management and Technology (IM&T strategy at the local level within the changing national requirements for NHS information management. The particular pressures on an individual unit and the need to react to them alongside the requirements of the national strategy are the subjects of this article. The case detailed is that of Clatterbridge Centre for Oncology (CCO on Merseyside, the second largest centre of its type in the UK. Its initial investigation of information needs preceded the publication of the national strategy and its implementation straddled the timescale devised by the NHS Information Authority. The inevitable incompatibility between timescales for the local and the national developments is examined within the case. The work of the new NHS Information Authority and its supporting guidance in its Circular, Information for Health: Initial Local Implementation Strategies, is evaluated as a tool in aligning local and national strategy. Information Managers in other centrally governed organisations within the public sector and large corporations are often alert to similar issues.

  16. PROTOTYPING NON-EQUILIBRIUM VISCOUS-TIMESCALE ACCRETION THEORY USING LMC X-3

    Energy Technology Data Exchange (ETDEWEB)

    Cambier, Hal J.; Smith, David M. [Physics Department, University of California, Santa Cruz, CA 95064 (United States)

    2013-04-10

    Explaining variability observed in the accretion flows of black hole X-ray binary systems remains challenging, especially concerning timescales less than, or comparable to, the viscous timescale but much larger than the inner orbital period despite decades of research identifying numerous relevant physical mechanisms. We take a simplified but broad approach to study several mechanisms likely relevant to patterns of variability observed in the persistently high-soft Roche-lobe overflow system LMC X-3. Based on simple estimates and upper bounds, we find that physics beyond varying disk/corona bifurcation at the disk edge, Compton-heated winds, modulation of total supply rate via irradiation of the companion, and the likely extent of the partial hydrogen ionization instability is needed to explain the degree, and especially the pattern, of variability in LMC X-3 largely due to viscous dampening. We then show how evaporation-condensation may resolve or compound the problem given the uncertainties associated with this complex mechanism and our current implementation. We briefly mention our plans to resolve the question, refine and extend our model, and alternatives we have not yet explored.

  17. Multiple Time-Scale Monitoring to Address Dynamic Seasonality and Storm Pulses of Stream Water Quality in Mountainous Watersheds

    Directory of Open Access Journals (Sweden)

    Hyun-Ju Lee

    2015-11-01

    Full Text Available Rainfall variability and extreme events can amplify the seasonality and storm pulses of stream water chemistry in mountainous watersheds under monsoon climates. To establish a monitoring program optimized for identifying potential risks to stream water quality arising from rainfall variability and extremes, we examined water chemistry data collected on different timescales. At a small forested watershed, bi-weekly sampling lasted over two years, in comparison to three other biweekly sampling sites. In addition, high-frequency continuous measurements of pH, electrical conductivity, and turbidity were conducted in tandem with automatic water sampling at 2 h intervals during eight rainfall events. Biweekly monitoring showed that during the summer monsoon period, electrical conductivity (EC, dissolved oxygen (DO, and dissolved ion concentrations generally decreased, but total suspended solids (TSS slightly increased. A noticeable variation from the usual seasonal pattern was that DO levels substantially decreased during an extended drought. Bi-hourly storm event samplings exhibited large changes in the concentrations of TSS and particulate and dissolved organic carbon (POC; DOC during intense rainfall events. However, extreme fluctuations in sediment export during discharge peaks could be detected only by turbidity measurements at 5 min intervals. Concomitant measurements during rainfall events established empirical relationships between turbidity and TSS or POC. These results suggest that routine monitoring based on weekly to monthly sampling is valid only in addressing general seasonal patterns or long-lasting phenomena such as drought effects. We propose an “adaptive” monitoring scheme that combines routine monitoring for general seasonal patterns and high-frequency instrumental measurements of water quality components exhibiting rapid responses pulsing during intense rainfall events.

  18. Velocity variations associated with the large 2010 eruption of Merapi volcano, Java, retrieved from seismic multiplets and ambient noise cross-correlation

    Science.gov (United States)

    Budi-Santoso, Agus; Lesage, Philippe

    2016-07-01

    We present a study of the seismic velocity variations that occurred in the structure before the large 2010 eruption of Merapi volcano. For the first time to our knowledge, the technique of coda wave interferometry is applied to both families of similar events (multiplets) and to correlation functions of seismic noise. About half of the seismic events recorded at the summit stations belong to one of the ten multiplets identified, including 120 similar events that occurred in the last 20 hr preceding the eruption onset. Daily noise cross-correlation functions (NCF) were calculated for the six pairs of short-period stations available. Using the stretching method, we estimate time-series of apparent velocity variation (AVV) for each multiplet and each pair of stations. No significant velocity change is detected until September 2010. From 10 October to the beginning of the eruption on 26 October, a complex pattern of AVV is observed with amplitude of up to ±1.5 per cent. Velocity decrease is first observed from families of deep events and then from shallow earthquakes. In the same period, AVV with different signs and chronologies are estimated from NCF calculated for various station pairs. The location in the horizontal plane of the velocity perturbations related with the AVV obtained from NCF is estimated by using an approach based on the radiative transfer approximation. Although their spatial resolution is limited, the resulting maps display velocity decrease in the upper part of the edifice in the period 12-25 October. After the eruption onset, the pattern of velocity perturbations is significantly modified with respect to the previous one. We interpret these velocity variations in the framework of a scenario of magmatic intrusion that integrates most observations. The perturbation of the stress field associated with the magma migration can induce both decrease and increase of the seismic velocity of rocks. Thus the detected AVVs can be considered as precursors of

  19. A new nonlinear blind source separation method with chaos indicators for decoupling diagnosis of hybrid failures: A marine propulsion gearbox case with a large speed variation

    International Nuclear Information System (INIS)

    Li, Zhixiong; Peng, Z

    2016-01-01

    The normal operation of propulsion gearboxes ensures the ship safety. Chaos indicators could efficiently indicate the state change of the gearboxes. However, accurate detection of gearbox hybrid faults using Chaos indicators is a challenging task and the detection under speed variation conditions is attracting considerable attentions. Literature review suggests that the gearbox vibration is a kind of nonlinear mixture of variant vibration sources and the blind source separation (BSS) is reported to be a promising technique for fault vibration analysis, but very limited work has addressed the nonlinear BSS approach for hybrid faults decoupling diagnosis. Aiming to enhance the fault detection performance of Chaos indicators, this work presents a new nonlinear BSS algorithm for gearbox hybrid faults detection under a speed variation condition. This new method appropriately introduces the kernel spectral regression (KSR) framework into the morphological component analysis (MCA). The original vibration data are projected into the reproducing kernel Hilbert space (RKHS) where the instinct nonlinear structure in the original data can be linearized by KSR. Thus the MCA is able to deal with nonlinear BSS in the KSR space. Reliable hybrid faults decoupling is then achieved by this new nonlinear MCA (NMCA). Subsequently, by calculating the Chaos indicators of the decoupled fault components and comparing them with benchmarks, the hybrid faults can be precisely identified. Two specially designed case studies were implemented to evaluate the proposed NMCA-Chaos method on hybrid gear faults decoupling diagnosis. The performance of the NMCA-Chaos was compared with state of art techniques. The analysis results show high performance of the proposed method on hybrid faults detection in a marine propulsion gearbox with large speed variations.

  20. Tracking niche variation over millennial timescales in sympatric killer whale lineages

    DEFF Research Database (Denmark)

    Foote, Andrew David; Newton, Jason; Avila Arcos, Maria del Carmen

    2013-01-01

    and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus...

  1. A microsatellite linkage map for Drosophila montana shows large variation in recombination rates, and a courtship song trait maps to an area of low recombination.

    Science.gov (United States)

    Schäfer, M A; Mazzi, D; Klappert, K; Kauranen, H; Vieira, J; Hoikkala, A; Ritchie, M G; Schlötterer, C

    2010-03-01

    Current advances in genetic analysis are opening up our knowledge of the genetics of species differences, but challenges remain, particularly for out-bred natural populations. We constructed a microsatellite-based linkage map for two out-bred lines of Drosophila montana derived from divergent populations by taking advantage of the Drosophila virilis genome and available cytological maps of both species. Although the placement of markers was quite consistent with cytological predictions, the map indicated large heterogeneity in recombination rates along chromosomes. We also performed a quantitative trait locus (QTL) analysis on a courtship song character (carrier frequency), which differs between populations and is subject to strong sexual selection. Linkage mapping yielded two significant QTLs, which explained 3% and 14% of the variation in carrier frequency, respectively. Interestingly, as in other recent studies of traits which can influence speciation, the strongest QTL mapped to a genomic region partly covered by an inversion polymorphism.

  2. A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Zhao, Jiyun; Ji, Dongxu; Tseng, King Jet

    2017-01-01

    Highlights: •SOC and capacity are dually estimated with online adapted battery model. •Model identification and state dual estimate are fully decoupled. •Multiple timescales are used to improve estimation accuracy and stability. •The proposed method is verified with lab-scale experiments. •The proposed method is applicable to different battery chemistries. -- Abstract: Reliable online estimation of state of charge (SOC) and capacity is critically important for the battery management system (BMS). This paper presents a multi-timescale method for dual estimation of SOC and capacity with an online identified battery model. The model parameter estimator and the dual estimator are fully decoupled and executed with different timescales to improve the model accuracy and stability. Specifically, the model parameters are online adapted with the vector-type recursive least squares (VRLS) to address the different variation rates of them. Based on the online adapted battery model, the Kalman filter (KF)-based SOC estimator and RLS-based capacity estimator are formulated and integrated in the form of dual estimation. Experimental results suggest that the proposed method estimates the model parameters, SOC, and capacity in real time with fast convergence and high accuracy. Experiments on both lithium-ion battery and vanadium redox flow battery (VRB) verify the generality of the proposed method on multiple battery chemistries. The proposed method is also compared with other existing methods on the computational cost to reveal its superiority for practical application.

  3. Sedimentary records of trace elements from large European lakes (Switzerland) document historic to recent freshwater pollution and climate-induced runoff variations

    Science.gov (United States)

    Thevenon, F.; Wirth, S. B.; Fujak, M.; Poté, J.; Thierry, A.; Chiaradia, M.; Girardclos, S.

    2011-12-01

    Continuous sedimentary records of anthropogenic and natural trace elements determined by ICPMS, from 5 large and deep perialpine lakes from Central Europe (Switzerland), evidence the environmental impacts of industrial fossil fuel pollution. In fact, the greatest increase in heavy metal pollution was registered at all the studied sites following the European industrial revolution of ca. AD 1800; with the highest values during the middle part of the 20th century. On a regional scale, anthropogenic heavy metal input subsequently stopped increasing thanks to remediation strategies such as the implementation of wastewater treatment plants (WWTPs). On the other hand, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century involved the sedimentation of highly contaminated sediments in the area surrounding the WWTP outlet pipe discharge; less than 4 km from the main supply of drinking water of Lausanne (127'000 hab.). Microbial analyses furthermore reveal i) high increase in bacterial densities following the lake eutrophication in the 1970s, and that ii) the related sediments can be considered as a reservoir of antibiotic resistant bacteria/genes (of human origin). We finally compare instrumental hydrological data over the last century with variations of lithogenic trace elements (e.g., titanium) as registered in three large lakes (Brienz, Thun and Bienne) connected by the River Aar. This task allows to better constraining the runoff variations on a regional scale over the last decades for the the River Aar, and its possible increase under warming climate conditions in the European Alps.

  4. Application of Satellite Solar-Induced Chlorophyll Fluorescence to Understanding Large-Scale Variations in Vegetation Phenology and Function Over Northern High Latitude Forests

    Science.gov (United States)

    Jeong, Su-Jong; Schimel, David; Frankenberg, Christian; Drewry, Darren T.; Fisher, Joshua B.; Verma, Manish; Berry, Joseph A.; Lee, Jung-Eun; Joiner, Joanna

    2016-01-01

    This study evaluates the large-scale seasonal phenology and physiology of vegetation over northern high latitude forests (40 deg - 55 deg N) during spring and fall by using remote sensing of solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI) and observation-based estimate of gross primary productivity (GPP) from 2009 to 2011. Based on GPP phenology estimation in GPP, the growing season determined by SIF time-series is shorter in length than the growing season length determined solely using NDVI. This is mainly due to the extended period of high NDVI values, as compared to SIF, by about 46 days (+/-11 days), indicating a large-scale seasonal decoupling of physiological activity and changes in greenness in the fall. In addition to phenological timing, mean seasonal NDVI and SIF have different responses to temperature changes throughout the growing season. We observed that both NDVI and SIF linearly increased with temperature increases throughout the spring. However, in the fall, although NDVI linearly responded to temperature increases, SIF and GPP did not linearly increase with temperature increases, implying a seasonal hysteresis of SIF and GPP in response to temperature changes across boreal ecosystems throughout their growing season. Seasonal hysteresis of vegetation at large-scales is consistent with the known phenomena that light limits boreal forest ecosystem productivity in the fall. Our results suggest that continuing measurements from satellite remote sensing of both SIF and NDVI can help to understand the differences between, and information carried by, seasonal variations vegetation structure and greenness and physiology at large-scales across the critical boreal regions.

  5. Reconstructing disturbances and their biogeochemical consequences over multiple timescales

    Science.gov (United States)

    McLauchlan, Kendra K.; Higuera, Philip E.; Gavin, Daniel G.; Perakis, Steven S.; Mack, Michelle C.; Alexander, Heather; Battles, John; Biondi, Franco; Buma, Brian; Colombaroli, Daniele; Enders, Sara K.; Engstrom, Daniel R.; Hu, Feng Sheng; Marlon, Jennifer R.; Marshall, John; McGlone, Matt; Morris, Jesse L.; Nave, Lucas E.; Shuman, Bryan; Smithwick, Erica A.H.; Urrego, Dunia H.; Wardle, David A.; Williams, Christopher J.; Williams, Joseph J.

    2014-01-01

    Ongoing changes in disturbance regimes are predicted to cause acute changes in ecosystem structure and function in the coming decades, but many aspects of these predictions are uncertain. A key challenge is to improve the predictability of postdisturbance biogeochemical trajectories at the ecosystem level. Ecosystem ecologists and paleoecologists have generated complementary data sets about disturbance (type, severity, frequency) and ecosystem response (net primary productivity, nutrient cycling) spanning decadal to millennial timescales. Here, we take the first steps toward a full integration of these data sets by reviewing how disturbances are reconstructed using dendrochronological and sedimentary archives and by summarizing the conceptual frameworks for carbon, nitrogen, and hydrologic responses to disturbances. Key research priorities include further development of paleoecological techniques that reconstruct both disturbances and terrestrial ecosystem dynamics. In addition, mechanistic detail from disturbance experiments, long-term observations, and chronosequences can help increase the understanding of ecosystem resilience.

  6. A Review of Time-Scale Modification of Music Signals

    Directory of Open Access Journals (Sweden)

    Jonathan Driedger

    2016-02-01

    Full Text Available Time-scale modification (TSM is the task of speeding up or slowing down an audio signal’s playback speed without changing its pitch. In digital music production, TSM has become an indispensable tool, which is nowadays integrated in a wide range of music production software. Music signals are diverse—they comprise harmonic, percussive, and transient components, among others. Because of this wide range of acoustic and musical characteristics, there is no single TSM method that can cope with all kinds of audio signals equally well. Our main objective is to foster a better understanding of the capabilities and limitations of TSM procedures. To this end, we review fundamental TSM methods, discuss typical challenges, and indicate potential solutions that combine different strategies. In particular, we discuss a fusion approach that involves recent techniques for harmonic-percussive separation along with time-domain and frequency-domain TSM procedures.

  7. Towards an Integrated Geomagnetic Polarity Reversal Timescale for the Pleistocene

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael; Kuiper, Klaudia

    The development of the geomagnetic polarity timescale (GPTS) in the mid 20th century led to the greater understanding of seafloor spreading and plate tectonics (Heirtzler et al., 1968). Over 40 years later, the GPTS continues to be refined, particularly in terms of integrating multiple dating...... minerals. Each of these ages is then compared to independent astronomical ages for the events in order to define tie-points for constructing a Pleistocene a multi-chronometer GPTS. Although only three reversals are addressed here, the methodology applied shows promise to refining short-lived excursions...... to enable further understanding of the wavering magnetic field. The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement no. 215458....

  8. A mechanical characterisation on multiple timescales of electroconductive magnetorheological elastomers

    Science.gov (United States)

    Schümann, M.; Morich, J.; Kaufhold, T.; Böhm, V.; Zimmermann, K.; Odenbach, S.

    2018-05-01

    Magnetorheological elastomers are a type of smart hybrid material which combines elastic properties of a soft elastomer matrix with magnetic properties of magnetic micro particles. This leads to a material with magnetically controllable mechanical properties of which the magnetorheological effect is the best known. The addition of electroconductive particles to the polymer mix adds electrical properties to the material behaviour. The resulting electrical resistance of the sample can be manipulated by external magnetic fields and mechanical loads. This results in a distinct interplay of mechanical, electrical and magnetic effects with a highly complex time behaviour. In this paper a mechanical characterisation on multiple time scales was conducted to get an insight on the short and long-term electrical and mechanical behaviour of this novel material. The results show a complex resistivity behaviour on several timescales, sensitive to magnetic fields and strain velocity. The observed material exhibits fatigue and relaxation behaviour, whereas the magnetorheological effect appears not to interfere with the piezoresistive properties.

  9. Streamflow response of a small forested catchment on different timescales

    Directory of Open Access Journals (Sweden)

    A. Zabaleta

    2013-01-01

    Full Text Available The hydrological response of a catchment to rainfall on different timescales is result of a complex system involving a range of physical processes which may operate simultaneously and have different spatial and temporal influences. This paper presents the analysis of streamflow response of a small humid-temperate catchment (Aixola, 4.8 km2 in the Basque Country on different timescales and discusses the role of the controlling factors. Firstly, daily time series analysis was used to establish a hypothesis on the general functioning of the catchment through the relationship between precipitation and discharge on an annual and multiannual scale (2003–2008. Second, rainfall-runoff relationships and relationships among several hydrological variables, including catchment antecedent conditions, were explored at the event scale (222 events to check and improve the hypothesis. Finally, the evolution of electrical conductivity (EC during some of the monitored storm events (28 events was examined to identify the time origin of waters. Quick response of the catchment to almost all the rainfall events as well as a considerable regulation capacity was deduced from the correlation and spectral analyses. These results agree with runoff event scale data analysis; however, the event analysis revealed the non-linearity of the system, as antecedent conditions play a significant role in this catchment. Further, analysis at the event scale made possible to clarify factors controlling (precipitation, precipitation intensity and initial discharge the different aspects of the runoff response (runoff coefficient and discharge increase for this catchment. Finally, the evolution of EC of the waters enabled the time origin (event or pre-event waters of the quickflow to be established; specifically, the conductivity showed that pre-event waters usually represent a high percentage of the total discharge during runoff peaks. The importance of soil waters in the

  10. Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni.

    Science.gov (United States)

    Kimura, Mariko; Isogai, Keisuke; Kato, Taichi; Ueda, Yoshihiro; Nakahira, Satoshi; Shidatsu, Megumi; Enoto, Teruaki; Hori, Takafumi; Nogami, Daisaku; Littlefield, Colin; Ishioka, Ryoko; Chen, Ying-Tung; King, Sun-Kun; Wen, Chih-Yi; Wang, Shiang-Yu; Lehner, Matthew J; Schwamb, Megan E; Wang, Jen-Hung; Zhang, Zhi-Wei; Alcock, Charles; Axelrod, Tim; Bianco, Federica B; Byun, Yong-Ik; Chen, Wen-Ping; Cook, Kem H; Kim, Dae-Won; Lee, Typhoon; Marshall, Stuart L; Pavlenko, Elena P; Antonyuk, Oksana I; Antonyuk, Kirill A; Pit, Nikolai V; Sosnovskij, Aleksei A; Babina, Julia V; Baklanov, Aleksei V; Pozanenko, Alexei S; Mazaeva, Elena D; Schmalz, Sergei E; Reva, Inna V; Belan, Sergei P; Inasaridze, Raguli Ya; Tungalag, Namkhai; Volnova, Alina A; Molotov, Igor E; de Miguel, Enrique; Kasai, Kiyoshi; Stein, William L; Dubovsky, Pavol A; Kiyota, Seiichiro; Miller, Ian; Richmond, Michael; Goff, William; Andreev, Maksim V; Takahashi, Hiromitsu; Kojiguchi, Naoto; Sugiura, Yuki; Takeda, Nao; Yamada, Eiji; Matsumoto, Katsura; James, Nick; Pickard, Roger D; Tordai, Tamás; Maeda, Yutaka; Ruiz, Javier; Miyashita, Atsushi; Cook, Lewis M; Imada, Akira; Uemura, Makoto

    2016-01-07

    How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries-for example, XTE J1118+480 (ref. 4) and GX 339-4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion--not the actual rate--would then be the critical factor causing large-amplitude oscillations in long-period systems.

  11. Constraining the Timescales of Rehydration in Nominally Anhydrous Minerals Using 3D Numerical Diffusion Models

    Science.gov (United States)

    Lynn, K. J.; Warren, J. M.

    2017-12-01

    Nominally anhydrous minerals (NAMs) are important for characterizing deep-Earth water reservoirs, but the water contents of olivine (ol), orthopyroxene (opx), and clinopyroxene (cpx) in peridotites generally do not reflect mantle equilibrium conditions. Ol is typically "dry" and decoupled from H in cpx and opx, which is inconsistent with models of partial melting and/or diffusive loss of H during upwelling beneath mid-ocean ridges. The rehydration of mantle pyroxenes via late-stage re-fertilization has been invoked to explain their relatively high water contents. Here, we use sophisticated 3D diffusion models (after Shea et al., 2015, Am Min) of H in ol, opx, and cpx to investigate the timescales of rehydration across a range of conditions relevant for melt-rock interaction and serpentinization of peridotites. Numerical crystals with 1 mm c-axis lengths and realistic crystal morphologies are modeled using recent H diffusivities that account for compositional variation and diffusion anisotropy. Models were run over timescales of minutes to millions of years and temperatures from 300 to 1200°C. Our 3D models show that, at the high-T end of the range, H concentrations in the cores of NAMs are partially re-equilibrated in as little as a few minutes, and completely re-equilibrated within hours to weeks. At low-T (300°C), serpentinization can induce considerable diffusion in cpx and opx. H contents are 30% re-equilibrated after continuous exposure to hydrothermal fluids for 102 and 105 years, respectively, which is inconsistent with previous interpretations that there is no effect on H in opx under similar conditions. Ol is unaffected after 1 Myr due to the slower diffusivity of the proton-vacancy mechanism at 300°C (2-4 log units lower than for opx). In the middle of the T range (700-1000°C), rehydration of opx and cpx occurs over hours to days, while ol is somewhat slower to respond (days to weeks), potentially allowing the decoupling observed in natural samples to

  12. EARTH’S ROTATIONAL DECELERATION: DETERMINATION OF TIDAL FRICTION INDEPENDENT OF TIMESCALES

    International Nuclear Information System (INIS)

    Deines, Steven D.; Williams, Carol A.

    2016-01-01

    This paper determines Earth's rotational deceleration without relying on atomic or ephemeris timescales. Earth's rotation defines the civil time standard called Universal Time (UT). Our previous paper did not examine tidal friction in depth when analyzing the timescale divergence between UT and International Atomic Time (TAI). We examine all available paleontological fossils and deposits for the direct measurements of Earth's past rotation rates, because that record includes all contributing effects. We examine paleontological reports that date Earth's rotation rate using corals, bivalves, brachiopods, rhythmites, and stromatolites. Contributions that vary Earth's moment of inertia, such as continental plate drifts, coastline changes, ice age formations, and viscous glacial rebounds, are superimposed with the secular deceleration. The average deceleration of Earth's rotation rate from all available fossil data is found to be (5.969 ± 1.762) × 10 −7 rad yr −2 . Our value is 99.8% of the total rotational deceleration determined by Christodoulidis et al., who used artificial satellite data, and our value is 96.6% of the expected tidal friction value obtained by Stephenson and Morrison. Taking the derivative of conserved angular momentum, the predicted lunar orbital deceleration caused by the average rotational deceleration corresponds closely to lunar models. When evaluating the significant time gaps between UT and TAI, Earth's rotational deceleration is a minor contributing factor. Also, the secular deceleration rate is necessary to correctly date ancient astronomical events. We strongly encourage that more ocean paleontological evidence be found to supplement the record to separate the many periodic variations embedded in these data

  13. EARTH’S ROTATIONAL DECELERATION: DETERMINATION OF TIDAL FRICTION INDEPENDENT OF TIMESCALES

    Energy Technology Data Exchange (ETDEWEB)

    Deines, Steven D. [Donatech Corporation, Fairfield, IA 52556 (United States); Williams, Carol A., E-mail: steven.deines@gmail.com, E-mail: cw@math.usf.edu [Department of Mathematics and Statistics (Prof. emeritus), University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620 (United States)

    2016-04-15

    This paper determines Earth's rotational deceleration without relying on atomic or ephemeris timescales. Earth's rotation defines the civil time standard called Universal Time (UT). Our previous paper did not examine tidal friction in depth when analyzing the timescale divergence between UT and International Atomic Time (TAI). We examine all available paleontological fossils and deposits for the direct measurements of Earth's past rotation rates, because that record includes all contributing effects. We examine paleontological reports that date Earth's rotation rate using corals, bivalves, brachiopods, rhythmites, and stromatolites. Contributions that vary Earth's moment of inertia, such as continental plate drifts, coastline changes, ice age formations, and viscous glacial rebounds, are superimposed with the secular deceleration. The average deceleration of Earth's rotation rate from all available fossil data is found to be (5.969 ± 1.762) × 10{sup −7} rad yr{sup −2}. Our value is 99.8% of the total rotational deceleration determined by Christodoulidis et al., who used artificial satellite data, and our value is 96.6% of the expected tidal friction value obtained by Stephenson and Morrison. Taking the derivative of conserved angular momentum, the predicted lunar orbital deceleration caused by the average rotational deceleration corresponds closely to lunar models. When evaluating the significant time gaps between UT and TAI, Earth's rotational deceleration is a minor contributing factor. Also, the secular deceleration rate is necessary to correctly date ancient astronomical events. We strongly encourage that more ocean paleontological evidence be found to supplement the record to separate the many periodic variations embedded in these data.

  14. Large scale study on the variation of RF energy absorption in the head and brain regions of adults and children and evaluation of the SAM phantom conservativeness

    International Nuclear Information System (INIS)

    Keshvari, J; Kivento, M; Christ, A; Bit-Babik, G

    2016-01-01

    This paper presents the results of two computational large scale studies using highly realistic exposure scenarios, MRI based human head and hand models, and two mobile phone models. The objectives are (i) to study the relevance of age when people are exposed to RF by comparing adult and child heads and (ii) to analyze and discuss the conservativeness of the SAM phantom for all age groups. Representative use conditions were simulated using detailed CAD models of two mobile phones operating between 900 MHz and 1950 MHz including configurations with the hand holding the phone, which were not considered in most previous studies. The peak spatial-average specific absorption rate (psSAR) in the head and the pinna tissues is assessed using anatomically accurate head and hand models. The first of the two mentioned studies involved nine head-, four hand- and two phone-models, the second study included six head-, four hand- and three simplified phone-models (over 400 configurations in total). In addition, both studies also evaluated the exposure using the SAM phantom. Results show no systematic differences between psSAR induced in the adult and child heads. The exposure level and its variation for different age groups may be different for particular phones, but no correlation between psSAR and model age was found. The psSAR from all exposure conditions was compared to the corresponding configurations using SAM, which was found to be conservative in the large majority of cases. (paper)

  15. Analysis of cyclic variations of liquid fuel-air mixing processes in a realistic DISI IC-engine using Large Eddy Simulation

    International Nuclear Information System (INIS)

    Goryntsev, D.; Sadiki, A.; Klein, M.; Janicka, J.

    2010-01-01

    Direct injection spark ignition (DISI) engines have a large potential to reduce emissions and specific fuel consumption. One of the most important problem in the design of DISI engines is the cycle-to-cycle variations of the flow, mixing and combustion processes. The Large Eddy Simulation (LES) based analysis is used to characterize the cycle-to-cycle fluctuations of the flow field as well as the mixture preparation in a realistic four-stroke internal combustion engine with variable charge motion system. Based on the analysis of cycle-to-cycle velocity fluctuations of in-cylinder flow, the impact of various fuel spray boundary conditions on injection processes and mixture preparation is pointed out. The joint effect of both cycle-to-cycle velocity fluctuations and variable spray boundary conditions is discussed in terms of mean and standard deviation of relative air-fuel ratio, velocity and mass fraction. Finally a qualitative analysis of the intensity of cyclic fluctuations below the spark plug is provided.

  16. Large scale study on the variation of RF energy absorption in the head & brain regions of adults and children and evaluation of the SAM phantom conservativeness

    Science.gov (United States)

    Keshvari, J.; Kivento, M.; Christ, A.; Bit-Babik, G.

    2016-04-01

    This paper presents the results of two computational large scale studies using highly realistic exposure scenarios, MRI based human head and hand models, and two mobile phone models. The objectives are (i) to study the relevance of age when people are exposed to RF by comparing adult and child heads and (ii) to analyze and discuss the conservativeness of the SAM phantom for all age groups. Representative use conditions were simulated using detailed CAD models of two mobile phones operating between 900 MHz and 1950 MHz including configurations with the hand holding the phone, which were not considered in most previous studies. The peak spatial-average specific absorption rate (psSAR) in the head and the pinna tissues is assessed using anatomically accurate head and hand models. The first of the two mentioned studies involved nine head-, four hand- and two phone-models, the second study included six head-, four hand- and three simplified phone-models (over 400 configurations in total). In addition, both studies also evaluated the exposure using the SAM phantom. Results show no systematic differences between psSAR induced in the adult and child heads. The exposure level and its variation for different age groups may be different for particular phones, but no correlation between psSAR and model age was found. The psSAR from all exposure conditions was compared to the corresponding configurations using SAM, which was found to be conservative in the large majority of cases.

  17. Variability of the Tropical Ocean Surface Temperatures at Decadal-Multidecadal Timescales. Part I: The Atlantic Ocean.

    Science.gov (United States)

    Mehta, Vikram M.

    1998-09-01

    Gridded time series from the Global Ocean Surface Temperature Atlas were analyzed with a variety of techniques to identify spatial structures and oscillation periods of the tropical Atlantic sea surface temperature (SST) variations at decadal timescales, and to develop physical interpretations of statistical patterns of decadal SST variations. Each time series was 110 yr (1882-1991) long. The tropical Atlantic SST variations were compared with decadal variations in a 74-yr-long (1912-85) north Nordeste Brazil rainfall time series and a 106-yr-long (1886-1991) tropical Atlantic cyclone activity index time series. The tropical Atlantic SST variations were also compared with decadal variations in the extratropical Atlantic SST.Multiyear to multidecadal variations in the cross-equatorial dipole pattern identified as a dominant empirical pattern of the tropical Atlantic SST variations in earlier and present studies are shown to be variations in the approximately north-south gradient of SST anomalies. It is also shown that there was no dynamical-thermodynamical, dipole mode of SST variations during the analysis period. There was a distinct decadal timescale (12-13 yr) of SST variations in the tropical South Atlantic, whereas no distinct decadal timescale was found in the tropical North Atlantic SST variations. Approximately 80% of the coherent decadal variance in the cross-equatorial SST gradient was `explained' by coherent decadal oscillations in the tropical South Atlantic SSTs. There were three, possibly physical, modes of decadal variations in the tropical Atlantic SSTs during the analysis period. In the more energetic mode of the North Atlantic decadal SST variations, anomalies traveled into the tropical North Atlantic from the extratropical North Atlantic along the eastern boundary of the basin. The anomalies strengthened and resided in the tropical North Atlantic for several years, then frequently traveled northward into the mid-high-latitude North Atlantic along

  18. Automated quantification of pulmonary emphysema from computed tomography scans: comparison of variation and correlation of common measures in a large cohort

    Science.gov (United States)

    Keller, Brad M.; Reeves, Anthony P.; Yankelevitz, David F.; Henschke, Claudia I.

    2010-03-01

    The purpose of this work was to retrospectively investigate the variation of standard indices of pulmonary emphysema from helical computed tomographic (CT) scans as related to inspiration differences over a 1 year interval and determine the strength of the relationship between these measures in a large cohort. 626 patients that had 2 scans taken at an interval of 9 months to 15 months (μ: 381 days, σ: 31 days) were selected for this work. All scans were acquired at a 1.25mm slice thickness using a low dose protocol. For each scan, the emphysema index (EI), fractal dimension (FD), mean lung density (MLD), and 15th percentile of the histogram (HIST) were computed. The absolute and relative changes for each measure were computed and the empirical 95% confidence interval was reported both in non-normalized and normalized scales. Spearman correlation coefficients are computed between the relative change in each measure and relative change in inspiration between each scan-pair, as well as between each pair-wise combination of the four measures. EI varied on a range of -10.5 to 10.5 on a non-normalized scale and -15 to 15 on a normalized scale, with FD and MLD showing slightly larger but comparable spreads, and HIST having a much larger variation. MLD was found to show the strongest correlation to inspiration change (r=0.85, pemphysema index and fractal dimension have the least variability overall of the commonly used measures of emphysema and that they offer the most unique quantification of emphysema relative to each other.

  19. Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011

    International Nuclear Information System (INIS)

    Li, Li; Qian, Jun; Ou, Chun-Quan; Zhou, Ying-Xue; Guo, Cui; Guo, Yuming

    2014-01-01

    There is an increasing interest in spatial and temporal variation of air pollution and its association with weather conditions. We presented the spatial and temporal variation of Air Pollution Index (API) and examined the associations between API and meteorological factors during 2001–2011 in Guangzhou, China. A Seasonal-Trend Decomposition Procedure Based on Loess (STL) was used to decompose API. Wavelet analyses were performed to examine the relationships between API and several meteorological factors. Air quality has improved since 2005. APIs were highly correlated among five monitoring stations, and there were substantial temporal variations. Timescale-dependent relationships were found between API and a variety of meteorological factors. Temperature, relative humidity, precipitation and wind speed were negatively correlated with API, while diurnal temperature range and atmospheric pressure were positively correlated with API in the annual cycle. Our findings should be taken into account when determining air quality forecasts and pollution control measures. - Highlights: • Air pollution is still serious in Guangzhou, China. • Air Pollution Index was associated with a variety of meteorological parameters. • The temporal relationships were timescale-dependent. • The findings should be taken into account in air quality forecasts and pollution control. - Spatial and temporal variation of API and its timescale-dependent relationship with meteorological factors in Guangzhou were demonstrated

  20. Large variations in diurnal and seasonal patterns of sap flux among Aleppo pine trees in semi-arid forest reflect tree-scale hydraulic adjustments

    Science.gov (United States)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grünzweig, José M.; Klein, Tamir; Yakir, Dan

    2015-04-01

    Adjustments and adaptations of trees to drought vary across different biomes, species and habitats, with important implications for tree mortality and forest dieback associated with global climate change. The aim of this study was to investigate possible links between the patterns of variations in water flux dynamics and drought resistance in Aleppo pine (Pinus halepensis) trees in a semi-arid stand (Yatir forest, Israel). We measured sap flow (SF) and variations in stem diameter, complemented with short-term campaigns of leaf-scale measurements of water vapour and CO2 gas exchange, branch water potential and hydraulic conductivity, as well as eddy flux measurements of evapotranspiration (ET) from a permanent flux tower at the site. SF rates were well synchronized with ET, reaching maximum rates during midday in all trees during the rainy season (Dec-Apr). However, during the dry season (May-Nov), the daily trend in the rates of SF greatly varied among trees, allowing classification into three tree classes: 1) trees with SF maximum rate constantly occurring in mid-day (12:00-13:00); 2)trees showing a shift to an early morning SF peak (04:00-06:00); and 3) trees shifting their daily SF peak to the evening (16:00-18:00). This classification did not change during the four years study period, between 2010 and 2014. Checking for correlation of tree parameters as DBH, tree height, crown size, and competition indices with rates of SF, indicated that timing of maximum SF in summer was mainly related to tree size (DBH), when large trees tended to have a later SF maximum. Dendrometer measurements indicated that large trees (high DBH) had maximum daily diameter in the morning during summer and winter, while small trees typically had maximum daily diameter during midday and afternoon in winter and summer, respectively. Leaf-scale transpiration (T) measurements showed typical morning peak in all trees, and another peak in the afternoon in large trees only. Different diurnal

  1. Large-scale Modeling of the Greenland Ice Sheet on Long Timescales

    DEFF Research Database (Denmark)

    Solgaard, Anne Munck

    is investigated as well as its early history. The studies are performed using an ice-sheet model in combination with relevant forcing from observed and modeled climate. Changes in ice-sheet geometry influences atmospheric flow (and vice versa) hereby changing the forcing patterns. Changes in the overall climate...... and climate model is included shows, however, that a Föhn effect is activated and hereby increasing temperatures inland and inhibiting further ice-sheet expansion into the interior. This indicates that colder than present temperatures are needed in order for the ice sheet to regrow to the current geometry....... Accordingto this hypothesis, two stages of uplift since the Late Miocene lead to the present-day topography. The results of the ice-sheet simulations show geometries in line with geologicobservations through the period, and it is found that the uplift events enhance the effect of the climatic deterioration...

  2. A Study on Time-Scales Ratio and Turbulent Prandtl Number in Ducts of Industrial Applications

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2006-01-01

    is solved using a two-equation heat flux model. The computed results compare satisfactory with the available experimental data. The time-scale ratio R is defined as the ratio between the dynamic time-scale (k/ε) and the scalar time-scale(0.5θθ/εθ). Based on existing DNS data and calculations in this work...... of heat exchangers for various applications area....

  3. Large-Ensemble modeling of past and future variations of the Antarctic Ice Sheet with a coupled ice-Earth-sea level model

    Science.gov (United States)

    Pollard, David; DeConto, Robert; Gomez, Natalya

    2016-04-01

    To date, most modeling of the Antarctic Ice Sheet's response to future warming has been calibrated using recent and modern observations. As an alternate approach, we apply a hybrid 3-D ice sheet-shelf model to the last deglacial retreat of Antarctica, making use of geologic data of the last ~20,000 years to test the model against the large-scale variations during this period. The ice model is coupled to a global Earth-sea level model to improve modeling of the bedrock response and to capture ocean-ice gravitational interactions. Following several recent ice-sheet studies, we use Large Ensemble (LE) statistical methods, performing sets of 625 runs from 30,000 years to present with systematically varying model parameters. Objective scores for each run are calculated using modern data and past reconstructed grounding lines, relative sea level records, cosmogenic elevation-age data and uplift rates. The LE results are analyzed to calibrate 4 particularly uncertain model parameters that concern marginal ice processes and interaction with the ocean. LE's are extended into the future with climates following RCP scenarios. An additional scoring criterion tests the model's ability to reproduce estimated sea-level high stands in the warm mid-Pliocene, for which drastic retreat mechanisms of hydrofracturing and ice-cliff failure are needed in the model. The LE analysis provides future sea-level-rise envelopes with well-defined parametric uncertainty bounds. Sensitivities of future LE results to Pliocene sea-level estimates, coupling to the Earth-sea level model, and vertical profiles of Earth properties, will be presented.

  4. Extremes in East African hydroclimate and links to Indo-Pacific variability on interannual to decadal timescales

    Science.gov (United States)

    Ummenhofer, Caroline C.; Kulüke, Marco; Tierney, Jessica E.

    2018-04-01

    East African hydroclimate exhibits considerable variability across a range of timescales, with implications for its population that depends on the region's two rainy seasons. Recent work demonstrated that current state-of-the-art climate models consistently underestimate the long rains in boreal spring over the Horn of Africa while overestimating the short rains in autumn. This inability to represent the seasonal cycle makes it problematic for climate models to project changes in East African precipitation. Here we consider whether this bias also has implications for understanding interannual and decadal variability in the East African long and short rains. Using a consistent framework with an unforced multi-century global coupled climate model simulation, the role of Indo-Pacific variability for East African rainfall is compared across timescales and related to observations. The dominant driver of East African rainfall anomalies critically depends on the timescale under consideration: Interannual variations in East African hydroclimate coincide with significant sea surface temperature (SST) anomalies across the Indo-Pacific, including those associated with the El Niño-Southern Oscillation (ENSO) in the eastern Pacific, and are linked to changes in the Walker circulation, regional winds and vertical velocities over East Africa. Prolonged drought/pluvial periods in contrast exhibit anomalous SST predominantly in the Indian Ocean and Indo-Pacific warm pool (IPWP) region, while eastern Pacific anomalies are insignificant. We assessed dominant frequencies in Indo-Pacific SST and found the eastern equatorial Pacific dominated by higher-frequency variability in the ENSO band, while the tropical Indian Ocean and IPWP exhibit lower-frequency variability beyond 10 years. This is consistent with the different contribution to regional precipitation anomalies for the eastern Pacific versus Indian Ocean and IPWP on interannual and decadal timescales, respectively. In the model

  5. Reorientation Timescales and Pattern Dynamics for Titan's Dunes: Does the Tail Wag the Dog or the Dragon?

    Science.gov (United States)

    Hayes, A. G.; Ewing, R. C.; Cassini Radar Science Team, T.

    2011-12-01

    Fields of bedform patterns persist across many orders of magnitude, from cm-scale sub-aqueous current ripples to km-scale aeolian dunes, and form with surprisingly little difference in expression despite a range of formative environments. Because of the remarkable similarity between and among patterns, extracting information about climate and environment from these patterns is a challenge. For example, crest orientation is not diagnostic of a particular flow regime; similar patterns form under many different flow configurations. On Titan, these challenges have played out with many attempts to reconcile dune-field patterns with modeled and expected wind regimes. We propose that thinking about the change in dune orientation, rather than the orientation itself, can provide new insights on the long-term stability of the dune-field patterns and the formative wind regime. In this work, we apply the re-orientation model presented by Werner and Kocurek [Geology, 1997] to the equatorial dune fields of Titan. We measure variations in pattern parameters (crest spacing, crest length and defect density, which is the number of defect pairs per total crest length) both within and between Titan's dune fields to describe pattern maturity and identify areas where changes in dune orientation are likely to occur (or may already be occurring). Measured defect densities are similar to Earth's largest linear dune fields, such as the Namib Sand Sea and the Simpson Desert. We use measured defect densities in the Werner and Kocurek model to estimate crestline reorientation rates. We find reorientation timescales varying from ten to a hundred thousand times the average migration timescale (time to migrate a bedform one meter, ~1 Titan year according to Tokano (Aeolian Research, 2010)). Well organized patterns have the longest reorientation time scales (~10^5 migration timescales), while the topographically or spatially isolated patches of dunes show the shortest reorientation times (~10

  6. Variations in large-scale tropical cyclone genesis factors over the western North Pacific in the PMIP3 last millennium simulations

    Science.gov (United States)

    Yan, Qing; Wei, Ting; Zhang, Zhongshi

    2017-02-01

    Investigation of past tropical cyclone (TC) activity in the Western North Pacific (WNP) is potentially helpful to enable better understanding of future TC behaviors. In this study, we examine variations in large-scale environmental factors important to TC genesis in the last millennium simulations from the Paleoclimate Modelling Intercomparison Project Phase 3 (PMIP3). The results show that potential intensity, a theoretical prediction of the maximum TC intensity, is increased relative to the last millennium in the north part of the WNP in the Medieval Climate Anomaly (MCA; 950-1200 AD) while it is decreased in the Little Ice Age (LIA; 1600-1850 AD). Vertical wind shear that generally inhibits TC genesis is enhanced (reduced) to the south of 20°N and is reduced (enhanced) to the north in the MCA (LIA). Relative humidity (at 600 hPa) that measures the mid-tropospheric moisture content broadly shows an increase (decrease) in the MCA (LIA). A genesis potential index indicates that conditions are generally favorable (unfavorable) for TC formation in the WNP in the MCA (LIA), especially in the northern part. Taking changes in steering flows into account, there may be an increasing (decreasing) favorability for storm strikes in East Asia in the MCA (LIA). The estimated TC activity is consistent with the geological proxies in Japan, but contradicts with the typhoon records in southern China and Taiwan. This model-data discrepancy is attributed to the limitations in both simulations and reconstructions.

  7. Hydrograph variances over different timescales in hydropower production networks

    Science.gov (United States)

    Zmijewski, Nicholas; Wörman, Anders

    2016-08-01

    The operation of water reservoirs involves a spectrum of timescales based on the distribution of stream flow travel times between reservoirs, as well as the technical, environmental, and social constraints imposed on the operation. In this research, a hydrodynamically based description of the flow between hydropower stations was implemented to study the relative importance of wave diffusion on the spectrum of hydrograph variance in a regulated watershed. Using spectral decomposition of the effluence hydrograph of a watershed, an exact expression of the variance in the outflow response was derived, as a function of the trends of hydraulic and geomorphologic dispersion and management of production and reservoirs. We show that the power spectra of involved time-series follow nearly fractal patterns, which facilitates examination of the relative importance of wave diffusion and possible changes in production demand on the outflow spectrum. The exact spectral solution can also identify statistical bounds of future demand patterns due to limitations in storage capacity. The impact of the hydraulic description of the stream flow on the reservoir discharge was examined for a given power demand in River Dalälven, Sweden, as function of a stream flow Peclet number. The regulation of hydropower production on the River Dalälven generally increased the short-term variance in the effluence hydrograph, whereas wave diffusion decreased the short-term variance over periods of white noise) as a result of current production objectives.

  8. Exploring Market State and Stock Interactions on the Minute Timescale.

    Directory of Open Access Journals (Sweden)

    Lei Tan

    Full Text Available A stock market is a non-stationary complex system. The stock interactions are important for understanding the state of the market. However, our knowledge on the stock interactions on the minute timescale is limited. Here we apply the random matrix theory and methods in complex networks to study the stock interactions and sector interactions. Further, we construct a new kind of cross-correlation matrix to investigate the correlation between the stock interactions at different minutes within one trading day. Based on 50 million minute-to-minute price data in the Shanghai stock market, we discover that the market states in the morning and afternoon are significantly different. The differences mainly exist in three aspects, i.e. the co-movement of stock prices, interactions of sectors and correlation between the stock interactions at different minutes. In the afternoon, the component stocks of sectors are more robust and the structure of sectors is firmer. Therefore, the market state in the afternoon is more stable. Furthermore, we reveal that the information of the sector interactions can indicate the financial crisis in the market, and the indicator based on the empirical data in the afternoon is more effective.

  9. Exploring Market State and Stock Interactions on the Minute Timescale.

    Science.gov (United States)

    Tan, Lei; Chen, Jun-Jie; Zheng, Bo; Ouyang, Fang-Yan

    2016-01-01

    A stock market is a non-stationary complex system. The stock interactions are important for understanding the state of the market. However, our knowledge on the stock interactions on the minute timescale is limited. Here we apply the random matrix theory and methods in complex networks to study the stock interactions and sector interactions. Further, we construct a new kind of cross-correlation matrix to investigate the correlation between the stock interactions at different minutes within one trading day. Based on 50 million minute-to-minute price data in the Shanghai stock market, we discover that the market states in the morning and afternoon are significantly different. The differences mainly exist in three aspects, i.e. the co-movement of stock prices, interactions of sectors and correlation between the stock interactions at different minutes. In the afternoon, the component stocks of sectors are more robust and the structure of sectors is firmer. Therefore, the market state in the afternoon is more stable. Furthermore, we reveal that the information of the sector interactions can indicate the financial crisis in the market, and the indicator based on the empirical data in the afternoon is more effective.

  10. Instability timescale for the inclination instability in the solar system

    Science.gov (United States)

    Zderic, Alexander; Madigan, Ann-Marie; Fleisig, Jacob

    2018-04-01

    The gravitational influence of small bodies is often neglected in the study of solar system dynamics. However, this is not always an appropriate assumption. For example, mutual secular torques between low mass particles on eccentric orbits can result in a self-gravity instability (`inclination instability'; Madigan & McCourt 2016). During the instability, inclinations increase exponentially, eccentricities decrease (detachment), and orbits cluster in argument of perihelion. In the solar system, the orbits of the most distant objects show all three of these characteristics (high inclination: Volk & Malhotra (2017), detachment: Delsanti & Jewitt (2006), and argument of perihelion clustering: Trujillo & Sheppard (2014)). The inclination instability is a natural explanation for these phenomena.Unfortunately, full N-body simulations of the solar system are unfeasible (N ≈ O(1012)), and the behavior of the instability depends on N, prohibiting the direct application of lower N simulations. Here we present the instability timescale's functional dependence on N, allowing us to extrapolate our simulation results to that appropriate for the solar system. We show that ~5 MEarth of small icy bodies in the Sedna region is sufficient for the inclination instability to occur in the outer solar system.

  11. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils

    Science.gov (United States)

    Ebel, Brian A.; Moody, John A.

    2017-01-01

    We collected soil-hydraulic property data from the literature for wildfire-affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil-structural changes, organic matter impacts, quantitative water repellency trends, and soil-water content along with soil-hydraulic properties could drive the

  12. Inside-out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales

    Science.gov (United States)

    Hu, Xiao; Tan, Jonathan C.; Zhu, Zhaohuan; Chatterjee, Sourav; Birnstiel, Tilman; Youdin, Andrew N.; Mohanty, Subhanjoy

    2018-04-01

    Systems with tightly packed inner planets (STIPs) are very common. Chatterjee & Tan proposed Inside-out Planet Formation (IOPF), an in situ formation theory, to explain these planets. IOPF involves sequential planet formation from pebble-rich rings that are fed from the outer disk and trapped at the pressure maximum associated with the dead zone inner boundary (DZIB). Planet masses are set by their ability to open a gap and cause the DZIB to retreat outwards. We present models for the disk density and temperature structures that are relevant to the conditions of IOPF. For a wide range of DZIB conditions, we evaluate the gap-opening masses of planets in these disks that are expected to lead to the truncation of pebble accretion onto the forming planet. We then consider the evolution of dust and pebbles in the disk, estimating that pebbles typically grow to sizes of a few centimeters during their radial drift from several tens of astronomical units to the inner, ≲1 au scale disk. A large fraction of the accretion flux of solids is expected to be in such pebbles. This allows us to estimate the timescales for individual planet formation and the entire planetary system formation in the IOPF scenario. We find that to produce realistic STIPs within reasonable timescales similar to disk lifetimes requires disk accretion rates of ∼10‑9 M ⊙ yr‑1 and relatively low viscosity conditions in the DZIB region, i.e., a Shakura–Sunyaev parameter of α ∼ 10‑4.

  13. Characterisation of seasonal flood types according to timescales in mixed probability distributions

    Science.gov (United States)

    Fischer, Svenja; Schumann, Andreas; Schulte, Markus

    2016-08-01

    When flood statistics are based on annual maximum series (AMS), the sample often contains flood peaks, which differ in their genesis. If the ratios among event types change over the range of observations, the extrapolation of a probability distribution function (pdf) can be dominated by a majority of events that belong to a certain flood type. If this type is not typical for extraordinarily large extremes, such an extrapolation of the pdf is misleading. To avoid this breach of the assumption of homogeneity, seasonal models were developed that differ between winter and summer floods. We show that a distinction between summer and winter floods is not always sufficient if seasonal series include events with different geneses. Here, we differentiate floods by their timescales into groups of long and short events. A statistical method for such a distinction of events is presented. To demonstrate their applicability, timescales for winter and summer floods in a German river basin were estimated. It is shown that summer floods can be separated into two main groups, but in our study region, the sample of winter floods consists of at least three different flood types. The pdfs of the two groups of summer floods are combined via a new mixing model. This model considers that information about parallel events that uses their maximum values only is incomplete because some of the realisations are overlaid. A statistical method resulting in an amendment of statistical parameters is proposed. The application in a German case study demonstrates the advantages of the new model, with specific emphasis on flood types.

  14. Timescales of carbon turnover in soils with mixed crystalline mineralogies

    Science.gov (United States)

    Khomo, Lesego; Trumbore, Susan E.; Bern, Carleton R.; Chadwick, Oliver A.

    2017-01-01

    -sized material by 2 % hydrogen peroxide had TTs averaging 190 ± 190 years in surface horizons. Summed over the bulk soil profile, we found that smectite content correlated with the mean TT of bulk soil C across varied lithologies. The SRO mineral content in KNP soils was generally very low, except for the soils developed on gabbros under more humid climate that also had very high Fe and C contents with a surprisingly short, mean C TTs. In younger landscapes, SRO minerals are metastable and sequester C for long timescales. We hypothesize that in the KNP, SRO minerals represent a transient stage of mineral evolution and therefore lock up C for a shorter time. Overall, we found crystalline Fe-oxyhydroxides (determined as the difference between Fe in dithionate citrate and oxalate extractions) to be the strongest predictor for soil C content, while the mean TT of soil C was best predicted from the amount of smectite, which was also related to more easily measured bulk properties such as cation exchange capacity or pH. Combined with previous research on C turnover times in 2 : 1 vs. 1 : 1 clays, our results hold promise for predicting C inventory and persistence based on intrinsic timescales of specific carbon–mineral interactions.

  15. Timescales of carbon turnover in soils with mixed crystalline mineralogies

    Science.gov (United States)

    Khomo, Lesego; Trumbore, Susan; Bern, Carleton R.; Chadwick, Oliver A.

    2017-01-01

    TTs averaging 190 ± 190 years in surface horizons. Summed over the bulk soil profile, we found that smectite content correlated with the mean TT of bulk soil C across varied lithologies. The SRO mineral content in KNP soils was generally very low, except for the soils developed on gabbros under more humid climate that also had very high Fe and C contents with a surprisingly short, mean C TTs. In younger landscapes, SRO minerals are metastable and sequester C for long timescales. We hypothesize that in the KNP, SRO minerals represent a transient stage of mineral evolution and therefore lock up C for a shorter time. Overall, we found crystalline Fe-oxyhydroxides (determined as the difference between Fe in dithionate citrate and oxalate extractions) to be the strongest predictor for soil C content, while the mean TT of soil C was best predicted from the amount of smectite, which was also related to more easily measured bulk properties such as cation exchange capacity or pH. Combined with previous research on C turnover times in 2 : 1 vs. 1 : 1 clays, our results hold promise for predicting C inventory and persistence based on intrinsic timescales of specific carbon-mineral interactions.

  16. Adaptive dynamics on an environmental gradient that changes over a geological time-scale.

    Science.gov (United States)

    Fortelius, Mikael; Geritz, Stefan; Gyllenberg, Mats; Toivonen, Jaakko

    2015-07-07

    The standard adaptive dynamics framework assumes two timescales, i.e. fast population dynamics and slow evolutionary dynamics. We further assume a third timescale, which is even slower than the evolutionary timescale. We call this the geological timescale and we assume that slow climatic change occurs within this timescale. We study the evolution of our model population over this very slow geological timescale with bifurcation plots of the standard adaptive dynamics framework. The bifurcation parameter being varied describes the abiotic environment that changes over the geological timescale. We construct evolutionary trees over the geological timescale and observe both gradual phenotypic evolution and punctuated branching events. We concur with the established notion that branching of a monomorphic population on an environmental gradient only happens when the gradient is not too shallow and not too steep. However, we show that evolution within the habitat can produce polymorphic populations that inhabit steep gradients. What is necessary is that the environmental gradient at some point in time is such that the initial branching of the monomorphic population can occur. We also find that phenotypes adapted to environments in the middle of the existing environmental range are more likely to branch than phenotypes adapted to extreme environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Reorientation Timescales and Pattern Dynamics for Titan's Dunes: Does the Tail Wag the Dog or the Dragon?

    Science.gov (United States)

    Ewing, R. C.; Hayes, A. G.; McCormick, C.; Ballard, C.; Troy, S. A.

    2012-04-01

    Fields of bedform patterns persist across many orders of magnitude, from cm-scale sub-aqueous current ripples to km-scale aeolian dunes, and form with surprisingly little difference in expression despite a range of formative environments. Because of the remarkable similarity among bedform patterns, extracting information about climate and environment from these patterns is a challenge. For example, crestline orientation is not diagnostic of a particular flow regime; similar patterns form under many different flow configurations. On Titan, these challenges have played out with many attempts to reconcile dune crestline orientation with modeled and expected wind regimes. We propose that thinking about the time-scale of the change in dune orientation, rather than the orientation itself, can provide new insights on the long-term stability of the dune-field patterns and the formative wind regime. In this work, we apply the crestline re-orientation model developed by Werner and Kocurek [Geology, 1997] to the equatorial dune fields of Titan. We use Cassini Synthetic Aperture Radar images processed through a de-noising algorithm recently developed by Lucas et al. [LPSC, 2012] to measure variations in pattern parameters (crest spacing, crest length and defect density, which is the number of defect pairs per total crest length) both within and between Titan's dune fields to describe pattern maturity and identify areas where changes in dune orientation are likely to occur (or may already be occurring). Measured defect densities are similar to Earth's largest linear dune fields, such as the Namib Sand Sea and the Simpson Desert. We use measured defect densities in the Werner and Kocurek model to estimate crestline reorientation rates. We find reorientation timescales varying from ten to a hundred thousand times the average migration timescale (time to migrate a bedform one meter, ~1 Titan year according to Tokano (Aeolian Research, 2010)). Well-organized patterns have the

  18. Listeria monocytogenes strains show large variations in competitive growth in mixed culture biofilms and suspensions with bacteria from food processing environments.

    Science.gov (United States)

    Heir, Even; Møretrø, Trond; Simensen, Andreas; Langsrud, Solveig

    2018-06-20

    Interactions and competition between resident bacteria in food processing environments could affect their ability to survive, grow and persist in microhabitats and niches in the food industry. In this study, the competitive ability of L. monocytogenes strains grown together in separate culture mixes with other L. monocytogenes (L. mono mix), L. innocua (Listeria mix), Gram-negative bacteria (Gram- mix) and with a multigenera mix (Listeria + Gram- mix) was investigated in biofilms on stainless steel and in suspensions at 12 °C. The mixed cultures included resident bacteria from processing surfaces in meat and salmon industry represented by L. monocytogenes (n = 6), L. innocua (n = 5) and Gram-negative bacteria (n = 6; Acinetobacter sp., Pseudomonas fragi, Pseudomonas fluorescens, Serratia liquefaciens, Stenotrophomonas maltophilia). Despite hampered in growth in mixed cultures, L. monocytogenes established in biofilms with counts at day nine between 7.3 and 9.0 log per coupon with the lowest counts in the Listeria + G- mix that was dominated by Pseudomonas. Specific L. innocua inhibited growth of L. monocytogenes strains differently; inhibition that was further enhanced by the background Gram-negative microbiota. In these multispecies and multibacteria cultures, the growth competitive effects lead to the dominance of a strong competitor L. monocytogenes strain that was only slightly inhibited by L. innocua and showed strong competitive abilities in mixed cultures with resident Gram-negative bacteria. The results indicates complex patterns of bacterial interactions and L. monocytogenes inhibition in the multibacteria cultures that only partially depend on cell contact and likely involve various antagonistic and bacterial tolerance mechanisms. The study indicates large variations among L. monocytogenes in their competitiveness under multibacterial culture conditions that should be considered in further studies towards understanding of L

  19. Lagrangian Timescales of Southern Ocean Upwelling in a Hierarchy of Model Resolutions

    Science.gov (United States)

    Drake, Henri F.; Morrison, Adele K.; Griffies, Stephen M.; Sarmiento, Jorge L.; Weijer, Wilbert; Gray, Alison R.

    2018-01-01

    In this paper we study upwelling pathways and timescales of Circumpolar Deep Water (CDW) in a hierarchy of models using a Lagrangian particle tracking method. Lagrangian timescales of CDW upwelling decrease from 87 years to 31 years to 17 years as the ocean resolution is refined from 1° to 0.25° to 0.1°. We attribute some of the differences in timescale to the strength of the eddy fields, as demonstrated by temporally degrading high-resolution model velocity fields. Consistent with the timescale dependence, we find that an average Lagrangian particle completes 3.2 circumpolar loops in the 1° model in comparison to 0.9 loops in the 0.1° model. These differences suggest that advective timescales and thus interbasin merging of upwelling CDW may be overestimated by coarse-resolution models, potentially affecting the skill of centennial scale climate change projections.

  20. Aerodynamic Effects of High Turbulence Intensity on a Variable-Speed Power-Turbine Blade With Large Incidence and Reynolds Number Variations

    Science.gov (United States)

    Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At

  1. Chimeric β-Lactamases: Global Conservation of Parental Function and Fast Time-Scale Dynamics with Increased Slow Motions

    Science.gov (United States)

    Clouthier, Christopher M.; Morin, Sébastien; Gobeil, Sophie M. C.; Doucet, Nicolas; Blanchet, Jonathan; Nguyen, Elisabeth; Gagné, Stéphane M.; Pelletier, Joelle N.

    2012-01-01

    Enzyme engineering has been facilitated by recombination of close homologues, followed by functional screening. In one such effort, chimeras of two class-A β-lactamases – TEM-1 and PSE-4 – were created according to structure-guided protein recombination and selected for their capacity to promote bacterial proliferation in the presence of ampicillin (Voigt et al., Nat. Struct. Biol. 2002 9:553). To provide a more detailed assessment of the effects of protein recombination on the structure and function of the resulting chimeric enzymes, we characterized a series of functional TEM-1/PSE-4 chimeras possessing between 17 and 92 substitutions relative to TEM-1 β-lactamase. Circular dichroism and thermal scanning fluorimetry revealed that the chimeras were generally well folded. Despite harbouring important sequence variation relative to either of the two ‘parental’ β-lactamases, the chimeric β-lactamases displayed substrate recognition spectra and reactivity similar to their most closely-related parent. To gain further insight into the changes induced by chimerization, the chimera with 17 substitutions was investigated by NMR spin relaxation. While high order was conserved on the ps-ns timescale, a hallmark of class A β-lactamases, evidence of additional slow motions on the µs-ms timescale was extracted from model-free calculations. This is consistent with the greater number of resonances that could not be assigned in this chimera relative to the parental β-lactamases, and is consistent with this well-folded and functional chimeric β-lactamase displaying increased slow time-scale motions. PMID:23284969

  2. The timescale and extent of thermal expansion of the global ocean due to climate change

    Directory of Open Access Journals (Sweden)

    S. Marčelja

    2010-02-01

    Full Text Available With recently improved instrumental accuracy, the change in the heat content of the oceans and the corresponding contribution to the change of the sea level can be determined from in situ measurements of temperature variation with depth. Nevertheless, it would be favourable if the same changes could be evaluated from just the sea surface temperatures because the past record could then be reconstructed and future scenarios explored. Using a single column model we show that the average change in the heat content of the oceans and the corresponding contribution to a global change in the sea level can be evaluated from the past sea surface temperatures. The calculation is based on the time-dependent diffusion equation with the known fixed average upwelling velocity and eddy diffusivity, as determined from the steady-state limit. In this limit, the model reduces to the 1966 Munk profile of the potential temperature variation as a function of depth.

    There are no adjustable parameters in the calculation and the results are in good agreement with the estimates obtained from the in situ data. The method allows us to obtain relevant timescales and average temperature profiles. The evaluation of the thermosteric sea level change is extended back to the beginning of accurate sea surface temperature records. The changes in sea surface temperature from 1880 until the present time are estimated to have produced a thermosteric sea level rise of 35 mm. Application to future IPCC scenarios gives results similar to the average prediction of more complex climate models.

  3. Recent Changes in Land Water Storage and Its Contribution to Sea Level Variations

    Science.gov (United States)

    Wada, Yoshihide; Reager, John T.; Chao, Benjamin F.; Wang, Jida; Lo, Min-Hui; Song, Chunqiao; Li, Yuwen; Gardner, Alex S.

    2016-01-01

    Sea level rise is generally attributed to increased ocean heat content and increased rates glacier and ice melt. However, human transformations of Earth's surface have impacted water exchange between land, atmosphere, and ocean, ultimately affecting global sea level variations. Impoundment of water in reservoirs and artificial lakes has reduced the outflow of water to the sea, while river runoff has increased due to groundwater mining, wetland and endorheic lake storage losses, and deforestation. In addition, climate-driven changes in land water stores can have a large impact on global sea level variations over decadal timescales. Here, we review each component of negative and positive land water contribution separately in order to highlight and understand recent changes in land water contribution to sea level variations.

  4. Precipitation in Santa Barbara, CA on varying timescales and the relationships with the El Niño Southern Oscillation, the Madden-Julian Oscillation, and atmospheric rivers

    Science.gov (United States)

    Harris, S. M.; Carvalho, L. V.; Jones, C.

    2013-12-01

    This study aimed to understand the patterns and variations of extreme precipitation events that occur in Santa Barbara County and determine the relationships with various phenomena that affect the region. Santa Barbara, CA is an area with complex topography that is disposed to numerous hazard events including landslides and flooding, particularly during the region's rainy season (Nov.-Apr.). These incidents are especially frequent in the seasons after fire-events, another hazard common to the region. In addition, Santa Barbara is affected by several tropical phenomena that influence precipitation on varying timescales including the El Niño Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and atmospheric rivers (ARs). It is well known that ENSO and the MJO influence storms that occur in southern California through processes such as the modulation of the upper level jet and the low level moisture flux. ARs have been revealed to be responsible for the movement of large quantities of water vapor from tropical areas to the midlatitudes and have been linked to high-intensity storms throughout the western coast of North America. We examined rainy season (Nov.-Apr.) precipitation within Santa Barbara County using hourly rainfall data spanning approximately forty years (~1971-2010) from seven, local, rain gauge stations. The distributions as well as totals of precipitation on varying timescales (hourly, daily, seasonal, and yearly) were defined for specified intensities of rainfall based upon the 75th, 90th, 95th, and 99th percentiles. Persistence, expressed as the number of consecutive hours (or days) including intense precipitation defined according to the percentiles, was investigated on the hourly and daily timescales. In addition, specified storm episodes identified in this study were examined with data from the Tropical Rainfall Measurement Mission in order to assess the spatial features of high-intensity storms. Results from this analysis will be

  5. Large intraspecific genetic variation within the Saffron-Crocus group (Crocus L., Series Crocus; Iridaceae)

    DEFF Research Database (Denmark)

    Larsen, Bjarne; Orabi, Jihad; Pedersen, Carsten

    2015-01-01

    within populations, compared with low genetic variation between populations suggesting substantial gene flow between populations. In Neighbour-Net analysis, C. hadriaticus samples from mainland Greece were separated from Peloponnesian samples; C. cartwrightianus, C. hadriaticus and C. oreocreticus...

  6. Image correction during large and rapid B(0) variations in an open MRI system with permanent magnets using navigator echoes and phase compensation.

    Science.gov (United States)

    Li, Jianqi; Wang, Yi; Jiang, Yu; Xie, Haibin; Li, Gengying

    2009-09-01

    An open permanent magnet system with vertical B(0) field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. B(0) variation in such a system located close to a subway station was measured to be greater than 0.7 microT by both MRI and a fluxgate magnetometer. This B(0) variation caused image artifacts. A navigator echo approach that monitored and compensated the view-to-view variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with B(0) variations were effectively removed using the navigator method.

  7. Heuristic Relative Entropy Principles with Complex Measures: Large-Degree Asymptotics of a Family of Multi-variate Normal Random Polynomials

    Science.gov (United States)

    Kiessling, Michael Karl-Heinz

    2017-10-01

    Let z\\in C, let σ ^2>0 be a variance, and for N\\in N define the integrals E_N^{}(z;σ ) := {1/σ } \\int _R\\ (x^2+z^2) e^{-{1/2σ^2 x^2}}{√{2π }}/dx \\quad if N=1, {1/σ } \\int _{R^N} \\prod \\prod \\limits _{1≤ k1. These are expected values of the polynomials P_N^{}(z)=\\prod _{1≤ n≤ N}(X_n^2+z^2) whose 2 N zeros ± i X_k^{}_{k=1,\\ldots ,N} are generated by N identically distributed multi-variate mean-zero normal random variables {X_k}N_{k=1} with co-variance {Cov}_N^{}(X_k,X_l)=(1+σ ^2-1/N)δ _{k,l}+σ ^2-1/N(1-δ _{k,l}). The E_N^{}(z;σ ) are polynomials in z^2, explicitly computable for arbitrary N, yet a list of the first three E_N^{}(z;σ ) shows that the expressions become unwieldy already for moderate N—unless σ = 1, in which case E_N^{}(z;1) = (1+z^2)^N for all z\\in C and N\\in N. (Incidentally, commonly available computer algebra evaluates the integrals E_N^{}(z;σ ) only for N up to a dozen, due to memory constraints). Asymptotic evaluations are needed for the large- N regime. For general complex z these have traditionally been limited to analytic expansion techniques; several rigorous results are proved for complex z near 0. Yet if z\\in R one can also compute this "infinite-degree" limit with the help of the familiar relative entropy principle for probability measures; a rigorous proof of this fact is supplied. Computer algebra-generated evidence is presented in support of a conjecture that a generalization of the relative entropy principle to signed or complex measures governs the N→ ∞ asymptotics of the regime iz\\in R. Potential generalizations, in particular to point vortex ensembles and the prescribed Gauss curvature problem, and to random matrix ensembles, are emphasized.

  8. Geodetic methods to determine the relativistic redshift at the level of 10^{-18} in the context of international timescales: a review and practical results

    Science.gov (United States)

    Denker, Heiner; Timmen, Ludger; Voigt, Christian; Weyers, Stefan; Peik, Ekkehard; Margolis, Helen S.; Delva, Pacôme; Wolf, Peter; Petit, Gérard

    2017-12-01

    The frequency stability and uncertainty of the latest generation of optical atomic clocks is now approaching the one part in 10^{18} level. Comparisons between earthbound clocks at rest must account for the relativistic redshift of the clock frequencies, which is proportional to the corresponding gravity (gravitational plus centrifugal) potential difference. For contributions to international timescales, the relativistic redshift correction must be computed with respect to a conventional zero potential value in order to be consistent with the definition of Terrestrial Time. To benefit fully from the uncertainty of the optical clocks, the gravity potential must be determined with an accuracy of about 0.1 m2 s^{-2} , equivalent to about 0.01 m in height. This contribution focuses on the static part of the gravity field, assuming that temporal variations are accounted for separately by appropriate reductions. Two geodetic approaches are investigated for the derivation of gravity potential values: geometric levelling and the Global Navigation Satellite Systems (GNSS)/geoid approach. Geometric levelling gives potential differences with millimetre uncertainty over shorter distances (several kilometres), but is susceptible to systematic errors at the decimetre level over large distances. The GNSS/geoid approach gives absolute gravity potential values, but with an uncertainty corresponding to about 2 cm in height. For large distances, the GNSS/geoid approach should therefore be better than geometric levelling. This is demonstrated by the results from practical investigations related to three clock sites in Germany and one in France. The estimated uncertainty for the relativistic redshift correction at each site is about 2 × 10^{-18}.

  9. ARE THE VARIATIONS IN QUASAR OPTICAL FLUX DRIVEN BY THERMAL FLUCTUATIONS?

    International Nuclear Information System (INIS)

    Kelly, Brandon C.; Siemiginowska, Aneta; Bechtold, Jill

    2009-01-01

    We analyze a sample of optical light curves for 100 quasars, 70 of which have black hole mass estimates. Our sample is the largest and broadest used yet for modeling quasar variability. The sources in our sample have z 42 ∼ λ (5100 A) ∼ 46 , and 10 6 ∼ BH /M sun ∼ 10 . We model the light curves as a continuous time stochastic process, providing a natural means of estimating the characteristic timescale and amplitude of quasar variations. We employ a Bayesian approach to estimate the characteristic timescale and amplitude of flux variations; our approach is not affected by biases introduced from discrete sampling effects. We find that the characteristic timescales strongly correlate with black hole mass and luminosity, and are consistent with disk orbital or thermal timescales. In addition, the amplitude of short-timescale variations is significantly anticorrelated with black hole mass and luminosity. We interpret the optical flux fluctuations as resulting from thermal fluctuations that are driven by an underlying stochastic process, such as a turbulent magnetic field. In addition, the intranight variations in optical flux implied by our empirical model are ∼<0.02 mag, consistent with current microvariability observations of radio-quiet quasars. Our stochastic model is therefore able to unify both long- and short-timescale optical variations in radio-quiet quasars as resulting from the same underlying process, while radio-loud quasars have an additional variability component that operates on timescales ∼<1 day.

  10. Fission time-scale from the measurement of pre-scission light ...

    Indian Academy of Sciences (India)

    and hence can only probe a part of the fission time distribution. .... with the conclusion of recent fission time-scale measurements using the fission probability ... using the statistical model code JOANNE2 suitably modified to include the GDR ...

  11. Nanosecond-Timescale Intra-Bunch-Train Feedback for the Linear Collider: Results of the FONT2 Run

    International Nuclear Information System (INIS)

    Barlow, R.; Dufau, M.; Kalinin, A.; Daresbury; Myatt, G.; Perry, C.; Oxford U.; Burrows, P.N.; Hartin, T.; Hussain, S.M.; Molloy, S.; White, G.R.; Queen Mary, U. of London; Adolphsen, C.; Frisch, J.C.; Hendrickson, L.; Jobe, R.K.; Markiewicz, T.; McCormick, D.J.; Nelson, J.; Ross, M.C.; Smith, S.; Smith, T.J.; SLAC

    2005-01-01

    We report on experimental results from the December 2003/January 2004 data run of the Feedback On Nanosecond Timescales (FONT) experiment at the Next Linear Collider Test Accelerator at SLAC. We built a second-generation prototype intra-train beam-based feedback system incorporating beam position monitors, fast analogue signal processors, a feedback circuit, fast-risetime amplifiers and stripline kickers. We applied a novel real-time charge-normalization scheme to account for beam current variations along the train. We used the system to correct the position of the 170-nanosecond-long bunchtrain at NLCTA. We achieved a latency of 53 nanoseconds, representing a significant improvement on FONT1 (2002), and providing a demonstration of intra-train feedback for the Linear Collider

  12. Experimental evidence for millisecond activation timescales using the Fast IN Chamber (FINCH) measurements

    Science.gov (United States)

    Bundke, U.; Jaenicke, R.; Klein, H.; Nillius, B.; Reimann, B.; Wetter, T.; Bingemer, H.

    2009-04-01

    Ice formation in clouds is a subject of great practical and fundamental importance since the occurrence of ice particle initializes dramatic changes in the microphysical structure of the cloud, which finally ends in the formation of precipitation. The initially step of ice formation is largely unknown. Homogenous nucleation of ice occurs only below -40 °C. If an ice nucleus (IN) is present, heterogeneous nucleation may occur at higher temperature. Here deposition freezing, condensation and immersion freezing as well as contact freezing are known. Also growth rates of ice particles are known as function of crystal surface properties, temperature and super saturation. Timescales for homogenous freezing activation in the order of 0.01 seconds and nucleation rates have been measured by Anderson et al. (1980) and Hagen et al., (1981) using their expansion cloud chamber. This contribution of deposition mode freezing measurements by the ice nucleus counter FINCH presents evidence that the activation timescale of this freezing mode is in the order of 1E-3 seconds. FINCH is an Ice Nucleus counter which activates IN in a supersaturated environment at freezing temperatures. The activation conditions are actively controlled by mixing three gas flows (aerosol, particle-free cold-dry and warm-humid flows).See Bundke et al. 2008 for details. In a special operation mode of FINCH we are able to produce a controlled peak super saturation in the order of 1 ms duration. For several test aerosols the results observed in this particular mode are comparable to normal mode operations, where the maximum super saturation remains for more than a second, thus leading to the conclusion that the time for activation is in the order of 1ms or less. References: R.J. Anderson et al, "A Study of Homogeneous Condensation Freezing Nucleation of Small Water Droplets in an Expansion Cloud Chamber, Journal of the Atmospheric Sciences, Vol. 37, 2508-2520, 1980 U.Bundke et al., "The fast Ice Nucleus

  13. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales

    Science.gov (United States)

    Goldsmith, Yonaton; Broecker, Wallace S.; Xu, Hai; Polissar, Pratigya J.; deMenocal, Peter B.; Porat, Naomi; Lan, Jianghu; Cheng, Peng; Zhou, Weijian; An, Zhisheng

    2017-02-01

    The magnitude, rate, and extent of past and future East Asian monsoon (EAM) rainfall fluctuations remain unresolved. Here, late Pleistocene-Holocene EAM rainfall intensity is reconstructed using a well-dated northeastern China closed-basin lake area record located at the modern northwestern fringe of the EAM. The EAM intensity and northern extent alternated rapidly between wet and dry periods on time scales of centuries. Lake levels were 60 m higher than present during the early and middle Holocene, requiring a twofold increase in annual rainfall, which, based on modern rainfall distribution, requires a ˜400 km northward expansion/migration of the EAM. The lake record is highly correlated with both northern and southern Chinese cave deposit isotope records, supporting rainfall “intensity based” interpretations of these deposits as opposed to an alternative “water vapor sourcing” interpretation. These results indicate that EAM intensity and the northward extent covary on orbital and millennial timescales. The termination of wet conditions at 5.5 ka BP (˜35 m lake drop) triggered a large cultural collapse of Early Neolithic cultures in north China, and possibly promoted the emergence of complex societies of the Late Neolithic.

  14. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales.

    Science.gov (United States)

    Goldsmith, Yonaton; Broecker, Wallace S; Xu, Hai; Polissar, Pratigya J; deMenocal, Peter B; Porat, Naomi; Lan, Jianghu; Cheng, Peng; Zhou, Weijian; An, Zhisheng

    2017-02-21

    The magnitude, rate, and extent of past and future East Asian monsoon (EAM) rainfall fluctuations remain unresolved. Here, late Pleistocene-Holocene EAM rainfall intensity is reconstructed using a well-dated northeastern China closed-basin lake area record located at the modern northwestern fringe of the EAM. The EAM intensity and northern extent alternated rapidly between wet and dry periods on time scales of centuries. Lake levels were 60 m higher than present during the early and middle Holocene, requiring a twofold increase in annual rainfall, which, based on modern rainfall distribution, requires a ∼400 km northward expansion/migration of the EAM. The lake record is highly correlated with both northern and southern Chinese cave deposit isotope records, supporting rainfall "intensity based" interpretations of these deposits as opposed to an alternative "water vapor sourcing" interpretation. These results indicate that EAM intensity and the northward extent covary on orbital and millennial timescales. The termination of wet conditions at 5.5 ka BP (∼35 m lake drop) triggered a large cultural collapse of Early Neolithic cultures in north China, and possibly promoted the emergence of complex societies of the Late Neolithic.

  15. Emergence timescales for detection of anthropogenic climate change in US tropical cyclone loss data

    International Nuclear Information System (INIS)

    Crompton, Ryan P; McAneney, K John; Pielke, Roger A Jr

    2011-01-01

    Recent reviews have concluded that efforts to date have yet to detect or attribute an anthropogenic climate change influence on Atlantic tropical cyclone (of at least tropical storm strength) behaviour and concomitant damage. However, the possibility of identifying such influence in the future cannot be ruled out. Using projections of future tropical cyclone activity from a recent prominent study we estimate the time that it would take for anthropogenic signals to emerge in a time series of normalized US tropical cyclone losses. Depending on the global climate model(s) underpinning the projection, emergence timescales range between 120 and 550 years, reflecting a large uncertainty. It takes 260 years for an 18-model ensemble-based signal to emerge. Consequently, under the projections examined here, the detection or attribution of an anthropogenic signal in tropical cyclone loss data is extremely unlikely to occur over periods of several decades (and even longer). This caution extends more generally to global weather-related natural disaster losses.

  16. Timescales of magma transport and mixing at Kīlauea Volcano, Hawai’i

    OpenAIRE

    Rae, Auriol SP; Edmonds, Marie; Maclennan, John Campbell; Morgan, Daniel; Houghton, Bruce; Hartley, Margaret E; Sides, Isobel

    2016-01-01

    Modelling of volcanic processes is strongly limited by a poor knowledge of the timescales of storage, mixing and final ascent of magmas into the shallowest portions of volcanic 'plumbing' systems immediately prior to eruption. It is impossible to measure these timescales directly; however, micro-analytical techniques provide indirect estimates based on the extent of diffusion of species through melts and crystals. Here, diffusion in olivine phenocrysts from the 1959 Kīlauea Iki eruption is us...

  17. Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons.

    Science.gov (United States)

    Buhusi, Catalin V; Oprisan, Sorinel A

    2013-05-01

    In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. NEA perspectives on timescales and criteria in post-closure safety of geological disposal

    International Nuclear Information System (INIS)

    Preter, P. de; Smith, P.; Pescatore, C.; Forinash, B.

    2006-01-01

    A key challenge in the development of safety cases for geological repositories is associated with the long periods of time over which radioactive wastes that are disposed of in repositories remain hazardous. The OECD Nuclear Energy Agency (NEA) has recently examined issues related to timescales in the context of two projects under the auspices of the Radioactive Waste Management Committee (RWMC): the Timescales Initiative and the Long-Term Safety Criteria (LTSC) Initiative. These projects examine, respectively, the treatment of timescales in actual safety cases and in the development of radiological protection criteria for geological disposal. They treat different aspects of timescales but have some overlap and have shown some convergence of the results achieved to date. Based on these projects, this paper examines general considerations in the handling of timescales, including ethical principles, evolution of the hazards of radioactive waste over time, and uncertainty in the evolution of repository systems (including geological features). The implications of these considerations are examined in terms of repository siting; levels of protection in regulations; planning for pre-closure and post-closure actions; and development and presentation of safety cases. A comparison is made with previous NEA work related to timescales, in order to show evolutions in current understanding. (authors)

  19. NEA perspectives on timescales and criteria in post-closure safety of geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    Preter, P. de [ONDRAF/NIRAS, Brussels (Belgium); Smith, P. [Safety Assessment Management Ltd, SAM Ltd. (United Kingdom); Pescatore, C.; Forinash, B. [OECD/NEA, Nuclear Energy Agency, 92 - Issy les Moulineaux (France)

    2006-07-01

    A key challenge in the development of safety cases for geological repositories is associated with the long periods of time over which radioactive wastes that are disposed of in repositories remain hazardous. The OECD Nuclear Energy Agency (NEA) has recently examined issues related to timescales in the context of two projects under the auspices of the Radioactive Waste Management Committee (RWMC): the Timescales Initiative and the Long-Term Safety Criteria (LTSC) Initiative. These projects examine, respectively, the treatment of timescales in actual safety cases and in the development of radiological protection criteria for geological disposal. They treat different aspects of timescales but have some overlap and have shown some convergence of the results achieved to date. Based on these projects, this paper examines general considerations in the handling of timescales, including ethical principles, evolution of the hazards of radioactive waste over time, and uncertainty in the evolution of repository systems (including geological features). The implications of these considerations are examined in terms of repository siting; levels of protection in regulations; planning for pre-closure and post-closure actions; and development and presentation of safety cases. A comparison is made with previous NEA work related to timescales, in order to show evolutions in current understanding. (authors)

  20. COMPARISON OF KEPLER PHOTOMETRIC VARIABILITY WITH THE SUN ON DIFFERENT TIMESCALES

    International Nuclear Information System (INIS)

    Basri, Gibor; Walkowicz, Lucianne M.; Reiners, Ansgar

    2013-01-01

    We utilize Kepler data to study the precision differential photometric variability of solar-type and cooler stars at different timescales, ranging from half an hour to three months. We define a diagnostic that characterizes the median differential intensity change between data bins of a given timescale. We apply the same diagnostics to Solar and Heliospheric Observatory data that has been rendered comparable to Kepler. The Sun exhibits similar photometric variability on all timescales as comparable solar-type stars in the Kepler field. The previously defined photometric ''range'' serves as our activity proxy (driven by starspot coverage). We revisit the fraction of comparable stars in the Kepler field that are more active than the Sun. The exact active fraction depends on what is meant by ''more active than the Sun'' and on the magnitude limit of the sample of stars considered. This active fraction is between a quarter and a third (depending on the timescale). We argue that a reliable result requires timescales of half a day or longer and stars brighter than M Kep of 14, otherwise non-stellar noise distorts it. We also analyze main sequence stars grouped by temperature from 6500 to 3500 K. As one moves to cooler stars, the active fraction of stars becomes steadily larger (greater than 90% for early M dwarfs). The Sun is a good photometric model at all timescales for those cooler stars that have long-term variability within the span of solar variability.

  1. Timescales for determining temperature and dissolved oxygen trends in the Long Island Sound (LIS) estuary

    Science.gov (United States)

    Staniec, Allison; Vlahos, Penny

    2017-12-01

    Long-term time series represent a critical part of the oceanographic community's efforts to discern natural and anthropogenically forced variations in the environment. They provide regular measurements of climate relevant indicators including temperature, oxygen concentrations, and salinity. When evaluating time series, it is essential to isolate long-term trends from autocorrelation in data and noise due to natural variability. Herein we apply a statistical approach, well-established in atmospheric time series, to key parameters in the U.S. east coast's Long Island Sound estuary (LIS). Analysis shows that the LIS time series (established in the early 1990s) is sufficiently long to detect significant trends in physical-chemical parameters including temperature (T) and dissolved oxygen (DO). Over the last two decades, overall (combined surface and deep) LIS T has increased at an average rate of 0.08 ± 0.03 °C yr-1 while overall DO has dropped at an average rate of 0.03 ± 0.01 mg L-1yr-1 since 1994 at the 95% confidence level. This trend is notably faster than the global open ocean T trend (0.01 °C yr-1), as might be expected for a shallower estuarine system. T and DO trends were always significant for the existing time series using four month data increments. Rates of change of DO and T in LIS are strongly correlated and the rate of decrease of DO concentrations is consistent with the expected reduced solubility of DO at these higher temperatures. Thus, changes in T alone, across decadal timescales can account for between 33 and 100% of the observed decrease in DO. This has significant implications for other dissolved gases and the long-term management of LIS hypoxia.

  2. Hysteresis responses of evapotranspiration to meteorological factors at a diel timescale: patterns and causes.

    Directory of Open Access Journals (Sweden)

    Han Zheng

    Full Text Available Evapotranspiration (ET is an important component of the water cycle in terrestrial ecosystems. Understanding the ways in which ET changes with meteorological factors is central to a better understanding of ecological and hydrological processes. In this study, we used eddy covariance measurements of ET from a typical alpine shrubland meadow ecosystem in China to investigate the hysteresis response of ET to environmental variables including air temperature (Ta, vapor pressure deficit (VPD and net radiation (Rn at a diel timescale. Meanwhile, the simulated ET by Priestly-Taylor equation was used to interpret the measured ET under well-watered conditions. Pronounced hysteresis was observed in both Ta and VPD response curves of ET. At a similar Ta and VPD, ET was always significantly depressed in the afternoon compared with the morning. But the hysteresis response of ET to Rn was not evident. Similar hysteresis patterns were also observed in the Ta/VPD response curves of simulated ET. The magnitudes of the measured and simulated hysteresis loops showed similar seasonal variation, with relatively smaller values occurring from May to September, which agreed well with the lifetime of plants and the period of rainy season at this site. About 62% and 23% of changes in the strength of measured ET-Ta and ET-VPD loops could be explained by the changes in the strength of simulated loops, respectively. Thus, the time lag between Rn and Ta/VPD is the most important factor generating and modulating the ET-Ta/VPD hysteresis, but plants and water status also contribute to the hysteresis response of ET. Our research confirmed the different hysteresis in the responses of ET to meteorological factors and proved the vital role of Rn in driving the diel course of ET.

  3. Perspective: Markov models for long-timescale biomolecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schwantes, C. R.; McGibbon, R. T. [Department of Chemistry, Stanford University, Stanford, California 94305 (United States); Pande, V. S., E-mail: pande@stanford.edu [Department of Chemistry, Stanford University, Stanford, California 94305 (United States); Department of Computer Science, Stanford University, Stanford, California 94305 (United States); Department of Structural Biology, Stanford University, Stanford, California 94305 (United States); Biophysics Program, Stanford University, Stanford, California 94305 (United States)

    2014-09-07

    Molecular dynamics simulations have the potential to provide atomic-level detail and insight to important questions in chemical physics that cannot be observed in typical experiments. However, simply generating a long trajectory is insufficient, as researchers must be able to transform the data in a simulation trajectory into specific scientific insights. Although this analysis step has often been taken for granted, it deserves further attention as large-scale simulations become increasingly routine. In this perspective, we discuss the application of Markov models to the analysis of large-scale biomolecular simulations. We draw attention to recent improvements in the construction of these models as well as several important open issues. In addition, we highlight recent theoretical advances that pave the way for a new generation of models of molecular kinetics.

  4. Perspective: Markov models for long-timescale biomolecular dynamics

    International Nuclear Information System (INIS)

    Schwantes, C. R.; McGibbon, R. T.; Pande, V. S.

    2014-01-01

    Molecular dynamics simulations have the potential to provide atomic-level detail and insight to important questions in chemical physics that cannot be observed in typical experiments. However, simply generating a long trajectory is insufficient, as researchers must be able to transform the data in a simulation trajectory into specific scientific insights. Although this analysis step has often been taken for granted, it deserves further attention as large-scale simulations become increasingly routine. In this perspective, we discuss the application of Markov models to the analysis of large-scale biomolecular simulations. We draw attention to recent improvements in the construction of these models as well as several important open issues. In addition, we highlight recent theoretical advances that pave the way for a new generation of models of molecular kinetics

  5. Analysis of the convective timescale during the major floods in the NE Iberian Peninsula since 1871

    Science.gov (United States)

    Pino, David; Reynés, Artur; Mazon, Jordi; Carles Balasch, Josep; Lluis Ruiz-Bellet, Josep; Tuset, Jordi; Barriendos, Mariano; Castelltort, Xavier

    2016-04-01

    Floods are the most severe natural hazard in the western Mediterranean basin. They cause most of the damages and most of the victims. Some of the selected floods caused more than one hundred casualties each and a large quantity of damages in infrastructures. In a previous work (Balasch, et al., 2015), using the PREDIFLOOD database (Barriendos et al., 2014) we studied the atmospheric conditions that occurred during some of the most important floods occurred in the north-east of the Iberian Peninsula in the last centuries: 1874, 1875, 1894, 1897, 1898, 1901, 1907, 1913, 1919, 1932, 1937, 1940, 1962, 1963, 1977, 1994, 1996, and 2000. We analyzed the atmospheric synoptic situations at the time of each flood from the data provided by NOAA 20th Century Reanalysis and we compared it to the rainfall spatial distributions obtained with the hydrological modeling. In this work we enlarge the previous investigation by analyzing the evolution of a convective index proposed by Done et al. (2006) and modified by Molini et al. (2011). This index, called convective time scale, is obtained from the evolution of CAPE and is used to separate equilibrium and non-equilibrium convection. In the former, CAPE generated by large-scale processes is balanced by the consumption due to convection. In the second case, CAPE is created by large-scale processes over a long time and is rapidly consumed during outbreaks of convection. Both situations produced a totally different evolution of CAPE with low and approximately constant values in the first case and large and variable values in the second. Additionally, from this index it can be estimated the rainfall rate. We use data provided by NOAA 20th Century Reanalysis, to calculate the convective time scale and to analyze its evolution and horizontal distribution. We study the correspondence between the convective timescale, the season when the flood occurred, duration of the rainfall, and the specific peak flow rate of the flood. Finally, for the

  6. Atmospheric CO2 and abrupt climate change on submillennial timescales

    Science.gov (United States)

    Ahn, Jinho; Brook, Edward

    2010-05-01

    How atmospheric CO2 varies and is controlled on various time scales and under various boundary conditions is important for understanding how the carbon cycle and climate change are linked. Ancient air preserved in ice cores provides important information on past variations in atmospheric CO2. In particular, concentration records for intervals of abrupt climate change may improve understanding of mechanisms that govern atmospheric CO2. We present new multi-decadal CO2 records that cover Greenland stadial 9 (between Dansgaard-Oeschger (DO) events 8 and 9) and the abrupt cooling event at 8.2 ka. The CO2 records come from Antarctic ice cores but are well synchronized with Greenland ice core records using new high-resolution CH4 records,precisely defining the timing of CO2 change with respect to abrupt climate events in Greenland. Previous work showed that during stadial 9 (40~38 ka), CO2 rose by about 15~20 ppm over around 2,000 years, and at the same time temperatures in Antarctica increased. Dust proxies indicate a decrease in dust flux over the same period. With more detailed data and better age controls we now find that approximately half of the CO2 increase during stadial 9 occurred abruptly, over the course of decades to a century at ~39.6 ka. The step increase of CO2 is synchronous with a similar step increase of Antarctic isotopic temperature and a small abrupt change in CH4, and lags after the onset of decrease in dust flux by ~400 years. New atmospheric CO2 records at the well-known ~8.2 ka cooling event were obtained from Siple Dome ice core, Antarctica. Our preliminary CO2 data span 900 years and include 19 data points within the 8.2 ka cooling event, which persisted for ~160 years (Thomas et al., Quarternary Sci. Rev., 2007). We find that CO2 increased by 2~4 ppm during that cooling event. Further analyses will improve the resolution and better constrain the CO2 variability during other times in the early Holocene to determine if the variations observed

  7. Investigations of Short-Timescale Outflow Variability in Quasars of the Sloan Digital Sky Survey

    Science.gov (United States)

    Hemler, Zachary; Grier, Catherine; Brandt, William; Hall, Patrick; Schneider, Donald; Shen, Yue; Fernandez-Trincado, Jose; SDSS-RM Collaboration

    2018-01-01

    Quasar outflows are hypothesized to regulate the growth of a quasar's host galaxy and the supermassive black hole (SMBH) itself. Thus, understanding the physics of these outflows is imperative to understanding galactic evolution. The physical properties of these outflows, such as density, radial distance from the SMBH, and kinetic energy can be investigated by measuring both the strength and shape variability of broad absorption lines (BALs) in quasar spectra. However, the accuracy of physical properties calculated using BAL variability methods is limited by the time resolution of the observations. Recent spectral data from the Sloan Digital Sky Survey Reverberation Mapping program (SDSS-RM) provides a novel opportunity to investigate the short-term BAL variability of many quasars at many epochs. The SDSS-RM program took many epochs of spectra for a large sample of quasars over a period of several years, many of which exhibit BALs. The median rest-frame time resolution of these observations is roughly 2 days, in contrast to previous large-sample studies, which typically have time spacing on the order of hundred of days. We are using the SDSS-RM dataset to conduct a BAL variability study that will further constrain outflow properties and provide significant insights into the variability mechanisms of quasar outflows. We are searching for variability in BALs on timescales of less than 2 days among our sample of 22 quasars and determining whether this behavior is common among quasars. We are also investigating the general short-term (less than 10 days) variability characteristics of the entire sample. We will present preliminary results from this study and the possible implications to our understanding of quasar outflows.

  8. Reduced linear noise approximation for biochemical reaction networks with time-scale separation: The stochastic tQSSA+

    Science.gov (United States)

    Herath, Narmada; Del Vecchio, Domitilla

    2018-03-01

    Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.

  9. Diagnosing Air-Sea Interactions on Intraseasonal Timescales

    Science.gov (United States)

    DeMott, C. A.

    2014-12-01

    What is the role of ocean coupling in the Madden Julian Oscillation (MJO)? Consensus thinking holds that the essential physics of the MJO involve interactions between convection, atmospheric wave dynamics, and boundary layer and free troposphere moisture. However, many modeling studies demonstrate improved MJO simulation when an atmosphere-only general circulation model (AGCM) is coupled to an ocean model, so feedbacks from the ocean are probably not negligible. Assessing the importance and processes of these feedbacks is challenging for at least two reasons. First, observations of the MJO only sample the fully coupled ocean-atmosphere system; there is no "uncoupled" MJO in nature. Second, the practice of analyzing the MJO in uncoupled and coupled GCMs (CGCMs) involves using imperfect tools to study the problem. Although MJO simulation is improving in many models, shortcomings remain in both AGCMs and CGCMs, making it difficult to determine if changes brought about through coupling reflect critical air-sea interactions or are simply part of the collective idiosyncracies of a given model. For the atmosphere, ocean feedbacks from intraseasonal sea surface temperature (SST) variations are communicated through their effects on surface fluxes of heat and moisture. This presentation suggests a set of analysis tools for diagnosing the impact of an interactive ocean on surface latent and sensible heat fluxes, including their mean, variance, spectral characteristics, and phasing with respect to wind, SST, and MJO convection. The diagnostics are demonstrated with application to several CMIP5 models, and reveal a variety of responses to coupled ocean feedbacks.

  10. Effect of environmental change on the morphology of tidally influenced deltas over multi-decadal timescale

    Science.gov (United States)

    Angamuthu, Balaji; Darby, Stephen; Nicholls, Robert

    2017-04-01

    An understanding of the geomorphological processes affecting deltas is essential to improve our understanding of the risks that deltas face, especially as human impacts are likely to intensify in the future. Unfortunately, there is limited reliable data on river deltas, meaning that the task of demonstrating the links between morphodynamic and environmental change is challenging. This presentation aims to answer the questions of how delta morphology evolves over multi-decadal timescales under multiple drivers, focussing on tidally-influenced deltas, as some of these, such as the Ganges-Brahmaputra-Meghna (GBM) delta are heavily populated. A series of idealised model simulations over 102 years were used to explore the influence of three key drivers on delta morphodynamics, both individually and together: (i) varying combinations of water and sediment discharges from the upstream catchment, (ii) varying rates of relative sea-level rise (RSLR), and (iii) selected human interventions within the delta, such as polders, cross-dams and changing land cover. Model simulations revealed that delta progradation rates are more sensitive to variations in water discharge than variations in fluvial sediment supply. Unlike mere aggradation during RSLR, the delta front experienced aggradational progradation due to tides. As expected, the area of the simulated sub-aerial delta increases with increasing sediment discharge, but decreases with increasing water discharge. But, human modifications are important. For example, the sub-aerial delta shrinks with increasing RSLR, but it does not when the sub-aerial delta is polderised, provided the polders are restricted from erosion. However, the polders are vulnerable to flooding as they lose relative elevation and can make the delta building process unsustainable. Cross-dams built to steer zones of land accretion within the delta accomplish their local goal, but may not result in net land gain at the scale of the delta. Applying these

  11. Dynamic hyporheic exchange at intermediate timescales: testing the relative importance of evapotranspiration and flood pulses

    Science.gov (United States)

    Larsen, Laurel G.; Harvey, Judson W.; Maglio, Morgan M.

    2014-01-01

    Hyporheic fluxes influence ecological processes across a continuum of timescales. However, few studies have been able to characterize hyporheic fluxes and residence time distributions (RTDs) over timescales of days to years, during which evapotranspiration (ET) and seasonal flood pulses create unsteady forcing. Here we present a data-driven, particle-tracking piston model that characterizes hyporheic fluxes and RTDs based on measured vertical head differences. We used the model to test the relative influence of ET and seasonal flood pulses in the Everglades (FL, USA), in a manner applicable to other low-energy floodplains or broad, shallow streams. We found that over the multiyear timescale, flood pulses that drive relatively deep (∼1 m) flow paths had the dominant influence on hyporheic fluxes and residence times but that ET effects were discernible at shorter timescales (weeks to months) as a break in RTDs. Cumulative RTDs on either side of the break were generally well represented by lognormal functions, except for when ET was strong and none of the standard distributions applied to the shorter timescale. At the monthly timescale, ET increased hyporheic fluxes by 1–2 orders of magnitude; it also decreased 6 year mean residence times by 53–87%. Long, slow flow paths driven by flood pulses increased 6 year hyporheic fluxes by another 1–2 orders of magnitude, to a level comparable to that induced over the short term by shear flow in streams. Results suggest that models of intermediate-timescale processes should include at least two-storage zones with different RTDs, and that supporting field data collection occur over 3–4 years.

  12. Time-scales of erosion and weathering processes in the Himalayan river system: Element and isotope approach using the U-series

    International Nuclear Information System (INIS)

    Granet, M.

    2007-06-01

    The time-scales of erosion and weathering processes are key parameters which need to be determined to understand the response of the reliefs to external forcing like tectonics, climate and human activities. They were recovered by using U-series nuclides analyzed in sediments and suspended materials carried by the Himalayan rivers of the Ganges and Brahmaputra basins. In the Ganges basin, the time-scales of weathering determined from the study of coarse sediments carried by the Kali Gandaki range from several ky, where the uplift is located, to 350 ky. Such values indicate that the bed-rocks are in situ weathered for a long period before the weathering residual products get transported in the rivers as coarse sediments. At the outlet of the high range, these sediments are carried by the tributaries of the Ganges, the Gandak and Ghaghara, during a transfer period of about 100 ka. The study of the sediments at the outlet of the Brahmaputra tributaries allows to propose time-scales of weathering ranging from 110 to 270 ky. Such long periods confirm that during their transfer in the plains, the sediments are temporarily trapped at several places in the basins. In the Ganges and Brahmaputra rivers, the time-scales of sedimentary transfer are 575 and 160 ky, respectively. These values, which are of the same order as their response times, are much longer than the timescales of the Quaternary climate oscillations. It confirms the buffering action of the asiatic alluvial plains for the high-frequency sediment flux variations in response to external forcing in the chain. The study of suspended materials suggests that their chemical compositions result from the mixing of coarse river sediments with fine particles from various locations in the basin which are affected by vegetation recycling. By contrast to coarse sediments, the time-scales of transfer for the suspended materials are fast, e.g. a few ky, pointing the potential of U-series nuclides to assess particle transport

  13. Temporal variations and trends in loads of commonly used pharmaceuticals to large wastewater treatment plants in Sweden, a case study (Ryaverket)

    DEFF Research Database (Denmark)

    Paxeus, Nicklas; Bester, Kai; El-taliawy, Haitham

    Loads of individual commonly used analgesics (ibuprofen, diclofenac), antibiotics (sulfamethoxazole, trimethoprim), β-blockers (atenolol, metoprolol, sotalol, propranolol) and neuroleptics (carbamazepine, citalopram) to a large scale operating WWTP in Sweden (Ryaverket) were studied by monitoring...

  14. Large regional-scale variation in C3/C4 distribution pattern of Inner Mongolia steppe is revealed by grazer wool carbon isotope composition

    Directory of Open Access Journals (Sweden)

    K. Auerswald

    2009-05-01

    Full Text Available This work explored the spatial variation of C3/C4 distribution in the Inner Mongolia, P. R. China, steppe by geostatistical analysis of carbon isotope data of vegetation and sheep wool. Standing community biomass (n=118 and sheep wool (n=146 were sampled in a ~0.2 Mio km2 area. Samples from ten consecutive years (1998–2007 were obtained. Community biomass samples represented the carbon isotopic composition of standing vegetation on about 1000 m2 ("community-scale", whereas the spatio-temporal scale of wool reflected the isotope composition of the entire area grazed by the herd during a 1-yr period (~5–10 km2, "farm-scale". Pair wise sampling of wool and vegetation revealed a 13C-enrichment of 2.7±0.7‰ (95% confidence interval in wool relative to vegetation, but this shift exhibited no apparent relationships with environmental parameters or stocking rate. The proportion of C4 plants in above-ground biomass (PC4, % was estimated with a two-member mixing model of 13C discrimination by C3 and C4 vegetation (13Δ3 and 13Δ4, respectively, in accounting for the effects of changing 13C in atmospheric CO2 on sample isotope composition, and of altitude and aridity on 13Δ3. PC4 averaged 19%, but the variation was enormous: full-scale (0% to 100% at community-scale, and 0% to 85% at farm-scale. The farm-scale variation of PC4 exhibited a clear regional pattern over a range of ~250 km. Importantly PC4 was significantly higher above the 22°C isotherm of the warmest month, which was obtained from annual high-resolution maps and averaged over the different sampling years. This is consistent with predictions from C3/C4 crossover temperature of quantum yield or light use efficiency in C3 and C4 plants. Still, temperature gradients accounted for only 10% of

  15. Considering timescales in the post-closure safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2009-01-01

    A key challenge in the development of safety cases for the deep geological disposal of radioactive waste is handling the long time frame over which the radioactive waste remains hazardous. The intrinsic hazard of the waste decreases with time, but some hazard remains for extremely long periods. Safety cases for geological disposal typically address performance and protection for thousands to millions of years into the future. Over such periods, a wide range of events and processes operating over many different timescales may impact on a repository and its environment. Uncertainties in the predictability of such factors increase with time, making it increasingly difficult to provide definite assurances of a repository's performance and the protection it may provide over longer timescales. Timescales, the level of protection and the assurance of safety are all linked. Approaches to handling timescales for the geological disposal of radioactive waste are influenced by ethical principles, the evolution of the hazard over time, uncertainties in the evolution of the disposal system (and how these uncertainties themselves evolve) and the stability and predictability of the geological environment. Conversely, the approach to handling timescales can affect aspects of repository planning and implementation including regulatory requirements, siting decisions, repository design, the development and presentation of safety cases and the planning of pre- and post-closure institutional controls such as monitoring requirements. This is an area still under discussion among NEA member countries. This report reviews the current status and ongoing discussions of this issue. (author)

  16. Detecting Significant Stress Drop Variations in Large Micro-Earthquake Datasets: A Comparison Between a Convergent Step-Over in the San Andreas Fault and the Ventura Thrust Fault System, Southern California

    Science.gov (United States)

    Goebel, T. H. W.; Hauksson, E.; Plesch, A.; Shaw, J. H.

    2017-06-01

    A key parameter in engineering seismology and earthquake physics is seismic stress drop, which describes the relative amount of high-frequency energy radiation at the source. To identify regions with potentially significant stress drop variations, we perform a comparative analysis of source parameters in the greater San Gorgonio Pass (SGP) and Ventura basin (VB) in southern California. The identification of physical stress drop variations is complicated by large data scatter as a result of attenuation, limited recording bandwidth and imprecise modeling assumptions. In light of the inherently high uncertainties in single stress drop measurements, we follow the strategy of stacking large numbers of source spectra thereby enhancing the resolution of our method. We analyze more than 6000 high-quality waveforms between 2000 and 2014, and compute seismic moments, corner frequencies and stress drops. Significant variations in stress drop estimates exist within the SGP area. Moreover, the SGP also exhibits systematically higher stress drops than VB and shows more scatter. We demonstrate that the higher scatter in SGP is not a generic artifact of our method but an expression of differences in underlying source processes. Our results suggest that higher differential stresses, which can be deduced from larger focal depth and more thrust faulting, may only be of secondary importance for stress drop variations. Instead, the general degree of stress field heterogeneity and strain localization may influence stress drops more strongly, so that more localized faulting and homogeneous stress fields favor lower stress drops. In addition, higher loading rates, for example, across the VB potentially result in stress drop reduction whereas slow loading rates on local fault segments within the SGP region result in anomalously high stress drop estimates. Our results show that crustal and fault properties systematically influence earthquake stress drops of small and large events and should

  17. Characterizing and understanding the climatic determinism of high- to low-frequency variations in precipitation in northwestern France using a coupled wavelet multiresolution/statistical downscaling approach

    Science.gov (United States)

    Massei, Nicolas; Dieppois, Bastien; Hannah, David; Lavers, David; Fossa, Manuel; Laignel, Benoit; Debret, Maxime

    2017-04-01

    Geophysical signals oscillate over several time-scales that explain different amount of their overall variability and may be related to different physical processes. Characterizing and understanding such variabilities in hydrological variations and investigating their determinism is one important issue in a context of climate change, as these variabilities can be occasionally superimposed to long-term trend possibly due to climate change. It is also important to refine our understanding of time-scale dependent linkages between large-scale climatic variations and hydrological responses on the regional or local-scale. Here we investigate such links by conducting a wavelet multiresolution statistical dowscaling approach of precipitation in northwestern France (Seine river catchment) over 1950-2016 using sea level pressure (SLP) and sea surface temperature (SST) as indicators of atmospheric and oceanic circulations, respectively. Previous results demonstrated that including multiresolution decomposition in a statistical downscaling model (within a so-called multiresolution ESD model) using SLP as large-scale predictor greatly improved simulation of low-frequency, i.e. interannual to interdecadal, fluctuations observed in precipitation. Building on these results, continuous wavelet transform of simulated precipiation using multiresolution ESD confirmed the good performance of the model to better explain variability at all time-scales. A sensitivity analysis of the model to the choice of the scale and wavelet function used was also tested. It appeared that whatever the wavelet used, the model performed similarly. The spatial patterns of SLP found as the best predictors for all time-scales, which resulted from the wavelet decomposition, revealed different structures according to time-scale, showing possible different determinisms. More particularly, some low-frequency components ( 3.2-yr and 19.3-yr) showed a much wide-spread spatial extentsion across the Atlantic

  18. The tempo-spatial variations of phytoplankton diversities and their correlation with trophic state levels in a large eutrophic Chinese lake

    DEFF Research Database (Denmark)

    Yang, Bin; Jiang, Yu-Jiao; He, Wei

    2016-01-01

    status of the lake. The present study indicated that the Margalef index of all samples was as low as 0.799 ± 0.543 in summer (August 2011) and as high as 1.467 ± 0.653 in winter (February 2012). The Margalef index of the river samples had a high mean value and substantial variation compared with the lake...... occurred in the eastern lake, especially in the middle of the lake, in autumn and winter. The total trophic state index (TSI) in all samples exhibited a significant negative correlation with the Margalef (r = −0.726) and Peilou (r = −0.530) indices but a significant positive correlation with the Shannon...

  19. Photospheric Ca and Mg line-strength variations in G29-38

    International Nuclear Information System (INIS)

    Hippel, Ted von; Thompson, Susan E; Reach, W T; Mullally, F; Kilic, Mukremin; Nitta, Atsuko

    2009-01-01

    Temporal variations in metal-line strengths in H-atmosphere white dwarfs hold the potential to test the timescales of gravitational settling theory. These short timescales, in turn, require that DAZs are currently accreting. Such temporal variations would also indicate that accretion from a circumstellar dust disk can be episodic. We are compiling increasing evidence for time-variable Ca and Mg line-strength variations in the best studied DAZ, G29-38. Our evidence to date supports the gravitational settling timescales of Koester and Wilken (2006) and episodic accretion from G29-38's debris disk. Furthermore, we have detected evidence for time-variable accretion with a timescale = 24 hours, and typical variability of ∼4% during the 100 days of our autumn 2007 monitoring campaign.

  20. Photospheric Ca and Mg line-strength variations in G29-38

    Energy Technology Data Exchange (ETDEWEB)

    Hippel, Ted von [Physics Department, Siena College, Loudonville, NY (United States); Thompson, Susan E [Department of Physics and Astronomy, University of Delaware, Newark, DE (United States); Reach, W T [IPAC, California Institute of Technology, Pasadena, CA (United States); Mullally, F [Department of Astronomy, Princeton University, Princeton, NJ (United States); Kilic, Mukremin [Center for Astrophysics, Harvard University, Cambridge, MA (United States); Nitta, Atsuko, E-mail: tvonhippel@siena.ed, E-mail: sthomp@physics.udel.ed, E-mail: reach@ipac.caltech.ed, E-mail: fergal@astro.princeton.ed, E-mail: kilic@astronomy.ohio-state.ed, E-mail: anitta@gemini.ed [Gemini Observatory, Hilo, HI (United States)

    2009-06-01

    Temporal variations in metal-line strengths in H-atmosphere white dwarfs hold the potential to test the timescales of gravitational settling theory. These short timescales, in turn, require that DAZs are currently accreting. Such temporal variations would also indicate that accretion from a circumstellar dust disk can be episodic. We are compiling increasing evidence for time-variable Ca and Mg line-strength variations in the best studied DAZ, G29-38. Our evidence to date supports the gravitational settling timescales of Koester and Wilken (2006) and episodic accretion from G29-38's debris disk. Furthermore, we have detected evidence for time-variable accretion with a timescale = 24 hours, and typical variability of approx4% during the 100 days of our autumn 2007 monitoring campaign.

  1. Sop-GPU: accelerating biomolecular simulations in the centisecond timescale using graphics processors.

    Science.gov (United States)

    Zhmurov, A; Dima, R I; Kholodov, Y; Barsegov, V

    2010-11-01

    Theoretical exploration of fundamental biological processes involving the forced unraveling of multimeric proteins, the sliding motion in protein fibers and the mechanical deformation of biomolecular assemblies under physiological force loads is challenging even for distributed computing systems. Using a C(α)-based coarse-grained self organized polymer (SOP) model, we implemented the Langevin simulations of proteins on graphics processing units (SOP-GPU program). We assessed the computational performance of an end-to-end application of the program, where all the steps of the algorithm are running on a GPU, by profiling the simulation time and memory usage for a number of test systems. The ∼90-fold computational speedup on a GPU, compared with an optimized central processing unit program, enabled us to follow the dynamics in the centisecond timescale, and to obtain the force-extension profiles using experimental pulling speeds (v(f) = 1-10 μm/s) employed in atomic force microscopy and in optical tweezers-based dynamic force spectroscopy. We found that the mechanical molecular response critically depends on the conditions of force application and that the kinetics and pathways for unfolding change drastically even upon a modest 10-fold increase in v(f). This implies that, to resolve accurately the free energy landscape and to relate the results of single-molecule experiments in vitro and in silico, molecular simulations should be carried out under the experimentally relevant force loads. This can be accomplished in reasonable wall-clock time for biomolecules of size as large as 10(5) residues using the SOP-GPU package. © 2010 Wiley-Liss, Inc.

  2. Hygroscopicity of mineral dust particles: Roles of chemical mixing state and hygroscopic conversion timescale

    Science.gov (United States)

    Sullivan, R. C.; Moore, M. J.; Petters, M. D.; Laskin, A.; Roberts, G. C.; Kreidenweis, S. M.; Prather, K. A.

    2009-05-01

    Our laboratory investigations of mineral dust particle hygroscopicity are motivated by field observations of the atmospheric processing of dust. During ACE-Asia we observed sulphate and nitrate to be strongly segregated from each other in individual aged Asian dust particles. CCN activation curves of pure calcium minerals as proxies for fresh (calcium carbonate) and aged (calcium sulphate, nitrate, chloride) dust indicate that this mixing state would cause a large fraction of aged dust particles to remain poor warm cloud nucleation potential, contrary to previous assumptions. The enrichment of oxalic acid in calcium-rich dust particles could have similar effects due to the formation of insoluble calcium oxalate. Soluble calcium nitrate and chloride reaction products are hygroscopic and will transform mineral dust into excellent CCN. Generating insoluble mineral particles wet by atomization produced particles with much higher hygroscopicity then when resuspended dry. The atomized particles are likely composed of dissolved residuals and do not properly reflect the chemistry of dry mineral powders. Aerosol flow tube experiments were employed to study the conversion of calcium carbonate into calcium nitrate via heterogeneous reaction with nitric acid, with simultaneous measurements of the reacted particles' chemistry and hygroscopicity. The timescale for this hygroscopic conversion was found to occur on the order of a few hours under tropospheric conditions. This implies that the conversion of non-hygroscopic calcite- containing dust into hygroscopic particles will be controlled by the availability of nitric acid, and not by the atmospheric residence time. Results from recent investigations of the effect of secondary coatings on the ice nucleation properties of dust particles will also be presented. The cloud formation potential of aged dust particles depends on both the quantity and form of the secondary species that have reacted or mixed with the dust. These results

  3. A Dynamical System Approach Explaining the Process of Development by Introducing Different Time-scales.

    Science.gov (United States)

    Hashemi Kamangar, Somayeh Sadat; Moradimanesh, Zahra; Mokhtari, Setareh; Bakouie, Fatemeh

    2018-06-11

    A developmental process can be described as changes through time within a complex dynamic system. The self-organized changes and emergent behaviour during development can be described and modeled as a dynamical system. We propose a dynamical system approach to answer the main question in human cognitive development i.e. the changes during development happens continuously or in discontinuous stages. Within this approach there is a concept; the size of time scales, which can be used to address the aforementioned question. We introduce a framework, by considering the concept of time-scale, in which "fast" and "slow" is defined by the size of time-scales. According to our suggested model, the overall pattern of development can be seen as one continuous function, with different time-scales in different time intervals.

  4. Origin and mixing timescale of Earth's late veneer

    Science.gov (United States)

    Prescher, C.; Allu Peddinti, D.; Bell, E. A.; Bello, L.; Cernok, A.; Ghosh, N.; Tucker, J.; Wielicki, M. M.; Zahnle, K. J.

    2012-12-01

    amount of mass delivered in the late veneer and the Archean internal heating which is at least 4 times higher than the present values, due to the higher abundance of radioactive elements. Another important parameter is the mechanism of mass addition to the Earth. We test three end-member scenarios: (1) a single very large impactor accounting for the entire mass addition, (2) sprinkling of a large number of small impactors over the whole Earth which then mix into the mantle, or (3) by using a size/frequency distribution estimated from the lunar cratering record and corrected for the difference in gravitational cross section of the Earth and the Moon. This project results from collaborations begun at the CIDER II workshop held at KITP, UCSB, 2012.

  5. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    Science.gov (United States)

    Couldrey, Matthew P.; Oliver, Kevin I. C.; Yool, Andrew; Halloran, Paul R.; Achterberg, Eric P.

    2016-05-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature- and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2, and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term flux variability.

  6. Doubly stochastic Poisson process models for precipitation at fine time-scales

    Science.gov (United States)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  7. Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach

    Science.gov (United States)

    Parker, Jeffrey B.; LoDestro, Lynda L.; Told, Daniel; Merlo, Gabriele; Ricketson, Lee F.; Campos, Alejandro; Jenko, Frank; Hittinger, Jeffrey A. F.

    2018-05-01

    The vast separation dividing the characteristic times of energy confinement and turbulence in the core of toroidal plasmas makes first-principles prediction on long timescales extremely challenging. Here we report the demonstration of a multiple-timescale method that enables coupling global gyrokinetic simulations with a transport solver to calculate the evolution of the self-consistent temperature profile. This method, which exhibits resiliency to the intrinsic fluctuations arising in turbulence simulations, holds potential for integrating nonlocal gyrokinetic turbulence simulations into predictive, whole-device models.

  8. Centennial-scale variations in diatom productivity off Peru over the last 3000 years

    Science.gov (United States)

    Fleury, Sophie; Crosta, Xavier; Schneider, Ralph; Blanz, Thomas; Ther, Olivier; Martinez, Philippe; Kim, Jung-Hyun

    2016-04-01

    The Peruvian coastal upwelling is one of the most productive systems in the global ocean, with important impacts on the carbon cycle. Primary productivity there displays strong variations at the inter-annual to decadal timescales. However, down-core investigations rarely reach sufficient temporal resolution to assess the response of productivity to climatic variations at these timescales beyond the instrumental and historical periods. We here analyzed diatom assemblages, sea-surface temperatures, nitrogen and organic carbon contents on a laminated sediment core from the Peruvian continental shelf to trace variations in regional productivity over the last 3000 years. Our record provides evidence for different climatic and oceanic conditions with more humid and less productive conditions older than 2500 Cal years BP and drier and more productive conditions younger than 2500 Cal years BP. The last 2500 years also present much stronger centennial-scale variability with the occurrence of six intervals with higher total diatom abundances and stronger percentages in upwelling-related diatom species, representative of intensified productivity, congruent to lower percentages in benthic diatoms, indicative of reduced rainfall. These six periods were synchronous to intervals of enhanced Walker circulation, suggesting a strong imprint of the Pacific zonal circulation on productivity variations off Peru. Our record also demonstrates that SSTs did not vary in phase with productivity, arguing against the idea of regional SSTs controlled by the upwelling intensity, but were rather in agreement to SST records off southern Chile, suggesting that Peruvian SSTs variations were largely controlled by oceanic currents at southern high latitudes.

  9. Spatio-temporal variations in biomass and mercury concentrations of epiphytic biofilms and their host in a large river wetland (Lake St. Pierre, Qc, Canada)

    International Nuclear Information System (INIS)

    Hamelin, Stéphanie; Planas, Dolors; Amyot, Marc

    2015-01-01

    Within wetlands, epiphytes and macrophytes play an important role in storage and transfer of metals, through the food web. However, there is a lack of information about spatial and temporal changes in their metal levels, including those of mercury (Hg), a key priority contaminant of aquatic systems. We assessed total mercury (THg) and methylmercury (MeHg) concentrations of epiphyte/macrophyte complexes in Lake St. Pierre, a large fluvial lake of the St. Lawrence River (Québec, Canada). THg and MeHg concentrations were ten fold higher in epiphytes than in macrophytes. THg concentrations in epiphytes linearly decreased as a function of the autotrophic index, suggesting a role of algae in epiphyte Hg accumulation, and % of MeHg in epiphytes reached values as high as 74%. Spatio-temporal variability in THg and MeHg concentrations in epiphytes and macrophytes were influenced by water temperature, available light, host species, water level, dissolved organic carbon and dissolved oxygen. - Highlights: • Epiphytes and macrophytes are sites of Hg accumulation in a large temperate river. • Epiphytic biofilms are ten fold more contaminated than their macrophyte host. • Physico-chemical variables influences Hg levels in epiphytes and macrophytes. • Up to 74% of total Hg is in the methylated form in epiphytes. • Epiphytes, should be included in Hg foodweb modeling. - Epiphytic biofilms are key sites of methylmercury accumulation in large river wetlands

  10. Sun, Ocean, Nuclear Bombs, and Fossil Fuels: Radiocarbon Variations and Implications for High-Resolution Dating

    Science.gov (United States)

    Dutta, Koushik

    2016-06-01

    Radiocarbon, or 14C, is a radiometric dating method ideally suited for providing a chronological framework in archaeology and geosciences for timescales spanning the last 50,000 years. 14C is easily detectable in most common natural organic materials and has a half-life (5,730±40 years) relevant to these timescales. 14C produced from large-scale detonations of nuclear bombs between the 1950s and the early 1960s can be used for dating modern organic materials formed after the 1950s. Often these studies demand high-resolution chronology to resolve ages within a few decades to less than a few years. Despite developments in modern, high-precision 14C analytical methods, the applicability of 14C in high-resolution chronology is limited by short-term variations in atmospheric 14C in the past. This article reviews the roles of the principal natural drivers (e.g., solar magnetic activity and ocean circulation) and the anthropogenic perturbations (e.g., fossil fuel CO2 and 14C from nuclear and thermonuclear bombs) that are responsible for short-term 14C variations in the environment. Methods and challenges of high-resolution 14C dating are discussed.

  11. Large institutional variations in use of androgen deprivation therapy with definitive radiotherapy in a population-based cohort of men with intermediate- and high-risk prostate cancer.

    Science.gov (United States)

    Ong, Wee Loon; Foroudi, Farshad; Evans, Sue; Millar, Jeremy

    2017-11-01

    To evaluate the pattern of use of androgen deprivation therapy (ADT) with definitive radiotherapy (RT) in men with prostate cancer (PCa) in a population-based study in Australia. This is a prospective cohort of men with intermediate- and high-risk PCa, captured in the population-based Prostate Cancer Outcome Registry Victoria, who were treated with definitive prostate RT between January 2010 and December 2015. The primary outcome of interest was ADT utilization. Chi-squared test for trend was used to evaluate the temporal trend in the use of ADT over the study period. Multivariate logistic regressions were used to evaluate the effects of patient-, tumour- and treatment-related factors, and treatment institutions (public/ private and metropolitan/ regional) on the likelihood of ADT utilization. A total of 1806 men were included in the study, 199 of whom (11%) had favourable National Comprehensive Cancer Network (NCCN) intermediate-risk disease (i.e. only one intermediate-risk feature, primary Gleason grade 3, and variation in the use of ADT between public vs private and metropolitan vs regional institutions. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  12. Connections between transport in events and transport at landscape-structuring timescales

    Science.gov (United States)

    Harman, C. J.; Lohse, K. A.; Troch, P. A.; Sivapalan, M.

    2012-12-01

    Complex spatial and temporal variability can arise in the critical zone when feedbacks occur at multiple time scales between transported materials and the landscape and soils through which it is transported. This is clearly illustrated where geomorphic transport processes, soil development, and vegetation interact in semi-arid shrublands. Here we use soil and terrain data and a numerical model of overland flow on semi-arid hillslopes to show that microtopography can generate spatial variations in the dominance of transport processes operating at different timescales, with consequences for the direction of resource redistribution between functional units within these ecosystems. Conceptual and numerical models of the redistribution of mineral, organic and water have mostly been developed on low-gradient alluvial fans and pediments. These have focused on the fluvial transport of resources from the inter-spaces between shrub canopies to the areas below the canopy in those few storm events that generate significant run-off. These processes are believed to produce a mosaic of resource islands in which biota are concentrated. We investigated the spatial distribution of soil properties (including organic matter and soil hydraulic properties), vegetation, and microtopography on two steeper hillslopes of contrasting lithology (one granite, one schist) in the Sonoran desert foothills of the Catalina Mountains. Three hypotheses were developed through iteration between fieldwork and data analysis. These tested whether there were significant differences in soil composition and hydraulic properties below- and between-canopy, whether the surface soil organic matter was directly associated with above-ground biomass, and whether soil organic matter distributions measured along transects below shrubs showed downslope asymmetries indicative of the processes that create them. Data from these sites were used in a numerical model to investigate how these structures could be related to

  13. SYSTEMATIC AND STOCHASTIC VARIATIONS IN PULSAR DISPERSION MEASURES

    International Nuclear Information System (INIS)

    Lam, M. T.; Cordes, J. M.; Chatterjee, S.; Jones, M. L.; McLaughlin, M. A.; Armstrong, J. W.

    2016-01-01

    We analyze deterministic and random temporal variations in the dispersion measure (DM) from the full three-dimensional velocities of pulsars with respect to the solar system, combined with electron-density variations over a wide range of length scales. Previous treatments have largely ignored pulsars’ changing distances while favoring interpretations involving changes in sky position from transverse motion. Linear trends in pulsar DMs observed over 5–10 year timescales may signify sizable DM gradients in the interstellar medium (ISM) sampled by the changing direction of the line of sight to the pulsar. We show that motions parallel to the line of sight can also account for linear trends, for the apparent excess of DM variance over that extrapolated from scintillation measurements, and for the apparent non-Kolmogorov scalings of DM structure functions inferred in some cases. Pulsar motions through atomic gas may produce bow-shock ionized gas that also contributes to DM variations. We discuss the possible causes of periodic or quasi-periodic changes in DM, including seasonal changes in the ionosphere, annual variations of the solar elongation angle, structure in the heliosphere and ISM boundary, and substructure in the ISM. We assess the solar cycle’s role on the amplitude of ionospheric and solar wind variations. Interstellar refraction can produce cyclic timing variations from the error in transforming arrival times to the solar system barycenter. We apply our methods to DM time series and DM gradient measurements in the literature and assess their consistency with a Kolmogorov medium. Finally, we discuss the implications of DM modeling in precision pulsar timing experiments

  14. The NANOGrav Nine-year Data Set: Measurement and Analysis of Variations in Dispersion Measures

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M. L.; McLaughlin, M. A.; Lam, M. T. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Cordes, J. M.; Chatterjee, S. [Department of Astronomy and Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853 (United States); Levin, L. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Arzoumanian, Z. [Center for Research and Exploration in Space Science and Technology and X-Ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Crowter, K.; Gonzalez, M. E. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Demorest, P. B. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Dolch, T. [Department of Physics, Hillsdale College, 33 E. College Street, Hillsdale, MI 49242 (United States); Ellis, J. A; Lazio, T. J. W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr. Pasadena, CA 91109 (United States); Ferdman, R. D.; Fonseca, E. [Department of Physics, McGill University, 3600 rue Universite, Montreal, QC H3A 2T8 (Canada); Jones, G.; Pennucci, T. T. [Department of Physics, Columbia University, 550 W. 120th St. New York, NY 10027 (United States); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Ransom, S. M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stinebring, D. R. [Department of Physics and Astronomy, Oberlin College, Oberlin, OH 44074 (United States); and others

    2017-06-01

    We analyze dispersion measure (DM) variations of 37 millisecond pulsars in the nine-year North American Nanohertz Observatory for Gravitational Waves (NANOGrav) data release and constrain the sources of these variations. DM variations can result from a changing distance between Earth and the pulsar, inhomogeneities in the interstellar medium, and solar effects. Variations are significant for nearly all pulsars, with characteristic timescales comparable to or even shorter than the average spacing between observations. Five pulsars have periodic annual variations, 14 pulsars have monotonically increasing or decreasing trends, and 14 pulsars show both effects. Of the four pulsars with linear trends that have line-of-sight velocity measurements, three are consistent with a changing distance and require an overdensity of free electrons local to the pulsar. Several pulsars show correlations between DM excesses and lines of sight that pass close to the Sun. Mapping of the DM variations as a function of the pulsar trajectory can identify localized interstellar medium features and, in one case, an upper limit to the size of the dispersing region of 4 au. Four pulsars show roughly Kolmogorov structure functions (SFs), and another four show SFs less steep than Kolmogorov. One pulsar has too large an uncertainty to allow comparisons. We discuss explanations for apparent departures from a Kolmogorov-like spectrum, and we show that the presence of other trends and localized features or gradients in the interstellar medium is the most likely cause.

  15. Variations in flood magnitude-effect relations and the implications for flood risk assessment and river management

    Science.gov (United States)

    Hooke, J. M.

    2015-12-01

    In spite of major physical impacts from large floods, present river management rarely takes into account the possible dynamics and variation in magnitude-impact relations over time in flood risk mapping and assessment nor incorporates feedback effects of changes into modelling. Using examples from the literature and from field measurements over several decades in two contrasting environments, a semi-arid region and a humid-temperate region, temporal variations in channel response to flood events are evaluated. The evidence demonstrates how flood physical impacts can vary at a location over time. The factors influencing that variation on differing timescales are examined. The analysis indicates the importance of morphological changes and trajectory of adjustment in relation to thresholds, and that trends in force or resistance can take place over various timescales, altering those thresholds. Sediment supply can also change with altered connectivity upstream and changes in state of hillslope-channel coupling. It demonstrates that seasonal timing and sequence of events can affect response, particularly deposition through sediment supply. Duration can also have a significant effect and modify the magnitude relation. Lack of response or deposits in some events can mean that flood frequency using such evidence is underestimated. A framework for assessment of both past and possible future changes is provided which emphasises the uncertainty and the inconstancy of the magnitude-impact relation and highlights the dynamic factors and nature of variability that should be considered in sustainable management of river channels.

  16. Thresholds in the response of free-floating plant abundance to variation in hydraulic connectivity, nutrients, and macrophyte abundance in a large floodplain river

    Science.gov (United States)

    Giblin, Shawn M.; Houser, Jeffrey N.; Sullivan, John F.; Langrehr, H.A.; Rogala, James T.; Campbell, Benjamin D.

    2014-01-01

    Duckweed and other free-floating plants (FFP) can form dense surface mats that affect ecosystem condition and processes, and can impair public use of aquatic resources. FFP obtain their nutrients from the water column, and the formation of dense FFP mats can be a consequence and indicator of river eutrophication. We conducted two complementary surveys of diverse aquatic areas of the Upper Mississippi River as an in situ approach for estimating thresholds in the response of FFP abundance to nutrient concentration and physical conditions in a large, floodplain river. Local regression analysis was used to estimate thresholds in the relations between FFP abundance and phosphorus (P) concentration (0.167 mg l−1L), nitrogen (N) concentration (0.808 mg l−1), water velocity (0.095 m s−1), and aquatic macrophyte abundance (65 % cover). FFP tissue concentrations suggested P limitation was more likely in spring, N limitation was more likely in late summer, and N limitation was most likely in backwaters with minimal hydraulic connection to the channel. The thresholds estimated here, along with observed patterns in nutrient limitation, provide river scientists and managers with criteria to consider when attempting to modify FFP abundance in off-channel areas of large river systems.

  17. Aquacultured Rainbow Trout (Oncorhynchus mykiss) Possess a Large Core Intestinal Microbiota That Is Resistant to Variation in Diet and Rearing Density

    Science.gov (United States)

    Wong, Sandi; Waldrop, Thomas; Summerfelt, Steven; Davidson, John; Barrows, Frederic; Kenney, P. Brett; Welch, Timothy; Wiens, Gregory D.; Snekvik, Kevin

    2013-01-01

    As global aquaculture fish production continues to expand, an improved understanding of how environmental factors interact in fish health and production is needed. Significant advances have been made toward economical alternatives to costly fishmeal-based diets, such as grain-based formulations, and toward defining the effect of rearing density on fish health and production. Little research, however, has examined the effects of fishmeal- and grain-based diets in combination with alterations in rearing density. Moreover, it is unknown whether interactions between rearing density and diet impact the composition of the fish intestinal microbiota, which might in turn impact fish health and production. We fed aquacultured adult rainbow trout (Oncorhynchus mykiss) fishmeal- or grain-based diets, reared them under high- or low-density conditions for 10 months in a single aquaculture facility, and evaluated individual fish growth, production, fin indices, and intestinal microbiota composition using 16S rRNA gene sequencing. We found that the intestinal microbiotas were dominated by a shared core microbiota consisting of 52 bacterial lineages observed across all individuals, diets, and rearing densities. Variations in diet and rearing density resulted in only minor changes in intestinal microbiota composition despite significant effects of these variables on fish growth, performance, fillet quality, and welfare. Significant interactions between diet and rearing density were observed only in evaluations of fin indices and the relative abundance of the bacterial genus Staphylococcus. These results demonstrate that aquacultured rainbow trout can achieve remarkable consistency in intestinal microbiota composition and suggest the possibility of developing novel aquaculture strategies without overtly altering intestinal microbiota composition. PMID:23770898

  18. Holocene hydrologic variation at Lake Titicaca, Bolivia/Peru, and its relationship to North Atlantic climate variation

    Science.gov (United States)

    Baker, P. A.; Fritz, S. C.; Garland, J.; Ekdahl, E.

    2005-10-01

    A growing number of sites in the Northern Hemisphere show centennial- to millennial-scale climate variation that has been correlated with change in solar variability or with change in North Atlantic circulation. However, it is unclear how (or whether) these oscillations in the climate system are manifest in the Southern Hemisphere because of a lack of sites with suitably high sampling resolution. In this paper, we reconstruct the lake-level history of Lake Titicaca, using the carbon isotopic content of sedimentary organic matter, to evaluate centennial- to millennial-scale precipitation variation and its phasing relative to sites in the Northern Hemisphere. The pattern and timing of lake-level change in Lake Titicaca is similar to the ice-rafted debris record of Holocene Bond events, demonstrating a possible coupling between precipitation variation on the Altiplano and North Atlantic sea-surface temperatures (SSTs). The cold periods of the Holocene Bond events correspond with periods of increased precipitation on the Altiplano. Holocene precipitation variability on the Altiplano is anti-phased with respect to precipitation in the Northern Hemisphere monsoon region. More generally, the tropical Andes underwent large changes in precipitation on centennial-to-millennial timescales during the Holocene.

  19. Development of large-volume rhyolitic ignibrites (LRI'S): The Chalupas Caldera, an example from Ecuador

    International Nuclear Information System (INIS)

    Hammersley, L.; DePaolo, D.J; Beate, B

    2001-01-01

    The mechanisms responsible for the generation of large volumes of silicic magma and the eruption of large-volume rhyolitic ignimbrites (LRI's) remain poorly understood. Of particular interest are the relative roles of crustal assimilation, fractional crystallization and magma supply and the processes by which large volumes of magma accumulate in crustal chambers rather than erupt in smaller batches. Isotope geochemistry, combined with study of major and trace element variations of lavas, can be used to infer the relative contribution of crustal material and continued magmatic supply. Timescales for the accumulation of magma can be estimated using detailed geochronology. Magma supply rates can be estimated from eruption rates of nearby volcanoes. In this study we investigate the evolution of the Chalupas LRI, a caldera system in the Ecuadorian Andes where LRI's are rare in comparison to the Southern Volcanic Zone (SVZ) of South America (au)

  20. Anti-control of chaos of single time-scale brushless DC motor.

    Science.gov (United States)

    Ge, Zheng-Ming; Chang, Ching-Ming; Chen, Yen-Sheng

    2006-09-15

    Anti-control of chaos of single time-scale brushless DC motors is studied in this paper. In order to analyse a variety of periodic and chaotic phenomena, we employ several numerical techniques such as phase portraits, bifurcation diagrams and Lyapunov exponents. Anti-control of chaos can be achieved by adding an external constant term or an external periodic term.

  1. An assessment of transport timescales and return coefficient in adjacent tropical estuaries

    NARCIS (Netherlands)

    Andutta, Fernando P.; Helfer, Fernanda; de Miranda, Luiz Bruner; Deleersnijder, E.L.C.; Thomas, C.J.; Lemckert, Charles

    2016-01-01

    Transport timescales (TTS), namely residence time and exposure time, were computed for adjacent shallow meso-tidal tropical estuarines system using the Lagrangian model D-Waq Part coupled with the hydrodynamic model Delft3D-Flow, and the Constituent-oriented Age and Residence time Theory, CART.

  2. Handling long timescales: approaches and issues in the context of geological disposal

    International Nuclear Information System (INIS)

    Preter, P. de; Smith, P.; Voinis, S.

    2005-01-01

    Geologic repositories are sited, designed and operated to protect humans and the environment from the hazards associated with radioactive waste. Most challengingly, they are required to provide protection after their closure and over timescales that are considerably in excess of those commonly considered in most engineering projects, often up to several thousand or even a million years. This requirement is laid down in international guidance and in many national regulations. Various processes and events will drive the evolution of a repository and its environment, and hence could affect the containment and lead to possible release of radioactive substances from the repository and their migration to the surface. These processes and events are characterised by timescales ranging from a few tens or hundreds of years for transient processes associated with, for example, the re-saturation of the repository and its immediate surroundings following closure, to perhaps millions of years for changes in the geological environment. Safety assessments must consider consequences of releases of radioactive substances and verify that targets set by regulation are complied with. In order to evaluate compliance with dose or risk criteria, assumptions must be made regarding the habits of potentially exposed groups (e.g., diet, lifestyle and land use), and these may change over timescales of just a few years. The need to deal with such a wide range of timescales gives rise to a range of issues related to the methods and presentation of safety assessments and of safety cases. (author)

  3. Non-Abelian Kubo formula and the multiple time-scale method

    International Nuclear Information System (INIS)

    Zhang, X.; Li, J.

    1996-01-01

    The non-Abelian Kubo formula is derived from the kinetic theory. That expression is compared with the one obtained using the eikonal for a Chern endash Simons theory. The multiple time-scale method is used to study the non-Abelian Kubo formula, and the damping rate for longitudinal color waves is computed. copyright 1996 Academic Press, Inc

  4. Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site

    Science.gov (United States)

    Čermák, J.; Cienciala, E.; Kučera, J.; Lindroth, A.; Bednářová, E.

    1995-06-01

    Transpiration in a mixed old stand of sub-boreal forest in the Norunda region (central Sweden) was estimated on the basis of direct measurement of sap flow rate in 24 large Scots pine and Norway spruce trees in July and August 1993. Sap flow rate was measured using the trunk tissue heat balance method based on internal (electric) heating and sensing of temperature. Transpiration was only 0.7 mm day -1 in a relatively dry period in July (i.e. about 20% of potential evaporation) and substantially higher after a rainy period in August. The error of the estimates of transpiration was higher during a dry period (about 13% and 22% in pine and spruce, respectively) and significantly lower (about 9% in both species) during a period of sufficient water supply. Shallow-rooted spruce trees responded much faster to precipitation than deeply rooted pines.

  5. A Constraint on the Formation Timescale of the Young Open Cluster NGC 2264: Lithium Abundance of Pre-main Sequence Stars

    Science.gov (United States)

    Lim, Beomdu; Sung, Hwankyung; Kim, Jinyoung S.; Bessell, Michael S.; Hwang, Narae; Park, Byeong-Gon

    2016-11-01

    The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered to be a result of a real spread in age, the corresponding cluster formation timescale would be about 5-20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500\\lt {T}{eff}[{{K}}]≤slant 6500). Li abundance under the condition of local thermodynamic equilibrium (LTE) was derived using the conventional curve of growth method. After correction for non-LTE effects, we find that the initial Li abundance of NGC 2264 is A({Li})=3.2+/- 0.2. From the distribution of the Li abundances, the underlying age spread of the visible PMS stars is estimated to be about 3-4 Myr and this, together with the presence of embedded populations in NGC 2264, suggests that the cluster formed on a timescale shorter than 5 Myr.

  6. THE YOUNG SOLAR ANALOGS PROJECT. I. SPECTROSCOPIC AND PHOTOMETRIC METHODS AND MULTI-YEAR TIMESCALE SPECTROSCOPIC RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Gray, R. O.; Briley, M. M.; Lambert, R. A.; Fuller, V. A.; Newsome, I. M.; Seeds, M. F. [Department of Physics and Astronomy, Appalachian State University, Boone, NC 26808 (United States); Saken, J. M.; Kahvaz, Y. [Department of Physics and Physical Science, Marshall University, Huntington, WV 25755 (United States); Corbally, C. J. [Vatican Observatory Research Group, Steward Observatory, Tucson, AZ 85721-0065 (United States)

    2015-12-15

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300–1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson S chromospheric activity index (S{sub MW}), and describe the method we use to transform our instrumental indices to S{sub MW} without the need for a color term. We introduce three photospheric indices based on strong absorption features in the blue-violet spectrum—the G-band, the Ca i resonance line, and the Hydrogen-γ line—with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our “Superstar technique” for differential photometry which, instead of relying on a handful of comparison stars, uses the photon flux in the entire star field in the CCD image to derive the program star magnitude. This enables photometric errors on the order of 0.005–0.007 magnitude. We present time series plots of our spectroscopic data for all four indices, and carry out extensive statistical tests on those time series demonstrating the reality of variations on timescales of years in all four indices. We also statistically test for and discover correlations and anti-correlations between the four indices. We discuss the physical basis of those correlations. As it turns out, the “photospheric” indices appear to be most strongly affected by emission in the Paschen continuum. We thus anticipate that these indices may prove to be useful proxies for monitoring emission in the ultraviolet Balmer continuum. Future papers in this series will discuss variability of the program stars on medium (days–months) and short

  7. Climate Response of Tree Radial Growth at Different Timescales in the Qinling Mountains.

    Directory of Open Access Journals (Sweden)

    Changfeng Sun

    Full Text Available The analysis of the tree radial growth response to climate is crucial for dendroclimatological research. However, the response relationships between tree-ring indices and climatic factors at different timescales are not yet clear. In this study, the tree-ring width of Huashan pine (Pinus armandii from Huashan in the Qinling Mountains, north-central China, was used to explore the response differences of tree growth to climatic factors at daily, pentad (5 days, dekad (10 days and monthly timescales. Correlation function and linear regression analysis were applied in this paper. The tree-ring width showed a more sensitive response to daily and pentad climatic factors. With the timescale decreasing, the absolute value of the maximum correlation coefficient between the tree-ring data and precipitation increases as well as temperature (mean, minimum and maximum temperature. Compared to the other three timescales, pentad was more suitable for analysing the response of tree growth to climate. Relative to the monthly climate data, the association between the tree-ring data and the pentad climate data was more remarkable and accurate, and the reconstruction function based on the pentad climate was also more reliable and stable. We found that the major climatic factor limiting Huashan pine growth was the precipitation of pentads 20-35 (from April 6 to June 24 rather than the well-known April-June precipitation. The pentad was also proved to be a better timescale for analysing the climate and tree growth in the western and eastern Qinling Mountains. The formation of the earlywood density of Chinese pine (Pinus tabulaeformis from Shimenshan in western Qinling was mainly affected by the maximum temperature of pentads 28-32 (from May 16 to June 9. The maximum temperature of pentads 28-33 (from May 16 to June 14 was the major factor affecting the ring width of Chinese pine from Shirenshan in eastern Qinling.

  8. Galactic Outflows, Star Formation Histories, and Timescales in Starburst Dwarf Galaxies from STARBIRDS

    Science.gov (United States)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Heilman, Taryn N.; Mitchell, Noah P.; Kelley, Tyler

    2018-03-01

    Winds are predicted to be ubiquitous in low-mass, actively star-forming galaxies. Observationally, winds have been detected in relatively few local dwarf galaxies, with even fewer constraints placed on their timescales. Here, we compare galactic outflows traced by diffuse, soft X-ray emission from Chandra Space Telescope archival observations to the star formation histories derived from Hubble Space Telescope imaging of the resolved stellar populations in six starburst dwarfs. We constrain the longevity of a wind to have an upper limit of 25 Myr based on galaxies whose starburst activity has already declined, although a larger sample is needed to confirm this result. We find an average 16% efficiency for converting the mechanical energy of stellar feedback to thermal, soft X-ray emission on the 25 Myr timescale, somewhat higher than simulations predict. The outflows have likely been sustained for timescales comparable to the duration of the starbursts (i.e., 100's Myr), after taking into account the time for the development and cessation of the wind. The wind timescales imply that material is driven to larger distances in the circumgalactic medium than estimated by assuming short, 5-10 Myr starburst durations, and that less material is recycled back to the host galaxy on short timescales. In the detected outflows, the expelled hot gas shows various morphologies which are not consistent with a simple biconical outflow structure. The sample and analysis are part of a larger program, the STARBurst IRregular Dwarf Survey (STARBIRDS), aimed at understanding the lifecycle and impact of starburst activity in low-mass systems.

  9. Functional genomics to assess biological responses to marine pollution at physiological and evolutionary timescales: toward a vision of predictive ecotoxicology.

    Science.gov (United States)

    Reid, Noah M; Whitehead, Andrew

    2016-09-01

    Marine pollution is ubiquitous, and is one of the key factors influencing contemporary marine biodiversity worldwide. To protect marine biodiversity, how do we surveil, document and predict the short- and long-term impacts of pollutants on at-risk species? Modern genomics tools offer high-throughput, information-rich and increasingly cost-effective approaches for characterizing biological responses to environmental stress, and are important tools within an increasing sophisticated kit for surveiling and assessing impacts of pollutants on marine species. Through the lens of recent research in marine killifish, we illustrate how genomics tools may be useful for screening chemicals and pollutants for biological activity and to reveal specific mechanisms of action. The high dimensionality of transcriptomic responses enables their usage as highly specific fingerprints of exposure, and these fingerprints can be used to diagnose environmental problems. We also emphasize that molecular pathways recruited to respond at physiological timescales are the same pathways that may be targets for natural selection during chronic exposure to pollutants. Gene complement and sequence variation in those pathways can be related to variation in sensitivity to environmental pollutants within and among species. Furthermore, allelic variation associated with evolved tolerance in those pathways could be tracked to estimate the pace of environmental health decline and recovery. We finish by integrating these paradigms into a vision of how genomics approaches could anchor a modernized framework for advancing the predictive capacity of environmental and ecotoxicological science. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Spatial variation in foraging behaviour of a marine top predator (Phoca vitulina determined by a large-scale satellite tagging program.

    Directory of Open Access Journals (Sweden)

    Ruth J Sharples

    Full Text Available The harbour seal (Phoca vitulina is a widespread marine predator in Northern Hemisphere waters. British populations have been subject to rapid declines in recent years. Food supply or inter-specific competition may be implicated but basic ecological data are lacking and there are few studies of harbour seal foraging distribution and habits. In this study, satellite tagging conducted at the major seal haul outs around the British Isles showed both that seal movements were highly variable among individuals and that foraging strategy appears to be specialized within particular regions. We investigated whether these apparent differences could be explained by individual level factors: by modelling measures of trip duration and distance travelled as a function of size, sex and body condition. However, these were not found to be good predictors of foraging trip duration or distance, which instead was best predicted by tagging region, time of year and inter-trip duration. Therefore, we propose that local habitat conditions and the constraints they impose are the major determinants of foraging movements. Specifically the distance to profitable feeding grounds from suitable haul-out locations may dictate foraging strategy and behaviour. Accounting for proximity to productive foraging resources is likely to be an important component of understanding population processes. Despite more extensive offshore movements than expected, there was also marked fidelity to the local haul-out region with limited connectivity between study regions. These empirical observations of regional exchange at short time scales demonstrates the value of large scale electronic tagging programs for robust characterization of at-sea foraging behaviour at a wide spatial scale.

  11. Determination of the Average Native Background and the Light-Induced EPR Signals and their Variation in the Teeth Enamel Based on Large-Scale Survey of the Population

    International Nuclear Information System (INIS)

    Ivannikov, Alexander I.; Khailov, Artem M.; Orlenko, Sergey P.; Skvortsov, Valeri G.; Stepanenko, Valeri F.; Zhumadilov, Kassym Sh.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.

    2016-01-01

    The aim of the study is to determine the average intensity and variation of the native background signal amplitude (NSA) and of the solar light-induced signal amplitude (LSA) in electron paramagnetic resonance (EPR) spectra of tooth enamel for different kinds of teeth and different groups of people. These values are necessary for determination of the intensity of the radiation-induced signal amplitude (RSA) by subtraction of the expected NSA and LSA from the total signal amplitude measured in L-band for in vivo EPR dosimetry. Variation of these signals should be taken into account when estimating the uncertainty of the estimated RSA. A new analysis of several hundred EPR spectra that were measured earlier at X-band in a large-scale examination of the population of the Central Russia was performed. Based on this analysis, the average values and the variation (standard deviation, SD) of the amplitude of the NSA for the teeth from different positions, as well as LSA in outer enamel of the front teeth for different population groups, were determined. To convert data acquired at X-band to values corresponding to the conditions of measurement at L-band, the experimental dependencies of the intensities of the RSA, LSA and NSA on the m.w. power, measured at both X and L-band, were analysed. For the two central upper incisors, which are mainly used in in vivo dosimetry, the mean LSA annual rate induced only in the outer side enamel and its variation were obtained as 10 ± 2 (SD = 8) mGy y"-"1, the same for X- and L-bands (results are presented as the mean ± error of mean). Mean NSA in enamel and its variation for the upper incisors was calculated at 2.0 ± 0.2 (SD = 0.5) Gy, relative to the calibrated RSA dose-response to gamma radiation measured under non-power saturation conditions at X-band. Assuming the same value for L-band under non-power saturating conditions, then for in vivo measurements at L-band at 25 mW (power saturation conditions), a mean NSA and its

  12. Determination of the Average Native Background and the Light-Induced EPR Signals and their Variation in the Teeth Enamel Based on Large-Scale Survey of the Population.

    Science.gov (United States)

    Ivannikov, Alexander I; Khailov, Artem M; Orlenko, Sergey P; Skvortsov, Valeri G; Stepanenko, Valeri F; Zhumadilov, Kassym Sh; Williams, Benjamin B; Flood, Ann B; Swartz, Harold M

    2016-12-01

    The aim of the study is to determine the average intensity and variation of the native background signal amplitude (NSA) and of the solar light-induced signal amplitude (LSA) in electron paramagnetic resonance (EPR) spectra of tooth enamel for different kinds of teeth and different groups of people. These values are necessary for determination of the intensity of the radiation-induced signal amplitude (RSA) by subtraction of the expected NSA and LSA from the total signal amplitude measured in L-band for in vivo EPR dosimetry. Variation of these signals should be taken into account when estimating the uncertainty of the estimated RSA. A new analysis of several hundred EPR spectra that were measured earlier at X-band in a large-scale examination of the population of the Central Russia was performed. Based on this analysis, the average values and the variation (standard deviation, SD) of the amplitude of the NSA for the teeth from different positions, as well as LSA in outer enamel of the front teeth for different population groups, were determined. To convert data acquired at X-band to values corresponding to the conditions of measurement at L-band, the experimental dependencies of the intensities of the RSA, LSA and NSA on the m.w. power, measured at both X and L-band, were analysed. For the two central upper incisors, which are mainly used in in vivo dosimetry, the mean LSA annual rate induced only in the outer side enamel and its variation were obtained as 10 ± 2 (SD = 8) mGy y -1 , the same for X- and L-bands (results are presented as the mean ± error of mean). Mean NSA in enamel and its variation for the upper incisors was calculated at 2.0 ± 0.2 (SD = 0.5) Gy, relative to the calibrated RSA dose-response to gamma radiation measured under non-power saturation conditions at X-band. Assuming the same value for L-band under non-power saturating conditions, then for in vivo measurements at L-band at 25 mW (power saturation conditions), a mean NSA and its

  13. Aerodynamic Effects of Turbulence Intensity on a Variable-Speed Power-Turbine Blade with Large Incidence and Reynolds Number Variations

    Science.gov (United States)

    Flegel, Ashlie Brynn; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    The effects of inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The high turbulence study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Downstream total pressure and exit angle data were acquired for ten incidence angles ranging from +15.8 to 51.0. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12105 to 2.12106 and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 0.25 - 0.4 for the low Tu tests and 8- 15 for the high Tu study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitchyaw probe located in a survey plane 7 axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall

  14. Low-Frequency Synonymous Coding Variation in CYP2R1 Has Large Effects on Vitamin D Levels and Risk of Multiple Sclerosis.

    Science.gov (United States)

    Manousaki, Despoina; Dudding, Tom; Haworth, Simon; Hsu, Yi-Hsiang; Liu, Ching-Ti; Medina-Gómez, Carolina; Voortman, Trudy; van der Velde, Nathalie; Melhus, Håkan; Robinson-Cohen, Cassianne; Cousminer, Diana L; Nethander, Maria; Vandenput, Liesbeth; Noordam, Raymond; Forgetta, Vincenzo; Greenwood, Celia M T; Biggs, Mary L; Psaty, Bruce M; Rotter, Jerome I; Zemel, Babette S; Mitchell, Jonathan A; Taylor, Bruce; Lorentzon, Mattias; Karlsson, Magnus; Jaddoe, Vincent V W; Tiemeier, Henning; Campos-Obando, Natalia; Franco, Oscar H; Utterlinden, Andre G; Broer, Linda; van Schoor, Natasja M; Ham, Annelies C; Ikram, M Arfan; Karasik, David; de Mutsert, Renée; Rosendaal, Frits R; den Heijer, Martin; Wang, Thomas J; Lind, Lars; Orwoll, Eric S; Mook-Kanamori, Dennis O; Michaëlsson, Karl; Kestenbaum, Bryan; Ohlsson, Claes; Mellström, Dan; de Groot, Lisette C P G M; Grant, Struan F A; Kiel, Douglas P; Zillikens, M Carola; Rivadeneira, Fernando; Sawcer, Stephen; Timpson, Nicholas J; Richards, J Brent

    2017-08-03

    Vitamin D insufficiency is common, correctable, and influenced by genetic factors, and it has been associated with risk of several diseases. We sought to identify low-frequency genetic variants that strongly increase the risk of vitamin D insufficiency and tested their effect on risk of multiple sclerosis, a disease influenced by low vitamin D concentrations. We used whole-genome sequencing data from 2,619 individuals through the UK10K program and deep-imputation data from 39,655 individuals genotyped genome-wide. Meta-analysis of the summary statistics from 19 cohorts identified in CYP2R1 the low-frequency (minor allele frequency = 2.5%) synonymous coding variant g.14900931G>A (p.Asp120Asp) (rs117913124[A]), which conferred a large effect on 25-hydroxyvitamin D (25OHD) levels (-0.43 SD of standardized natural log-transformed 25OHD per A allele; p value = 1.5 × 10 -88 ). The effect on 25OHD was four times larger and independent of the effect of a previously described common variant near CYP2R1. By analyzing 8,711 individuals, we showed that heterozygote carriers of this low-frequency variant have an increased risk of vitamin D insufficiency (odds ratio [OR] = 2.2, 95% confidence interval [CI] = 1.78-2.78, p = 1.26 × 10 -12 ). Individuals carrying one copy of this variant also had increased odds of multiple sclerosis (OR = 1.4, 95% CI = 1.19-1.64, p = 2.63 × 10 -5 ) in a sample of 5,927 case and 5,599 control subjects. In conclusion, we describe a low-frequency CYP2R1 coding variant that exerts the largest effect upon 25OHD levels identified to date in the general European population and implicates vitamin D in the etiology of multiple sclerosis. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Variation of skin surface pH, sebum content and stratum corneum hydration with age and gender in a large Chinese population.

    Science.gov (United States)

    Man, M Q; Xin, S J; Song, S P; Cho, S Y; Zhang, X J; Tu, C X; Feingold, K R; Elias, P M

    2009-01-01

    Evidence suggests the importance of skin biophysical properties in predicting diseases and in developing appropriate skin care. The results to date of studies on skin surface pH, stratum corneum (SC) hydration and sebum content in both genders and at various ages have been inconclusive, which was in part due to small sample size. Additionally, little is known about the skin physical properties of Asian, especially Chinese, subjects. In the present study, we assess the difference in skin surface pH, sebum content and SC hydration at various ages and in both genders in a large Chinese population without skin diseases. 713 subjects (328 males and 385 females) aged 0.5-94 years were enrolled in this study. The subjects were divided by age into 5 groups, i.e., 0-12, 13-35, 36-50, 51-70 and over 70 years old. A multifunctional skin physiology monitor was used to measure SC hydration, skin surface pH and sebum content on both the forehead and the forearms. In males, the highest sebum content was found on the forearm and the forehead in the age groups 36-50 (93.47 +/- 10.01 microg/cm(2)) and 51-70 years (9.16 +/- 1.95 microg/cm(2)), while in females, the highest sebum content was found on the forearm and the forehead in the age groups 13-35 (61.91 +/- 6.12 microg/cm(2)) and 51-70 years (7.54 +/- 2.55 microg/cm(2)). The forehead sebum content was higher in males aged 13-70 years than in age-matched females; the sebum content on the forehead in both males and females was higher than that on the forearm. Skin surface pH on the forehead of both males and females over the age of 70 years was higher than that in younger groups. SC hydration on the forehead in both males and females was lower above the age of 70, and the one in males aged 13-35 was higher than that in females (43.99 +/- 1.88 vs. 36.38 +/- 1.67 AU, p pH, sebum content and SC hydration vary with age, gender and body site. Copyright 2009 S. Karger AG, Basel.

  16. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Maccarone, Thomas J.; Chakrabarty, Deepto; Gendreau, Keith C.; Arzoumanian, Zaven; Jenke, Peter; Ballantyne, David; Bozzo, Enrico; Brandt, Soren; Brenneman, Laura; Christophersen, Marc; DeRosa, Alessandra; Feroci, Marco; Goldstein, Adam; Hartmann, Dieter; Hernanz, Margarita; McDonald, Michael; Phlips, Bernard; Remillard, Ronald; Stevens, Abigail; Tomsick, John; Watts, Anna; Wood, Kent S.; Zane, Silvia; STROBE-X Collaboration

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. We include updated instrument designs resulting from the GSFC IDL run in November 2017.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO/Virgo and neutrino events. Extragalactic science, such as constraining bulk metalicity

  17. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Milliseconds to Years

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Maccarone, T; Chakrabarty, D.; Gendreau, K.; Arzoumanian, Z.; Jenke, P.; Ballantyne, D.; Bozzo, E.; Brandt, S.; hide

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER [1], with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT [2], to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of

  18. Simulation of heat storages and associated heat budgets in the Pacific Ocean: 2. Interdecadal timescale

    Science.gov (United States)

    Auad, Guillermo; Miller, Arthur J.; White, Warren B.

    1998-11-01

    We use a primitive equation isopycnal model of the Pacific Ocean to simulate and diagnose the anomalous heat balance on interdecadal timescales associated with heat storage changes observed from 1970-1988 in the expendable bathythermograph (XBT) data set. Given the smallness of the interdecadal signals compared to the El Niño-Southern Oscillation (ENSO) signal, the agreement between model and observations is remarkably good. The total anomalous heat balance is made up of two parts, the diabatic part (from the model temperature equation) and the adiabatic part (from the model mass conservation equation) due to thermocline heave. We therefore describe our analysis of both the total and diabatic anomalous heat balances in four areas of the tropical and subtropical North Pacific Ocean in the upper 400 m. The interdecadal total (diabatic plus adiabatic) heat balance in the North Pacific Ocean is characterized by a complicated interplay of different physical processes, especially revealed in basin-scale averages of the heat budget components that have comparable amounts of variance. In smaller subregions, simpler balances hold. For example, in the western equatorial Pacific (area 1) the total heat content tendency term is nearly zero, so that a simple balance exists between surface heat flux, vertical heat transport, and horizontal mixing. In the western subtropical Pacific the total heat content tendency balances the three-dimensional divergence of the heat flux. We speculate that this complexity is indicative of multiple physical mechanisms involved in the generation of North Pacific interdecadal variability. The diabatic heat balance north of 24°N, a region of special interest to The World Ocean Circulation Experiment (WOCE), can be simplified to a balance between the tendency term, surface heat flux, and meridional advection, the last term dominated by anomalous advection of mean temperature gradients. For the western equatorial region the diabatic heat content

  19. Factors affecting the inter-annual to centennial timescale variability of Indian summer monsoon rainfall

    Science.gov (United States)

    Malik, Abdul; Brönnimann, Stefan

    2018-06-01

    The Modes of Ocean Variability (MOV) namely Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and El Niño Southern Oscillation (ENSO) can have significant impacts on Indian Summer Monsoon Rainfall (ISMR) on different timescales. The timescales at which these MOV interacts with ISMR and the factors which may perturb their relationship with ISMR need to be investigated. We employ De-trended Cross-Correlation Analysis (DCCA), and De-trended Partial-Cross-Correlation Analysis (DPCCA) to study the timescales of interaction of ISMR with AMO, PDO, and ENSO using observational dataset (AD 1854-1999), and atmosphere-ocean-chemistry climate model simulations with SOCOL-MPIOM (AD 1600-1999). Further, this study uses De-trended Semi-Partial Cross-Correlation Analysis (DSPCCA) to address the relation between solar variability and the ISMR. We find statistically significant evidence of intrinsic correlations of ISMR with AMO, PDO, and ENSO on different timescales, consistent between model simulations and observations. However, the model fails to capture modulation in intrinsic relationship between ISRM and MOV due to external signals. Our analysis indicates that AMO is a potential source of non-stationary relationship between ISMR and ENSO. Furthermore, the pattern of correlation between ISMR and Total Solar Irradiance (TSI) is inconsistent between observations and model simulations. The observational dataset indicates statistically insignificant negative intrinsic correlation between ISMR and TSI on decadal-to-centennial timescales. This statistically insignificant negative intrinsic correlation is transformed to statistically significant positive extrinsic by AMO on 61-86-year timescale. We propose a new mechanism for Sun-monsoon connection which operates through AMO by changes in summer (June-September; JJAS) meridional gradient of tropospheric temperatures (ΔTTJJAS). There is a negative (positive) intrinsic correlation between ΔTTJJAS (AMO) and

  20. Reconciling radiocarbon and ice core timescales over the Holocene - Cosmogenic radionuclides as synchronization tools

    Science.gov (United States)

    Muscheler, R.; Adolphi, F.; Mekhaldi, F.

    2015-12-01

    The atmospheric production rates of cosmogenic radionuclides, such as 14C and 10Be, vary globally due to external processes, namely the solar and geomagnetic modulation of the galactic cosmic ray flux as well as solar proton events. This signature is recorded in various archives such as ice cores (10Be) and tree-rings (14C). Hence, cosmogenic radionuclides offer a means to continuously assess timescale differences between two of the most widely used timescales in paleoclimatology - the radiocarbon and the ice core timescales. Short lived solar proton events additionally provide distinct marker horizons that allow synchronization of discrete horizons at annual precision. We will present a cosmogenic radionuclide based synchronization of the Greenland ice core timescale (GICC05, Svensson et al., 2008) and the radiocarbon timescale (IntCal13, Reimer et al., 2013) over the Holocene. This synchronization allows radiocarbon dated and ice core paleoclimate records to be compared on a common timescale at down to sub-decadal precision. We will compare these results to independent discrete isochrones obtained from tephrochronology and solar proton events. In addition, we will discuss implications for the accuracy and uncertainty estimates of GICC05 over the Holocene. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP, Radiocarbon, 55, 1869-1887, 10.2458/azu_js_rc.55.16947, 2013. Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin

  1. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    Science.gov (United States)

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  2. Timescales of Coherent Dynamics in the Light Harvesting Complex 2 (LH2) of Rhodobacter sphaeroides.

    Science.gov (United States)

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-05-02

    The initial dynamics of energy transfer in the light harvesting complex 2 from Rhodobacter sphaeroides were investigated with polarization controlled two-dimensional spectroscopy. This method allows only the coherent electronic motions to be observed revealing the timescale of dephasing among the excited states. We observe persistent coherence among all states and assign ensemble dephasing rates for the various coherences. A simple model is utilized to connect the spectroscopic transitions to the molecular structure, allowing us to distinguish coherences between the two rings of chromophores and coherences within the rings. We also compare dephasing rates between excited states to dephasing rates between the ground and excited states, revealing that the coherences between excited states dephase on a slower timescale than coherences between the ground and excited states.

  3. What Can We Learn about GRB from the Variability Timescale Related Correlations?

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei; Lei, Wei-Hua; Wang, Ding-Xiong, E-mail: leiwh@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2017-04-01

    Recently, two empirical correlations related to the minimum variability timescale (MTS) of the light curves are discovered in gamma-ray bursts (GRBs). One is the anti-correlation between MTS and Lorentz factor Γ, and the other is the anti-correlation between the MTS and gamma-ray luminosity L {sub γ}. Both of the two correlations might be used to explore the activity of the central engine of GRBs. In this paper, we try to understand these empirical correlations by combining two popular black hole central engine models (namely, the Blandford and Znajek mechanism (BZ) and the neutrino-dominated accretion flow (NDAF)). By taking the MTS as the timescale of viscous instability of the NDAF, we find that these correlations favor the scenario in which the jet is driven by the BZ mechanism.

  4. Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach

    Science.gov (United States)

    Parker, Jeffrey; Lodestro, Lynda; Told, Daniel; Merlo, Gabriele; Ricketson, Lee; Campos, Alejandro; Jenko, Frank; Hittinger, Jeffrey

    2017-10-01

    Predictive whole-device simulation models will play an increasingly important role in ensuring the success of fusion experiments and accelerating the development of fusion energy. In the core of tokamak plasmas, a separation of timescales between turbulence and transport makes a single direct simulation of both processes computationally expensive. We present the first demonstration of a multiple-timescale method coupling global gyrokinetic simulations with a transport solver to calculate the self-consistent, steady-state temperature profile. Initial results are highly encouraging, with the coupling method appearing robust to the difficult problem of turbulent fluctuations. The method holds potential for integrating first-principles turbulence simulations into whole-device models and advancing the understanding of global plasma behavior. Work supported by US DOE under Contract DE-AC52-07NA27344 and the Exascale Computing Project (17-SC-20-SC).

  5. Fission time-scale in experiments and in multiple initiation model

    Energy Technology Data Exchange (ETDEWEB)

    Karamian, S. A., E-mail: karamian@nrmail.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2011-12-15

    Rate of fission for highly-excited nuclei is affected by the viscose character of the systemmotion in deformation coordinates as was reported for very heavy nuclei with Z{sub C} > 90. The long time-scale of fission can be described in a model of 'fission by diffusion' that includes an assumption of the overdamped diabatic motion. The fission-to-spallation ratio at intermediate proton energy could be influenced by the viscosity, as well. Within a novel approach of the present work, the cross examination of the fission probability, time-scales, and pre-fission neutron multiplicities is resulted in the consistent interpretation of a whole set of the observables. Earlier, different aspects could be reproduced in partial simulations without careful coordination.

  6. Full-scale and time-scale heating experiments at Stripa: preliminary results

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Hood, Michael; California Univ., Berkeley

    1978-01-01

    Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground

  7. Intrinsic dynamics of heart regulatory systems on short timescales: from experiment to modelling

    International Nuclear Information System (INIS)

    Khovanov, I A; Khovanova, N A; McClintock, P V E; Stefanovska, A

    2009-01-01

    We discuss open problems related to the stochastic modelling of cardiac function. The work is based on an experimental investigation of the dynamics of heart rate variability (HRV) in the absence of respiratory perturbations. We consider first the cardiac control system on short timescales via an analysis of HRV within the framework of a random walk approach. Our experiments show that HRV on timescales of less than a minute takes the form of free diffusion, close to Brownian motion, which can be described as a non-stationary process with stationary increments. Secondly, we consider the inverse problem of modelling the state of the control system so as to reproduce the experimentally observed HRV statistics of. We discuss some simple toy models and identify open problems for the modelling of heart dynamics

  8. Solid triphenylmethanol: A molecular material that undergoes multiple internal reorientational processes on different timescales

    International Nuclear Information System (INIS)

    Kitchin, Simon J.; Xu Mingcan; Serrano-Gonzalez, Heliodoro; Coates, Laura J.; Zaka Ahmed, S.; Glidewell, Christopher; Harris, Kenneth D.M.

    2006-01-01

    In solid triphenylmethanol, the molecules are arranged in hydrogen-bonded tetramers, and it is already well established that the hydrogen bonding in this material undergoes a dynamic switching process between different hydrogen bonding arrangements. In addition to this motion, we show here, from solid-state 2 H NMR studies of the deuterated material (C 6 D 5 ) 3 COH, that each phenyl ring in this material undergoes a 180 deg.-jump reorientation about the C 6 D 5 -C(OH) bond, with an activation energy of ca. 50 kJ mol -1 . The timescale for the phenyl ring dynamics is several orders of magnitude longer than the timescale for the hydrogen bond dynamics in this material, and is uncorrelated with the dynamics of the hydrogen bonding arrangement

  9. What Can We Learn about GRB from the Variability Timescale Related Correlations?

    International Nuclear Information System (INIS)

    Xie, Wei; Lei, Wei-Hua; Wang, Ding-Xiong

    2017-01-01

    Recently, two empirical correlations related to the minimum variability timescale (MTS) of the light curves are discovered in gamma-ray bursts (GRBs). One is the anti-correlation between MTS and Lorentz factor Γ, and the other is the anti-correlation between the MTS and gamma-ray luminosity L γ . Both of the two correlations might be used to explore the activity of the central engine of GRBs. In this paper, we try to understand these empirical correlations by combining two popular black hole central engine models (namely, the Blandford and Znajek mechanism (BZ) and the neutrino-dominated accretion flow (NDAF)). By taking the MTS as the timescale of viscous instability of the NDAF, we find that these correlations favor the scenario in which the jet is driven by the BZ mechanism.

  10. Anti-correlated cortical networks arise from spontaneous neuronal dynamics at slow timescales.

    Science.gov (United States)

    Kodama, Nathan X; Feng, Tianyi; Ullett, James J; Chiel, Hillel J; Sivakumar, Siddharth S; Galán, Roberto F

    2018-01-12

    In the highly interconnected architectures of the cerebral cortex, recurrent intracortical loops disproportionately outnumber thalamo-cortical inputs. These networks are also capable of generating neuronal activity without feedforward sensory drive. It is unknown, however, what spatiotemporal patterns may be solely attributed to intrinsic connections of the local cortical network. Using high-density microelectrode arrays, here we show that in the isolated, primary somatosensory cortex of mice, neuronal firing fluctuates on timescales from milliseconds to tens of seconds. Slower firing fluctuations reveal two spatially distinct neuronal ensembles, which correspond to superficial and deeper layers. These ensembles are anti-correlated: when one fires more, the other fires less and vice versa. This interplay is clearest at timescales of several seconds and is therefore consistent with shifts between active sensing and anticipatory behavioral states in mice.

  11. Nutrient responses to ecosystem disturbances from annual to multi-millennial timescales

    Science.gov (United States)

    B. Buma

    2014-01-01

    The Novus Network annual meeting was held at H. J. Andrews Experimental Forest in Oregon, USA, from 22 May to 24 May 2013. The topic was: ‘Nutrient responses to ecosystem disturbances from annual to multi-millennial timescales’. The 2013 workshop brought together 28 researchers from 21 institutions spread across three continents. The participants – 17 faculty members,...

  12. Timescale differences between SC-PDSI and SPEI for drought monitoring in China

    Science.gov (United States)

    Zhao, Haiyan; Gao, Ge; An, Wei; Zou, Xukai; Li, Haitao; Hou, Meiting

    2017-12-01

    The Palmer Drought Severity Index (PDSI) has been widely used to monitor drought. Its characteristics are more suitable for measuring droughts of longer timescales, and this fact has not received much attention. The Standardized Precipitation Evapotranspiration Index (SPEI) can better reflect the climatic water balance, owing to its combination of precipitation and potential evapotranspiration. In this study, we selected monthly average air temperature and precipitation data from 589 meteorological stations of China's National Meteorological Information Center, to compare the effects of applying a self-calibrating PDSI (SC-PDSI) and SPEI to monitor drought events in the station regions, with a special focus on differences of event timescale. The results show the following. 1) Comparative analysis using SC-PDSI and SPEI for drought years and characters of three dry periods from 1961 to 2011 in the Beijing region showed that durations of SC-PDSI-based dry spells were longer than those of 3-month and 6-month SPEIs, but equal to those of 12-month or longer timescale SPEIs. 2) For monitoring evolution of the fall 2009 to spring 2010 Southwest China drought and spring 2000 Huang-Huai drought, 3-month SPEI could better monitor the initiation, aggravation, alleviation and relief of drought in the two regions, whereas the SC-PDSI was insensitive to drought recovery because of its long-term memory of previous climate conditions. 3) Analysis of the relationship between SC-PDSI for different regions and SPEI for different timescales showed that correlation of the two indexes changed with region, and SC-PDSI was maximally correlated with SPEI of 9-19 months in China. Therefore, SC-PDSI is only suitable for monitoring mid- and long-term droughts, owing to the strong lagged autocorrelation such as 0.4786 for 12-month lagged ones in Beijing, whereas SPEI is suitable for both short- and long-term drought-monitoring and should have greater application prospects in China.

  13. Scale interactions on diurnal toseasonal timescales and their relevanceto model systematic errors

    Directory of Open Access Journals (Sweden)

    G. Yang

    2003-06-01

    Full Text Available Examples of current research into systematic errors in climate models are used to demonstrate the importance of scale interactions on diurnal,intraseasonal and seasonal timescales for the mean and variability of the tropical climate system. It has enabled some conclusions to be drawn about possible processes that may need to be represented, and some recommendations to be made regarding model improvements. It has been shown that the Maritime Continent heat source is a major driver of the global circulation but yet is poorly represented in GCMs. A new climatology of the diurnal cycle has been used to provide compelling evidence of important land-sea breeze and gravity wave effects, which may play a crucial role in the heat and moisture budget of this key region for the tropical and global circulation. The role of the diurnal cycle has also been emphasized for intraseasonal variability associated with the Madden Julian Oscillation (MJO. It is suggested that the diurnal cycle in Sea Surface Temperature (SST during the suppressed phase of the MJO leads to a triggering of cumulus congestus clouds, which serve to moisten the free troposphere and hence precondition the atmosphere for the next active phase. It has been further shown that coupling between the ocean and atmosphere on intraseasonal timescales leads to a more realistic simulation of the MJO. These results stress the need for models to be able to simulate firstly, the observed tri-modal distribution of convection, and secondly, the coupling between the ocean and atmosphere on diurnal to intraseasonal timescales. It is argued, however, that the current representation of the ocean mixed layer in coupled models is not adequate to represent the complex structure of the observed mixed layer, in particular the formation of salinity barrier layers which can potentially provide much stronger local coupling between the atmosphere and ocean on diurnal to intraseasonal timescales.

  14. A quantitative approach to evaluating the GWP timescale through implicit discount rates

    OpenAIRE

    Sarofim, Marcus C.; Giordano, Michael R.

    2018-01-01

    The 100-year Global Warming Potential (GWP) is the primary metric used to compare the climate impacts of different greenhouse gases (GHGs). The GWP relies on radiative forcing rather than damages, assumes constant future concentrations, and integrates over a timescale of 100 years without discounting: these choices lead to a metric which is transparent and simple to calculate, but have also been criticized. In this paper, we take a quantitative approach to evaluating the choice of time-horizo...

  15. A Formation Timescale of the Galactic Halo from Mg Isotopes in Dwarf Stars

    Science.gov (United States)

    Carlos, Marília; Karakas, Amanda I.; Cohen, Judith G.; Kobayashi, Chiaki; Meléndez, Jorge

    2018-04-01

    We determine magnesium isotopic abundances of metal-poor dwarf stars from the galactic halo, to shed light on the onset of asymptotic giant branch (AGB) star nucleosynthesis in the galactic halo and constrain the timescale of its formation. We observed a sample of eight new halo K dwarfs in a metallicity range of ‑1.9 ‑1.4 are somewhat higher (1–3σ) than previous chemical evolution model predictions, indicating perhaps higher yields of the neutron-rich isotopes. Our results using only AGB star enrichment suggest a timescale for formation for the galactic halo of about 0.3 Gyr, but considering also supernova enrichment, the upper limit for the timescale formation is about 1.5 Gyr. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  16. Astronomical calibration of the geological timescale: closing the middle Eocene gap

    Science.gov (United States)

    Westerhold, T.; Röhl, U.; Frederichs, T.; Bohaty, S. M.; Zachos, J. C.

    2015-09-01

    To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.

  17. Tree imbalance causes a bias in phylogenetic estimation of evolutionary timescales using heterochronous sequences.

    Science.gov (United States)

    Duchêne, David; Duchêne, Sebastian; Ho, Simon Y W

    2015-07-01

    Phylogenetic estimation of evolutionary timescales has become routine in biology, forming the basis of a wide range of evolutionary and ecological studies. However, there are various sources of bias that can affect these estimates. We investigated whether tree imbalance, a property that is commonly observed in phylogenetic trees, can lead to reduced accuracy or precision of phylogenetic timescale estimates. We analysed simulated data sets with calibrations at internal nodes and at the tips, taking into consideration different calibration schemes and levels of tree imbalance. We also investigated the effect of tree imbalance on two empirical data sets: mitogenomes from primates and serial samples of the African swine fever virus. In analyses calibrated using dated, heterochronous tips, we found that tree imbalance had a detrimental impact on precision and produced a bias in which the overall timescale was underestimated. A pronounced effect was observed in analyses with shallow calibrations. The greatest decreases in accuracy usually occurred in the age estimates for medium and deep nodes of the tree. In contrast, analyses calibrated at internal nodes did not display a reduction in estimation accuracy or precision due to tree imbalance. Our results suggest that molecular-clock analyses can be improved by increasing taxon sampling, with the specific aims of including deeper calibrations, breaking up long branches and reducing tree imbalance. © 2014 John Wiley & Sons Ltd.

  18. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    Science.gov (United States)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  19. Multiple Timescale Energy Scheduling for Wireless Communication with Energy Harvesting Devices

    Directory of Open Access Journals (Sweden)

    H. Xiao

    2012-09-01

    Full Text Available The primary challenge in wireless communication with energy harvesting devices is to efficiently utilize the harvesting energy such that the data packet transmission could be supported. This challenge stems from not only QoS requirement imposed by the wireless communication application, but also the energy harvesting dynamics and the limited battery capacity. Traditional solar predictable energy harvesting models are perturbed by prediction errors, which could deteriorate the energy management algorithms based on this models. To cope with these issues, we first propose in this paper a non-homogenous Markov chain model based on experimental data, which can accurately describe the solar energy harvesting process in contrast to traditional predictable energy models. Due to different timescale between the energy harvesting process and the wireless data transmission process, we propose a general framework of multiple timescale Markov decision process (MMDP model to formulate the joint energy scheduling and transmission control problem under different timescales. We then derive the optimal control policies via a joint dynamic programming and value iteration approach. Extensive simulations are carried out to study the performances of the proposed schemes.

  20. Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?

    Science.gov (United States)

    Hewitt, Helene T.; Bell, Michael J.; Chassignet, Eric P.; Czaja, Arnaud; Ferreira, David; Griffies, Stephen M.; Hyder, Pat; McClean, Julie L.; New, Adrian L.; Roberts, Malcolm J.

    2017-12-01

    As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered.

  1. The calculus of variations in the large

    CERN Document Server

    Morse, M

    1934-01-01

    Morse theory is a study of deep connections between analysis and topology. In its classical form, it provides a relationship between the critical points of certain smooth functions on a manifold and the topology of the manifold. It has been used by geometers, topologists, physicists, and others as a remarkably effective tool to study manifolds. In the 1980s and 1990s, Morse theory was extended to infinite dimensions with great success. This book is Morse's own exposition of his ideas. It has been called one of the most important and influential mathematical works of the twentieth century. Calc

  2. Handling large variations in mechanics: Some applications

    Indian Academy of Sciences (India)

    become a simple random walk wherein most jumps occur to the left-and right- ..... region 1 spans from the start of the test to the occurrence of the 1st event .... analysis would help in engineering design decision making. 4. ... Colombo I S, Forde M C, Main I G and Halliday J 2003a AE monitoring of concrete bridge beams in.

  3. Tidal and seasonal variations in calving flux observed with passive seismology

    Science.gov (United States)

    Bartholomaus, T.C.; Larsen, Christopher F.; West, Michael E.; O'Neel, Shad; Pettit, Erin C.; Truffer, Martin

    2015-01-01

    The seismic signatures of calving events, i.e., calving icequakes, offer an opportunity to examine calving variability with greater precision than is available with other methods. Here using observations from Yahtse Glacier, Alaska, we describe methods to detect, locate, and characterize calving icequakes. We combine these icequake records with a coincident, manually generated record of observed calving events to develop and validate a statistical model through which we can infer iceberg sizes from the properties of calving icequakes. We find that the icequake duration is the single most significant predictor of an iceberg's size. We then apply this model to 18 months of seismic recordings and find elevated iceberg calving flux during the summer and fall and a pronounced lull in calving during midwinter. Calving flux is sensitive to semidiurnal tidal stage. Large calving events are tens of percent more likely during falling and low tides than during rising and high tides, consistent with a view that deeper water has a stabilizing influence on glacier termini. Multiple factors affect the occurrence of mechanical fractures that ultimately lead to iceberg calving. At Yahtse Glacier, seismology allows us to demonstrate that variations in the rate of submarine melt are a dominant control on iceberg calving rates at seasonal timescales. On hourly to daily timescales, tidal modulation of the normal stress against the glacier terminus reveals the nonlinear glacier response to changes in the near-terminus stress field.

  4. On the Fluctuating Component of the Sun's Large-Scale Magnetic Field

    Science.gov (United States)

    Wang, Y.-M.; Sheeley, N. R., Jr.

    2003-06-01

    The Sun's large-scale magnetic field and its proxies are known to undergo substantial variations on timescales much less than a solar cycle but longer than a rotation period. Examples of such variations include the double activity maximum inferred by Gnevyshev, the large peaks in the interplanetary field strength observed in 1982 and 1991, and the 1.3-1.4 yr periodicities detected over limited time intervals in solar wind speed and geomagnetic activity. We consider the question of the extent to which these variations are stochastic in nature. For this purpose, we simulate the evolution of the Sun's equatorial dipole strength and total open flux under the assumption that the active region sources (BMRs) are distributed randomly in longitude. The results are then interpreted with the help of a simple random walk model including dissipation. We find that the equatorial dipole and open flux generally exhibit multiple peaks during each 11 yr cycle, with the highest peak as likely to occur during the declining phase as at sunspot maximum. The widths of the peaks are determined by the timescale τ~1 yr for the equatorial dipole to decay through the combined action of meridional flow, differential rotation, and supergranular diffusion. The amplitudes of the fluctuations depend on the strengths and longitudinal phase relations of the BMRs, as well as on the relative rates of flux emergence and decay. We conclude that stochastic processes provide a viable explanation for the ``Gnevyshev gaps'' and for the existence of quasi periodicities in the range ~1-3 yr.

  5. Backup flexibility classes in emerging large-scale renewable electricity systems

    International Nuclear Information System (INIS)

    Schlachtberger, D.P.; Becker, S.; Schramm, S.; Greiner, M.

    2016-01-01

    Highlights: • Flexible backup demand in a European wind and solar based power system is modelled. • Three flexibility classes are defined based on production and consumption timescales. • Seasonal backup capacities are shown to be only used below 50% renewable penetration. • Large-scale transmission between countries can reduce fast flexible capacities. - Abstract: High shares of intermittent renewable power generation in a European electricity system will require flexible backup power generation on the dominant diurnal, synoptic, and seasonal weather timescales. The same three timescales are already covered by today’s dispatchable electricity generation facilities, which are able to follow the typical load variations on the intra-day, intra-week, and seasonal timescales. This work aims to quantify the changing demand for those three backup flexibility classes in emerging large-scale electricity systems, as they transform from low to high shares of variable renewable power generation. A weather-driven modelling is used, which aggregates eight years of wind and solar power generation data as well as load data over Germany and Europe, and splits the backup system required to cover the residual load into three flexibility classes distinguished by their respective maximum rates of change of power output. This modelling shows that the slowly flexible backup system is dominant at low renewable shares, but its optimized capacity decreases and drops close to zero once the average renewable power generation exceeds 50% of the mean load. The medium flexible backup capacities increase for modest renewable shares, peak at around a 40% renewable share, and then continuously decrease to almost zero once the average renewable power generation becomes larger than 100% of the mean load. The dispatch capacity of the highly flexible backup system becomes dominant for renewable shares beyond 50%, and reach their maximum around a 70% renewable share. For renewable shares

  6. Natural and anthropogenic radionuclide distributions in the Nansen Basin, Artic Ocean: Scavenging rates and circulation timescales

    Science.gov (United States)

    Kirk Cochran, J.; Hirschberg, David J.; Livingston, Hugh D.; Buesseler, Ken O.; Key, Robert M.

    Determination of the naturally occurring radionuclides 232Th, 230Th, 228 Th and 210Pb, and the anthropogenic radionuclides 241Am, 239,240Pu, 134Cs and 137Cs in water samples collected across the Nansen Basin from the Barents Sea slope to the Gakkel Ridge provides tracers with which to characterize both scavenging rates and circulation timescales in this portion of the Arctic Ocean. Large volume water samples (˜ 15001) were filtered in situ to separate particulate (> 0.5 μm) and dissolved Th isotopes and 241Am. Thorium-230 displays increases in both particulate and dissolved activities with depth, with dissolved 230Th greater and particulate 230Th lower in the deep central Nansen Basin than at the Barents Sea slope. Dissolved 228Th activities also are greater relative to 228Ra, in the central basin. Residence times for Th relative to removal from solution onto particles are ˜1 year in surface water, ˜10 years in deep water adjacent to the Barents Sea slope, and ˜20 years in the Eurasian Basin Deep Water. Lead-210 in the central basin deep water also has a residence time of ˜20 years with respect to its removal from the water column. This texture of scavenging is reflected in distributions of the particle-reactive anthropogenic radionuclide 241Am, which shows higher activities relative to Pu in the central Nansen Basin than at the Barents Sea slope. Distributions Of 137Cs show more rapid mixing at the basin margins (Barents Sea slope in the south, Gakkel Ridge in the north) than in the basin interior. Cesium-137 is mixed throughout the water column adjacent to the Barents Sea slope and is present in low but detectable activities in the Eurasian Basin Deep Water in the central basin. At the time of sampling (1987) the surface water at all stations had been labeled with 134Cs released in the 1986 accident at the Chernobyl nuclear power station. In the ˜1 year since the introduction of Chernobyl 134Cs to the Nansen Basin, it had been mixed to depths of ˜800 m at

  7. Surface Freshwater Storage Variations in the Orinoco Floodplains Using Multi-Satellite Observations

    Directory of Open Access Journals (Sweden)

    Frédéric Frappart

    2014-12-01

    Full Text Available Variations in surface water extent and storage are poorly characterized from regional to global scales. In this study, a multi-satellite approach is proposed to estimate the water stored in the floodplains of the Orinoco Basin at a monthly time-scale using remotely-sensed observations of surface water from the Global Inundation Extent Multi-Satellite (GIEMS and stages from Envisat radar altimetry. Surface water storage variations over 2003–2007 exhibit large interannual variability and a strong seasonal signal, peaking during summer, and associated with the flood pulse. The volume of surface water storage in the Orinoco Basin was highly correlated with the river discharge at Ciudad Bolivar (R = 0.95, the closest station to the mouth where discharge was estimated, although discharge lagged one month behind storage. The correlation remained high (R = 0.73 after removing seasonal effects. Mean annual variations in surface water volume represented ~170 km3, contributing to ~45% of the Gravity Recovery and Climate Experiment (GRACE-derived total water storage variations and representing ~13% of the total volume of water that flowed out of the Orinoco Basin to the Atlantic Ocean.

  8. Consideration of timescales in post-closure safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2006-11-01

    A key challenge in the development of safety cases for geological repositories is associated with the long periods of time over which radioactive wastes that are disposed of in repositories remain hazardous. Over such periods, a wide range of events and processes characterised by many different timescales acts on a repository and its environment. These events and processes, their attendant uncertainties, and their possible impacts on repository evolution and performance must be identified, assessed and communicated in a safety case. The handling of issues related to timescales was discussed at an OECD/NEA workshop held in Paris in 2002 and a short report providing an account of the lessons learnt and issues raised at the workshop, was published in 2004. There is, however, an evolving understanding regarding the nature of the issues related to timescales and how they should be addressed, which provides the motivation for the present report. The report is based on the analysis of the responses to a questionnaire received from twenty-four organisations, representing both implementers and regulators from thirteen OECD member countries, as well as discussions that took place in several later meetings. The report is aimed at interested parties that already have some detailed background knowledge of safety assessment methodologies and safety cases, including safety assessment practitioners and regulators, project managers and scientific specialists in relevant disciplines. Its aims are: - to review the current status and ongoing discussions on the handling of issues related to timescales in the deep geological disposal of long-lived radioactive waste; - to highlight areas of consensus and points of difference between national programmes; and - to determine if there is room for further improvement in methodologies to handle these issues in safety assessment and in building and presenting safety cases. The handling of issues related to timescales in safety cases is affected

  9. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    KAUST Repository

    Jolivet, Renaud; Coggan, Jay S.; Allaman, Igor; Magistretti, Pierre J.

    2015-01-01

    time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest

  10. Eruption and emplacement timescales of ignimbrite super-eruptions from thermo-kinetics of glass shards

    Directory of Open Access Journals (Sweden)

    Yan eLavallée

    2015-02-01

    Full Text Available Super-eruptions generating hundreds of cubic kilometres of pyroclastic density currents are commonly recorded by thick, welded and lava-like ignimbrites. Despite the huge environmental impact inferred for this type of eruption, little is yet known about the timescales of deposition and post-depositional flow. Without these timescales, the critical question of the duration of any environmental impact, and the ensuing gravity of its effects for the Earth system, eludes us. The eruption and welding of ignimbrites requires three transects of the glass transition. Magma needs to: 1 fragment during ascent, 2 liquefy and relax during deposition, agglutination and welding (sintering, and 3 quench by cooling into the glassy state. Here we show that welding is a rapid, syn-depositional process and that the welded ignimbrite sheet may flow for up to a few hours before passing through the glass transition a final time. Geospeedometry reveals that the basal vitrophyre of the Grey’s Landing ignimbrite underwent the glass transition at a rate of ~0.1 °C.min^-1 at 870 °C; that is, 30-180 °C below pre-eruptive geothermometric estimates. Application of a 1-D cooling model constrains the timescale of deposition, agglutination, and welding of the basal vitrophyre to less than 1 hour, and possibly even tens of minutes. Thermo-mechanical iteration of the sintering process indicates an optimal temperature solution for the emplacement of the vitrophyres at 966 °C. The vitrophyres reveal a Newtonian rheology up to 46 MPa, which suggests that the ash particles annealed entirely during welding and that viscous energy dissipation is unlikely from loading conditions alone, unless shear stresses imposed by the overlying ash flow were excessively high and sustained over long distances. The findings underline the value of the term 'lava-like' flow to describe the end rheology of Snake River-type ignimbrites, fully consistent with the typical lithofacies observed.

  11. Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales

    International Nuclear Information System (INIS)

    Frölicher, Thomas L; Paynter, David J

    2015-01-01

    The transient climate response to cumulative carbon emissions (TCRE) is a highly policy-relevant quantity in climate science. The TCRE suggests that peak warming is linearly proportional to cumulative carbon emissions and nearly independent of the emissions scenario. Here, we use simulations of the Earth System Model (ESM) from the Geophysical Fluid Dynamics Laboratory (GFDL) to show that global mean surface temperature may increase by 0.5 °C after carbon emissions are stopped at 2 °C global warming, implying an increase in the coefficient relating global warming to cumulative carbon emissions on multi-centennial timescales. The simulations also suggest a 20% lower quota on cumulative carbon emissions allowed to achieve a policy-driven limit on global warming. ESM estimates from the Coupled Model Intercomparison Project Phase 5 (CMIP5–ESMs) qualitatively agree on this result, whereas Earth System Models of Intermediate Complexity (EMICs) simulations, used in the IPCC 5th assessment report to assess the robustness of TCRE on multi-centennial timescales, suggest a post-emissions decrease in temperature. The reason for this discrepancy lies in the smaller simulated realized warming fraction in CMIP5–ESMs, including GFDL ESM2M, than in EMICs when carbon emissions increase. The temperature response to cumulative carbon emissions can be characterized by three different phases and the linear TCRE framework is only valid during the first phase when carbon emissions increase. For longer timescales, when emissions tape off, two new metrics are introduced that better characterize the time-dependent temperature response to cumulative carbon emissions: the equilibrium climate response to cumulative carbon emissions and the multi-millennial climate response to cumulative carbon emissions. (letter)

  12. Trends and Correlation Estimation in Climate Sciences: Effects of Timescale Errors

    Science.gov (United States)

    Mudelsee, M.; Bermejo, M. A.; Bickert, T.; Chirila, D.; Fohlmeister, J.; Köhler, P.; Lohmann, G.; Olafsdottir, K.; Scholz, D.

    2012-12-01

    Trend describes time-dependence in the first moment of a stochastic process, and correlation measures the linear relation between two random variables. Accurately estimating the trend and correlation, including uncertainties, from climate time series data in the uni- and bivariate domain, respectively, allows first-order insights into the geophysical process that generated the data. Timescale errors, ubiquitious in paleoclimatology, where archives are sampled for proxy measurements and dated, poses a problem to the estimation. Statistical science and the various applied research fields, including geophysics, have almost completely ignored this problem due to its theoretical almost-intractability. However, computational adaptations or replacements of traditional error formulas have become technically feasible. This contribution gives a short overview of such an adaptation package, bootstrap resampling combined with parametric timescale simulation. We study linear regression, parametric change-point models and nonparametric smoothing for trend estimation. We introduce pairwise-moving block bootstrap resampling for correlation estimation. Both methods share robustness against autocorrelation and non-Gaussian distributional shape. We shortly touch computing-intensive calibration of bootstrap confidence intervals and consider options to parallelize the related computer code. Following examples serve not only to illustrate the methods but tell own climate stories: (1) the search for climate drivers of the Agulhas Current on recent timescales, (2) the comparison of three stalagmite-based proxy series of regional, western German climate over the later part of the Holocene, and (3) trends and transitions in benthic oxygen isotope time series from the Cenozoic. Financial support by Deutsche Forschungsgemeinschaft (FOR 668, FOR 1070, MU 1595/4-1) and the European Commission (MC ITN 238512, MC ITN 289447) is acknowledged.

  13. Global Effects of Superparameterization on Hydrothermal Land-Atmosphere Coupling on Multiple Timescales

    Science.gov (United States)

    Qin, Hongchen; Pritchard, Michael S.; Kooperman, Gabriel J.; Parishani, Hossein

    2018-02-01

    Many conventional General Circulation Models (GCMs) in the Global Land-Atmosphere Coupling Experiment (GLACE) tend to produce what is now recognized as overly strong land-atmosphere (L-A) coupling. We investigate the effects of cloud Superparameterization (SP) on L-A coupling on timescales beyond diurnal where it has been recently shown to have a favorable muting effect hydrologically. Using the Community Atmosphere Model v3.5 (CAM3.5) and its Superparameterized counterpart SPCAM3.5, we conducted soil moisture interference experiments following the GLACE and Atmospheric Model Intercomparison Project (AMIP) protocols. The results show that, on weekly-to-subseasonal timescales, SP also mutes hydrologic L-A coupling. This is detectable globally, and happens through the evapotranspiration-precipitation segment. But on seasonal timescales, SP does not exhibit detectable effects on hydrologic L-A coupling. Two robust regional effects of SP on thermal L-A coupling have also been explored. Over the Arabian Peninsula, SP reduces thermal L-A coupling through a straightforward control by mean rainfall reduction. More counterintuitively, over the Southwestern US and Northern Mexico, SP enhances the thermal L-A coupling in a way that is independent of rainfall and soil moisture. This signal is associated with a systematic and previously unrecognized effect of SP that produces an amplified Bowen ratio, and is detectable in multiple SP model versions and experiment designs. In addition to amplifying the present-day Bowen ratio, SP is found to amplify the climate sensitivity of Bowen ratio as well, which likely plays a role in influencing climate change predictions at the L-A interface.

  14. Hour time-scale QPOs in the X-ray and radio emission of LS I +61°303

    Science.gov (United States)

    Nösel, S.; Sharma, R.; Massi, M.; Cimò, G.; Chernyakova, M.

    2018-05-01

    LS I +61°303 is an X-ray binary with a radio outburst every ˜27 d. Previous studies of the stellar system revealed radio microflares superimposed on the large radio outburst. We present here new radio observations of LS I +61°303 at 2.2 GHz with the Westerbork Synthesis Radio Telescope (WSRT). Using various timing analysis methods, we find significant quasi-periodic oscillations (QPOs) of 55 min stable over the duration of 4 d. We also use archival data obtained from the Suzaku satellite at X-ray wavelengths. We report here for the first time significant X-ray QPOs of about 2 h present over the time span of 21 h. We compare our results with the previously reported QPO observations and we conclude that the QPOs seem to be associated with the radio outburst, independent of the amplitude of the outburst. Finally, the different QPO time-scales are discussed in the context of magnetic reconnection.

  15. Discovery of a ∼5 day characteristic timescale in the Kepler power spectrum of Zw 229–15

    Energy Technology Data Exchange (ETDEWEB)

    Edelson, R.; Smith, K. L.; Mushotzky, R. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Vaughan, S. [X-Ray and Observational Astronomy Group, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Malkan, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Kelly, B. C. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530 (United States); Boyd, P. T., E-mail: redelson@astro.umd.edu [Astrophysics Science Division, NASA/GSFC, Code 660, Greenbelt, MD 20771 (United States)

    2014-11-01

    We present time series analyses of the full Kepler data set of Zw 229–15. This Kepler light curve—with a baseline greater than 3 yr, composed of virtually continuous, evenly sampled 30 minute measurements—is unprecedented in its quality and precision. We utilize two methods of power spectral analysis to investigate the optical variability and search for evidence of a bend frequency associated with a characteristic optical variability timescale. Each method yields similar results. The first interpolates across data gaps to use the standard Fourier periodogram. The second, using the CARMA-based time-domain modeling technique of Kelly et al., does not need evenly sampled data. Both methods find excess power at high frequencies that may be due to Kepler instrumental effects. More importantly, both also show strong bends (Δα ∼ 2) at timescales of ∼5 days, a feature similar to those seen in the X-ray power spectral densities of active galactic nuclei (AGNs) but never before in the optical. This observed ∼5 day timescale may be associated with one of several physical processes potentially responsible for the variability. A plausible association could be made with light-crossing dynamical or thermal timescales depending on the assumed value of the accretion disk size and on unobserved disk parameters such as α and H/R. This timescale is not consistent with the viscous timescale, which would be years in a ∼10{sup 7} M {sub ☉} AGN such as Zw 229–15. However, there must be a second bend on long (≳ 1 yr) timescales and that feature could be associated with the viscous timescale.

  16. Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales

    Science.gov (United States)

    Esselborn, Saskia; Rudenko, Sergei; Schöne, Tilo

    2018-03-01

    Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year), and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ), the Groupe de Recherche de Géodésie Spatiale (GRGS), and the Goddard Space Flight Center (GSFC). The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability) with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr-1 (27 % of the corresponding sea level variability) and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr-1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test orbits calculated at GFZ, the sources of the

  17. Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales

    Directory of Open Access Journals (Sweden)

    S. Esselborn

    2018-03-01

    Full Text Available Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year, and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ, the Groupe de Recherche de Géodésie Spatiale (GRGS, and the Goddard Space Flight Center (GSFC. The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr−1 (27 % of the corresponding sea level variability and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr−1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test

  18. Nuclear waste in the anthropocene. Uncertainties and unforeseeable timescales in the disposal of nuclear waste

    International Nuclear Information System (INIS)

    Brunnengraeber, Achim; Goerg, Christoph

    2017-01-01

    From a scientific perspective, in particular following the Working Group on the Anthropocene of the International Commission on Stratigraphy (WGA-ISC), the major challenge for determining the Anthropocene and its start is the search for a ''golden spike''. The WGA-ISC agreed on nuclear fallout from disasters. For a full understanding of the Anthropocene, it however seems necessary to go further than that. We obtain a much broader understanding of the challenges that the new era represents for humanity if we take into account the so-called civilian use of nuclear energy and in particular the challenges posed by nuclear waste - long timescales and scientific uncertainties.

  19. The predictability of a lake phytoplankton community, over time-scales of hours to years

    DEFF Research Database (Denmark)

    Thomas, Mridul K.; Fontana, Simone; Reyes, Marta

    2018-01-01

    monitoring data (biological, physical and chemical) to assess the predictability of phytoplankton cell density in one lake across an unprecedented range of time-scales. Communities were highly predictable over hours to months: model R2 decreased from 0.89 at 4 hours to 0.74 at 1 month, and in a long......Forecasting changes to ecological communities is one of the central challenges in ecology. However, nonlinear dependencies, biotic interactions and data limitations have limited our ability to assess how predictable communities are. Here, we used a machine learning approach and environmental...

  20. RAPID TIMESCALES FOR MAGMA OCEAN CRYSTALLIZATION ON THE HOWARDITE-EUCRITE-DIOGENITE PARENT BODY

    International Nuclear Information System (INIS)

    Schiller, Martin; Paton, Chad; Bizzarro, Martin; Baker, Joel; Creech, John; Millet, Marc-Alban; Irving, Anthony

    2011-01-01

    Asteroid 4 Vesta has long been postulated as the source for the howardite-eucrite-diogenite (HED) achondrite meteorites. Here we show that Al-free diogenite meteorites record variability in the mass-independent abundance of 26 Mg ( 26 Mg*) that is correlated with their mineral chemistry. This suggests that these meteorites captured the Mg-isotopic evolution of a large-scale differentiating magma body with increasing 27 Al/ 24 Mg during the lifespan of the short-lived 26 Al nuclide (t 1/2 ∼ 730,000 yr). Thus, diogenites and eucrites represent crystallization products of a large-scale magma ocean associated with the differentiation and magmatic evolution of the HED parent body. The 26 Mg* composition of the most primitive diogenites requires onset of the magma ocean crystallization within 0.6 -0.4 +0.5 Myr of solar system formation. Moreover, 26 Mg* variations among diogenites and eucrites imply that near complete solidification of the HED parent body occurred within the following 2-3 Myr. Thermal models predict that such rapid cooling and magma ocean crystallization could only occur on small asteroids (<100 km), implying that 4 Vesta is not the source of the HED meteorites.

  1. Erosion rates across space and timescales from a multi-proxy study of rivers of eastern Taiwan

    Science.gov (United States)

    Fellin, Maria Giuditta; Chen, Chia-Yu; Willett, Sean D.; Christl, Marcus; Chen, Yue-Gau

    2017-10-01

    We derive erosion rates from detrital zircon fission-track ages and cosmogenic nuclide concentrations from sediments from the modern rivers of eastern Taiwan in order to investigate how surface erosional processes vary in space and time across the young arc-continent collisional orogen of Taiwan. Taiwan is characterized by rapid rates of exhumation, a fluvial and landslide-dominated landscape, high seismicity, high relief and frequent typhoons. The obliquity between the convergence direction and the trend of the plate boundary provides a gradient in uplift and variations in longevity of orogenic activity with a young, immature orogen in the south, a mature orogen in central and northern Taiwan, and perhaps even the cessation of orogeny in the far north. The modern zircon fission-track detrital record is consistent with basement ages that show that much of the orogen is eroding at high rates with basin-wide mean zircon fission-track cooling ages as young as 0.9 Ma. The erosion rates derived from concentrations of cosmogenic nuclides (10Be) provide erosion rates averaged over much shorter timescales, but these two proxies provide estimates of erosion rates that are within error of each other across most of the collisional belt. Erosion rates are lowest in the immature zone of the orogen (Taiwan, and increase to values ≥ 4 km/Ma in central Taiwan. Geomorphic indices, in particular channel steepness, are also correlated with erosion rates, suggesting that fluvial erosion is the dominant exhumation process and that landscape evolution is reacting primarily to tectonic forcing, fast enough to keep the landscape in a state of quasi-equilibrium where erosion rates and rock uplift rates are nearly equal. We find no measurable effects due to rock erodibility or precipitation rate, but if these parameters co-vary with tectonic uplift rate, our data could not resolve the influence of each.

  2. A MAD Explanation for the Correlation between Bulk Lorentz Factor and Minimum Variability Timescale

    Science.gov (United States)

    Lloyd-Ronning, Nicole; Lei, Wei-hua; Xie, Wei

    2018-04-01

    We offer an explanation for the anti-correlation between the minimum variability timescale (MTS) in the prompt emission light curve of gamma-ray bursts (GRBs) and the estimated bulk Lorentz factor of these GRBs, in the context of a magnetically arrested disk (MAD) model. In particular, we show that previously derived limits on the maximum available energy per baryon in a Blandford-Znajek jet leads to a relationship between the characteristic MAD timescale in GRBs and the maximum bulk Lorentz factor: tMAD∝Γ-6, somewhat steeper than (although within the error bars of) the fitted relationship found in the GRB data. Similarly, the MAD model also naturally accounts for the observed anti-correlation between MTS and gamma-ray luminosity L in the GRB data, and we estimate the accretion rates of the GRB disk (given these luminosities) in the context of this model. Both of these correlations (MTS - Γ and MTS - L) are also observed in the AGN data, and we discuss the implications of our results in the context of both GRB and blazar systems.

  3. Understanding Crystal Populations: The Role of Textural Analysis in Determining Magmatic Timescales

    Science.gov (United States)

    Jerram, D. A.

    2006-12-01

    Crystal populations in igneous rocks that erupt at the Earths surface act as records of magma chamber processes at depth, predominantly recording episodes of growth/nucleation and geochemical changes within the host body. Detailed inspection of such crystal populations, however, reveals a complex crystal cargo that comprises crystals which have grown directly from the host, crystals that have spent one or more protracted periods being isolated from the host magma and crystals that originated from a completely different magma body and/or country rock. To further interrogate this crystal cargo we can use textural analysis techniques to fully quantify the crystal population and gather important information about the population, such as crystal morphology, spatial distribution and size relationships. When quantified, such data can be used to better constrain the different components of the resultant crystal population and how they relate to each other. Additionally, by combining textural analysis information with geochemical analysis, a powerful measure of magma timescales and magma chamber processes results. In this contribution the different types of textural analysis techniques in 2D and 3D are introduced with examples from both plutonic and volcanic systems presented to highlight the roll of this approach to quantifying magma timescales.

  4. Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation

    Science.gov (United States)

    Torrey, Paul; Vogelsberger, Mark; Hernquist, Lars; McKinnon, Ryan; Marinacci, Federico; Simcoe, Robert A.; Springel, Volker; Pillepich, Annalisa; Naiman, Jill; Pakmor, Rüdiger; Weinberger, Rainer; Nelson, Dylan; Genel, Shy

    2018-06-01

    The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fixed stellar mass are correlated with galactic SFR. In this Letter, we use hydrodynamical simulations to quantify the time-scales over which populations of galaxies oscillate about the average SFR and metallicity values at fixed stellar mass. We find that Illustris and IllustrisTNG predict that galaxy offsets from the star formation main sequence and MZR oscillate over similar time-scales, are often anticorrelated in their evolution, evolve with the halo dynamical time, and produce a pronounced FMR. Our models indicate that galaxies oscillate about equilibrium SFR and metallicity values - set by the galaxy's stellar mass - and that SFR and metallicity offsets evolve in an anticorrelated fashion. This anticorrelated variability of the metallicity and SFR offsets drives the existence of the FMR in our models. In contrast to Illustris and IllustrisTNG, we speculate that the SFR and metallicity evolution tracks may become decoupled in galaxy formation models dominated by feedback-driven globally bursty SFR histories, which could weaken the FMR residual correlation strength. This opens the possibility of discriminating between bursty and non-bursty feedback models based on the strength and persistence of the FMR - especially at high redshift.

  5. Precise Receiver Clock Offset Estimations According to Each Global Navigation Satellite Systems (GNSS) Timescales

    Science.gov (United States)

    Thongtan, Thayathip; Tirawanichakul, Pawit; Satirapod, Chalermchon

    2017-12-01

    Each GNSS constellation operates its own system times; namely, GPS system time (GPST), GLONASS system time (GLONASST), BeiDou system time (BDT) and Galileo system time (GST). They could be traced back to Coordinated Universal Time (UTC) scale and are aligned to GPST. This paper estimates the receiver clock offsets to three timescales: GPST, GLONASST and BDT. The two measurement scenarios use two identical multi-GNSS geodetic receivers connected to the same geodetic antenna through a splitter. One receiver is driven by its internal oscillators and another receiver is connected to the external frequency oscillators, caesium frequency standard, kept as the Thailand standard time scale at the National Institute of Metrology (Thailand) called UTC(NIMT). The three weeks data are observed at 30 seconds sample rate. The receiver clock offsets with respected to the three system time are estimated and analysed through the geodetic technique of static Precise Point Positioning (PPP) using a data processing software developed by Wuhan University - Positioning And Navigation Data Analyst (PANDA) software. The estimated receiver clock offsets are around 32, 33 and 18 nanoseconds from GPST, GLONASST and BDT respectively. This experiment is initially stated that each timescale is inter-operated with GPST and further measurements on receiver internal delay has to be determined for clock comparisons especially the high accuracy clock at timing laboratories.

  6. A Two-Timescale Response to Ozone Depletion: Importance of the Background State

    Science.gov (United States)

    Seviour, W.; Waugh, D.; Gnanadesikan, A.

    2015-12-01

    It has been recently suggested that the response of Southern Ocean sea-ice extent to stratospheric ozone depletion is time-dependent; that the ocean surface initially cools due to enhanced northward Ekman drift caused by a poleward shift in the eddy-driven jet, and then warms after some time due to upwelling of warm waters from below the mixed layer. It is therefore possible that ozone depletion could act to favor a short-term increase in sea-ice extent. However, many uncertainties remain in understanding this mechanism, with different models showing widely differing time-scales and magnitudes of the response. Here, we analyze an ensemble of coupled model simulations with a step-function ozone perturbation. The two-timescale response is present with an approximately 30 year initial cooling period. The response is further shown to be highly dependent upon the background ocean temperature and salinity stratification, which is influenced by both natural internal variability and the isopycnal eddy mixing parameterization. It is suggested that the majority of inter-model differences in the Southern Ocean response to ozone depletion is caused by differences in stratification.

  7. Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery.

    Science.gov (United States)

    Choy, Meng S; Li, Yang; Machado, Luciana E S F; Kunze, Micha B A; Connors, Christopher R; Wei, Xingyu; Lindorff-Larsen, Kresten; Page, Rebecca; Peti, Wolfgang

    2017-02-16

    Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. STELLAR POPULATION GRADIENTS IN ULTRALUMINOUS INFRARED GALAXIES: IMPLICATIONS FOR GAS INFLOW TIMESCALES

    International Nuclear Information System (INIS)

    Soto, Kurt T.; Martin, Crystal L.

    2010-01-01

    Using longslit, optical spectra of ultraluminous infrared galaxies, we measure the evolution in the star formation intensity during galactic mergers. In individual galaxies, we resolve kiloparsec scales allowing comparison of the nucleus, inner disk, and outer disk. We find that the strength of the Hβ absorption line increases with the projected distance from the center of the merger, typically reaching about 9 A around 10 kpc. At these radii, the star formation intensity must have rapidly decreased about 300-400 Myr ago; only stellar populations deficient in stars more massive than Type A produce such strong Balmer absorption. In contrast, we find the star formation history in the central kiloparsec consistent with continuous star formation. Our measurements indicate that gas depletion occurs from the outer disk inward during major mergers. This result is consistent with merger-induced gas inflow and empirically constrains the gas inflow timescale. Numerical simulations accurately calculate the total amount of infalling gas but often assume the timescale for infall. These new measurements are therefore central to modeling merger-induced star formation and active galactic nucleus activity.

  9. Formation Timescales of Amosphous Rims on Lunar Grains Derived from ARTEMIS Observations

    Science.gov (United States)

    Poppe, A. R.; Farrell, W. M.; Halekas, Jasper S.

    2018-01-01

    The weathering of airless bodies exposed to space is a fundamental process in the formation and evolution of planetary surfaces. At the Moon, space weathering induces a variety of physical, chemical, and optical changes including the formation of nanometer-sized amorphous rims on individual lunar grains. These rims are formed by vapor redeposition from micrometeoroid impacts and ion irradiation-induced amorphization of the crystalline matrix. For ion irradiation-induced rims, however, laboratory experiments of the depth and formation timescales of these rims stand in stark disagreement with observations of lunar soil grains. We use observations by the Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) spacecraft in orbit around the Moon to compute the mean ion flux to the lunar surface between 10 eV and 5 MeV and convolve this flux with ion irradiation-induced vacancy production rates as a function of depth calculated using the Stopping Range of Ions in Matter model. By combining these results with laboratory measurements of the critical fluence for charged-particle amorphization in olivine, we can predict the formation timescale of amorphous rims as a function of depth in olivinic grains. This analysis resolves two outstanding issues: (1) the provenance of >100 nm amorphous rims on lunar grains and (2) the nature of the depth-age relationship for amorphous rims on lunar grains.

  10. Multiple timescale analysis and factor analysis of energy ecological footprint growth in China 1953-2006

    International Nuclear Information System (INIS)

    Chen Chengzhong; Lin Zhenshan

    2008-01-01

    Scientific analysis of energy consumption and its influencing factors is of great importance for energy strategy and policy planning. The energy consumption in China 1953-2006 is estimated by applying the energy ecological footprint (EEF) method, and the fluctuation periods of annual China's per capita EEF (EEF cpc ) growth rate are analyzed with the empirical mode decomposition (EMD) method in this paper. EEF intensity is analyzed to depict energy efficiency in China. The main timescales of the 37 factors that affect the annual growth rate of EEF cpc are also discussed based on EMD and factor analysis methods. Results show three obvious undulation cycles of the annual growth rate of EEF cpc , i.e., 4.6, 14.4 and 34.2 years over the last 53 years. The analysis findings from the common synthesized factors of IMF1, IMF2 and IMF3 timescales of the 37 factors suggest that China's energy policy-makers should attach more importance to stabilizing economic growth, optimizing industrial structure, regulating domestic petroleum exploitation and improving transportation efficiency

  11. Seamless Modeling for Research & Predictability of Severe Tropical Storms from Weather-to-Climate Timescales

    Science.gov (United States)

    Ramaswamy, V.; Chen, J. H.; Delworth, T. L.; Knutson, T. R.; Lin, S. J.; Murakami, H.; Vecchi, G. A.

    2017-12-01

    Damages from catastrophic tropical storms such as the 2017 destructive hurricanes compel an acceleration of scientific advancements to understand the genesis, underlying mechanisms, frequency, track, intensity, and landfall of these storms. The advances are crucial to provide improved early information for planners and responders. We discuss the development and utilization of a global modeling capability based on a novel atmospheric dynamical core ("Finite-Volume Cubed Sphere or FV3") which captures the realism of the recent tropical storms and is a part of the NOAA Next-Generation Global Prediction System. This capability is also part of an emerging seamless modeling system at NOAA/ Geophysical Fluid Dynamics Laboratory for simulating the frequency of storms on seasonal and longer timescales with high fidelity e.g., Atlantic hurricane frequency over the past decades. In addition, the same modeling system has also been employed to evaluate the nature of projected storms on the multi-decadal scales under the influence of anthropogenic factors such as greenhouse gases and aerosols. The seamless modeling system thus facilitates research into and the predictability of severe tropical storms across diverse timescales of practical interest to several societal sectors.

  12. Quantifying the timescales over which exogenous and endogenous conditions affect soil respiration.

    Science.gov (United States)

    Barron-Gafford, Greg A; Cable, Jessica M; Bentley, Lisa Patrick; Scott, Russell L; Huxman, Travis E; Jenerette, G Darrel; Ogle, Kiona

    2014-04-01

    Understanding how exogenous and endogenous factors and above-ground-below-ground linkages modulate carbon dynamics is difficult because of the influences of antecedent conditions. For example, there are variable lags between above-ground assimilation and below-ground efflux, and the duration of antecedent periods are often arbitrarily assigned. Nonetheless, developing models linking above- and below-ground processes is crucial for estimating current and future carbon dynamics. We collected data on leaf-level photosynthesis (Asat ) and soil respiration (Rsoil ) in different microhabitats (under shrubs vs under bunchgrasses) in the Sonoran Desert. We evaluated timescales over which endogenous and exogenous factors control Rsoil by analyzing data in the context of a semimechanistic temperature-response model of Rsoil that incorporated effects of antecedent exogenous (soil water) and endogenous (Asat ) conditions. For both microhabitats, antecedent soil water and Asat significantly affected Rsoil , but Rsoil under shrubs was more sensitive to Asat than that under bunchgrasses. Photosynthetic rates 1 and 3 d before the Rsoil measurement were most important in determining current-day Rsoil under bunchgrasses and shrubs, respectively, indicating a significant lag effect. Endogenous and exogenous controls are critical drivers of Rsoil , but the relative importance and the timescale over which each factor affects Rsoil depends on above-ground vegetation and ecosystem structure characteristics. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. Improve projections of changes in southern African summer rainfall through comprehensive multi-timescale empirical statistical downscaling

    Science.gov (United States)

    Dieppois, B.; Pohl, B.; Eden, J.; Crétat, J.; Rouault, M.; Keenlyside, N.; New, M. G.

    2017-12-01

    The water management community has hitherto neglected or underestimated many of the uncertainties in climate impact scenarios, in particular, uncertainties associated with decadal climate variability. Uncertainty in the state-of-the-art global climate models (GCMs) is time-scale-dependant, e.g. stronger at decadal than at interannual timescales, in response to the different parameterizations and to internal climate variability. In addition, non-stationarity in statistical downscaling is widely recognized as a key problem, in which time-scale dependency of predictors plays an important role. As with global climate modelling, therefore, the selection of downscaling methods must proceed with caution to avoid unintended consequences of over-correcting the noise in GCMs (e.g. interpreting internal climate variability as a model bias). GCM outputs from the Coupled Model Intercomparison Project 5 (CMIP5) have therefore first been selected based on their ability to reproduce southern African summer rainfall variability and their teleconnections with Pacific sea-surface temperature across the dominant timescales. In observations, southern African summer rainfall has recently been shown to exhibit significant periodicities at the interannual timescale (2-8 years), quasi-decadal (8-13 years) and inter-decadal (15-28 years) timescales, which can be interpret as the signature of ENSO, the IPO, and the PDO over the region. Most of CMIP5 GCMs underestimate southern African summer rainfall variability and their teleconnections with Pacific SSTs at these three timescales. In addition, according to a more in-depth analysis of historical and pi-control runs, this bias is might result from internal climate variability in some of the CMIP5 GCMs, suggesting potential for bias-corrected prediction based empirical statistical downscaling. A multi-timescale regression based downscaling procedure, which determines the predictors across the different timescales, has thus been used to

  14. Time variations in geomagnetic intensity

    Science.gov (United States)

    Valet, Jean-Pierre

    2003-03-01

    After many years spent by paleomagnetists studying the directional behavior of the Earth's magnetic field at all possible timescales, detailed measurements of field intensity are now needed to document the variations of the entire vector and to analyze the time evolution of the field components. A significant step has been achieved by combining intensity records derived from archeological materials and from lava flows in order to extract the global field changes over the past 12 kyr. A second significant step was due to the emergence of coherent records of relative paleointensity using the remanent magnetization of sediments to retrace the evolution of the dipole field. A third step was the juxtaposition of these signals with those derived from cosmogenic isotopes. Contemporaneous with the acquisition of records, new techniques have been developed to constrain the geomagnetic origin of the signals. Much activity has also been devoted to improving the quality of determinations of absolute paleointensity from volcanic rocks with new materials, proper selection of samples, and investigations of complex changes in magnetization during laboratory experiments. Altogether these developments brought us from a situation where the field changes were restricted to the past 40 kyr to the emergence of a coherent picture of the changes in the geomagnetic dipole moment for at least the past 1 Myr. On longer timescales the field variability and its average behavior is relatively well documented for the past 400 Myr. Section 3 gives a summary of most methods and techniques that are presently used to track the field intensity changes in the past. In each case, current limits and potential promises are discussed. The section 4 describes the field variations measured so far over various timescales covered by the archeomagnetic and the paleomagnetic records. Preference has always been given to composite records and databases in order to extract and discuss major and global geomagnetic

  15. Variability in the air–sea interaction patterns and timescales within the south-eastern Bay of Biscay, as observed by HF radar data

    Directory of Open Access Journals (Sweden)

    A. Fontán

    2013-04-01

    Full Text Available Two high-frequency (HF radar stations were installed on the coast of the south-eastern Bay of Biscay in 2009, providing high spatial and temporal resolution and large spatial coverage of currents in the area for the first time. This has made it possible to quantitatively assess the air–sea interaction patterns and timescales for the period 2009–2010. The analysis was conducted using the Barnett–Preisendorfer approach to canonical correlation analysis (CCA of reanalysis surface winds and HF radar-derived surface currents. The CCA yields two canonical patterns: the first wind–current interaction pattern corresponds to the classical Ekman drift at the sea surface, whilst the second describes an anticyclonic/cyclonic surface circulation. The results obtained demonstrate that local winds play an important role in driving the upper water circulation. The wind–current interaction timescales are mainly related to diurnal breezes and synoptic variability. In particular, the breezes force diurnal currents in waters of the continental shelf and slope of the south-eastern Bay. It is concluded that the breezes may force diurnal currents over considerably wider areas than that covered by the HF radar, considering that the northern and southern continental shelves of the Bay exhibit stronger diurnal than annual wind amplitudes.

  16. Timescale of Petrogenetic Processes Recorded in the Mount Perkins Magma System, Northern Colorado River Extension Corridor, Arizona

    Science.gov (United States)

    Danielson, Lisa R.; Metcalf, Rodney V.; Miller, Calvin F.; Rhodes Gregory T.; Wooden, J. L.

    2013-01-01

    The Miocene Mt. Perkins Pluton is a small composite intrusive body emplaced in the shallow crust as four separate phases during the earliest stages of crustal extension. Phase 1 (oldest) consists of isotropic hornblende gabbro and a layered cumulate sequence. Phase 2 consists of quartz monzonite to quartz monzodiorite hosting mafic microgranitoid enclaves. Phase 3 is composed of quartz monzonite and is subdivided into mafic enclave-rich zones and enclave-free zones. Phase 4 consists of aphanitic dikes of mafic, intermediate and felsic compositions hosting mafic enclaves. Phases 2-4 enclaves record significant isotopic disequilibrium with surrounding granitoid host rocks, but collectively enclaves and host rocks form a cogenetic suite exhibiting systematic variations in Nd-Sr-Pb isotopes that correlate with major and trace elements. Phases 2-4 record multiple episodes of magma mingling among cogenetic hybrid magmas that formed via magma mixing and fractional crystallization at a deeper crustal. The mafic end-member was alkali basalt similar to nearby 6-4 Ma basalt with enriched OIB-like trace elements and Nd-Sr-Pb isotopes. The felsic end-member was a subalkaline crustal-derived magma. Phase 1 isotropic gabbro exhibits elemental and isotopic compositional variations at relatively constant SiO2, suggesting generation of isotropic gabbro by an open-system process involving two mafic end-members. One end-member is similar in composition to the OIB-like mafic end-member for phases 2-4; the second is similar to nearby 11-8 Ma tholeiite basalt exhibiting low epsilon (sub Nd), and depleted incompatible trace elements. Phase 1 cumulates record in situ fractional crystallization of an OIB-like mafic magma with isotopic evidence of crustal contamination by partial melts generated in adjacent Proterozoic gneiss. The Mt Perkins pluton records a complex history in a lithospheric scale magma system involving two distinct mantle-derived mafic magmas and felsic magma sourced in the

  17. The variational spiked oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Ullah, N.

    1992-08-01

    A variational analysis of the spiked harmonic oscillator Hamiltonian -d 2 / d x 2 + x 2 + δ/ x 5/2 , δ > 0, is reported in this work. A trial function satisfying Dirichlet boundary conditions is suggested. The results are excellent for a large range of values of the coupling parameter. (author)

  18. Nonlinear interactions between the Amazon River basin and the Tropical North Atlantic at interannual timescales

    Science.gov (United States)

    Builes-Jaramillo, Alejandro; Marwan, Norbert; Poveda, Germán; Kurths, Jürgen

    2018-04-01

    We study the physical processes involved in the potential influence of Amazon (AM) hydroclimatology over the Tropical North Atlantic (TNA) Sea Surface Temperatures (SST) at interannual timescales, by analyzing time series of the precipitation index (P-E) over AM, as well as the surface atmospheric pressure gradient between both regions, and TNA SSTs. We use a recurrence joint probability based analysis that accounts for the lagged nonlinear dependency between time series, which also allows quantifying the statistical significance, based on a twin surrogates technique of the recurrence analysis. By means of such nonlinear dependence analysis we find that at interannual timescales AM hydrology influences future states of the TNA SSTs from 0 to 2 months later with a 90-95% statistical confidence. It also unveils the existence of two-way feedback mechanisms between the variables involved in the processes: (1) precipitation over AM leads the atmospheric pressure gradient between TNA and AM from 0 to 2 month lags, (2) the pressure gradient leads the trade zonal winds over the TNA from 0 to 3 months and from 7 to 12 months, (3) the zonal winds lead the SSTs from 0 to 3 months, and (4) the SSTs lead precipitation over AM by 1 month lag. The analyses were made for time series spanning from 1979 to 2008, and for extreme precipitation events in the AM during the years 1999, 2005, 2009 and 2010. We also evaluated the monthly mean conditions of the relevant variables during the extreme AM droughts of 1963, 1980, 1983, 1997, 1998, 2005, and 2010, and also during the floods of 1989, 1999, and 2009. Our results confirm that the Amazon River basin acts as a land surface-atmosphere bridge that links the Tropical Pacific and TNA SSTs at interannual timescales. The identified mutual interactions between TNA and AM are of paramount importance for a deeper understanding of AM hydroclimatology but also of a suite of oceanic and atmospheric phenomena over the TNA, including recently

  19. Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model

    Science.gov (United States)

    Elsberry, Russell L.; Jordan, Mary S.; Vitart, Frederic

    2010-05-01

    The objective of this study is to provide evidence of predictability on intraseasonal time scales (10-30 days) for western North Pacific tropical cyclone formation and subsequent tracks using the 51-member ECMWF 32-day forecasts made once a week from 5 June through 25 December 2008. Ensemble storms are defined by grouping ensemble member vortices whose positions are within a specified separation distance that is equal to 180 n mi at the initial forecast time t and increases linearly to 420 n mi at Day 14 and then is constant. The 12-h track segments are calculated with a Weighted-Mean Vector Motion technique in which the weighting factor is inversely proportional to the distance from the endpoint of the previous 12-h motion vector. Seventy-six percent of the ensemble storms had five or fewer member vortices. On average, the ensemble storms begin 2.5 days before the first entry of the Joint Typhoon Warning Center (JTWC) best-track file, tend to translate too slowly in the deep tropics, and persist for longer periods over land. A strict objective matching technique with the JTWC storms is combined with a second subjective procedure that is then applied to identify nearby ensemble storms that would indicate a greater likelihood of a tropical cyclone developing in that region with that track orientation. The ensemble storms identified in the ECMWF 32-day forecasts provided guidance on intraseasonal timescales of the formations and tracks of the three strongest typhoons and two other typhoons, but not for two early season typhoons and the late season Dolphin. Four strong tropical storms were predicted consistently over Week-1 through Week-4, as was one weak tropical storm. Two other weak tropical storms, three tropical cyclones that developed from precursor baroclinic systems, and three other tropical depressions were not predicted on intraseasonal timescales. At least for the strongest tropical cyclones during the peak season, the ECMWF 32-day ensemble provides

  20. Variational principles

    CERN Document Server

    Moiseiwitsch, B L

    2004-01-01

    This graduate-level text's primary objective is to demonstrate the expression of the equations of the various branches of mathematical physics in the succinct and elegant form of variational principles (and thereby illuminate their interrelationship). Its related intentions are to show how variational principles may be employed to determine the discrete eigenvalues for stationary state problems and to illustrate how to find the values of quantities (such as the phase shifts) that arise in the theory of scattering. Chapter-by-chapter treatment consists of analytical dynamics; optics, wave mecha

  1. Hydration-dependent dynamics of human telomeric oligonucleotides in the picosecond timescale: A neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Sebastiani, F.; Comez, L.; Sacchetti, F. [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia (Italy); CNR, Istituto Officina dei Materiali, Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, 06123 Perugia (Italy); Longo, M. [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia (Italy); Elettra—Sincrotrone Trieste, 34149 Basovizza, Trieste (Italy); Orecchini, A.; Petrillo, C.; Paciaroni, A., E-mail: alessandro.paciaroni@fisica.unipg.it [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia (Italy); De Francesco, A. [CNR-IOM OGG c/o Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9 (France); Muthmann, M. [Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at Heinz Maier-Leibnitz Zentrum, Lichtenbergstrasse 1, 85747 Garching (Germany); Teixeira, S. C. M. [EPSAM, Keele University, Staffordshire ST5 5BG (United Kingdom); Institut Laue–Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9 (France)

    2015-07-07

    The dynamics of the human oligonucleotide AG{sub 3}(T{sub 2}AG{sub 3}){sub 3} has been investigated by incoherent neutron scattering in the sub-nanosecond timescale. A hydration-dependent dynamical activation of thermal fluctuations in weakly hydrated samples was found, similar to that of protein powders. The amplitudes of such thermal fluctuations were evaluated in two different exchanged wave-vector ranges, so as to single out the different contributions from intra- and inter-nucleotide dynamics. The activation energy was calculated from the temperature-dependent characteristic times of the corresponding dynamical processes. The trends of both amplitudes and activation energies support a picture where oligonucleotides possess a larger conformational flexibility than long DNA sequences. This additional flexibility, which likely results from a significant relative chain-end contribution to the average chain dynamics, could be related to the strong structural polymorphism of the investigated oligonucleotides.

  2. Nuclear waste in the anthropocene. Uncertainties and unforeseeable timescales in the disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Brunnengraeber, Achim [Freie Univ. Berlin (Germany). Environmental Policy Research Centre (FFU); Goerg, Christoph [Klagenfurt Univ., Vienna (Austria). Inst. of Social Ecology

    2017-09-01

    From a scientific perspective, in particular following the Working Group on the Anthropocene of the International Commission on Stratigraphy (WGA-ISC), the major challenge for determining the Anthropocene and its start is the search for a ''golden spike''. The WGA-ISC agreed on nuclear fallout from disasters. For a full understanding of the Anthropocene, it however seems necessary to go further than that. We obtain a much broader understanding of the challenges that the new era represents for humanity if we take into account the so-called civilian use of nuclear energy and in particular the challenges posed by nuclear waste - long timescales and scientific uncertainties.

  3. Accessible methods for the dynamic time-scale decomposition of biochemical systems.

    Science.gov (United States)

    Surovtsova, Irina; Simus, Natalia; Lorenz, Thomas; König, Artjom; Sahle, Sven; Kummer, Ursula

    2009-11-01

    The growing complexity of biochemical models asks for means to rationally dissect the networks into meaningful and rather independent subnetworks. Such foregoing should ensure an understanding of the system without any heuristics employed. Important for the success of such an approach is its accessibility and the clarity of the presentation of the results. In order to achieve this goal, we developed a method which is a modification of the classical approach of time-scale separation. This modified method as well as the more classical approach have been implemented for time-dependent application within the widely used software COPASI. The implementation includes different possibilities for the representation of the results including 3D-visualization. The methods are included in COPASI which is free for academic use and available at www.copasi.org. irina.surovtsova@bioquant.uni-heidelberg.de Supplementary data are available at Bioinformatics online.

  4. Uncertainties in soil-plant interactions in advanced models for long-timescale dose assessment

    Energy Technology Data Exchange (ETDEWEB)

    Klos, R. [Aleksandria Sciences Ltd. (United Kingdom); Limer, L. [Limer Scientific Ltd. (United Kingdom); Perez-Sanchez, D. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas - CIEMAT (Spain); Xu, S.; Andersson, P. [Swedish Radiation Safty Authority (Sweden)

    2014-07-01

    Traditional models for long-timescale dose assessment are generally conceptually straightforward, featuring one, two or three spatial compartments in the soil column and employing data based on annually averaged parameters for climate characteristics. The soil-plant system is usually modelled using concentration ratios. The justification for this approach is that the timescales relevant to the geologic disposal of radioactive waste are so long that simple conceptual models are necessary to account for the inherent uncertainties over the timescale of the dose assessment. In the past few years, attention has been given to more detailed 'advanced' models for use dose assessment that have a high degree of site-specific detail. These recognise more features, events and processes since they have higher spatial and temporal resolution. This modelling approach has been developed to account for redox sensitive radionuclides, variability of the water table position and accumulation in non-agricultural ecosystems prior to conversion to an agricultural ecosystem. The models feature higher spatial and temporal resolution in the soil column (up to ten layers with spatially varying k{sub d}s dependent on soil conditions) and monthly rather than annually averaged parameters. Soil-plant interaction is treated as a dynamic process, allowing for root uptake as a function of time and depth, according to the root profile. Uncertainty in dose assessment models associated with the treatment of prior accumulations in agricultural soils has demonstrated the importance of the model's representation of the soil-plant interaction. The treatment of root uptake as a dynamic process as opposed to a simple concentration ratio implies a potentially important difference despite the dynamic soil-plant transfer rate being based on established concentration ratio values. These discrepancies have also appeared in the results from the higher spatio-temporal resolution models. This paper

  5. Temperature induced syllable breaking unveils nonlinearly interacting timescales in birdsong motor pathway.

    Directory of Open Access Journals (Sweden)

    Matías A Goldin

    Full Text Available The nature of telencephalic control over premotor and motor circuits is debated. Hypotheses range from complete usurping of downstream circuitry to highly interactive mechanisms of control. We show theoretically and experimentally, that telencephalic song motor control in canaries is consistent with a highly interactive strategy. As predicted from a theoretical model of respiratory control, mild cooling of a forebrain nucleus (HVC led to song stretching, but further cooling caused progressive restructuring of song, consistent with the hypothesis that respiratory gestures are subharmonic responses to a timescale present in the output of HVC. This interaction between a life-sustaining motor function (respiration and telencephalic song motor control suggests a more general mechanism of how nonlinear integration of evolutionarily new brain structures into existing circuitry gives rise to diverse, new behavior.

  6. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K. [QuTech and Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots. This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.

  7. CONSTRAINING THE SPIN-DOWN TIMESCALE OF THE WHITE DWARF PROGENITORS OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Meng, Xiangcun; Podsiadlowski, Philipp

    2013-01-01

    Justham and Di Stefano et al. proposed that the white dwarf progenitor of a Type Ia supernova (SN Ia) may have to spin down before it can explode. As the white dwarf spin-down timescale is not well known theoretically, here we try to constrain it empirically (within the framework of this spin-down model) for progenitor systems that contain a giant donor and for which circumbinary material has been detected after the explosion: we obtain an upper limit of a few 10 7 yr. Based on the study of Di Stefano and Kilic, this means that it is too early to rule out the existence of a surviving companion in SNR 0509–67.5

  8. Effects of cooling timescale and non-ideaness of the gas in the shockwaves

    Directory of Open Access Journals (Sweden)

    Mohsen Nejad-Asghar

    2017-09-01

    Full Text Available According to the suddenly compression of the matters in some regions of the compressible fluids, the density and temperature suddenly increases, and shockwaves can be produced. The cooling of post-shock region and non-idealness of the equation of state, $p=(k_B/mu m_prho T (1+brho equivmathcal{K}rho T (1+eta R$, where $mu m_p$ is the relative density of the post-shock gas and $Requiv rho_2 / rho_1$ is the non-idealness parameter, may affect on the shocked gases. In this article, we study the effects of both cooling timescale and non-idealness of the shocked gases, on the relative density of the post-shock region. For simplicity, the shock is assumed planar and steady in which the deceleration is negligible and there is no any instabilities through the cooling layer. Conservation of mass, momentum, and energy across the shock front are given by the Rankine-Hugoniot conditions. The most important factor through the shock is the energy lost per unit mass during the shock process, $Q=frac{n_2 Lambda}{mu_2 m_p} t_{dur}$, where $Lambda (erg cm^{-3} s^{-1}$ is the cooling function at the post-shock region with density $n_2} and mean particle mass $mu_2 m_p$, and $t_{dur}$ is the duration time of the post-shock process. Accurate determination of the cooling timescale requires specifying the elemental abundance of the post-shock region, but a simple estimate can be obtained using $t_{cool}approx k_B T_2/(n_2Lambda$. Eliminating the $n_2 Lambda$, we approximately have $Q/c^2approx lambda T$, where $c equiv sqrt{K_1 T_1}$ is the pre-shock sound speed, $lambda  equiv t_{dur}/t_{cool}$ and $T equiv K_2 T_2/K_1 T_1$. We would be interested to consider the collision of two gas sheets with velocities $v_0$ in the rest frame of the laboratory. Defining the Mach number as $M_0 equiv v_0/c$, we obtain a third degree polynomial equation for $R$, with coefficients as functions of the three parameters $eta$, $lambda$, and $M_0$. We numerically solved this three

  9. Response timescales for martian ice masses and implications for ice flow on Mars

    DEFF Research Database (Denmark)

    Koutnik, Michelle Rebecca; Waddington, E.D.; Winebrener, D.P.

    2013-01-01

    a predictable shape, which is a function of ice temperature, ice rheology, and surface mass-exchange rate. In addition, the time for surface-shape adjustment is shorter than the characteristic time for significant deformation or displacement of internal layers within a flowing ice mass; as a result, surface......On Earth and on Mars, ice masses experience changes in precipitation, temperature, and radiation. In a new climate state, flowing ice masses will adjust in length and in thickness, and this response toward a new steady state has a characteristic timescale. However, a flowing ice mass has...... topography is more diagnostic of flow than are internal-layer shapes. Because the shape of Gemina Lingula, North Polar Layered Deposits indicates that it flowed at some time in the past, we use its current topography to infer characteristics of those past ice conditions, or past climate conditions, in which...

  10. Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano

    Science.gov (United States)

    Petrone, Chiara Maria; Braschi, Eleonora; Francalanci, Lorella; Casalini, Martina; Tommasini, Simone

    2018-06-01

    Steady-state volcanic activity implies equilibrium between the rate of magma replenishment and eruption of compositionally homogeneous magmas, lasting for tens to thousands of years in an open conduit system. The Present-day activity of Stromboli volcano (Aeolian Islands, Southern Italy) has long been recognised as typical of a steady-state volcano, with a shallow magmatic reservoir (highly porphyritic or hp-magma) continuously refilled by more mafic magma (with low phenocryst content or lp-magma) at a constant rate and accompanied by mixing, crystallisation and eruption. Our aim is to clarify the timescale and dynamics of the plumbing system at the establishment of the Present-day steady-state activity (volcanoes.

  11. Control of modular multilevel converters based on time-scale analysis and orthogonal functions

    DEFF Research Database (Denmark)

    Zarri, L.; Tani, A.; Mengoni, M.

    2014-01-01

    current is still a complex task and cannot be fully tackled with traditional linear control techniques. In this paper a multiple time-scale analysis is proposed to determine an approximated model of the MMC that can be used to solve the control problem of the capacitor voltages. In addition, it is shown...... that the reference signal of the circulating current can be built by combining orthogonal functions of the measured voltages and currents. Numerical simulations are used to test the feasibility of the developed approach.......Modular multilevel converter (MMC) is a promising multilevel topology for high-voltage applications that has been developed in recent years. The control of MMCs has been analyzed in detail in many papers, showing that the converter capacitors can be kept charged and balanced by controlling...

  12. Ephemeral Channel Modelling at Historic timescales in Semi-arid Environments

    International Nuclear Information System (INIS)

    Hutton, C. J.; Nicholas, A. P.; Nearing, M. A.; Brazier, R. E.

    2009-01-01

    There is an increasing need to understand how ephemeral channels mediate the movement of water through catchment systems, both to identify the quantity of groundwater and reservoir recharge and to inform flash flood prediction. At historic timescales (10 1 -10 2 years) it is recognised that this requires an understanding of the interactions between flow, sediment and vegetation which feedback to control morphological change and future flood wave propagation. Reduced-complexity models provide a means to develop such understanding. This paper presents a couple 1D-2D numerical model that can be applied at the catchment scale to account for transmission losses and flood wave propagation (1D model), but which also simulates local-scale flow patterns that may be applied to simulate geomorphic response to flood inundation (2D model). The initial model evaluation, conducted at the Walnut Gulch Experimental Watershed, Arizona is presented. (Author) 6 refs.

  13. Similarities in temperature-dependent gene expression plasticity across timescales in threespine stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Metzger, David C H; Schulte, Patricia M

    2018-04-14

    Phenotypic plasticity occurs at a variety of timescales, but little is known about the degree to which plastic responses at different timescales are associated with similar underlying molecular processes, which is critical for assessing the effects of plasticity on evolutionary trajectories. To address this issue, we identified differential gene expression in response to developmental temperature in the muscle transcriptome of adult threespine stickleback (Gasterosteus aculeatus) exposed to 12, 18 and 24°C until hatch and then held at 18°C for 9 months and compared these results to differential gene expression in response to adult thermal acclimation in stickleback developed at 18°C and then acclimated to 5 and 25°C as adults. Adult thermal acclimation affected the expression of 7,940 and 7,015 genes in response to cold and warm acclimation, respectively, and 4,851 of these genes responded in both treatments. In contrast, the expression of only 33 and 29 genes was affected by cold and warm development, respectively. The majority of the genes affected by developmental temperature were also affected by adult acclimation temperature. Many genes that were differentially expressed as a result of adult acclimation were associated with previously identified temperature-dependent effects on DNA methylation patterns, suggesting a role of epigenetic mechanisms in regulating gene expression plasticity during acclimation. Taken together, these results demonstrate similarities between the persistent effects of developmental plasticity on gene expression and the effects of adult thermal acclimation, emphasizing the potential for mechanistic links between plasticity acting at these different life stages. © 2018 John Wiley & Sons Ltd.

  14. The Distribution and Magnitude of Glacial Erosion on 103-year Timescales at Engabreen, Norway

    Science.gov (United States)

    Rand, C.; Goehring, B. M.

    2017-12-01

    We derive the magnitudes of glacial erosion integrated over 103-year timescales across a transect transverse to the direction of ice flow at Engabreen, Norway. Understanding the distribution of glacial erosion is important for several reasons, including sediment budgeting to fjord environments, development of robust landscape evolution models, and if a better understanding between erosion and ice-bed interface properties (e.g., sliding rate, basal water pressure) can be developed, we can use records of glacial erosion to infer glaciological properties that can ultimately benefit models of past and future glaciers. With few exceptions, measurements of glacial erosion are limited to the historical past and even then are rare owing to the difficulty of accessing the glacier bed. One method proven useful in estimating glacial erosion on 103-year timescales is to measure the remaining concentrations of cosmogenic nuclides that accumulate in exposed bedrock during periods of retracted glacier extent and are removed by glacial erosion and radioactive decay during ice cover. Here we will present measurements of 14C and 10Be measured in proglacial bedrock from Engabreen. Our transects are ca. 600 and 400 meters in front of the modern ice front, and based on historical imagery, was ice covered until the recent past. Initial 10Be results show an increase in concentrations of nearly an order of magnitude from the samples near the center of the glacial trough to those on the lateral margin, consistent with conceptual models of glacial erosion parameterized in terms of sliding velocity. Naïve exposure ages that assume no subglacial erosion range from 0.22 - 9.04 ka. More importantly, we can estimate erosion depths by assuming zero erosion of the highest concentration sample along the two transects and calculate the amount of material removed to yield the lower concentrations elsewhere along the two transects. Results indicate minimum erosion depths of 1-183 cm for most ice

  15. Individual Differences in the Phenotypic Flexibility of Basal Metabolic Rate in Siberian Hamsters Are Consistent on Short- and Long-Term Timescales.

    Science.gov (United States)

    Boratyński, Jan S; Jefimow, Małgorzata; Wojciechowski, Michał S

    Basal metabolic rate (BMR) correlates with the cost of life in endothermic animals. It usually differs consistently among individuals in a population, but it may be adjusted in response to predictable or unpredictable changes in the environment. The phenotypic flexibility of BMR is considered an adaptation to living in a stochastic environment; however, whether it is also repeatable it is still unexplored. Assuming that variations in phenotypic flexibility are evolutionarily important, we hypothesized that they are consistently different among individuals. We predicted that not only BMR but also its flexibility in response to changes in ambient temperature (T a ) are repeatable on short- and long-term timescales. To examine this, we acclimated Siberian hamsters (Phodopus sungorus) for 100 d to winterlike and then to summerlike conditions, and after each acclimation we exposed them interchangeably to 10° and 28°C for 14 d. The difference in BMR measured after each exposure defined an individual's phenotypic flexibility (ΔBMR). BMR was repeatable within and among seasons. It was also flexible in both seasons, but in winter this flexibility was lower in individuals responding to seasonal changes than in nonresponding ones. When we accounted for individual responsiveness, the repeatability of ΔBMR was significant in winter (τ = 0.48, P = 0.01) and in summer (τ = 0.55, P = 0.005). Finally, the flexibility of BMR in response to changes in T a was also repeatable on a long-term timescale, that is, among seasons (τ = 0.31, P = 0.008). Our results indicate the evolutionary importance of the phenotypic flexibility of energy metabolism and suggest that it may be subject to selection.

  16. MULTIFREQUENCY PHOTO-POLARIMETRIC WEBT OBSERVATION CAMPAIGN ON THE BLAZAR S5 0716+714: SOURCE MICROVARIABILITY AND SEARCH FOR CHARACTERISTIC TIMESCALES

    Energy Technology Data Exchange (ETDEWEB)

    Bhatta, G.; Stawarz, Ł.; Ostrowski, M. [Astronomical Observatory of Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Markowitz, A. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0424 (United States); Akitaya, H. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Arkharov, A. A. [Main (Pulkovo) Astronomical Observatory of RAS, Pulkovskoye shosse, 60, 196140 St. Petersburg (Russian Federation); Bachev, R. [Institute of Astronomy, Bulgarian Academy of Sciences, 72, Tsarigradsko Shosse Blvd., 1784 Sofia (Bulgaria); Benítez, E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Mexico DF (Mexico); Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny, Crimea, 298409 (Russian Federation); Carosati, D. [EPT Observatories, Tijarafe, La Palma (Spain); Cason, A. D. [Private address, 105 Glen Pine Trail, Dawnsonville, GA 30534 (United States); Chanishvili, R. [Abastumani Observatory, Mt. Kanobili, 0301 Abastumani, Georgia (United States); Damljanovic, G. [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Dhalla, S. [Florida International University, Miami, FL 33199 (United States); Frasca, A. [INAF—Osservatorio Astrofisico di Catania (Italy); Hiriart, D. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada (Mexico); Hu, S-M., E-mail: gopalbhatta716@gmail.com [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University at Weihai, 264209 Weihai (China); and others

    2016-11-01

    Here we report on the results of the Whole Earth Blazar Telescope photo-polarimetric campaign targeting the blazar S5 0716+71, organized in 2014 March to monitor the source simultaneously in BVRI and near-IR filters. The campaign resulted in an unprecedented data set spanning ∼110 hr of nearly continuous, multiband observations, including two sets of densely sampled polarimetric data mainly in the R filter. During the campaign, the source displayed pronounced variability with peak-to-peak variations of about 30% and “bluer-when-brighter” spectral evolution, consisting of a day-timescale modulation with superimposed hour-long microflares characterized by ∼0.1 mag flux changes. We performed an in-depth search for quasi-periodicities in the source light curve; hints for the presence of oscillations on timescales of ∼3 and ∼5 hr do not represent highly significant departures from a pure red-noise power spectrum. We observed that, at a certain configuration of the optical polarization angle (PA) relative to the PA of the innermost radio jet in the source, changes in the polarization degree (PD) led the total flux variability by about 2 hr; meanwhile, when the relative configuration of the polarization and jet angles altered, no such lag could be noted. The microflaring events, when analyzed as separate pulse emission components, were found to be characterized by a very high PD (>30%) and PAs that differed substantially from the PA of the underlying background component, or from the radio jet positional angle. We discuss the results in the general context of blazar emission and energy dissipation models.

  17. MULTIFREQUENCY PHOTO-POLARIMETRIC WEBT OBSERVATION CAMPAIGN ON THE BLAZAR S5 0716+714: SOURCE MICROVARIABILITY AND SEARCH FOR CHARACTERISTIC TIMESCALES

    International Nuclear Information System (INIS)

    Bhatta, G.; Stawarz, Ł.; Ostrowski, M.; Markowitz, A.; Akitaya, H.; Arkharov, A. A.; Bachev, R.; Benítez, E.; Borman, G. A.; Carosati, D.; Cason, A. D.; Chanishvili, R.; Damljanovic, G.; Dhalla, S.; Frasca, A.; Hiriart, D.; Hu, S-M.

    2016-01-01

    Here we report on the results of the Whole Earth Blazar Telescope photo-polarimetric campaign targeting the blazar S5 0716+71, organized in 2014 March to monitor the source simultaneously in BVRI and near-IR filters. The campaign resulted in an unprecedented data set spanning ∼110 hr of nearly continuous, multiband observations, including two sets of densely sampled polarimetric data mainly in the R filter. During the campaign, the source displayed pronounced variability with peak-to-peak variations of about 30% and “bluer-when-brighter” spectral evolution, consisting of a day-timescale modulation with superimposed hour-long microflares characterized by ∼0.1 mag flux changes. We performed an in-depth search for quasi-periodicities in the source light curve; hints for the presence of oscillations on timescales of ∼3 and ∼5 hr do not represent highly significant departures from a pure red-noise power spectrum. We observed that, at a certain configuration of the optical polarization angle (PA) relative to the PA of the innermost radio jet in the source, changes in the polarization degree (PD) led the total flux variability by about 2 hr; meanwhile, when the relative configuration of the polarization and jet angles altered, no such lag could be noted. The microflaring events, when analyzed as separate pulse emission components, were found to be characterized by a very high PD (>30%) and PAs that differed substantially from the PA of the underlying background component, or from the radio jet positional angle. We discuss the results in the general context of blazar emission and energy dissipation models.

  18. Spatio-temporal manipulation of small GTPase activity at subcellular level and on timescale of seconds in living cells.

    Science.gov (United States)

    DeRose, Robert; Pohlmeyer, Christopher; Umeda, Nobuhiro; Ueno, Tasuku; Nagano, Tetsuo; Kuo, Scot; Inoue, Takanari

    2012-03-09

    Dynamic regulation of the Rho family of small guanosine triphosphatases (GTPases) with great spatiotemporal precision is essential for various cellular functions and events(1, 2). Their spatiotemporally dynamic nature has been revealed by visualization of their activity and localization in real time(3). In order to gain deeper understanding of their roles in diverse cellular functions at the molecular level, the next step should be perturbation of protein activities at a precise subcellular location and timing. To achieve this goal, we have developed a method for light-induced, spatio-temporally controlled activation of small GTPases by combining two techniques: (1) rapamycin-induced FKBP-FRB heterodimerization and (2) a photo-caging method of rapamycin. With the use of rapamycin-mediated FKBP-FRB heterodimerization, we have developed a method for rapidly inducible activation or inactivation of small GTPases including Rac(4), Cdc42(4), RhoA(4) and Ras(5), in which rapamycin induces translocation of FKBP-fused GTPases, or their activators, to the plasma membrane where FRB is anchored. For coupling with this heterodimerization system, we have also developed a photo-caging system of rapamycin analogs. A photo-caged compound is a small molecule whose activity is suppressed with a photocleavable protecting group known as a caging group. To suppress heterodimerization activity completely, we designed a caged rapamycin that is tethered to a macromolecule such that the resulting large complex cannot cross the plasma membrane, leading to virtually no background activity as a chemical dimerizer inside cells(6). Figure 1 illustrates a scheme of our system. With the combination of these two systems, we locally recruited a Rac activator to the plasma membrane on a timescale of seconds and achieved light-induced Rac activation at the subcellular level(6).

  19. Carbonyl carbon transverse relaxation dispersion measurements and ms-{mu}s timescale motion in a protein hydrogen bond network

    Energy Technology Data Exchange (ETDEWEB)

    Ishima, Rieko [National Institute of Dental and Craniofacial Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Molecular Structural Biology Unit (United States); Baber, James; Louis, John M.; Torchia, Dennis A. [National Institute of Dental and Craniofacial Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Molecular Structural Biology Unit (United States)

    2004-06-15

    A constant-time, Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation, R{sub 2}, dispersion experiment for carbonyl carbons was designed and executed to detect {mu}s-ms time-scale dynamics of protein backbone carbonyl sites. Because of the large (ca. 55 Hz) C{sub {alpha}}-C' J-coupling, the carbonyl signal intensity is strongly modulated as the spacing between CPMG pulses is varied, in uniformly {sup 13}C enriched proteins, unless care is taken to minimize the perturbation of the C{sub {alpha}} magnetization by the CPMG pulses. CPMG pulse trains consisting of either a band-selective pulse, such as RE-BURP, or rectangular (with an excitation null in the C{sub {alpha}} region of the spectrum) pulses were employed in order to minimize C' signal modulation by C{sub {alpha}}-C' J-coupling. The performance of these types of CPMG refocusing pulses was assessed by computer simulation, and by comparing dispersion profiles measured for (1) uniformly [{sup 13}C,{sup 15}N, {sup 2}H] ({sup 2}H at non-labile hydrogen sites) labeled, and (2) uniformly {sup 15}N/selectively-{sup 13}C' labeled samples of HIV-1 protease bound to a potent inhibitor, DMP323. In addition, because the uniformly {sup 13}C/{sup 15}N/{sup 2}H labeled sample was well suited to measure {sup 15}N and {sup 1}H R{sub 2} dispersion as well as {sup 13}C' dispersion, conformational exchange in the inter subunit {beta}-sheet hydrogen-bond network of the inhibitor-bound protease was elucidated using relaxation dispersion data of all three types of nuclei.

  20. The « 3-D donut » electrostatic analyzer for millisecond timescale electron measurements in the solar wind

    Science.gov (United States)

    Berthomier, M.; Techer, J. D.

    2017-12-01

    Understanding electron acceleration mechanisms in planetary magnetospheres or energy dissipation at electron scale in the solar wind requires fast measurement of electron distribution functions on a millisecond time scale. Still, since the beginning of space age, the instantaneous field of view of plasma spectrometers is limited to a few degrees around their viewing plane. In Earth's magnetosphere, the NASA MMS spacecraft use 8 state-of-the-art sensor heads to reach a time resolution of 30 milliseconds. This costly strategy in terms of mass and power consumption can hardly be extended to the next generation of constellation missions that would use a large number of small-satellites. In the solar wind, using the same sensor heads, the ESA THOR mission is expected to reach the 5ms timescale in the thermal energy range, up to 100eV. We present the « 3-D donut » electrostatic analyzer concept that can change the game for future space missions because of its instantaneous hemispheric field of view. A set of 2 sensors is sufficient to cover all directions over a wide range of energy, e.g. up to 1-2keV in the solar wind, which covers both thermal and supra-thermal particles. In addition, its high sensitivity compared to state of the art instruments opens the possibility of millisecond time scale measurements in space plasmas. With CNES support, we developed a high fidelity prototype (a quarter of the full « 3-D donut » analyzer) that includes all electronic sub-systems. The prototype weights less than a kilogram. The key building block of the instrument is an imaging detector that uses EASIC, a low-power front-end electronics that will fly on the ESA Solar Orbiter and on the NASA Parker Solar Probe missions.

  1. Short time-scale optical variability properties of the largest AGN sample observed with Kepler/K2

    Science.gov (United States)

    Aranzana, E.; Körding, E.; Uttley, P.; Scaringi, S.; Bloemen, S.

    2018-05-01

    We present the first short time-scale (˜hours to days) optical variability study of a large sample of active galactic nuclei (AGNs) observed with the Kepler/K2 mission. The sample contains 252 AGN observed over four campaigns with ˜30 min cadence selected from the Million Quasar Catalogue with R magnitude <19. We performed time series analysis to determine their variability properties by means of the power spectral densities (PSDs) and applied Monte Carlo techniques to find the best model parameters that fit the observed power spectra. A power-law model is sufficient to describe all the PSDs of our sample. A variety of power-law slopes were found indicating that there is not a universal slope for all AGNs. We find that the rest-frame amplitude variability in the frequency range of 6 × 10-6-10-4 Hz varies from 1to10 per cent with an average of 1.7 per cent. We explore correlations between the variability amplitude and key parameters of the AGN, finding a significant correlation of rest-frame short-term variability amplitude with redshift. We attribute this effect to the known `bluer when brighter' variability of quasars combined with the fixed bandpass of Kepler data. This study also enables us to distinguish between Seyferts and blazars and confirm AGN candidates. For our study, we have compared results obtained from light curves extracted using different aperture sizes and with and without detrending. We find that limited detrending of the optimal photometric precision light curve is the best approach, although some systematic effects still remain present.

  2. The persistence of natural CO2 accumulations over millennial timescales: Integrating noble gas and reservoir data at Bravo Dome, NM

    Science.gov (United States)

    Akhbari, D.

    2017-12-01

    Bravo Dome, the largest CO2 reservoir in the US, is a hydrogeologically closed system that has stored a very large amount of CO2 on millennial time scales. The pre-production gas pressures in Bravo Dome indicate that the reservoir is highly under-pressured and is divided into separate pressure compartments that do not communicate hydrologically. Previous studies used the noble gas composition at Bravo Dome to constrain the amount of dissolved CO2 into the brine. This CO2 dissolution into brine plays an important role in the observed under-pressure at the reservoir. However, the dissolution rates and transport mechanisms remain unknown. In this study, we are looking into reservoir pressures and noble gas composition in the northeastern section of the reservoir to constrain timescales of CO2 dissolution. We are interested in northeastern part of the reservoir because the largest amount of CO2 was dissolved into brine in this section. Also, we specifically look into the evolution of the CO2/3He and 20Ne concentration during convective CO2 dissolution at Bravo Dome. 20Ne has atmospheric origin and is initially in the brine, while 3He and CO2 have magmatic sources and were introduced with the gas. CO2/3He decreases as more CO2 dissolves into brine, due to the higher solubility of CO2 compare to that of 3He. However, 20Ne concentration in the gas increases due to exsolution of 20Ne from brine into the gas phase. We present 2D numerical simulation that demonstrate the persistence of CO2 over 1Ma and reproduce the observed reservoir pressures and noble gas compositions. Our results indicate that convection is required to produce observed changes in gas composition. But diffusion makes a significant contribution to mass transport.

  3. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    KAUST Repository

    Jolivet, Renaud

    2015-02-26

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

  4. Carbonyl carbon transverse relaxation dispersion measurements and ms-μs timescale motion in a protein hydrogen bond network

    International Nuclear Information System (INIS)

    Ishima, Rieko; Baber, James; Louis, John M.; Torchia, Dennis A.

    2004-01-01

    A constant-time, Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation, R 2 , dispersion experiment for carbonyl carbons was designed and executed to detect μs-ms time-scale dynamics of protein backbone carbonyl sites. Because of the large (ca. 55 Hz) C α -C' J-coupling, the carbonyl signal intensity is strongly modulated as the spacing between CPMG pulses is varied, in uniformly 13 C enriched proteins, unless care is taken to minimize the perturbation of the C α magnetization by the CPMG pulses. CPMG pulse trains consisting of either a band-selective pulse, such as RE-BURP, or rectangular (with an excitation null in the C α region of the spectrum) pulses were employed in order to minimize C' signal modulation by C α -C' J-coupling. The performance of these types of CPMG refocusing pulses was assessed by computer simulation, and by comparing dispersion profiles measured for (1) uniformly [ 13 C, 15 N, 2 H] ( 2 H at non-labile hydrogen sites) labeled, and (2) uniformly 15 N/selectively- 13 C' labeled samples of HIV-1 protease bound to a potent inhibitor, DMP323. In addition, because the uniformly 13 C/ 15 N/ 2 H labeled sample was well suited to measure 15 N and 1 H R 2 dispersion as well as 13 C' dispersion, conformational exchange in the inter subunit β-sheet hydrogen-bond network of the inhibitor-bound protease was elucidated using relaxation dispersion data of all three types of nuclei

  5. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    Science.gov (United States)

    Jolivet, Renaud; Coggan, Jay S.; Allaman, Igor; Magistretti, Pierre J.

    2015-01-01

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging. PMID:25719367

  6. Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble.

    Directory of Open Access Journals (Sweden)

    Renaud Jolivet

    2015-02-01

    Full Text Available Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS are still debated. To address this question, we developed a detailed biophysical model of the brain's metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

  7. Dynamics analysis of the fast-slow hydro-turbine governing system with different time-scale coupling

    Science.gov (United States)

    Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu

    2018-01-01

    Multi-time scales modeling of hydro-turbine governing system is crucial in precise modeling of hydropower plant and provides support for the stability analysis of the system. Considering the inertia and response time of the hydraulic servo system, the hydro-turbine governing system is transformed into the fast-slow hydro-turbine governing system. The effects of the time-scale on the dynamical behavior of the system are analyzed and the fast-slow dynamical behaviors of the system are investigated with different time-scale. Furthermore, the theoretical analysis of the stable regions is presented. The influences of the time-scale on the stable region are analyzed by simulation. The simulation results prove the correctness of the theoretical analysis. More importantly, the methods and results of this paper provide a perspective to multi-time scales modeling of hydro-turbine governing system and contribute to the optimization analysis and control of the system.

  8. Large-scale compositional heterogeneity in the Earth's mantle

    Science.gov (United States)

    Ballmer, M.

    2017-12-01

    Seismic imaging of subducted Farallon and Tethys lithosphere in the lower mantle has been taken as evidence for whole-mantle convection, and efficient mantle mixing. However, cosmochemical constraints point to a lower-mantle composition that has a lower Mg/Si compared to upper-mantle pyrolite. Moreover, geochemical signatures of magmatic rocks indicate the long-term persistence of primordial reservoirs somewhere in the mantle. In this presentation, I establish geodynamic mechanisms for sustaining large-scale (primordial) heterogeneity in the Earth's mantle using numerical models. Mantle flow is controlled by rock density and viscosity. Variations in intrinsic rock density, such as due to heterogeneity in basalt or iron content, can induce layering or partial layering in the mantle. Layering can be sustained in the presence of persistent whole mantle convection due to active "unmixing" of heterogeneity in low-viscosity domains, e.g. in the transition zone or near the core-mantle boundary [1]. On the other hand, lateral variations in intrinsic rock viscosity, such as due to heterogeneity in Mg/Si, can strongly affect the mixing timescales of the mantle. In the extreme case, intrinsically strong rocks may remain unmixed through the age of the Earth, and persist as large-scale domains in the mid-mantle due to focusing of deformation along weak conveyor belts [2]. That large-scale lateral heterogeneity and/or layering can persist in the presence of whole-mantle convection can explain the stagnation of some slabs, as well as the deflection of some plumes, in the mid-mantle. These findings indeed motivate new seismic studies for rigorous testing of model predictions. [1] Ballmer, M. D., N. C. Schmerr, T. Nakagawa, and J. Ritsema (2015), Science Advances, doi:10.1126/sciadv.1500815. [2] Ballmer, M. D., C. Houser, J. W. Hernlund, R. Wentzcovitch, and K. Hirose (2017), Nature Geoscience, doi:10.1038/ngeo2898.

  9. Assessment of the Impact of Stochastic Day-Ahead SCUC on Economic and Reliability Metrics at Multiple Timescales: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.; Ela, E.; Krad, I.; Florita, A.; Zhang, J.; Hodge, B. M.; Ibanez, E.; Gao, W.

    2015-03-01

    This paper incorporates the stochastic day-ahead security-constrained unit commitment (DASCUC) within a multi-timescale, multi-scheduling application with commitment, dispatch, and automatic generation control. The stochastic DASCUC is solved using a progressive hedging algorithm with constrained ordinal optimization to accelerate the individual scenario solution. Sensitivity studies are performed in the RTS-96 system, and the results show how this new scheduling application would impact costs and reliability with a closer representation of timescales of system operations in practice.

  10. Process Inference from High Frequency Temporal Variations in Dissolved Organic Carbon (DOC) Dynamics Across Nested Spatial Scales

    Science.gov (United States)

    Tunaley, C.; Tetzlaff, D.; Lessels, J. S.; Soulsby, C.

    2014-12-01

    In order to understand aquatic ecosystem functioning it is critical to understand the processes that control the spatial and temporal variations in DOC. DOC concentrations are highly dynamic, however, our understanding at short, high frequency timescales is still limited. Optical sensors which act as a proxy for DOC provide the opportunity to investigate near-continuous DOC variations in order to understand the hydrological and biogeochemical processes that control concentrations at short temporal scales. Here we present inferred 15 minute stream water DOC data for a 12 month period at three nested scales (1km2, 3km2 and 31km2) for the Bruntland Burn, a headwater catchment in NE Scotland. High frequency data were measured using FDOM and CDOM probes which work by measuring the fluorescent component and coloured component, respectively, of DOC when exposed to ultraviolet light. Both FDOM and CDOM were strongly correlated (r2 >0.8) with DOC allowing high frequency estimations. Results show the close coupling of DOC with discharge throughout the sampling period at all three spatial scales. However, analysis at the event scale highlights anticlockwise hysteresis relationships between DOC and discharge due to the delay in DOC being flushed from the increasingly large areas of peaty soils as saturation zones expand and increase hydrological connectivity. Lag times vary between events dependent on antecedent conditions. During a 10 year drought period in late summer 2013 it was apparent that very small changes in discharge on a 15 minute timescale result in high increases in DOC. This suggests transport limitation during this period where DOC builds up in the soil and is not flushed regularly, therefore any subsequent increase in discharge results in large DOC peaks. The high frequency sensors also reveal diurnal variability during summer months related to the photo-oxidation, evaporative and biological influences of DOC during the day. This relationship is less

  11. Determination of Arctic sea ice variability modes on interannual timescales via nonhierarchical clustering

    Science.gov (United States)

    Fučkar, Neven-Stjepan; Guemas, Virginie; Massonnet, François; Doblas-Reyes, Francisco

    2015-04-01

    Over the modern observational era, the northern hemisphere sea ice concentration, age and thickness have experienced a sharp long-term decline superimposed with strong internal variability. Hence, there is a crucial need to identify robust patterns of Arctic sea ice variability on interannual timescales and disentangle them from the long-term trend in noisy datasets. The principal component analysis (PCA) is a versatile and broadly used method for the study of climate variability. However, the PCA has several limiting aspects because it assumes that all modes of variability have symmetry between positive and negative phases, and suppresses nonlinearities by using a linear covariance matrix. Clustering methods offer an alternative set of dimension reduction tools that are more robust and capable of taking into account possible nonlinear characteristics of a climate field. Cluster analysis aggregates data into groups or clusters based on their distance, to simultaneously minimize the distance between data points in a given cluster and maximize the distance between the centers of the clusters. We extract modes of Arctic interannual sea-ice variability with nonhierarchical K-means cluster analysis and investigate the mechanisms leading to these modes. Our focus is on the sea ice thickness (SIT) as the base variable for clustering because SIT holds most of the climate memory for variability and predictability on interannual timescales. We primarily use global reconstructions of sea ice fields with a state-of-the-art ocean-sea-ice model, but we also verify the robustness of determined clusters in other Arctic sea ice datasets. Applied cluster analysis over the 1958-2013 period shows that the optimal number of detrended SIT clusters is K=3. Determined SIT cluster patterns and their time series of occurrence are rather similar between different seasons and months. Two opposite thermodynamic modes are characterized with prevailing negative or positive SIT anomalies over the

  12. CHROMOSPHERIC VARIABILITY IN SLOAN DIGITAL SKY SURVEY M DWARFS. II. SHORT-TIMESCALE Hα VARIABILITY

    International Nuclear Information System (INIS)

    Kruse, E. A.; Berger, E.; Laskar, T.; Knapp, G. R.; Gunn, J. E.; Loomis, C. P.; Lupton, R. H.; Schlegel, D. J.

    2010-01-01

    We present the first comprehensive study of short-timescale chromospheric Hα variability in M dwarfs using the individual 15 minute spectroscopic exposures for 52, 392 objects from the Sloan Digital Sky Survey. Our sample contains about 10 3 -10 4 objects per spectral type bin in the range M0-M9, with a typical number of three exposures per object (ranging up to a maximum of 30 exposures). Using this extensive data set, we find that about 16% of the sources exhibit Hα emission in at least one exposure, and of those about 45% exhibit Hα emission in all of the available exposures. As in previous studies of Hα activity (L Hα /L bol ), we find a rapid increase in the fraction of active objects from M0-M6. However, we find a subsequent decline in later spectral types that we attribute to our use of the individual spectra. Similarly, we find saturated activity at a level of L Hα /L bol ∼ 10 -3.6 for spectral types M0-M5 followed by a decline to about 10 -4.3 in the range M7-M9. Within the sample of objects with Hα emission, only 26% are consistent with non-variable emission, independent of spectral type. The Hα variability, quantified in terms of the ratio of maximum to minimum Hα equivalent width (R EW ), exhibits a rapid rise from M0 to M5, followed by a plateau and a possible decline in M9 objects. In particular, variability with R EW ∼> 10 is only observed in objects later than M5, and survival analysis indicates a probability of ∼ EW values for M0-M4 and M5-M9 are drawn from the same distribution. We further find that for an exponential distribution, the R EW values follow N(R EW ) ∝ exp[ - (R EW - 1)/2.3] for M0-M4 and ∝exp[ - (R EW - 1)/2.9] for M5-M9. Finally, comparing objects with persistent and intermittent Hα emission, we find that the latter exhibit greater variability. Based on these results, we conclude that Hα variability in M dwarfs on timescales of 15 minutes to 1 hr increases with later spectral type, and that the variability is

  13. Earth History databases and visualization - the TimeScale Creator system

    Science.gov (United States)

    Ogg, James; Lugowski, Adam; Gradstein, Felix

    2010-05-01

    The "TimeScale Creator" team (www.tscreator.org) and the Subcommission on Stratigraphic Information (stratigraphy.science.purdue.edu) of the International Commission on Stratigraphy (www.stratigraphy.org) has worked with numerous geoscientists and geological surveys to prepare reference datasets for global and regional stratigraphy. All events are currently calibrated to Geologic Time Scale 2004 (Gradstein et al., 2004, Cambridge Univ. Press) and Concise Geologic Time Scale (Ogg et al., 2008, Cambridge Univ. Press); but the array of intercalibrations enable dynamic adjustment to future numerical age scales and interpolation methods. The main "global" database contains over 25,000 events/zones from paleontology, geomagnetics, sea-level and sequence stratigraphy, igneous provinces, bolide impacts, plus several stable isotope curves and image sets. Several regional datasets are provided in conjunction with geological surveys, with numerical ages interpolated using a similar flexible inter-calibration procedure. For example, a joint program with Geoscience Australia has compiled an extensive Australian regional biostratigraphy and a full array of basin lithologic columns with each formation linked to public lexicons of all Proterozoic through Phanerozoic basins - nearly 500 columns of over 9,000 data lines plus hot-curser links to oil-gas reference wells. Other datapacks include New Zealand biostratigraphy and basin transects (ca. 200 columns), Russian biostratigraphy, British Isles regional stratigraphy, Gulf of Mexico biostratigraphy and lithostratigraphy, high-resolution Neogene stable isotope curves and ice-core data, human cultural episodes, and Circum-Arctic stratigraphy sets. The growing library of datasets is designed for viewing and chart-making in the free "TimeScale Creator" JAVA package. This visualization system produces a screen display of the user-selected time-span and the selected columns of geologic time scale information. The user can change the

  14. Conditions and timescales for welding block-and-ash flow deposits

    Science.gov (United States)

    Heap, M. J.; Kolzenburg, S.; Russell, J. K.; Campbell, M. E.; Welles, J.; Farquharson, J. I.; Ryan, A.

    2014-12-01

    Welding of pyroclastic deposits to reform a coherent rock mass is a common phenomenon, especially for pumiceous pyroclastic density current deposits (i.e., ignimbrites). However, and despite the pervasive abundance of block-and-ash flow (BAF) deposits in the geological and modern record, instances of strongly welded BAF deposits are few. Here, we present a series of high-temperature (800-900 °C) compaction experiments designed to map the conditions (deposit thickness/stress and temperature/viscosity) and timescales that permit or inhibit the welding of BAF deposits. Our experiments were performed on unconsolidated aggregates (containing an ash and lapilli component) derived from crushed and sieved lava blocks (containing 25% crystals) taken from the well-documented welded BAF deposit at Mount Meager volcano (British Columbia, Canada). The experiments demonstrate that welding efficiency increases with increasing time and temperature. Progressive welding is expressed by increasing axial strain, porosity loss, and bulk density. The rate of change of each of these physical properties reduces as welding progresses. Microstructural analysis of the experimental products shows that the loss of interclast porosity during welding results from the progressive sintering and amalgamation of vitric fragments, and that the pore shape changes from sub-equant pores to stretched lenses sandwiched between vitric and crystal fragments. The coincidence between the microstructure and rock physical properties of the natural and experimental samples highlight that we have successfully reproduced welded BAF in the laboratory. Furthermore, our permeability measurements highlight a hysteresis in the return journey of the "there-and-back-again" volcanic permeability cycle (expressed by an increase in permeability due to vesiculation and fragmentation followed by a decrease due to welding). This hysteresis cannot be described by a si